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摘要 

 

 免持聽筒或是視訊會議系統常驅動功率放大器和喇叭操作在飽和非線性

區，導致一般使用的線性回音消除器性能降低。在本篇論文中，我們將對非線性

回音消除建構出一個無記憶式片段線性(PWL)處理器串聯一個線性濾波器的模

型，它能有效降低運算量。另外，為了克服在串聯式系統的發散問題，我們採取

兩段式調適的方式，首先只有線性濾波器開始更新，接著 PWL 和線性濾波器的

係數同時進行調適。更進一步，推導出它的收斂分析及穩定條件，並在電腦模擬

得到驗證。最後，我們發展出 LMS 演算法在不同時間、不同時間及不同閥(tap)

的最佳步伐調適來加強收斂速度，同時提供他們實用的實現方式和電腦模擬。 
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Abstract 
Hand-free phone or teleconferencing system drives the power-amplification and 

loudspeaker commonly into saturated nonlinear region, leading to that the 

performance of conventional acoustic echo cancellation (AEC) reduced. In this thesis, 

we will build a cascade model which consists of a memoryless piece-wise linear 

(PWL) processor and a linear filter for AEC. It is beneficial to reduce the computation. 

Besides, in order to overcome the divergence problem in a cascade system, we will 

adopt the two-stage adaptation that starts with a linear filter, and then joint adaptation 

of PWL and linear coefficients follows. Further, the convergence analysis and 

stability criterion will be derived and the computer simulation will justify our analysis. 

Finally, LMS algorithms with optimum time-variant and time-&tap- variant step-sizes 

are developed to improve convergence rate. Their practical implementations and 

computer simulations are also provided. 
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Chapter 1 
Introduction  
 

In these years, hands-free telephone and teleconference systems are widely used. 

Acoustic echo cancellation (AEC) is a major concern in telecommunications, where 

echo delay is particularly annoying for speakers. The problem occurs as a result of the 

reflections of the signal from the loudspeaker back to the microphone. We will 

introduce the fundamental problem and techniques of acoustic echo cancellation as 

follows.  

Fig. 1.1 Diagram of hands-free telephone system 

A simplified diagram of hands-free telephone system is shown in Fig. 1.1. 

Assume that a talker in the far-end uses microphone to communicate to the listener in 

near-end, the far-end speech will be transmitted back to the far-end through the 

loudspeaker and room impulse response. The main object of acoustic echo 

cancellation (AEC) is to estimate the unknown echo path and subtract the estimated 

echo components from the microphone output.  
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In the past, based on the gradient theory, the acoustic echo that is linearly 

dependent on the loudspeaker can be cancelled effectively [1]-[3]. However, more 

and more telecommunications areas use heads-free devices to improve customer 

comfort. These devices drive higher power-amplification and power loudspeaker 

commonly driven into saturation region [4]. This issue leads to a nonlinear filtering 

problem that cannot be solved by conventional linear AEC. 

In this thesis, the nonlinear AEC system is shown in Fig.1.2. The signal from the 

far end is passing through the nonlinear loudspeaker and the room impulse response 

and then is picked up by the microphone. The nonlinear AEC is supposed to cancel 

the nonlinear echo. The nonlinear echo can be cancelled perfectly if the nonlinear 

AEC filter is identical to the nonlinear loudspeaker and room impulse response.  

( )echod n
( )d n
�

( )d n

 

Fig.1.2 Nonlinear acoustic echo cancellation system 

The design and analysis of nonlinear adaptive filtering is difficult. The popular 

method is via polynomial functions, i.e. truncated Volterra [5], Wiener [6] and 

Hammerstein models [7]-[9]. Wiener and Hammerstein model are special cases of 

Volterra one with worse fitting but much less coefficients accompanied less 
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computations. Although Hammerstein model has the least complexity, it still has large 

computations.  

In the thesis, we will employ the piecewise linear (PWL) [10] method to lessen 

this issue in nonlinear AEC. These are also other reasons which suggest that it may be 

worthwhile to investigate the simplicity of PWL implementation, as well as its 

theoretical analysis. The former is due to the fact that digital controllers based on such 

systems can be built easily using “if p(x) then f(x) else… ”. The latter own itself to the 

maturity of linear algebra.  

Historically, a closed form of the canonical PWL (CPWL) was presented by 

Chua [10]. Lin used the least-mean-square (LMS) algorithm for CPWL [11]. The 

identification of Hammerstein model using two-segment nonlinearity, different 

polynomial functions on positive and negative regions, was demonstrated in [12]. 

Later on, Vörös demonstrated multi-segment PWL characteristics, the same idea as 

CPWL, with recursive-least-square (RLS) [13] in a special case of, high SNR, a 

specific set of initials and parameters. In this thesis, we will employ it for nonlinear 

AEC in various cases and discuss. 

Although the PWL processor has benefit on the computation, it still is 

proportional to the linear filter length M . In the past, many types of selective update 

schemes for the adaptive linear filter have been described in [14]-[16]. We will extend 

their concepts and take advantages of the particular PWL structure to develop PWL 

coefficient selective update schemes. 

After demonstrating our system flow, we now focus on the stability issue. The 

transient behavior of linear filter and PWL processor can account for the divergence 

problem encountered in cascade system. Convergence cannot be guaranteed, since 

each filter (linear filter or PWL processor) behaves to compensate the other one’s 
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misalignment, which can lead to a perpetual oscillating system. 

 In order to overcome this difficulty, Guérin [7] points out that the linear filter 

has to adapt continuously so as to react to any change in the acoustic path, and the 

PWL filter must not adapt until the linear filter has sufficiently converged. The 

two-staged strategy starts with a linear filter and then joint adaptation of PWL and 

linear coefficients follows once the linear filter has sufficiently converged in the first 

stage. Moreover, in this thesis we will derive the theoretical convergence analysis and 

stability criterion of the two-staged algorithm. 

 Next, we will focus on the step-size. We know a large step size gives a faster 

convergence but also large small residual error power. Therefore, various methods 

employing varying step-size have be examined by the other researchers, including 

time-varying [17], tap-varying [18] or both time- & tap- varying [19]. We will use the 

convergence analysis of the first stage to develop the optimum time-variant and 

optimum time-&tap-variant step-size LMS algorithm. 

In Chapter 2, we introduce our system model and its update scheme. In Chapter 3, 

a two staged algorithm is used and its performance analysis of a PWL structure is 

proved analytically. In Chapter 4 The optimal step size with a nonlinear modeling 

error is derived. Simulations support our works in Chapter 5 and conclusion will be 

given in Chapter 6.  

The main efforts in this thesis are: 

1. We introduce a PWL structure of adaptive nonlinear AEC with lower complexity 

and develop its joint LMS adaptive algorithm. 

2. We develop five types of PWL coefficients selective update schemes 

3. For joint LMS adaptive algorithm, we derive and verify convergence analyses of 

the two-staged adaptation with a stability condition of linear step-size during the 
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first stage. 

4. Further, we discuss the convergence behavior during the first stage with different 

factors, nonlinear effect, power and Pdf. of the far-end signal, step-size and SNR. 

5. Optimum time-variant and time-&tap- variant step-size LMS algorithm of linear 

adaptive filter with a nonlinear modeling error are derived and verified. 

6. The corresponding practical forms are also proposed and discussed. 
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Chapter 2 
Nonlinear Adaptive filter 
  

In Chapter 2 we will build a system model for nonlinear AEC and develop its 

adaptive algorithm. Moreover, we will discuss the issue of the computation cost. 

Further, five types of partial update schemes will be presented to reduce the 

computational load. 

In Section 2.1, the nonlinear AEC is first introduced as a cascade of nonlinear 

processor and linear adaptive filter, where a PWL function is used to model the 

nonlinear loudspeaker. Moreover, we will develop the joint LMS-type algorithm to 

update both PWL and linear coefficients. In Section 2.2, the computation complexity 

of the PWL-based nonlinear adaptive filter is compared to that of polynomial-based 

model and linear AEC. In Section 2.3, several partial update schemes are proposed to 

further reduce the computation at the cost of degraded convergence rate.  

 

2.1 Adaptive nonlinear LMS AEC using PWL structure 

 In order to separate the identification of the nonlinear loudspeaker parameters 

and the tracking of the linear acoustic path changes, Fig. 2.1 shows a typical cascade 

nonlinear AEC [8], also known as a Hammerstein model. The far end signal ( )x n  is 

fed into the PWL processor f(x) that approximates the nonlinear mapping function 

with one or more linear equations. It has been exploited to compensate for the effect 

of nonlinear echo. 

The output ( )s n  of the PWL processor passes through a linear filter to form a pseudo 

nonlinear echo ˆ( )d n . Here we assume the nonlinear distortion is caused only by the 

loudspeaker and the let ( )d n  denote the desired signal.  



 7

PWL 
processor

Linear FIR 
filter

( )x n

( )s n

( )e n ( )d n

ˆ( )d n

+

−

( )v n

( )nw

( )nh

oh

ow

( )echod n

PWL 
processor

Linear FIR 
filter

( )x n

( )s n

( )e n ( )d n

ˆ( )d n

+

−

( )v n

( )nw

( )nh

oh

ow

( )echod n

 

Fig. 2.1 Nonlinear acoustic echo canceller based on piecewise linear structure 

The PWL function f(x) for the speech input range [-1 1] is assumed to be 

symmetric and its prototype is given by: 

1 1 2

2 2 1 2 2 3

1 1 1 1 1

                                                          ,

( )                                     ,
( )

              
( ) ( ) , ,

     
N N N N N N N

m x x

m x m x
f x

m x m m x

α α

α α α α

α α α α α α− − +

⎧ ≤ <
⎪

− + ≤ <⎪= ⎨
⎪
⎪ − + − + ≤ <⎩

#
"

 (2.1.1) 

where jm and jα account for the slope and partition parameters of the linear subregion, 

respectively, with 1 10 and 1Nα α += = . 

The prototype of PWL function in Eq. (2.1.1) consists of a series of linear 

subfunctions which are properly partitioned into subregions of the nonlinear curve. 

Here we adopt a canonical piece-wise linear (CPWL) function [10], which is an 

analytic formula with several absolute-value operators. Its memoryless form with zero 

offset is given by  

 ( ) ( )1
2

N

j j
j

f x w x w x α
=

= + −∑ ,  

where the CPWL coefficient jw is a function of some slopes of the sublinear 
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functions and N is the CPWL tap order. Extending to the symmetrical function and 

associated to Eq. (2.1.1), we can get a modified form as follows 

( )
1

( )
N

j j
j

f x w f x
=

= ∑ ,                                                    (2.1.2) 

where 

( ) 1 1
2 2j j jf x x x xα α⎛ ⎞= − − + +⎜ ⎟

⎝ ⎠
  

and 1 1w m= , 1 2 ~( ),  i i i i Nw m m − ∀ == − .  

 We use an example to demonstrate how the CPWL function works. Consider a 

3-segment CPWL function in Fig. 2.2 with partition paraments 2 30.4 and 0.7α α= =  

and slopes 1 1w = , 2 0.4w = −  and 3 0.6w = − . In Fig. 2.2, we can observe it performs 

canonically with every breakpoint iα . 

 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

-1 -0.5 0 0.5 1
-0.2

-0.1

0

0.1

0.2

 

Fig. 2.2 (a) A CPWL curve with three segments (b)~(d) Associated canonical curves 

From now on, all PWL functions are of canonical form. The block diagram of a 

PWL processor is shown in Fig. 2.3, where the far end signal is decomposed to  N 

analytic signals on the block jf  , then multiplied by its associated coefficient jw  , 

and finally all of them are synthesized together to approximate the nonlinearly 

( )f x 1 1( )w f x

2 2 ( )w f x 3 3 ( )w f x

( )b

( )c ( )d

( )a
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distorted loudspeaker output. Here the j-th output of the block ( )jf x  will be null 

when the far end signal x  is smaller than the j-th partition area value. It will be 

beneficial to reduce computation load, which will be dealt with later. 

1f ......

1w 2w Nw

s

2f Nf

x

1f ......

1w 2w Nw

s

2f Nf

x

 
Fig. 2.3 The block diagram of a PWL processor 

The overall nonlinear AEC can be represented as a vector form. The output of 

the nonlinear processor ( )s n  is given by   

Ts = ⋅w f ,                                          (2.1.3) 

where 1 2[    ... ]T
Nw w w=w and 

  ( ) ( ) ( )1 2[    ...  ]T
Nf x f x f x=f  

resembles a decomposition that maps real numbers into vectors using a set of 

predefined partition parameters { }20,  , ,1Nα α" . For example, if the input x is 

0.8, 4N = , and the partition parameters are{ }0,  0.4,  0.7,  0.9,  1 , then the vector f  

will be [ ]0.8, 0.4, 0.1, 0 T . In Table 2.1, we show the look-up table for a 

symmetric partition { }1 2 1,  , ,N Nα α α α +"  without a mixed part that contains both 
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positive and negative elements. [20] has also proposed a similar decomposition shown 

in Table 2.2. But our modified CPWL function is an explicit equation to achieve the 

decomposition and our procedure can be easily extended to that,  by ( ) ( )1 1g x f x=  

and ( ) ( ) ( )1 , 2 ~j j jg x f x f x j N−= − ∀ = .  

Table 2.1 Look-up table of a PWL processor  

( )jf x  jx α≥  jx α≤  

0x ≥  x - jα  0 

0x <  x + jα  0 

 

Table 2.2 Look-up table of decomposition introduced by Heredia [20]  

( )jg x  1jx α +>  1( , )j jx α α+∈  jx α≤  

0x ≥  1j jα α+ −  jx α−  0 

0x <  1j jα α +−  ( )j x nα +  0 

 

After discussing the decomposition of the vector f , we now come back to focus 

on the system flow in Fig. 2.1. From Eq. (2.1.3), the delay tap form of PWL processor 

[ ]( ) ( ) ( -1) ... ( - 1) Tn s n s n s n M= +s  can be expressed as  

( ) ( )n n= ⋅s F w ,                                        (2.1.4)  

where [ ]( ) ( ) ( 1)   ( 1) Tn n n n M= − − +F f  f f"                            (2.1.5) 

is the delayed tap mapping matrix. Therefore, the nonlinear AEC output signal �( )d n  

can be written as  
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�( ) ( )Td n n= ⋅s h ,                                             

where 0 1 -1[   ... ]T
Mh h h=h  represents the estimated coefficients vector of the linear 

FIR filter with M being the length of the filter. The estimated error is 

�( ) ( ) ( )e n d n d n= −  

       ( ) ( ) ( )Td n n v n= − ⋅ −s h  

If the coefficients vectors are updated with step size hμ  and wμ , a joint 

LMS-type adaptive algorithm according to the gradient of the cost 

function, 2( ) ( )J n e n= , is given by 

( 1) ( ) ( ) ( ) ( )hn n n n e nμ+ = + ⋅h h w F  

            ( ) ( ) ( )hn n e nμ= +h s                                  (2.1.6) 

( 1) ( ) ( ) ( ) ( ).T
wn n n n e nμ+ = + ⋅w w F h                          (2.1.7) 

Now that we have developed a nonlinear adaptive filter algorithm for a PWL 

structure in (2.1.6) and (2.1.7). Similarly, in case of a polynomial structure, we can 

simply modify the delayed tap mapping matrix ( )nF  in Eq. (2.1.6) and (2.1.7) by 

setting it as follows: 

  
2 2 2

( ) ( 1)     ( 1)
( ) ( 1)   ( 1)

( )
  

( ) ( 1)   ( 1)N N N

x n x n x n M
x n x n x n M

n

x n x n x n M

− − +⎡ ⎤
⎢ ⎥− − +⎢ ⎥=
⎢ ⎥
⎢ ⎥− − +⎣ ⎦

 
 

F

 

"
"
#
"

. 

 

2.2 Computation of adaptive nonlinear LMS AEC   

The following discussion with respect to computational complexity is based on 

the number of real multiplications that is required by different structures. In Eq. 

(2.1.6), the matrix-vector product of ( ) ( )n n⋅w F  is simply ( )ns , which is readily 

available as shown in Eq.(2.1.4) and Fig. 2.3. However, as opposed to the linear 

adaptive AEC algorithm, the nonlinear algorithm needs ( ) ( )O MN N O MN+ ≈  more 
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computation due to the matrix-vector product of ( ) ( )T n n⋅F h  in the vital equation 

(2.1.7). We note that the polynomial structure also has the same complexity [21].  

We also note that the output of the operation ( )jf x  in matrix ( )nF  would be 

null when the far end signal x  at iteration n is smaller than the partition 

parameter 1jα + . Due to the zero output of the block jf , the average number of 

non-zero entries of ( )nf , the  column vector of the matrix ( )T nF , will be ( )
2
NO  

for a uniformly distributed far end signal x . Besides, the computation cost will almost 

reduces to ( )
2
NO M . The computational cost is listed in Table 2.3. We can see the 

PWL structure has the lower computation than that of polynomial. 

Table 2.3 Comparison of computational cost, no. multiplication per sample 

Complexity of computation
No. of multiplication 

(approx.) per sample 

Linear AEC 2M  

Polynomial NAEC ( 3N = ) 2M MN+  

PWL NAEC ( 3N = ) 2
2

MNM +  
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2.3 Partial update of adaptive nonlinear LMS AEC 

However, the PWL structure has reduced the computation on the matrix 

multiplication ( ) ( )T n n⋅F h  with 1( )
2

NO M+  multiplications. It still is proportional 

to the linear filter length M . In acoustic echo cancellation, adaptive linear filter often 

require a large number M of coefficients to model the acoustic echo path with 

sufficient accuracy. It means that for long linear filter the adaptation task can become 

more prohibitively expensive.  

Partial updating of the LMS adaptive linear filter has been proposed to reduce 

computational costs and power consumption [22], which is quite attractive in the area 

of mobile computing and communications that requires the adaptive linear filter to 

have a very large number of coefficients. Updating the entire coefficient vector of the 

adaptive linear filter is costly in terms of power, memory, and computations and is 

sometimes impractical for mobile devices. 

In the past, many types of selective update schemes for the adaptive linear filter 

have been described in [14]-[16]. In this section, after introducing these selective 

update schemes, we will extend their concepts to the three types of PWL coefficient 

selective update schemes and take advantages of the particular PWL structure to 

develop the two types of ones in which only one PWL coefficient are adjusted at each 

sample time in order to reduce the matrix multiplication ( ) ( )T n n⋅F h  down to N 

multiplications.  
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2.3.1 Periodic partial update LMS algorithm 

 The most prevalent type in the literature of selective update scheme is referred to 

as the periodic LMS algorithm [14]. To reduce computation needed during the update 

part of the adaptive filter by a factor of N, the periodic LMS algorithm updates all the 

filter coefficients every N iterations instead of every iteration. In addition, the 

coefficient updates for this algorithm are regular, as only one coefficient is changed at 

one iteration. With this concept, the PWL coefficient update is given by 

( )( ) ( ) ( ) ( ) ,   mod  1,  /
( 1)  

              ( )                     ,otherwise.

T
j j

j

j

w n e l l l if j n N l N n N
w n

w n

μ⎧ ⎡ ⎤+ ⋅ = + = ⎢ ⎥⎣ ⎦⎣ ⎦⎪+ = ⎨
⎪
⎩

F h
  (2.3.1) 

where ⋅⎢ ⎥⎣ ⎦  denotes the truncation operation, mod  n N  denotes iteration n  

modulo N . By considering N iterations of the updates in Eq. (2.3.1), it can be shown 

that this algorithm is equivalent to the following N-fold coefficient vector update: 

( ) ( ) ( ) ( ) ( )Tn N n e n n nμ+ = + ⋅w w F h .                         (2.3.2) 

It describes a modified version of the LMS adaptive algorithm that uses every Nth 

instantaneous gradient to update the filter coefficients. 

 

2.3.2 Sequential partial update LMS algorithm 

 Like the periodic LMS algorithm, for the sequential LMS algorithm [15] the 

update coefficient is chosen in a predetermined fashion, a regular pattern, but uses 

sequential gradient vector signal respect to ( )jw n . Extending to the PWL coefficients 

update, it is given by 

( )( ) ( ) ( ) ( ) ,  if  mod  1,
( 1)

              ( )                       ,otherwise.

T
j j

j

j

w n e n n n j n N
w n

w n

μ⎧ ⎡ ⎤+ ⋅ = +⎣ ⎦⎪+ = ⎨
⎪
⎩

F h
    (2.3.3) 
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Define jΨ  by filling 1 on the j-th diagonal entry of the zero matrix and the above 

update equation can be written in a more compact form 

% 1( 1) ( ) ( ) ( ) ( ).T
n Nn n e n n nμ ++ = + Ψ ⋅w w F h                      (2.3.4) 

 

2.3.3 Stochastic partial update LMS algorithm 

 Being similar to the sequential LMS algorithm in the sense that also uses 

data-independent updating scheme, the stochastic partial update LMS [16] algorithm 

performs sequential instant gradient respect to ( )jw n . The difference is as follows. 

At a given iteration k, the sequential LMS processes a regular processing strategy to 

select which one coefficient is to be updated, whereas for the stochastic partial update 

LMS, one of the coefficient is chosen at random from {1,2 }N"  with 

probability1/ N  and subsequently the update is performed i.e., 

( ) ( ) ( ) ( ) ,if  is chosen at random
( 1)

              ( )                       ,otherwise

T
j j

j

j

w n e n n n j
w n

w n

μ⎧ ⎡ ⎤+ ⋅⎣ ⎦⎪+ = ⎨
⎪
⎩

F h
  (2.3.5) 

and the coefficient vector update can be expressed as 

( 1) ( ) ( ) ( ) ( ),T
nn n e n n nμ Ψ+ = + ⋅w w F h                         (2.3.6) 

where nΨ  now is a random matrix chosen at random from , 1j j NΨ = "  with 

probability 1/ N  (recall that jΨ  by filling one on the j-th diagonal entry of the zero 

matrix). 
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2.3.4 Variant-periodic partial update LMS algorithm 

 Unlike previous 3 well-known partial update schemes which are applicable to 

general LMS-type algorithms, we will take advantages of the particular PWL 

structure to develop a variant periodic partial update scheme.  

 As noted earlier, when the far end signal ( )x n  is smaller than the partition 

parameter 1jα + , the output of the operation ( )jf ( )x n  would be null. As a result, the 

periodic LMS algorithm would be inefficient. In order to solve this issue, we propose 

a variant periodic LMS algorithm that takes advantages of the located partition area of 

far end signal ( )x n  to avoid an inefficient update term.  

 For example, if the located partition area of far end signal ( )x n  is the 2nd one, 

the variant periodic LMS algorithm updates its first coefficient 1( )c n  at time n  and 

second coefficient 2 ( )c n  at time 1n + . If the located partition area of far end signal 

( 2)x n +  is the 3rd one, it updates the first coefficient 1( )c n  at time n +2, second 

coefficient 2 ( )c n  at time 3n +  and third coefficient 3 ( )c n  at time 4n + . Here we 

denoted ( )Q n  is the number of located partition area of far-end signal ( )x n  at time 

n . For example the partition is{ }0,  0.4,  0.7,  0.9,  1 and far end signal ( )x n  is 0.8, 

then ( )Q l  is 3. The following non-period LMS algorithm is give by: 

( )( ) ( ) ( ) ( ) ,   mod  ( ) 1,  ( ) / ( )
( 1)

              ( )                     ,otherwise

T
j j

j

j

w n e l l l if j n Q l l Q l n Q l
w n

w n

μ⎧ ⎡ ⎤+ ⋅ = + = ⎢ ⎥⎣ ⎦⎣ ⎦⎪+ = ⎨
⎪
⎩

F h

(2.3.7) 

and the ( )Q n  -fold coefficient vector update can be expressed as 

( ( )) ( ) ( ) ( ) ( ),  ( ) / ( )Tn Q l n e n n n l Q l n Q lμ+ = + ⋅ = ⎢ ⎥⎣ ⎦w w F h          (2.3.8) 
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2.3.5 Located partial update LMS algorithm 

 Moreover, we will again utilize the particular PWL structure to develop a located 

partial update scheme.  

 As we know, the PWL processor would decompose the far end signal ( )x n  into 

N analytic signals. The resulting analytic signal may be zero, depending on the far end 

signal ( )x n . If far end signal ( )x n  falls into the partition parameter 1jα + , the 

corresponding j-th analytic signal will be null. This characteristic is also the main idea 

of the variant periodic LMS algorithm in Section 2.3.4. We also know the nonlinearity 

mostly happens for a high level input. Therefore, the (j+1)th entry of PWL coefficient 

vector has higher priority than the j-th entry.  

 By combining these characteristics, we propose a new partial update LMS 

algorithm, located LMS, for PWL coefficient as follows. 

  
( ) ( ) ( ) ( )   , ( )

( 1)
              ( )                        ,otherwise.

T
j j

j

j

w n e n n n j Q n
w n

w n

μ⎧ ⎡ ⎤+ ⋅ =⎣ ⎦⎪+ = ⎨
⎪
⎩

F h
            (2.3.9) 

where ( )Q n  is the number of located partition area of far end signal  ( )x n at time 

n . The update strategy is to choose the PWL coefficient which far end signal ( )x n  

falls into. The benefit is when the power loudspeaker commonly driven with 

saturation region, mostly high level far end signal, the nonlinearity information is 

sufficiently used on the PWL coefficient. On the contrary, if the nonlinearity effect 

was insignificant in case of low level far end signal, it maintains the linear part of 

PWL coefficients. In the same way, the above update equation can be written in a 

more compact form as 

  ( )( 1) ( ) ( ) ( ) ( ).T
Q nn n e n n nμ+ = + Ψ ⋅w w F h                      (2.3.10) 

 Computer simulations in Chapter 5 will compare the performance of the above 5 
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partial update and full LMS algorithm.  

2.4 Summary 

 In this chapter, we performed an adaptive nonlinear AEC based on a PWL type 

function and developed its joint LMS algorithm in section 2.1. Moreover, the 

comparison of computation complexity of three structures, linear AEC, nonlinear 

AEC in a case of PWL and polynomial one was discussed in section 2.2. The PWL 

one has the lower computation than that of polynomial and has just about 2M more 

multiplications than that of linear AEC. Finally, we presented 3 well-known and 2 

proposed partial update of LMS algorithm in section 2.3. They all keep the 

computation on the matrix multiplication ( ) ( )T n n⋅F h  with M . The computation 

simulations in chapter 5 will compare the above performances explicitly.       



 19

Chapter 3 
Two-Staged Adaptation and Its 
Convergence Analysis  
 
 In Chapter 2, we have derived the joint adaptation of the nonlinear PWL AEC. 

However, each filter (or processor) behaves to compensate the other one’s 

misalignment. This can result in a perpetual oscillating system. 

 Therefore, in this chapter we will adopt two-staged strategy [7] to overcome this 

difficulty. This strategy is to start with a linear filter update in the first stage, and then 

joint update of both PWL and linear coefficients follows in the second stage. 

 In Section 4.1 the two-staged adaptation is introduced. In the first stage, the 

convergence analysis and stability criterion will be derived in Section 4.2. After that, 

we will derive the convergence analysis of the second stage in Section 4.3. 

 

3.1 Two-staged adaptation  

For simplicity, Fig. 2.1 is redrawn in Fig. 3.1. Here we assume the nonlinear 

loudspeaker and linear room impulse response are time-invariant; the near end signal 

( )v n only contains a white Gaussian noise (WGN) and the nonlinear echo 

 ( ) ( ) ( )T
o od n n v n= ⋅ +s h , 

where ( )os n  is the optimal PWL processor output with the optimal PWL coefficients 

ow  and oh  is the optimal linear coefficients.  
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( )x n

( )s n

( )e n ( )d n

ˆ( )d n

+

−

( )v n

( )nw

oh

ow

( )nh

( )os n

( )echod n

( )x n

( )s n

( )e n ( )d n

ˆ( )d n

+

−

( )v n

( )nw

oh

ow

( )nh

( )os n

( )echod n

 

Fig. 3.1 Cascade model of system (right hand part) and mirror adaptive system 

(left hand part) 

 

In the cascade structure of Fig. 3.1, if the joint updates of both nonlinear PWL 

coefficients ( )nw  and linear coefficients ( )nh  are performed simultaneously as 

given in Eq. (2.1.6) and (2.1.7), the danger of divergence can happen. To illustrate 

this tendency of divergence, Fig. 3.2 includes two desperate divergent curves of 

joint-updating schemes with two step sizes 0.002 and 0.003h wμ μ= =  and 

SNR=20dB. 

The transient behavior of linear filter and PWL processor can account for the 

divergence problem encountered in cascade system. When both ( )nw  and ( )nh  are 

far away from their optimum coefficients ow  and oh , respectively, in the early 

transient stage, the resulting residual error ( )e n  does not push either coefficients 

towards their optimum points. As a result, convergence cannot be guaranteed, since 

each filter (linear filter or PWL processor) behaves to compensate the other one’s 

misalignment, which can lead to a perpetual oscillating system. An analytical stability 

criterion for joint adaptation of the nonlinear AEC can be very strenuous. 
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In order to overcome this difficulty, Guérin [5] points out that the linear filter has 

to adapt continuously so as to react to any change in the acoustic path, and the PWL 

filter must not adapt until the linear filter has sufficiently converged. The two-staged 

strategy starts with a linear filter, and then joint adaptation of PWL and linear 

coefficients follows once the linear filter has sufficiently converged in the first stage. 

Fig. 3.2 shows the significant improvements in residual error power using the 

two-staged algorithm. 

In the past the convergence analysis of a cascade system was done under a 

perfect information linear or nonlinear part [21]. Next, we will proceed to derive the 

theoretical convergence analysis of the two-staged algorithm. 

 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

-22
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Number of iterations 

Residual error power

Two-staged, μ=0.002

Two-staged, μ=0.003

Joint, μ=0.002

Joint, μ=0.003

    
Fig. 3.2 Performance comparison of the two update schemes with two different 

step-sizes   
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3.2 Convergence and stability analysis of linear adaptation  

In the first stage, only linear coefficients update under a fixed PWL coefficients. 

We denote the linear filter weight-error vector by 

( ) ( )h on n= −ε h h .                                         (3.2.1) 

where oh  is the optimal linear filter. The estimation error produced by nonlinear 

AEC filter can be expressed as  

( ) ( ) ( )e n d n d n= −
�

 

      ( ) ( ) ( ) ( )T T
o on v n n n= ⋅ + − ⋅s h s h  

( ) ( )      ( ) ( ) ( ) ( ) ( )TT
o o e o o hn v n n n n= ⋅ + − + +s h s s h ε  

      ( ) ( ) ( ) ( )T T
e ov n n n n= − ⋅ − ⋅ hs h s ε                           (3.2.2) 

where ( ) ( ) ( )e on n n= −s s s  is the error of PWL processor. Using Eq. (2.1.6) and 

(3.2.2), we may rewrite ( 1)h n +ε  as 

( 1) ( ) ( ) ( )h h on n n e nμ+ = + −ε h s h   

( )             ( ) ( ) ( ) ( ) ( ) ( )T T
h h e on n v n n n nμ= + − ⋅ − ⋅ hε s s h s ε  

             ( ) ( ) ( ) ( ) ( ) ( ) ( )T T
h h h e on n n v n n n nμ μ⎡ ⎤ ⎡ ⎤= − ⋅ ⋅ + − ⋅ ⋅⎣ ⎦ ⎣ ⎦I s s ε s s s h  (3.2.3) 

3.2.1 Mean bias of linear coefficient weight error  

Taking the expectation on Eq. (3.2.3) and assuming the variation of ( )h nε  is 

slow compared with that of ( )ns , the first moment of ( )h nε  is given by  

{ } ( ) { } { }( +1) - ( ) +E ( )h M h s h hE n E n nμ= ⋅ε I R ε f ,                 (3.2.4) 

where ( ) ( ) ( ) ( ) ( )T
h h e on v n n n nμ ⎡ ⎤= − ⋅ ⋅⎣ ⎦f s s s h  and sR  is the correlation matrix of 

( )ns  by applying the unitary similarity transformation. We can diagonalize sR     

as follows: T
s s s s=Q R Q D , where sQ is an unitary matrix and sD  is a diagonal 
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matrix consisting of the eigenvalues ,s iλ  of sR . Let ( ) ( ),T
h s hn n=k Q ε then we may 

transform Eq. (4.2.4) into the form 

{ } ( ) { } ,( 1) ( )
e

T
h M h s h s s s oE n E nμ+ = − ⋅ −k I D k Q R h ,              (3.2.5) 

where , es sR is the cross-correlation matrix of ( )ns  and ( )e ns . We may go on to 

express Eq. (4.2.5) as  

{ } ( )1 1
, ,( ) (0) ( - )

e e

T T n
h s s s s o h s s s s o M h sE n μ− −= − + +k D Q R h k D Q R h I D .   (3.2.6) 

It makes sense that the linear coefficients weight error ( )h nε  convergences to a 

biased estimate due to the effect of nonlinear bias. This linear bias part also agrees 

with the optimal linear weight error [5], denoted by ,h MMSE MMSE o= −ε h h , in the 

minimum mean square error (MMSE) sense. We will prove it as follows. First, 

MMSEh  satisfies the equation { ( )} 0
MMSE

J n =∇ =h h h , which depends on the correlation 

matrix sR  and the cross-correlation matrix , es sR . Using now the quasistationarity 

hypothesis, the optimal filter is then defined by the following expression 

1
, eMMSE s s s o

−= ⋅ ⋅h R R h . Hence, it can yield 1
, , e

T
h MMSE s s s s o

−= −k D Q R h .  

If the far end signal ( )x n  is a white noise, we can find that the output of PWL 

processor ( )ns  is also white due to the symmetric PWL function. The white property 

of ( )ns  can be explained as follows. Applying the PWL function, we can rewrite the 

correlation function of ( )ns  as { }( ) ( )E s n s n m+ = ( ) ( ){ }( ) ( )E f x n f x n m+ . When 

n m≠ , the expectation can be taken apart as ( ){ } ( ){ }( ) ( )E f x n E f x n m+  in case of 

the far end white signal ( )x n . With an odd PWL function and an even Pdf. of the far 

end signal ( )x n , the expectation of ( )ns  is zero, so is the correlation function of 

( )ns  when n m≠ . That means ( )ns  has white property; so does ( )e ns . Therefore, 
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we have the matrix sQ  is an identity matrix, 2
s sσ=R I  and 2

, ,e es s s sσ=R I , where 

2
sσ  is the variance of ( )s n and 2

, es sσ is the covariance of ( )ns  and ( )e ns .  

Now we may simplify Eq. (3.2.6) as 

{ } { }2 2
,( +1) (1 ) ( ) .

eh h s h h s s oE n E nμ σ μ σ= − −ε ε h                    (3.2.7) 

We note that ( )h nk  is equal to ( )h nε  when the far-end signal is white.  

Solving the recursive equation in Eq. (3.2.7), we may get the solution  

{ }
2 2
, , 2
2 2( ) (0) (1- )e es s s s n

h o h o h s
s s

E n
σ σ

μ σ
σ σ

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
ε h ε h .             (3.2.8) 

We can see the steady state bias of ( )h nε  is a fraction of the optimal linear filter oh . 

3.2.2 Second moment of linear coefficient weight error  

With the same uncorrelated assumption of ( )h nε  and ( )ns , the second moment 

of ( )h nε  from Eq. (3.2.4) is given by 

{ }
{ }( ){ }

{ } { } { }( ) { }

2

2

2

2

2

( +1)

( ) 1 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

   +2 ( ) E ( ) E ( ) ( ) ( ) ( )

h

T T T T
h h h h

T T
h h h h h

E n

E n n n E n n n n n

E n n n n n E n

μ μ

μ

= − ⋅ + ⋅ ⋅

⋅ − ⋅ ⋅ +

ε

ε s s s s s s ε

ε f s s f f

  (3.2.9) 

From Eq. (A.8) in Appendix, the term { }( ) ( ) ( ) ( )T TE n n n n⋅ ⋅s s s s  in Eq. (3.2.9) can be 

expressed as  

{ }{ } ( )4
4 4( ) ( ) ( ) ( )  +T T
s ss

E n n n n M mσ σ⎡ ⎤⋅ ⋅ = −⎣ ⎦s s s s I         

where { }4
4 ( )

s
m E s n=  . Next, by assuming the 4th moment 4s

m  of ( )s n  is 

comparable to the power 4
sσ  of the 2nd moment of ( )s n  and the length of the FIR 

filter M  is sufficiently large, we can approximate it as follows: 

{ } 4( ) ( ) ( ) ( ) .T T
sE n n n n Mσ⋅ ⋅ ≈s s s s I                            (3.2.10) 



 25

Similarly, from Eq. (A.9) and (A.10), we have 

{ } { }E ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
h h e on n n E n n n nμ⋅ ⋅ = − ⋅ ⋅ ⋅s s f s s s s h     

       ( )( )3
2 2 2 2

, ,,
,

e ee
h s s s s s s os s

M mμ σ σ σ σ= − + − h  

{ } { } { }2 2

2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

h h o e e oE n E v n n n v n E n n n nμ ⎡ ⎤= ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅⎣ ⎦f s s h s s s s h

     ( )( )2 2

22 2 2 2 2 2 2
2e ee

h s v s s s s os s
M M mμ σ σ σ σ σ σ⎡ ⎤= + + −⎢ ⎥⎣ ⎦

h , 

where 2

es
σ  is the variance of ( )es n , { }3

3
,, e

k e ks s
m E s s=  and { }2 2

2 2
,, e

k e ks s
m E s s= .With 

the approximation, 3 , es s
m  and 2 2, es s

m  is comparable to 2 2
, es s sσ σ  and 2 2

es sσ σ , 

respectively, and 1M � , we have 

  { } 2 2
,E ( ) ( ) ( )

e

T
h h s s s on n n Mμ σ σ⋅ ⋅ ≈ −s s f h                        (3.2.11) 

  { } ( )2 22 2 2 2 2
22

( )
eh h s v s s oE n M Mμ σ σ σ σ≈ +f h ,                   (3.2.12) 

Therefore, substituting Eq. (3.2.10), (3.2.11) and (3.2.12) into (3.2.9), we get 

{ } ( ) { } { }

( ) ( )

2 22 2 4
2 2

22 2 2 2 2 2
2

( +1) 1 2 ( ) 2 ( )

                      1
e e

h h s h s h h

T
o h s h s h s v s o

E n M E n E n

M M

μ σ μ σ

μ σ μ σ μ σ σ σ

≈ − + + ⋅

− + + +

ε ε ε

h h
   (3.2.13) 

The stability of the recursion (3.2.13) is guaranteed if 2 2 41 2 1h s h sMμ σ μ σ− + < , from 

which we can get the upper bound of the step-size hμ  as 

2

2 .h
sM

μ
σ

<                                              (3.2.14) 

This equation is the stability criterion for the linear LMS adaptive algorithm in the 

first stage. 

We can use the linear algebra method to solve the coupled recursive Eq. (3.2.7) 

and (3.2.13). By cascading { }2

2
( )hE nε  and { }( )hE nε  to form a new vector, we 

have the recursive vector equation as 

( 1) ( )n n+ = ⋅ +θ A θ b ,                                     (3.2.15) 
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where  

( )22 2 2 2 2
,2

   
e e

T
T

h s v s o h s s oMμ σ σ σ μ σ⎡ ⎤= +⎢ ⎥⎣ ⎦
b h h , 

{ } { }2

2
( ) ( )    ( )

T

h hn E n E n⎡ ⎤= ⎢ ⎥⎣ ⎦
θ ε ε  

and 

( ) ( )2 2 4 2 2

2

1 2 2 1

(1 )
e

T
h s h s o h s h s

h s M

M Mμ σ μ σ μ σ μ σ

μ σ

⎡ ⎤− + − +
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

h
A

0 I
.  

The solution of Eq. (3.2.14) is given by 

  ( ) ( )( )1 1( ) (0)nn − −= − ⋅ + ⋅ − − ⋅θ I A b A θ I A b                   (3.2.16) 

where we have assumed that ( )−I A  is invertible. This assumption of invertible 

( )−I A  can be justified by noting that the diagonal entries of ( )−I A  are all 

positive so long as the stability criterion in Eq. (3.2.14) is met.  

The steady state ( )nθ  is equal to ( ) 1−− ⋅I A b , from which the steady state of 

{ }2

2
( )hE nε  is given by 

 { }
( ) ( )

2 2
2 2,2 2 2

42 2
2

22

2 1
lim ( ) .

2

e e

e

s s s
h v s o o h s

s
hx

h s

M M
E n

M

σ σ
μ σ σ μ σ

σ
μ σ→∞

+ + −
=

−

h h
ε   (3.2.17) 

 By examining the matrix A  in Eq. (3.2.16), we can see that the convergence rate 

is a monotonic increasing function of the step-size hμ  and the variance 2
sσ  of PWL 

processor output. Moreover, in Eq. (3.2.17) the steady-state of the 2nd moment of 

( )h nε  increases with an increase of the near-end noise variance 2
vσ , the step-size 

hμ , the PWL output power 2
sσ , and the nonlinearity factor 2

, es sσ  and 2
esσ . We will 

simulate this property in Chapter 5. 

 We can also deduce the compact form of the second moment of ( )h nε  
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iteratively. By plugging Eq. (3.2.7) into (3.2.13) and 

denoting ( )2 2 4
1 1 2 h s h sK Mμ σ μ σ= − + , ( )2 2 2 2

2 2
e eh s h s sK Mμ σ μ σ σ= − +  and 

( )22 2 2 2 2
3 2eh s v s s oK M Mμ σ σ σ σ= + h , we have  
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Using the geometric series formula, it can be simplified as: 
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                                                     (3.2.18) 

The expression of the 2nd moment of linear coefficient weight error in Eq. (3.2.18) 

appears to be tedious, as compared to the compact vector form in Eq. (3.2.16).  

Let us consider the special case of perfect PWL coefficients. The second moment 

of , ( )h i nε  can be easily obtained by setting the nonlinear coefficient weight error 

0=wε  so that 2 3 0A A= =  i.e.,
2

1 22
h v

h s

MK
M

μ σ
μ σ

=
−

 and 2 0K = . The Eq. (3.2.18) 

reduces to  

{ } { }2 23 3
12 2

1 1

( ) (0)
1 1

n
h h

K KE n K E
K K

⎡ ⎤
≈ + −⎢ ⎥− −⎣ ⎦

ε ε  

which is a well known result [3]. 

Finally, after derivation of first and second moments of the linear coefficient 

weight error, we turn our attention to the residual output power. From Eq. (3.2.2), the 

mean square error (i.e., residual error) is given by 

{ }2( ) ( )hJ n E e n=  

{ } { }
{ } { }

2         E ( ) ( ) ( ) ( ) ( ) ( )

             2 E ( ) ( ) ( ) .

T T T T
v o e e o h h

T T
o e

n n E n n n n

n n E n

σ= + ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ h

h s s h ε s s ε

h s s ε
   (3.2.19) 

Because the variation of ( )h nε  is slow compared to ( )ns , hence 

{ } { }22
2

( ) ( ) ( ) ( ) ( )T T
h h s hE n n n n E nσ⋅ ⋅ ⋅ =ε s s ε ε                   (3.2.20) 

From Eq. (3.2.19) and (3.2.20), the mean square error can be written as  
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{ } { }2 22 2 2 2
,2 2

( ) ( ) 2 ( ) .
e e

T
h v s o s h s s oJ n E n E nσ σ σ σ= + + + ⋅ hh ε h ε       (3.2.21) 

which depends on the { }( )E nhε  and the . { }2

2
( )hE nε  that are derived earlier in Eq. 

(3.2.7) and (3.2.18) or the compact Eq. (3.2.16).  

 

3.3 Convergence analysis of joint adaptation of linear and PWL 

coefficients  

After the convergence of linear coefficients, the nonlinear adaptive filter 

switches to the 2nd stage in which linear and PWL coefficients will be updated jointly. 

Now, the residual error is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T T T
o h w o w he n v n n n n n n n n= − ⋅ ⋅ − ⋅ ⋅ −w F ε ε F h ε F ε  (3.3.1)   

The coupled linear and nonlinear weight error in the fourth term of Eq. (3.3.1) renders 

difficulty in convergence analysis. However, with wide band signal like speech, 

loudspeaker nonlinearities are much less dominant than the linear components in 

general. Therefore, we can assume initial PWL weight error is much smaller than 

optimal PWL coefficients. Moreover, the converged linear coefficients would be 

approximately to optimal linear filter, namely, 

( )h on <<ε h , o( )w n <<ε w ,                                  (3.3.2) 

where ( ) ( )w on n= −ε w w . With sufficiently small perturbation errors in linear and 

nonlinear coefficients in Eq. (3.3.2), the 2nd-order perturbation term can be discarded 

and the estimation error becomes 

( ) ( ) ( ) ( ) ( ) ( )T T T T
o h w oe n v n n n n n≈ − ⋅ ⋅ − ⋅ ⋅w F ε ε F h                  (3.3.3) 

Denote the combined linear and PWL coefficient weight error as 

( ) ( ) ( )
T

h wn n n⎡ ⎤= ⎣ ⎦ε ε ε  and let 
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 ( ) ( ) ( )
TT T T

o on n n⎡ ⎤= ⋅ ⋅⎣ ⎦G w F F h ,                           (3.3.4) 

then Eq. (3.3.3) can be expressed as follows: 

( ) ( ) ( ) ( )Te n v n n n≈ − ⋅G ε .                                  (3.3.5) 

By substituting by (2.1.6), (2.1.7) and (3.1.5) into the combined coefficient weight 

error  

( 1)
( 1)
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n
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+ = − ⎢ ⎥⎢ ⎥+⎣ ⎦ ⎣ ⎦

hh
ε

ww
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where h M

w N

μ
μ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I O
T

O I
. According to the assumption in (3.3.2), it can be 

approximated as  

( )( 1) ( ) ( ) ( ) ( ) ( )Tn n n n v n n+ ≈ − ⋅ ⋅ ⋅ − ⋅ε I T G G ε T G               (3.3.6) 

Due to the independent assumption of near end noise ( )v n , we can apply the 

same procedure in Section 4.2 to derive the solution of first moment of ( 1)n +ε  from 

Eq. (3.3.6) as follows: 

  { } ( ) { }( ) (0)NE n E≈ − ⋅ ⋅Gε I T R ε ,  

where GR  is the correlation matrix of ( )nG . With a suitable step-size, the 

magnitude of this geometric ratio must be less than unity for all n, we can see that the 

estimate is unbiased. 

Similarly, the second moment of ( )nε  is given by 

{ } { }( ){ }
{ }

2 2
2

2

2

( +1) ( ) 1 2 ( ) ( ) ( ) ( ) ( )

   ( ) ( ) .

T T T
h hE n E n E n n n n n
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+ ⋅

Gε ε T R T G G G G ε

T G
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Here, we assume the term { }( ) ( ) ( ) ( )T TE n n n n⋅ ⋅ ⋅G G G G  can be approximated as 

2
GR  . By applying the unitary similarity transformation, GR  is transformed into a 

simpler form: T
G⋅ ⋅ =Q R Q D , where Q  is an unitary matrix and D  is a diagonal 

matrix consisting of the eigenvalues iλ  of GR . Letting ( ) ( )Tn n= ⋅K Q ε , we can 

deduce the second moment of ( )nε  and mean square error ( )J n  as follows: 

  { }
2 222 2

2
1

( ) (0) - (1- ) ,
2 - 2 -

M N
nv i i i v

i i i
i i i i i

T TE n k T
T T

σ λ σ λ
λ λ

+

=

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑ε              (3.3.7) 

  
2 222 2
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( ) (0) - (1- )

2 - 2 -

M N
nv i i i v

v i i i i
i i i i i

T TJ n k T
T T

σ λ σσ λ λ
λ λ

+

=

⎡ ⎤
= + + ⎢ ⎥

⎣ ⎦
∑ ,          (3.3.8) 

where iT  is the i-th diagonal entry of T and (0)ik  is the initial value of i-th entry 

of ( )nK .  

 Now that we have derived the theoretical convergence analysis of the two-staged 

PWL algorithm. Similar results also hold in case of a polynomial structure simply by 

setting the delayed tap mapping matrix ( )nF  as 

 
2 2 2

( ) ( 1)     ( 1)
( ) ( 1)   ( 1)

( )
  

( ) ( 1)   ( 1)N N N

x n x n x n M
x n x n x n M

n

x n x n x n M

− − +⎡ ⎤
⎢ ⎥− − +⎢ ⎥=
⎢ ⎥
⎢ ⎥− − +⎣ ⎦

 
 

F

 

"
"
#
"

. 

However, with a different delayed tap mapping matrix ( )nF , the convergence 

behavior of the nonlinear AEC is altered. In the case of a polynomial structure, 

polynomial output power 2
sσ  and nonlinearity factors, 2

, es sσ  and 2
esσ , in Eq. (3.2.15), 

(3.2.20), and the eigenvalues iλ  of the correlation matrix GR  in Eq. (3.3.6) and 

(3.3.7) will be different from those of a PWL structure.   
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3.4 Summary 

 Because of the divergence problem encountered in cascade system, we adopt the 

two-staged algorithm to overcome this problem in Section 3.1. Moreover, we derived 

the convergence analysis of the two-staged algorithm.  

 In Section 3.2 we perform the convergence analysis and stability criterion of the 

first stage. By examining the convergence analysis, we indeed discuss how the factors: 

the near-end noise variance 2
vσ , the step-size hμ , the PWL output power 2

sσ , and 

the nonlinearity factor 2
, es sσ  and 2

esσ  do affect it. After that, we derived the 

convergence analysis of the second stage in Section 3.3. The above convergence 

analysis also can be extended to a case of polynomial based Nonlinear AEC.   

 In the next Chapter, we will use the convergence analysis of the first stage to 

develop the optimum time-variant and optimum time-&tap-variant step-size. 
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Chapter 4  
Step-size Control for Nonlinear AEC 
 

In Chapter 3, theoretical analysis indicates that its transient residual error power 

depends on (1) the step-size parameter (2) the eigenvalues of the corresponding 

correlation matrix, (3) the initial tap coefficient setting, (4) the number of iterations of 

the algorithm.  

In this Chapter, we will focus on the step-size. Due to the tradeoff between fast 

convergence rate and small residual error power, we cannot find an optimal step-size 

which provides the best performances of both. That is a large step size gives a faster 

convergence but also large small residual error power. Therefore, various methods 

employing varying step-size have be examined by the other researchers, including 

time-varying [17], tap-varying [18] or both time- & tap- varying [19].  

Throughout this thesis, the word “time-variant” represents all taps use identical 

step-size which is time-variant. The word “tap-variant” means each tap has individual 

time-invariant step-size, and the word “time- & tap-variant” means each tap has its 

individual time-variant step-size. 

 For comparison with the convention studies, our work is under a nonlinear 

system, memoryless PWL processor cascading a linear FIR filter. Due to the existing 

error on PWL processor, the influence of nonlinearity, caused by the loudspeaker, is 

an factor of the step size of the FIR linear filter.  

In the following section, we will derive the optimal time-varying step size LMS 

(OTLMS) algorithm in Section 4.1. Its practical implement with the monotonously 

decreasing slope model of nonlinear I/O curve will be discussed in Section 4.2. 

Further, we will also derive the optimal time- & tap-varying step size LMS (OTTLMS) 
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and give the general iterative equation for the tap coefficients error variance in 

Section 4.3. In the same way, not only the monotonously decreasing slope model of 

nonlinear I/O curve but also the model of the room impulse response will be used to 

accomplish the practical implement in Section 4.4. 

 

4.1 Derivation of optimum time- variant step-size LMS (OTLMS) 

algorithm 

 Instead of using a constant step-size, the time varying one, all taps used identical 

step-size which is time-variant, is based on using large step-size when the linear FIR 

filter is far from the Wiener solution, thus speeding up the convergence rate and when 

it is near the optimum, small step size is used to achieve lower MSE. Overall 

mechanism will obtain a better performance than a constant step-size one. 

 Under a nonlinear system, memoryless PWL processor cascading a linear FIR 

filter, the influence of nonlinearity, caused by the loudspeaker, will let the linear FIR 

filter converge to a bias estimate due to the existing error on PWL processor. 

Therefore, the cost function i.e., residual error power, can not simplify to the norm of 

the linear FIR coefficient error. As well as Eq. (3.2.21), it contains the term with the 

first order and second order of the FIR coefficient error. Here we rewrite the first 

moment of linear coefficient weight error Eq. (3.2.7) and the second of one (3.2.13) 

by using a time varying step-size as follows: 

 { } ( ) { }2 2
,( +1) 1 ( ) ( ) ( )

eh h s h h s s oE n n E n nμ σ μ σ= − −ε ε h                   (4.1.1) 
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(4.1.2) 

Substituting Eq. (4.1.1) and (4.1.2) into Eq. (3.2.20), we get ( 1)hJ n + as 
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Indeed, rewrite it in terms of the residual error power ( )hJ n  as 
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The optimal time varying step-size can be obtained by taking derivative of Eq. (4.1.3) 

with respect to ( )h nμ  and setting the result equal to zero. 

  ( ) 0
( )h

J n
nμ

∂
=

∂
 

Thus we can get the optimal time varying step-size 
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To simply the form of optimal step size residual error power, we substitute Eq. (4.1.4) 

into (4.1.3), we can get  

( ) ( ) 22 2 2 2 2 4
, , , 2

( 1) 1 ( ) ( ) ( )
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Letting
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h , the OTLMS algorithm for the first stage of 

two-staged adaptation is summarized by the following equations: 

( ) ( ) ( ) ( )T Te n d n n n= − ⋅ ⋅w F h  

, 2 2

1( )
( )h OLMS

s s h

n
M M J n

βμ
σ σ

= −                               (4.1.6) 
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( 1) ( ) ( ) ( )hn n n e nμ+ = +h h s                        

( )2 2
, ,( 1) 1 ( ) ( ) ( )h h OLMS s h OLMS sJ n n J n nμ σ μ σ β+ = − +                (4.1.7) 

The step-size adjustment is based on (2) and (4). If null nonlinearity, the parameter β  

can be modified as 2
vβ σ= . 

 

4.2 Practical implementations of OTLMS algorithm 

 We have derived Optimum time variant step-size for LMS algorithm in Eq. 

(4.1.4). But it is useless since we require prior statistics knowledge 2 2
,,

es s sσ σ and 2
, es sσ  

of the nonlinearity the second norm 2

2oh  of the exponential decay model of RIR oh . 

We can use the monotonously decreasing slope model of nonlinear I/O curve and 

assume 2

2
1o =h  on β  for practical implementation. Moreover, the regression of 

expectation of residual error power in Eq. (4.1.5) also can be replaced by time mean 

estimate with first-order recursive filtering  

  ( ) 2( 1) 1 ( ) ( )hJ n J n e nλ λ+ = − +
� �

,                             (4.2.1) 

where λ  is the forgetting parameter close to 0 . We will discuss these two recursive 

Eq. (4.1.5) and (4.2.1) of residual error power for practical implementation in the 

chapter 5 

 Here we will explain the monotonously decreasing slope model of nonlinear I/O 

mapping curve explicitly in the following discussion. As we know, the PWL function 

approximating the nonlinearity by using several linear affine descriptions is a very old 

and often used method. By doing this, the basic problem is transformed from a single 

nonlinear equation into several linear equations. Approximation of nonlinear I/O 

curve can be described simply and flexibly by several slopes. Therefore, we can use 

the idea to model the nonlinearity of loudspeaker and get its prior statistics 
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knowledge 2
sσ , 2

, es sσ and 2
, es sσ . Furthermore, the harmonic distortion introduced by 

loudspeaker and their amplifiers was proportioned to the power of input [7] i.e., the 

harmonic distortion is larger with higher volume of input. In the nonlinear I/O curve, 

we can found the higher volume area will saturate much seriously, i.e., the 

corresponding slope is smaller. It means the slope of each area is monotonically 

decreasing to the power of input. The property of nonlinear I/O mapping curve is 

monotonously decreasing slope.  

 From pervious discussion in chapter 2, the CPWL function exploits the 

difference between the adjacent slopes to approximate the nonlinear curve. For 

simplicity, we assume the difference of the adjacent slopes is the same with a uniform 

partition. Although it is a special case, the assumption can lessen the CPWL 

coefficients to be only two ones: initial slope 0γ  (the first area) and difference of the 

adjacent slopes dγ . Hence, the optimal CPWL coefficients ,1 ,2 ,, o o o Nw w w"  turn into 

, o d dγ γ γ"  where ,1o owγ ≈  and dγ  should be negative due to the monotonously 

decreasing property of slope  

Here, we use an example to demonstrate the model. The nonlinear I/O mapping 

curve is a nonlinear transformation of raised-cosine function as given below [23] 

   

1                     1                     ,
2

1 2 1 1cos    ,
2 2 2 2

1 1( )                      2                      ,
2 2

1 2 1cos    ,
2 2 2

x
T

TxTx x
T T

f x Tx x
T T

TxTx
T

ξ

ξ π π π ξ ξ
ξ ξ

ξ ξ

ξ π π π ξ
ξ ξ

+
− < −

⎛ ⎞− + + −
− + − ≤ ≤ −⎜ ⎟

⎝ ⎠
− −

= − ≤ ≤

⎛ ⎞− − −
+ − ⎜ ⎟

⎝ ⎠

1
2

1                      1                     , .
2

x
T

x
T

ξ

ξ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪ +

≤ ≤⎪
⎪
⎪ +

>⎪
⎩

. 

We use a soft-clipping type 1, 1Tξ = =  which is similar to sigmoid function [24]. 
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Further, nonlinear transformation of raised-cosine function can be simplified as 

follow:   

             1                , 1
2cos    ,0 1

2
( )

2cos    ,0 1
2

              1                 , 1.

x
xx x

f x
xx x

x

π ππ

π ππ

− < −⎧
⎪ +⎛ ⎞⎪ + ≤ ≤ −⎜ ⎟⎪ ⎝ ⎠= ⎨

−⎛ ⎞⎪ − ≤ ≤⎜ ⎟⎪ ⎝ ⎠
⎪

< −⎩

 

In the CPWL function with a uniform partition on [0 0.33 0.66 1] we choose the 

initial slope 1.9oγ =  and the difference of the adjacent slopes 0.4dγ = − . Further, we 

plot both of them in figure 4.1. W can see the model by CPWL function is fitting well 

to the true nonlinear I/O mapping curve with suitable parameters oγ  and dγ . 
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Fig. 4.1 True nonlinear I/O mapping curve (solid), CPWL function (dot) 
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4.3 Derivation of optimum time-&tap-variant step-size LMS 

(OTTLMS) algorithm  

 In section 4.1, it uses identical step-size for all taps. However, we know the fact 

that the expected variation of a room impulse response becomes progressively smaller 

along the series by the same exponential ratio as the impulse response energy decay. 

As a result, the algorithm adjusts taps with large errors in large steps, and taps with 

small errors in small steps. In this section, we want to derive the optimal step-size on 

individual tap of linear filter that minimize the residual error power for each iteration 

step.  

 Here, we cannot use the convergence analysis in chapter 3, the second norm of 

linear weight error, to accomplish our purpose due to individual tap. We have to 

derive the each tap coefficient error variance. Hence, we use a diagonal matrix ( )nU , 

with diagonal entry , ( ),  0 ~ -1h k n k Mμ ∀ = , to replace the step size and its 

corresponding LMS algorithm can be rewritten as 

( 1) ( ) ( ) ( ) ( )n n n n e n+ = +h h U s   

( ) ( ) ( )Te n d n n= − ⋅s h . 

The following discussion will follow the uncorrelated assumption of ( )h nε and 

( )ns  and assume the far-end signal is white. Applying the same procedure as Section 

3.2, the linear filter weight error can be given by 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T
h h e on n n n n n v n n n n⎡ ⎤ ⎡ ⎤+ = − ⋅ ⋅ + − ⋅ ⋅⎣ ⎦ ⎣ ⎦ε I U s s ε U s s s h (4.3.1) 

With the same assumption, ( )h nε  is uncorrelated to ( )ns , we can get the correlation 

matrix of the linear filter weight error  



 40

 

{ }
{ }{ }
{ }{ }

{ }

( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( )

T
h h h

TT T T
h h

TT T
h e o

T T
e o h

n E n n

E n n n E n n n n n

E n n n E n n v n n n n

E n v n n n n E n

+ = + +

⎡ ⎤ ⎡ ⎤= − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦ ⎣ ⎦

⎡ ⎤+ ⋅ − ⋅ ⋅ ⋅ ⋅ −⎣ ⎦

R ε ε

I U s s ε ε I U s s

I U s s ε U s s s h

U s s s h ε I U{ }
{ }2

( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

TT

TT T
e o e o

n n n

E n v n n n n v n n n n

⎡ ⎤⋅ ⋅⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦ ⎣ ⎦

s s

U s s s h s s s h

 

Because of the independence to ( )ns  and zero mean of the assumption of the 

noise ( )v n , we have  

{ }
{ } { }{ }

{ }

2

2
,

2
,

( 1) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                  ( ) ( ) ( ) ( ) ( ) ( ) ( )

                  ( ) ( ) ( ) ( )

e

e

T T
h h s h h

T T T T
h o s s h o e

T T T
s s o h e o

n n n n n E n n n n n

E n n E n n E n n n

E n n E n n E

+ = − ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

− ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

R R U R R U s s R s s

ε h R U s s ε h s s

R h ε U s s h ε{ }{ }
{ }2 2 2

( ) ( ) ( )

                  ( ) ( ) ( ) ( ) ( ) ( )

T T
h

T T T
v s e o o e

n n n

n n E n n n nσ

⋅ ⋅

+ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅

s s

U R U s s h h s s

 

(4.3.2) 

From Appendix Eq. (A.2), (A.5) and (A.6), we can derive Eq. (4.3.2) in the terms of 

its diagonal entry ( )kg n  as follows: 

( ) ( )

{ } ( ) { }
{ }

3

2 2 4 2 4
, , ,4 ,

2 2 2 2
, , , , , , , ,,

2 2 2
, ,

( 1) 1 2 ( ) ( ) ( ) ( ) ( )

                2 ( ) ( ) ( ) ( )

                ( ) ( )

e ee

e

k h k s h k s s k h k s h

h k s s h k o k h k s s s h k o ks s

T
s s s h o h k

g n n n m g n n trace n

n E n h n m E n h

E n n

μ σ μ σ μ σ

μ σ ε μ σ σ ε

σ σ μ σ

⎡ ⎤+ = − + − +⎣ ⎦
⎡+ − + −⎢⎣

⎤+ +⎦

R

ε h ( )2 2

22 2 2 2 2 2 2
, 2

,
e ee

v s s s o k s s os s
m hσ σ σ σ σ⎡ ⎤+ − +⎢ ⎥⎣ ⎦

h

 (4.3.3) 

where , ( )h k nμ is the k-th diagonal entry of ( )nU , the step-size of the k-th tap. 

 Substituting Eq. (4.3.1) and { }
1

2

2
0

( ) ( )
M

h k
k

E n g n
−

=

= ∑ε with Eq. (4.3.3) into Eq. 

(3.2.20), we have  

{ }
1 1

22 2 2 2
, , ,2

0 0
( 1) 2 ( 1) ( 1)

e e

M M

h v s o s s o k h k s k
k k

J n h E n g nσ σ σ ε σ
− −

= =

+ = + + ⋅ + + +∑ ∑h  
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( ) { }

( ) ( )4

1
22 2 2 2 2 2

, , , , , , ,2
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2 2 2 4 2 4

, , ,
0

,

             2 1 ( ) ( ) ( )
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e e e
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T
s s s h o h k v s s s o k s s os s

E n h n m E n h

E n n m h

ε μ σ σ ε

σ σ μ σ σ σ σ σ σ

⎡ + −⎢⎣
⎡ ⎤⎤+ + + − +⎢ ⎥⎦ ⎣ ⎦

ε h h

( ) { }

( ) ( )4

1
2 2 2 2
, , , , , , ,

0
1

2 2 2 4 2 4
, , ,

0

2
, , ,

              ( ) 2 ( ) ( ) ( )

                2 ( ) ( ) ( ) ( ) ( )

                2 ( )

e e

e

M

h s s o k h k s h k h k s s o k
k

M

s h k s h k s k h k s hs
k

h k s s h

J n h n E n n h

n n m g n n trace n

n E

σ μ σ ε μ σ

σ μ σ μ σ μ σ

μ σ ε

−

=

−

=

= + ⋅ − −

⎡ ⎤+ − + − +⎣ ⎦

+ −

∑

∑ R

{ } ( ) { }
{ } ( )

3

2 2

2 2 2
, , , , ,,

22 2 2 2 2 2 2 2 2 2
, , , 2

( ) ( ) ( )

                ( ) ( ) .

ee

e e ee
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(4.3.4)  

 Applying the same method in Section 4.1, taking derivative of Eq. (4.3.4) with 

respect to , ( )h k nμ  and setting the result equal to zero, we can get 

{ }

( ) ( ) ( )
( ) { } { }

4 2 2

3

4
,2 2 2

, , , ,2

, , 24 4 2 2 2 2 2 2 2
, 2

2 2 2 2
, , , ,,

2 ( ) ( )
( )

( ) ( )

2 ( ) ( )                    

e

e

e ee

e ee

s s
s s o k h k s k o k

s
h k OLMS

s k s h v s s s o k s s os s s

T
s s s h k o k s s s h os s

h n g n h
n

m g n trace n m h

m E n h E n

σ
σ ε σ

σμ
σ σ σ σ σ σ σ σ

σ σ ε σ σ

⋅ + +
=

⎡ ⎤− + + + − +⎢ ⎥⎣ ⎦
⎡ ⎤− +⎢ ⎥⎣ ⎦

R h

ε h       

 

(4.3.5) 

Substitute Eq.(4.3.5) into Eq.(4.3.3), a recursive formula for the tap coefficient 

error variance ( )ig n  is given by: 

  ( )
4
,2 2

, , , , ,2( 1) 1 ( ) ( ) .es s
k h k OLMS s k h k OLMS o k

s

g n n g n h
σ

μ σ μ
σ

+ = − +  

 With null nonlinearity i.e., 4 2 2 3
2 2
, ,

0
e e e e

s s s s s s s s
m m mσ σ= = = = , we can rewrite the 

OTTLMS algorithm 
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( ) ( )4

2

, , 4 4 2 2

( )( )
( ) ( )

s k
h k OLMS

s k s h v ss

g nn
m g n trace n

σμ
σ σ σ σ

=
− + +R

 

( )2
, ,( 1) 1 ( ) ( )k h k OLMS s kg n n g nμ σ+ = − . 

{ } ( ) { }2
, , , ,( 1) 1 ( ) ( )h k h k OLMS s h kE n n E nε μ σ ε+ = −  

We found the results fit the works on tradition AEC [25]. 

Although the time-& tap- step-size is optimal, it must take very larger 

computations. For this reason, we observe some term in Eq. (4.3.5) can be neglected. 

That is when 4s
m , 3 , es s

m  and 2 2, es s
m  is comparable to 4

sσ , 2 2
, es s sσ σ  and 

2 2
es sσ σ ,respectively, and 1M � , we can get ( ) ( )4

4 4( ) ( )s k s hs
m g n trace nσ σ− R� , 

( )2 2

22 2 2 2 2
, 2e ee

s s o k s s os s
m hσ σ σ σ− h�  and 

( ) { } { }3
2 2 2 2

, , , ,,
( ) ( )

e ee

T
s s s h k o k s s s h os s

m E n h E nσ σ ε σ σ− ε h� .  

Therefore, the approximated OTTLMS algorithm during the first stage is summarized 

by the following equations: 

 ( ) ( ) ( ) ( )T Te n d n n n= − ⋅ ⋅w F h     

 
,0,

, 1,

( )
( )

( )

0

0

h OLMS

OLMS

h M OLMS

n
n

n

μ

μ −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

U % , where 
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( ) { }

4
,2 2 2

, , , ,2

, , 24 2 2 2 2 2 2
, 2

2 ( ) ( )
( )

( ) 2 ( )

e

e

e e

s s
s s o k h k s k o k

s
h k OLMS T

s h s s s h o v s s s o

h n g n h
n

trace n E n

σ
σ ε σ

σμ
σ σ σ σ σ σ σ

⋅ + +
=

+ + +R ε h h
  (4.3.6) 

( 1) ( ) ( ) ( ) ( )n n n n e n+ = + ⋅h h U s

 ( )
4
,2 2

, , , , ,2( 1) 1 ( ) ( ) es s
k s h k OLMS k h k OLMS o k

s

g n n g n h
σ

σ μ μ
σ

+ = − +                 (4.3.7) 

 { } ( ) { }2 2 2 2
, , , , , , , ,( 1) 1 ( ) ( )

eh k s h k OLMS h k h k OLMS s s s o kE n n E n hε σ μ ε μ σ σ+ = − −       (4.3.8) 
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The step-size adjustment is based on Eq. (4.3.6), (4.3.7) and (4.3.8).  

In the following discussion, we will use the approximated OTTLMS algorithm to 

discuss. 

 

4.4 Practical implementation of OTTLMS algorithm 

In Section 4.2, we have demonstrated the monotonously decreasing slope model 

of nonlinear I/O curve to let optimal time-varying step-size LMS (OTLMS) algorithm 

practical. Here, the optimal time-&tap- varying step-size LMS (OTTLMS) algorithm 

not only needs prior statistics knowledge 2 2
,,

es s sσ σ and 2
, es sσ  of the nonlinearity output 

but also the prior knowledge of room impulse response (RIR) oh . However, we can 

use the exponential decay model of RIR [18] and use the iteration form of ( )kg n and 

{ }, ( )h kE nε  in Eq. (4.3.8) and (4.3.9) for practical implementation.  

Assume the RIR oh  can be modeled as an exponential decay envelope shown in 

Figure 4.2. Let decay envelop function be:  

, ,0
i

h k h hγ γ γ=  for 1 ~ 1k M= −                                 (4.4.1)  

where hγ  is the room exponential decay factor. Here we fix the second norm of RIR 

as 1. Therefore the initial parameter ,0hγ  of decay envelop function can be expressed 

as 

  2 2
,0 1 M

h h hγ γ γ= − +  
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Fig. 4.2 RIR decay envelop 

The diagonal element of tap coefficient error variance is 

2
,( ) [( ( ) ) ],  0, , -1k k o kg n E h n h k M= − = … . We let the initial filter tap coefficients to be 

zero i.e., (0) 0kh =  so that 2 2 2
, , ,(0) [( (0) ) ]k k o k o k h kg E h h h γ= − = ≈ and 

{ } { }, , , ,(0) ( (0) )h k k o k o k h kE E h h hε γ= − = − ≈ − . We substitute (0)kg  into Eq. (4.3.7) to 

get , , (0)h k OLMSμ . With , , (0)h k OLMSμ  plugged into Eq. (4.3.8) and (4.3.9) we can get 

(1)kg  and { }, (1)h kE ε  so forth i.e., { },(0), (0)k h kg E ε → , , (0)h k OLMSμ →  

{ },(1), (1)k h kg E ε → , , (1)h k OLMSμ →… . Thus, we can obtain 

, , ( ) h k OLMS nμ for  0, , -1i M= …  at any iteration step. The practical OTTLMS 

algorithm with an exponential RIR model can be described as follows: 

 1. Measure room exponential decay factor hγ  to get 2 2
,0 1 M

h h hγ γ γ= − +  and 
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, ,0
i

h k h hγ γ γ= for  1, , -1k M= … . 

2. Set up initial value 2
,(0)k h kg γ≈  for  0, , -1k M= … . 

3. 
,0,

, 1,

( )
( )

( )

0

0

h OLMS

LMS

h M OLMS

n
n

n

μ

μ −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

U %  where 
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, , , ,2
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2 ( ) ( )
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( ) 2 ( )

e

e

e e

s s
s s h k h k s k h k

s
h k OLMS T

s h s s s h o v s s s o

n g n
n

trace n E n

σ
σ γ ε σ γ

σμ
σ σ σ σ σ σ σ

⋅ + +
=

+ + +R ε h h
 

4. ( ) ( ) ( ) ( )T Te n d n n n= − ⋅ ⋅w F h  

5. ( 1) ( ) ( ) ( ) ( )n n n n e n+ = + ⋅h h U s  

6. ( )
4
,2 2

, , , , ,2( 1) 1 ( ) ( ) es s
k s h k OLMS k h k OLMS h k

s

g n n g n
σ

σ μ μ γ
σ

+ = − +  

7. { } ( ) { }2 2 2 2
, , , , , , , ,( 1) 1 ( ) ( )

eh k s h k OLMS h k h k OLMS s s s h kE n n E nε σ μ ε μ σ σ γ+ = − −  

By using the monotonously decreasing slope model of nonlinear I/O curve and 

the exponential RIR model, we can implement the OTTLMS algorithm.  

 

4.5. OTNLMS and OTTNLMS algorithm 

The above discussions are based on LMS algorithm. However, the adjustment is 

directly proportional to the input signal. Therefore, when the input signal is large, the 

LMS filter suffers from a gradient noise amplification problem. To overcome this 

difficulty, we may use the normalized LMS (NLMS) filter. The time-variant and 

time-&tap- variant step-size on the NLMS algorithm by assuming the input signal 

( )x n  is WSS with zero mean, approximated ( ) ( )T n ns s  by 2
sMσ [3] i.e., 

2
, ,( ) ( )h OTTNLMS s h OTTLMSn M nμ σ μ= and 2

, , , ,( ) ( )h k OTNLMS s h k OTLMSn M nμ σ μ=  , can be 

obtained. Therefore, The OTNLMS algorithm during the first stage is summarized by 

the following equations: 
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( ) ( ) ( ) ( )T Te n d n n n= − ⋅ ⋅w F h  

, ( ) 1
( )h ONLMS

h

n
J n
βμ = −  

2

2

( ) ( )( 1) ( )
( )
h n e nn n
n

μ
δ

+ = +
+

sh h
s

                       

, ,( ) ( )
( 1) 1 ( )h ONLMS h OMLMS

h

n n
J n J n

M M
μ μ

β
⎛ ⎞

+ = − +⎜ ⎟
⎝ ⎠

 

Similarly, the OTTNLMS algorithm during the first stage is summarized by the 

following equations: 

( ) ( ) ( ) ( )T Te n d n n n= − ⋅ ⋅w F h  
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( ) { }

2 2 4 4 2
, , , , ,

, , 24 2 2 2 2 2 2
, 2

2 ( ) ( )
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( ) 2 ( )
e e

e e

s s s o i h i s i s s o i
h k ONLMS T

s h s s s h o v s s s o

M h n g n h
n

trace n E n

σ σ ε σ σ
μ

σ σ σ σ σ σ σ

⎡ ⎤⋅ + +⎣ ⎦=
+ + +R ε h h

 

,0,

, 1,

( )
( )

( )

0

0

h ONLMS

ONLMS

h M ONLMS

n
n

n

μ

μ −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

U %  

2

2

( ) ( ) ( )( 1) ( )
( )

n n e nn n
n δ
⋅

+ = +
+

U sh h
s

 

4
,, , 2

, , ,4

( )
( 1) 1 ( ) .es sh k ONLMS

k k h k ONLMS o i
s

n
g n g n h

M M
σμ

μ
σ

⎛ ⎞
+ = − +⎜ ⎟

⎝ ⎠
 

{ } { }
2
,, , 2

, , , , ,2

( )
( 1) 1 ( ) es sh k ONLMS

h k h k h k ONLMS o k
s

n
E n E n h

M M
σμ

ε ε μ
σ

⎛ ⎞
+ = − −⎜ ⎟

⎝ ⎠
. 

4.6 Summary 

 In this chapter, we have derived the OTLMS in Eq. (4.1.6) and (4.1.7) the 

OTTLMS in Eq. (4.3.6), (4.3.7), (4.3.8). Their practical implementations are provided 

in Section 4.2 and Section 4.4. We also develop the corresponding NLMS-type 

algorithm in section 4.5. The overall of discussion will be verified in Chapter 5. 
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Chapter 5  
Computer simulations 
 
 In this chapter, we will demonstrate the simulation results of the nonlinear AEC 

with PWL structure to compare adaptive algorithms in Chapter 2, and to verify 

previous convergence analysis in Chapter 3 and optimal variable step-size, OTLMS 

and OTTLMS in Chapter 4.  

 In Section 5.1, we will define some parameters used in following simulations. In 

Section 5.2, we will compare the performance of nonlinear AEC with difference 

structures and linear AEC. Moreover, the comparison of simulation results and 

theoretical analyses will be presented in Section 5.3. At the same time, we will make 

several experiments on a real nonlinear echo with different structures of nonlinear 

AEC. In Section 5.4, a series of simulations and experiments on the optimum varying 

step-size, OTLMS and OTTLMS, will be discussed.  

 

5.1 Simulation parameters and system performance measures 

 

In our simulations, unless otherwise stated, the far-end signal is a uniformly 

distributed white noise. The nonlinear I/O mapping curve is a raised-cosine function 

(See Section 4.2[23]) as given below 
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We use a soft-clipping type 1, 1Tξ = =  which is similar to a sigmoid function. After 

simplification, this raised-cosine function becomes   
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Fig 5.1.1 shows the curve of the raised-cosine function. 

The room impulse response in Fig 5.1.2 is generated by a random number 

generator with an exponential damping factor. The length of the room impulse 

response is set to be 128. 

 The signal to noise ratio at the microphone is defined as 

1010log echo

v

PSNR
P

=  

where echoP  is the power of the nonlinear echo ( )echod n  and vP  is the power of the 

background noise. In Fig. 3.1, the nonlinear echo ( ) ( )T
o o od n n= ⋅s h  is produced by 

the loudspeaker output passing through the room impulse response. Typically SNR is 

set to be 30dB, unless otherwise stated. 

As to the part of nonlinear AEC, the step sizes are 0.006h wμ μ= = ; the length 

of the linear filter is set to be 128, which is identical to the length of the room impulse 
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response; the number of nonlinear weights is 3, i.e., only odd order for polynomial 

equal to 5th (excluding the even order), and the partition vector of the PWL processor 

is [ ]0 0.33 0.66 1 . 

To evaluate system performance, residual error power, ERLE, and coefficient 

misalignment are major system performance measures for comparison purposes. With 

the assumption of high SNR, the performance measure of echo return loss 

enhancement (ERLE) can be formulated as  

  
{ }
{ }

2

10 2

( )
( )  10 log

( )

E d n
ERLE dB

E e n
= . 

The linear coefficients misalignment is defined as the normalized norm of the linear 

coefficients error 

  2

22

( )( ) oh

oo

nn −h hε
hh

� . 

Moreover, the fitting of each nonlinear processor is a factor of performance. We want 

to evaluate which structure is better for nonlinear AEC. The most direct method is to 

calculate the squared difference of the nonlinear curve between PWL/polynomial type 

and raised-cosine curve. Due to the symmetry and zero offset, we only need to get the 

positive part of nonlinear I/O mapping curve. Therefore, we denote the nonlinear 

curve misalignment as follows:  

  
2

, 2

1( ) ( ) o
a

f n n
N

−a af f+ � , 

where ( )f na is the PWL/polynomial output vector of nonlinear I/O mapping curve at 

the nth iteration due to the input vector a  of dimension aN , set by [0.1 0.2 0.3 …1], 

and ,ofa  is the desired raised-cosine output vector. 
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Fig. 5.1.1 Typical nonlinear I/O mapping curve using a raised-cosine function 
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Fig. 5.1.2 Room impulse response 
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5.2 Nonlinear AEC based on LMS algorithm 

 

 In this section, we will perform simulations of the nonlinear LMS AEC filter. 

The performance of each structure will be compared in Section 5.2.1. In Section 5.2.2 

we will simulate various partial update LMS algorithms. In Section 5.2.3 the issue of 

partition number will be discussed. 

 

5.2.1 Performance comparison of PWL, polynomial and linear AECs  

 In this section, we will compare nonlinear PWL and polynomial AECs The most 

important issue is the nonlinear modeling. The PWL coefficients are found by fitting 

the raised-cosine curve based on LMS algorithm. When the order N of PWL 

processor is 3 with a uniform partition being [0 0.33 0.66 1], the PWL coefficients 

corresponding to f1(n)~f3(n) can be shown to be 

1 2 31.9050  -0.8886  -0.8875w w w= = = .  

Similarly, if the nonlinear AEC uses the polynomial structure with only odd order, the 

polynomial coefficients would be 

     1 3 51.8384  -0.8734  -0.0252a a a= = = , 

i.e., 3 5
1 3 5( )f x a x a x a x= + + . The corresponding curves, raised-cosine, PWL and 

polynomial one, are plotted in Fig 5.2.1, these curves have similar behavior. To 

examine their differences in details, we plot the squared error between 

PWL/polynomial models and raised-cosine mapping in Fig 5.2.2. We found the PWL 

model performs better than the polynomial one in case of fitting a raised cosine curve 

with degree of freedom being 3. 

 Further, in order to avoid the correlations of the power series, we use an 

orthogonal polynomial to instead it. For a uniform distribution, the orthogonal pair 
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would be ( )x n , 3 3( ) - ( )
5

x n x n  and 5 3( ) -1.11 ( ) 0.24 ( )x n x n x n+ . We can plot the 

squared error curves of PWL and orthogonal polynomial models in Fig 5.2.3. The 

result shows the orthogonal polynomial structure can improve the fitting even better 

than PWL structure. In the following discussion, the orthogonal polynomial structure 

would be used for comparison.  
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Fig. 5.2.1 Nonlinear I/O mapping curve of PWL and polynomial models 
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Fig. 5.2.2 Modeling errors of PWL and polynomial models in fitting to a raised-cosine 

function 
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Fig. 5.2.3 Modeling errors of PWL and orthogonal polynomial models in fitting a 

raised-cosine function 
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In Chapter 2, we have derived the joint adaptation of the nonlinear PWL AEC. 

However, each filter (or processor) behaves to compensate the other one’s 

misalignment. This can result in a perpetual oscillating system. Therefore, we will 

adopt two-staged strategy [7] with a switching point at 2000-th iteration to proceed. 

The ERLE, linear coefficients misalignment and nonlinear curve misalignment 

will be used in our simulations to compare the performances of PWL, polynomial, 

and linear AECs, as plotted in Fig 5.2.4~5.2.6, respectively. The step-size for 

nonlinear polynomial AEC is chosen as 0.01 so that its converged ERLE is identical 

to that of PWL-type for a fair comparison. We can find the PWL structure has better 

ERLE than polynomial one due to its faster convergence in Fig 5.2.4 and Fig. 5.2.6. 

Moreover, the PWL structure has slightly lower steady-state linear coefficients 

misalignment in Fig 5.2.5. The result comes from that the error of nonlinear curve 

also affects the steady-state linear coefficients misalignment due to the cascade model. 

Therefore, the results demonstrate the PWL structure is the most effective structure 

than the others in the scenario of low-order fitting of a raised cosine function. 
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Fig. 5.2.4 ERLE comparison 
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Fig. 5.2.5 Linear coefficients misalignments   
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Fig. 5.2.6 Nonlinear curve misalignments  

 

5.2.2 Comparison of partial update LMS algorithms 

 In this section, we will simulate various partial update schemes discussed in 

Section 2.3. In addition to the raised-cosine curve, a saturated curve 

3 5( ) 2.5967 -3.3283 1.7833f x x x x= + + , 

plotted in Fig 5.2.7, is also used to account for highly nonlinear I/O mapping curve of 

the loudspeaker system. 

Fig. 5.2.8 shows the ERLE comparison in case of a raised-cosine curve. We can 

find all of the partial-update LMS algorithms converge and the order of convergence 

rate being, Random > Located > Periodic > Variant periodic > Sequential LMS. The 

Random, Located and Periodic LMS algorithm take about two times of iterations than 

the original LMS algorithm to reach steady-state ERLE but only one-third 

computation of the original one. The others, Variant periodic and Sequential schemes 

do not benefit the computational efficiency in this case.  
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 As to the case of a saturated curve, we can see from Fig. 5.2.9 that the saturation 

affects the convergences of these partial-update LMS algorithms enormously except 

for the Variant periodic one. The convergence speed of these partial-update LMS 

algorithms rank as follows, Variant periodic > Random ≈  Periodic ≈  Sequential > 

Located LMS. 

 To sum up, the Random, Periodic and Variant periodic schemes are good 

candidates for partial update scheme considering the ERLE convergence performance 

in cases of a raised cosine and highly saturated mapping functions. 
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Fig. 5.2.7 Saturated curve for nonlinear I/O mapping 
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Fig. 5.2.8 ERLE of partial update schemes for a raised-cosine mapping 
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Fig 5.2.9 ERLE of partial update schemes for a saturated mapping 
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5.2.3 Partition number of PWL processor  

 Partition is an important issue of PWL function. In figure 5.2.10, if we get more 

resources in partition, the fitting can be better. We also want to demonstrate this 

property on nonlinear PWL AEC With the assumption of uniform partitioning, there 

will be simulations with different partition numbers under two nonlinear I/O mapping 

curves, raised-cosine and saturated one.  

 In Fig 5.2.10, we present the ERLE curves under raised-cosine mapping with the 

partition number being 4, 8, 16, 32, 64, 256, respectively. We find that as the partition 

number becomes larger, the performance will be better due to a better fitting PWL 

curve. Similar results also hold in case of a saturated mapping curve, as can be seen in 

Fig 5.2.11. Another phenomenon is that in case of higher nonlinearity, the 

performance would be worse. We will also verify it in Section 5.3.   
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  (a)                         (b)                      (c) 

Fig. 5.2.10 Raised cosine curve and the corresponding PWL curves with two partition 

number: 2(b) and 4(c)   

 



 60

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

10

15

20

25

30

35

Number of iterations 

(d
B

)

ERLE

 

 

N= 4, 8, 16, 32, 64, 256

 

Fig. 5.2.11 ERLE for raised-cosine mapping using various partition numbers 
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Fig. 5.2.12 ERLE under saturated curve using various partition numbers 
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5.3 Two-staged adaptation and its convergence analysis  

 

 In this section, we will simulate two-staged adaptation. Due to the our main part : 

the first stage, we not only test and verify the convergence analysis and stability 

bound, but also simulate how the important factors do influence the convergence 

behavior in Section 5.3.1. The second stage will also be verified in Section 5.3.2 with 

two procedures that keep off the effect of zero eigen-value. In Section 5.3.3, we will 

consider the switching point of the two-staged adaptation. The experiments will be 

presented in Section 5.3.4. 

 

5.3.1 Convergence and stability analysis of the first stage  

 To verify our convergence analysis based on PWL structure, we show the 

simulated and theoretical curves on two stages with uniformly distributed input over 

±1. In the first stage, only updates linear filter, we let the step size hμ 0.01=  under 

the stability bound in Eq. (3.2.14), SNR=30 dB, the length of the room impulse 

response is set to be 128, which is identical to number of taps of the linear filter, the 

nonlinear filter order is 3 with a uniform partition on [0 0.33 0.66 1], the PWL 

coefficients of the loudspeaker is ,1 ,2 ,31.9050  -0.8886  -0.8875o o ow w w= = =  to 

approach a raised-cosine curve and the initial ones of the PWL processor is 

1 2 31.905  0  0w w w= = =  equivalent to a straight line with slope 1.905. As shown 

the linear coefficients misalignment and residual error power in Fig 5.3.1 and 5.3.2, 

the theoretical curves are plotted from (3.2.16) and (3.2.21), respectively, the 

simulation results agree well with the theoretical curves. If we set the step size 

hμ 0.013= over the stability bound in Eq. (3.2.14), the results in Fig 5.3.3 and 5.3.4 

show it would not converge with time. That means the stability bound is work. 
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Fig. 5.3.1 Residual error power during the first stage with hμ =0.01. 
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Fig. 5.3.2 Linear coefficients misalignment during the first stage with hμ =0.01 
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Fig.5.3.3 Diverged residual error power during the first stage with 

over-sized hμ =0.013  
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Fig 5.3.4 Diverged linear coefficients misalignment during the first stage with 

over-sized hμ =0.013  
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 Further, we want to find the factors that influence the convergence behavior of 

the first stage in Eq. 3.2.16, 3.2.17, 3.2.21. In the following simulations, unless 

otherwise stated, hμ  is set to 0.001.  

 The first trial is the factor of the SNR, we set the different SNR 10dB and 30dB 

to simulate. In Fig. 5.3.5 and 5.3.6, the factor of SNR will influence the steady-state 

of linear coefficient misalignment and residual error power. However, both of them 

have similar convergence speed as what we say in Chapter 3.  

 Next, we want to make sure how the step-size hμ  affects the convergence 

behavior. In order to observe that, difference hμ  0.001, 0.006 and 0.01 is set. In Fig. 

5.3.7 and 5.3.8 we found that as the step-size hμ  increases, the steady-state also 

enlarges but it doesn’t happen on the convergence speed. When the step-size changes 

form 0.006 to 0.001, the convergence speed becomes slow. It is unlike the changes of 

0.001 to 0.006. As well as, an optimal time-varaint step-size for the convergence 

speed must exist. We will process the step-size control to get the best performance, 

convergence speed and the steady-state. The issues will be discussed explicitly in the 

Section 5.4.   

 Moreover, the variance of PWL processor output 2
sσ will result in the 

convergence speed. We set three choices of amplitude of far-end signal and theirs 

corresponding 2
sσ  are 1.2, 0.9 and 0.6, respectively. In Fig. 5.3.9 and 5.3.10, we 

found the large power has better convergence speed than small one but worst 

steady-state due to the nonlinearity effect.  

 The most important factor is the nonlinearity of loudspeaker. If the nonlinearity 

is more conspicuous the covariance 2
, es sσ  of ( )ns and ( )e ns  and the variance 2

esσ  of 

( )es n  are larger. In Eq. (3.2.16) and (3.2.17), the convergence speed of linear 
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coefficient weight error won’t change but the steady-state will enlarge. In order to 

verify this, we use the monotonously decreasing slope model of nonlinear I/O 

mapping curve with by setting different dγ . The value dγ  can be regards as the 

nonlinearity. With a lot nonlinearity, then dγ  is much negative. In Fig 5.3.11 and 

5.3.12 we present the simulation by setting different 0.9, 0.5dγ = − − and 0.2.  The 

simulation results show that the convergence rate is similar; steady-state error is a 

monotonically increasing function of nonlinear factors.  

Finally, we show the simulations that the far-end signals use different Pdfs. For a 

fair comparison, we fix the corresponding 2
sσ  as 0.4 and show its corresponding 

Pdfs in Fig 5.3.13. Fig. 5.3.14 and 5.3.15, we found all of them keep the same 

convergence speed. However, the Uniform one has smaller steady-state than others 

due to the nonlinearity factor 2
, es sσ  and 2

esσ .  
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Fig. 5.3.5 Linear coefficients misalignment during the first stage under different SNRs 
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Fig. 5.3.6 Residual error power during the first stage under different SNRs 
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Fig. 5.3.7 Linear coefficient misalignment during the first stage with different 

step-sizes  
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Fig. 5.3.8 Residual error power during the first stage under different step-sizes 
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Fig. 5.3.9 Linear coefficients misalignment during the first stage with different 

powers of the output of PWL processor 
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Fig. 5.3.10 Residual error power during the first stage with different powers of the 

output of PWL processor   
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Fig. 5.3.11 Linear coefficients misalignment during the first stage using dγ   
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Fig. 5.3.12 Residual error power during the first stage using dγ  
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Fig 5.3.13 Different Pdfs of far-end signal 
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Fig. 5.3.14 Linear coefficients misalignment during the first stage using different Pdfs 
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Fig. 5.3.15 Residual error power during the first stage using different Pdfs 
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5.3.2 Convergence analysis of the second stage  

 After the first stage, we continue to analysis the convergence behavior of the 

second stage. We keep using all of information of the stage 1. That means the initial 

linear FRI filter of the second stage would be the end one of the first stage. Here, in 

order to avoid a perpetual oscillation, we modify the norm of the initial linear FRI 

filter to 1 and fix it in every iteration. Beside, the PWL processor must also be 

modified. The misalignment of combined linear and PWL coefficient weight 

error ( ) ( ) ( )
T

h wn n n⎡ ⎤= ⎣ ⎦ε ε ε  is defined as  

  
[ ]

[ ] [ ]
[ ]

2

22

- ( ) ( )( ) o o

o oo o

n nn h w h wε
h wh w

� . 

In Fig. 5.3.16 and 5.3.17, we simulate the misalignment of combined linear and 

PWL coefficient weight error and residual error power and plot the theoretical curve 

by Eq. (3.3.7) and (3.3.8), respectively. The misalignment of the simulated and 

theoretical curves was purely mismatching after 5000 iteration. But the residual error 

power has similar behavior on simulated and theoretical curves. It just exists with a 

little high mismatch at start due to the approximation in Eq. (4.3.2). Therefore, we go 

to find out what the reason bring about this results. We found the correlation matrix 

GR  has an approximately zero eigen-value. Above the Eq. (4.3.7), the zero 

eigen-value will not make the corresponding term of misalignment reduce by iterating 

as time. As a result, the zero eigen-value will bound the convergence of misalignment, 

but not affect the residual error power in Eq (4.3.8).  

 In order to solve this problem, we make a trick that skips the corresponding term 

with the zero eigen-value and denote it as skipping. Under the skipping, the results 

between simulated curve and theoretical curve are similar with a little mismatch In 

Fig 5.3.18 and 5.3.19.  
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 Besides, we know that in the second stage the weight error of both, linear and 

PWL one, are small enough. Here, we assume they wouldn’t react to each other, that 

is the correlation matrix GR  can be simplified as  

  
{ }

{ }
( ) ( )

( ) ( )

T
o o

T T
o o

E n n

E n n

⎡ ⎤⋅
⎢ ⎥=
⎢ ⎥⋅ ⋅ ⋅⎣ ⎦

G

s s 0
R

0 P h h P
. 

We denote the procedure as decoupling. In Fig. 5.3.20 and Fig. 5.3.21, the theoretical 

curves are almost fitting to the simulated curves.  

0 1 2 3 4 5 6 7 8 9 10

x 104

-15

-10

-5

0

Number of iterations 

(d
B
)

Misalignment

 

 
Simulated
Theoretical

 

Fig. 5.3.16 Misalignment of combined coefficient weight error during the second 

stage 
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Fig 5.3.17 Residual error power during the second stage 
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Fig. 5.3.18 Misalignment of combined coefficient weight error under skipping during 

the second stage 
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Fig. 5.3.19 Residual error power under skipping during the second stage 
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Fig. 5.3.20 Misalignment of combined coefficient weight error under decoupling 

during the second stage 
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Fig. 5.3.21 Residual error power under decoupling during the second stage 

 

5.3.3 Switching point of two-staged adaptation 

 Guérin point out that the PWL filter must not adapt until the linear filter has 

sufficiently converged. Therefore, the pervious simulations were done while the PWL 

processor was started at most with a steady-state linear filter. In this section, we want 

to discuss the convergence behavior when the PWL processor was operated with a 

transient-state linear filter and what the switching point, number of iteration, is a 

better setting? First, we demonstrate simulated and theoretical curves of misalignment 

and residual error power of two-staged adaptation with a small step-size 

h wμ μ= =0.001 in Fig 5.3.22 and 5.3.23, respectively. We found the number of 

iteration that linear filter converged in first stage is about 3000. In order to observe the 

issue of switching point, we change it as 3000, 1000 and 300. In Fig. 5.3.24, The 

two-staged adaptation is robust to the switching point, even the number of iteration 

1000 still get better performance than 3000 one. However, if we start to update the 
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PWL coefficients too fast as the case 300, it will cause a perpetual oscillation at first 

and worse performance than the others.  
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Fig. 5.3.22 Misalignment of combined coefficient weight error of the two-staged 

adaptation 
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Fig. 5.3.23 Residual error power of the two-staged adaptation 
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Fig 5.3.24 Residual error power with different switching points 

 

5.3.4 Experiments of the two-staged adaptation 

In this section, we preset two experiments of nonlinear acoustic echo canceller. 

In the first part, to evaluate the performance of proposed approach, PWL structure, we 

present simulation results obtained for nonlinear acoustic echo to compare the 

performance with only linear AEC and nonlinear AEC based on polynomial structure. 

The far end signal, consists of two segments of different volume speech sampled by 

8kHz, is represented in bottom of Fig. 5.3.22. The first segment keeps under 0.6 

magnitudes and after about 20000 iterations the second one reaches maximum height 

with time. This signal drives the desktop loudspeaker, low-cost 2.5 inch diameter, and 

catches the microphone, Creative-MC1000, above the loudspeaker about 6 inches to 

imitate the cell phone.  

Except the joint LMS-type adaptive algorithm in chapter 2, we refer to [7] for 

adaptation strategy, the same idea in Chapter 3. However, due to the unexpected real 
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data, it compares standard deviation of linear filter with a set of thresholds to achieve 

the detection of linear filter state-stay. Moreover, the nonlinearity mostly happens on a 

high volume input. A simpler detector is based on the power of far end signal is 

implemented and is compared to a fixed threshold. Therefore, we adjust those 

thresholds to obtain the optimum Echo Return Loss Enhancement (ERLE) of 

nonlinear AEC. Fig. 5.3.25 shows the ERLE resulting from Linear AEC and 

Nonlinear AEC based on PWL structure and polynomial one for different volumes. 

First, during first segment the nonlinearity effect is not available, the ERLE of 

nonlinear AEC are comparable to that obtained with the linear AEC. Second, due to 

the existing nonlinearity in second segment, the gap in performance is obvious: the 

mean difference in ERLE is about 3 dB and 2 dB to linear AEC and polynomial 

structure, respectively. This shows the PWL structure has better performance than the 

others. 
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Fig. 5.3.25 ERLE with a two level speech for linear AEC (dash line), nonlinear 

AEC based on PWL structure (solid line) and Polynomial one (dot line) 
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 In the second experiment, we process two kinds of MTK speech, a woman in 

mandarin tone and a man in English tone, from a real mechanism of cellular phone 

with two-staged adaptation. Here, the nonlinear effect only caused by loudspeaker and 

avoided from analog amplifier. A detector based on the linear filter standard of 

deviation and the power of far end signal is used. We compare the performance 

between linear AEC and nonlinear AEC based on PWL structure. In Fig 5.3.26, we 

demonstrate the speech of a woman in mandarin tone. We found that the ERLE of the 

PWL structure has a peak 3dB better than one of the Linear AEC around 31K samples 

and an average 2 dB at high volume than one of the Linear AEC. However, at 2.2k 

samples the PWL structure is 2dB worse than the linear AEC. 

 Next, we show the experiment with the speech of a man in English tone. In Fig. 

3.3.27, the result with the speech of a man has a more consistent performance at high 

volume than one of a woman. Moreover, the Peak and average ERLE of PWL 

structure is 6 dB at 2.3k iterations and 2.5 dB respectively than the linear AEC. We 

deduce the results that the performance of PWL structure with the speech of a man is 

better is owing to the aliasing effect. 
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Fig 5.3.26 ERLE with the speech of a woman with tone in mandarin  
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Fig 5.3.27 ERLE with the speech of a man with tone in English  
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5.4 Controls of step-size 

 In this section, computer simulations are used to verify the algorithm discussed 

in Chapter 4. First, we will compare the convergence rate of OTLMS and fixed 

step-size LMS algorithm in Section 5.4.1. Next, Section 5.4.2 will show the practical 

OTLMS algorithm and discuss it with difference choices parameter and nonlinear 

modeling. Moreover, the OTTLMS will be discussed in Section 5.4.3 and its practical 

type with nonlinear and room impulse response modeling will also be shown in 

Section 5.4.4. In order to the compact of two-staged adaptation, we apply the OTLMS 

and OTTLMS of the first stage to the second stage in Section 5.4.5. Finally, a series of 

experiment will be presented in Section 5.4.6.      

 

5.4.1 OTLMS algorithm 

 In this section, we want to demonstrate the OTLMS algorithm does work and has 

better performance than the fixed step-sizes. Further, the theoretical equation in Eq. 

(4.1.5) also can be verified in the simulation. Fig 5.4.1 shows the step-size of OTLMS 

was changed form about 0.006 to almost zero. Therefore, we choose the fixed 

step-size as 0.006 and 0.001 to make a fair comparison. Fig. 5.4.2 show the 

convergence curve of optimal time-variant and fix step-size LMS algorithm. We 

found the OTLMS has benefits not only on convergence speed but also steady-state of 

residual error power.   
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Fig. 5.4.1 Step-size of OTLMS algorithm 
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Fig. 5.4.2 Performance comparison between optimal time-variant and fixed step sizes 
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5.4.2 Practical implements of OTLMS algorithm 

 We have shown thus far that the use of step-size adjustment improves the 

convergence rate of the LMS algorithm and reduces the steady-state of residual error 

power. In this Section, we will go a step to process and discuss the practical OTLMS 

algorithm.  

 The most important issue is the parameter
4

2,2 2
2 2

e

e

s s
o v s o

s

σ
β σ σ

σ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
h . In order 

to approximate it, we focus on the nonlinearity. With a mismatch nonlinear modeling, 

it will result on the prior statistics knowledge 2 2
,,

es s sσ σ and 2
, es sσ . Fro the reason, we 

want to show does the practical OTLMS is robust to them. We set the optimal PWL 

coefficients as 1 2 31.9050  -0.8886  -0.8875c c c= = = . We use the monotonously 

decreasing slope model of nonlinear I/O mapping curve A, B and C  

The corresponding curves were presented in Fig 5.4.3. Fig 5.4.4 shows the 

time-variant step-size of these three types nonlinear mapping curve A, B and C. The 

figures of residual error power were plotted in Fig. 5.4.5. We can see that with B and 

C, the performances are similar to optimum one. That means the practical OTLMS 

algorithm is robust to the mismatch modeling. However, if we use mapping curve A 

(ie, a linear curve), the convergence speed of it is slower than the fixed 

step–size 0.006hμ = . As a result, we deduce the modeling is necessary and effective. 

 Next, with an approximated error on β̂  from near-end noise or nonlinear 

modeling error, it might influence the performance of practical OTLMS algorithm. 

Therefore, we use two different choices of parameterβ
�

 (i.e., the five times and one 

fifth the optimum oβ ) to discuss. In Fig. 5.4.6 and 5.4.7 are the corresponding 

time-variant step-size and residual error power, respectively. Fig 5.4.6 shows that with 

a largerβ , the initial of step-size would be smaller but each time-variant step-size 
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takes the same time to convergence. The corresponding performances in Fig 5.4.7 

have apparent difference that five times oβ  has worse convergence speed at start 

than one-tenth one and even the fixed step-size 0.006hμ = . However, after that the 

different choices of OTLMS have comparable performance.  
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Fig. 5.4.3 Nonlinear I/O mapping curves with the modeling 
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Fig. 5.4.4 Time-variant step-size with different mapping curves 
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Fig. 5.4.5 Residual error power with different mapping curves 
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Fig. 5.4.6 Time-variant step-size with different β
�
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Fig. 5.4.7 Residual error power with different β
�

 

 Moreover, another issue is the residual error power. Because the fluctuation of 

speech signal and the changing of room impulse response, the statistics of residual 
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error power are varying with time. However, the regression of expectation of residual 

error power in Eq. (4.1.5) also can be replaced by time mean estimate with first-order 

recursive filtering as follows:  

  ( ) 2( 1) 1 ( ) ( )hJ n J n e nλ λ+ = − +
� �

 

where λ  is the forgetting parameter close to 0 . Here, we continue to use difference 

choice of the parameters oβ  and discuss it with first-order recursive procedure of 

residual error power. The overall settings are the same as before, the far-end signal is 

white with uniform distribution, etc…. In Fig. 5.4.8 and Fig 5.4.9 show the 

time-variant step-size and residual error power, respectively. With the case, 

one-second oβ , the residual error power can not be reduced in advance because of an 

unchanged step-size. The robustness of a smaller β̂  wasn’t happened on this 

procedure. However, two times oβ  keeps the performance and has a lower 

steady-state than optimum oβ . Therefore, using first-order recursive procedure of 

residual error power, we suggest using a largerβ
�

 for implementation. 

 Finally, we compare two produces, theoretical and first-order recursive, with the 

same β
�

 in Fig. 5.4.10, 5.4.11 and 5.4.12. the results show the theoretical procedure 

is outperform to the first-order recursive one 
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Fig. 5.4.8 Time-variant step-size using the first by using first-order recursive 

procedure with different β
�
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Fig. 5.4.9 Residual error power using the first by using first-order recursive procedure 

with different β
�
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Fig. 5.4.10 Residual error power using the two different procedures with the optimum 

oβ  
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Fig. 5.4.11 Residual error power using the two different procedures with one half of 

the optimum oβ  
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Fig. 5.4.12 Residual error power using the two different procedures with two times of 

the optimum oβ  

 

5.4.3 OTTLMS algorithm  

 We have demonstrated that the time-variant step-size adjustment improves the 

convergence rate and steady-state of the LMS algorithm. In this Section, we will 

focus on the proposed algorithms using optimum-time & tap-variant step-size. Here, 

the OTTLMS step-size was used a compact form in Eq. (4.3.5). Figure 5.4.13 

illustrates the convergence rate of OTLMS, OTTLMS and fixed step-size 

as 0.006,0.001hμ = . The theoretical curve of OTTLMS was plotted from the 

regression Eq. (4.3.4) and matched to the simulated curve. We found The OTTLMS 

algorithm indeed works and has convergence speed about two times than OTLMS 

one.  

 Further, we test the approximated form of OTTLMS step-size in Eq. (4.3.6). The 

performance of it is similar to original one. Therefore, in the following discussion the 
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approximate form of OTTLMS step-size will be used.  
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Fig. 5.4.13 Performance comparison of convergence rate for OTLMS, OTTLMS and 

fixed step-sizes  

 

5.4.4 Practical implement of OTTLMS algorithm  

 In order to implement the OTTLMS algorithm, we model the nonlinear I/O 

mapping curve and the room impulse response. In this section, we will exhibit the 

performance of each mismatching model and discuss it. 

 First, we discuss the issue of nonlinear effect. According to the monotonously 

decreasing slope model of the above, we set three different choices of nonlinear 

mapping curve A, B, C in Fig 5.4.3. Fig 5.4.14 shows that B and C has similar 

performance to OTLMS algorithm. That means the practical OTTLMS algorithm is 

robust to the mismatch of nonlinear modeling. However, if we use mapping curve A 

(i.e., a linear curve), the convergence speed of it is slower than the practical OTLMS. 

Finally, we found that on the issue of nonlinearity, the results of practical OTTLMS 
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correspond with ones of practical OTLMS.  

 Second, we focus on the issue of room impulse response. In section 4.4, we have 

modeled the RIR oh  as an exponential decay envelope. The room exponential decay 

factor hγ  is chosen as three values 0.98, 0.96 and 0.94. We plot the corresponding 

model in Fig 5.4.15. Fig 5.4.16 presents the performance of different values hγ  and 

shows that curve B has the best convergence rate due to the modeling. As a more 

similar envelope, the convergence rate will be faster.  

 Finally, we combine both of the models to discuss. In Fig. 5.4.17, 5.4.18 and 

5.4.19, we use hγ  as 0.96, 0.98 and 0.94 to compare the nonlinearity, respectively. 

Furthermore, the nonlinear mapping curve is used as A, B and C the same as before. 

We found the appearance of things that the combined modeling error will make the 

performance worse from Fig. 5.4.17 to Fig. 5.4.19. In the comparison to nonlinear 

mapping curves, it presented the robustness the same as before. However, in the 

case 0.94hγ = , the practical OTTLMS with mapping curve C was failed, slower 

convergence speed than OTLMS. The reason is that a saturated model of nonlinear 

I/O mapping curve C cascading an exponential decay envelope with larger decay 

0.94hγ =  will induce a more mismatching model error to original one. Therefore, the 

performance is poor. 



 93

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-18

-16

-14

-12

-10

-8

-6

Number of iterations 

Residual echo power

(d
B

)

OTLMS

Optimal, C, B, A

OTTLMS

 

Fig. 5.4.14 Performance comparison of convergence rate for OTLMS, OTTLMS with 

three different mapping curves 
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Fig 5.4.15 Model of RIR as an exponential decay envelope 
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Fig 5.4.16 Performance comparison of convergence rate for OTLMS and OTTLMS 

with three different choices hγ = 0.98, 0.96 and 0.94 
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Fig. 5.4.17 Performance comparison of convergence rate for OTLMS and OTTLMS 

at 0.96hγ =  with three different mapping curves 
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Fig. 5.4.18 Performance comparison of convergence rate for OTLMS and OTTLMS 

at 0.98hγ =  with three different mapping curves 
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Fig. 5.4.19 Performance comparison of convergence rate for OTLMS and OTTLMS 

at 0.94hγ =  with three different mapping curves 
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5.4.5 OTLMS and OTTLMS algorithms in the two-staged adaptation 

 We have showed the benefit of time-variant and time-&tap- variant step-size of 

the first stage. In the second stage, the both of step-sizes, linear and PWL one are not 

easy to derive. Moreover, the residual error should be small enough and the linear FIR 

filter is near the optimum, the variable step-size should also keep small. Therefore, the 

variant step-size of the second stage is unnecessary. In this section, we continue to use 

the variant step-size of the first stage on the second stage, and compare to fixed 

step-size 0.001 and 0.006. the simulation condition are the same as before, a white 

uniform distributed far end signal, a raise-cosine likely nonlinear I/O mapping curve, 

exponential decay room impulse response, also set the PWL step-size of all to 0.006 

and after 5000 iteration, the nonlinear processor operates. In figure 5.4.20, we found 

that the variable-step size has comparable performance to the fixed ones during the 

second stage. The results of the first stage are the same as before. 

 Next, we apply the procedure by comparing linear filter standard of deviation 

with a set of thresholds to achieve the detection of linear filter state-stay. Figure 

5.4.21 shows OTTLMS has the best performance due to the fastest convergence of 

linear filter and the OTLMS also get the benefits on transient behavior. 
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Fig. 5.4.20 Residual error power of OTTLMS, OTLMS, fixed step-size LMS for the 

two-staged adaptation with fixed switching point   
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Fig. 5.4.21 Residual error power of OTTLMS, OTLMS, fixed step-size LMS for the 

two-staged adaptation with detection of state-stay linear filter  
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5.4.6 Experiments on the step-size controls   

 For simplicity, we only consider that the nonlinear AEC with an artificial room 

impulse response and nonlinear loudspeaker. The environment is setting by a 

raise-cosine likely nonlinear I/O mapping curve and exponential decay room impulse 

response. We use speech as input signal for verification. In order to avoid fluctuation, 

the amplitude of speech is almost fixed. Therefore we separate the speech in bottom 

of Fig. 5.3.22 into two parts with the breakpoint 20000 samples and resample with 

one-fourth time the original sample rate to approximate a full band signal. We also 

plot these two speeches in the bottom o Fig 5.4.18 and 5.4.20, respectively 

 In the following experiment, we will use the NLMS type to discuss. The 

practical OTNLMS use the first-order recursive procedure of residual error power to 

implement and the practical OTTNLMS was discussed in section 4.5. Fig 5.4.22 and 

Fig 5.4.24 show that the practical OTNLMS algorithm do work and has faster 

convergence rate and better ERLE than fixed step-size 0.2 and 1hμ =  but 

OTTNLMS failed. Fig. 5.4.19 and Fig 5.4.21 demonstrated the corresponding 

time-variant step-size of practical OTNLMS, respectively.  
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Fig. 5.4.22 ERLE of practical OTTLMS, practical OTLMS, fixed step-size LMS 

algorithm with the first part of speech and pseudo nonlinear echo 
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Fig. 5.4.23 Step-size of practical OTLMS algorithm with the first part of speech and a 

pseudo nonlinear echo 
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Fig. 5.4.24 ERLE of practical OTTLMS, practical OTLMS, fixed step-size LMS 

algorithm with the second part of speech and a pseudo nonlinear echo 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations 

Time-variant step-size

 

Fig. 5.4.25 Step-size of practical OTLMS algorithm with the second part of speech 

and a pseudo nonlinear echo 
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 In advance, we use the step-size control on the true echo, the same near-end 

signal in Section 5.3.4. The separated and decimated procedures were also used on the 

nonlinear echo. Because the practical OTTNLMS failed, we only do the comparison 

on practical OTNLMS and fixed step-size NLMS algorithm. In Fig 5.4.26 and Fig 

5.4.28, the results show the practical OTNLMS has comparable performance to fixed 

step-size 1hμ = . At the same time, the case 0.2hμ =  always keeps worse 

performance. That means it doesn’t converge due to the varying room impulse 

response. It can explain why the performance of practical OTNLMS does not 

outperform the case 1hμ = .  
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Fig. 5.4.26 ERLE of practical OTLMS, fixed step-size LMS algorithm with the first 

part of speech and a true nonlinear echo 
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Fig. 5.4.27 Step-size of practical OTLMS algorithm with the first part of speech and a 

true nonlinear echo 
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Fig. 5.4.28 ERLE of practical OTLMS, fixed step-size LMS algorithm with second 

part of speech for true nonlinear echo 
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Fig. 5.4.29 Step-size of practical OTLMS algorithm with the second part of speech for 

a true nonlinear echo 

 



 104

Chapter 6 
Conclusions 
 

We have developed the  nonlinear AEC system where the scheme is a cascade 

model in a memoryless PWL processor and linear FIR filter. Its joint LMS adaptive 

algorithm had lower computation than conventional nonlinear AEC based on 

polynomial function. Simulation results also have showed that the PWL structure has 

better performance than polynomial in the case of a raised-cosine I/O mapping curve.  

For computational cost, we have developed five types of PWL coefficients selective 

update schemes. They all kept the computation on the matrix multiplication 

( ) ( )T n n⋅F h  with M . In the simulation, they all have worked and have benefited the 

computational efficiency in this case of a raised-cosine I/O mapping curve. We 

suggested that the Random, Periodic and Variant periodic schemes are good 

candidates for partial update scheme considering the ERLE convergence performance 

in cases of a raised cosine and highly saturated mapping functions. The experiment of 

a real environment, we have show that the PWL processor structure has better 

performance than a polynomial one and exceed about 2~3 dB more than the linear 

AEC with different speech.  

Since each filter (linear filter or PWL processor) behaves to compensate the 

other one’s misalignment, which can lead to a perpetual oscillating system. In order to 

overcome this difficulty, we have adopted two-staged algorithm, starting with a linear 

filter, and then joint PWL and linear coefficients update follow with a steady state 

linear filter and derived its convergence analysis with two lemma. 

In the first stage, only linear coefficients update under a fixed PWL coefficients. 

We make up the Lemma 1 with Eq. (3.2.14), (3.2.16), (3.2.17) and (3.2.21) as follow: 
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Lemma 1: If far end signal ( )x n  is white, modeling of nonlinear I/O mapping 

is symmetric in a cascade model and only linear filter coefficients update, then we 

have the stability criterion of step-size hμ , the coupled vector ( )nθ  of { }2

2
( )hE nε  

and { }( )hE nε , the steady state of { }2

2
( )hE nε  and the mean square error ( )hJ n  as 

follows: 

  2

2 ,h
sM

μ
σ

<  
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sσ , 2

es
σ  and 2

vσ  are  the variance of ( )s n , ( )es n  and near-end noise 

( )v n , respectively, 2
, es sσ is the covariance of ( )s n and ( )es n , 

{ } { }2
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h s h s o h s h s
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h
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0 I
 and 2 2

,2
e

TT
s s s oσ σ⎡ ⎤= ⎣ ⎦C h . 

 By examining the matrix A , we can see that the convergence rate is a monotonic 

increasing function of the step-size hμ  and the variance 2
sσ  of PWL processor 

output. The steady-state of { }2

2
( )hE nε  increases with an increase of the near-end 

noise variance 2
vσ , the step-size hμ , the PWL output power 2

sσ , and the 
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nonlinearity factor 2
, es sσ  and 2

esσ . The simulation results also have fitted our 

observations.  

In the second stage, linear and PWL coefficients are updated jointly. We make 

up the Lemma 2 with Eq. (3.3.2), (3.3.7) and (3.3.8) as follow: 

Lemma 2: If far end signal ( )x n  is white, modeling of nonlinear I/O mapping 

is symmetric in a cascade model and linear and PWL coefficients are updated jointly 

with the assumption  

( )h on <<ε h , o( )w n <<ε w , 

then we have the second moment of ( )nε  and mean square error ( )J n  as follows: 

  { }
2 222 2

2
1

( ) (0) - (1- )
2 - 2 -

M N
nv i i i v

i i i
i i i i i

T TE n k T
T T

σ λ σ λ
λ λ

+

=

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∑ε  

and 

  
2 222 2

1
( ) (0) - (1- )

2 - 2 -

M N
nv i i i v

v i i i i
i i i i i

T TJ n k T
T T

σ λ σσ λ λ
λ λ

+

=

⎡ ⎤
= + + ⎢ ⎥

⎣ ⎦
∑ . 

where iT  is the i-th diagonal entry of h M

w N

μ
μ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

I O
T

O I
, (0)ik  is the initial value 

of i-th entry of ( ) ( )Tn n= ⋅K Q ε  and iλ  is the eigenvalues of GR .  

 In the simulation due to an approximately zero eigen-value, the misalignment of 

the simulated and theoretical curves was purely mismatching. In order to solve this 

problem, we make two procedures denoted as skipping and decoupling. After that, the 

theoretical curves are almost fitting to the simulated curves. 

 The overall analysis also can be extend to a polynomial structure simply by 

setting the delayed tap mapping matrix ( )nF  as 
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 After we have derived the convergence analysis, we have used the theoretical 

equation of the first stage to derive the optimum time-variant step-size LMS (OTLMS) 

and time-&tap-variant step-size LMS (OTTLMS) algorithm due to speed up the 

convergence rate. Here, we make up two lemmas as follow: 

 Lemma 3 If far end signal ( )x n  is white, modeling of nonlinear I/O mapping is 

symmetric in a cascade model and only linear filter coefficients update, we have the 

OTLMS algorithm for the first stage of two-staged adaptation as follows: 

  (1) ( ) ( ) ( ) ( )T Te n d n n n= − ⋅ ⋅w F h , 

  (2) , 2 2

1( )
( )h OLMS

s s h

n
M M J n

βμ
σ σ

= − , 

  (3) ( 1) ( ) ( ) ( )hn n n e nμ+ = +h h s , 

  (4) ( )2 2
, ,( 1) 1 ( ) ( ) ( )h h OLMS s h OLMS sJ n n J n nμ σ μ σ β+ = − + , 

where 
4

2,2 2
2 2

e

e

s s
v s o

s

σ
β σ σ

σ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
h . 2

sσ , 2

es
σ  and 2

vσ  are  the variance of ( )s n , 

( )es n  and near-end noise ( )v n , respectively, 2
, es sσ is the covariance of ( )ns . 

 Simulation results have shows the OTLMS has benefits not only on convergence 

speed but also steady-state of residual error power. We also have developed its 

practical form for implementation. In simulation, we have found it is robust to a 

smaller β
�

 and the choosing on β
�

 would be smaller in order to keep the 

performance. However, the regression of expectation of residual error power in Eq. 

(4.1.5) also can be replaced by time mean estimate with first-order recursive filtering 

as follows:  
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  ( ) 2( 1) 1 ( ) ( )hJ n J n e nλ λ+ = − +
� �

 

The robustness of a smaller β̂  wasn’t happened on this procedure and we suggest 

using a larger β
�

 for implementation. 

 Next, we focus on the OTTLMS algorithm.  

 Lemma 4 If far end signal ( )x n  is white, modeling of nonlinear I/O mapping is 

symmetric in a cascade model and only linear filter coefficients update, we have the 

OTTLMS algorithm for the first stage of two-staged adaptation as follows: 
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 (5) { } ( ) { }2 2 2 2
, , , , , , , ,( 1) 1 ( ) ( )

eh k s h k OLMS h k h k OLMS s s s o kE n n E n hε σ μ ε μ σ σ+ = − − . 

where, , ( )h k nμ is the k-th individual tap step-size, 2
sσ , 2

es
σ  and 2

vσ  are  the 

variance of ( )s n , ( )es n  and near-end noise ( )v n , respectively, 2
, es sσ is the 

covariance of ( )s n and ( )kg n is the k-th linear coefficient error variance. 

 In simulation, We have found The OTTLMS algorithm indeed works and has 

convergence speed about two times than OTLMS one. Moreover, its practical form 

also have work and been robust to the mismatch of nonlinear modeling and the RIR. 

 Finally, we also showed a series experiments for practical implementation. First, 
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we only consider that the nonlinear AEC with an artificial room impulse response and 

nonlinear loudspeaker. The practical OTNLMS have had faster convergence rate and 

lower ERLE than fixed step-size but OTTNLMS failed. In advance, we use the 

step-size control on the true echo. However, the performance did not benefit from the 

variant step-size. 

 The future work can be: (1) find the optimum switching point by using the 

theoretical analysis, (2) solve an approximately zero eigen-value of convergence 

analysis in second stage, (3) the optimum time-variant and time-&tap-variant 

step-sizes of linear filter and PWL processor for the second stage (4) use our 

algorithms to process a real echo and work. 
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Appendix  
 

In this appendix, we are trying to simplify the third term, the 5-th, 7-th and 9-th 

in Eq.(4.3.2) by using the white property of PWL processor output ( )ns . Further, we 

will use the results to deduce the three terms { }( ) ( ) ( ) ( )T TE n n n n⋅ ⋅ ⋅s s s s , 

{ }( ) ( ) ( ) ( )T T
eE n n n n⋅ ⋅ ⋅s s s s  and { }( ) ( ) ( ) ( )T

e eE n n n n⋅ ⋅ ⋅s s s s  

First, we denote the third term as 

{ } =  ( ) ( ) ( ) ( ) ( )T T
hE n n n n n⋅ ⋅ ⋅ ⋅B s s R s s                          (A.1) 

With the assumption, ( )h nε  is uncorrelated to ( )ns , kl -th term in Eq.(1) is given by 
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where pqa  is the pq -th entry of the correlation matrix ( )h nR  and ks  is the k-th 

entry of ( )ns . With white property of PWL processor output ( )ns , for k l=  we have 
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and for k l≠ , we have 
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Therefore, we can obtain the matrix form of B  as 

( ) ( ) ( )4
4 2 ( ) 3 ( ) ( )  + ( )s h h h hs

n D n trace n m D nσ ⎡ ⎤= − + ⋅⎣ ⎦B R R R I R      (A.2) 

where operator D  is to keep the diagonal entry and zero the others on the matrix. 
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Similarly, the 5-th, 7-th and 9-th term in Eq. (4.3.2) can be also denoted as 

  { }{ } =  ( ) ( ) ( ) ( ) ( )T T T
h o eE n n E n n n⋅ ⋅ ⋅ ⋅ ⋅C s s ε h s s ,                   (A.3) 
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e o o eE n n n n⋅ ⋅ ⋅ ⋅ ⋅E s s h h s s ,                        (A.4) 

respectively. Applying the same procedure, we have  
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 Next, we use the above results to simplify three terms { }( ) ( ) ( ) ( )T TE n n n n⋅ ⋅ ⋅s s s s , 

{ }( ) ( ) ( ) ( )T T
eE n n n n⋅ ⋅ ⋅s s s s  and { }( ) ( ) ( ) ( )T

e eE n n n n⋅ ⋅ ⋅s s s s . First, by setting ( )h nR  

as an identity matrix, the term { }( ) ( ) ( ) ( )T TE n n n n⋅ ⋅ ⋅s s s s  is equal to the Eq. (A.1). 

With the modification, we have 

  { }{ } ( )4
4 4( ) ( ) ( ) ( )  +T T
s ss

E n n n n M mσ σ⎡ ⎤⋅ ⋅ = −⎣ ⎦s s s s I                (A.7) 

Similarly, by setting { }( ) T
h oE n ⋅ε h  and T

o o⋅h h as an identity matrix in Eq (A.3) and 

(A.4), we have 
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respectively. 
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