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Abstract

Hand-free phone or teleconferencing system drives the power-amplification and
loudspeaker commonly into saturated nonlinear region, leading to that the
performance of conventional acoustic echo cancellation (AEC) reduced. In this thesis,
we will build a cascade model which consists of a memoryless piece-wise linear
(PWL) processor and a linear filter for AEC. It is beneficial to reduce the computation.
Besides, in order to overcome the divergence problem in a cascade system, we will
adopt the two-stage adaptation that starts with a linear filter, and then joint adaptation
of PWL and linear coefficients follows. Further, the convergence analysis and
stability criterion will be derived and the computer simulation will justify our analysis.
Finally, LMS algorithms with optimum time-variant and time-&tap- variant step-sizes
are developed to improve convergence rate. Their practical implementations and

computer simulations are also provided.
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Chapter 1
Introduction

In these years, hands-free telephone and teleconference systems are widely used.
Acoustic echo cancellation (AEC) is a major concern in telecommunications, where
echo delay is particularly annoying for speakers. The problem occurs as a result of the
reflections of the signal from the loudspeaker back to the microphone. We will
introduce the fundamental problem and techniques of acoustic echo cancellation as

follows.

Far—end Near—end

4 ) (Loudspeaker )

MIC
Talker > Listener

\
[ - — — —
MIC Near-end noise
J

& signa
Loudspeaker ) \_

Fig. 1.1 Diagram of hands-free telephone system
A simplified diagram of hands-free telephone system is shown in Fig. 1.1.
Assume that a talker in the far-end uses microphone to communicate to the listener in
near-end, the far-end speech will be transmitted back to the far-end through the
loudspeaker and room impulse response. The main object of acoustic echo
cancellation (AEC) is to estimate the unknown echo path and subtract the estimated

echo components from the microphone output.



In the past, based on the gradient theory, the acoustic echo that is linearly
dependent on the loudspeaker can be cancelled effectively [1]-[3]. However, more
and more telecommunications areas use heads-free devices to improve customer
comfort. These devices drive higher power-amplification and power loudspeaker
commonly driven into saturation region [4]. This issue leads to a nonlinear filtering

problem that cannot be solved by conventional linear AEC.

In this thesis, the nonlinear AEC system is shown in Fig.1.2. The signal from the
far end is passing through the nonlinear loudspeaker and the room impulse response
and then is picked up by the microphone. The nonlinear AEC is supposed to cancel
the nonlinear echo. The nonlinear echo can be cancelled perfectly if the nonlinear

AEC filter is identical to the nonlinear loudspeaker and room impulse response.

Near—end
Loudspeaker )
Far—end speech
Nolinear
AEC
\J
decho (n)
<_ —_—— —
Near—end noise
MIC & signa

Fig.1.2 Nonlinear acoustic echo cancellation system
The design and analysis of nonlinear adaptive filtering is difficult. The popular
method is via polynomial functions, i.e. truncated Volterra [5], Wiener [6] and
Hammerstein models [7]-[9]. Wiener and Hammerstein model are special cases of

Volterra one with worse fitting but much less coefficients accompanied less



computations. Although Hammerstein model has the least complexity, it still has large

computations.

In the thesis, we will employ the piecewise linear (PWL) [10] method to lessen
this issue in nonlinear AEC. These are also other reasons which suggest that it may be
worthwhile to investigate the simplicity of PWL implementation, as well as its
theoretical analysis. The former is due to the fact that digital controllers based on such
systems can be built easily using “if p(x) then f(x) else... ”. The latter own itself to the

maturity of linear algebra.

Historically, a closed form of the canonical PWL (CPWL) was presented by
Chua [10]. Lin used the least-mean-square (LMS) algorithm for CPWL [11]. The
identification of Hammerstein modelyusing. two-segment nonlinearity, different
polynomial functions on positiye and megative regions, was demonstrated in [12].
Later on, Voros demonstrated multi-segment PWL characteristics, the same idea as
CPWL, with recursive-least-square (RLS) [13] .in"a special case of, high SNR, a
specific set of initials and parameters. In this thesis, we will employ it for nonlinear

AEC in various cases and discuss.

Although the PWL processor has benefit on the computation, it still is
proportional to the linear filter length M . In the past, many types of selective update
schemes for the adaptive linear filter have been described in [14]-[16]. We will extend
their concepts and take advantages of the particular PWL structure to develop PWL
coefficient selective update schemes.

After demonstrating our system flow, we now focus on the stability issue. The
transient behavior of linear filter and PWL processor can account for the divergence
problem encountered in cascade system. Convergence cannot be guaranteed, since

each filter (linear filter or PWL processor) behaves to compensate the other one’s



misalignment, which can lead to a perpetual oscillating system.

In order to overcome this difficulty, Guérin [7] points out that the linear filter
has to adapt continuously so as to react to any change in the acoustic path, and the
PWL filter must not adapt until the linear filter has sufficiently converged. The
two-staged strategy starts with a linear filter and then joint adaptation of PWL and
linear coefficients follows once the linear filter has sufficiently converged in the first
stage. Moreover, in this thesis we will derive the theoretical convergence analysis and
stability criterion of the two-staged algorithm.

Next, we will focus on the step-size. We know a large step size gives a faster
convergence but also large small residual error power. Therefore, various methods
employing varying step-size have be examined by the other researchers, including
time-varying [17], tap-varying [18] or both time- &-tap- varying [19]. We will use the
convergence analysis of the first stage to develop the optimum time-variant and
optimum time-&tap-variant step=size. LMS/algorithm:.

In Chapter 2, we introduce our systemmodel and its update scheme. In Chapter 3,
a two staged algorithm is used and its performance analysis of a PWL structure is
proved analytically. In Chapter 4 The optimal step size with a nonlinear modeling
error is derived. Simulations support our works in Chapter 5 and conclusion will be
given in Chapter 6.

The main efforts in this thesis are:

1.  We introduce a PWL structure of adaptive nonlinear AEC with lower complexity
and develop its joint LMS adaptive algorithm.

2. We develop five types of PWL coefficients selective update schemes

3. For joint LMS adaptive algorithm, we derive and verify convergence analyses of

the two-staged adaptation with a stability condition of linear step-size during the



first stage.

Further, we discuss the convergence behavior during the first stage with different
factors, nonlinear effect, power and Pdf. of the far-end signal, step-size and SNR.
Optimum time-variant and time-&tap- variant step-size LMS algorithm of linear
adaptive filter with a nonlinear modeling error are derived and verified.

The corresponding practical forms are also proposed and discussed.



Chapter 2
Nonlinear Adaptive filter

In Chapter 2 we will build a system model for nonlinear AEC and develop its
adaptive algorithm. Moreover, we will discuss the issue of the computation cost.
Further, five types of partial update schemes will be presented to reduce the
computational load.

In Section 2.1, the nonlinear AEC is first introduced as a cascade of nonlinear
processor and linear adaptive filter, where a PWL function is used to model the
nonlinear loudspeaker. Moreover, we will develop the joint LMS-type algorithm to
update both PWL and linear coefficients: In Séetion 2.2, the computation complexity
of the PWL-based nonlinear adaptive filter.1s compared to that of polynomial-based
model and linear AEC. In Section 2.3, several partial'update schemes are proposed to

further reduce the computation at'the cost of degraded convergence rate.

2.1 Adaptive nonlinear LMS AEC using PWL structure

In order to separate the identification of the nonlinear loudspeaker parameters
and the tracking of the linear acoustic path changes, Fig. 2.1 shows a typical cascade
nonlinear AEC [8], also known as a Hammerstein model. The far end signal x(n) is
fed into the PWL processor f(X) that approximates the nonlinear mapping function
with one or more linear equations. It has been exploited to compensate for the effect
of nonlinear echo.
The output s(n) of the PWL processor passes through a linear filter to form a pseudo
nonlinear echo d(n). Here we assume the nonlinear distortion is caused only by the

loudspeaker and the let d(n) denote the desired signal.
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Fig. 2.1 Nonlinear acoustic echo canceller based on piecewise linear structure
The PWL function f(X) for the speech input range [-1 1] is assumed to be

symmetric and its prototype is given, by:

m, X Loy <|X < a,

m,(X—a,)+tmo , 0, SIX|[ <o
f(x)= 5 ( 2.) 142 2 || 3

(2.1.1)

My (X—ary )+ MyZlay —anin) +-May,ay <[X| < ay.,

where m; and &; account for the slope and partition parameters of the linear subregion,

respectively, with ¢, =0 and «,, =1.

The prototype of PWL function in Eq. (2.1.1) consists of a series of linear
subfunctions which are properly partitioned into subregions of the nonlinear curve.
Here we adopt a canonical piece-wise linear (CPWL) function [10], which is an
analytic formula with several absolute-value operators. Its memoryless form with zero

offset is given by

f(x):wlx+iwj(‘x—aj‘),

j=2

where the CPWL coefficient w;is a function of some slopes of the sublinear



functions and N is the CPWL tap order. Extending to the symmetrical function and

associated to Eq. (2.1.1), we can get a modified form as follows
N
f(x)=>wf (%), (2.1.2)
j=1

where

f, (x)=(%‘x—aj‘—%‘x+aj‘+xj
and w,=m,,w,=(m,-m,_,), Vi=2~N.

We use an example to demonstrate how the CPWL function works. Consider a
3-segment CPWL function in Fig. 2.2 with partition paraments, = 0.4 and o, =0.7
and slopes w, =1,w, =-0.4 and w, =-0.6. In Fig. 2.2, we can observe it performs

canonically with every breakpoint ¢, .

1 1
05 05
f(x) O/Wlfl()() 0
05 0.5
1 1

1 05 0 05 1 1 05 0 05 1

@ ()

0.4 0.2
0.2 0.1
w, f,(X) o w; f,(x) o
0.2 01
0.4 0.2

1 05 05 1 1 05 05 1

0 0
© (d)
Fig. 2.2 (a) A CPWL curve with three segments (b)~(d) Associated canonical curves

From now on, all PWL functions are of canonical form. The block diagram of a

PWL processor is shown in Fig. 2.3, where the far end signal is decomposed to N

analytic signals on the block f; , then multiplied by its associated coefficient w; ,

and finally all of them are synthesized together to approximate the nonlinearly



distorted loudspeaker output. Here the j-th output of the block f,(x) will be null

when the far end signal X is smaller than the j-th partition area value. It will be

beneficial to reduce computation load, which will be dealt with later.

—h
[E—

* |
N

—h
=

v v
Wl W2 WN
v
AR
>
v S

Fig. 2.3 The-block diagram of a PWL processor
The overall nonlinear AEC_can be represented as a vector form. The output of

the nonlinear processor S(n) is given by
s=w'-f, (2.1.3)

wherew =[w, w, ...w, ] and

f=[f(x) f,(x) ... f,(X)T

resembles a decomposition that maps real numbers into vectors using a set of

predefined partition parameters {0, az,---aN,l}. For example, if the input X is
0.8, N =4, and the partition parameters are{O, 0.4, 0.7, 0.9, 1}, then the vector f

will be [0.8, 04, 0.1, O]T. In Table 2.1, we show the look-up table for a

symmetric partition {a,, az,---aN,aNH} without a mixed part that contains both



positive and negative elements. [20] has also proposed a similar decomposition shown

in Table 2.2. But our modified CPWL function is an explicit equation to achieve the

decomposition and our procedure can be easily extended to that, by g,(x)= f ()
and g,(x)=f (x)-f_(x),Vi=2~N.

Table 2.1 Look-up table of a PWL processor

f;(x) x|z a, X <a,
X0 X-a, 0
x<0 Xta, 0

Table 2.2 Look-up table ofidecomposition.introduced by Heredia [20]

g,(x) |X|>aj+1 |X|e(aj+,,aj) |X|Saj
X=>0 o =a; X_aj 0
X<0 a;-a, a; +x(n) 0

After discussing the decomposition of the vector f, we now come back to focus

on the system flow in Fig. 2.1. From Eq. (2.1.3), the delay tap form of PWL processor
s(n)=[s(n) s(n-1) ...s(n-M + 1)]T can be expressed as

s(n)=F(n)-w, (2.1.4)
where F(n)=[f(n) f(n-1) --- f(n—M +1)]T (2.1.5)
is the delayed tap mapping matrix. Therefore, the nonlinear AEC output signala (n)

can be written as

10



d(n)=s"(n)-h,
where h=[h, h ..h, ] represents the estimated coefficients vector of the linear
FIR filter with M being the length of the filter. The estimated error is
e(n)=d(n)—d(n)
=d(n)—s"(n)-h-v(n)

If the coefficients vectors are updated with step size g, and y,, a joint
LMS-type adaptive algorithm according to the gradient of the cost
function, J(n) =e*(n), is given by

h(n+1) =h(n)+ 4, w(n)-F(n)e(n)
=h(n)+ g s(n)e(n) (2.1.6)

w(n+1)=w(n)+ 4, F" (m)=h(n)e(n). (2.1.7)

Now that we have developed.a nonlinear adaptive filter algorithm for a PWL
structure in (2.1.6) and (2.1.7).=Similatly; in-case of a polynomial structure, we can
simply modify the delayed tap mapping matrix -F(n) in Eq. (2.1.6) and (2.1.7) by

setting it as follows:
x(n) x(n=1) -+ x(n—M +1)
x*(n) x*(n=1) --- x*(n—M +1
Ry=| X ¥O=D - XM

x"(n) x"(n=1) -+ xN(n=M +1)

2.2 Computation of adaptive nonlinear LMS AEC

The following discussion with respect to computational complexity is based on
the number of real multiplications that is required by different structures. In Eq.
(2.1.6), the matrix-vector product of w(n)-F(n) is simply s(n), which is readily
available as shown in Eq.(2.1.4) and Fig. 2.3. However, as opposed to the linear

adaptive AEC algorithm, the nonlinear algorithm needs O(MN + N) =~ O(MN) more

11



computation due to the matrix-vector product of F'(n)-h(n) in the vital equation

(2.1.7). We note that the polynomial structure also has the same complexity [21].

We also note that the output of the operation f;(x) in matrix F(n) would be

null when the far end signal X at iteration n is smaller than the partition

parameter ;,, . Due to the zero output of the block f;, the average number of

non-zero entries of f(n), the column vector of the matrix F'(n), will be O(%)

for a uniformly distributed far end signal x . Besides, the computation cost will almost
reduces to O(M %). The computational cost is listed in Table 2.3. We can see the

PWL structure has the lower computation than that of polynomial.

Table 2.3 Comparison of computational.cost, no. multiplication per sample

No:.of multiplication
Complexity of’computation
(approx.) per sample

Linear AEC 2M

Polynomial NAEC ( N"=3') 2M + MN
MN

PWL NAEC (N =3) 2M +T

12



2.3 Partial update of adaptive nonlinear LMS AEC

However, the PWL structure has reduced the computation on the matrix

N+ M) multiplications. It still is proportional

multiplication F'(n)-h(n) with O( 5

to the linear filter length M . In acoustic echo cancellation, adaptive linear filter often
require a large number M of coefficients to model the acoustic echo path with
sufficient accuracy. It means that for long linear filter the adaptation task can become
more prohibitively expensive.

Partial updating of the LMS adaptive linear filter has been proposed to reduce
computational costs and power consumption [22], which is quite attractive in the area
of mobile computing and communications that requires the adaptive linear filter to
have a very large number of coefficients. . Updating the entire coefficient vector of the
adaptive linear filter is costly in‘terms, of power, themory, and computations and is
sometimes impractical for mobile devices.

In the past, many types of selective update schemes for the adaptive linear filter
have been described in [14]-[16]. In ‘this 'section, after introducing these selective
update schemes, we will extend their concepts to the three types of PWL coefficient
selective update schemes and take advantages of the particular PWL structure to
develop the two types of ones in which only one PWL coefficient are adjusted at each
sample time in order to reduce the matrix multiplication F' (n)-h(n) down to N

multiplications.

13



2.3.1 Periodic partial update LMS algorithm

The most prevalent type in the literature of selective update scheme is referred to
as the periodic LMS algorithm [14]. To reduce computation needed during the update
part of the adaptive filter by a factor of N, the periodic LMS algorithm updates all the
filter coefficients every N iterations instead of every iteration. In addition, the
coefficient updates for this algorithm are regular, as only one coefficient is changed at

one iteration. With this concept, the PWL coefficient update is given by

Wj(n)+ye(l)[FT(I)-h(I)]j,if j=(n mod N)+1 1=N|n/N |
(N+1) = 2.3.1
Hi@+D w;(n) ,otherwise. ( :

where \_J denotes the truncation operation, n mod N denotes iteration n

modulo N . By considering N iterations of the updates in Eq. (2.3.1), it can be shown

that this algorithm is equivalent-to the following N-fold coefficient vector update:
w(n+N)=w(n)+ ze(n)FL(n)-hn)- (2.3.2)

It describes a modified version of the.LMS.adaptive algorithm that uses every Nth

instantaneous gradient to update the filter coefficients.

2.3.2 Sequential partial update LMS algorithm
Like the periodic LMS algorithm, for the sequential LMS algorithm [15] the

update coefficient is chosen in a predetermined fashion, a regular pattern, but uses

sequential gradient vector signal respect to W, (n) . Extending to the PWL coefficients
update, it is given by
w; () + e(n)| F’ (n)-h(n)]j , ifj=(n mod N)+1,

w;(n+1)= (2.3.3)
w;(n) ,otherwise.
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Define ¥, by filling 1 on the j-th diagonal entry of the zero matrix and the above

update equation can be written in a more compact form

w(n+1)=w(n)+ ue(n)V¥ ., F (n)-h(n). (2.3.4)

2.3.3 Stochastic partial update LMS algorithm
Being similar to the sequential LMS algorithm in the sense that also uses

data-independent updating scheme, the stochastic partial update LMS [16] algorithm

performs sequential instant gradient respect to w;(n). The difference is as follows.

At a given iteration K, the sequential LMS processes a regular processing strategy to
select which one coefficient is to be updated, whereas for the stochastic partial update

LMS, one of the coefficient tis chosen “at. random from {1,2---N} with

probabilityl/ N and subsequently.the update.is performed i.e.,

w, (n)+ z&(n) [FT ) -h(n)]j Jif j is chosen at random

w;(n+1) = (2.3.5)
w; (n) ,otherwise

and the coefficient vector update can be expressed as
w(n+1)=w(n)+ ze(n¥’ F'(n)-h(n), (2.3.6)
where ¥ now is a random matrix chosen at random from ¥;,j=1---N with

probability 1/N (recall that ¥; by filling one on the j-th diagonal entry of the zero

matrix).
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2.3.4 Variant-periodic partial update LMS algorithm

Unlike previous 3 well-known partial update schemes which are applicable to
general LMS-type algorithms, we will take advantages of the particular PWL
structure to develop a variant periodic partial update scheme.

As noted earlier, when the far end signal x(n) is smaller than the partition

parameter «,,, the output of the operation f; (x(n)) would be null. As a result, the

j+lo
periodic LMS algorithm would be inefficient. In order to solve this issue, we propose
a variant periodic LMS algorithm that takes advantages of the located partition area of
far end signal X(n) to avoid an inefficient update term.

For example, if the located partition area of far end signal x(n) is the 2" one,
the variant periodic LMS algorithm updates its first coefficient ¢ (n) attime n and
second coefficient C,(n) at time n+1. dftherlocated partition area of far end signal
x(n+2) is the 3" one, it updates the first coefficient c,(n) at time n+2, second
coefficient C,(n) at time n+ 3% and third.coefficient c,(n) at time n+4. Here we

denoted Q(n) is the number of located partition area of far-end signal X(n) at time
n. For example the partition is{0, 0.4, 0.7, 0.9, 1}and far end signal x(n) is 0.8,

then Q(l) is 3. The following non-period LMS algorithm is give by:

Wj(n)+ye(l)[FT(I)-h(I)]j,if j=(n mod Q())+1, 1=Q()[ n/Q() |
) D=
wi@+D w;(n) ,otherwise

(2.3.7)

and the Q(n) -fold coefficient vector update can be expressed as

w(n+Q(l)) =w(n)+ xe(n)F" (n)-h(n), 1 =Q()| n/Q(I) | (2.3.8)
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2.3.5 Located partial update LMS algorithm

Moreover, we will again utilize the particular PWL structure to develop a located
partial update scheme.

As we know, the PWL processor would decompose the far end signal X(n) into

N analytic signals. The resulting analytic signal may be zero, depending on the far end

signal X(n). If far end signal X(n) falls into the partition parameter « the

i+
corresponding j-th analytic signal will be null. This characteristic is also the main idea
of the variant periodic LMS algorithm in Section 2.3.4. We also know the nonlinearity
mostly happens for a high level input. Therefore, the (j+1)th entry of PWL coefficient
vector has higher priority than the j-th entry.

By combining these characteristics,, we propose a new partial update LMS

algorithm, located LMS, for PWL coefficient as, follows.

w;(n)+ &M {E M) h(m ] j=Q(n)
w;(n+1)= (2.3.9)
wi(n) ,otherwise.

where Q(n) is the number of located partition area of far end signal  X(n) at time
n. The update strategy is to choose the PWL coefticient which far end signal x(n)
falls into. The benefit is when the power loudspeaker commonly driven with
saturation region, mostly high level far end signal, the nonlinearity information is
sufficiently used on the PWL coefficient. On the contrary, if the nonlinearity effect
was insignificant in case of low level far end signal, it maintains the linear part of
PWL coefficients. In the same way, the above update equation can be written in a
more compact form as

w(n+1)=w(n)+ xe(m¥, F' (n)-h(n). (2.3.10)

Q(n)

Computer simulations in Chapter 5 will compare the performance of the above 5
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partial update and full LMS algorithm.
2.4 Summary

In this chapter, we performed an adaptive nonlinear AEC based on a PWL type
function and developed its joint LMS algorithm in section 2.1. Moreover, the
comparison of computation complexity of three structures, linear AEC, nonlinear
AEC in a case of PWL and polynomial one was discussed in section 2.2. The PWL
one has the lower computation than that of polynomial and has just about2M more
multiplications than that of linear AEC. Finally, we presented 3 well-known and 2
proposed partial update of LMS algorithm in section 2.3. They all keep the
computation on the matrix multiplication F'(n)-h(n) with M . The computation

simulations in chapter 5 will compare the above performances explicitly.
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Chapter 3
Two-Staged Adaptation and Its
Convergence Analysis

In Chapter 2, we have derived the joint adaptation of the nonlinear PWL AEC.
However, each filter (or processor) behaves to compensate the other one’s
misalignment. This can result in a perpetual oscillating system.

Therefore, in this chapter we will adopt two-staged strategy [7] to overcome this
difficulty. This strategy is to start with a linear filter update in the first stage, and then
joint update of both PWL and linear coefficients follows in the second stage.

In Section 4.1 the two-staged ,adaptationi, 1S introduced. In the first stage, the
convergence analysis and stability ‘criterion ‘will be derived in Section 4.2. After that,

we will derive the convergence analysis of the'second stage in Section 4.3.

3.1 Two-staged adaptation
For simplicity, Fig. 2.1 is redrawn in Fig. 3.1. Here we assume the nonlinear
loudspeaker and linear room impulse response are time-invariant; the near end signal

v(n) only contains a white Gaussian noise (WGN) and the nonlinear echo

d(n)=s;(n)-h, +v(n),

where s (n) is the optimal PWL processor output with the optimal PWL coefficients

w, and h_ is the optimal linear coefficients.
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h(n) h,
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< De
e(n) — +  d(n) v(n)

Fig. 3.1 Cascade model of system (right hand part) and mirror adaptive system

(left hand part)

In the cascade structure of*Fig. 3.1,:if the joint updates of both nonlinear PWL
coefficients w(n) and linear coefficients h(n) are performed simultaneously as
given in Eq. (2.1.6) and (2.1.7),"the danger of divergence can happen. To illustrate
this tendency of divergence, Fig. 3.2 includes two desperate divergent curves of
joint-updating schemes with two step sizes g, = u, =0.002 and 0.003 and
SNR=20dB.

The transient behavior of linear filter and PWL processor can account for the
divergence problem encountered in cascade system. When both w(n) and h(n) are

far away from their optimum coefficients w, and h,, respectively, in the early

0°
transient stage, the resulting residual error e(n) does not push either coefficients
towards their optimum points. As a result, convergence cannot be guaranteed, since
each filter (linear filter or PWL processor) behaves to compensate the other one’s

misalignment, which can lead to a perpetual oscillating system. An analytical stability

criterion for joint adaptation of the nonlinear AEC can be very strenuous.
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In order to overcome this difficulty, Guérin [5] points out that the linear filter has
to adapt continuously so as to react to any change in the acoustic path, and the PWL
filter must not adapt until the linear filter has sufficiently converged. The two-staged
strategy starts with a linear filter, and then joint adaptation of PWL and linear
coefficients follows once the linear filter has sufficiently converged in the first stage.
Fig. 3.2 shows the significant improvements in residual error power using the
two-staged algorithm.

In the past the convergence analysis of a cascade system was done under a
perfect information linear or nonlinear part [21]. Next, we will proceed to derive the

theoretical convergence analysis of the two-staged algorithm.

Residual error power
'2 T T T

-10 Joint, =0.003 7

121k i

M Joint, 4=0.002

16 i

Two-staged, n=0.002

20+ Two-staged, y=0.003 -

22 ! ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of iterations X 104

Fig. 3.2 Performance comparison of the two update schemes with two different

step-sizes
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3.2 Convergence and stability analysis of linear adaptation
In the first stage, only linear coefficients update under a fixed PWL coefficients.

We denote the linear filter weight-error vector by
g, (nN)=h(n)-h,. (3.2.1)

where h, is the optimal linear filter. The estimation error produced by nonlinear

AEC filter can be expressed as
e(n) =d(n)-d(n)

=s7(n)-h, +v(M)~s' (n)-h(n)

=57 (N)-h, +V() (s, (M +5,(M)" (h, +,(n))
=v(n)-s. (n)-h, —s" (n)-g,(n) (3.2.2)

where s, (n)=s(n)—s, (n) is the error jof PWL processor. Using Eq. (2.1.6) and
(3.2.2), we may rewrite g,(n+1) ‘as

£, (N-+1) = h(n) + s, s(M)e(n) =l
=£,(N)+ () (V(M) =87 (M) -h, =™ (n)-g,(n))

=[ 1= gs(n)-s" (n) |-, (M) + 4, [ V(Ms() = s(n) s} (n)-h,, | (3.2.3)

3.2.1 Mean bias of linear coefficient weight error

Taking the expectation on Eq. (3.2.3) and assuming the variation of g, (n) is

slow compared with that of s(n), the first moment of g,(n) is given by

E {g,(n+1)} =(I,, - 4,R, )- E {&, (M} +E{f, ()}, (3.2.4)
where f, (n)= 4, [v(n)s(n)—s(n)-se(n)T -ho] and R, is the correlation matrix of
s(n) by applying the unitary similarity transformation. We can diagonalize R,

as follows: Q!R.Q,=D,, where Q,is an unitary matrix and D, is a diagonal
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matrix consisting of the eigenvalues A ; of R,. Let k;(n)= Q!¢ (n), then we may

transform Eq. (4.2.4) into the form
E{k,(n+D} = (I, - 4,D,)-E {k,(M} - QR h,, (3.2.5)

where R, is the cross-correlation matrix of s(n) and s.(n). We may go on to

express Eq. (4.2.5) as
E{k,(M}=-D;'Q[R,, h, +(k,(0)+D;'QIR, h, )1, -14,D,)".  (3.2.6)
It makes sense that the linear coefficients weight error €, (n) convergences to a
biased estimate due to the effect of nonlinear bias. This linear bias part also agrees

in the

0’

with the optimal linear weight error [5], denoted by &, e =hyyse —h

minimum mean square error (MMSE) ‘senseis We will prove it as follows. First,

hyys: satisfies the equation Vi{J (M}, -1 =0, which depends on the correlation

matrix R and the cross-correlation matrxrR, . .-Using now the quasistationarity
hypothesis, the optimal filter is “then "defined by the following expression
h,e =R, ‘R, -h,. Hence, it can yield ki yyse = -D.'Q! R, h,.

If the far end signal X(n) is a white noise, we can find that the output of PWL
processor s(n) is also white due to the symmetric PWL function. The white property

of s(n) can be explained as follows. Applying the PWL function, we can rewrite the

correlation function of s(n) as E{s(n)s(n+m)}= E{ f(x(n)) f (x(n+ m))} . When

n = m, the expectation can be taken apart as E { f (X(n))} E{ f (x(n+ m))} in case of

the far end white signal x(n) . With an odd PWL function and an even Pdf. of the far
end signal x(n), the expectation of s(n) is zero, so is the correlation function of

s(n) when n=m. That means s(n) has white property; so does s (n). Therefore,
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we have the matrix Q, is an identity matrix, R, =o.1 and R, = 052:551, where

o’ is the variance of s(n) and 0'52,Se is the covariance of s(n) and s, (n).
Now we may simplify Eq. (3.2.6) as
E{e,(n+1)} = (1- 14,02)E {&, (M)} - 14,02, h,. (3.2.7)

We note that k,(n) is equal to g,(n) when the far-end signal is white.

Solving the recursive equation in Eq. (3.2.7), we may get the solution

0'2 02
E {&,(n)} = - 02 h, +[£h(0)+%h0](l-ﬂhof)” . (3.2.8)

S S
We can see the steady state bias of €,(n) is a fraction of the optimal linear filter h, .

3.2.2 Second moment of linear coefficient. weight error

With the same uncorrelated assumptionof. £,(n) and s(n), the second moment

of g,(n) from Eq. (3.2.4) is given by

E{||sh(n+1)||j}

- E{s;(n)(1—2yhs(n)~sT (n)+ ij{s(n)~sT(n)s(n)-sT(n)})sh(n)} (3.2.9)

+2E (2] ()} -(E{fh (M)} - 4, E {s(n)-s" (n) A, (n)}) +E {Hfh (n)Hz}

From Eq. (A.8) in Appendix, the term E {s(n) -s" (M)s(n)-s’ (n)} in Eq. (3.2.9) can be
expressed as

E{{s(n)~sT(n)s(n)-sT(n)}} =[aj|v| +(m, —U:)}I
where m, =E {s“(n)} . Next, by assuming the 4™ moment m, of s(n) is
comparable to the power . of the 2" moment of s(n) and the length of the FIR

filter M is sufficiently large, we can approximate it as follows:

E {s(n)-s" (ms(n)-s" (M)} ~ M o1, (3.2.10)
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Similarly, from Eq. (A.9) and (A.10), we have
E{s(n)-s"(n)-f, ()} ==, E {s(n)-s" (n)-s(n)-s; (n)} h,

_ 2 2 2 2
=—u, (M 0,05, +(ms3’Se —0,0, ))ho,

E {Hfh (n)Hi} 42 [Ev()s” (n)-s(v(m)} + BT -E{s,(0) 8" (n)-s() s, ()} -, |

e

7y [M olo. +(M clo! Jr(mszsez —Ufai ))”ho”ﬂ ,

2 . . 3 _ 2.2 .
where o is the variance ofs,(n), m, = E{Skse,k} and m. .= E{SkSe,k} .With

e

: : : 2 2 2_2
the approximation, m,  and m.. is comparable to ojo;, and o.o, ,

>Se e

respectively, and M > 1, we have

E{s(n)-s" (n)-f, (W} ~—4,M0o’0?, h, (3.2.11)
E {Hfh (n)”j} ~ ¢ (Moo  Migan, 1), (3.2.12)

Therefore, substituting Eq. (3.2:10), (3.2.11) and (3.2.12) into (3.2.9), we get

E{e,(n+D | = (1-2405 1Mo JEMfe, (] |+ 2E {2, (m)}-

) (3.2.13)
hl,uhofe (—1+,uhM 0'52)+,u§M 0'52 (0'\,2 +O'SZE ||h0||2)
The stability of the recursion (3.2.13) is guaranteed if ‘1 —2u,07 + Mol | <1, from
which we can get the upper bound of the step-size z, as
< Mol (3.2.14)

S

This equation is the stability criterion for the linear LMS adaptive algorithm in the
first stage.

We can use the linear algebra method to solve the coupled recursive Eq. (3.2.7)

and (3.2.13). By cascading E{”ah(n)”z} and E{sh(n)} to form a new vector, we

have the recursive vector equation as

O(n+1)=A-0(n)+b, (3.2.15)
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where
b=[siMa? (o2 +02 0,J) mot,hl]

o =[] Efe, ()]

and

A (1—2,uh652+,uﬁMU:) 2hZ,thSZE(—1+,uhMJj)
0 (1= o),

The solution of Eq. (3.2.14) is given by

0(n)=(I-A) -b+A" -((9(0)—(1—14)‘l -b) (3.2.16)
where we have assumed that (I-A) is invertible. This assumption of invertible

(I - A) can be justified by noting thatthe diagonal entries of (I - A) are all
positive so long as the stability criterion in Eq.(3.2:14) is met.

The steady state 0(n) is equal to (I—A)f1 -b; from which the steady state of

E{z, (]2} is given by

2 2

)27

4

,uhM(O'f+O'SZE o h0||z(1—,uhM0'32)

lim E {, ()} = e . (3217

By examining the matrix A in Eq. (3.2.16), we can see that the convergence rate

is a monotonic increasing function of the step-size 4, and the variance o’ of PWL
processor output. Moreover, in Eq. (3.2.17) the steady-state of the 2" moment of
g,(n) increases with an increase of the near-end noise variance o, the step-size
#, » the PWL output power o, and the nonlinearity factor o7, and o . We will

simulate this property in Chapter 5.

We can also deduce the compact form of the second moment of g, (n)
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iteratively. By plugging Eq. (3.2.7) into (3.2.13) and

denoting K, = (1 — 244,02 + e M 0'54) , K, = 2(—yha§e + M aszasze ) and

K, = 11 (M o262 +Mola? |h,|

2
2), we have

E {2} = K E{Je(n= DL | + K hTE (&, (=D} - +K,

— K, E{Jenn-2)} |+ KIE{s, (-2} 4K, |

+K;hy [(1 - 1,0, )E {Sh(n _2)} ~ oo h ] +K,

5,50

_ K™ [KIE {lea )} + K.Y -E{e,(n-2)} + KS}

+[...[[(l-ﬂhaf)+ Kl](l-yha§)+ K12:|“.(1-luho—sz)+ Kln—2:| Kb -
[(l-,uhdsz)E {Sh(O)}—yhaiSEho]Jr[H K + K24t Kln—z} K,

(1[0 o)+ K+ [ [A- oD + K, ] o)) + K7 |+

[...[[(1-yhaj)+ K J0- ,05)+ Kf]...(l-yhaj)+ Kln—z}}ﬂhgj,se K, [

=K'E {”'Sh(o)”z}+|:"'|:[(1':uho-s2)+ KJ(l'ﬂhO_s,z)"' K12]"'(1'/1h052)+ Kln_l}
Koy [ (1- 4,60)E {&, (0} =imodih, |+ K, [ 1+ K + K] 4+ K ]
1[0 mod) K T+ [0+ K, [0 402+ K] [+
|:”'|:[(1':uh052)+ Kl](l-,uhof)—i— K12]"'(1'ﬂh052)+ Kln_zJ},uhasz,se K, ”ho”z

Using the geometric series formula, it can be simplified as:

n Lt —K; L) K
E {”sh (n)||§} ~K/E {Hah (0)"2} + ((1 _ﬂ;;z)) ~ Kll K;ho E {€,(0)} _{1 + ((1 _Itzhao_z)) B K11

+(1':uho-sz)3 -K; 4ot (1- o) =K
(l‘ﬂho-sz)_ K, (l-ﬂho-sz)_ K,

1-K!
1-K

}uha:,se T LY

1
(1-g02)" =K 1

h SN ! thZE{Sh (0)}_—2_K
(- po0)—-K, (I- o) =K,

1-(1- o))" 1-K/ > 1-K!
. 2N : luhasz,se K2 ”ho ”2 + :
I-(1-po;) 1-K, 1-K

= K/E{Je, O)]} +

K3

1
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K 1 1 1
e v vt LU

’ 2 K, ||
o ﬂhasz)n[thoE{ah(O)}+ 1,62 Ky |, || ]+

(l_ﬂhgsz)_ K, ,Uho-s2 [(l‘ﬂho-sz)_ Kl:'

j 2 K, [
+K{‘[E{|Ieh<0)||§} RELO) AL K }

(1-09) =K, (1_K1)[(1‘/Jho-sz)_K1] _l_Kl

(3.2.18)
The expression of the 2" moment of linear coefficient weight error in Eq. (3.2.18)
appears to be tedious, as compared to the compact vector form in Eq. (3.2.16).

Let us consider the special case of perfect PWL coefficients. The second moment

of g, ;(n) can be easily obtained by setting the nonlinear coefficient weight error

2
£,=0 so that A=A =0 ic, KEUAMO 4 K _0. The Eq. (3.2.18)
2_:uhMO-s
reduces to
K i K
E {||8h(n)||z} 1z |3<1 +K [E {||8h(0)||2}‘1_ |3<1 }

which is a well known result [3].
Finally, after derivation of first and second moments of the linear coefficient
weight error, we turn our attention to the residual output power. From Eq. (3.2.2), the

mean square error (i.e., residual error) is given by
2
3,(m) = E{e(n)]’}

=0, +h E{s,(n)-s] (M} h, +E {] (n)-s(n)-s (n)-&,(")|

(3.2.19)
+2h! -E{s(n)-sg (n)} ‘Efe, (M)}
Because the variation of g,(n) 1is slow compared to s(n), hence
E (] (n)-s(n)-s" (n) &, (")} = 07E {||sh(n)||j} (3.2.20)

From Eq. (3.2.19) and (3.2.20), the mean square error can be written as
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3 =07+ [, + o2 E{e ()} |+ 207, by - E{, (). (3.2.21)
which depends on the E {ah (n)} and the . E {||8h (n)||z} that are derived earlier in Eq.

(3.2.7) and (3.2.18) or the compact Eq. (3.2.16).

3.3 Convergence analysis of joint adaptation of linear and PWL
coefficients
After the convergence of linear coefficients, the nonlinear adaptive filter
switches to the 2" stage in which linear and PWL coefficients will be updated jointly.
Now, the residual error is given by
e(n)=v(n)—w, -F'(n)-g,(n)—¢, (n)-F' (n)-h, —&] (NF" (n)g, (n) (3.3.1)
The coupled linear and nonlinear weight error in the fourth term of Eq. (3.3.1) renders
difficulty in convergence analysis.' However, with-wide band signal like speech,
loudspeaker nonlinearities are -much.less-dominant than the linear components in
general. Therefore, we can assume initial PWL" weight error is much smaller than

optimal PWL coefficients. Moreover, the converged linear coefficients would be

approximately to optimal linear filter, namely,
g, (N)<<h,, g, (N)<<w,_, (3.3.2)
where ¢g,(n)=w(n)—w,. With sufficiently small perturbation errors in linear and

nonlinear coefficients in Eq. (3.3.2), the 2"-order perturbation term can be discarded

and the estimation error becomes
e(n)=v(n)—w!. -F'(n)-g,(n)—¢, (n)-F' (n)-h, (3.3.3)
Denote the combined linear and PWL coefficient weight error as

&M =[g,(M) &,(m] andlet
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Gm=[w] -F'(n) F(n)-h,], (3.3.4)
then Eq. (3.3.3) can be expressed as follows:

e(n) ~v(n)—G'(n)-g(n). (3.3.9)
By substituting by (2.1.6), (2.1.7) and (3.1.5) into the combined coefficient weight
error

[ h(n+1) h,
B+l = w(n+1) lw,

0

we have

F(n)-(&,(n)-w,) )
en+1)=g(n)+T- (V(M -G (n)-&(n))
F'():(h, ~2,(n)

Ly

where T = [
(0]

0
] According to thé assumption in (3.3.2), it can be
:uw N

approximated as
e(h+1) = (I ~-T-G(n)-G! (n)) “e(n)y=vm)T -G(n) (3.3.6)
Due to the independent assumption of near end noise v(n), we can apply the

same procedure in Section 4.2 to derive the solution of first moment of g(n+1) from

Eq. (3.3.6) as follows:

E{e(n)~(I-T-R;)" -E{e(0)},
where R, is the correlation matrix of G(n). With a suitable step-size, the

magnitude of this geometric ratio must be less than unity for all n, we can see that the
estimate is unbiased.

Similarly, the second moment of €(n) is given by

E {||s(n+1)||j} —E {a; (M(1-2T R+ T°E{G(n)-G () G(n)- G (n)})sh(n)}

+E{MmT-Gm];}.
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Here, we assume the term E{G(n)-GT (n)-G(n)-G' (n)} can be approximated as
R . By applying the unitary similarity transformation, R, is transformed into a
simpler form: Q' -R;-Q =D, where Q is an unitary matrix and D is a diagonal

matrix consisting of the eigenvalues A of R;. Letting K(n)=Q' -gn), we can

deduce the second moment of €(n) and mean square error J(n) as follows:

2 "o T4 2. To, ) 2n
DRSS, {\ki of 57 J(l TAY", (3.3.7)
= 52 M+N_G\/2Tiﬂ“l 2_ Tio-\f _ 2n
Im=oi+ X T2 m[\ki (0) z_ml(l TA)", (3.3.8)

where T, is the i-th diagonal entry of Tand k;(0) is the initial value of i-th entry

of K(n).

Now that we have derived:the theoretical convergence analysis of the two-staged
PWL algorithm. Similar results also hold in caseof a polynomial structure simply by

setting the delayed tap mapping matrix F(n) as

x(n) x(n=1) -+ x(n—M +1)
F(n) = x“(n) x“(n-1) Xx*(n—M +1)
x"(n) x"(n=1) -+ xN(n=M +1)

However, with a different delayed tap mapping matrix F(n), the convergence

behavior of the nonlinear AEC is altered. In the case of a polynomial structure,
polynomial output power o and nonlinearity factors,o;, and o, in Eq. (3.2.15),

(3.2.20), and the eigenvalues A of the correlation matrix R, in Eq. (3.3.6) and

(3.3.7) will be different from those of a PWL structure.
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3.4 Summary

Because of the divergence problem encountered in cascade system, we adopt the
two-staged algorithm to overcome this problem in Section 3.1. Moreover, we derived
the convergence analysis of the two-staged algorithm.

In Section 3.2 we perform the convergence analysis and stability criterion of the

first stage. By examining the convergence analysis, we indeed discuss how the factors:

the near-end noise variance o, the step-size 4, , the PWL output power o, and

the nonlinearity factor (752755 and 0'525 do affect it. After that, we derived the

convergence analysis of the second stage in Section 3.3. The above convergence
analysis also can be extended to a case of polynomial based Nonlinear AEC.
In the next Chapter, we will usé the convergence analysis of the first stage to

develop the optimum time-variant and optimum, time-&tap-variant step-size.
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Chapter 4
Step-size Control for Nonlinear AEC

In Chapter 3, theoretical analysis indicates that its transient residual error power
depends on (1) the step-size parameter (2) the eigenvalues of the corresponding
correlation matrix, (3) the initial tap coefficient setting, (4) the number of iterations of
the algorithm.

In this Chapter, we will focus on the step-size. Due to the tradeoff between fast
convergence rate and small residual error power, we cannot find an optimal step-size
which provides the best performances of both. That is a large step size gives a faster
convergence but also large small:tesidual error power. Therefore, various methods
employing varying step-size have.be examined by the other researchers, including
time-varying [17], tap-varying [18] ot both-time- & tap- varying [19].

Throughout this thesis, the word “time-variant” represents all taps use identical
step-size which is time-variant. The word “tap-variant” means each tap has individual
time-invariant step-size, and the word “time- & tap-variant” means each tap has its
individual time-variant step-size.

For comparison with the convention studies, our work is under a nonlinear
system, memoryless PWL processor cascading a linear FIR filter. Due to the existing
error on PWL processor, the influence of nonlinearity, caused by the loudspeaker, is
an factor of the step size of the FIR linear filter.

In the following section, we will derive the optimal time-varying step size LMS
(OTLMS) algorithm in Section 4.1. Its practical implement with the monotonously
decreasing slope model of nonlinear I/O curve will be discussed in Section 4.2.

Further, we will also derive the optimal time- & tap-varying step size LMS (OTTLMS)
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and give the general iterative equation for the tap coefficients error variance in
Section 4.3. In the same way, not only the monotonously decreasing slope model of
nonlinear I/O curve but also the model of the room impulse response will be used to

accomplish the practical implement in Section 4.4.

4.1 Derivation of optimum time- variant step-size LMS (OTLMYS)
algorithm

Instead of using a constant step-size, the time varying one, all taps used identical
step-size which is time-variant, is based on using large step-size when the linear FIR
filter is far from the Wiener solution, thus speeding up the convergence rate and when
it is near the optimum, small step size is used to achieve lower MSE. Overall
mechanism will obtain a better performance than a.constant step-size one.

Under a nonlinear systems memoryless PWL processor cascading a linear FIR
filter, the influence of nonlinearity, caused-by-the loudspeaker, will let the linear FIR
filter converge to a bias estimate due. to.the“existing error on PWL processor.
Therefore, the cost function i.e., residual error power, can not simplify to the norm of
the linear FIR coefficient error. As well as Eq. (3.2.21), it contains the term with the
first order and second order of the FIR coefficient error. Here we rewrite the first
moment of linear coefficient weight error Eq. (3.2.7) and the second of one (3.2.13)

by using a time varying step-size as follows:
E {e,(n+D)} = (1-4,(N)0? ) E{&,(N)} - 1, (Mo b, (4.1.1)
E{ e, (DL} = (1- 204,07 + 2 (MMt E e, (m | + 26 {&] ()}
by (~, (M2 + 12 (MM 0202 )+ (M) (Mo?or + MoZo? |, ).
(4.1.2)

Substituting Eq. (4.1.1) and (4.1.2) into Eq. (3.2.20), we getJ, (n+1) as
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3+ 1) =07 +07 [, +207 by - Efe, (n+ D} + 07E {Je, 0+ D)}

=07 +07 [y} +202, ] [ (1= 4, (M2 ) E {e, (M)} — 4, (M2, |
‘o7 [(1 ~ 244, (M2 + (MM o ) E{ e, (M | +2E {2 ()
by (<, (M2 + MM 0?02 )+ 1 (0)(Mo?a? + Mo?o? [ )}

Indeed, rewrite it in terms of the residual error power J,(n) as

Jy(n+1)= Jh(n>+2uh(n>[—2a§,sea§hl {&,(N)}-0olE {IIsh(n>||§} ~ay,,

b

+ 40| 2M o, o7y e, (0} + MOZE {Je, (]} |+ M (o707 + 020

h,[})|

= 3+ ()| =023, () + 0707 +07, o7 [ - o [, -] 413)

+ (MM d, ()
The optimal time varying step-size can_be obtained by taking derivative of Eq. (4.1.3)

with respect to 4, (n) and setting the resultequal to zero.

aJ(n) _0
Ot (M)

Thus we can get the optimal time‘varying step-size

2 2 2 2 2 4 2
O ‘]h(n) —0,0, _(O-s O-se - O-s,se )||ho||2

Mo}, (n)

Hh oLms (n)= (4.1.4)

To simply the form of optimal step size residual error power, we substitute Eq. (4.1.4)

into (4.1.3), we can get

Jy(n+1) = (l_luh,OLMS (n)asz)‘]h(n)+ﬂh,OLMS (n)[aszo_vz +(‘7520'sze _G:,se )||ho||§:| . (4.1.5)

2
2

the OTLMS algorithm for the first stage of

S

4
o
. 2 2 S,Se
Letting B =0, +(ase = ]”h0
two-staged adaptation is summarized by the following equations:

e(n)=d(n)—w" -F"(n)-h(n)

1 B
Mo? Mol (n)

Hh oLms (n)= (4.1.6)
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h(n+1) =h(n)+ g s(n)e(n)

3,(n+1) = (1=t 6145 (M7 ) I+ 4y 01145 (M2 B (4.1.7)
The step-size adjustment is based on (2) and (4). If null nonlinearity, the parameter S

can be modified as f = o .

4.2 Practical implementations of OTLMS algorithm

We have derived Optimum time variant step-size for LMS algorithm in Eq.

(4.1.4). But it is useless since we require prior statistics knowledge o7,o0;, andoy,

of the nonlinearity the second norm ||h0||z of the exponential decay model of RIRh, .
We can use the monotonously decreasing.slope model of nonlinear I/O curve and
assume ||ho ||§ =1 on S for practical implementation. Moreover, the regression of

expectation of residual error power in Eq. (4.1.5) also can be replaced by time mean

estimate with first-order recursive filtering
Jy(n+1)=(1-2)J(n)+ 2e°(n), (4.2.1)

where A 1is the forgetting parameter close to0. We will discuss these two recursive
Eq. (4.1.5) and (4.2.1) of residual error power for practical implementation in the
chapter 5

Here we will explain the monotonously decreasing slope model of nonlinear 1/0
mapping curve explicitly in the following discussion. As we know, the PWL function
approximating the nonlinearity by using several linear affine descriptions is a very old
and often used method. By doing this, the basic problem is transformed from a single
nonlinear equation into several linear equations. Approximation of nonlinear I/O
curve can be described simply and flexibly by several slopes. Therefore, we can use

the idea to model the nonlinearity of loudspeaker and get its prior statistics

36



knowledge o7, 0'52,Se and 0'52,56. Furthermore, the harmonic distortion introduced by

loudspeaker and their amplifiers was proportioned to the power of input [7] i.e., the
harmonic distortion is larger with higher volume of input. In the nonlinear I/O curve,
we can found the higher volume area will saturate much seriously, i.e., the
corresponding slope is smaller. It means the slope of each area is monotonically
decreasing to the power of input. The property of nonlinear I/O mapping curve is
monotonously decreasing slope.

From pervious discussion in chapter 2, the CPWL function exploits the
difference between the adjacent slopes to approximate the nonlinear curve. For
simplicity, we assume the difference of the adjacent slopes is the same with a uniform
partition. Although it is a special case,, the assumption can lessen the CPWL

coefficients to be only two ones:,initial slope.%, (the first area) and difference of the

adjacent slopes y, . Hence, the :optimal CPWL coefficients W, ,, W, ,---W, turn into

o,N
Yo Vo Vs Where y =W, and “y4 should be negative due to the monotonously

decreasing property of slope
Here, we use an example to demonstrate the model. The nonlinear I/O mapping

curve is a nonlinear transformation of raised-cosine function as given below [23]

-1 ,X<—ﬂ
2T
Ty — —§+£ 2TXm+ 7 ,—1+§SX< 1-¢
2& 2T 2T
f(x)= 2Tx ,—ﬁgxsi
2 2T
TX+—_§—£CO 2Txw — 7 ,I_CfSXS—lJFSE
& 2& 2T 2
1 ,x>ﬁ
2T

We use a soft-clipping type &=LT =1 which is similar to sigmoid function [24].
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Further, nonlinear transformation of raised-cosine function can be simplified as

follow:

-1 ,X<—1

X+7zcos(2X7[2+”j ,0<x<-1
f(x)=
2Xm -1
X—ECOS( J ,0<x<1
2
1 , X< -1

In the CPWL function with a uniform partition on [0 0.33 0.66 1] we choose the

initial slope y, =1.9 and the difference of the adjacent slopes y, =—0.4 . Further, we

plot both of them in figure 4.1. W can see the model by CPWL function is fitting well

to the true nonlinear I/O mapping curve with suitable parameters y, and y,.

Nonlinear /O cune
1 T T T

0.8

0.4

-0.2

0.4}

Fig. 4.1 True nonlinear I/O mapping curve (solid), CPWL function (dot)
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4.3 Derivation of optimum time-&tap-variant step-size LMS

(OTTLMY) algorithm

In section 4.1, it uses identical step-size for all taps. However, we know the fact
that the expected variation of a room impulse response becomes progressively smaller
along the series by the same exponential ratio as the impulse response energy decay.
As a result, the algorithm adjusts taps with large errors in large steps, and taps with
small errors in small steps. In this section, we want to derive the optimal step-size on
individual tap of linear filter that minimize the residual error power for each iteration
step.

Here, we cannot use the convergence analysis in chapter 3, the second norm of
linear weight error, to accomplish our, purpose due to individual tap. We have to

derive the each tap coefficient error yariance: Hence, we use a diagonal matrix U(n),
with diagonal entry 4, (n),;2VK=0~M=-1 to replace the step size and its

corresponding LMS algorithm cafi'be rewritten as
h(n+1) =h(n)+ U(Nn)s(n)e(n)
e(n)=d(n)—s' (n)-h.
The following discussion will follow the uncorrelated assumption of ¢, (n)and
s(n) and assume the far-end signal is white. Applying the same procedure as Section

3.2, the linear filter weight error can be given by
g, (N+1) = T-U(N)s(n)-s™ (n) |-, (n) + UM v(ms(m) —s(n)-s, ()" -h, | (4.3.1)
With the same assumption, €,(Nn) is uncorrelated to s(n), we can get the correlation

matrix of the linear filter weight error
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R, (n+1)=E{e,(n+De, (n+1)}

~E{[1-U-s(n)-" () ]-E (&, (- &L} -[1-Um) s 0] |
+ E{[1-UM) 505" (0] Efe, (]} U [v(ms(m) =s(n)-s, ()" b, ] |
+ E{U@)-Lums(m) =s(n)-s, () +h, ] E{ef }-[1-U@)-sm)-s" ) ] |
+ E{U2)-[vm)sm) = ()5, (0" -, - u(ms(m) =s()-s, )" +h, ] |

Because of the independence to s(n) and zero mean of the assumption of the

noiseV(n), we have

R, (n+1) =R, (N)—2U(N)-R, - R, (M) +U*(n)-E {s(n)-s" (n)-R, (n)-s(n)-s" (n)}
~E{e,(N)}-hy R, +U°(n)-E{s(n)-s" (n)- E{g,(M}-h] -s(n)-s; (n)}
R, -h,-E{g] (M)} +U(n)-E{s(n)-s](m)-h, -E{e] (M)} -s(n)-s" (M)}
+0,U%(n)- R, + U (NE{s(n)-s,(n)" -h, -hy -s(n)-s{ ()}

(4.3.2)
From Appendix Eq. (A.2), (A.5) and (A.6), we can derive Eq. (4.3.2) in the terms of

its diagonal entry ¢, (n) as follows:

g(n+1)= [1 =2y (Mo, + :ut?,k (n)(ms,4 ~oy )} 9 () + ,Urik (no;trace (Rh (n))

+ 2|:_/uh,k (n)o's,z,se E {‘9h,k (n)} ho,k + ,Urf,k (n)(m53 .

>

O'szo'sz,se ) E {gh,k (n)} P

2
+a§052,se E {s; (n)} h, J + (n)[avzas2 + (mstez -o.o, ) he, +oi0] ||h0||2},

(4.3.3)

where 44, (n)is the k-th diagonal entry of U(n), the step-size of the k-th tap.

M-1

Substituting Eq. (4.3.1) and E{||ah(n)||j}=2gk(n)with Eq. (4.3.3) into Eq.

k=

f=}

(3.2.20), we have
J,(n+) =0} +o’ ||} +202, le h,, -E{&,, (n+D) +a§M21 g, (n+1)
k=0 k=0

40



=0, +o, ”h ” +2Gss Zhok (1 ﬂhk(n)o') {gh,k(n)}_ﬂh,k(n)o_sshozk

+ O, Z[l 2,Uhk(n)0 +:uhk(n) :|gk(n)+/’lhk(n)o_4trace( h(n))

k=0

+ 2|:_:uh,k (n)o'sz,se E {gh,k (n)} Mo+ Hhn (n)(msa,se - O'szasz,se ) E {gh,k (n)} Do

2 2 T 2 2 2 2 2 2 2 2 2
+Gs O-s,se E {Sh (n)} ho :| + /uh,k (n) |:O-v Gs + (mszsel - O-s O-se ) ho,k + Gs Gse ”ho ||2:|

M-1
=J,(n)+207, Z Ny (=t (M7 ) E{ & (M) = 11y, (WS, 12,
=0

M -1

+O-s2 [ 244, k(n)a + Hy k(n)( — 0 )]gk(n)+/’lhk(n)o_4trace( h(n))
k=0

+ 2|:_:uh,k (n)o'sz,se {gh k(n) Mo+ Hhne (n)(m e T Gszgsz,se ) E {gh,k (n)} Do

+c7520'52,se E {8; (n)} ho}+ ,u,f,k (n)[ofas2 -1-(mstez )hzk +olo N ||ho||j

(4.3.4)
Applying the same method:in Section.4.1,:taking derivative of Eq. (4.3.4) with

respect to 4, (N) and setting the result:equal to zero, we can get

4

USS
207 Mo e+ o g (m+ 5y,

S5, 0,k
s

ik oums () =

(m. —a;‘)gk(n)+ajtrace(Rh(n))Jr[crvzcrs2 +(mszsg —afafe)hj,k +o.0, ||h0||j
2[(m ~020%, )E{e mh,, +olo?, E (el ()b, J
(4.3.5)

Substitute Eq.(4.3.5) into Eq.(4.3.3), a recursive formula for the tap coefficient
error variance @;(n) is given by:
4

O-s,se
gc(n+1)= (1 = Hnyous (MO ) 9k (M) + Ly oLms =y hoe.

S
With null nonlinearity i.e.,of’s =o. =m,=m,,m, =0, we can rewrite the

OTTLMS algorithm
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O-szgk(n)
m., —a:)gk (n)+otrace(R,(n))+ 0,07

S

Ly oums (N) = (

g (n+1)= (1 ~ tyyouus (MO, ) 9, (n).

E {gh,k (n+ 1)} = (1 ~ ty ouus (NO3 ) E {gh,k (n)}

We found the results fit the works on tradition AEC [25].
Although the time-& tap- step-size is optimal, it must take very larger
computations. For this reason, we observe some term in Eq. (4.3.5) can be neglected.

That is when m, , m,.

>

. 4 2 2
and m,. is comparable to o , o;o;, and

o’o’ respectively, and M >1, we can get (m,—o? n) < o trace(R, (n)),
S S, Y Y. g S S k S h

2
(M o202 )2y < 070 || and

(ms3’se—020'2 )E{gh’k(n)}ho,k £ o202, Efe () h,:

s s,S, s ~s,5,

Therefore, the approximated O FTLMS algorithin during the first stage is summarized
by the following equations:

e(n)=d(n)—w" -F" (n)-h(n)

iy o oums (M) 0
Ugius (M) = , Where
0 i -1 0ums (M)
o
20_52,5 h, '{gh k(n)} + O-szgk(n) + S’;e hozk
e > ) 0 N
Hhxous (M) = : (4.3.6)
M oltrace(R, )+ 2007, Efef (0], v+ ol ]
h(n+1) =h(n)+U(n)-s(n)e(n)
4
2 O-s,se 2
gk (n + 1) = (1 — 05 /Llh,k,OLMs (n)) gk (n) + lLlh,k,OLMS 7 hO,k (4.37)
E {gh,k (n+ 1)} = (1 - Usluh,k,ouvls (n)) E {gh,k (n)} - :uh,k,OLMSO-szo_sz,se hoz,k (4.3.3)
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The step-size adjustment is based on Eq. (4.3.6), (4.3.7) and (4.3.8).
In the following discussion, we will use the approximated OTTLMS algorithm to

discuss.

4.4 Practical implementation of OTTLMS algorithm
In Section 4.2, we have demonstrated the monotonously decreasing slope model
of nonlinear I/O curve to let optimal time-varying step-size LMS (OTLMS) algorithm

practical. Here, the optimal time-&tap- varying step-size LMS (OTTLMS) algorithm

not only needs prior statistics knowledge 7,0, ando; of the nonlinearity output

s2™s,s,
but also the prior knowledge of room impulse response (RIR)h, . However, we can

use the exponential decay model of RIR [18] and use the iteration form of g, (n)and
E {gh’k (n)} in Eq. (4.3.8) and (4:3.9) for practical implementation.

Assume the RIR h, can be modeled as an exponential decay envelope shown in

Figure 4.2. Let decay envelop funiction be:

Yok = VnoVn for kK=1~M ~1 (4.4.1)
where y, 1is the room exponential decay factor. Here we fix the second norm of RIR
as 1. Therefore the initial parameter y,, of decay envelop function can be expressed

as

Voo =172 + 72"
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room impluse response
0.4 ‘ ‘

W7 1

-0.21 -

-0.3+ R

_0. 4 | | | | | |
0 20 40 60 80 100 120 140

Fig: 4.2 RIR-decay envelop

The diagonal element of “tap = coefficient error variance is

g, (n)=E[(h (n)— hojk)z], k=0,..5M -1. We let the initial filter tap coefficients to be
zero ie, h(0)=0 so that g (0)=E[(h(0)-h, )]=h}, =y and
E{&,,(0)} =E{(h (0)—h, )} ==h,, ~—7,,. We substitute g, (0) into Eq. (4.3.7) to
get thyy ouns (0). With z4, 5,5 (0) plugged into Eq. (4.3.8) and (4.3.9) we can get
g() and E{g, ()} so forth ie, G, (0LE{&, (0} > sy om0 —
g,(),E {gh’k (1)} = UyowsD e Thus, we can  obtain

Uy ows(N) for i=0,...,M -1 at any iteration step. The practical OTTLMS

algorithm with an exponential RIR model can be described as follows:

1. Measure room exponential decay factor 7, to get 7, ,=+1—-7s +77" and
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Vhx :7h,o7hi for k=1,...,M-1.

2. Set up initial value g,(0)~y;, for k=0,...,M-1.

Hhno.0Lms (n) 0
3. Ups(n)= where

O Hi.m-1,0LMs (n)

4
S.Se

o,
2‘732,se7h,k '{gh,k (n)} +0.9,(n)+ 0_7’27&

S

. .
Hhscotus (M) oltrace(R, (M) +20707, E{el (M}, + 0707 + 020 h, |,

4. e(n)=d(n)—w" -F'(n)-h(n)
5. h(n+1)=h(n)+U(n)-s(n)e(n)

4

6 )=(1-0? Tss 2
- g (n+ )—( Gsﬂh,k,oms(n))gk(n)+ﬂh,k,0LMS p Vhk

7. E {gh,k (n+ 1)} = (1 - O-szluh,k,OLMS (n)) E {gh,k (n)} - /uh,k,OLMso-szasz,se 7§,k
By using the monotonously decreasing slope model of nonlinear I/O curve and

the exponential RIR model, we can implement the OTTLMS algorithm.

4.5. OTNLMS and OTTNLMS algorithm

The above discussions are based on LMS algorithm. However, the adjustment is
directly proportional to the input signal. Therefore, when the input signal is large, the
LMS filter suffers from a gradient noise amplification problem. To overcome this
difficulty, we may use the normalized LMS (NLMS) filter. The time-variant and

time-&tap- variant step-size on the NLMS algorithm by assuming the input signal

x(n) is WSS with zero mean, approximated s'(n)s(n) by Mo’ [3] ie.,

2 2
Hh oTTNLMS (N)=Mo; Hn o1TLMS (n) and Hh k 0TNLMS (nN)=Mo; Hhk.oTLMs (n) , can be

obtained. Therefore, The OTNLMS algorithm during the first stage is summarized by

the following equations:
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e(n)=d(n)—w" -F"(n)-h(n)

B
Jn (M)

M onews (M) =1-

h(n+1) = h(n)+w
s +o

_ Hhonevs (n)
M

Hhomws (M)

Jh(n+l):(1 J(n)+ p

Similarly, the OTTNLMS algorithm during the first stage is summarized by the
following equations:
e(n)=d(n)—w" -F"(n)-h(n)

M |:2’O-sz,seo.szho,i '{5h,i(n)} +0.g,(M+aol h; ]

.S, 0,

7 (n)= :
WO Gltrace(R, () +20207, E {el (M) h, + 0707 + 0207 |, |
Hhn 0,0NLMS (n) 0

Uoniws (N) = :

0 Hii—1,0NLMS (n)
h(n +1) = h(n) + D Z8(VEM)

[sfly+:6

H (n) .
g (n+1)= (1 _h’k’o%j g, (n)+ Hh k oNLMS MS—;} h(ii'
H s onus (0) Tas

E {gh,k (n+ 1)} = (1 _m%j E {gh,k (n)} ~ M k. ONLMS M—O'2 hoz,k .

4.6 Summary

In this chapter, we have derived the OTLMS in Eq. (4.1.6) and (4.1.7) the
OTTLMS in Eq. (4.3.6), (4.3.7), (4.3.8). Their practical implementations are provided
in Section 4.2 and Section 4.4. We also develop the corresponding NLMS-type

algorithm in section 4.5. The overall of discussion will be verified in Chapter 5.
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Chapter 5
Computer simulations

In this chapter, we will demonstrate the simulation results of the nonlinear AEC
with PWL structure to compare adaptive algorithms in Chapter 2, and to verify
previous convergence analysis in Chapter 3 and optimal variable step-size, OTLMS
and OTTLMS in Chapter 4.

In Section 5.1, we will define some parameters used in following simulations. In
Section 5.2, we will compare the performance of nonlinear AEC with difference
structures and linear AEC. Moreover, the comparison of simulation results and
theoretical analyses will be presented in Section 5.3. At the same time, we will make
several experiments on a real nonlinear eche with different structures of nonlinear
AEC. In Section 5.4, a series of-simulations.and experiments on the optimum varying

step-size, OTLMS and OTTLMS, will-be discussed.

5.1 Simulation parameters and system performance measures
In our simulations, unless otherwise stated, the far-end signal is a uniformly

distributed white noise. The nonlinear I/O mapping curve is a raised-cosine function

(See Section 4.2[23]) as given below
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-1 X< ——=
2T
Ty — —§+£ 2TXw+ 7 , 1+§SX< 1-¢
2& 2T 2T
f(X) = 2TX ,—ﬁSXSI;
2 2T
TX+—_§—£co 2Txw =7 ,1_§SXS—1+§
& 2& 2T 2
1 ,x>ﬂ
2T

We use a soft-clipping type & =1,T =1 which is similar to a sigmoid function. After

simplification, this raised-cosine function becomes

-1 ,X<—1
X+7zc0s(2xn+”j ,0<x<-1
f(x)= ?
X—ﬂcos(z)w—ﬂj 0< X<
2
1 ,X<=1

Fig 5.1.1 shows the curve of the raised-cosine‘function.

The room impulse response in Fig'5:1.21s generated by a random number
generator with an exponential damping factor. The length of the room impulse
response is set to be 128.

The signal to noise ratio at the microphone is defined as

SNR =10log,, %

\

where P

o 18 the power of the nonlinear echo d

(n) and P, is the power of the

echo

background noise. In Fig. 3.1, the nonlinear echo d (n)=s](n)-h, is produced by

the loudspeaker output passing through the room impulse response. Typically SNR is
set to be 30dB, unless otherwise stated.
As to the part of nonlinear AEC, the step sizes are py, = 1, =0.006; the length

of the linear filter is set to be 128, which is identical to the length of the room impulse
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response; the number of nonlinear weights is 3, i.e., only odd order for polynomial

equal to 5™ (excluding the even order), and the partition vector of the PWL processor

is [0 033 0.66 1].

To evaluate system performance, residual error power, ERLE, and coefficient
misalignment are major system performance measures for comparison purposes. With
the assumption of high SNR, the performance measure of echo return loss
enhancement (ERLE) can be formulated as
E{d*(m)

ERLE(dB) = 10 log,, ———-
E {e’(n)}

The linear coefficients misalignment is defined as the normalized norm of the linear

coefficients error

&(N) 4 ||h(”)—ho||2
Iof, I,

Moreover, the fitting of each nonlinear.processor is a factor of performance. We want
to evaluate which structure is better for nonlinear AEC. The most direct method is to
calculate the squared difference of the nonlinear curve between PWL/polynomial type
and raised-cosine curve. Due to the symmetry and zero offset, we only need to get the
positive part of nonlinear I/O mapping curve. Therefore, we denote the nonlinear
curve misalignment as follows:

1

Af(n)éN—

a

2
52

f,(n)—f,,

where f (n)is the PWL/polynomial output vector of nonlinear I/O mapping curve at
the nth iteration due to the input vector a of dimension N_, set by [0.1 0.2 0.3 ...1],

and f,  is the desired raised-cosine output vector.
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5.2 Nonlinear AEC based on LMS algorithm

In this section, we will perform simulations of the nonlinear LMS AEC filter.
The performance of each structure will be compared in Section 5.2.1. In Section 5.2.2
we will simulate various partial update LMS algorithms. In Section 5.2.3 the issue of

partition number will be discussed.

5.2.1 Performance comparison of PWL, polynomial and linear AECs

In this section, we will compare nonlinear PWL and polynomial AECs The most
important issue is the nonlinear modeling. The PWL coefficients are found by fitting
the raised-cosine curve based on LMS algorithm. When the order N of PWL
processor is 3 with a uniform partition being [0:0.33 0.66 1], the PWL coefticients
corresponding to fi(n)~f3(n) can-be shown to be

w, =1.9050 w; = -0.8886 W, = -0.8875 .

Similarly, if the nonlinear AEC uses‘the.polynomial structure with only odd order, the

polynomial coefficients would be

a, =1.8384 a, =-0.8734 a, =-0.0252,
ie, f(X)=ax+a,x’ +a,x’. The corresponding curves, raised-cosine, PWL and

polynomial one, are plotted in Fig 5.2.1, these curves have similar behavior. To
examine their differences in details, we plot the squared error between
PWL/polynomial models and raised-cosine mapping in Fig 5.2.2. We found the PWL
model performs better than the polynomial one in case of fitting a raised cosine curve
with degree of freedom being 3.

Further, in order to avoid the correlations of the power series, we use an

orthogonal polynomial to instead it. For a uniform distribution, the orthogonal pair
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would be x(n) , x3(n)-§x(n) and x’(n)-1.11x°(n)+0.24x(n) . We can plot the

squared error curves of PWL and orthogonal polynomial models in Fig 5.2.3. The
result shows the orthogonal polynomial structure can improve the fitting even better
than PWL structure. In the following discussion, the orthogonal polynomial structure
would be used for comparison.

Nonlinear I/O mapping cune

15 T T T T T
Raised-cosin
1l —— ~PWL ]
— - — Polynomial

Output

_15 1 1 1 | | 1 1 1 1
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Fig. 5.2.1 Nonlinear I/O mapping curve of PWL and polynomial models
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In Chapter 2, we have derived the joint adaptation of the nonlinear PWL AEC.
However, each filter (or processor) behaves to compensate the other one’s
misalignment. This can result in a perpetual oscillating system. Therefore, we will
adopt two-staged strategy [7] with a switching point at 2000-th iteration to proceed.

The ERLE, linear coefficients misalignment and nonlinear curve misalignment
will be used in our simulations to compare the performances of PWL, polynomial,
and linear AECs, as plotted in Fig 5.2.4~5.2.6, respectively. The step-size for
nonlinear polynomial AEC is chosen as 0.01 so that its converged ERLE is identical
to that of PWL-type for a fair comparison. We can find the PWL structure has better
ERLE than polynomial one due to its faster convergence in Fig 5.2.4 and Fig. 5.2.6.
Moreover, the PWL structure has slightly lower steady-state linear coefficients
misalignment in Fig 5.2.5. The result comes from that the error of nonlinear curve
also affects the steady-state linear coefficientssmisalignment due to the cascade model.
Therefore, the results demonstrate the PWL-structure is the most effective structure

than the others in the scenario of low-otder fitting of a raised cosine function.
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5.2.2 Comparison of partial update LMS algorithms

In this section, we will simulate various partial update schemes discussed in

Section 2.3. In addition to the raised-cosine curve, a saturated curve

f(X) =2.5967x+-3.3283%" +1.7833%°,
plotted in Fig 5.2.7, is also used to account for highly nonlinear I/O mapping curve of
the loudspeaker system.

Fig. 5.2.8 shows the ERLE comparison in case of a raised-cosine curve. We can
find all of the partial-update LMS algorithms converge and the order of convergence
rate being, Random > Located > Periodic > Variant periodic > Sequential LMS. The
Random, Located and Periodic LMS algorithm take about two times of iterations than
the original LMS algorithm to reach steady-state ERLE but only one-third
computation of the original one. The others, Variant periodic and Sequential schemes

do not benefit the computational efficiency in this case.
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As to the case of a saturated curve, we can see from Fig. 5.2.9 that the saturation
affects the convergences of these partial-update LMS algorithms enormously except
for the Variant periodic one. The convergence speed of these partial-update LMS
algorithms rank as follows, Variant periodic > Random = Periodic = Sequential >
Located LMS.

To sum up, the Random, Periodic and Variant periodic schemes are good
candidates for partial update scheme considering the ERLE convergence performance
in cases of a raised cosine and highly saturated mapping functions.
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Fig. 5.2.7 Saturated curve for nonlinear I/O mapping
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5.2.3 Partition number of PWL processor

Partition is an important issue of PWL function. In figure 5.2.10, if we get more
resources in partition, the fitting can be better. We also want to demonstrate this
property on nonlinear PWL AEC With the assumption of uniform partitioning, there
will be simulations with different partition numbers under two nonlinear I/O mapping
curves, raised-cosine and saturated one.

In Fig 5.2.10, we present the ERLE curves under raised-cosine mapping with the
partition number being 4, 8, 16, 32, 64, 256, respectively. We find that as the partition
number becomes larger, the performance will be better due to a better fitting PWL
curve. Similar results also hold in case of a saturated mapping curve, as can be seen in
Fig 5.2.11. Another phenomenon is that in case of higher nonlinearity, the

performance would be worse. We will also verify it in Section 5.3.
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Fig. 5.2.10 Raised cosine curve and the corresponding PWL curves with two partition

number: 2(b) and 4(c)

59



(dB)

Fig. 5.2.11 ERLE for raised-cosinie mapping,using various partition numbers

(dB)

Fig. 5.2.12 ERLE under saturated curve using various partition numbers

35

ERLE

30+
25
20

151}

N= 4, 8, 16, 32, 64, 256

30

0.6

|
0.8 1 1.2
Number of iterations

1.4

ERLE; saturation-mode,- uniform partition

1.6

1.8

x 10

28

26

22+

N= 4, 8, 16, 32, 64, 256

1
0.8 1 1.2 1.4

Number of iterations

60

1.6

18

2

X 104



5.3 Two-staged adaptation and its convergence analysis

In this section, we will simulate two-staged adaptation. Due to the our main part :
the first stage, we not only test and verify the convergence analysis and stability
bound, but also simulate how the important factors do influence the convergence
behavior in Section 5.3.1. The second stage will also be verified in Section 5.3.2 with
two procedures that keep off the effect of zero eigen-value. In Section 5.3.3, we will
consider the switching point of the two-staged adaptation. The experiments will be

presented in Section 5.3.4.

5.3.1 Convergence and stability analysis of the first stage
To verify our convergence .analysis based.on PWL structure, we show the
simulated and theoretical curves on.two stages with-uniformly distributed input over

*1. In the first stage, only updates linear filter, we let the step size p, =0.01 under
the stability bound in Eq. (3.2.14), SNR=30 dB, the length of the room impulse
response is set to be 128, which is identical to number of taps of the linear filter, the

nonlinear filter order is 3 with a uniform partition on [0 0.33 0.66 1], the PWL

coefficients of the loudspeaker is w,, =1.9050 w,, =-0.8886 w,,=-0.8875 to

approach a raised-cosine curve and the initial ones of the PWL processor is
W, =1.905 w, =0 w, =0 equivalent to a straight line with slope 1.905. As shown
the linear coefficients misalignment and residual error power in Fig 5.3.1 and 5.3.2,
the theoretical curves are plotted from (3.2.16) and (3.2.21), respectively, the

simulation results agree well with the theoretical curves. If we set the step size

u, =0.013 over the stability bound in Eq. (3.2.14), the results in Fig 5.3.3 and 5.3.4

show it would not converge with time. That means the stability bound is work.
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Fig. 5.3.2 Linear coefficients misalignment during the first stage with p, =0.01
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Further, we want to find the factors that influence the convergence behavior of

the first stage in Eq. 3.2.16, 3.2.17, 3.2.21. In the following simulations, unless
otherwise stated, L;, is setto 0.001.

The first trial is the factor of the SNR, we set the different SNR 10dB and 30dB
to simulate. In Fig. 5.3.5 and 5.3.6, the factor of SNR will influence the steady-state
of linear coefficient misalignment and residual error power. However, both of them
have similar convergence speed as what we say in Chapter 3.

Next, we want to make sure how the step-size p, affects the convergence
behavior. In order to observe that, difference p, 0.001, 0.006 and 0.01 is set. In Fig.
5.3.7 and 5.3.8 we found that as the step-size p, increases, the steady-state also
enlarges but it doesn’t happen on the convergence speed. When the step-size changes
form 0.006 to 0.001, the convergénce speed bécomes slow. It is unlike the changes of
0.001 to 0.006. As well as, an optimal time-varaint step-size for the convergence
speed must exist. We will procéss. the:step-size control to get the best performance,
convergence speed and the steady-state." The'issues will be discussed explicitly in the

Section 5.4.

Moreover, the variance of PWL processor output o will result in the
convergence speed. We set three choices of amplitude of far-end signal and theirs
corresponding o are 1.2, 0.9 and 0.6, respectively. In Fig. 5.3.9 and 5.3.10, we

found the large power has better convergence speed than small one but worst
steady-state due to the nonlinearity effect.

The most important factor is the nonlinearity of loudspeaker. If the nonlinearity
is more conspicuous the covariance 052,39 of s(n)ands,(n) and the variance asze of

S.(n) are larger. In Eq. (3.2.16) and (3.2.17), the convergence speed of linear
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coefficient weight error won’t change but the steady-state will enlarge. In order to
verify this, we use the monotonously decreasing slope model of nonlinear I/O

mapping curve with by setting differenty,. The value y, can be regards as the
nonlinearity. With a lot nonlinearity, then y, is much negative. In Fig 5.3.11 and
5.3.12 we present the simulation by setting different y, =-0.9,-0.5and 0.2. The
simulation results show that the convergence rate is similar; steady-state error is a
monotonically increasing function of nonlinear factors.

Finally, we show the simulations that the far-end signals use different Pdfs. For a
fair comparison, we fix the corresponding o as 0.4 and show its corresponding
Pdfs in Fig 5.3.13. Fig. 5.3.14 and 5.3.15, we found all of them keep the same
convergence speed. However, the Uniform one has smaller steady-state than others
due to the nonlinearity factor o andy ¢ .
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Fig. 5.3.5 Linear coefficients misalignment during the first stage under different SNRs
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Fig. 5.3.8 Residual error power during the first stage under different step-sizes
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Fig. 5.3.14 Linear coefficients misalignment during the first stage using different Pdfs
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Fig. 5.3.15 Residual error power during the first stage using different Pdfs
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5.3.2 Convergence analysis of the second stage

After the first stage, we continue to analysis the convergence behavior of the
second stage. We keep using all of information of the stage 1. That means the initial
linear FRI filter of the second stage would be the end one of the first stage. Here, in
order to avoid a perpetual oscillation, we modify the norm of the initial linear FRI
filter to 1 and fix it in every iteration. Beside, the PWL processor must also be

modified. The misalignment of combined linear and PWL coefficient weight
L
errorg(n) = [sh(n) aw(n)] is defined as

g(n) AH[ho w, ]-[h(n) W(”)]Hz
n, w,] b ]

2 2

In Fig. 5.3.16 and 5.3.17, we simulate. the misalignment of combined linear and
PWL coefficient weight error and residual etror power and plot the theoretical curve
by Eq. (3.3.7) and (3.3.8), respectively. -The misalignment of the simulated and
theoretical curves was purely mismatching-after 5000 iteration. But the residual error
power has similar behavior on simulated and'theoretical curves. It just exists with a
little high mismatch at start due to the approximation in Eq. (4.3.2). Therefore, we go
to find out what the reason bring about this results. We found the correlation matrix
R, has an approximately zero eigen-value. Above the Eq. (4.3.7), the zero
eigen-value will not make the corresponding term of misalignment reduce by iterating
as time. As a result, the zero eigen-value will bound the convergence of misalignment,
but not affect the residual error power in Eq (4.3.8).

In order to solve this problem, we make a trick that skips the corresponding term
with the zero eigen-value and denote it as skipping. Under the skipping, the results
between simulated curve and theoretical curve are similar with a little mismatch In

Fig 5.3.18 and 5.3.19.
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Besides, we know that in the second stage the weight error of both, linear and

PWL one, are small enough. Here, we assume they wouldn’t react to each other, that

is the correlation matrix R can be simplified as

E {s,(n)-s; ()} 0
¢ 0 E{P"(n)-h,-h] -P(n)} |
We denote the procedure as decoupling. In Fig. 5.3.20 and Fig. 5.3.21, the theoretical

curves are almost fitting to the simulated curves.
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Fig. 5.3.16 Misalignment of combined coefficient weight error during the second

stage
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Misalignmert
O T T T T

0 1 2 3 4 5 6 7 8 9 10
Nurmber of iterations 4

Fig. 5.3.18 Misalignment of combined coefficient weight error under skipping during

the second stage
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Fig. 5.3.19 Residual error poweér under skipping during the second stage
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Fig. 5.3.20 Misalignment of combined coefficient weight error under decoupling

during the second stage
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Fig. 5.3.21 Residual error power'under déeoupling during the second stage

5.3.3 Switching point of two-staged adaptation

Guérin point out that the PWL filter must'not adapt until the linear filter has
sufficiently converged. Therefore, the pervious simulations were done while the PWL
processor was started at most with a steady-state linear filter. In this section, we want
to discuss the convergence behavior when the PWL processor was operated with a
transient-state linear filter and what the switching point, number of iteration, is a
better setting? First, we demonstrate simulated and theoretical curves of misalignment

and residual error power of two-staged adaptation with a small step-size
My = 1, =0.001 in Fig 5.3.22 and 5.3.23, respectively. We found the number of

iteration that linear filter converged in first stage is about 3000. In order to observe the
issue of switching point, we change it as 3000, 1000 and 300. In Fig. 5.3.24, The
two-staged adaptation is robust to the switching point, even the number of iteration

1000 still get better performance than 3000 one. However, if we start to update the
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PWL coefficients too fast as the case 300, it will cause a perpetual oscillation at first

and worse performance than the others.

Misalignment
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&

1
=
N

o

x 10"
Fig. 5.3.22 Misalignment of combined coefficient weight error of the two-staged
adaptation
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Fig. 5.3.23 Residual error power of the two-staged adaptation
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Fig 5.3.24 Residual error power with different switching points

5.3.4 Experiments of the two-staged adaptation

In this section, we preset two experiments.of nonlinear acoustic echo canceller.
In the first part, to evaluate the performance of proposed approach, PWL structure, we
present simulation results obtained for nonlinear acoustic echo to compare the
performance with only linear AEC and nonlinear AEC based on polynomial structure.
The far end signal, consists of two segments of different volume speech sampled by
8kHz, is represented in bottom of Fig. 5.3.22. The first segment keeps under 0.6
magnitudes and after about 20000 iterations the second one reaches maximum height
with time. This signal drives the desktop loudspeaker, low-cost 2.5 inch diameter, and
catches the microphone, Creative-MC1000, above the loudspeaker about 6 inches to
imitate the cell phone.

Except the joint LMS-type adaptive algorithm in chapter 2, we refer to [7] for

adaptation strategy, the same idea in Chapter 3. However, due to the unexpected real
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data, it compares standard deviation of linear filter with a set of thresholds to achieve
the detection of linear filter state-stay. Moreover, the nonlinearity mostly happens on a
high volume input. A simpler detector is based on the power of far end signal is
implemented and is compared to a fixed threshold. Therefore, we adjust those
thresholds to obtain the optimum Echo Return Loss Enhancement (ERLE) of
nonlinear AEC. Fig. 5.3.25 shows the ERLE resulting from Linear AEC and
Nonlinear AEC based on PWL structure and polynomial one for different volumes.
First, during first segment the nonlinearity effect is not available, the ERLE of
nonlinear AEC are comparable to that obtained with the linear AEC. Second, due to
the existing nonlinearity in second segment, the gap in performance is obvious: the
mean difference in ERLE is about 3 dB and 2 dB to linear AEC and polynomial
structure, respectively. This shows:the PWL structure has better performance than the

others.
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Fig. 5.3.25 ERLE with a two level speech for linear AEC (dash line), nonlinear

AEC based on PWL structure (solid line) and Polynomial one (dot line)
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In the second experiment, we process two kinds of MTK speech, a woman in
mandarin tone and a man in English tone, from a real mechanism of cellular phone
with two-staged adaptation. Here, the nonlinear effect only caused by loudspeaker and
avoided from analog amplifier. A detector based on the linear filter standard of
deviation and the power of far end signal is used. We compare the performance
between linear AEC and nonlinear AEC based on PWL structure. In Fig 5.3.26, we
demonstrate the speech of a woman in mandarin tone. We found that the ERLE of the
PWL structure has a peak 3dB better than one of the Linear AEC around 31K samples
and an average 2 dB at high volume than one of the Linear AEC. However, at 2.2k
samples the PWL structure is 2dB worse than the linear AEC.

Next, we show the experiment with the speech of a man in English tone. In Fig.
3.3.27, the result with the speech of @ man has a more consistent performance at high
volume than one of a woman. Moreover, the Peak and average ERLE of PWL
structure is 6 dB at 2.3k iterations and 2.5-dB.tespectively than the linear AEC. We
deduce the results that the performance.of PWL. structure with the speech of a man is

better is owing to the aliasing effect.
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Fig 5.3.26 ERLE with the spéech of a woman with tone in mandarin
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Fig 5.3.27 ERLE with the speech of a man with tone in English
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5.4 Controls of step-size

In this section, computer simulations are used to verify the algorithm discussed
in Chapter 4. First, we will compare the convergence rate of OTLMS and fixed
step-size LMS algorithm in Section 5.4.1. Next, Section 5.4.2 will show the practical
OTLMS algorithm and discuss it with difference choices parameter and nonlinear
modeling. Moreover, the OTTLMS will be discussed in Section 5.4.3 and its practical
type with nonlinear and room impulse response modeling will also be shown in
Section 5.4.4. In order to the compact of two-staged adaptation, we apply the OTLMS
and OTTLMS of the first stage to the second stage in Section 5.4.5. Finally, a series of

experiment will be presented in Section 5.4.6.

5.4.1 OTLMS algorithm

In this section, we want to demanstrate:the: OTLMS algorithm does work and has
better performance than the fixed step-sizes. Further, the theoretical equation in Eq.
(4.1.5) also can be verified in the simulation. Fig'5.4.1 shows the step-size of OTLMS
was changed form about 0.006 to almost zero. Therefore, we choose the fixed
step-size as 0.006 and 0.001 to make a fair comparison. Fig. 5.4.2 show the
convergence curve of optimal time-variant and fix step-size LMS algorithm. We
found the OTLMS has benefits not only on convergence speed but also steady-state of

residual error power.
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Fig. 5.4.1 Step:size of OTLMS algorithm
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Fig. 5.4.2 Performance comparison between optimal time-variant and fixed step sizes
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5.4.2 Practical implements of OTLMS algorithm

We have shown thus far that the use of step-size adjustment improves the
convergence rate of the LMS algorithm and reduces the steady-state of residual error
power. In this Section, we will go a step to process and discuss the practical OTLMS

algorithm.

4
. . . o 2
The most important issue is the parameter 3, = &, —{0'52 —— ]”ho” . In order
e o 2

2
S

to approximate it, we focus on the nonlinearity. With a mismatch nonlinear modeling,

it will result on the prior statistics knowledge o7,07, ando;, . Fro the reason, we

want to show does the practical OTLMS is robust to them. We set the optimal PWL
coefficients as ¢, =1.9050 ¢, =-0.8886, c, =-0.8875 . We use the monotonously
decreasing slope model of nonlinéar I/O,mapping ctrve A, B and C

The corresponding curves were presented i Fig 5.4.3. Fig 5.4.4 shows the
time-variant step-size of these three types-nenlinear mapping curve A, B and C. The
figures of residual error power were plotted in Fig. 5.4.5. We can see that with B and
C, the performances are similar to optimum one. That means the practical OTLMS
algorithm is robust to the mismatch modeling. However, if we use mapping curve A

(ie, a linear curve), the convergence speed of it is slower than the fixed

step—size 1, = 0.006. As a result, we deduce the modeling is necessary and effective.

Next, with an approximated error on ,@ from near-end noise or nonlinear
modeling error, it might influence the performance of practical OTLMS algorithm.

Therefore, we use two different choices of parameter ﬁ (i.e., the five times and one

fifth the optimum £, ) to discuss. In Fig. 5.4.6 and 5.4.7 are the corresponding
time-variant step-size and residual error power, respectively. Fig 5.4.6 shows that with
a larger £, the initial of step-size would be smaller but each time-variant step-size
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takes the same time to convergence. The corresponding performances in Fig 5.4.7

have apparent difference that five times S, has worse convergence speed at start
than one-tenth one and even the fixed step-size g, =0.006. However, after that the
different choices of OTLMS have comparable performance.

Nonlinear I/O mapping cune
2 ‘

Output

Intput

Fig. 5.4.3 Nonlinear I/O mapping curves with the modeling
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Fig. 5.4.4 Time-variant step-size with, different mapping curves
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Fig. 5.4.5 Residual error power with different mapping curves
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Fig. 5.4.6 Time-variant step-size with different

Residual echo power

@B)

optimum, one -fifth, five times o
_]_8 | | | |

| | | | |
0} 200 400 600 800 1000 1200 1400 1600 1800 2000
Nurmber of iterations

Fig. 5.4.7 Residual error power with different ,5’

Moreover, another issue is the residual error power. Because the fluctuation of

speech signal and the changing of room impulse response, the statistics of residual
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error power are varying with time. However, the regression of expectation of residual
error power in Eq. (4.1.5) also can be replaced by time mean estimate with first-order

recursive filtering as follows:
Jy(n+1)=(1-2)J(n)+ A€’ (n)

where A is the forgetting parameter close to 0. Here, we continue to use difference

choice of the parameters S, and discuss it with first-order recursive procedure of

residual error power. The overall settings are the same as before, the far-end signal is
white with uniform distribution, etc.... In Fig. 5.4.8 and Fig 5.4.9 show the

time-variant step-size and residual error power, respectively. With the case,

one-second /3, the residual error power can not be reduced in advance because of an

unchanged step-size. The robustness:of ‘assmaller ,B wasn’t happened on this

procedure. However, two times p, keeps. the -performance and has a lower

steady-state than optimum f < Therefore; using first-order recursive procedure of

residual error power, we suggest using a larger ,3 for implementation.
Finally, we compare two produces, theoretical and first-order recursive, with the
same S in Fig. 5.4.10, 5.4.11 and 5.4.12. the results show the theoretical procedure

is outperform to the first-order recursive one
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Fig. 5.4.10 Residual error power using the two'different procedures with the optimum
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Fig. 5.4.11 Residual error power using the two different procedures with one half of

the optimum S,
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Fig. 5.4.12 Residual error power using the two different procedures with two times of

the optimum: 3,

5.4.3 OTTLMS algorithm

We have demonstrated that the time-variant step-size adjustment improves the
convergence rate and steady-state of the LMS algorithm. In this Section, we will
focus on the proposed algorithms using optimum-time & tap-variant step-size. Here,
the OTTLMS step-size was used a compact form in Eq. (4.3.5). Figure 5.4.13
illustrates the convergence rate of OTLMS, OTTLMS and fixed step-size
as 4, =0.006,0.001 . The theoretical curve of OTTLMS was plotted from the
regression Eq. (4.3.4) and matched to the simulated curve. We found The OTTLMS
algorithm indeed works and has convergence speed about two times than OTLMS
one.

Further, we test the approximated form of OTTLMS step-size in Eq. (4.3.6). The

performance of it is similar to original one. Therefore, in the following discussion the
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approximate form of OTTLMS step-size will be used.
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Fig. 5.4.13 Performance comparison of convergence rate for OTLMS, OTTLMS and

fixed. step-sizes

5.4.4 Practical implement of OTTLMS algorithm

In order to implement the OTTLMS algorithm, we model the nonlinear 1/O
mapping curve and the room impulse response. In this section, we will exhibit the
performance of each mismatching model and discuss it.

First, we discuss the issue of nonlinear effect. According to the monotonously
decreasing slope model of the above, we set three different choices of nonlinear
mapping curve A, B, C in Fig 5.4.3. Fig 5.4.14 shows that B and C has similar
performance to OTLMS algorithm. That means the practical OTTLMS algorithm is
robust to the mismatch of nonlinear modeling. However, if we use mapping curve A
(i.e., a linear curve), the convergence speed of it is slower than the practical OTLMS.

Finally, we found that on the issue of nonlinearity, the results of practical OTTLMS
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correspond with ones of practical OTLMS.

Second, we focus on the issue of room impulse response. In section 4.4, we have
modeled the RIR h, as an exponential decay envelope. The room exponential decay
factor y, is chosen as three values 0.98, 0.96 and 0.94. We plot the corresponding
model in Fig 5.4.15. Fig 5.4.16 presents the performance of different values y, and
shows that curve B has the best convergence rate due to the modeling. As a more
similar envelope, the convergence rate will be faster.

Finally, we combine both of the models to discuss. In Fig. 5.4.17, 5.4.18 and
5.4.19, we usey, as 0.96, 0.98 and 0.94 to compare the nonlinearity, respectively.
Furthermore, the nonlinear mapping curve is used as A, B and C the same as before.
We found the appearance of things that the combined modeling error will make the
performance worse from Fig. 5.4:17 to Fig. 5:4:19. In the comparison to nonlinear
mapping curves, it presented the robustness: the. same as before. However, in the
case y, =0.94, the practical OTTLMS with_mapping curve C was failed, slower
convergence speed than OTLMS. ‘The reasonisthat a saturated model of nonlinear
I/O mapping curve C cascading an exponential decay envelope with larger decay

7, =0.94 will induce a more mismatching model error to original one. Therefore, the

performance is poor.
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Fig. 5.4.14 Performance comparison«of convergence rate for OTLMS, OTTLMS with
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Fig 5.4.15 Model of RIR as an exponential decay envelope
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Fig 5.4.16 Performance comparison:0f convergence rate for OTLMS and OTTLMS
with three different choices:| %, = 0.98, 0.96 and 0.94

Residual‘echo power

Optimal, C,B,A

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of iterations

Fig. 5.4.17 Performance comparison of convergence rate for OTLMS and OTTLMS

at y, =0.96 with three different mapping curves
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Fig. 5.4.18 Performance comparison of convergence rate for OTLMS and OTTLMS

at y, =0.98 with three different mapping curves
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Fig. 5.4.19 Performance comparison of convergence rate for OTLMS and OTTLMS

at y, =0.94 with three different mapping curves
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5.4.5 OTLMS and OTTLMS algorithms in the two-staged adaptation

We have showed the benefit of time-variant and time-&tap- variant step-size of
the first stage. In the second stage, the both of step-sizes, linear and PWL one are not
easy to derive. Moreover, the residual error should be small enough and the linear FIR
filter is near the optimum, the variable step-size should also keep small. Therefore, the
variant step-size of the second stage is unnecessary. In this section, we continue to use
the variant step-size of the first stage on the second stage, and compare to fixed
step-size 0.001 and 0.006. the simulation condition are the same as before, a white
uniform distributed far end signal, a raise-cosine likely nonlinear I/O mapping curve,
exponential decay room impulse response, also set the PWL step-size of all to 0.006
and after 5000 iteration, the nonlinear processor operates. In figure 5.4.20, we found
that the variable-step size has comparable performance to the fixed ones during the
second stage. The results of the first.stage are.the same as before.

Next, we apply the procedure by comparing lmear filter standard of deviation
with a set of thresholds to achieve the detection of linear filter state-stay. Figure
5.4.21 shows OTTLMS has the best performance due to the fastest convergence of

linear filter and the OTLMS also get the benefits on transient behavior.
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Fig. 5.4.20 Residual error power of OTFEMS; OTLMS, fixed step-size LMS for the

two-staged adaptation with fixed switching point
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Fig. 5.4.21 Residual error power of OTTLMS, OTLMS, fixed step-size LMS for the

two-staged adaptation with detection of state-stay linear filter
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5.4.6 Experiments on the step-size controls

For simplicity, we only consider that the nonlinear AEC with an artificial room
impulse response and nonlinear loudspeaker. The environment is setting by a
raise-cosine likely nonlinear I/O mapping curve and exponential decay room impulse
response. We use speech as input signal for verification. In order to avoid fluctuation,
the amplitude of speech is almost fixed. Therefore we separate the speech in bottom
of Fig. 5.3.22 into two parts with the breakpoint 20000 samples and resample with
one-fourth time the original sample rate to approximate a full band signal. We also
plot these two speeches in the bottom o Fig 5.4.18 and 5.4.20, respectively

In the following experiment, we will use the NLMS type to discuss. The
practical OTNLMS use the first-order recursive procedure of residual error power to
implement and the practical OTTNLMS was discussed in section 4.5. Fig 5.4.22 and
Fig 5.4.24 show that the praectical OTNLMS algorithm do work and has faster
convergence rate and better. ERLE —than fixed step-size g, =0.2and1 but
OTTNLMS failed. Fig. 5.4.19 and Fig 54.21 demonstrated the corresponding

time-variant step-size of practical OTNLMS, respectively.
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Fig. 5.4.23 Step-size of practical OTLMS algorithm with the first part of speech and a

pseudo nonlinear echo
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Fig. 5.4.25 Step-size of practical OTLMS algorithm with the second part of speech

and a pseudo nonlinear echo
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In advance, we use the step-size control on the true echo, the same near-end
signal in Section 5.3.4. The separated and decimated procedures were also used on the
nonlinear echo. Because the practical OTTNLMS failed, we only do the comparison
on practical OTNLMS and fixed step-size¢ NLMS algorithm. In Fig 5.4.26 and Fig
5.4.28, the results show the practical OTNLMS has comparable performance to fixed
step-size g, =1 . At the same time, the case g, =0.2 always keeps worse
performance. That means it doesn’t converge due to the varying room impulse
response. It can explain why the performance of practical OTNLMS does not
outperform the case g, =1.
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Fig. 5.4.26 ERLE of practical OTLMS, fixed step-size LMS algorithm with the first

part of speech and a true nonlinear echo
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Fig. 5.4.27 Step-size of practical OTLMS algorithm with the first part of speech and a

true nonlinear echo
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Fig. 5.4.28 ERLE of practical OTLMS, fixed step-size LMS algorithm with second

part of speech for true nonlinear echo
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Fig. 5.4.29 Step-size of practical OTEMS algorithm with the second part of speech for

a true nonlinear .echo
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Chapter 6
Conclusions

We have developed the nonlinear AEC system where the scheme is a cascade
model in a memoryless PWL processor and linear FIR filter. Its joint LMS adaptive
algorithm had lower computation than conventional nonlinear AEC based on
polynomial function. Simulation results also have showed that the PWL structure has
better performance than polynomial in the case of a raised-cosine I/O mapping curve.
For computational cost, we have developed five types of PWL coefficients selective
update schemes. They all kept the computation on the matrix multiplication
F'(n)-h(n) with M . In the simulation, they all have worked and have benefited the
computational efficiency in this .case of a.raised-cosine I/O mapping curve. We
suggested that the Random, -Periodic—.and-Variant periodic schemes are good
candidates for partial update scheme considering the ERLE convergence performance
in cases of a raised cosine and highly saturated mapping functions. The experiment of
a real environment, we have show that the PWL processor structure has better
performance than a polynomial one and exceed about 2~3 dB more than the linear
AEC with different speech.

Since each filter (linear filter or PWL processor) behaves to compensate the
other one’s misalignment, which can lead to a perpetual oscillating system. In order to
overcome this difficulty, we have adopted two-staged algorithm, starting with a linear
filter, and then joint PWL and linear coefficients update follow with a steady state
linear filter and derived its convergence analysis with two lemma.

In the first stage, only linear coefficients update under a fixed PWL coefficients.

We make up the Lemma 1 with Eq. (3.2.14), (3.2.16), (3.2.17) and (3.2.21) as follow:
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Lemma 1: If far end signal x(n) is white, modeling of nonlinear I/O mapping

is symmetric in a cascade model and only linear filter coefficients update, then we

have the stability criterion of step-size 4, , the coupled vector 0(n) of E {||ah(n)||§}

and E {sh(n)} , the steady state of E {||8h(n)||z} and the mean square error J,(n) as

follows:
Hy <M—aj’
6 =(1-A)"-b+A"-(00)-(1-A4)" b),
2 2 2 aszso_sz 2 2
2 th(av+aSe||ho||2)+2 o h, [ (1-,Mo?)
lim E {e, (]3| = e
and

3, (M) =0} + 0 |h, [+ CTo(),

where o, o’ and o] are the variance of s(n), s,(n) and near-end noise

e

5

v(n) , respectively, o., is the covariance of s(n) and s,(n)

o =[Efleull] Efeo}] . b=[umol(o2 4ol nf) molnl ]

A:{(l_zﬂhas"'ﬂﬁMU:) 2h-orluho-sze (_1+ﬂhMO-sz)] and C:[O'z 252 hT:IT.

2 S
0 (1= o)Ly,
By examining the matrix A , we can see that the convergence rate is a monotonic

increasing function of the step-size g, and the variance o. of PWL processor
output. The steady-state of E{”sh(n)”i} increases with an increase of the near-end

noise variance o, , the step-size g, , the PWL output power o, and the
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nonlinearity factor 0'525se and ofe . The simulation results also have fitted our

observations.
In the second stage, linear and PWL coefficients are updated jointly. We make

up the Lemma 2 with Eq. (3.3.2), (3.3.7) and (3.3.8) as follow:

Lemma 2: If far end signal X(n) is white, modeling of nonlinear I/O mapping
is symmetric in a cascade model and linear and PWL coefficients are updated jointly

with the assumption
g, (nN)<<h,, g,(N)<<w,_,

then we have the second moment of €(n) and mean square error J(n) as follows:

el =S ST it -y

and

I(n)= a+221i D ()‘ Tio }(1 TAY"

I o
where T. is the i-th diagonal entry of T = {u:)M I } , k;(0) is the initial value
Hy

of i-th entry of K(n)=Q" -g(n) and A

. 1s the eigenvalues of Rg.

In the simulation due to an approximately zero eigen-value, the misalignment of
the simulated and theoretical curves was purely mismatching. In order to solve this
problem, we make two procedures denoted as skipping and decoupling. After that, the

theoretical curves are almost fitting to the simulated curves.

The overall analysis also can be extend to a polynomial structure simply by

setting the delayed tap mapping matrix F(n) as
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x(n) x(n=1) -+ x(n—M +1)
F(n) = x*(n) x*(n-=1) x*(n=M +1)
x"(n) xN(n-1) xX"(N=M +1)
After we have derived the convergence analysis, we have used the theoretical
equation of the first stage to derive the optimum time-variant step-size LMS (OTLMS)
and time-&tap-variant step-size LMS (OTTLMS) algorithm due to speed up the

convergence rate. Here, we make up two lemmas as follow:

Lemma 3 If far end signal X(n) is white, modeling of nonlinear I/O mapping is
symmetric in a cascade model and only linear filter coefficients update, we have the
OTLMS algorithm for the first stage of two-staged adaptation as follows:

(1) e(m=d(m-w"-F'(n)-h(n),

I b
Mo? sMo?2d, (n)

S

(3) h(n+1)=h(n)+ s(n)e(n),

(2) Hn oLvs (n)=

4) J,(n+D)= (l_ﬂh,oms (n)o'sz)J(n)+yh’OLMs(n)a:ﬂ )

0_4
2 .
where =0 +(a§e _?]”ho”f‘)}z’ o, and o, are the variance of s(n),

S

s.(n) and near-end noise V(n), respectively, o

55, 18 the covariance of s(n).

Simulation results have shows the OTLMS has benefits not only on convergence
speed but also steady-state of residual error power. We also have developed its

practical form for implementation. In simulation, we have found it is robust to a
smaller S and the choosing on # would be smaller in order to keep the

performance. However, the regression of expectation of residual error power in Eq.
(4.1.5) also can be replaced by time mean estimate with first-order recursive filtering

as follows:
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Jy(n+1)=(1-2)J(n)+ A€’ (n)
The robustness of a smaller ,3 wasn’t happened on this procedure and we suggest

using a larger ,3 for implementation.

Next, we focus on the OTTLMS algorithm.

Lemma 4 If far end signal X(n) is white, modeling of nonlinear I/O mapping is
symmetric in a cascade model and only linear filter coefficients update, we have the

OTTLMS algorithm for the first stage of two-staged adaptation as follows:

(1) e(m=d(m-w"-F"(n)-h(n),

Hi 0,0Lms (n) 0
(2) Ugs(n) = , Where

O Hi m-1,0uMs (n)

4

O
2 2 S,Se 2
207y, e (M} +229, () + - he,

S

Hh k.oLms (n)= 2

S-15.5, vZs )

o'trace (R, (M) +20ia2g E {& (N} h, + 0707 + 0.0 [,
(3) h(n+1)=h(n)+U(n)-s(n)e(n),
4
2 0-5,59 2
4 g9,(n+1)= (1 — O HhxoLms (n)) 9k (M) + Lk oLms 7 ho,k >

S) E {5h,k (n+ 1)} = (1 - O-szluh,k,OLMS (n)) E {‘9h,k (n)} — Hn x oLvs 0'52‘752,5e hcik :

where, 44, (n)is the k-th individual tap step-size, o], o. and o, are the

variance of s(n), s,(n) and near-end noise V(n), respectively, (752’5& is the

covariance of s(n)and g, (n) is the k-th linear coefficient error variance.

In simulation, We have found The OTTLMS algorithm indeed works and has
convergence speed about two times than OTLMS one. Moreover, its practical form
also have work and been robust to the mismatch of nonlinear modeling and the RIR.

Finally, we also showed a series experiments for practical implementation. First,
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we only consider that the nonlinear AEC with an artificial room impulse response and
nonlinear loudspeaker. The practical OTNLMS have had faster convergence rate and
lower ERLE than fixed step-size but OTTNLMS failed. In advance, we use the
step-size control on the true echo. However, the performance did not benefit from the
variant step-size.

The future work can be: (1) find the optimum switching point by using the
theoretical analysis, (2) solve an approximately zero eigen-value of convergence
analysis in second stage, (3) the optimum time-variant and time-&tap-variant
step-sizes of linear filter and PWL processor for the second stage (4) use our

algorithms to process a real echo and work.
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Appendix

In this appendix, we are trying to simplify the third term, the 5-th, 7-th and 9-th

in Eq.(4.3.2) by using the white property of PWL processor output s(n). Further, we

will use the results to deduce the three terms E{s(n)-sT(n)-s(n)-sT(n)} ,
E{s(n)-s" (n)-s(n)-s; ()} andE {s,(n)-s" (n)-s(n)-s,(n)}
First, we denote the third term as

B = E{s(n)-s"(n)-R, (n)-s(n)-s" (n)} (A.1)

With the assumption, €,(n) is uncorrelated tos(n), kl-th term in Eq.(1) is given by

Z

M-

L

a,,E(5.S,5,

p =0

Il
(=]
o

where a,, is the pg-th entry of the correlation-matrix R, (n) and s, is the k-th

entry of s(n). With white propetty. of PWL:processor outputs(n), for k=1 we have

and for k #1, we have

Therefore, we can obtain the matrix form of B as
B=0;[2R,(n)-3D(R,(n))+trace(R,(n))-1] +m D (R, (n)) (A.2)

where operator D is to keep the diagonal entry and zero the others on the matrix.
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Similarly, the 5-th, 7-th and 9-th term in Eq. (4.3.2) can be also denoted as
C = E{s(n)-s"(n)-E {g,(n)}-h] -s(n)-s (n)} , (A.3)
D-E {s(n)-sg (n)-h, - E{e] ()} -s(n)-s" (n)}= C,
E = E{s(n)-s,(n) -h,-h} -s(n)-s] (M)}, (A.4)
respectively. Applying the same procedure, we have

C=D"=om [ZE{ah(n)}-hZ —3D(E{sh(n)}-hl)+trace(E{sh(n)}-hZ)-IJ

s'lls,s,

+m, D(E{g,(n)}-hy),

C+D=U(n)-[o7m,, [29-3D(J)+trace(d)-1]+m, D(J)], (A.5)
E= oo’ [2ho b} ~3D(h, b7 )+ ||} -1} +m_ .D(h, h}). (A.6)

where J= E{ah(n)}-hl +h0'E{8; (n)} ) O-sz,se 7 E{skse,k} > My = E{Ssse»k} and

e

2a2
m, , :E{skseﬂk}.

7,87

Next, we use the above results to simplify three terms E {s(n) -s' (n)-s(n)-s’ (n)} ,
E{s(n)-s" (n)-s(n)-s; ()} and E{s,(n)-s' (n)-s(n)-s,(m)}. First, by setting R, (n)
as an identity matrix, the terrnE{s(n)-sT (n)-s(n)-s’ (n)} is equal to the Eq. (A.1).
With the modification, we have

E{{s(n)~sT(n)s(n)-sT(n)}} - [a:M +(m, —a:)]l (A.7)
Similarly, by setting E {sh(n)} -h] and h,-h] as an identity matrix in Eq (A.3) and

(A.4), we have

E{s(n)-s"(n)-s(n)-s} ()} =Ma?m, +(m53 _—olm,, ) , (A.8)
E{s,(n)-s"(n)-s(n)-s,(N)} = Mo?o? + (m ~olo? ) : (A.9)
respectively.
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