Chapter 4

STC Combined with FHSS in
Quasti-Stastic Fading Channels

In wireless channels, the transmitted signals are usually distorted by some intentional
or unintentional jamming noises. From Chapter 2, we know that spread-spectrum systems
are the most effective anti-jamming communication techniques, but these techniques cannot
resist the fading effects. However, space-time coding combined with error control coding
and transmit diversity design are effectively minimizing the effects of multipath fading.
Therefore, we propose the design sehemes combined with STC and three various types of
FHSS systems. One is STC combinéd with worst-case 'frequency hopping spread spectrum
(WFHSS) which hops the symbols from ‘all fransmitter antennas into the same frequency
band, another is the joint design of STC and optimum frequency hopping spread spectrum
(OFHSS) which avoids any possible collision of the transmitted symbols, and the other is the
design of combined STC with uniform frequency hopping spread spectrum (UFHSS) which
hops the transmitted symbol randomly over the spread spectrum bandwidth. The three
systems we proposed are called STC/WFHSS, STC/OFHSS, and STC/UFHSS systems,
respectively.

In this chapter, we give the detailed description of the STC/FHSS system model, and
the ML decoding toghther with some suboptimal decoding schemes. We also propose the
performance criteria for constructing good space-time codes and present some simulation

results.
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Figure 4.1: The proposed STC/FHSS system.

4.1 STC/FHSS System Model

Consider the proposed systems as shown in Figure 4.1, there are n and m transmitter
and receiver antennas, respectively. Interleaver issinserted to break burst channel errors and
guarantee memoryless channels, and the M ESKmodulation is utilized to be compatible with
the FHSS. We also assume slow frequency hopping with one hop per symbol for simplicity,
and the hopping patterns generated from-the transmitter are available to the receiver.

For the STC/WFHSS system as shown in Figure 4.2, let the receiver signals of the gth

receiver antenna be expressed as
rg(t) = Y aig()si(t) + 1y(t) (4.1)
i=1

where

ig(t) = Ae
si(t) = /2Essin(wnt)
ng(t) = nr(t) cos (wpt) — r(t) sin (wnt) .
A is a Rayleigh random variable, 6 is the random phase in (0, 27|, F is the symbol energy,

wy is the particular carrier frequency selected by the frequency hopper, 7;(t) and ng(t)

are statistically independent low-pass white Gaussian noise processes with one-sided noise
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Figure 4.2: STC/WFHSS system model

spectral density Ny. After dehopping and demodulation, the received signal r’;,t of the ¢th
receiver antenna in the kth frequency slot at time ¢ is given by
T]z;J = Zo‘msﬁt + nﬁ,t, Vi<g<m (4.2)

=1

ﬁt is the symbol transmitted by the ith antenna in the kth frequency slot at time

where s
t,forall 1 <k <M and 1 <t < Ly a;, denotes the equivalent gain of multipath from
the ith transmitter antenna to the gth.receiver antenna: The transmitted symbols from all
transmitter antennas are hopped into the same frequency band. For slow fading, assume
that the fading coefficients are constant during a frame L, L = 128, and vary from one frame

to another. The noise consisting of the AWGN n‘lﬁvm and the partial-band noise jammer

(PBNJ) n}j,, is denoted by n},, and it can be represented as

k k
Waot T T , T =1
Mgt = { g e (4.3)

név,q,ta xy =0
where z; denotes the jamming state indicator (JSI) of the PBNJ taking value from 1 and
0 with probability p and 1 — p, respectively. Assume ni,qvt and 77§,q,t are independently
Gaussian distributed with zero mean and the variance Ny and N;/p, respectively [13][30];
Ny/p = J/Wy, where J is the total jammer power, W is the system bandwidth, W is the
jamming bandwidth, and p = W, /W, with 0 < p < 1. The probability of z; can be written
as

, Ty =1
Pra)={ (4.4)
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By (4.2), the probability density function of nf]"”t is

k|2 k12
£ (k) = (1= pasexp (—%’) + pasexp (-ﬁ) (@5)

where

1 1
—_— as= :
mNo V7 (No+ Ny/p)

a;=—

The equation (4.5) can be use to derive the likelihood function of the decoding scheme with

respect to the STC/WFHSS system.
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Figure 4.3: STC/UFHSS system model

Figure 4.3 shows the STC/UFHSS system, the transmitter and receiver both have the
same frequency hopping patterns, so we could exactly know which transmitted symbols are
collided together in the same frequency band. The receiver signal ry,, V1 <7 < n,1 <

g <m,and 1 <t < L can be described by an M x 1 column vector, denoted by

2 M
Tirgt = (Mgt gt -+ Tirgs) - (4.6)

The received signals r} o Of the gth receiver antenna transmitted from the i'th antenna in

the kth frequency slot at time ¢ can be expressed as

n
ko= 5k E : ok k
ri/7‘17t o ai/7q8i/)t + ﬁi,uivtai7qsi,t + ,r]l',)qﬂf

=1
il
n
E sk k
= ﬁi/viﬂ:aivqsi,t + ni,,qi (47)
i=1

il
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foralll1<g¢g<m,1<i <n1<k<M,and 1<t <L, where 771-’?7%,5 denotes the composite

noise consisting of the AWGN n{fv’i,’q’t and PBJN n};,, ., and (3, stands for the indicator

,q;0

of collided transmitted symbols taking value from 1 and 0. The probability of 3 ;; can be

written as

, Binig =1
) 62",1',15 =0

— ==

(4.8)

P(ﬁi/,i,t,i # i/) = {

1
7
and (B, = 1 for i = ¢'. where y stands for the number of total frequency hopping bands,
and 1/p is the probability of any two symbols hopped in the same frequency band. If the
transmitted symbols are collided together, the corresponding received signals 7y 4, have the

same band information. Then, we choose one of the receiver signals and denoted it by

’f;q,t’b — (f;at7b’ fg,t,lﬂ e ’fé\,{,,b) . (49)

The selected signals 7, , of the gth receiver antenna in the kth frequency slot at time ¢ at

frequency hopping band b can be represented as

f(];,t,b: Z Bi,t,bai,qgit + ﬁs,t,b (4.10)
=

forall 1 < ¢ <m,1 <k < M1<b<sB({t)yand 1 <t < L, where B(t) denotes the
number of total frequency bands which transmitted symbols occupyed at time instant ¢,
Bl-’t,b is the indicator of collided transmitted symbols in the frequency band b taking val-
ues from 1 and 0, and 7}, , stands for the composite noise consisting of the AWGN 7},
and PBNJ 77, , after dehopping with respect to the signals in the frequency band b. Let
Mo to = Mg + Teol g0y Where z,y is the indicator of the PBNJ taking value from 1 and
0 with probability p and 1 — p, respectively. For example, assume that there are three
transmitter antennas (n = 3), and the signals s, o, and s3; are transmitted at time
instant ¢. As shown in Figure 4.4, we can find that the data sy, and s3, are hopped into the
same frequency band, and then the receiver signals at qth receiver antenna after selected
are denoted by 7,4, and 7, The selected signals denote the total transmitted signals

are hopped into two frequency bands at time instant ¢t. By (4.10), the probability density
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Figure 4.4: Example of the STC/UFHSS system for selected receiver signals

function of 7, , is

(2
n |77q7t7b| }nq,t,b
(- o _ + e ) 4.11
f (Mgep) = (1= p) arexp < N, ) paz Exp ( (No + NJ/P)) 4

The above equation can be used to derivethe dikelihood function of the decoding scheme

with respect to the STC/UFHSS system.
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Figure 4.5: STC/OFHSS system model

For the STC/OFHSS system as shown in Figure 4.5, the received signal rf’qi of the gth
receiver antenna transmitted from the ith antenna in the kth frequency slot at time t is
given by

rf,q’t = ai,qsf’t + nﬁqi (4.12)

forall1 <i<n,1<qg<m1<k<Mandl<t<L,where n,, = 0y, + Titn5; i

16yl

and all these values are defined the same as that in the STC/UFHSS system. By (4.12),
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the probability density function of Uﬁq,t conditioned on z;; is

k|2 B2
f(0ige) = (1= p)agexp ( N, ) + pas exp ( ™o+ NoTo) NJ/p)> : (4.13)

The likelihood function of the decoding schemes can be derived by equation (4.13) in the
STC/OFHSS system.

Space-time codes can achieve transmit diversity as well as a coding gain. In addi-
tional, the signal transmitted by frequency hopping can avoid PBNJ effectively. There-
fore, the STC/FHSS system is combined with temporal, frequency, and spatial domain to
against multipath fading and jamming interferences. With respect to these three types of

STC/FHSS systems, the performance variation could also be observed for comparison.

4.2 STC Combined with Worst-Case FH

Consider the proposed STC/WFHSSsystem as'shown in Figure 4.2. At time instant ¢,
the encoded codewords from all transmitter -antennas are hopped into the same frequency
band. Hence, the received symbolsifrom each receiver antenna are dehopped with the same
hopping pattern. We assume that the channelis‘aslowly flat fading channel, and the fading
coefficients «; , are independent complex Gaussian random variable with zero mean and

variance o7,.

4.2.1 Decoding with CSI Available

In this section, the ML and soboptimal decoding schemes of this proposed system have
been derived in [31]. We show the derived results here for discussion and comparison with
respect to our proposed system. Assume perfect estimation of ;s is available at the
receiver. Let the received signals r = (r¥, ¥V ¢, 1, k), the jamming indicator = (z, ¥V 1),
path gains a = (a;4 V 4,¢), and the estimated symbols § = (§ft \ i,k,t). The optimal

decoding metrics with respect to CSI available are presented in the following section.
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4.2.1.1 Maximum Likelihood Decoding with JSI Available

By (4.5), assume perfect estimation of JSI x,’s are available at the receiver. The likeli-

hood function of r given § and « is given by

L M m
firlé,a,z} = HHHf{nqt—r Zalqslt|szt,alq,xtVz q, }

t=1 k=1 qg=1 i=1
L M m k Ak |2
re, — QG 4S;
= [11I1I exp U TRy LT ) (4.14)
t=1 k=1 g=1 \/7r N0+37?NJ/0) (No + 2Ny /p)

ak

By taking logarithm on the likehood function, 8;,’s can be decoded in the ML sense by

maximizing the following metric:

i i z’”‘: In ! exp | — ris — i s (4.15)
/7 (No + 22N, /p) (No + 27Ny /p) ' '

Suppose x;’s are not available at the receiver. The likelihood function of r given 8, and a,

ie, f{r|8, a}, can be obtained by averaging (4.14) with respect to x;’s. A closed-form
expression of Inf {r |8, a} is then derived as

W;t — > aiq§it|2
| . 424,
Hn{pHH\/ﬂ (No'#2?N;/p) exp< (No+ 27Ny/p)

qlkl

k no k|2
H H exp ‘rqt 21:21 O‘%qsz,t| (4.16)
VT N0+~T%NJ/p) (No + xiNy/p)

q=1 k=1

§F’s can hence be choosen in the ML sense by maximizing the decoding metric in (4.16).

4.4.1.2 Suboptimal Decoding Schemes

Although the ML decoding can provide the optimum error correcting performance, the
computation required to execute (4.16) might limit its feasibility in practical applications.
Besides, the side informations of channel and jamming, i.e., E,/Ny, E,/N;,and p are also
required to be estimated [32][33]. Hence, by ignoring all coefficients in (4.16) and using the

approximation of

exp(z) ~ 1+ x. (4.17)
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A suboptimal scheme SUBI1.1 is proposed with the following decoding metric:

L m M
mginZln 1—|—ZZ

t=1 q=1 k=1

n

2
k K
Tt — E Qi St

i=1

(4.18)

4.2.2 Decoding without CSI

Suppose «; ,’s are not available at the receiver, and the path gains are modeled as inde-
pendent complex Gaussian random variables with zero mean and variance 0 , ber dimension
with respect to Rayleigh fading channels. The optimal decoding metrics of the STC/OFHSS

system with respect to CSI unknown are presented in the following section.

4.2.1.1 Maximum Likelihood Decoding with JSI Available

1 _ 1

Let ayq, = W, ag gz, = (No 2N, /0)” and then f (r|§, a, ) can be written as

L M m
f{r"§7a’m} = HHHf{ Zal,qszt+nqt|sztaalqyxtVZQa }
t=1 k=1 g=1

==l

— ﬁﬁﬁ exp _|T§,t_2?=1ai,q§§t‘
Pl V2 N0+93t2N /p) No+aiNs/p

t=1 q=1

L M m L M m

k|2

= (T es et =>_> > ase |||
t=1 k=1 q=1 t=1 k=1 q=1
n

—9Re <rqt2aquf’;> + ) o8t Z *7qu;§> . (4.19)
=1 =1

The fading gain o, can be presented as

Oéi7q = aR,i,q -+ j@[ﬂ"q (420)

where apr; , and ay; , are statistically independent Gaussian random variable with zero mean

and variance o7, = 1/2. Then, the Re (r¥, 37" | o 887) and (30, o 8%, D00, o ,8%7) of

4,q7%,t 1,q°%,t
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the exponent can be rewritten as

n
k *  Akx o
Re Tq,tg a;,51| = Re
i=1
= Re
= Re

and

n n

~k *  akx
§ :O‘i,qsz’,t§ Q; 450t
i=1 =1

n
k - ~k
Tat (QRiiq — Jal,i,q)si,t
i=1
n n
k K k - Ak
Tat § :O‘R,i,qsi,t — Re Tot E JOri,q55
i=1 =1
n n
k ok k N
Tat E QRigSiy | T Im Tat E QrigSit | (4.21)
i—1 i=1

n n
Z Z(O‘R,Zﬁq +jarig)(QRrg — jal,l,q)gf,téf,t

i=1 I=1

n n
~k sk
(AR R g + al,i,qal,l,q)si,tsl,t

i=1 [=1

+ 3
a=1

il

n n
Z Oé%%,i,q"gi,tP + Z a%i,q"%i,t‘z
i=1 i=1

n n
sk sk
Z Z OrigQ1,q5: 451, (4.22)

1=1
I#i

=1

il

n

~k Ak
§ :O‘R,i,qO‘R,l,qsi,tSl,t +
I8~

1#£i

By averaging «;,’s with respect to the probabilitysdensity function in (4.19), we can get

f(r|3, )

.

P.(r|§,z,a)f(a)dc

-1

M q m n L M
- H H H [alvxt - eXp (_a27$t|7ﬂ§,t|2)] H Z Z a27art/\i‘€,t +1
t=1 k=1 m=1 g=1i=1 t=1 k=1
L M 2
Z Z a2z, z,q,t)
exp [ S (4.23)
Z Z aQ,ﬂEt/\f]:t +1
t=1 k=1
where
a = 1 a — ;
e V(No + 23N, /p) 2T No+aiNg/p
“f,q,t = [(Ts,tglf,t) (Tg,télf,t) e (TStSIft)} ”f,t‘
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vﬁt’s and )\f’t’s stand for the eigenvectors and eigenvalues of the following matrix, respec-

tively:
sk 12 ok ghe ok ok
’il,tL S1,¢852¢ S}lﬁ,tsz,t
ok akx Ak |2 ok ok
S9.t51,t |82,t’ 8948t (4.24)
ok okx ok okx sk |12
SntS1t SntSop T |5n,t

The ML decoding then chooses §ﬁt’s by maximizing (4.23).
4.2.1.2 Suboptimal Decoding Schemes

Although the ML decoding can provide the optimum error-correcting performance, the
complicated arithmetic not only requires high computational complexity but also excludes
the use of the efficient Viterbi algorithm as the decoding metric in (4.23) cannot not be
separated in time domain. To optimize the trade-off between decoding complexity and
performance, we first present the suboptimalscheme SUB1.2 and SUB1.3 with JSI available,
and the values of ay ,,, as,,, )\ﬁt, and uf 47| the following suboptimal schemes are the

same as that in (4.23). The suboptimal scheme -SUB1.2-which chooses 5},’s by maximizing

L M m n m M ‘uk ‘2

Z In [H H Kffxt] . H H (amt Z )\Et e 1> exp agjxtML’t (4.25)
t=1 k=1 q=1 i=1q=1 k=1 Z )\ft +1

k=1
where
2
Kf;?xt = a4, €XP (—amt |7’§7t| ) )

The other suboptimal scheme is SUB1.3 denoted by

2

(4.26)

Suppose «;,’s and z;’s are both not available at the receiver, and the closed-form of

f (7|8) is too complexity to be written. Therefore, we propose three suboptimal decoding
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schemes to reduce the decoding complexity. The first one suboptimal scheme is SUB1.4

which is represented as

TTIT M o k Zt IZk 1 42,0= 1qu’ i
[HHH tht] HH (ZZCLZm:l)‘i,t‘f’l) ’

t=1 k=1g=1 i=1 q=1 t=1 k=1 Z Z as $t:1)\it+1
t=1 k=1 ’

L Py (alyztﬂ)mM(Ll) L M m
+Z 1 o &XP <_a2,xt—1zzz ( | +as |th’ ))
el KEy?) (al,mt:O) t=1 k=1 q=1

2

L M M
a’27rt:1t_zlz zqt+a2wt1 Z 1,q,t!

HH Xiq-exp

| L _ = (4.27)
=1 i1 %ﬂEﬁﬁMM1Zzﬂ
k=1 k=1
where
N, 1 1 L
as = ——— A2 2 =1=

- A i —0— a1 py=1=
No+Ny/p ™™ ey, 7 \/m(No+ NsJp)

L M M -1
Xi,q = [az’xtzl ( Z >\z + as Z >\z t) +1
t

=1 k=1

(4.28)

The derivation of the metric in (4.27) is similar to/that in Appendix B and Appendix C.

Another suboptimal scheme is SUB1.5 with the'following decoding metric

M 2
Z In¢ (1— (szt 0) H H <a2,xt:o Z /\f’t + 1) exp ‘G2,xt7\3uﬁq,t’
k=1

k
=t Agz=0 25 Ay + 1
k=1

n m M
+p (Kllfi?th())M . H H <&2vIt Z )\ﬁt + 1) exXp ‘a2 — 1“@ qt‘ (429)
k=1

i=1 g= k
=la=1 a2,2,=1 Z A+ 1
k=1

1 1 1 1
A2 2y =0="77

a Ti= —_— a ,Tt= By ———— a yLt= =
No "N+ Nsfp TMUTUTVEN, MUY m(No + NaJp)

kg _ k|2 k,q _ k|2
Ki,t,ztzo = Q1,2,=0 €XP <_a’2,9€t=0 ‘rq,t‘ > Ki,t,m:l = A1,2,=1CXpP | —A2z,=1 ‘Tq,t‘
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The other suboptimal scheme SUB1.6 is

2

(4.30)

4.2.3 Design Criteria for Constructing Good Space-Time Codes

We propose two design criteria for constructing good space-time codes of the STC/WFHSS
systems with respect to the wireless jamming channels. The first design criterion is provided
for the case of low diversity. That is, the number of independent subchannels is small. On
the other hands, the second design criterion is proposed for the case of high diversity with
respect to large number of independent subchannels.

First of all, we derive the design criterion for the case of low diversity. To evaluate the
performance of the ML decoding, consider,twe:transmitted sequences s = (sfit Vi,t, k) and
s = (§ft Vi, t, k). Assume perfect estimationsof ov;i’s and x,’s are both available at the
receiver. The conditional pairwise ‘error probability that the decoder decides in favor of s

than s is given by

L m M k n k|2

1 g = Die1 QigSidl
=P In exp | ——% : =
r{gz [\/W(NOJHC?NJ/P) ( No+xiNy/p

1 g=1 k=1
L m M k n ~k 12
1 gt = D i1 QigSidl
< In exp | ——2 ==
2,22 [m%”m/p) ( Mo+ 2N:/p
L m M n ~k 2
D0 D Do aug(siy — 8)
t=1q=1 k=1 |i=1

(4.31)

where @(a) is the complementary error function defined by

- L 006_12/2 T
Q) = —= / da. (4.32)
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Using the inequality @ (a) < 3 exp(—a?/2) V a > 0, the conditional pairwise error probabil-
ity (4.31) can be upper bounded by

t=1

L
1
Pr(s — §laj g, 2 Vi,q,t) < 5 eXP (— Zawtdf(s, §)> (4.33)

where

n

E :O‘lq i,t

=1

1
4(No +xiN;/p)

m M
dQSS ZZ

q=1 k=1

and a,, =

By averaging (4.33) with respect to z;’s and «; ,’s, the pairwise error probability is approx-

imated as

P (s — 3) % (ﬁ) w, (4.34)

where
m T L -1 L m r L -1
we T (0] 0L (X0 )
=1 t'=1g=1i=1 t=1

To minimize decoding error prebability, good codes should hence be constructed by
maximizing W for all possible s and\s. According to the above design criterion, space-time
codes of good performance with respcet to the small values of rm are given in Table 4.1
by a computer search. In Table 4.1, (at,b;)"denote the binary inputs at time ¢ and the

transmitted symbol sﬁt is determined from the encoder output z! by

. { VEs, ifk=al

S = .
ut 0, otherwise

(4.35)

for all 7 and ¢.
Then, we discuss the design criterion for the case of high diversity. The pairwise error

probability conditioned on «;,’s is upper bounded by

e

The pairwise error probability can be further approximated as

- 1
Pr(s — §) = §pL - Wo (4.37)
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Table 4.1: Optimal Space-time codes of the STC/WFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of low diversity.

Memory Generator Sequences
2 (l’tl, .Tg) = bt,1(3, 2) @4 at,1(2, 1) @4 bt(O, 2) @4 at(O, 3)
3 (2, 2h) = a;2(2,2) B4 by_1(3,1) By ar_1(3,3) By by(2,2)
@aa4(2,1)
4 (), 28) = b;_2(0,2) Bg a;_2(0,3) By by1(1,2) By ar_1(2,2)

7
2
@4bi(3,3) By ar(2,2)

where

I 2
(Z it + Ai,t'))
-1

L
(Z it + Ai,t’)

H_/—\
T
M-
i

>
s N
[\o}

h
(_\
HMS “M3

>
p3p3

Good codes should hence be constructed by maximizing W5 for all possible s and s.
According to the design criterion, space-time codes 6f good performance with respcet to the
large values of rm are given in Table 4.2 by a computer search.

Table 4.2: Optimal Space-time codeés of the STC/WFHSS system with
4FSK and 2 transmitter antennas-forrwireless jamming channels with
respect to the case of high diversity.

Memory Generator Sequences
2 (ZL‘%, ZE%) = bt—1(37 0) Py CLt_l(O, 3) Dy bt(27 2) Dy at(3, 3)
3 (I’i, ZE;) = a _2(2, 2) @4 bt_1<1, ].) @4 at_1(3, 1) @4 bt(2, 3)
@4(% ]_, 2)
4 (l‘i, :bt 2(]_ 1) @4 Qy— 2(2 2) @4 bt 1(1 O) @4 Ay — 1(]_ 3)

t
Lg
@4bt(]— 1) Dy at(2 2)

4.3 STC Combined with Optimum FH

Another system we proposed is STC/OFHSS system as shown in Figure 4.5. The encoded
codewords from all transmitter antennas are hopped into distinct frequency bands to avoid

any possible collision of the transmitted symbols. In this section, we derive the ML decoding
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together with some suboptimal decoding schemes with respect to the STC/OFHSS system,

and we also provide the performance criteria for constructing good space-time codes.

4.3.1 Decoding with CSI Available

Assume perfect estimation of «; ,’s is available at the receiver. Let the selected received

k

signals » = (r7,;

V i,q,t k), the jamming indicator * = (z;, V 4,t), path gains o =
(aq ¥V i,q), and the estimated symbols § = (éft V1, k:,t). The optimal decoding metrics

with respect to CSI available are presented in the following section.
4.4.1.1 Maximum Likelihood Decoding with JSI Available

To evaluate the system performance, we derive the ML decoding of space-time codes as
follows. By (4.13), assume perfect estimation of JSI x;,’s are available at the receiver. The

likelihood function is given by

L M m
f {r |§7 o, CU} - H H H Hf {T‘zk,q,t o ai,qgi'c,t 0" ,r]zk,q,t ‘gﬁw Qg gy Tity v Z.7 q, t? k}

MU TT L |rhgs — igdly] 4
= [IIIII1I SO N [

t=1k=1g=1 i=1 \/7r (NO +ai Ny /p

By taking logarithm on the likehood function, §f,t’s can be decoded in the ML sense by

maximizing the following metric:

Siule | 1 Figt — QigSil 4
ZZZZH )exp _N0+x?7tNJ/p : (4.39)

t=1 k=1 q=1 i=1 \/7? (No 4+ z2,Ny/p

Suppose z;;’s are not available at the receiver. The likelihood function of 7 given §, and &,

ie., f{r|5 a}, can be obtained by averaging (4.38) with respect to z;;’s. A closed-form
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expression of Inf {r |8, a} with respect to two transmitter antennas is then derived as
Ak |2 k Ak |2
- qslt‘ |rqt _042,q52t‘
n< (¢p)a>™M_ exp + = :
{( ) L =1 Z::kz: No—i—NJ/p No+ Ny/p
|2 (2
qt - O‘I,qslf,t| 4 \Tf,t - a2,q515,t|
No +Ny/p No
|2 |2
q t O‘qulf,t’ n }qu{,t - a27q3]2€,t‘
1 No Ng + Nj/p

a1q$1t| ‘Tkt_a2q§]2€t|2
’ + 2 i (4.40)
1 No

+(1 = @)paly! _ais) g exp <

ORI
(1= 175

+6(1 - P)a%\j{t 001z, xi,1=1 XD (
1

<
Il
Eond
Il

M:

+(1 = B)(1 = p)aily)i—o exp (— >

q=1 k=
where

. ! (4.41)

a Ti t= = a,xit: - .

b0 \/W_]VD HEe=l \/W(No—i—NJ/p)

P(fcl,t—l)—%—p P(xuO)l—%—l—p (4.42)
P(l’gi = 1|C(717t = 1) = ]C\?t 1 = ¢ P(a?zt - O|x17t = 1) =1- ]C\i 1 =1- QZS (443)
P(xo; =121, =0) = NtQ— = 8 Plaggr=0[21; = 0) =1 — % =1—0 (4.44)

N, is the total frequency hopping bands‘and-@-is the occupied jamming bands of the total

frequency hopping bands.
4.4.1.2 Suboptimal Decoding Schemes

Althought the ML decoding can provide the optimum error correcting performance, the
computation required to execute (4.40) might limit its feasibility in practical applications.
Besides, the side informations of channel and jamming, i.e., E,/Ny, E/Ny,and p are also
required to be estimated. Hence, by ignoring all coefficients in (4.40) and using the approx-
imation of exp(x) ~ 1 + x, we proposed a suboptimal scheme SUB2.1 with the following

decoding metric:

EL: zm: f: Z In [1 + ‘rzk,qt O‘%qszt| ] (4.45)



4.3.2 Decoding without CSI

Suppose «;,’s are not available at the receiver, the optimal decoding metrics of the

STC/OFHSS system with respect to CSI unknown are presented in the following section.

4.4.2.1 Maximum Likelihood Decoding with JSI Available

Let ay4,, = ! = : } and then (4.38) can be rewritten as

st i) 2 = (st o)

L M m n M m n
el = (T oo (- 223 Yo
t=1 k=1 g=1 i=1 t=1 k=1 g=1 i=1
—2Re (Tiq,tazqéf;)] + ‘O‘l qut‘ ) (4.46)
The Re (rf, 07 5%) and |y ¢8%,]* of the exponent can be rewritten as
Re (rfqta;“qéﬁ) = Re (Tf’;w (Rig — JOLig) §ft)
= Re (rﬁq,tam,qéﬁt) + Im (riqial,i,qéf’t) (4.47)

and

s (4.48)

sk |2 e 2
’O‘i,qsz’,t‘ R (O‘R,i,q T O‘Li,q)

By averaging «; ,’s with respect to the conditional probability density function in (4.46), we

can get
| srlsw.cs@)da
L M m n ) m n L M ) -1
= TITTIITT (e - exp ( =z, [rh,) ) - TITI (ZZ [+ 1)
t=1 k=1 g=1 i=1 ¢=11i=1 t=1 k=1
L M 2
Zzamt zqtsft
cexp | 2L (4.49)

&+

L M
Z Z a2,z; ¢
t=1k=1

The ML decoding then chooses F,’s by maximizing (4.49).
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4.4.2.2 Suboptimal Decoding Schemes

To optimize the trade-off between decoding complexity and performance, we first present
the suboptimal scheme SUB2.2 and SUB2.3 with JSI available, and the values of a; 4, ,and as 4, ,
of the following decoding metrics are the same as that in (4.49). The suboptimal scheme

SUB2.2 which chooses §F,’s by maximizing

L M m n m n M -1
1 k|2 k|2 1

> TTTITT (@ exp (—aza b)) 11 > e |3 [+

t=1 -1

k=1q=1 i=1 q=1i k=1
ul E ook ’
> 2,2, 7i,q,t50,t

cexp | 2= . (4.50)

M 12
Z Q2,2+ |Sit ’ +1
k=1

The other suboptimal scheme SUB2.3 which uses the approximation of exp(z) ~ 1 + z is
denoted by

M E ok
L
UE." ‘Zkz:l a27$z’,tri,q,t‘9i,t

SUB2.3 :m@xzzzm {Is¢

M ok
t=1 q=1 i=1 Zk:l A2,z ‘Si,t‘ +1

(4.51)

Suppose «;,’s and z;;’s are both not “available at+the receiver, and the closed-form of
f(7|8) is too complexity to be written. Therefore, we propose three suboptimal decoding
schemes to reduce the decoding complexity. We also assume that the number of total
frequency hopping bans is very large, and there are few transmitter antennas we used.

That is, we assume the transmitted signals from each transmitted antennas are jammed
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independently. The first one suboptimal scheme is SUB2.4 which is represented as

n

L M m n m L M -1
k|2 k|2
H H H H alvxi,tzl exXp _a2:xi,t:1 |Ti7q,t| H H 2 : § : a’2,xi7t=1 Si,t‘ +1
= t=1 k=1

t=1 k=1 g¢=1 i=1

2
k ok
‘Zt 1Zkz 1 Qx” lrzqtszt
- +
Zt 1Zk 1 2:2”—1 zt‘ +1 t'=14=1

m M L n m n I M
exp <_a/2,l‘i,t_1 Z Z (Z Z }Tf’q’t}g +as T§7q7t/ 2)) H H (Zza - §i’t‘2+1>
=1 \t=1 k=1

¢=1 k=1 \t=1 i=1
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ko ok L M M -1
‘Zt le 1a2m” lrzqtszt k|2 12
"\ G2z, =1 E E ‘Si’t} +a3§ :lsi’t’ +1
sy = P >
Zt 1Zk 1%, = zt‘ +1 t=1 k=1 k=1

2
‘ szt—l (Zt 12]9 1 zqts’t+a32k 1rllqt/8/t/>}
(4.52)
42,2, ,=1 (Zt 1 ,t,| >+1

- exp

where

N, 1 1 1
A3 = 77— W2z =177 | 7 = | BONE =0 A1z, ;=1 :
T Nop  TMTU No+ Nyjp SN, 2T V7 (No+ Ny/p)

The derivation of the metric in (4.52) is'similar €6 that in Appendix D and Appendix E.

Another suboptimal scheme is SUB2.5 avith-the following decoding metric

Ziln {(1 —p) Hﬁ (al,xi,tzﬂ - exp (—agyxmzo }Tqu’tf)) H (Z a2.a; ,=0 ‘8“} + 1>

=1

-1

t=1 i=1 k=1g=1
M 2
Z Cl2,zi,t=07’iq,t§ﬁt M m )
- €Xp ]\1221 , + /)H H <a1,xi,t:1 - €Xp <_a2,:p¢,t:1 ‘Tﬁq,t’ >)
Aﬁt ‘ +1 k=1g=1

M 2

E ook
> A2,2; =175 ¢4 54t

m M -1
: H (Z 2,2, ,=1 |Si |2 + 1> - exp 1@21 (4.53)
2

=1 gk
q Sit ‘ +1

where
1 1 1 1
a xz t— a s Lg,t= = a L, t= = a yXg,t= =
2,2, y=0= No 2,.2;=1 No+ No/p 1,254=0 NG Lz =1 \/7r ot No/0)
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The other suboptimal scheme SUB2.6 is

(4.54)

4.3.3 Design Criteria for Constructing Good Space-Time Codes

We propose two design criteria for constructing good space-time codes of the STC/OFHSS
systems with respect to the wireless jamming channels. The first design criterion is provided
for the case of low diversity. That is, the number of independent subchannels is small. On
the other hands, the second design criterion is proposed for the case of high diversity with
respect to large number of independent subchannels. We also assume that the number of
total frequency hopping bans is very large, and there are few transmitter antennas we used.
That is, we assume the transmitted signals, from each transmitted antennas are jammed
independently.

First of all, we derive the design criterion for+the.case of low diversity. To evaluate the
performance of the ML decoding, consider two transmitted sequences s = (sﬁt Vi, t, k) and
5 = (éft V i,t, k). Assume perfect estimation of a;4’s and z;,’s are both available at the
receiver. The conditional pairwise error probability that the decoder decides in favor of §

than s is given by
Py (s — 8laig, vig ¥ i,q,t)

L M m n
S8 555 95 9) o1y S ENRPONY QL MR
1 ) P No + a3 Ns/p

t=1 k=1 g=1 i=1 \/ No+$mNJ/P

= XL: i i Y 1 1 ( Pigt ai7q§§t|2)
< n exp | —
t=1 k=1 ¢=1 i=1 \/7T (NO + $227tNJ/p) No + x?,tNJ/P
L M m n . 9
zzz;mx ~ )]
_0 t=1k=1¢=1i=1 (4.55)
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Using the inequality @ (a) < 3 exp(—a?/2) V a > 0, the conditional pairwise error probabil-

ity (4.55) can be upper bounded by

L n
Pr (s — S|a g, 2 YV i,q,t) < —exp ( Z ag, 7 4(s, ) (4.56)
i=1

t=1

where

m M
~ = 2 1
dit(s, §) = Z Z |ai’q (Sﬁt N Sf’t)’ and o = 4 (No + x?,tNJ/P) '

By averaging (4.56) with respect to x;,’s and o ,s, the pairwise error probability is approx-

imated as
. pt 1 —mn
where
m T L M R\ > L n —m r L M , -1
w = T (2T | TT (3 - )
¢=1i=1 \t=1 k=1 ==t fa=t \ it \t=1 k=1

To minimize decoding error probability, good codes should hence be constructed by
maximizing W3 for all possible s and §. According to the above design criterion, space-time
codes of good performance with respcet to the small values of rm are given in Table 4.3 by

a computer search.

Table 4.3: Optimal Space-time codes of the STC/OFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of low diversity.

Memory Generator Sequences
2 (ZL‘%,ZE%) b (2 2) @4 Qy— 1(1 3) @4 bt(l 1) @4 (lt(2 2)
3 (2}, 2h) = a;2(2,3) By bi_1(3,2) By as_1(3,1) By b4(2,2)
@4(% 1, 1)
4 (ZL‘%, T = bt 2(]_ 1) @4 at_2(2, 2) @4 bt_1(3, 0) @4 at_1(2, 0)

t
2
@4[),5 2 2) @4 Clt(?) 3)

42



Then, we discuss the design criterion for the case of high diversity. The pairwise error

probability conditioned on a is upper bounded by

H
L 2 3 2 3
dit(sus) dit(sas)
1—p)exp (——) +pexp <— ’ )} 4.58
HH{( °) 4Ny ’ 4(No+ Ny/p) (458)
The pairwise error probability can be further approximated as

1
>~ —plexp (=W)) (4.59)
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Good codes should hence be constricted by maximizing W, for all possible s and s.
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According to the design criterion, space-time-codes:of good performance with respcet to the

large values of rm are given in Table 4.4 by a‘computer: search.

Table 4.4: Optimal Space-time codes of the STC/OFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of high diversity.

Memory Generator Sequences
2 (933, $§) = bt_1(2, 2) D4 at_1(3, 3) Dy bt(3, 1) D4 at(2, 2)
3 (ZL‘%, ZE%) = at_g(l, 2) Dy bt_1(2, 1) Dy at_1(17 3) Dy bt(?), 3)
@4at(2, 2)

4 (o}, x

4.4 STC Combined with Uniform FH

The other system we proposed is STC/UFHSS system as shown in Figure 4.3. At
time instant ¢, the encoded codewords from all transmitter antennas are hopped into the

frequency bands randomly over the total spread spectrum bandwidth. In this section, we
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derive the ML decoding together with some suboptimal decoding schemes with respect to

the STC/UFHSS system.

4.4.1 Decoding with CSI Available

Assume perfect estimation of «; ,’s is available at the receiver. Let the selected received
signals 7 = (fé"’t,b V q,t,b,k), the jamming indicator * = (z,, V t,b), path gains o =
(a4 V 1,q), the collided transmitted symbols indicator 8= (me Y b,i,t) ,and the estimated
symbols § = (§ft Vi, k, t). The optimal decoding metrics with respect to CSI available are

presented in the following section.
4.3.1.1 Maximum Likelihood Decoding with JSI Available

To evaluate the system performance, we derive the ML decoding of space-time codes as
follows. By (4.11), assume perfect estimation of JSI z,,’s are available at the receiver. The

likelihood function is given by

{ qtb_ E thbalqszt-'_nqtb

qtb Zz 1ﬁl,t,baz,q51t

N() + l’t7bNJ/p

ztvaz,q7$tba ﬁzztb\vlZ q,t, b kf} (460)

1
\/ (No + 22,N,/p)

exp {4 —

“
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—
=
Il
—
[}
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i

ak

By taking logarithm on the likehood function, §;,’s can be decoded in the ML sense by

maximizing the following metric:

B(t) El 1 ﬁl7t7balvqslt

ZL: i i In : exp fuss (4.61)
X — . .
t=1 k=1 g=1 b=1 \/71' (NO + x%bNJ/p) No + x?,bNJ/p

Suppose x;;,’s are not available at the receiver. The likelihood function of r given 8, B,

and &, i.e. f{

s, a, B}, can be obtained by averaging (4.61) with respect to x;p’s. A
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} is then derived as

q,t,b ZZ 1 5z t,b0; qsz ¢

L B() M m 1
Zﬁhﬁdjg¢ﬂ%+mmfm'_ No+ Ni/p 462

M m
1 qtb Zz lﬁltbaiqszt
+(1-p 111 P~ N,

4.3.1.2 Suboptimal Decoding Schemes

Althought the ML decoding can provide the optimum error correcting performance, the
computation required to execute (4.63) might limit its feasibility in practical applications.
Besides, the side informations of channel and jamming, i.e., Ey,/Ny, E},/N;,and p are also
required to be estimated. Hence, by ignoring all coefficients in (4.63) and use the approx-
imation of exp(x) ~ 1+ x, we propoged a suboptimal scheme SUB3.1 with the following
decoding metric:

L B(t) M m
ZZZZqH

t=1 b=1 k=1 g=1

aETTIN B 5t 08"
Tt b Ly it bYigSig

2). (4.63)

4.4.2 Decoding without CSI

Suppose «;,’s are not available at the receiver, the optimal decoding metrics of the

STC/UFHSS system with respect to CSI unknown are presented in the following section.

4.3.2.1 Maximum Likelihood Decoding with JSI Available

1 _ 1
\/TF(No—&-a:?’bNJ/p) ’ aZ’mt‘b o (NO"FJ??’bNJ/P) ’

Let a14,, = then (4.61) can be rewritten as

L B(t) M L B(thhy=1 M m
f{F .§,a,:c,,3} H Ha’fxt’b - exp —Z Zzagxtb [ q,t,b‘
t=1 b=1 k=1 t=1 k=1 q=1
N 2
—92Re <rq th Z Bi 1.6 45; t) + Z,t,bal’qs” (4.64)
i=1 i=1
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The Re <f’q“,t7b Yoy 5¢,t7b@i7q§§,t) and '271 Bitiqdl,| of the exponent can be rewritten as

Re qth :ﬁltba%qszt
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=Re (7, E :@,t,b QRiq — JOLiq) 8¢

n
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Z Birpigdty| = Z Bitw (QRriq +J0riq) Siy
=1 =1
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1=l (=1
iALN 1A

§ OJiq ﬁz t bsz t

By averaging «; ,’s with respect to the conditional probability density function in (4.64), we

can get

/ F(713, 2, 0 B) f () dox

-1

L M m B(t) m n L M B(t)
~k 2
TTTITTIT (e oxp (=azens [7sl”)) ¢ - S TITT | | D2 D0 D0 azws s +1
t=1 k=1 g=1 b=1 q=1i=1 t=1 k=1 b=1
L M B() o 2
Z Z az Ttb Vi,t.b
t=1k=1 b=1 467)
e .
xp L M B(t . (
Z Z A2, 5N t,b +1
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1 1
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\/W(NothbeJ/p) No+3,Ni/p
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vﬁt’s and )\f’mb’s stand for the eigenvectors and eigenvalues of the following matrix, respec-
tively:

r ~ 2

‘ﬁl,t,b§]f,t‘ (51,t,b§’f,t> <ﬁz7t,b§]§¢> (ﬁl,t,b§’f,t> <ﬁn,t,b§f§,t>
~ - - 2
<52,t,b§’§,t> (ﬁl,t,b§’f,t> ‘ﬁz,t,b%“,t

(52,t,b§’§,t> <ﬁn,t,b§2,t>
L (ﬁn,t,b§§17t> (ﬁl,t,béit) (ﬁn,t,b§ﬁ1t> <62,t,b§12€7t>

The ML decoding then chooses §F,’s by maximizing (4.67).

2

5n7t,b§§z,t

4.3.2.2 Suboptimal Decoding Schemes

To optimize the trade-off between decoding complexity and performance, we present the
suboptimal scheme SUB3.2 and SUB3.3 with JSI available. The suboptimal scheme SUB3.2

which chooses s ,’s by maximizing

L B(t) M m ! m n -1
Z In H H (amt,b exp (—az,xt,b |7~‘§,t7b| )) [H H [(Z a2z, th + 1)
t=1 b=1 k=1q=1 ¢=1 i=1 k=1
2
Z A2,z ,U; t b
- exp : (4.68)

k
Z a2,ﬂft,b)‘i,t,b +1
k=1

where the values of a4, ,, a2z,,, )\f’f’, and u qt are the same as that in (4.67). The other

suboptimal scheme SUB3.3 which uses the approximation of exp(z) ~ 1 + z is denoted by

2

L (t) n ZaQﬂUtb ztb

SUBS3.3 :m@XZZi In |1+ : (4.69)

=1 b=le=t =l D2 gy, Ay + 1
k=1

Suppose «;,’s and x;'s are both not available at the receiver, and the closed-form of
f (r]é, B) is too complexity to be written. Therefore, we propose three suboptimal de-

coding schemes to reduce the decoding complexity. The first one suboptimal scheme is
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SUB3.4 which is represented as
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N, 1 1
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Nop ’ Ny + NJ/p : 7 No ’

The derivation of the metric in (4.70) is similar-to-that in Appendix F. Another suboptimal

-1
) -

scheme is SUB3.5 with the following decoding metrie
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t=1 b=1 g=11i=1 k=1
M m n M -1
0 (428,) " [T (Lot 1) o
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(4.71)
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The other suboptimal scheme SUB3.6 is

L M B() &
n t_z:lkz_: bz:lCLQItbugtb

SUB3.6 :mgmxzm:

. (4.72)
o=t =1 Z Z a2,iﬂt,b)‘?,t,b +1

4.5 Simulation Results and Discussions

In this section, we simulate the 4-state space-time code with two transmitter /receiver an-
tennas, 4FSK modulation, and 1000 frequency hopping bands for used over Rayleigh fading
channels with the AWGN and PBNJ to explore the performance of the STC/FHSS system.
In Figure 4.6-4.34, the space-time code of STC/WFHSS system we used for simulation is

(21, 28) = bi—1(0,2) By az—1 (0,3) Dby (3,2) Byar(2,1). (4.73)
and the space-time code of STC/UFHSS ‘and STC/ZUFHSS system for simulation is
(21, 28) = bi—1 (2, 2)Bsde—y (13)Bab (1, 1) By ar (2,2). (4.74)

For the decoding with CSI available, therimpaet of £,/N; on the bit-error-rate (BER)
performance is first investigated. Observed from the performance curves in Figure 4.6- 4.11
with E,/Ng = 15 dB, p = 0.2 and p = 0.05, the ML decoding with JSI provides the best
performance followed by the ML decoding without JSI and suboptimal decoding scheme.
The performance of the two optimal decodings of the STC/WFHSS system are very closed
no matter whether the JSI is available or not, and the SUB1.1 is observed to provide similar
performance as the optimum decoding. The two optimal decodings of the STC/UFHSS and
STC/OFHSS systems are similar at low and high SNRs, and the suboptimal scheme SUB2.1
and SUB3.1 approximates the ML decoding well at high FEj,/N;. The performance plots of
the ML decoding with CSI available corresponding to different values of p and E,/N; are
shown in Figure 4.12-4.19. Given E}/Ny = 25 dB and E,/N; = 5 dB in Figure 4.12- 4.13,
we can find that the worst performance is located at p = 1. That is, the bandwidth of

the PBNJ is spread as same as the system bandwidth can make the performance worst.
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On the contrary, for E,/N; = 25 dB, the small fraction bandwidth of the PBNJ can make
the performance worst than the full band noise jammer at p = 1. In Figure 4.14- 4.19,
the AWGN is not too small for E,/Ny = 15 dB. Hence, for E,/N; = 25dB, we can find
that the performance is dominated by AWGN mostly, and the worst performance is not
obvious. Figure 4.20- 4.25 show the ML decoding with CSI available corresponding to
different values of p and E,/Ny, an irregular relation between the BER and p of the ML
decoding with respect to three different STC/FHSS systems is observed. Fj should thus
be determined corresponding to the worst case to guarantee the designed performance for
the PBNJ with uncertain p. The ML and suboptimal decoding schemes for FEj,/Ny=15 dB
and E,/N;=10 dB with CSI available are shown in Figure 4.26-4.28. The performance
gap between the simulated decoding schemes of the STC/WFHSS system is almost the
same as p changes, and the performance of the optimal decodings of the STC/OFHSS and
STC/UFHSS system are very close with regpect to different values of p.

For the decoding without CSI, the simulation results of the ML decoding and some
suboptimal decoding schemes are provided in Figure 4.29-4.31. The ML decoding is observed
to provide the optimum BER performance;“and.SUB1.2 provide similar performance as
the optimum decoding. The SUBIZ3 of the STC/WFHSS, SUB2.2 and SUB2.3 of the
STC/OFHSS, SUB3.2 and SUB3.3 of the STC/UFHSS, are proposed to reduce the decoding
complexity by using Viterbi algorithm. In Figure 4.32-4.34, it shows the ML decoding with
JSI available and some suboptimal decoding schemes without JSI. The SUB1.4 and SUB1.5
of the STC/WFHSS, SUB2.4 and SUB2.5 of the STC/OFHSS, and SUB3.4 and SUB3.5
of the STC/UFHSS are observed to provide similar performance of the ML decoding at
high Ej/N;, respectively. Moreover, the SUB1.6, SUB2.6, and SUB3.6 are proposed by
using Viterbi algorithm. Figure 4.35-4.36 show the ML decoding with CSI and JSI available
with respect to different values of memory of space-time codes in Table 4.1 and Table 4.3,
respectively. In Figure 4.37-4.38, it shows the performance of space-time codes in Table 4.2
and Table 4.4 with two transmitter antennas and three receiver antennas. The performance

comparison of the three different STC/FHSS systems is shown in Figure 4.39.
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Finally, The performance comparisons of the system we proposed with the conven-
tional coding scheme, convolutional codes (CC) with 4FSK modulation and two transmit-
ter /receiver antennas over Rayleigh fading channels with PBNJ are shown in Figure 4.40.

The space-time code of the STC/WFHSS system we used for comparison
(2t 2h) = by _9(0,2) g a;_2(0,3) By bi_1(1,2) Dy as_1(2,2) By be(3,3) By ar(2,2). (4.75)
and the space-time code of the STC/UFHSS and STC/OFHSS system is
(2, 28) = bi_o(1,1) By at — 2(2,2) By bi—1(3,0) By ar_1(2,0) By b(2,2) By ar(3,3). (4.76)
Consider a (2, 1) code with the following generator matrix
GD)=[1+D+D*+D* 1+D*+D*]. (4.77)

where D denotes the operator for time_delays. The memory of the CC equals to 4 for
the same decoding complexity with respectstio-the system we proposed, and we combined
CC with space-time block codes (STBC) [16}{17] and=FHSS with Alamouti schemes for
the same special diversity and bahdwidth efficiency @8 our proposed system. In Figure
4.40, we can find that the STC/FHSS system provides much better performance than the
CC/STBC/FHSS system.
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Figure 4.6: Performance plots of STC/WEHSS wwith CSI available for p = 0.2 and E},/Ny =
15 dB.
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Figure 4.7: Performance plots of STC/WFHSS with CSI available for p = 0.05 and E}/Ny =
15 dB.
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Figure 4.8: Performance plots of STC/QEHSS with CSI available for p = 0.2 and E},/Ny =
15 dB.
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Figure 4.9: Performance plots of STC/OFHSS with CSI available for p = 0.05 and E}/Ny =
15 dB.
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Figure 4.10: Performance plots of STC/UEHSSwith CSI available for p = 0.2 and E},/Ny =
15 dB.

T T
| —&— ML Decoding with JSI ]

| —+— ML Decoding without 131
—&— SUB3.1 i

Bit Error Rate

E, /M, (48)

Figure 4.11: Performance plots of STC/UFHSS with CSI available for p = 0.05 and E},/Ny =
15 dB.
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Figure 4.12: BER v.s. p of the ML decoding 6f:ST.C/WFHSS for E,/Ny = 25 dB with CSI
available.
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Figure 4.13: 3-dimension plots of the BER v.s. p for the ML decoding of STC/WFHSS for
Ey/Ny = 25 dB with CSI available.
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Figure 4.14: BER v.s. p of the ML decoding 6f:ST.C/WFHSS for E,/Ny = 15 dB with CSI
available.
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Figure 4.15: 3-dimension plots of the BER v.s. p for the ML decoding of STC/WFHSS for
E,/Ny = 15 dB with CSI available.
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Figure 4.16: BER v.s. p of the ML decodinig of:STC/OFHSS for E;,/Ny = 15 dB with CSI
available.
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Figure 4.17: 3-dimension plots of the BER v.s. p for the ML decoding of STC/OFHSS for
E,/Ny = 15 dB with CSI available.
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Figure 4.18: BER v.s. p of the ML decodinigof:STC/UFHSS for E,/Ny = 15 dB with CSI

available.
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Figure 4.19: 3-dimension plots of the BER v.s. p for the ML decoding of STC/UFHSS for

E,/Ny = 15 dB with CSI available.
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Figure 4.20: BER v.s. p of the ML decoding 6f STC/WFHSS for E,/N; = 10 dB with CSI
available.
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Figure 4.21: 3-dimension plots of the BER v.s. p for the ML decoding of STC/WFHSS for
E,/N; =10 dB with CSI available.
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Figure 4.22: BER v.s. p of the ML decoding 0f:STC/OFHSS for E,/N; = 10 dB with CSI
available.
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Figure 4.23: 3-dimension plots of the BER v.s. p for the ML decoding of STC/OFHSS for
E,/N; =10 dB with CSI available.
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Figure 4.24: BER v.s. p of the ML decodinig of:STC/UFHSS for E,/N; = 10 dB with CSI
available.
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Figure 4.25: 3-dimension plots of the BER v.s. p for the ML decoding of STC/UFHSS for
Ey,/N; =10 dB with CSI available.
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Figure 4.26: BER v.s. p for the ML and SUBI.1idecodings of the STC/WFHSS for E;,/N, =
15 dB and E}/N; = 10 dB with CSI available.
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Figure 4.27: BER v.s. p for the ML and SUB2.1 decodings of the STC/OFHSS for E,/Ny =
15 dB and E;,/N; = 10 dB with CSI available.
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Figure 4.28: BER v.s. p for the ML and SUB3.1: decodings of the STC/UFHSS for E,/N, =
15 dB and E}/N; = 10 dB with CSI available.
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Figure 4.29: Performance plots of the STC/WFHSS without CSI for rho = 0.2, E,/Ny = 20
dB, and JSI available.
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Figure 4.30: Performance plots of the SEC/OFHSS without CSI for p = 0.2, E,/Ny = 15
dB, and JSI available.
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Figure 4.31: Performance plots of the STC/UFHSS without CSI for p = 0.2, E,/Ny = 15
dB, and JSI available.
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Figure 4.32: Performance plots of the STG/WEHSS without CSI for p = 0.2 and E}, /Ny = 20
dB.
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Figure 4.33: Performance plots of the STC/OFHSS without CSI for p = 0.2 and E},/Ny = 15
dB.
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Figure 4.34: Performance plots of the STC/UEFHSS, without CSI for p = 0.2 and E},/Ny = 15

with CSI and JSI available for p
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Figure 4.35: Performance of the STC/WFHSS

0.2,E,/Ny = 15 dB and 2 receiver antennas.
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Figure 4.36: Performance of the STC/WEHSS:with CSI and JSI available for p = 0.2,
Ey/Ny = 15 dB and 3 receiver antennas.
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Figure 4.37: Performance of the STC/OFHSS with CSI and JSI available for p
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0.2,E,/Ny = 15 dB and 2 receiver antennas.
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Figure 4.38: Performance of the STC/OFHSS., Wlth CSI and JSI available for p =
0.2,F,/Nog = 15 dB and 3 receiver antennas. :
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Figure 4.39: Performance of the STC/WFHSS, STC/UFHSS, and STC/OFHSS systems
with memory=2 and CSI available for p = 0.2 and E,/Ny = 15 dB.

68



| —— STC/OFHSS
| —&— STC/UFHES
| —&— STCAWFHSS  H
—B&— CC/STBC/FHSS

Bit Error Rate

E, /M, (dE)

Figure 4.40: Performance of the STC/WFHSS, STC/UFHSS, STC/OFHSS,
CC/STBC/FHSS systems for p = 0.2 and E,/Ny = 20dB.
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Chapter 5

Conclusions

In this thesis, we investigate issues related to the performance of the STC/FHSS system
in wireless PBNJ environments. There are three types of STC/FHSS systems we proposed
for performance evaluation; STC/WFHSS system, STC/OFHSS system, and STC/UFHSS
system. The actual performance of the proposed STC/FHSS system with arbitrary hop-
ping patterns can then be lower and upper‘bounded by the evaluated performance of the
STC/WFHSS and STC/OFHSS systems, respectively:In addition, the performance of the
STC/UFHSS system could approach to the upper bounded performance at large frequency
hopping bands and few transmitter-antennas.

Based on these three proposed system model; the corresponding ML decoding is derived
no matter whether CSI is available or not. Althought the ML decoding with respect to
different reception conditions has been derived, however, the decoding complexity of the
optimal decodings are too high and might limit its feasibility in practical applications.
Besides, the complicated arithmetic of the ML decoding with CSI unknown not only repuires
high computational complexity but also excludes the use of the efficient Viterbi algorithm.
To optimize the trade-off between decoding complexity and performance, there are several
suboptimal decoding schemes: SUB1.1-SUB1.6 for STC/WFHSS system, SUB2.1-SUB2.6
for STC/OFHSS system, and SUB3.1-SUB3.6 for STC/UFHSS system are proposed with
acceptable BER performance. We also proposed two design criteria for constructing good

space-time codes with respect to the wireless channels in the PBNJ environments. One of
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the design criteria is presented for the case of low diversity, and the other is for the case of
high diversity. Good spacd-time codes are then given via a computer search. Verified by
the simulation results, our system outperforms the conventional coding scheme with SISO
channel coding in terms of both bandwidth efficiency and signal-to-noise ratio.

Althought we have presented the three types of STC/FHSS systems for wireless jamming
channels, there are several related issues that remain to be investigated. The coding scheme
we consider in the proposed system is STC techniques. We could consider other multi-input
and multi-output coding schemes, e.g., differential space-time coding and layered space-time
coding, for further error correction in wireless jamming channels. Besides, the frequency
hopping we used is slow frequency hopping. Fast frequency hopping could also be considered
for high frequency diversity gain. Finally, partial-band noise jamming and multitone noise
jamming are the two most effective jamming strategies for inverestigation. Therefore, we
may consider the system we proposed used, in the multitone jamming environments to

improve the system performance.
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Appendix A

Independent of the Jamming Noise in
Time, Frequency, and Space Domains

Assume nq(t) is the AWGN of the gth receiver antenna at time ¢ with zero mean and

variance <2. The power spectral density S,(f) and autocorrelation R, (7) of n(t) are
N N
S() = 5, i) = 25 (7). (A1)

Figure A.1 shows the MFSK detector in the gth receiver antenna where T, is the symbol
duration and fi(t)'s V 1 < k < M are theorthonormal bases. Here we show the noise is
independent in time, frequency, and space*domains.

(1) Noise independent in time domain:

1) [ni;,tln(’;,m} = F {A s /0 s Mg (tl) Mg (tQ) fk (tl) fk: (t2) dt,dts
=[] B e @) .0 )

Ts Ts
_ Mo / / 7 Fe (0) fi (t2) bty (A2)

where ty = t147, and E[-] denotes the expectation. If 7 # 0, we can get E [, (t1) n, (t1)] = 0.
That is, n%, and 7%, are uncorrelated. Therefore, n},’s are independent in time domain as

they are assume to be Gaussian noise.
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Figure A.1: MFSK detector.

(2) Noise independent in frequency domain:

E [y = E [/T /Ts Bl (R f, () fi, (7) dtdr
N /TS/TS ma @)y (TN fry (t) fr, (1) dtdr

= 5 5(t_7—)fk1<)fk2<>dtd7-

2 )
Ts
- P s 0w (43)

where k1 and ko V 1 < kq, ko < M, ky # ks are denoted different frequency slots. The fy, (¢)

and fi, are both orthonormal bases, and hence we can get
Ts

Jia (8) fis () dt= 0. (A.4)

0

Therefore, F [nfltn(’;ﬂ =0, and 775,1573 are independent in frequency domain.
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(3) Noise independent in space domain:

FE [ngl,tn§2,t] = b |:/0 s /0 s Mg (t) Nqo (7') fk (t) fk (T) dtdr
- [ Eu o0

_ /0 . /0 g [0 (O] - E [11g (7)) fry (£) fiy (7) dtdr
’ (A.5)

where ¢; and g2 V' 1 < g1, g2 < m, q1 # ¢o are denoted different receiver antennas. Therefore,

nk,’s are independent in space domain due to E [n% 7k ] =0.
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Appendix B

Derivation of the ML Decoding of
STC/WFHSS Systems without CSI

The derived in (4.23) is discussed in this Appendix by averaging «;,’s with respect to

the conditional probability density function defined in (4.19), and we can get

/ Z f(r]s, 2, 0) f(a)dex
= {ﬁ Ml(afwt)exp (—Ziiaqutl?)} / / exp {EL: Em:am

t=1 k= t=1 k=1 g=1 t=1 k=1 g=1

k Ak 2 sk |2
2Re (th E QR g5 t) + 2Im ( L) E O‘I,i,qsz‘,t> - (E aR,i,q’£i,t|
o i=1
2
+ § alzq|szt’ + § , E :ozRanqus”slt—i— E § :alzqallqsztslt)] }

=1 1=1 i=1 =1
it Ui il 1A

2
1 exp [ — aR,l,l 1 exp [ — aR,n,m 1 exp [ — Q711
2 )
2mo 207, 2T0 0 m 202 ., 2mo 207,

1 aF pym
exp | —55— | dagii- - darpm - dariy - dagm
vV 27TO'n7m 2Jn,m
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L M m L M m
_ m 1 2
- a1z, 2 "eXp | — a2z, |th’
L1 970
t=1 k=1 g=1i=1 i,q t=1 k=1 ¢=1
m L M n
k ak
exp E g E asq, |2Re Tot E QRigSit | + 2Im qt E a”,qszt
=1 Lt=1 k=1 i=1
o |87 + aF, |85, 17 + QR gOR 1SN 8
Ryi,ql°4,t Li,ql°it R,i,qYR1,q°4,t°1,t
i=1 I=1
1AL 1F£4
n 2 n 2
g of
“Ryig lji,q
+ E E OLig 1 1.g87 314 - =Y % bdagy - ddag . (B)
20 e~ )0+
i=1 I=1 =1 =1 2,9
il £
For the real part of the exponent could be represented by R(ap14, @r2,4, " s XRing)
R(@R 1,q7aR2qa"' aan)
L M n
Ak (2
= 2Re § E CLQIEtrqt E :aquSzt o E E E aQItaRz,q‘ 1t|
t=1 k=1 t=1 k=1 =1
L M n n n Oé2
/‘k? "k R)i’q
+ g E g E (2,7, R,i,q ¥R 1,gS; +51 ¢ - E 952
, : o;
t=1 k=1 =1 I=1 =1 1,9
iAl £
n n L M
_ E : 2 :2 : 2 2 :} : D)
= 2Re ORq a2,z th’Lt - QRig a’27l"t’8i,t|
=1 t=1 k=1 i=1 t=1 k=1
L M
Ak sk
)+§ :E :O‘qu QR,lq E :E :a2,xt3i,tsl,t
i=1 I=1 t=1 k=1
iAl 1#i
= Br, AL, — Ap,(A+1)AL (07, = —Vz ) (B.2)
— P Rq4 Ryq R,q R.q 1,q 4 ’
where
Arg= (QR1,4: OR2g: s ARng)
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L M L M L M
_ k sk
Br, = 2Re 5 E a2, tslt E E 2,2, tSQt e E 5 a2, 151

t=1 k=1 t=1 k=1 t=1 k=1
L M
= g E as g, 2Re( qtslt) 2Re( qts2t) 2Re( qtsnt)]
t=1 k=1
L M
E § a2z, th’
t=1 k=1
ok 12 ok 2k ckock
Loy ’il,tL S1,t52¢ sllc,tsz,t
A A 2 A ~
ZZ S9.¢51,t E 2t‘ T S94Spt
A — aQ,{Et . . .
=1 k=1 ko ok sk ok ' 12
SntS1t SnitS2e ’Sn,t’
L M
ZZ k
= agyxtAt.
t=1 k=1
and I is an identity matrix. B, g0 and A are defined as
_ kE sk
BR(L = [QRe( Ta4871, t) 2Re( qts2t) ..,2Re (rq’tsn’t)} (B.3)
NIPA N N N
|57 t]L ST t52t = Sl,tsz,t
A A 2 A ~
85,8 | 8% | i85S
2,t° Lt Sat 2,65m,¢
Y & b (B.4)
ok ok o iak Rk ok |2
SntS1,t “SnatS2e lsn,t’

It is clear that A¥ is nonnegative definite Hermitian, and the eigenvalues of A¥ are nongative

real numbers. Therefore, we can get
viakyH! = pk (B.5)

where V¥ is a unitary matrix and D is a real diagonal matrix. The rows of V¥, forming a
complete orthonormal basis of an N-dimensional vector space, are the eigenvectors of A,’f .

The diagonal elements of D are the eigenvalues /\ﬁt >0, V1<i<n. Equation (B.2) can
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be rewritten as

R(aRr1,4, OR2,4> - - -

_ T
- BR#IAR,(]

L M
- (ZZ(LQ?%BZ’Q’]&) Aqu — Agry,

t=1 k=1
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= k 1 2
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1
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A2 2 LM

I) Ag’q]

1) (vi7a,)]

BY VE(VITAL ) — (Ap,Vh) (Df n
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B, Vi
(2Re( qtslt) 2Re( qt82t) 2Re( qtsnt)) %
(qum zg,q,tv e zs,q,t)
Yrpe = AquVf
(AR1gy OR2gs - QRing) VI
= (Yr1g YR24> -+ YRng) -

78



By equation (B.1), we average ag,;, for the real part of the exponent

m n L M
0o [ 1
/ .. / exXp [ E < E E a2, g, (zf’qiyR,i,q — ()‘ﬁt + —CL2 LM) y%{,@q))] dyR,l,l e dyRm’m
—00 —00 : Xt

q=1 i=1 t=1 k=1

3

ﬂ-n

m n A2z (

- L M exp Z L
LI (SR watrt)  |F05 ay

=1 k=1 =

1

( /Z exp{—(az” + bz + c) }dz = \/gexp {bQZ—;aC} )

Next, the imaginary part of the exponent in (B.1) are defined by I(ay 14, @124, Qrng)

L M 2
55 )
=lk=1 (B.7)
k

1
u k
Z a2,$t>‘i,t +1
=1

I(ar,g, 02,4, 7alnq>
n L M
_ ~k 12
= 2Im E :O‘R,Lq E E :a2:ct qtszt E E E :a27$t|si,t|
i=1 t=1 k=1 i=1 t=1 k=1
1 n n L M
+2 2 >+§ :E :O‘Ryi,qaR,l,q E ,E 2.z, ztslt
Tiq i=1 I=1 #20 Beot
il Ui
77!
—BIqAIq qu(A+I)AIq (B.8)
where
A'qu - (al,l,fp aIa2zq7 tte 7051,”#1)

B;, = 2Im Kiiam qts”) (ZZaM qt32t> (ii“m q,tsm>]

t=1 k=1 t=1 k=1 t=1 k=1
L M
= ZZGQ’:“ [2Im( qt51t) ZIm( qtsgt) ,ZIm( stsflt)]
t=1 k=1
L M
= Zzam Ta
t=1 k=1
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Equation (B.8) can be written as

I(aI,l,qa araq;--- 7aI,n,q>

_ T
- BquAI,q -

Ar,(A+1T) A{ .

L M L M
= (Z Z a27xtB]I€,q,t> A?,q - Az, (Z Z a27gctx4f§€ + I) A?’q

t=1 k=1

k T
a2,$t B17q7tAI7q

—Ag, (Af; +

t=1 k=1

1
——— T ) AT
aQ’It LM ) I7q‘|

[ 1
B (VVIT) AT, - A, (VEDIVIET 4 L) a7

[ 1
_Bl;,q,tvf(vaA?,q) — (A14V7Y) (Df + m1> (VfTA?q)}

- a2 1,
t=1 k=1
L M - 1
kE v T k T
=3 S e WL~ Yo (D )V
L M ['n i) 1
k k 2
NS, 3 ied % 77 y]
t=1 k=1 ; i—1 ayz, LM
n L M 1
k 2
-3 S o (i (A ) ) 39)
where
Wi, = B, V¢
= (QIm( t51 t) 2Im(r tsgt) , 2Im(r I(;tsﬁt))‘/tk
= (Wi Wiy ooy Wl (B.10)
and
YLq = AI,qVic
- (al,l,q7 aI,Q,q7 ey O‘I,n,q)‘/jlsC
- (yI,l,qu Yr,2,q5 -+ > y[,n,q)~ (Bl].)
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By equation (B.1), we average ag,, for the imaginary part of the exponent

m n L M
00 00 1
/ T / €xp [Z <Z Z a2z, (wf,q,tyl,i,q - ()\ﬁt + m) y%i7q>>] dyf,m s dy[,n,m

q=1 i=1 t=1 k=1

L

M 2
k
- Q Z t=1k=1

o exp \izL (B.12)
HZL:I H?:l (Z Z a2,$t)\7lit + ].) qg=1 =1 4 Z ag’mtAﬁt +1
t=1k=1 t=1 1

k—

Hence, the probability density function f (7|8, &) conditioned on JSI available can be ex-

pressed as

L M m
k 12
| | | | | | a1,z * €XP — a2,$t|rq,t‘
q=1

N—————
-~
s
’:]:
VR
M=
M=
=
&
S>/
i
o
N———
N————
|

L M L M 2
m n Z Z asz »Tt z,q, + Z Z az@‘t 1,q,t
t=1 k=1 t=1 k=1
-eXp Z T (B.13)
o=t =1 4350 G20 At 1
t=1 k=1
A closed-form expression of the deeoding metric is derived as

fr]s, z)

L M m m n L M -1
AT T oo ol T} T (331

t=1 k=1 g=1 g=1i=1 t=1 k=1

L M i 2
Z Z 2,2, Ui gt
exp [ (B.14)
Z Z az ft)\zt +1
t=1k=1
where

L M 2 L M 2 L M 2

DD aitiy] = (DD GwnFad (DD drwl (B.15)

t=1 k=1 t=1 k=1 t=1 k=1
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Appendix C

Derivation of the Design Criteria of
STC/WFHSS Systems

The derived results of the pairwise error probability in (4.34) and (4.37) are discussed in
this Appendix, respectively. First of all, by averaging z;’s with respect to the conditional

pairwise error probability defined in (4.33), and then we can get

Pr (S - g’ai,q v Z7Q)
= Z . ZPI' (S - §|ai,qyxt V i7Q7t)Pr (.’L’l) ) 'PT (mL)

cyay! exp< S ) (1) P (22)
3 oo (gt + 0o (<552 )
Lo (i ) +1f H {a-new (~gyea)]

N 1 p L L P
2 {tl_[l {(1 —p) P (Bt)l > {H d—p) " (Bt)] } o (C.1)
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where

The pairwise error probability can be obtained by averaging (C.1) with respect to «;,’s,

ie.,

Py (s — / / (s — §la)f () dex
= X+Y (C.2)

where

X = %/_OO/_OO XL: fI exp (By)| -C | f(ev) dex

o0 oo t/:1 :1

v (]

t=1

e BQ} : c) f (@) dev.

The derivation of Y is similar to that of X. Therefore, we only discuss the derivation of X

in this Appendix. Replace the values of B; and C' in X, and we can get
1 pL—l m ) _
o Z / / o |- ) (6 (0,9) ) ) @de - (C3)
where

1

"o £(No + N fp)
n 2 N M n 2
dz(s,§) = ZZ Zazq f’t_gf’t) +N_();Z Zaz’,q(szt' Szt/)
t=1 k=1 | i=1 k=1 | i=1
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The value of d? (s, 5) can be rewritten as
d; (s .§)
93 Z igsty = 81| + Z

t=1 k=1 Nop

L M M
_ x k sk k k sk
= E E Qi,q Qi g E E (Si,t’ - Si,t’) (si’,t’ — & t’ ‘l‘ a2 § S t’ - zt’ (Si’,t’ - Si’,t’)

2 2

,(1 zt’ - 'Lt’)

i=1 i'=1 t=1 k=1 k=1
L
= A, (Z A+ aQAt,> Al (C.4)
t=1
where ay = %7 A, = (014,004, ...,05,) and Ag is denoted by the following matrix
=k |2 M k =k M k =k k _ zk
kz—:l ‘Su S1t E (51 ¢t — 51 t) (32 D) t) kZl (51 t — 51 t) (Sn,t 8n7t)
M =t M M
> (3]2€t _Slzct) (slft Slft) > ‘527& 5’51& ? > (SQt Sgt) ( Snt 521:)
k=1 k=1 k=1 C.5)
S k‘ k <k Mk | k o | Mk ' 12
k; (sn,t — 5n ) (51 t— 51 t) k; (Sn,t o ) (52 ) t) T kz—:l ‘Sn,t - Sn,t‘

It is clear that A; is nonnegative definite Hermitian, and the eigenvalues of A; are

nonnegative real numbers. Therefore, we can get
VtAtVfI — Dt (06)

where V; is a unitary matrix and D, is a real diagonal matrix. The rows of V, forming a
complete orthonormal basis of an N-dimensional vector space, are the eigenvectors of A;.
The diagonal elements of D, are the eigenvalues \;; > 0, V 1 < i < n. Equation (E.4) can

be rewritten as

L
d2 (s,3) = A, (Z (ViD,V{) + a (Vt/Dt/Vﬁ)) Al
t=1

I
Mh

((Ath) D, (Ath)H> tas ((Ath/) D, (AqV,y)H>

L
(Z i + a2>\i,t’> Vil (C.7)
=1

t

1

I
NE

1

<.
I
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where y; , = (014,024, - -, Ungq) V1, and v],’s stand for the eigenvectors of the matrix A;.

Then, the equation (E.3) with respect to small values of rm can be derived as

2 n L (G e en)) o
2

1 L 1
- 5 0 Z/ / exXp <_a1 (Z /\zt+a2)\zt’> |yzq| )
q=1 =1

1 ) t=1
(|?/1 1)

:% . ZHH<1+a1 (ZA”MQM))l. (C.8)

1 g=11:=1

(’ynm|)d|y1 1|d|ynm|

where |y; ;| are independent Rayleigh-distributed random variables. The value of Y in (E.2)

with similar derivation of X, and we can get

T (H e )] 'C>f(a>da

L (1 % XL: Ai7t> . (C.9)

<

o
-2 11

g=1i=1 t=1
where \;;’s are the eigenvalues of A;:"From (E.5) and (E.6), the pairwise error probability

can be approximated to

2 e ZHH(Hal (Z)\Zt+a2)\,t/>>l. (C.10)

1g=11:i=1

At high SNR’s and SJR’s, the above equation can be simplified as

pL m T -1 pLil(l . ,0) L m r L -1
= o5 H (al Z >\i,t> + S Z H H <G1 < it + a2>\i,t’> >
; t=1

t'=1 g=1 i=1
,OL 1 m T -1 L m r L -1

e O AT i At + Aoy C.11
2 (4(N0+NJ/p)) Hlll Z it +ZUH Z ¢ Aig (C.11)
q ? t'=1 q=1 i=1 t=1

The above equation is the pairwise error probability with respect to the case of low diversity.

Next, we derive the pairwise error probability for the case of high diversity. For a large of
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rm, according to the central limit theorem, the dZ(s,3) in (C.7) approaches a Gaussian

random variable D with the mean up and variance 0%,

r m L T m L 2
Up = Z Z (Z Aig + a/\i,t’> U2D = Z Z (Z iy + a/\z‘,t’> . (C.12)

i=1 g=1 \t=1 i=1 g=1 \t=1

Then, the equation (E.3) can be rewritten as

X:% P Z/ / exp(—alz (d? (s, 3) ) ) da
Z/DO /Doexp —a,D)f (D) dD
ﬁz{exp(;ag%_m)} O(wmn-12).  ca

t'=1

l\DlH

N —

By using the inequality
1 2
Q(x) < 5 ox® (—2*/2) Vx> 0. (C.14)

The equation in (C.13) can be approximated as

2

7 L
Z (Z >\z‘,t + a/\i’t,)

L—1 L

1 p i=1\‘/=1
X< ———)» exp|'=m C.15
<3a z_:l p e > (C.15)

= Yo DS i Fahiy
i=1 \i=1
The value of Y in (E.2) with the similar derivation can be expressed as
. 2
L L Z Z )\i,t

Y < % Zexp —m—== (C.16)
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The pairwise error probability can then be bounded by

P(s — 3)
r L 2 r
p* Z%;Ai’t p - Z1 t=1
< _ i=1t= o . N i= =
< exp | —me = 5 | + 5 (1 p)ZeXp me——=
5 (S) =i 5 (£ e+
=1 \t=1 i=1 \t=1
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Il
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I
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Appendix D

Derivation of the ML Decoding of
STC/OFHSS Systems without CSI

The derived in (4.49) is discussed in this Appendix by averaging «; ,’s with respect to

the conditional probability density function defined in (4.46), and we can get

/ Z F(r[8, @, @) f(e)da

L M n m
(At S ) )
= =11:=1q= q=

=1

n

(2
L M m
k Ak k N
exp Z Z Z Z A2,z [2Re (ri7q7tO‘Rvivq8i,t) +2Im (ri,q,to‘ﬁi,qsz‘,t)
k=1 ¢=1 i=1

t=1

2 (1/2 CJé2

2 2 Ak R7171 I7n7m

— (agiq +07ig) ‘si7t| ]} exp (=55 | ceap | 55 dagi---dagpm.(D.1)
2074 202

For the real part of the exponent could be represented by R(ap14, @r2.4, " s XRing)
n L M
R(aprg ORr2q: - QRng) = 2Re (Z QRiq (Z Z A2,2i, T q 15 t))
=1 k=
1

=1 t=1 1

(ZO‘/qu<Zz]V;a2xf &+ 2)) (D.2)

t=1 k=
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By equation (D.1) with o7 = 1/2, we average a4 for the real part of the exponent

/_Z.../_Zexp [i 'nl <2Re (Zam,q (ZZ(LNM W%))

=1 i= t=1 k=1

n L M
12
- R,z,q E E a2,z; ; Sz’,t‘ +1 dOéR,l,l"'dOéR,n,m
1 t=1 k=1

1=

2

L M .
—m m n Re (Zlkg Q%trzqtszt)
- m n L M 9 exXp L M 12 (D3)
(S S wnstf +1) T £ S ol 41
qzliil t=1 : t=1 :
Next, we also average ay;, for the imaginary part of the exponent in (D.1)
00 n L M
TR A 95 ST S O e |
—oo - g=1 i=1 = t=1 k=1
L M 2
m o lm ’ (E > a27$itrfqt§§t)
_ T t=1 k=1 T
o m n (L M eXp Z L M 9 .4)
(3 3 o [P L) mmlecte 5% s Joh 41
g=1i=1 \i=1k=1 t=1 k=1

Hence, the probability density funétion f(#]8,&) conditioned on JSI available can be ex-

pressed as
L M m n m n L M -1
k|2 N
TTITIITI (v exo (= [l ) ) - TTTT | { D0 D0 aze 85,17 +1
t=1 k=1 q:l =1 q:l =1 t=1 k=1
L M A 2
Z Z A2,2;, 7 q,t5i
t=1k=1
D.
> asa,, |85, +1
t=1k=1
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Appendix E

Derivation of the Design Criteria of
STC/OFHSS Systems

The derived results of the pairwise error probability in (4.57) and (4.59) are discussed in
this Appendix, respectively. First of all, by averaging z;,’s with respect to the conditional

pairwise error probability defined in (4.56), and then we can get

PI' (S - g’ai,q v Z'7 Q)

= Z e Z Pr (s — 8oy g, w13 Wi, GOPFE@ER) - =Pr (25,1)

< Z Z ~exp (-igamd%(s, §)> Py (211) - Pr(2n1)
- %tlj (1 ’ p Y (4(NN1/Z$ Ty e g)) i 1} | tljl {(1 " P)exp (_fz(—ﬁﬂ
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where

PO GV W 7/ - N
Bie =In ((1 - p)) AN+ NoJp) 2 2l st = 50)

q=1 k=1
m M L . 9
;k_l‘az,q<3m Szt)|
C’:H (1—p)exp | -5 N,

The pairwise error probability can be obtained by averaging (E.1) with respect to o ,’s, i.e.,

Pr(s —3) = /Oo---/OOPr(s—>.§|a)f(a)da
= X+Y (E.2)

where
—1

exp (Bilyt/)] -C f (04) da

n

eXp 7 t
1

[

n

vy [ (| e

t

: )f(a) do.

The derivation of Y is similar to that of=X. Therefore; we only discuss the derivation of X

here. Replace the values of B; and C in" X', we can' get

p ZZ/ / exp<—&12d,t, (33> () dex (E.3)

X —

l\DIr—t

where

L M ) N M )
d?’,t’,q(s’ g) - Z Z : ‘Oéig (S;Iit - §7lit)| + N_OkaZ:; ‘ai/ﬂ (Sf/,t/ - gf/,t,)l
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The value of d7 ,, (s, 3) can be rewritten as

dz%,t/,q(svg) = (ZZ |5 it zt} ) Z ‘O‘zq|

t=1 k=1
1;&1
2 2
( ) |cvir 4]
t

b D> fasg[*+bs i 4|
1
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+
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k ~k |2 k =k
Z ‘Si/at — Si’,t} +a2 Z |$’i’,t’ — S,L‘l’tl
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. 1

il
where
Ny
Ay = ——
Nop
L M
12
b= E E |sﬁt—si7t‘ by= g E ‘s,t sk,t +as E |S/t/—
t=1 k=1 t=1 k=1

Then, the equation (E.3) with respect to small values of rm can be derived as

Ln— s,

1
2(
-1

""_—ZZ TT I TT + aby) | 451 + arby)™

The value of Y in (E.2) with respect to the similar derivation, and we can get

([

1 L r L M ) -1
:§anH <1—|—a122‘3f’t—§i7t‘ ) )
¢=1i=1

t=1 k=1

-C’)f(a) do

From (E.5) and (E.6), the pairwise error probability can be bounded by

Ln ™M T L M 9 -
Pr(s — 3§) = %HH(l—i—CLlZ }S?,t_gi,t‘>
g=1 i=1 t=1 k=1

-1

n s

= 30311 §) R RRCETAR

t'=1i'=1 | ¢g=1 \ i=1
ii!
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L
ZZ/ / EXP || = an Z by Z ’aqu +by ’az q’ f(a) do
=11
1751

(E.5)

(E.6)

. (B.7)



At high SNR’s and SJR’s, the above equation can be simplified as

) L, ) mn [ L7 L M o -1
Pr(s—38) < 5 (4(N0+NJ/p>) [HH(ZZ|S§’t_Si’t|)

g=11i=1 \t=1 k=1

i H(ZZ»\)

t'=1v=1 | qg=1 i=1 t=1 k=1
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§ : 2 : k =k |2 Z k(2
|Sl/ t S,L'lyt + asg ‘81’ + Sy 75/|
t=1 k=1 k=1
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L M M -1
k ~k 12 2 : k ~k |2
. |si’7t — Si’,t i |Si’,t’ - S,L‘l7t/ . (ES)
t L

The above equation is the pairwise error probability.with respect to the case of low diversity.
Next, we derive the pairwise error jprobability for the case of high diversity. For a large of

rm, assume N; > Ny, which corresponds to

o <zcvlizv)/p>) > (‘%) ' (E9)

By (E.1), the pairwise error probability can be approximated as

(
L1 L d?,t(S, 5)
=5HH{PGXP (—Wmm)}

qlzl

According to the central limit theorem, the Zthl

random variable D with the mean up and variance 0%,
m L M , m n L M , 2
T2 9 91 P 9p SIERETY NS 96 9] 0 ) SIEEER WEHH
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By averaging (E.10) with respect to the Gaussian random variable D, we then have

Pr(s =) = ey (% (i NJ/m)Q“%‘ (7w Nj/m)“D)

“ ((4 (No JiNJ/p)> “D‘Z_z) : (B.12)

By using the inequality
1 2
Q (a) < 5 €XP (—2*/2) Vz>0. (E.13)

The above equation can be approximated as

SPTexp | — = | - (E.14)

94



Appendix F

Derivation of the ML Decoding of
STC/UFHSS Systems without CSI

The derived in (4.67) is discussed in this Appendix by averaging «;,’s with respect to

the conditional probability density function defined in (4.64), and we can get

L M m n 1 Bt) M m
— <HHaT$t,b> . (HH o ) - €Xp —ZZ Zazvl’t,b|fq,t,b|2
, o
o0 o0 M. m- B
/ / eXP{ZZZZazxM 2Re thbZﬁztbOéquSft)

i=1
n

+21m<qthﬁztbaIquzt> ZOZqu +ZOZI“1

3

2
/62 t bszt

51 t bszt

+E E OéquOéquﬁztbSZtﬁltbSlt-i-E E Oélzq&fzqﬁztbsmﬁltbslt
2l 12 2l 12

Oé%%ll O‘/%nm
- exp —20’%’1 ...exp —20’2’ dagiy- - dagmm. (F.1)
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For the real part of the exponent could be represented by R(ag1.4, ®r2.4:" " > YRing)

R (aR,l,q7 aR,Q,q) s 7aan)
L M B()
= 2Re : :aRzlyq : : : : : :a/2 Tt,b qtbﬁlytybslt -
t=1 k=1 b=1
n M B(t) ]
a? a Bi 8" — +
R7i7q Q‘xtb Zzt7b ’Lt 20_2
i=1 t=1 k=1 b=1 iq
n n L M B(t)
5 sk B sk
Y > arig@rig | DD v, BiasdhiBresst
i=1 =1 t=1 k=1 b=1
il 1£i
= Br, AL, — Ap,(A+1I)AL \m (F.2)
- R)q R,q R7q R:q Z>q q ’
where
Arg=(QR14, QR24 - > R inq)
L M B(t)
_ L 5 Hes ke 5 sk k3 sk
Br, = E , E , asq, ,2Re [(Tq,t,bﬂl,t,bsl,t) ) (Tq,t,bﬁzt,bszt) ) <rq,t,bﬁn7t,bsn,t>:|
t=1 k=1 b=1
L M B()
_ g,k
= E E a2,xt,bBR,t,b- (F.3)
t=1 k=1 b=1
The matrix A is
[ 2 k| 2 k 2 k 2 k 2 k) |
)ﬁl,t,bsu <51,t,b51,t> (52,t,b82,t> (51,t,b81,t> <5n,t,b3n,t>
2
L M B 5 ok 50 ok ok 3 ok 50 ok
ZZ " <ﬁ2,t,b527t B1e657 4 B2,t.655 4 o (BaupSay ) ( Bntpdny
27xt,b

2

ﬁn,t,béfm

| <Bn,t,b§fm> (Bl,t,bgft) (Bn,t,b§27t> (BQ,Lbég,t)
L M
k
=D AL (F.4)

It is clear that Aﬁ , 1s nonnegative definite Hermitian, and the eigenvalues of Aﬁ , are non-

negative real numbers. Therefore, we can get
VieAisVipy =Dy (F.5)
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where V¥, is a unitary matrix and D¥, is a real diagonal matrix. The rows of V¥, forming

a complete orthonormal basis of an N-dimensional vector space, are the eigenvectors of Af b

The diagonal elements of Dﬁb are the eigenvalues Af‘;t’b >0, V1<i<n. Equation (F.2)

can be rewritten as

R (O‘R,Lq? QR2,q; - -
L M B(t)

and

¢k k y7kT\ AT k kE y/7kT
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—— T | AL
st ) e

[ 1
k
a27It,b Z?,b Yg,q - YR,q (Df,b + s LMB(t) I) Yg,q:|
L »Tt,b

- ,
ke
2,2, Z (ZZt,byR,i,q - ()\f,t,b + m) yé,i,q)] (F.6)
35Tt b

L =1

k k
BR,q,tVt,b
~k 2 ~k ~k ) sk ~k ) ~k k
[QRQ (Tq,t,bﬁli,bsl,t) ;2Re (Tq,t,bﬁlubsz,t) -5 2Re (rq,t,bﬁn,t,bsn,tﬂ Vt,b
ek _a.k q,k
<Zl,t,b7 Rotby s zn,t,b)

k
YR,q = AR,th,b
_ k
= (QR1,4)OR24>- > ARmgq) Vt,b

= (yR,LQ7 YR 2,45 - - - 7yR,n,q) .

97



By equation (F.1), we average g, for the real part of the exponent

m L M B(t 1
/ / exp qZ:Z ZZZCme(ztbszq (Aztb+m)y%7i,Q)

1 i=1 t=1 k=1 b=1

'dyR,l,l e dyR,n,m

L M B s
m n tzzlkzzlbz:laaxth:]%b
an = = —
- — p—— exp 2; N TR ) (F.7)
ITITIX X > ase, AF,, +1 LAY Y Y asa Ayt ]
g=1i=1 \t=1 k=1 b=1 T t=1k=1 b=1
Next, we also average ay;, for the imaginary part of the exponent in (F.1)
m n L M B() 1
g,k k 2
exp 2,0, | WitpYRiqg — | N +—)yz)
'dyR,l,l t dyR,n,m
L M B() 2
m n 1&231 kzzl ;31 a2 »Tt,b z t b
ﬂ-nm = = —
- m n L M B(t) P z_; — I. M B(t) (F8)
HH ZZZ 2,2, Afyp 1 SHEEOTD . D a20,, Ay + 1
g=1i=1 \i=1k=1 b=1 t=1k=1 b=1
where
wily, = (20 (7 Bast, ) 2 (7 Fagdhy ) o 2 (7 sl ) | o

vf, and Af, , are the eigenvectors and eigenvalues of the matrix Ay, respectively. Hence, the

probability density function f ( ‘s T B) conditioned on JSI available can be expressed as

-1

L M m B(t) m n L M B(t)
~k 2
[TITITIT (v o0 (s litial?)) ¢ A TITL | { 2303 e M
t=1 k=1 g=1 b=1 q=1 i=1 t=1 k=1 b=1
2
L M B(t) k
q,
D0 D A2, Uiy,
t=1k=1 b=1 (F 9
ex .
P L M B(t . )
DD D Ao Ay 1
t=1 k=1 b=1
where
2 2 2
L M B() L M B(@) L M B()
q,k _ q,k qk
E E A2,my , Wipp| = E E 2.0, ,%pp| T E E , 2.2, , W 3
t=1 k=1 b=1 t=1 k=1 b=1 t=1 k=1 b=1
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