
Chapter 4

STC Combined with FHSS in
Quasti-Stastic Fading Channels

In wireless channels, the transmitted signals are usually distorted by some intentional

or unintentional jamming noises. From Chapter 2, we know that spread-spectrum systems

are the most effective anti-jamming communication techniques, but these techniques cannot

resist the fading effects. However, space-time coding combined with error control coding

and transmit diversity design are effectively minimizing the effects of multipath fading.

Therefore, we propose the design schemes combined with STC and three various types of

FHSS systems. One is STC combined with worst-case frequency hopping spread spectrum

(WFHSS) which hops the symbols from all transmitter antennas into the same frequency

band, another is the joint design of STC and optimum frequency hopping spread spectrum

(OFHSS) which avoids any possible collision of the transmitted symbols, and the other is the

design of combined STC with uniform frequency hopping spread spectrum (UFHSS) which

hops the transmitted symbol randomly over the spread spectrum bandwidth. The three

systems we proposed are called STC/WFHSS, STC/OFHSS, and STC/UFHSS systems,

respectively.

In this chapter, we give the detailed description of the STC/FHSS system model, and

the ML decoding toghther with some suboptimal decoding schemes. We also propose the

performance criteria for constructing good space-time codes and present some simulation

results.
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Figure 4.1: The proposed STC/FHSS system.

4.1 STC/FHSS System Model

Consider the proposed systems as shown in Figure 4.1, there are n and m transmitter

and receiver antennas, respectively. Interleaver is inserted to break burst channel errors and

guarantee memoryless channels, and the MFSK modulation is utilized to be compatible with

the FHSS. We also assume slow frequency hopping with one hop per symbol for simplicity,

and the hopping patterns generated from the transmitter are available to the receiver.

For the STC/WFHSS system as shown in Figure 4.2, let the receiver signals of the qth

receiver antenna be expressed as

rq(t) =
n∑

i=1

αi,q(t)si(t) + ηq(t) (4.1)

where

αi,q(t) = Aejθ

si(t) =
√

2Essin(ωnt)

ηq(t) = ηI(t) cos (ωnt)− ηR(t) sin (ωnt) .

A is a Rayleigh random variable, θ is the random phase in (0, 2π] , Es is the symbol energy,

ωn is the particular carrier frequency selected by the frequency hopper, ηI(t) and ηR(t)

are statistically independent low-pass white Gaussian noise processes with one-sided noise
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Figure 4.2: STC/WFHSS system model

spectral density N0. After dehopping and demodulation, the received signal rk
q,t of the qth

receiver antenna in the kth frequency slot at time t is given by

rk
q,t =

n∑
i=1

αi,qs
k
i,t + ηk

q,t, ∀ 1 ≤ q ≤ m (4.2)

where sk
i,t is the symbol transmitted by the ith antenna in the kth frequency slot at time

t, for all 1 ≤ k ≤ M and 1 ≤ t ≤ L, αi,q denotes the equivalent gain of multipath from

the ith transmitter antenna to the qth receiver antenna. The transmitted symbols from all

transmitter antennas are hopped into the same frequency band. For slow fading, assume

that the fading coefficients are constant during a frame L, L = 128, and vary from one frame

to another. The noise consisting of the AWGN ηk
W,q,t and the partial-band noise jammer

(PBNJ) ηk
J,q,t is denoted by ηk

q,t, and it can be represented as

ηk
q,t =

{
ηk

W,q,t + xtη
k
J,q,t, xt = 1

ηk
W,q,t, xt = 0

(4.3)

where xt denotes the jamming state indicator (JSI) of the PBNJ taking value from 1 and

0 with probability ρ and 1 − ρ, respectively. Assume ηk
w,q,t and ηk

J,q,t are independently

Gaussian distributed with zero mean and the variance N0 and NJ/ρ, respectively [13][30];

NJ/ρ = J/WJ , where J is the total jammer power, Ws is the system bandwidth, WJ is the

jamming bandwidth, and ρ = WJ/Ws with 0 ≤ ρ ≤ 1. The probability of xt can be written

as

PXt (xt) =

{
ρ, xt = 1

1− ρ, xt = 0
. (4.4)
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By (4.2), the probability density function of ηk
q,t is

f
(
ηk

q,t

)
= (1− ρ) a1 exp

(
−
∣∣ηk

q,t

∣∣2
N0

)
+ ρa2 exp

(
−

∣∣ηk
q,t

∣∣2
(N0 + NJ/ρ)

)
(4.5)

where

a1=
1√
πN0

a2=
1√

π (N0 + NJ/ρ)
.

The equation (4.5) can be use to derive the likelihood function of the decoding scheme with

respect to the STC/WFHSS system.

Figure 4.3: STC/UFHSS system model

Figure 4.3 shows the STC/UFHSS system, the transmitter and receiver both have the

same frequency hopping patterns, so we could exactly know which transmitted symbols are

collided together in the same frequency band. The receiver signal ri′,q,t ∀1 ≤ i′ ≤ n, 1 ≤

q ≤ m, and 1 ≤ t ≤ L can be described by an M × 1 column vector, denoted by

ri′,q,t =
(
r1
i,q,t, r

2
i′,q,t, . . . , rM

i′,q,t

)
. (4.6)

The received signals rk
i′,q,t of the qth receiver antenna transmitted from the i′th antenna in

the kth frequency slot at time t can be expressed as

rk
i′,q,t = αi′,qŝ

k
i′,t +

n∑
i=1
i6=i′

βi′,i,tαi,qŝ
k
i,t

+ ηk
i′,q,t

=
n∑

i=1
i6=i′

βi′,i,tαi,qŝ
k
i,t

+ ηk
i′,q,t (4.7)

24



for all 1 ≤ q ≤ m, 1 ≤ i′ ≤ n, 1 ≤ k ≤ M, and 1 ≤ t ≤ L, where ηk
i′,q,t denotes the composite

noise consisting of the AWGN ηk
W,i′,q,t and PBJN ηk

J,i′,q,t, and βi′,i,t stands for the indicator

of collided transmitted symbols taking value from 1 and 0. The probability of βi′,i,t can be

written as

P (βi′,i,t, i 6= i′) =

{
1
µ

, βi′,i,t = 1

1− 1
µ

, βi′,i,t = 0
(4.8)

and βi′,i,t = 1 for i = i′. where µ stands for the number of total frequency hopping bands,

and 1/µ is the probability of any two symbols hopped in the same frequency band. If the

transmitted symbols are collided together, the corresponding received signals ri′,q,t have the

same band information. Then, we choose one of the receiver signals and denoted it by

r̃q,t,b =
(
r̃1
q,t,b, r̃

2
q,t,b, . . . , r̃M

q,t,b

)
. (4.9)

The selected signals r̃k
q,t,b of the qth receiver antenna in the kth frequency slot at time t at

frequency hopping band b can be represented as

r̃k
q,t,b=

n∑
i=1
i6=i′

β̃i,t,bαi,qŝ
k
i,t

+ η̃k
q,t,b (4.10)

for all 1 ≤ q ≤ m, 1 ≤ k ≤ M, 1 ≤ b ≤ B(t), and 1 ≤ t ≤ L, where B(t) denotes the

number of total frequency bands which transmitted symbols occupyed at time instant t,

β̃i,t,b is the indicator of collided transmitted symbols in the frequency band b taking val-

ues from 1 and 0, and η̃k
q,t,b stands for the composite noise consisting of the AWGN η̃k

J,q,t,b

and PBNJ η̃k
J,q,t,b after dehopping with respect to the signals in the frequency band b. Let

ηk
q,t,b = ηk

W,q,t,b + xt,bη
k
J,q,t,b, where xt,b is the indicator of the PBNJ taking value from 1 and

0 with probability ρ and 1 − ρ, respectively. For example, assume that there are three

transmitter antennas (n = 3), and the signals s1,t, s2,t, and s3,t are transmitted at time

instant t. As shown in Figure 4.4, we can find that the data s2,t and s3,t are hopped into the

same frequency band, and then the receiver signals at qth receiver antenna after selected

are denoted by r̃1,q,t and r̃2,q,t. The selected signals denote the total transmitted signals

are hopped into two frequency bands at time instant t. By (4.10), the probability density

25



Figure 4.4: Example of the STC/UFHSS system for selected receiver signals

function of η̃k
q,t,b is

f
(
η̃k

q,t,b

)
= (1− ρ) a1 exp

(
−
∣∣η̃k

q,t,b

∣∣2
N0

)
+ ρa2 exp

(
−

∣∣η̃k
q,t,b

∣∣2
(N0 + NJ/ρ)

)
. (4.11)

The above equation can be used to derive the likelihood function of the decoding scheme

with respect to the STC/UFHSS system.

Figure 4.5: STC/OFHSS system model

For the STC/OFHSS system as shown in Figure 4.5, the received signal rk
i,q,t of the qth

receiver antenna transmitted from the ith antenna in the kth frequency slot at time t is

given by

rk
i,q,t = αi,qs

k
i,t + ηk

i,q,t (4.12)

for all 1 ≤ i ≤ n, 1 ≤ q ≤ m, 1 ≤ k ≤ M and 1 ≤ t ≤ L, where ηk
i,q,t = ηk

W,i,i,t + xi,tη
k
J,i,i,t,

and all these values are defined the same as that in the STC/UFHSS system. By (4.12),
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the probability density function of ηk
i,q,t conditioned on xi,t is

f
(
ηk

i,q,t

)
= (1− ρ) a1 exp

(
−
∣∣ηk

i,q,t

∣∣2
N0

)
+ ρa2 exp

(
−

∣∣ηk
i,q,t

∣∣2
(N0 + NJ/ρ)

)
. (4.13)

The likelihood function of the decoding schemes can be derived by equation (4.13) in the

STC/OFHSS system.

Space-time codes can achieve transmit diversity as well as a coding gain. In addi-

tional, the signal transmitted by frequency hopping can avoid PBNJ effectively. There-

fore, the STC/FHSS system is combined with temporal, frequency, and spatial domain to

against multipath fading and jamming interferences. With respect to these three types of

STC/FHSS systems, the performance variation could also be observed for comparison.

4.2 STC Combined with Worst-Case FH

Consider the proposed STC/WFHSS system as shown in Figure 4.2. At time instant t,

the encoded codewords from all transmitter antennas are hopped into the same frequency

band. Hence, the received symbols from each receiver antenna are dehopped with the same

hopping pattern. We assume that the channel is a slowly flat fading channel, and the fading

coefficients αi,q are independent complex Gaussian random variable with zero mean and

variance σ2
i,q.

4.2.1 Decoding with CSI Available

In this section, the ML and soboptimal decoding schemes of this proposed system have

been derived in [31]. We show the derived results here for discussion and comparison with

respect to our proposed system. Assume perfect estimation of α′
i,qs is available at the

receiver. Let the received signals r = (rk
q,t ∀ q, t, k), the jamming indicator x = (xt ∀ t),

path gains α = (αi,q ∀ i, q), and the estimated symbols ŝ =
(
ŝk

i,t ∀ i, k, t
)
. The optimal

decoding metrics with respect to CSI available are presented in the following section.
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4.2.1.1 Maximum Likelihood Decoding with JSI Available

By (4.5), assume perfect estimation of JSI xt’s are available at the receiver. The likeli-

hood function of r given ŝ and α is given by

f {r |ŝ, α, x} =
L∏

t=1

M∏
k=1

m∏
q=1

f

{
ηk

q,t = rk
q,t −

n∑
i=1

αi,qŝ
k
i,t

∣∣ŝk
i,t, αi,q, xt ∀ i, q, t

}

=
L∏

t=1

M∏
k=1

m∏
q=1

1√
π (N0 + x2

t NJ/ρ)
exp

(
−
∣∣rk

q,t −
∑n

i=1 αi,qŝ
k
i,t

∣∣2
(N0 + x2

t NJ/ρ)

)
.(4.14)

By taking logarithm on the likehood function, ŝk
i,t’s can be decoded in the ML sense by

maximizing the following metric:

L∑
t=1

M∑
k=1

m∑
q=1

ln

{
1√

π (N0 + x2
t NJ/ρ)

exp

(
−
∣∣rk

q,t −
∑n

i=1 αi,qŝ
k
i,t

∣∣2
(N0 + x2

t NJ/ρ)

)}
. (4.15)

Suppose xt’s are not available at the receiver. The likelihood function of r given ŝ, and α,

i.e., f {r |ŝ, α}, can be obtained by averaging (4.14) with respect to xt’s. A closed-form

expression of lnf {r |ŝ, α} is then derived as

L∏
t=1

ln

{
ρ

m∏
q=1

M∏
k=1

1√
π (N0 + x2

t NJ/ρ)
exp

(
−
∣∣rk

q,t −
∑n

i=1 αi,qŝ
k
i,t

∣∣2
(N0 + x2

t NJ/ρ)

)

+(1− ρ)
m∏

q=1

M∏
k=1

1√
π (N0 + x2

t NJ/ρ)
exp

(
−
∣∣rk

q,t −
∑n

i=1 αi,qŝ
k
i,t

∣∣2
(N0 + x2

t NJ/ρ)

)}
. (4.16)

ŝk
i,t’s can hence be choosen in the ML sense by maximizing the decoding metric in (4.16).

4.4.1.2 Suboptimal Decoding Schemes

Although the ML decoding can provide the optimum error correcting performance, the

computation required to execute (4.16) might limit its feasibility in practical applications.

Besides, the side informations of channel and jamming, i.e., Eb/N0, Eb/NJ , and ρ are also

required to be estimated [32][33]. Hence, by ignoring all coefficients in (4.16) and using the

approximation of

exp(x) ≈ 1 + x. (4.17)
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A suboptimal scheme SUB1.1 is proposed with the following decoding metric:

min
ŝ

L∑
t=1

ln

1 +
m∑

q=1

M∑
k=1

∣∣∣∣∣rk
q,t −

n∑
i=1

αi,qŝ
k
i,t

∣∣∣∣∣
2
. (4.18)

4.2.2 Decoding without CSI

Suppose αi,q’s are not available at the receiver, and the path gains are modeled as inde-

pendent complex Gaussian random variables with zero mean and variance σ2
i,q per dimension

with respect to Rayleigh fading channels. The optimal decoding metrics of the STC/OFHSS

system with respect to CSI unknown are presented in the following section.

4.2.1.1 Maximum Likelihood Decoding with JSI Available

Let a1,xt = 1q
π(N0+x2

t NJ/ρ)
, a2,xt = 1

(N0+x2
t NJ/ρ)

, and then f (r |ŝ, α, x) can be written as

f {r |ŝ, α, x} =
L∏

t=1

M∏
k=1

m∏
q=1

f

{
rk
q,t =

n∑
i=1

αi,qŝ
k
i,t + ηk

q,t

∣∣ŝk
i,t, αi,q, xt ∀ i, q, t

}

=
L∏

t=1

M∏
k=1

m∏
q=1

1√
π (N0 + x2

t NJ/ρ)
exp

{
−
∣∣rk

q,t −
∑n

i=1 αi,qŝ
k
i,t

∣∣
N0 + x2

t NJ/ρ

}

=

{
L∏

t=1

M∏
k=1

m∏
q=1

a1,xt

}
· exp

(
−

L∑
t=1

M∑
k=1

m∑
q=1

a2,xt

[∣∣rk
q,t

∣∣2
−2Re

(
rk
q,t

n∑
i=1

α∗
i,qŝ

k∗
i,t

)
+

n∑
i=1

αi,qŝ
k
i,t

n∑
l=1

α∗
i,qŝ

k∗
i,t

)
. (4.19)

The fading gain αi,q can be presented as

αi,q = αR,i,q + jαI,i,q (4.20)

where αR,i,q and αI,i,q are statistically independent Gaussian random variable with zero mean

and variance σ2
i,q = 1/2. Then, the Re

(
rk
q,t

∑n
i=1 α∗

i,qŝ
k∗
i,t

)
and

(∑n
i=1 αi,qŝ

k
i,t

∑n
l=1 α∗

i,qŝ
k∗
i,t

)
of

29



the exponent can be rewritten as

Re

(
rk
q,t

n∑
i=1

α∗
i,qŝ

k∗
i,t

)
= Re

(
rk
q,t

n∑
i=1

(αR,i,q − jαI,i,q)ŝ
k
i,t

)

= Re

(
rk
q,t

n∑
i=1

αR,i,qŝ
k
i,t

)
− Re

(
rk
q,t

n∑
i=1

jαI,i,qŝ
k
i,t

)

= Re

(
rk
q,t

n∑
i=1

αR,i,qŝ
k
i,t

)
+ Im

(
rk
q,t

n∑
i=1

αI,i,qŝ
k
i,t

)
, (4.21)

and

n∑
i=1

αi,qŝ
k
i,t

n∑
l=1

α∗
i,qŝ

k∗
i,t =

n∑
i=1

n∑
l=1

(αR,i,q + jαI,i,q)(αR,l,q − jαI,l,q)ŝ
k
i,tŝ

k
l,t

=
n∑

i=1

n∑
l=1

(αR,i,qαR,l,q + αI,i,qαI,l,q)ŝ
k
i,tŝ

k
l,t

=
n∑

i=1

α2
R,i,q|ŝk

i,t|2 +
n∑

i=1

α2
I,i,q|ŝk

i,t|2

+
n∑

i=1
i6=l

n∑
l=1
l6=i

αR,i,qαR,l,qŝ
k
i,tŝ

k
l,t +

n∑
i=1
i6=l

n∑
l=1
l6=i

αI,i,qαI,l,qŝ
k
i,tŝ

k
l,t. (4.22)

By averaging αi,q’s with respect to the probability density function in (4.19), we can get

f(r |ŝ,x )

=

∫ ∞

−∞
Pr(r |ŝ,x , α)f(α)dα

=

{
L∏

t=1

M∏
k=1

q∏
m=1

[
a1,xt · exp

(
−a2,xt|rk

q,t|2
)]}

·


m∏

q=1

n∏
i=1

( L∑
t=1

M∑
k=1

a2,xtλ
k
i,t + 1

)−1

·exp


∣∣∣∣( L∑

t=1

M∑
k=1

a2,xtu
k
i,q,t

)∣∣∣∣2
L∑

t=1

M∑
k=1

a2,xtλ
k
i,t + 1



 (4.23)

where

a1,xt =
1√

π(N0 + x2
t NJ/ρ)

a2,xt =
1

N0 + x2
t NJ/ρ

uk
i,q,t =

[(
rk
q,tŝ

k
1,t

) (
rk
q,tŝ

k
1,t

)
· · ·
(
rk
q,tŝ

k
1,t

)]
vk

i,t.
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vk
i,t’s and λk

i,t’s stand for the eigenvectors and eigenvalues of the following matrix, respec-

tively: 
|ŝk

1,t|2 ŝk
1,tŝ

k∗
2,t · · · ŝk

1,tŝ
k∗
n,t

ŝk
2,tŝ

k∗
1,t |ŝk

2,t|2 ··· ŝk
2,tŝ

k∗
n,t

...
...

. . .
...

ŝk
n,tŝ

k∗
1,t ŝk

n,tŝ
k∗
2,t · · · |ŝk

n,t|2

 . (4.24)

The ML decoding then chooses ŝk
i,t’s by maximizing (4.23).

4.2.1.2 Suboptimal Decoding Schemes

Although the ML decoding can provide the optimum error-correcting performance, the

complicated arithmetic not only requires high computational complexity but also excludes

the use of the efficient Viterbi algorithm as the decoding metric in (4.23) cannot not be

separated in time domain. To optimize the trade-off between decoding complexity and

performance, we first present the suboptimal scheme SUB1.2 and SUB1.3 with JSI available,

and the values of a1,xt , a2,xt , λk
i,t, and uk

i,q,t in the following suboptimal schemes are the

same as that in (4.23). The suboptimal scheme SUB1.2 which chooses ŝk
i,t’s by maximizing

L∑
t=1

ln


[

M∏
k=1

m∏
q=1

Kk,q
i,t,xt

]
·


n∏

i=1

m∏
q=1


(

a2,xt

M∑
k=1

λk
i,t + 1

)
exp

a2,xt

∣∣uk
i,q,t

∣∣2
M∑

k=1

λk
i,t + 1




 (4.25)

where

Kk,q
i,t,xt

= a1,xt exp
(
−a2,xt

∣∣rk
q,t

∣∣2) .

The other suboptimal scheme is SUB1.3 denoted by

SUB1.3 : max
ŝ

m∑
q=1

n∑
i=1


∣∣∣∣ L∑
t=1

M∑
k=1

a2,xtu
k
i,q,t

∣∣∣∣2
L∑

t=1

M∑
k=1

a2,xtλ
k
i,t + 1

 . (4.26)

Suppose αi,q’s and xt’s are both not available at the receiver, and the closed-form of

f (r|ŝ) is too complexity to be written. Therefore, we propose three suboptimal decoding
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schemes to reduce the decoding complexity. The first one suboptimal scheme is SUB1.4

which is represented as
[

L∏
t=1

M∏
k=1

m∏
q=1

Kk,q
i,t,xt

]
·


n∏

i=1

m∏
q=1


(

L∑
t=1

M∑
k=1

a2,xt=1λ
k
i,t+1

)
exp


∣∣∣∑L

t=1

∑M
k=1 a2,xt=1u

k
i,q,t

∣∣∣2
L∑

t=1

M∑
k=1

a2,xt=1λk
i,t+1






+
L∑

t′=1

 ρ(L−1)

(1− ρ)−1 ·

(
a

1,xt=1

)mM(L−1)

(
a

1,xt=0

)−mM
· exp

(
−a2,xt=1

L∑
t=1

M∑
k=1

m∑
q=1

(∣∣rk
q,t

∣∣2 + a3

∣∣rk
q,t′

∣∣2))


·
m∏

q=1

n∏
i=1

Xi,q · exp


∣∣∣∣a2,xt=1

L∑
t=1

M∑
k=1

uk
i,q,t + a2,xt=1a3

M∑
k=1

uk
i,q,t′

∣∣∣∣2
a2,xt=1

M∑
k=1

λk
i,t + a2,xt=1a3

M∑
k=1

λk
i,t′ + 1


 (4.27)

where

a3 =
NJ

N0ρ
a2,xt=1=

1

N0 + NJ/ρ
a1,xt=0=

1√
πN0

a1,xt=1=
1√

π (N0 + NJ/ρ)

Xi,q =

[
a2,xt=1

(
L∑

t=1

M∑
k=1

λk
i,t + a3

M∑
k=1

λk
i,t

)
+ 1

]−1

. (4.28)

The derivation of the metric in (4.27) is similar to that in Appendix B and Appendix C.

Another suboptimal scheme is SUB1.5 with the following decoding metric

L∑
t=1

ln

(1− ρ)
(
Kk,q

i,t,xt=0

)Mm

·


n∏

i=1

m∏
q=1


(

a2,xt=0

M∑
k=1

λk
i,t + 1

)
exp


∣∣a2,xt=0u

k
i,q,t

∣∣2
a2,xt=0

M∑
k=1

λk
i,t + 1





+ρ
(
Kk,q

i,t,xt=0

)Mm

·


n∏

i=1

m∏
q=1


(

a2,xt

M∑
k=1

λk
i,t + 1

)
exp


∣∣a2,xt=1u

k
i,q,t

∣∣2
a2,xt=1

M∑
k=1

λk
i,t + 1




 (4.29)

where

a2,xt=0=
1

N0

a2,xt=1=
1

N0 + NJ/ρ
a1,xt=0=

1√
πN0

a1,xt=1=
1√

π (N0 + NJ/ρ)

Kk,q
i,t,xt=0 = a1,xt=0 exp

(
−a2,xt=0

∣∣rk
q,t

∣∣2) Kk,q
i,t,xt=1 = a1,xt=1 exp

(
−a2,xt=1

∣∣rk
q,t

∣∣2)
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The other suboptimal scheme SUB1.6 is

SUB1.6 : max
ŝ

m∑
q=1

n∑
i=1


∣∣∣∣ L∑
t=1

M∑
k=1

uk
i,q,t

∣∣∣∣2
L∑

t=1

M∑
k=1

λk,q
i,t,xt

+ 1

 . (4.30)

4.2.3 Design Criteria for Constructing Good Space-Time Codes

We propose two design criteria for constructing good space-time codes of the STC/WFHSS

systems with respect to the wireless jamming channels. The first design criterion is provided

for the case of low diversity. That is, the number of independent subchannels is small. On

the other hands, the second design criterion is proposed for the case of high diversity with

respect to large number of independent subchannels.

First of all, we derive the design criterion for the case of low diversity. To evaluate the

performance of the ML decoding, consider two transmitted sequences s = (sk
i,t ∀ i, t, k) and

s̃ = (s̃k
i,t ∀ i, t, k). Assume perfect estimation of αi,q’s and xt’s are both available at the

receiver. The conditional pairwise error probability that the decoder decides in favor of s̃

than s is given by

Pr (s → s̃|αi,q, xt ∀ i, q, t)

= Pr

{
L∑

t=1

m∑
q=1

M∑
k=1

ln

[
1√

π(N0 + x2
t NJ/ρ)

exp

(
−
|rk

q,t −
∑n

i=1 αi,qs
k
i,t|2

N0 + x2
t NJ/ρ

)]

≤
L∑

t=1

m∑
q=1

M∑
k=1

ln

[
1√

π(N0 + x2
t NJ/ρ)

exp

(
−
|rk

q,t −
∑n

i=1 αi,qs̃
k
i,t|2

N0 + x2
t NJ/ρ

)]}

= Q



√√√√√√ L∑
t=1

m∑
q=1

M∑
k=1

∣∣∣∣ n∑
i=1

αi,q(sk
i,t − s̃k

i,t)

∣∣∣∣2
2(N0 + x2

t NJ/ρ)

 (4.31)

where Q(a) is the complementary error function defined by

Q (a)
.
=

1√
2π

∫ ∞

a

e−x2/2dx. (4.32)
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Using the inequality Q (a) ≤ 1
2
exp(−a2/2) ∀ a ≥ 0, the conditional pairwise error probabil-

ity (4.31) can be upper bounded by

Pr (s → s̃|αi,q, xt ∀ i, q, t) ≤ 1

2
exp

(
−

L∑
t=1

axtd
2
t (s, s̃)

)
(4.33)

where

d2
t (s, s̃) =

m∑
q=1

M∑
k=1

∣∣∣∣∣
n∑

i=1

αi,q(s
k
i,t − s̃k

i,t)

∣∣∣∣∣
2

and axt =
1

4(N0 + x2
t NJ/ρ)

.

By averaging (4.33) with respect to xt’s and αi,q’s, the pairwise error probability is approx-

imated as

Pr (s → s̃) ∼=
ρL

2

(
1

4(N0 + NJ/ρ)

)−mn

·W1 (4.34)

where

W1 =

 m∏
q=1

r∏
i=1

(
L∑

t=1

λi,t

)−1

+
L∑

t′=1

m∏
q=1

r∏
i=1

((
L∑

t=1

λi,t + λi,t′

))−1
 .

To minimize decoding error probability, good codes should hence be constructed by

maximizing W1 for all possible s and s̃. According to the above design criterion, space-time

codes of good performance with respcet to the small values of rm are given in Table 4.1

by a computer search. In Table 4.1, (at, bt) denote the binary inputs at time t and the

transmitted symbol sk
i,t is determined from the encoder output xt

i by

sk
i,t =

{ √
Es, if k = xt

i

0, otherwise
(4.35)

for all i and t.

Then, we discuss the design criterion for the case of high diversity. The pairwise error

probability conditioned on αi,q’s is upper bounded by

Pr (s → s̃ |αi,q ) ≤ 1

2

L∏
t=1

{
(1− ρ) exp

(
−d2

t (s, s̃)

4N0

)
+ ρ exp

(
− d2

t (s, s̃)

4 (N0 + NJ/ρ)

)}
. (4.36)

The pairwise error probability can be further approximated as

Pr (s → s̃) ∼=
1

2
ρL ·W2 (4.37)
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Table 4.1: Optimal Space-time codes of the STC/WFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of low diversity.

Memory Generator Sequences
2 (xt

1, x
t
2) = bt−1(3, 2)⊕4 at−1(2, 1)⊕4 bt(0, 2)⊕4 at(0, 3)

3 (xt
1, x

t
2) = at−2(2, 2)⊕4 bt−1(3, 1)⊕4 at−1(3, 3)⊕4 bt(2, 2)

⊕4at(2, 1)
4 (xt

1, x
t
2) = bt−2(0, 2)⊕4 at−2(0, 3)⊕4 bt−1(1, 2)⊕4 at−1(2, 2)

⊕4bt(3, 3)⊕4 at(2, 2)

where

W2 = exp

−
(

L∑
t=1

r∑
i=1

m∑
q=1

λi,t

)2

m∑
q=1

r∑
i=1

(
L∑

t=1

λi,t

)
+

L∑
t′=1

exp

−
(

m∑
q=1

r∑
i=1

(
L∑

t=1

λi,t + λi,t′

))2

m∑
q=1

r∑
i=1

(
L∑

t=1

λi,t + λi,t′

)
.

Good codes should hence be constructed by maximizing W2 for all possible s and s̃.

According to the design criterion, space-time codes of good performance with respcet to the

large values of rm are given in Table 4.2 by a computer search.

Table 4.2: Optimal Space-time codes of the STC/WFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of high diversity.

Memory Generator Sequences
2 (xt

1, x
t
2) = bt−1(3, 0)⊕4 at−1(0, 3)⊕4 bt(2, 2)⊕4 at(3, 3)

3 (xt
1, x

t
2) = at−2(2, 2)⊕4 bt−1(1, 1)⊕4 at−1(3, 1)⊕4 bt(2, 3)

⊕4at(1, 2)
4 (xt

1, x
t
2) = bt−2(1, 1)⊕4 at−2(2, 2)⊕4 bt−1(1, 0)⊕4 at−1(1, 3)

⊕4bt(1, 1)⊕4 at(2, 2)

4.3 STC Combined with Optimum FH

Another system we proposed is STC/OFHSS system as shown in Figure 4.5. The encoded

codewords from all transmitter antennas are hopped into distinct frequency bands to avoid

any possible collision of the transmitted symbols. In this section, we derive the ML decoding
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together with some suboptimal decoding schemes with respect to the STC/OFHSS system,

and we also provide the performance criteria for constructing good space-time codes.

4.3.1 Decoding with CSI Available

Assume perfect estimation of αi,q’s is available at the receiver. Let the selected received

signals r = (rk
i,q,t ∀ i, q, t, k), the jamming indicator x = (xi,t ∀ i, t), path gains α =

(αi,q ∀ i, q), and the estimated symbols ŝ =
(
ŝk

i,t ∀ i, k, t
)
. The optimal decoding metrics

with respect to CSI available are presented in the following section.

4.4.1.1 Maximum Likelihood Decoding with JSI Available

To evaluate the system performance, we derive the ML decoding of space-time codes as

follows. By (4.13), assume perfect estimation of JSI xi,t’s are available at the receiver. The

likelihood function is given by

f {r |ŝ, α, x} =
L∏

t=1

M∏
k=1

m∏
q=1

n∏
i=1

f
{
rk
i,q,t = αi,qŝ

k
i,t + ηk

i,q,t

∣∣ŝk
i,t, αi,q, xi,t, ∀ i, q, t, k

}
=

L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

1√
π
(
N0 + x2

i,tNJ/ρ
) exp

{
−
∣∣rk

i,q,t − αi,qŝ
k
i,t

∣∣
N0 + x2

i,tNJ/ρ

}
. (4.38)

By taking logarithm on the likehood function, ŝk
i,t’s can be decoded in the ML sense by

maximizing the following metric:

L∑
t=1

M∑
k=1

m∑
q=1

n∑
i=1

ln

 1√
π
(
N0 + x2

i,tNJ/ρ
) exp

{
−
∣∣rk

i,q,t − αi,qŝ
k
i,t

∣∣
N0 + x2

i,tNJ/ρ

}. (4.39)

Suppose xi,t’s are not available at the receiver. The likelihood function of r given ŝ, and α̂,

i.e., f {r |ŝ, α}, can be obtained by averaging (4.38) with respect to xi,t’s. A closed-form
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expression of lnf {r |ŝ, α} with respect to two transmitter antennas is then derived as

ln

{
(φρ) a2mM

1,xi,t=1 exp

(
−

m∑
q=1

M∑
k=1

(∣∣rk
q,t − α1,qŝ

k
1,t

∣∣2
N0 + NJ/ρ

+

∣∣rk
q,t − α2,qŝ

k
2,t

∣∣2
N0 + NJ/ρ

))

+(1− φ)ρamM
1,xi,t=1a

mM
1,xi,t=0 exp

(
−

m∑
q=1

M∑
k=1

(∣∣rk
q,t − α1,qŝ

k
1,t

∣∣2
N0 + NJ/ρ

+

∣∣rk
q,t − α2,qŝ

k
2,t

∣∣2
N0

))

+β(1− ρ)amM
1,xi,t=0a

mM
1,xi,t=1 exp

(
−

m∑
q=1

M∑
k=1

(∣∣rk
q,t − α1,qŝ

k
1,t

∣∣2
N0

+

∣∣rk
q,t − α2,qŝ

k
2,t

∣∣2
N0 + NJ/ρ

))

+(1− β)(1− ρ)a2mM
1,xi,t=0 exp

(
−

m∑
q=1

M∑
k=1

(∣∣rk
q,t − α1,qŝ

k
1,t

∣∣2
N0

+

∣∣rk
q,t − α2,qŝ

k
2,t

∣∣2
N0

))}
(4.40)

where

a1,xi,t=0 =
1√
πN0

a1,xi,t=1 =
1√

π(N0 + NJ/ρ)
(4.41)

P (x1,t = 1) =
Q

Nt

= ρ P (x1,t = 0) = 1− Q

Nt

= 1− ρ (4.42)

P (x2,t = 1|x1,t = 1) =
Q− 1

Nt − 1
= φ P (x2,t = 0|x1,t = 1) = 1− Q− 1

Nt − 1
= 1− φ (4.43)

P (x2,t = 1|x1,t = 0) =
Q

Nt − 1
= β P (x2,t = 0|x1,t = 0) = 1− Q

Nt − 1
= 1− β (4.44)

Nt is the total frequency hopping bands and Q is the occupied jamming bands of the total

frequency hopping bands.

4.4.1.2 Suboptimal Decoding Schemes

Althought the ML decoding can provide the optimum error correcting performance, the

computation required to execute (4.40) might limit its feasibility in practical applications.

Besides, the side informations of channel and jamming, i.e., Eb/N0, Eb/NJ , and ρ are also

required to be estimated. Hence, by ignoring all coefficients in (4.40) and using the approx-

imation of exp(x) ≈ 1 + x, we proposed a suboptimal scheme SUB2.1 with the following

decoding metric:

L∑
t=1

m∑
q=1

M∑
k=1

n∑
i=1

ln
[
1 +

∣∣rk
i,q,t − αi,qŝ

k
i,t

∣∣2]. (4.45)

37



4.3.2 Decoding without CSI

Suppose αi,q’s are not available at the receiver, the optimal decoding metrics of the

STC/OFHSS system with respect to CSI unknown are presented in the following section.

4.4.2.1 Maximum Likelihood Decoding with JSI Available

Let a1,xi,t
= 1q

π(N0+x2
i,tNJ/ρ)

, a2,xi,t
= 1

(N0+x2
i,tNJ/ρ)

, and then (4.38) can be rewritten as

f {r |ŝ, α, x} =

{
L∏

t=1

M∏
k=1

m∏
q=1

n∏
i=1

a1,xi,t

}
· exp

(
−

L∑
t=1

M∑
k=1

m∑
q=1

n∑
i=1

a2,xi,t

[∣∣rk
i,q,t

∣∣2
−2Re

(
rk
i,q,tα

∗
i,qŝ

k∗
i,t

)]
+
∣∣∣αi,qŝ

k
i,t

∣∣2) . (4.46)

The Re
(
rk
i,q,tα

∗
i,qŝ

k∗
i,t

)
and |αi,qŝ

k
i,t|2 of the exponent can be rewritten as

Re
(
rk
i,q,tα

∗
i,qŝ

k∗
i,t

)
= Re

(
rk
i,q,t (αR,i,q − jαI,i,q) ŝk

i,t

)
= Re

(
rk
i,q,tαR,i,qŝ

k
i,t

)
+ Im

(
rk
i,q,tαI,i,qŝ

k
i,t

)
(4.47)

and

∣∣αi,qŝ
k
i,t

∣∣2 =
(
α2

R,i,q + α2
I,i,q

) ∣∣ŝk
i,t

∣∣2 . (4.48)

By averaging αi,q’s with respect to the conditional probability density function in (4.46), we

can get∫ ∞

−∞
f(r |ŝ,x , α)f(α)dα

=
L∏

t=1

M∏
k=1

m∏
q=1

n∏
i=1

(
a1,xi,t

· exp
(
−a2,xi,t

∣∣rk
i,q,t

∣∣2)) · m∏
q=1

n∏
i=1

( L∑
t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

)−1

· exp


∣∣∣∣ L∑
t=1

M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

∣∣∣∣2
L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1


 . (4.49)

The ML decoding then chooses ŝk
i,t’s by maximizing (4.49).
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4.4.2.2 Suboptimal Decoding Schemes

To optimize the trade-off between decoding complexity and performance, we first present

the suboptimal scheme SUB2.2 and SUB2.3 with JSI available, and the values of a1,xi,t
and a2,xi,t

of the following decoding metrics are the same as that in (4.49). The suboptimal scheme

SUB2.2 which chooses ŝk
i,t’s by maximizing

L∑
t=1

ln

{
M∏

k=1

m∏
q=1

n∏
i=1

(
a1,xi,t

· exp
(
−a2,xi,t

∣∣rk
i,q,t

∣∣2)) · m∏
q=1

n∏
i=1

( M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

)−1

· exp


∣∣∣∣ M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

∣∣∣∣2
M∑

k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1



 . (4.50)

The other suboptimal scheme SUB2.3 which uses the approximation of exp(x) ≈ 1 + x is

denoted by

SUB2.3 : max
ŝ

L∑
t=1

m∑
q=1

n∑
i=1

ln

1 +

∣∣∣∑M
k=1 a2,xi,t

rk
i,q,tŝ

k
i,t

∣∣∣2∑M
k=1 a2,xi,t

∣∣ŝk
i,t

∣∣+ 1

. (4.51)

Suppose αi,q’s and xi,t’s are both not available at the receiver, and the closed-form of

f (r|ŝ) is too complexity to be written. Therefore, we propose three suboptimal decoding

schemes to reduce the decoding complexity. We also assume that the number of total

frequency hopping bans is very large, and there are few transmitter antennas we used.

That is, we assume the transmitted signals from each transmitted antennas are jammed
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independently. The first one suboptimal scheme is SUB2.4 which is represented as[
L∏

t=1

M∏
k=1

m∏
q=1

n∏
i=1

a1,xi,t=1 exp
(
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n∑
i′=1

[
ρnL−1

(1−ρ)−1 ·
a

Mm(Ln−1)
1,xi,t=1

aMm
1,xi,t=0

·

exp

(
−a2,xi,t=1

m∑
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 (4.52)

where

a3 =
NJ

N0ρ
a2,xi,t=1=

1

N0 + NJ/ρ
a1,xi,t=0=

1√
πN0

a1,xi,t=1=
1√

π (N0 + NJ/ρ)
.

The derivation of the metric in (4.52) is similar to that in Appendix D and Appendix E.

Another suboptimal scheme is SUB2.5 with the following decoding metric

L∑
t=1

n∑
i=1
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q=1

(
a1,xi,t=0 · exp

(
−a2,xi,t=0

∣∣rk
i,q,t
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· exp
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 (4.53)

where

a2,xi,t=0=
1

N0

a2,xi,t=1=
1

N0 + NJ/ρ
a1,xi,t=0=

1√
πN0

a1,xi,t=1=
1√

π (N0 + NJ/ρ)
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The other suboptimal scheme SUB2.6 is

max
s

m∑
q=1

n∑
i=1

∣∣∣∣ L∑
t=1

M∑
k=1

rk
i,q,tŝ

k
i,t

∣∣∣∣2
L∑

t=1

M∑
k=1

∣∣ŝk
i,t

∣∣2 + 1

. (4.54)

4.3.3 Design Criteria for Constructing Good Space-Time Codes

We propose two design criteria for constructing good space-time codes of the STC/OFHSS

systems with respect to the wireless jamming channels. The first design criterion is provided

for the case of low diversity. That is, the number of independent subchannels is small. On

the other hands, the second design criterion is proposed for the case of high diversity with

respect to large number of independent subchannels. We also assume that the number of

total frequency hopping bans is very large, and there are few transmitter antennas we used.

That is, we assume the transmitted signals from each transmitted antennas are jammed

independently.

First of all, we derive the design criterion for the case of low diversity. To evaluate the

performance of the ML decoding, consider two transmitted sequences s = (sk
i,t ∀ i, t, k) and

s̃ = (s̃k
i,t ∀ i, t, k). Assume perfect estimation of αi,q’s and xi,t’s are both available at the

receiver. The conditional pairwise error probability that the decoder decides in favor of s̃

than s is given by

Pr (s → s̃|αi,q, xi,t ∀ i, q, t)

= P


L∑

t=1

M∑
k=1

m∑
q=1

n∑
i=1

ln

 1√
π
(
N0 + x2

i,tNJ/ρ
) exp

(
−
|rk

i,q,t − αi,qs
k
i,t|2

N0 + x2
i,tNJ/ρ

)
≤

L∑
t=1

M∑
k=1

m∑
q=1

n∑
i=1

ln

 1√
π
(
N0 + x2

i,tNJ/ρ
) exp

(
−
|rk

i,q,t − αi,qs̃
k
i,t|2

N0 + x2
i,tNJ/ρ

)

= Q



√√√√√√
L∑

t=1

M∑
k=1

m∑
q=1

n∑
i=1

∣∣αi,q

(
sk

i,t − s̃k
i,t

)∣∣2
2
(
N0 + x2

i,tNJ/ρ
)

 . (4.55)
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Using the inequality Q (a) ≤ 1
2
exp(−a2/2) ∀ a ≥ 0, the conditional pairwise error probabil-

ity (4.55) can be upper bounded by

Pr (s → s̃|αi,q, xt ∀ i, q, t) ≤ 1

2
exp

(
−

L∑
t=1

n∑
i=1

axi,t
d2

i,t(s, s̃)

)
(4.56)

where

d2
i,t(s, s̃) =

m∑
q=1

M∑
k=1

∣∣αi,q

(
sk

i,t − s̃k
i,t

)∣∣2 and axi,t
=

1

4
(
N0 + x2

i,tNJ/ρ
) .

By averaging (4.56) with respect to xi,t’s and αi,q’s, the pairwise error probability is approx-

imated as

Pr (s → s̃) ∼=
ρL

2

(
1

4(N0 + NJ/ρ)

)−mn

·W3 (4.57)

where

W3 =
m∏

q=1

r∏
i=1

(
L∑

t=1

M∑
k=1

∣∣sk
i,t − s̃k

i,t

∣∣2)−1

+
L∑

t′=1

n∑
i′=1

 m∏
q=1

 r∏
i=1
i6=i′

(
L∑

t=1

M∑
k=1

∣∣sk
i,t − s̃k

i,t

∣∣2)−1

·

(
L∑

t=1

M∑
k=1

∣∣sk
i,t − s̃k

i,t

∣∣2 +
M∑

k=1

∣∣sk
i′,t′ − s̃k

i′,t′

∣∣2)] .

To minimize decoding error probability, good codes should hence be constructed by

maximizing W3 for all possible s and s̃. According to the above design criterion, space-time

codes of good performance with respcet to the small values of rm are given in Table 4.3 by

a computer search.

Table 4.3: Optimal Space-time codes of the STC/OFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of low diversity.

Memory Generator Sequences
2 (xt

1, x
t
2) = bt−1(2, 2)⊕4 at−1(1, 3)⊕4 bt(1, 1)⊕4 at(2, 2)

3 (xt
1, x

t
2) = at−2(2, 3)⊕4 bt−1(3, 2)⊕4 at−1(3, 1)⊕4 bt(2, 2)

⊕4at(1, 1)
4 (xt

1, x
t
2) = bt−2(1, 1)⊕4 at−2(2, 2)⊕4 bt−1(3, 0)⊕4 at−1(2, 0)

⊕4bt(2, 2)⊕4 at(3, 3)
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Then, we discuss the design criterion for the case of high diversity. The pairwise error

probability conditioned on α is upper bounded by

Pr(s → s̃|αi,q ∀ i, q)

≤ 1

2

L∏
t=1

n∏
i=1

{
(1− ρ) exp

(
−

d2
i,t(s, s̃)

4N0

)
+ρ exp

(
−

d2
i,t(s, s̃)

4 (N0 + NJ/ρ)

)}
. (4.58)

The pairwise error probability can be further approximated as

Pr (s → s̃) ∼=
1

2
ρL exp (−W4) (4.59)

where

W4 =

(
m∑

q=1

r∑
i=1

(
L∑

t=1

M∑
k=1

∣∣sk
i,t − s̃k

i,t

∣∣2))2

m∑
q=1

r∑
i=1

(
L∑

t=1

M∑
k=1

∣∣sk
i,t − s̃k

i,t

∣∣2)2 .

Good codes should hence be constructed by maximizing W4 for all possible s and s̃.

According to the design criterion, space-time codes of good performance with respcet to the

large values of rm are given in Table 4.4 by a computer search.

Table 4.4: Optimal Space-time codes of the STC/OFHSS system with
4FSK and 2 transmitter antennas for wireless jamming channels with
respect to the case of high diversity.

Memory Generator Sequences
2 (xt

1, x
t
2) = bt−1(2, 2)⊕4 at−1(3, 3)⊕4 bt(3, 1)⊕4 at(2, 2)

3 (xt
1, x

t
2) = at−2(1, 2)⊕4 bt−1(2, 1)⊕4 at−1(1, 3)⊕4 bt(3, 3)

⊕4at(2, 2)
4 (xt

1, x
t
2) = bt−2(1, 1)⊕4 at−2(2, 2)⊕4 bt−1(2, 0)⊕4 at−1(3, 0)

⊕4bt(2, 1)⊕4 at(3, 2)

4.4 STC Combined with Uniform FH

The other system we proposed is STC/UFHSS system as shown in Figure 4.3. At

time instant t, the encoded codewords from all transmitter antennas are hopped into the

frequency bands randomly over the total spread spectrum bandwidth. In this section, we
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derive the ML decoding together with some suboptimal decoding schemes with respect to

the STC/UFHSS system.

4.4.1 Decoding with CSI Available

Assume perfect estimation of αi,q’s is available at the receiver. Let the selected received

signals r̃ = (r̃k
q,t,b ∀ q, t, b, k), the jamming indicator x = (xt,b ∀ t, b), path gains α =

(αi,q ∀ i, q), the collided transmitted symbols indicator β̃ = (β̃i,t,b ∀ b, i, t) ,and the estimated

symbols ŝ =
(
ŝk

i,t ∀ i, k, t
)
. The optimal decoding metrics with respect to CSI available are

presented in the following section.

4.3.1.1 Maximum Likelihood Decoding with JSI Available

To evaluate the system performance, we derive the ML decoding of space-time codes as

follows. By (4.11), assume perfect estimation of JSI xt,b’s are available at the receiver. The

likelihood function is given by

f
{

r̃
∣∣∣ŝ, α, x, β̃

}
=

L∏
t=1

M∏
k=1

m∏
q=1

B(t)∏
b=1

f

{
r̃k
q,t,b =

n∑
i=1

β̃i,t,bαi,qŝ
k
i,t + η̃k

q,t,b

∣∣∣ŝk
i,t, αi,q, xt,b, β̃i,t,b∀ i, q, t, b, k

}
(4.60)

=
L∏

t=1

M∏
k=1

m∏
q=1

B(t)∏
b=1

1√
π
(
N0 + x2

t,bNJ/ρ
) exp

−
∣∣∣r̃k

q,t,b −
∑n

i=1 β̃i,t,bαi,qŝ
k
i,t

∣∣∣
N0 + x2

t,bNJ/ρ

 .

By taking logarithm on the likehood function, ŝk
i,t’s can be decoded in the ML sense by

maximizing the following metric:

L∑
t=1

M∑
k=1

m∑
q=1

B(t)∑
b=1

ln

 1√
π
(
N0 + x2

t,bNJ/ρ
) exp

−
∣∣∣r̃k

q,t,b −
∑n

i=1 β̃i,t,bαi,qŝ
k
i,t

∣∣∣
N0 + x2

t,bNJ/ρ


. (4.61)

Suppose xt,b’s are not available at the receiver. The likelihood function of r given ŝ, β̃,

and α̂, i.e., f
{

r̃
∣∣∣ŝ, α, β̃

}
, can be obtained by averaging (4.61) with respect to xt,b’s. A
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closed-form expression of lnf
{

r̃
∣∣∣ŝ, α, β̃

}
is then derived as

L∑
t=1

B(t)∑
b=1

ln

{
ρ

M∏
k=1

m∏
q=1

1√
π (N0 + NJ/ρ)

exp

−
∣∣∣r̃k

q,t,b −
∑n

i=1 β̃i,t,bαi,qŝ
k
i,t

∣∣∣2
N0 + NJ/ρ

 (4.62)

+(1− ρ)
M∏

k=1

m∏
q=1

1√
πN0

exp

−
∣∣∣r̃k

q,t,b −
∑n

i=1 β̃i,t,bαi,qŝ
k
i,t

∣∣∣2
N0


 .

4.3.1.2 Suboptimal Decoding Schemes

Althought the ML decoding can provide the optimum error correcting performance, the

computation required to execute (4.63) might limit its feasibility in practical applications.

Besides, the side informations of channel and jamming, i.e., Eb/N0, Eb/NJ , and ρ are also

required to be estimated. Hence, by ignoring all coefficients in (4.63) and use the approx-

imation of exp(x) ≈ 1 + x, we proposed a suboptimal scheme SUB3.1 with the following

decoding metric:

L∑
t=1

B(t)∑
b=1

M∑
k=1

m∑
q=1

ln

(
1 +

∣∣∣r̃k
q,t,b −

∑n

i=1
β̃i,t,bαi,qŝ

k
i,t

∣∣∣2). (4.63)

4.4.2 Decoding without CSI

Suppose αi,q’s are not available at the receiver, the optimal decoding metrics of the

STC/UFHSS system with respect to CSI unknown are presented in the following section.

4.3.2.1 Maximum Likelihood Decoding with JSI Available

Let a1,xt,b
= 1q

π(N0+x2
t,bNJ/ρ)

, a2,xt,b
= 1

(N0+x2
t,bNJ/ρ)

, then (4.61) can be rewritten as

f
{

r̃
∣∣∣ŝ, α, x, β̃

}
=


L∏

t=1

B(t)∏
b=1

M∏
k=1

am
1,xt,b

 · exp

− L∑
t=1

B(t)b=1∑ M∑
k=1

m∑
q=1

a2,xt,b

[∣∣ r̃k
q,t,b

∣∣2
−2Re

(
r̃k
q,t,b

n∑
i=1

β̃i,t,bαi,qŝ
k
i,t

)]
+

∣∣∣∣∣∣
n∑

i=1

β̃i,t,bαi,qŝ
k
i,t

∣∣∣∣∣
2

.

 (4.64)
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The Re
(
r̃k
q,t,b

∑n
i=1 β̃i,t,bαi,qŝ

k
i,t

)
and

∣∣∣∣∑n
i=1 β̃i,t,bαi,qŝ

k
i,t

∣∣∣2 of the exponent can be rewritten as

Re

(
r̃k
q,t,b

n∑
i=1

β̃i,t,bαi,qŝ
k
i,t

)

= Re

(
r̃k
q,t,b

n∑
i=1

β̃i,t,b (αR,i,q − jαI,i,q) ŝk
i,t

)

= Re

(
r̃k
q,t,b

n∑
i=1

β̃i,t,bαR,i,qŝ
k
i,t

)
+ Im

(
r̃k
q,t,b

n∑
i=1

β̃i,t,bαI,i,qŝ
k
i,t

)
(4.65)

and∣∣∣∣∣∣
n∑

i=1

β̃i,t,bαi,qŝ
k
i,t

∣∣∣∣∣
2

=

∣∣∣∣∣∣
n∑

i=1

β̃i,t,b (αR,i,q + jαI,i,q) ŝk
i,t

∣∣∣∣∣
2

=
n∑

i=1

αR,i,q

∣∣∣∣ β̃i,t,bŝ
k
i,t

∣∣∣2 +
n∑

i=1
i6=l

n∑
l=1
l6=i

αR,i,qαR,l,qβ̃i,t,bŝ
k
i,tβ̃l,t,bŝ

k
l,t

+
n∑

i=1

αI,i,q

∣∣∣∣ β̃i,t,bŝ
k
i,t

∣∣∣2 +
n∑

i=1
i6=l

n∑
l=1
l6=i

αI,i,qαI,l,qβ̃i,t,bŝ
k
i,tβ̃l,t,bŝ

k
l,t. (4.66)

By averaging αi,q’s with respect to the conditional probability density function in (4.64), we

can get∫ ∞

−∞
f(r̃|ŝ,x , α, β̃)f(α)dα

=


L∏

t=1

M∏
k=1

m∏
q=1

B(t)∏
b=1

(
a1,xt,b

exp
(
−a2,xt,b

∣∣r̃k
q,t,b

∣∣2)) ·


m∏

q=1

n∏
i=1

 L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b
λk

i,t,b + 1

 −1

exp



∣∣∣∣∣ L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b
uq,k

i,t,b

∣∣∣∣∣
2

L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b
λk

i,t,b + 1

 (4.67)

where

a1,xt,b
=

1√
π(N0 + x2

t,bNJ/ρ)
a2,xt,b

=
1

N0 + x2
t,bNJ/ρ

uq,k
i,t,b = ((rk

q,tβ̃1,t,bŝ
k
1,t), (rk

q,tβ̃2,t,bŝ
k
2,t), . . . , (rk

q,tβ̃n,t,bŝ
k
n,t))v

k
i,t

= (ub,k
1,q,t, ub,k

2,q,t, . . . , ub,k
n,q,t).
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vk
i,t’s and λk

i,t,b’s stand for the eigenvectors and eigenvalues of the following matrix, respec-

tively:

∣∣∣β̃1,t,bŝ
k
1,t

∣∣∣2 (
β̃1,t,bŝ

k
1,t

)(
β̃2,t,bŝ

k
2,t

)
· · ·

(
β̃1,t,bŝ

k
1,t

)(
β̃n,t,bŝ

k
n,t

)
(
β̃2,t,bŝ

k
2,t

)(
β̃1,t,bŝ

k
1,t

) ∣∣∣β̃2,t,bŝ
k
2,t

∣∣∣2 · · ·
(
β̃2,t,bŝ

k
2,t

)(
β̃n,t,bŝ

k
n,t

)
...

...
. . .

...(
β̃n,t,bŝ

k
n,t

)(
β̃1,t,bŝ

k
1,t

) (
β̃n,t,bŝ

k
n,t

)(
β̃2,t,bŝ

k
2,t

)
· · ·

∣∣∣β̃n,t,bŝ
k
n,t

∣∣∣2

 .

The ML decoding then chooses ŝk
i,t’s by maximizing (4.67).

4.3.2.2 Suboptimal Decoding Schemes

To optimize the trade-off between decoding complexity and performance, we present the

suboptimal scheme SUB3.2 and SUB3.3 with JSI available. The suboptimal scheme SUB3.2

which chooses s̃k
i,t’s by maximizing

L∑
t=1

B(t)∑
b=1

ln


M∏

k=1

m∏
q=1

(
a1,xt,b

exp
(
−a2,xt,b

∣∣r̃k
q,t,b

∣∣2))[ m∏
q=1

n∏
i=1

[(
M∑

k=1

a2,xt,b
λk

i,t,b + 1

) −1

· exp


∣∣∣∣ M∑
k=1

a2,xt,b
uq,k

i,t,b

∣∣∣∣2
M∑

k=1

a2,xt,b
λk

i,t,b + 1



 . (4.68)

where the values of a1,xt,b
, a2,xt,b

, λk,q
i,t , and ub,k

i,q,t are the same as that in (4.67). The other

suboptimal scheme SUB3.3 which uses the approximation of exp(x) ≈ 1 + x is denoted by

SUB3.3 : max
ŝ

L∑
t=1

B(t)∑
b=1

m∑
q=1

n∑
i=1

ln

1 +

∣∣∣∣ M∑
k=1

a2,xt,b
uq,k

i,t,b

∣∣∣∣2
M∑

k=1

a2,xt,b
λk

i,t,b + 1

 . (4.69)

Suppose αi,q’s and xt’s are both not available at the receiver, and the closed-form of

f
(
r|ŝ, β̃

)
is too complexity to be written. Therefore, we propose three suboptimal de-

coding schemes to reduce the decoding complexity. The first one suboptimal scheme is

47



SUB3.4 which is represented as
L∏

t=1

M∏
k=1

m∏
q=1

B(t)∏
b=1

(
a1,xt,b=1 exp

(
−a2,xt,b=1

∣∣r̃k
q,t,b

∣∣2)) ·


m∏

q=1

n∏
i=1

 L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b=1λ
k
i,t,b + 1

 −1

exp



∣∣∣∣∣ L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b=1u
q,k
i,t,b

∣∣∣∣∣
2

L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b=1λk
i,t,b + 1






+

L∑
t′=1

B(t)∑
b′=1

[
ρnL−1

(1−ρ)−1 ·
a

Mm(Ln−1)
1,xi,t=1

aMm
1,xi,t=0

·

exp

(
−a2,xi,t=1

m∑
q=1

M∑
k=1

(
L∑

t=1

n∑
b=1

∣∣rk
q,t,b

∣∣2 +a3

∣∣rk
q,t′,b′

∣∣2)) · m∏
q=1

n∏
i=1

 n∏
i=1
i6=i′

(
L∑

t=1

M∑
k=1

a2,xi,t=1

∣∣ŝk
i,t

∣∣2+1

)−1

· exp


∣∣∣a2,xi,t=1

(∑L
t=1

∑B(t)
b=1

∑M
k=1 uq,k

i,t,b + a3

∑M
k=1 uq,k

i,t′,b′

)∣∣∣2
a2,xi,t=1

(∑L
t=1

∑n
b=1

∑M
k=1 λk

i,t,b+a3

∑M
k=1 λk

i,t′,b′

)
+1


 . (4.70)

where

a3=
NJ

N0ρ
a2,xt,b=1=

1

N0 + NJ/ρ
a1,xt,b=0=

1√
πN0

a1,xt,b=1=
1√

π (N0 + NJ/ρ)

The derivation of the metric in (4.70) is similar to that in Appendix F. Another suboptimal

scheme is SUB3.5 with the following decoding metric

L∑
t=1

B(t)∑
b=1

ln

(1−ρ)
(
Kq,k

t,xt,b=0

)Mm
[

m∏
q=1

n∏
i=1

[(
M∑

k=1

a2,xt,b=0λ
k
i,t,b + 1

) −1

exp


∣∣∣∣ M∑
k=1

a2,xt,b=0u
q,k
i,t,b

∣∣∣∣2
M∑

k=1

a2,xt,b=0λk
i,t,b + 1



+ρ
(
Kq,k

t,xt,b=1

)Mm
[

m∏
q=1

n∏
i=1

[(
M∑

k=1

a2,xt,b=1λ
k
i,t,b + 1

) −1

exp


∣∣∣∣ M∑
k=1

a2,xt,b=1u
q,k
i,t,b

∣∣∣∣2
M∑

k=1

a2,xt,b=1λk
i,t,b + 1


 (4.71)

where

a2,xt,b=0=
1

N0

a2,xt,b=1=
1

N0 + NJ/ρ
a1,xt,b=0=

1√
πN0

a1,xt,b=1=
1√

π (N0 + NJ/ρ)

Kk,q
i,t,xt,b=0 = a1,xt,b=0 exp

(
−a2,xt,b=0

∣∣rk
q,t

∣∣2) Kk,q
i,t,xt,b=1 = a1,xt,b=1 exp

(
−a2,xt,b=1

∣∣rk
q,t

∣∣2) .

48



The other suboptimal scheme SUB3.6 is

SUB3.6 : max
ŝ

m∑
q=1

n∑
i=1

∣∣∣∣∣ L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b
uq,k

i,t,b

∣∣∣∣∣
2

L∑
t=1

M∑
k=1

B(t)∑
b=1

a2,xt,b
λk

i,t,b + 1

. (4.72)

4.5 Simulation Results and Discussions

In this section, we simulate the 4-state space-time code with two transmitter/receiver an-

tennas, 4FSK modulation, and 1000 frequency hopping bands for used over Rayleigh fading

channels with the AWGN and PBNJ to explore the performance of the STC/FHSS system.

In Figure 4.6-4.34, the space-time code of STC/WFHSS system we used for simulation is

(
xt

1, x
t
2

)
= bt−1 (0, 2)⊕4 at−1 (0, 3)⊕4 bt (3, 2)⊕4 at (2, 1) . (4.73)

and the space-time code of STC/UFHSS and STC/UFHSS system for simulation is

(
xt

1, x
t
2

)
= bt−1 (2, 2)⊕4 at−1 (1, 3)⊕4 bt (1, 1)⊕4 at (2, 2) . (4.74)

For the decoding with CSI available, the impact of Eb/NJ on the bit-error-rate (BER)

performance is first investigated. Observed from the performance curves in Figure 4.6- 4.11

with Eb/N0 = 15 dB, ρ = 0.2 and ρ = 0.05, the ML decoding with JSI provides the best

performance followed by the ML decoding without JSI and suboptimal decoding scheme.

The performance of the two optimal decodings of the STC/WFHSS system are very closed

no matter whether the JSI is available or not, and the SUB1.1 is observed to provide similar

performance as the optimum decoding. The two optimal decodings of the STC/UFHSS and

STC/OFHSS systems are similar at low and high SNRs, and the suboptimal scheme SUB2.1

and SUB3.1 approximates the ML decoding well at high Eb/NJ . The performance plots of

the ML decoding with CSI available corresponding to different values of ρ and Eb/NJ are

shown in Figure 4.12-4.19. Given Eb/N0 = 25 dB and Eb/NJ = 5 dB in Figure 4.12- 4.13,

we can find that the worst performance is located at ρ = 1. That is, the bandwidth of

the PBNJ is spread as same as the system bandwidth can make the performance worst.
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On the contrary, for Eb/NJ = 25 dB, the small fraction bandwidth of the PBNJ can make

the performance worst than the full band noise jammer at ρ = 1. In Figure 4.14- 4.19,

the AWGN is not too small for Eb/N0 = 15 dB. Hence, for Eb/NJ = 25dB, we can find

that the performance is dominated by AWGN mostly, and the worst performance is not

obvious. Figure 4.20- 4.25 show the ML decoding with CSI available corresponding to

different values of ρ and Eb/N0, an irregular relation between the BER and ρ of the ML

decoding with respect to three different STC/FHSS systems is observed. Eb should thus

be determined corresponding to the worst case to guarantee the designed performance for

the PBNJ with uncertain ρ. The ML and suboptimal decoding schemes for Eb/N0=15 dB

and Eb/NJ=10 dB with CSI available are shown in Figure 4.26-4.28. The performance

gap between the simulated decoding schemes of the STC/WFHSS system is almost the

same as ρ changes, and the performance of the optimal decodings of the STC/OFHSS and

STC/UFHSS system are very close with respect to different values of ρ.

For the decoding without CSI, the simulation results of the ML decoding and some

suboptimal decoding schemes are provided in Figure 4.29-4.31. The ML decoding is observed

to provide the optimum BER performance, and SUB1.2 provide similar performance as

the optimum decoding. The SUB1.3 of the STC/WFHSS, SUB2.2 and SUB2.3 of the

STC/OFHSS, SUB3.2 and SUB3.3 of the STC/UFHSS, are proposed to reduce the decoding

complexity by using Viterbi algorithm. In Figure 4.32-4.34, it shows the ML decoding with

JSI available and some suboptimal decoding schemes without JSI. The SUB1.4 and SUB1.5

of the STC/WFHSS, SUB2.4 and SUB2.5 of the STC/OFHSS, and SUB3.4 and SUB3.5

of the STC/UFHSS are observed to provide similar performance of the ML decoding at

high Eb/NJ , respectively. Moreover, the SUB1.6, SUB2.6, and SUB3.6 are proposed by

using Viterbi algorithm. Figure 4.35-4.36 show the ML decoding with CSI and JSI available

with respect to different values of memory of space-time codes in Table 4.1 and Table 4.3,

respectively. In Figure 4.37-4.38, it shows the performance of space-time codes in Table 4.2

and Table 4.4 with two transmitter antennas and three receiver antennas. The performance

comparison of the three different STC/FHSS systems is shown in Figure 4.39.
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Finally, The performance comparisons of the system we proposed with the conven-

tional coding scheme, convolutional codes (CC) with 4FSK modulation and two transmit-

ter/receiver antennas over Rayleigh fading channels with PBNJ are shown in Figure 4.40.

The space-time code of the STC/WFHSS system we used for comparison

(xt
1, x

t
2) = bt−2(0, 2)⊕4 at−2(0, 3)⊕4 bt−1(1, 2)⊕4 at−1(2, 2)⊕4 bt(3, 3)⊕4 at(2, 2). (4.75)

and the space-time code of the STC/UFHSS and STC/OFHSS system is

(xt
1, x

t
2) = bt−2(1, 1)⊕4 at− 2(2, 2)⊕4 bt−1(3, 0)⊕4 at−1(2, 0)⊕4 bt(2, 2)⊕4 at(3, 3). (4.76)

Consider a (2, 1) code with the following generator matrix

G (D) =
[

1 + D + D2 + D4 1 + D3 + D4
]
. (4.77)

where D denotes the operator for time delay. The memory of the CC equals to 4 for

the same decoding complexity with respect to the system we proposed, and we combined

CC with space-time block codes (STBC) [16][17] and FHSS with Alamouti schemes for

the same special diversity and bandwidth efficiency as our proposed system. In Figure

4.40, we can find that the STC/FHSS system provides much better performance than the

CC/STBC/FHSS system.
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Figure 4.6: Performance plots of STC/WFHSS with CSI available for ρ = 0.2 and Eb/N0 =
15 dB.

Figure 4.7: Performance plots of STC/WFHSS with CSI available for ρ = 0.05 and Eb/N0 =
15 dB.
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Figure 4.8: Performance plots of STC/OFHSS with CSI available for ρ = 0.2 and Eb/N0 =
15 dB.

Figure 4.9: Performance plots of STC/OFHSS with CSI available for ρ = 0.05 and Eb/N0 =
15 dB.
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Figure 4.10: Performance plots of STC/UFHSS with CSI available for ρ = 0.2 and Eb/N0 =
15 dB.

Figure 4.11: Performance plots of STC/UFHSS with CSI available for ρ = 0.05 and Eb/N0 =
15 dB.
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Figure 4.12: BER v.s. ρ of the ML decoding of STC/WFHSS for Eb/N0 = 25 dB with CSI
available.

Figure 4.13: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/WFHSS for
Eb/N0 = 25 dB with CSI available.
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Figure 4.14: BER v.s. ρ of the ML decoding of STC/WFHSS for Eb/N0 = 15 dB with CSI
available.

Figure 4.15: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/WFHSS for
Eb/N0 = 15 dB with CSI available.
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Figure 4.16: BER v.s. ρ of the ML decoding of STC/OFHSS for Eb/N0 = 15 dB with CSI
available.

Figure 4.17: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/OFHSS for
Eb/N0 = 15 dB with CSI available.
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Figure 4.18: BER v.s. ρ of the ML decoding of STC/UFHSS for Eb/N0 = 15 dB with CSI
available.

Figure 4.19: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/UFHSS for
Eb/N0 = 15 dB with CSI available.
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Figure 4.20: BER v.s. ρ of the ML decoding of STC/WFHSS for Eb/NJ = 10 dB with CSI
available.

Figure 4.21: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/WFHSS for
Eb/NJ = 10 dB with CSI available.
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Figure 4.22: BER v.s. ρ of the ML decoding of STC/OFHSS for Eb/NJ = 10 dB with CSI
available.

Figure 4.23: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/OFHSS for
Eb/NJ = 10 dB with CSI available.
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Figure 4.24: BER v.s. ρ of the ML decoding of STC/UFHSS for Eb/NJ = 10 dB with CSI
available.

Figure 4.25: 3-dimension plots of the BER v.s. ρ for the ML decoding of STC/UFHSS for
Eb/NJ = 10 dB with CSI available.
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Figure 4.26: BER v.s. ρ for the ML and SUB1.1 decodings of the STC/WFHSS for Eb/N0 =
15 dB and Eb/NJ = 10 dB with CSI available.

Figure 4.27: BER v.s. ρ for the ML and SUB2.1 decodings of the STC/OFHSS for Eb/N0 =
15 dB and Eb/NJ = 10 dB with CSI available.
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Figure 4.28: BER v.s. ρ for the ML and SUB3.1 decodings of the STC/UFHSS for Eb/N0 =
15 dB and Eb/NJ = 10 dB with CSI available.

Figure 4.29: Performance plots of the STC/WFHSS without CSI for rho = 0.2, Eb/N0 = 20
dB, and JSI available.
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Figure 4.30: Performance plots of the STC/OFHSS without CSI for ρ = 0.2, Eb/N0 = 15
dB, and JSI available.

Figure 4.31: Performance plots of the STC/UFHSS without CSI for ρ = 0.2, Eb/N0 = 15
dB, and JSI available.
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Figure 4.32: Performance plots of the STC/WFHSS without CSI for ρ = 0.2 and Eb/N0 = 20
dB.

Figure 4.33: Performance plots of the STC/OFHSS without CSI for ρ = 0.2 and Eb/N0 = 15
dB.
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Figure 4.34: Performance plots of the STC/UFHSS without CSI for ρ = 0.2 and Eb/N0 = 15
dB.

Figure 4.35: Performance of the STC/WFHSS with CSI and JSI available for ρ =
0.2,Eb/N0 = 15 dB and 2 receiver antennas.
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Figure 4.36: Performance of the STC/WFHSS with CSI and JSI available for ρ = 0.2,
Eb/N0 = 15 dB and 3 receiver antennas.

Figure 4.37: Performance of the STC/OFHSS with CSI and JSI available for ρ =
0.2,Eb/N0 = 15 dB and 2 receiver antennas.
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Figure 4.38: Performance of the STC/OFHSS with CSI and JSI available for ρ =
0.2,Eb/N0 = 15 dB and 3 receiver antennas.

Figure 4.39: Performance of the STC/WFHSS, STC/UFHSS, and STC/OFHSS systems
with memory=2 and CSI available for ρ = 0.2 and Eb/N0 = 15 dB.
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Figure 4.40: Performance of the STC/WFHSS, STC/UFHSS, STC/OFHSS,
CC/STBC/FHSS systems for ρ = 0.2 and Eb/N0 = 20dB.
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Chapter 5

Conclusions

In this thesis, we investigate issues related to the performance of the STC/FHSS system

in wireless PBNJ environments. There are three types of STC/FHSS systems we proposed

for performance evaluation; STC/WFHSS system, STC/OFHSS system, and STC/UFHSS

system. The actual performance of the proposed STC/FHSS system with arbitrary hop-

ping patterns can then be lower and upper bounded by the evaluated performance of the

STC/WFHSS and STC/OFHSS systems, respectively. In addition, the performance of the

STC/UFHSS system could approach to the upper bounded performance at large frequency

hopping bands and few transmitter antennas.

Based on these three proposed system model, the corresponding ML decoding is derived

no matter whether CSI is available or not. Althought the ML decoding with respect to

different reception conditions has been derived, however, the decoding complexity of the

optimal decodings are too high and might limit its feasibility in practical applications.

Besides, the complicated arithmetic of the ML decoding with CSI unknown not only repuires

high computational complexity but also excludes the use of the efficient Viterbi algorithm.

To optimize the trade-off between decoding complexity and performance, there are several

suboptimal decoding schemes: SUB1.1-SUB1.6 for STC/WFHSS system, SUB2.1-SUB2.6

for STC/OFHSS system, and SUB3.1-SUB3.6 for STC/UFHSS system are proposed with

acceptable BER performance. We also proposed two design criteria for constructing good

space-time codes with respect to the wireless channels in the PBNJ environments. One of
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the design criteria is presented for the case of low diversity, and the other is for the case of

high diversity. Good spacd-time codes are then given via a computer search. Verified by

the simulation results, our system outperforms the conventional coding scheme with SISO

channel coding in terms of both bandwidth efficiency and signal-to-noise ratio.

Althought we have presented the three types of STC/FHSS systems for wireless jamming

channels, there are several related issues that remain to be investigated. The coding scheme

we consider in the proposed system is STC techniques. We could consider other multi-input

and multi-output coding schemes, e.g., differential space-time coding and layered space-time

coding, for further error correction in wireless jamming channels. Besides, the frequency

hopping we used is slow frequency hopping. Fast frequency hopping could also be considered

for high frequency diversity gain. Finally, partial-band noise jamming and multitone noise

jamming are the two most effective jamming strategies for inverestigation. Therefore, we

may consider the system we proposed used in the multitone jamming environments to

improve the system performance.
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Appendix A

Independent of the Jamming Noise in
Time, Frequency, and Space Domains

Assume ηq(t) is the AWGN of the qth receiver antenna at time t with zero mean and

variance N0

2
. The power spectral density Sη(f) and autocorrelation Rη(τ) of η(t) are

Sη(f) =
N0

2
, Rη(τ) =

N0

2
δ (τ). (A.1)

Figure A.1 shows the MFSK detector in the qth receiver antenna where Ts is the symbol

duration and fk(t)’s ∀ 1 ≤ k ≤ M are the orthonormal bases. Here we show the noise is

independent in time, frequency, and space domains.

(1) Noise independent in time domain:

E
[
ηk

q,t1
ηk

q,t2

]
= E

[∫ Ts

0

∫ Ts

0

ηq (t1) ηq (t2) fk (t1) fk (t2) dt1dt2

]
=

∫ Ts

0

∫ Ts

0

E [ηq (t1) ηq (t2)] fk (t1) fk (t2) dt1dt2

=
N0

2

∫ Ts

0

∫ Ts

0

δ (τ) fk (t1) fk (t2) dt1dt2 (A.2)

where t2 = t1+τ , and E[·] denotes the expectation. If τ 6= 0, we can get E [ηq (t1) ηq (t1)] = 0.

That is, ηk
q,t1

and ηk
q,t2

are uncorrelated. Therefore, ηk
q,t’s are independent in time domain as

they are assume to be Gaussian noise.
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Figure A.1: MFSK detector.

(2) Noise independent in frequency domain:

E
[
ηk1

q,tη
k2
q,t

]
= E

[∫ Ts

0

∫ Ts

0

ηq (t) ηq (τ) fk1 (t) fk2 (τ) dtdτ

]
=

∫ Ts

0

∫ Ts

0

E [ηq (t) ηq (τ)] fk1 (t) fk2 (τ) dtdτ

=
N0

2

∫ Ts

0

δ (t− τ) fk1 (t) fk2 (τ) dtdτ

=
N0

2

∫ Ts

0

fk1 (t) fk2 (t) dt (A.3)

where k1 and k2 ∀ 1 ≤ k1, k2 ≤ M, k1 6= k2 are denoted different frequency slots. The fk1(t)

and fk2 are both orthonormal bases, and hence we can get∫ Ts

0

fk1 (t) fk2 (t) dt= 0. (A.4)

Therefore, E
[
ηk1

q,tη
k2
q,t

]
= 0, and ηk

q,t’s are independent in frequency domain.
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(3) Noise independent in space domain:

E
[
ηk

q1,tη
k
q2,t

]
= E

[∫ Ts

0

∫ Ts

0

ηq1 (t) ηq2 (τ) fk (t) fk (τ) dtdτ

]
=

∫ Ts

0

∫ Ts

0

E [ηq1 (t) ηq2 (τ)] fk (t) fk (τ) dtdτ

=

∫ Ts

0

∫ Ts

0

E [ηq1 (t)] · E [ηq2 (τ)] fk1 (t) fk2 (τ) dtdτ

= 0 (A.5)

where q1 and q2 ∀ 1 ≤ q1, q2 ≤ m, q1 6= q2 are denoted different receiver antennas. Therefore,

ηk
q,t’s are independent in space domain due to E

[
ηk

q1,tη
k
q2,t

]
= 0.
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Appendix B

Derivation of the ML Decoding of
STC/WFHSS Systems without CSI

The derived in (4.23) is discussed in this Appendix by averaging αi,q’s with respect to

the conditional probability density function defined in (4.19), and we can get∫ ∞

−∞
f(r |ŝ,x , α)f(α)dα

=

{
L∏

t=1

M∏
k=1

(am
1,xt

)exp

(
−

L∑
t=1

M∑
k=1

m∑
q=1

a2,xt|rk
q,t|2
)}

·
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
L∑

t=1

M∑
k=1

m∑
q=1

a2,xt[
2Re

(
rk
q,t

n∑
i=1

αR,i,qŝ
k
i,t

)
+ 2Im

(
rk
q,t

n∑
i=1

αI,i,qŝ
k
i,t

)
−

(
n∑

i=1

α2
R,i,q|ŝk

i,t|2

+
n∑

i=1

α2
I,i,q|ŝk

i,t|2 +
n∑

i=1
i6=l

n∑
l=1
l6=i

αR,i,qαR,l,qŝ
k
i,tŝ

k
l,t +

n∑
i=1
i6=l

n∑
l=1
l6=i

αI,i,qαI,l,qŝ
k
i,tŝ

k
l,t





· 1√
2πσ1,1

exp

(
−

α2
R,1,1

2σ2
1,1

)
· · · 1√

2πσn,m

exp

(
−

α2
R,n,m

2σ2
n,m

)
· 1√

2πσ1,1

exp

(
−

α2
I,1,1

2σ2
1,1

)
· · ·

1√
2πσn,m

exp

(
−

α2
I,n,m

2σ2
n,m

)
dαR,1,1 · · · dαR,n,m · dαI,1,1 · · · dαI,n,m
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=

(
L∏

t=1

M∏
k=1

am
1,xt

)
·

(
m∏

q=1

n∏
i=1

1

2πσ2
i,q

)
· exp

(
−

L∑
t=1

M∑
k=1

m∑
q=1

a2,xt|rk
q,t|2
)∫ ∞

−∞
· · ·
∫ ∞

−∞

exp

{
m∑

q=1

[
L∑

t=1

M∑
k=1

a2,xt

[
2Re

(
rk
q,t

n∑
i=1

αR,i,qŝ
k
i,t

)
+ 2Im

(
rk
q,t

n∑
i=1

αI,i,qŝ
k
i,t

)

−

 n∑
i=1

α2
R,i,q|ŝk

i,t|2 +
n∑

i=1

α2
I,i,q|ŝk

i,t|2 +
n∑

i=1
i6=l

n∑
l=1
l6=i

αR,i,qαR,l,qŝ
k
i,tŝ

k
l,t

+
n∑

i=1
i6=l

n∑
l=1
l6=i

αI,i,qαI,l,qŝ
k
i,tŝ

k
l,t



− n∑

i=1

α2
R,i,q

2σ2
i,q

−
n∑

i=1

α2
I,i,q

2σ2
i,q

 dαR,1,1 · · · ddαI,n,m. (B.1)

For the real part of the exponent could be represented by R(αR,1,q, αR,2,q, · · · , αR,n,q)

R(αR,1,q, αR,2,q, · · · , αR,n,q)

= 2Re

(
L∑

t=1

M∑
k=1

(
a2,xtr

k
q,t

n∑
i=1

αR,i,qŝ
k
i,t

))
−

(
L∑

t=1

M∑
k=1

(
n∑

i=1

a2,xtα
2
R,i,q|ŝk

i,t|2
)

+
L∑

t=1

M∑
k=1

 n∑
i=1
i6=l

n∑
l=1
l6=i

a2,xtαR,i,qαR,l,qŝ
k
i,tŝ

k
l,t


−

(
n∑

i=1

α2
R,i,q

2σ2
i,q

)

= 2Re

(
n∑

i=1

αR,i,q

(
L∑

t=1

M∑
k=1

a2,xtr
k
q,tŝ

k
i,t

))
−

(
n∑

i=1

α2
R,i,q

(
L∑

t=1

M∑
k=1

a2,xt|ŝk
i,t|2

+
1

2σ2
i,q

)
+

n∑
i=1
i6=l

n∑
l=1
l6=i

αR,i,qαR,l,q

(
L∑

t=1

M∑
k=1

a2,xt ŝ
k
i,tŝ

k
l,t

)
= BR,qΛ

T
R,q −ΛR,q (A + I)ΛT

R,q (σ2
i,q =

1

2
∀ i, q) (B.2)

where

ΛR,q = (αR,1,q, αR,2,q, . . . , αR,n,q)
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BR,q = 2Re

[(
L∑

t=1

M∑
k=1

a2,xtr
k
q,tŝ

k
1,t

)
,

(
L∑

t=1

M∑
k=1

a2,xtr
k
q,tŝ

k
2,t

)
, . . . ,

(
L∑

t=1

M∑
k=1

a2,xtr
k
q,tŝ

k
n,t

)]

=
L∑

t=1

M∑
k=1

a2,xt

[
2Re

(
rk
q,tŝ

k
1,t

)
, 2Re

(
rk
q,tŝ

k
2,t

)
, . . . , 2Re

(
rk
q,tŝ

k
n,t

)]
=

L∑
t=1

M∑
k=1

a2,xtB
k
R,q,t,

A =
L∑

t=1

M∑
k=1

a2,xt


|ŝk

1,t|2 ŝk
1,tŝ

k
2,t · · · ŝk

1,tŝ
k
n,t

ŝk
2,tŝ

k
1,t |ŝk

2,t|2 · · · ŝk
2,tŝ

k
n,t

...
...

...
. . .

...
ŝk

n,tŝ
k
1,t ŝk

n,tŝ
k
2,t · · · |ŝk

n,t|2


=

L∑
t=1

M∑
k=1

a2,xtA
k
t .

and I is an identity matrix. Bk
R,q,t and Ak

t are defined as

Bk
R,q,t =

[
2Re

(
rk
q,tŝ

k
1,t

)
, 2Re

(
rk
q,tŝ

k
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(B.3)

Ak
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ŝk
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n,tŝ

k
1,t ŝk
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 . (B.4)

It is clear that Ak
t is nonnegative definite Hermitian, and the eigenvalues of Ak

t are nongative

real numbers. Therefore, we can get

V k
t A

k
t V

k
t

H
= Dk

t (B.5)

where V k
t is a unitary matrix and Dk

t is a real diagonal matrix. The rows of V k
t , forming a

complete orthonormal basis of an N -dimensional vector space, are the eigenvectors of Ak
t .

The diagonal elements of Dk
t are the eigenvalues λk

i,t ≥ 0, ∀ 1 ≤ i ≤ n. Equation (B.2) can
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be rewritten as

R(αR,1,q, αR,2,q, . . . , αR,n,q)

= BR,qΛ
T
R,q −ΛR,q (A + I)ΛT

R,q

=

(
L∑

t=1

M∑
k=1

a2,xtB
k
R,q,t

)
ΛT

R,q −ΛR,q

(
L∑

t=1

M∑
k=1

a2,xtA
k
t + I

)
ΛT

R,q

=
L∑

t=1

M∑
k=1

a2,xt

[
Bk

R,q,tΛ
T
R,q −ΛR,q

(
Ak

t +
1

a2,xtLM
I

)
ΛT

R,q

]

=
L∑

t=1

M∑
k=1

a2,xt

[
Bk

R,q,t

(
V k

t V
kT
t

)
ΛT

R,q −ΛR,q

(
V k

t D
k
t V

kT
t +

1

a2,xtLM

I

)
ΛT

R,q

]

=
L∑

t=1

M∑
k=1

a2,xt

[
Bk

R,q,tV
k
t

(
V kT

t ΛT
R,q

)
−
(
ΛR,qV

k
t

)(
Dk

t +
1

a2,xtLM

I

)(
V kT

t ΛT
R,q

)]

=
L∑

t=1

M∑
k=1

a2,xt

[
Zk

q,tY
T
R,q − Y R,q

(
Dk

t +
1

a2,xtLM

I

)
Y T

R,q

]

=
L∑

t=1

M∑
k=1

a2,xt

[
n∑

i=1

zk
i,q,tyR,i,q −

n∑
i=1

(
λk

i,t +
1

a2,xtLM

)
y2

R,i,q

]

=
n∑

i=1

[
L∑

t=1

M∑
k=1

a2,xt

(
zk

i,q,tyR,i,q −
(

λk
i,t +

1

a2,xtLM

)
y2

R,i,q

)]
(B.6)

where

Zk
q,t = Bk

R,q,tV
k
t

=
(
2Re

(
rk
q,tŝ
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k
2,t

)
, . . . , 2Re

(
rk
q,tŝ
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By equation (B.1), we average αR,i,q for the real part of the exponent∫ ∞
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( ∫ ∞

−∞
exp{−(ax2 + bx + c)}dx =

√
π

a
exp

{
b2 − 4ac

4a

} )
Next, the imaginary part of the exponent in (B.1) are defined by I(αI,1,q, αI,2,q, · · · , αI,n,q)
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where
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Equation (B.8) can be written as
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where
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and

Y I,q = ΛI,qV
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By equation (B.1), we average αR,i,q for the imaginary part of the exponent∫ ∞
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Hence, the probability density function f (r |ŝ, x) conditioned on JSI available can be ex-

pressed as (
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A closed-form expression of the decoding metric is derived as
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 (B.14)

where ∣∣∣∣∣
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Appendix C

Derivation of the Design Criteria of
STC/WFHSS Systems

The derived results of the pairwise error probability in (4.34) and (4.37) are discussed in

this Appendix, respectively. First of all, by averaging xt’s with respect to the conditional

pairwise error probability defined in (4.33), and then we can get

Pr (s → s̃|αi,q ∀ i, q)

=
∑
x1

· · ·
∑
xL
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≤
∑
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∑
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2
exp

(
−

L∑
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2
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− 1
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 · C (C.1)
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where

d2
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.

The pairwise error probability can be obtained by averaging (C.1) with respect to αi,q’s,

i.e.,

Pr (s → s̃) =
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∫ ∞

−∞
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= X + Y (C.2)
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The derivation of Y is similar to that of X. Therefore, we only discuss the derivation of X

in this Appendix. Replace the values of Bt and C in X, and we can get
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The value of d2
q (s, s̃) can be rewritten as
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where a2 = NJ

N0ρ
, Λq = (α1,q, α2,q, . . . , αn,q) and At is denoted by the following matrix
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(C.5)

It is clear that At is nonnegative definite Hermitian, and the eigenvalues of At are

nonnegative real numbers. Therefore, we can get

V tAtV
H
t = Dt (C.6)

where V t is a unitary matrix and Dt is a real diagonal matrix. The rows of V t, forming a

complete orthonormal basis of an N -dimensional vector space, are the eigenvectors of At.

The diagonal elements of Dt are the eigenvalues λi,t ≥ 0, ∀ 1 ≤ i ≤ n. Equation (E.4) can

be rewritten as
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where yi,q = (α1,q, α2,q, . . . , αn,q) vq
i,t and vq

i,t’s stand for the eigenvectors of the matrix At.

Then, the equation (E.3) with respect to small values of rm can be derived as
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where |yi,q| are independent Rayleigh-distributed random variables. The value of Y in (E.2)

with similar derivation of X, and we can get
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where λi,t’s are the eigenvalues of At. From (E.5) and (E.6), the pairwise error probability

can be approximated to

Pr (s → s̃) ∼=
ρL

2

m∏
q=1

r∏
i=1

(
1 + a1

L∑
t=1

λi,t

)−1

+
ρL−1(1− ρ)

2

L∑
t′=1

m∏
q=1

r∏
i=1

(
1 + a1

(
L∑

t=1

λi,t + a2λi,t′

))−1

. (C.10)

At high SNR’s and SJR’s, the above equation can be simplified as

Pr (s → s̃)

∼=
ρL

2

m∏
q=1

r∏
i=1

(
a1

L∑
t=1

λi,t

)−1

+
ρL−1(1− ρ)

2

L∑
t′=1

m∏
q=1

r∏
i=1

(
a1

(
L∑

t=1

λi,t + a2λi,t′

))−1

∼=
ρL

2

(
1

4(N0 + NJ/ρ)

)−mr

·

 m∏
q=1

r∏
i=1

(
L∑

t=1

λi,t

)−1

+
L∑

t′=1

m∏
q=1

r∏
i=1

((
L∑

t=1

λi,t + λi,t′

))−1
 .(C.11)

The above equation is the pairwise error probability with respect to the case of low diversity.

Next, we derive the pairwise error probability for the case of high diversity. For a large of
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rm, according to the central limit theorem, the d2
q(s, s̃) in (C.7) approaches a Gaussian

random variable D with the mean uD and variance σ2
D

uD =
r∑

i=1

m∑
q=1

(
L∑

t=1

λi,t + aλi,t′

)
σ2

D =
r∑

i=1

m∑
q=1

(
L∑

t=1

λi,t + aλi,t′

)2

. (C.12)

Then, the equation (E.3) can be rewritten as

X =
1

2

ρL−1

(1− ρ)−1

L∑
t′=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−a1

m∑
q=1

(
d2 (s, s̃)

))
f (α) dα

≤ 1

2

ρL−1

(1− ρ)−1

L∑
t′=1

∫ ∞

D=0

· · ·
∫ ∞

D=0

exp (−a1D)f (D) dD

=
1

2

ρL−1

(1− ρ)−1

L∑
t′=1

{
exp

(
1

2
a2

1σ
2
D − a1uD

)}
·Q
(

a1σD −
uD

σD

)
. (C.13)

By using the inequality

Q (x) ≤ 1

2
exp

(
−x2/2

)
∀ x ≥ 0. (C.14)

The equation in (C.13) can be approximated as

X ≤ 1

2

ρL−1

(1− ρ)−1

L∑
t′=1

exp

−m

∣∣∣∣ r∑
i=1

(
L∑

t=1

λi,t + aλi,t′

)∣∣∣∣2
r∑

i=1

(
L∑

t=1

λi,t + aλi,t′

)2

. (C.15)

The value of Y in (E.2) with the similar derivation can be expressed as

Y ≤ ρL

2

L∑
t′=1

exp

−m

∣∣∣∣ r∑
i=1

L∑
t=1

λi,t

∣∣∣∣2
r∑

i=1

(
L∑

t=1

λi,t

)2

. (C.16)
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The pairwise error probability can then be bounded by

P (s → s̃)

≤ ρL

2
exp

−m

∣∣∣∣ r∑
i=1

L∑
t=1

λi,t

∣∣∣∣2
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i=1

(
L∑

t=1

λi,t

)2

+
ρL

2
(1− ρ)

L∑
t′=1

exp

−m

∣∣∣∣ r∑
i=1

(
L∑

t=1

λi,t + aλi,t′

)∣∣∣∣2
r∑

i=1

(
L∑

t=1

λi,t + aλi,t′

)2



∼=
ρL

2

exp

−m

∣∣∣∣ r∑
i=1

L∑
t=1

λi,t

∣∣∣∣2
r∑

i=1

(
L∑

t=1

λi,t

)2

+ exp

−m

∣∣∣∣ r∑
i=1

(
L∑

t=1

λi,t + λi,t′

)∣∣∣∣2
r∑

i=1

(
L∑

t=1

λi,t + λi,t′

)2


 . (C.17)
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Appendix D

Derivation of the ML Decoding of
STC/OFHSS Systems without CSI

The derived in (4.49) is discussed in this Appendix by averaging αi,q’s with respect to

the conditional probability density function defined in (4.46), and we can get∫ ∞

−∞
f(r |ŝ, x, α)f(α)dα

=

(
L∏

t=1

M∏
k=1

n∏
i=1

m∏
q=1

a1,xi,t
exp

(
−a2,xi,t

|rk
i,q,t|2

))
·

(
n∏

i=1

m∏
q=1

1

2πσ2
i,q

)∫ ∞

−∞
· · ·
∫ ∞

−∞

exp

{
L∑

t=1

M∑
k=1

m∑
q=1

n∑
i=1

a2,xi,t

[
2Re

(
rk
i,q,tαR,i,qŝ

k
i,t

)
+ 2Im

(
rk
i,q,tαI,i,qŝ

k
i,t

)
−
(
α2

R,i,q + α2
I,i,q

) ∣∣ŝk
i,t

∣∣2]} · exp

(
−

α2
R,1,1

2σ2
1,1

)
. . . exp

(
−

α2
I,n,m

2σ2
n,m

)
dαR,1,1 · · · dαI,n,m.(D.1)

For the real part of the exponent could be represented by R(αR,1,q, αR,2,q, · · · , αR,n,q)

R (αR,1,q, αR,2,q, . . . ,αR,n,q) = 2Re

(
n∑

i=1

αR,i,q

(
L∑

t=1

M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

))
−(

n∑
i=1

α2
R,i,q

(
L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 +
1

2σ2
i,q

))
. (D.2)
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By equation (D.1) with σ2
i,q = 1/2, we average αR,i,q for the real part of the exponent

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

[
m∑

q=1

n∑
i=1

(
2Re

(
n∑

i=1

αR,i,q

(
L∑

t=1

M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

))

−

(
n∑

i=1

α2
R,i,q

(
L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

))
dαR,1,1 · · · dαR,n,m

=

√√√√√ πnm

m∏
q=1

n∏
i=1

(
L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

) exp


m∑

q=1

n∑
i=1

Re

∣∣∣∣( L∑
t=1

M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

)∣∣∣∣2
L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

 .(D.3)

Next, we also average αI,i,q for the imaginary part of the exponent in (D.1)∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

[
m∑

q=1

n∑
i=1

(
2Im

(
n∑

i=1

αI,i,q

(
L∑

t=1

M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

))

=

√√√√√ πnm

m∏
q=1

n∏
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(
L∑
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M∑
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∣∣2 + 1

) exp


m∑

q=1

n∑
i=1

Im

∣∣∣∣( L∑
t=1

M∑
k=1

a2,xi,t
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i,q,tŝ
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i,t
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L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

 .(D.4)

Hence, the probability density function f (r |ŝ, x) conditioned on JSI available can be ex-

pressed as

L∏
t=1

M∏
k=1

m∏
q=1

n∏
i=1

(
a1,xi,t

· exp
(
−a2,xi,t

∣∣rk
i,q,t

∣∣2)) · m∏
q=1

n∏
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( L∑
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M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1

)−1

· exp


∣∣∣∣ L∑
t=1

M∑
k=1

a2,xi,t
rk
i,q,tŝ

k
i,t

∣∣∣∣2
L∑

t=1

M∑
k=1

a2,xi,t

∣∣ŝk
i,t

∣∣2 + 1


 . (D.5)
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Appendix E

Derivation of the Design Criteria of
STC/OFHSS Systems

The derived results of the pairwise error probability in (4.57) and (4.59) are discussed in

this Appendix, respectively. First of all, by averaging xi,t’s with respect to the conditional

pairwise error probability defined in (4.56), and then we can get

Pr (s → s̃|αi,q ∀ i, q)

=
∑
x1,1

· · ·
∑
xn,L

Pr (s → s̃|αi,q, xi,t ∀ i, q, t)Pr (x1,1) · · ·Pr (xn,L)

≤
∑
x1,1

· · ·
∑
xn,L

1

2
exp

(
−

L∑
t=1

n∑
i=1

axi,t
d2

i,t(s, s̃)

)
Pr (x1,1) · · ·Pr (xn,L)

=
1

2

L∏
t=1

n∏
i=1

{
(1− ρ) exp

(
−

d2
i,t(s, s̃)

4N0

)
+ ρ exp

(
−

d2
i,t(s, s̃)

4 (N0 + NJ/ρ)

)}

=
1

2

L∏
t=1

{
ρ

(1− ρ)
exp

(
NJ/ρ

4 (N0 + NJ/ρ)
d2

i,t(s, s̃)

)
+ 1

}
·

L∏
t=1

{
(1− ρ) exp

(
−

d2
i,t(s, s̃)

4N0

)}
∼=

1

2

{
L∏

t=1

n∏
i=1

[exp (Bi,t)] +
L∑

t′=1

n∑
i′=1

[
L∏

t=1

n∏
i=1

exp (Bi,t)

]
· [exp (Bi′,t′)]

−1

}
· C (E.1)
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where

Bi,t = ln

(
ρ

(1− ρ)

)
+

NJ/ρ

4(N0 + NJ/ρ)

m∑
q=1

M∑
k=1

∣∣αi,q

(
sk

i,t − s̃k
i,t

)∣∣2

C =
L∏

t=1

(1− ρ) exp

−
m∑

q=1

M∑
k=1

∣∣αi,q

(
sk

i,t − s̃k
i,t

)∣∣2
4N0


.

The pairwise error probability can be obtained by averaging (E.1) with respect to αi,q’s, i.e.,

Pr (s → s̃) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
Pr (s → s̃|α)f (α) dα

= X + Y (E.2)

where

X =
1

2

∫ ∞

−∞
· · ·
∫ ∞

−∞

 L∑
t′=1

n∑
i′=1

[
L∏

t=1

n∏
i=1

exp (Bi,t)

]
· [exp (Bi′,t′)]

−1

· C

f (α) dα

Y =
1

2

∫ ∞

−∞
· · ·
∫ ∞

−∞

([
L∏

t=1

n∏
i=1

exp (Bi,t)

]
· C

)
f (α) dα.

The derivation of Y is similar to that of X. Therefore, we only discuss the derivation of X

here. Replace the values of Bt and C in X, we can get

X =
1

2

ρLn−1

(1− ρ)−1

L∑
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n∑
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∫ ∞
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m∑
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i′,t′,q(s, s̃) =

L∑
t=1

M∑
k=1

n∑
i=1

∣∣αi,q

(
sk

i,t − s̃k
i,t

)∣∣2 +
NJ

N0ρ

M∑
k=1

∣∣αi′,q

(
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The value of d2
i′,t′,q (s, s̃) can be rewritten as

d2
i′,t′,q(s, s̃) =

(
L∑

t=1

M∑
k=1

∣∣sk
i,t − s̃k

i,t
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+
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where
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∣∣2.
Then, the equation (E.3) with respect to small values of rm can be derived as

1

2

ρLn−1

(1− ρ)−1

L∑
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n∑
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∫ ∞

−∞
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=
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 m∏
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−1

· (1 + a1b2)
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. (E.5)

The value of Y in (E.2) with respect to the similar derivation, and we can get

1

2

∫ ∞

−∞
· · ·
∫ ∞

−∞

([
L∏

t=1

n∏
i=1
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. (E.6)

From (E.5) and (E.6), the pairwise error probability can be bounded by

Pr (s → s̃) ∼=
ρLn

2

m∏
q=1

r∏
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(
1 + a1
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. (E.7)
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At high SNR’s and SJR’s, the above equation can be simplified as

Pr (s → s̃) ≤ 1

2
ρLn
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1
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)mn
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1
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·
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. (E.8)

The above equation is the pairwise error probability with respect to the case of low diversity.

Next, we derive the pairwise error probability for the case of high diversity. For a large of

rm, assume NJ � N0, which corresponds to

exp

(
−

d2
i,t(s, s̃)

4 (N0 + NJ/ρ)

)
� exp

(
−

d2
i,t(s, s̃)

4N0

)
. (E.9)

By (E.1), the pairwise error probability can be approximated as

Pr (s → s̃|αi,q ∀ i, q)

∼=
1

2

L∏
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n∏
i=1

{
ρ exp
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According to the central limit theorem, the
∑L

t=1

∑M
k=1

∣∣sk
i,t − s̃k

i,t

∣∣2 approaches a Gaussian

random variable D with the mean uD and variance σ2
D
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By averaging (E.10) with respect to the Gaussian random variable D, we then have

Pr (s → s̃) ∼=
ρL

2
exp

(
1

2

(
1

4 (N0 + NJ/ρ)

)2

σ2
D−
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)
. (E.12)

By using the inequality

Q (a) ≤ 1

2
exp

(
−x2/2

)
∀ x ≥ 0. (E.13)

The above equation can be approximated as
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 . (E.14)
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Appendix F

Derivation of the ML Decoding of
STC/UFHSS Systems without CSI

The derived in (4.67) is discussed in this Appendix by averaging αi,q’s with respect to

the conditional probability density function defined in (4.64), and we can get∫ ∞

−∞
f(r̃|ŝ, x, α, β̃)f(α)dα

=
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For the real part of the exponent could be represented by R(αR,1,q, αR,2,q, · · · , αR,n,q)

R (αR,1,q, αR,2,q, . . . ,αR,n,q)

= 2Re
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where
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k
1,t

)(
β̃2,t,bŝ
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k
2,t

∣∣∣2 · · ·
(
β̃2,t,bŝ
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It is clear that Ak
t,b is nonnegative definite Hermitian, and the eigenvalues of Ak

t,b are non-

negative real numbers. Therefore, we can get

V k
t,bA

k
t,bV

k
t,b

H
= Dk

t,b (F.5)
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where V k
t,b is a unitary matrix and Dk

t,b is a real diagonal matrix. The rows of V k
t,b, forming

a complete orthonormal basis of an N -dimensional vector space, are the eigenvectors of Ak
t,b.

The diagonal elements of Dk
t,b are the eigenvalues λk

i,t,b ≥ 0, ∀ 1 ≤ i ≤ n. Equation (F.2)

can be rewritten as
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where
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By equation (F.1), we average αR,i,q for the real part of the exponent∫ ∞
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Next, we also average αI,i,q for the imaginary part of the exponent in (F.1)∫ ∞
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