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新型態多天線系統綜合分析 
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國立交通大學電信工程學系碩士班 

 

 

摘要 
 

在本論文中，我們提出了兩組新型評估多天線系統效能的電磁分析。第一項

是新型天線空間相關係數(Antenna Spatial Correlation)的計算方法，第二項

則是結合全主動反射係數(Total Active Reflection Coefficient)的輻射效率

(Radiation Efficiency)分析方法。論文中的所有個案討論將以一對偶極天線做

為分析基準。 

首先，我們提出了一組新型態的天線空間相關係數表式方法。新型天線空間

相關係數計算方式擁有以下的優勢。首先，新型態的計算方法將整體的計算參數

化，分離了天線場型、天線電路的耦合效應(Mutual Coupling Effect)以及入射

角度的機率分佈函數(Angle-of-Arrival Probability Distribution Function)

三組參數進行計算，如此的計算方式可以將三者分別對相關係數的影響進行檢

驗，有利於對於整體效能的分析評估，並可節省計算受到耦合效應影響的天線場

型的時間。再者，在進行關於入射角度的機率分佈的相關計算中，我們提出了計

算任意入射角度分佈的相關係數積分近似方法，此方法可以有效降低計算複雜

度。 

此外，我們也提出了一組新的結合全主動反射係數的輻射效率分析方式。他

能分析輻射效率如何隨著天線埠饋入不同相位訊號時有所改變，相對也更適合於

多天線系統的分析。運用這一組分析方法，我們也進一步研究不同的天線匹配網

路如何影響輻射效率以及天線空間相關係數。 
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Abstract 
 

In the thesis, we propose two new electromagnetic analysis strategies to evaluate 
the performance of multiple antenna systems. The first is a new antenna spatial 
correlation formulation, and the other is a new analysis strategy of radiation efficiency 
combined with total active reflection coefficient (TARC). All case studies are 
simulated using a dipole pair as the benchmark. 

The new proposed antenna spatial correlation formulation is presented in the 
parameterized manner. The formulation separates the isolated antenna pattern, the 
mutual coupling effect between antennas, and the probability distribution function 
(PDF) of Angle-of-Arrival (AoA) to calculate the correlation coefficient. Such 
formulation not only benefits the analysis of the performance of the whole antenna 
system but also saves the computation time of the distorted antenna patterns which 
result from the mutual coupling effect. Moreover, we provide an approximate spatial 
correlation formulation which is suitable for arbitrary AoA scenarios and can be 
incorporated in our parameterized correlation formulation. This approximation 
formulation can effectively reduce computation complexity. 

We further propose a new analysis strategy of radiation efficiency combined 
with TARC technique. It evaluates how the radiation efficiency may change when the 
antenna ports excite signals with different phases. Besides, with this new technique, 
we also investigate how different antenna termination networks influence the 
radiation efficiency and antenna spatial correlation. 
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Chapter 1 
 
Introduction 
 
 

In recent years, the magnificent progress of wireless communication has boosted 

the rapid development of the whole communication industry. Because of the even 

firmer connection with our daily lives, wireless communication actually has changed 

the way we live. Standards such as the second-generation (2G) mobile communication, 

bluetooth and wireless local area network (WLAN) have been extensively 

implemented since a decade ago. Moreover, some newly-suggested technologies like 

the third-generation (3G) systems, ultra-wideband (UWB), worldwide interoperability 

for microwave access (WiMAX) blossom on the standard platform of the wireless 

communication. Telecom and datacom have come to aim at combining with each 

other in an even higher speed. Mainly owning to the variety of the wireless standards, 

it has become an essential issue and technology to make the best use of the limited 

frequency spectrum efficiently and achieve high information quality. 

 

1.1 Motivation 
The concept of multiple antenna technology has offered a solution scheme which 

can reach the goal of high-quality communications. From a theoretical perspective, 

multiple antenna transmission and reception techniques are well known in 

communication engineering [1] and envisioned as the solution for next generation 
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broadband communication systems. It is acknowledged for the potential benefits for 

increasing the coverage, capacity, and data rates of the wireless communication 

systems. 

Incorporating multiple antenna technology into portable wireless devices means 

that multiple antennas are set in the limited spacing of small devices and impacts 

system performance. The spatial propagating channel and the characteristics of 

antennas are considered two most concerned factors which actually impact system 

performance, and antenna spatial correlation is therefore suggested the composite 

representation of these two factors for evaluating the performance of the multiple 

antenna system. In previous works which will be reviewed in the next chapter, 

antenna spatial correlation is defined as the Hermitian product of the far-field patterns 

of two antenna elements which may moreover take the probability distribution 

function (PDF) of angle-of-arrival (AoA) into consideration for the expectation value 

of the antenna spatial correlation coefficient. 

In addition to antenna spatial correlation, radiation efficiency is another topic 

when referring to the performance of multiple antenna systems. Realizing multiple 

antenna systems in radiation channels becomes challenging because of the 

unavoidable mutual coupling effect between multiple antennas. Mutual coupling 

effect not only distorts the antenna far-field patterns but also has great impact on how 

much power can radiate without reflection resulting from impedance mismatch and 

absorption by adjacent antenna elements.  

 

1.2 Purpose 
    In the thesis, we propose two new electromagnetic analysis strategies to evaluate 

the performance of multiple antenna systems. The first is a new antenna spatial 
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correlation formulation, and the other is a new analysis strategy of radiation efficiency 

combined with total active reflection coefficient (TARC). This investigation is 

especially more valuable when the system operates in the transmit mode. The new 

antenna spatial correlation formulation not only effectively reduces computation 

complexity without sacrificing accuracy but also offers a more detailed analysis 

presented in the parameterized manner. Moreover, the new suggested analysis of 

radiation efficiency combined with TARC evaluates how the radiation efficiency may 

change when the antenna ports excite signals with different phases. 

 

1.3 Organization 
This thesis is organized as follows. In Chapter 2, the overview of multiple 

antenna systems is introduced, and the two analysis strategies of multiple antenna 

systems including complex antenna spatial correlation and radiation efficiency are 

reviewed for the further investigation in the following chapters. In Chapter 3, the 

two-dimensional (2-D) approximate antenna spatial correlation without mutual 

coupling is first proposed, and then the 2-D and 3-D antenna spatial correlation 

formulation incorporating antenna mutual coupling is further presented in the 

following sections in this chapter. Chapter 4 describes the new proposed TARC-based 

radiation efficiency, and we also provide investigations of impact of different 

termination networks on antenna spatial correlation and radiation efficiency based on 

the newly-proposed analysis strategy. Finally, we draw concluding remarks in 

Chapter 5.
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Chapter 2 
 
Fundamental Theory of Multiple Antenna 
Systems 
 
 

Wireless communication systems are becoming more complex to cope with the 

growing demand for more data rates, wider coverage, larger capacity objectives, as 

well as exciting new wireless applications. Multiple antenna systems have great 

potential in reaching these specifications and overcoming the impairments of these 

systems by exploiting the spatial domain to reduce the interference of the undesired 

signals, extend the coverage of wireless networks, increase capacity, and reach high 

information throughput. In this chapter, we will first review the multiple antenna 

systems and especially focus on the detailed classification of different multiple 

antenna system schemes. Based on the overall introduction of multiple antenna 

systems, we further introduce two important parameters for the gauge of the 

performance of multiple antenna systems. The first one is the antenna spatial 

correlation where we will review several definitions of antenna spatial correlation in 

the second section of this chapter. The second parameter is the radiation efficiency 

which will be fully discussed based on the general definition and shown why it plays 

an important role in multiple antenna systems. Finally, because the case studies we 

provide in the whole thesis are simulated using a dipole pair, the dipole antenna is 

briefly introduced as well in the final section of the chapter. 
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2.1 Overview of Multiple Antenna Systems 
It is a truth that current technologies have maximized the employment of 

temporal and spectral techniques to improve capacity and data speeds. There is still an 

additional degree of freedom left for full utilization, namely space [2]. Making use of 

space means multiple antenna elements are arranged together in the required manner. 

The concepts of multiple antenna technology that originate from decade ago are 

substantially beneficial in the wireless communication systems. Multiple antenna 

systems have developed into several appearances for implementation, and we further 

introduce all of them briefly and summarize their benefits respectively as follows. 

．Beamforming: The concept of this multiple antenna system originates from the 

conventional phased antenna array. The radiation pattern of the phased antenna array 

system can be controlled by feeding different signal phase delays and antenna element 

spacing [3]. With a specific feeding network, the total pattern of the array can be 

directed to the desired direction. On basis of this concept, beamforming is developed 

as one main multiple antenna strategy. There are two general types of beamforming, 

namely, fixed beamforming and adaptive beamforming. The main advantage of 

adaptive beamforming antenna systems over fixed beamforming antenna systems is 

the ability to steer beams toward desired signals and nulls toward interfering signals 

while the fixed beamforming can only radiate/receive signals at specific directions [4]. 

Beamforming offers interference rejection, antenna gain and spatial filtering, which 

have the equivalent effects of improving signal-interference-noise ratio (SINR) as 

well. 

．Diversity: The concept of diversity comes from the fact that when multiple 

replicas or multipath effects of the transmitted signal fade independently as they go 

through channels, the probability of a deep fade happening in all propagating routes 
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are greatly reduced. Diversity techniques provide a diversity gain or a reduction in the 

margin required to overcome fading. Several antenna schemes are proposed to create 

the diversified channels to achieve the diversity gain, including polarization and 

spatial diversity. Polarization diversity exploits antenna with orthogonal polarizations 

to achieve the performance of high diversity gain. Spatial diversity systems are 

designed such that the signals at the different antennas of the receiver have low cross 

correlation with maximum gain achieved for uncorrelated signals. Moreover, transmit 

diversity such as Alamouti’s space time block coding (STBC) [5] can improve the 

quality of signals by proving data with multiple independent coded streams. Spatial 

diversity is supposed to provide diversity gain and prevent fade margin. 

．Spatial Multiplexing: Spatial multiplexing is supported to urge forward the data 

rates and throughput to an even higher level. Multiple data streams are transmitted to 

multiple antennas with this spatial strategy. Moreover, if the receiver end is also set 

up with multiple antennas and signals are with sufficiently different spatial signatures, 

it can separate data streams to reach the goal of high data rate compared to the 

single-antenna communication systems. Spatial multiplexing is therefore considered 

very powerful for increasing channel capacity. One thing to emphasize is this spatial 

technique works under 1) multiple scattering rich environments and 2) enough good 

signal-to-noise-ratio (SNR). 

The above three multiple antenna systems all involve complex vectors and 

matrix operation on signals, and sometimes can be generally called the family of 

multiple-input multiple-output (MIMO) antenna technology for these three systems 

share the same characteristic of multiple antennas. MIMO used to only indicate the 

diversity and spatial multiplexing techniques. However, with the advance of 

combining all three techniques into a total communication solution, MIMO now 

represents the systems which exploit many antennas. For example, spatial 
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multiplexing or diversity can also be combined with beamforming when the channel 

is known at the transmitter, and the definition of MIMO can be broadened in an 

extensive manner as a result. Furthermore, a combination of MIMO with orthogonal 

frequency division multiplexing (OFDM) is promising for frequency selective 

channels, high spectral efficiency, and reduction of circuit complexity. 

    No matter what kind of MIMO technology is implemented, antenna spatial 

correlation and radiation efficiency have always been very important parameters for 

evaluating the MIMO systems. Different multiple antenna transmission methods set 

different requirements on the antenna set up in addition to the number of antenna 

elements. Generally, the beamforming technique usually needs the antenna setups 

with spatial correlation as high as possible, while the diversity and spatial 

multiplexing techniques on the contrary demand uncorrelated antenna setups. 

Radiation efficiency is another issue we need to take care of because power 

consumption and how much power will radiate are concerned topics especially in 

small terminals like mobile phones. In the following two sections, we will review the 

definitions of these parameters. 

 

2.2 Antenna Spatial Correlation 
    Signal fading due to multiple scattering effect is the dominant drawback 

happening in the wireless communication. Therefore, multiple antennas are proved to 

provide diversity, and the performance of the multiple antennas is determined by the 

spatial correlation between antennas. The first discussed spatial antenna correlation 

was proposed by W. C. Jakes [6]. Consider a plane wave arriving at an array from 

azimuth angle Φ with respect to the normal bisecting two sources a distance d apart, 

and the spatial correlation between two sources can be determined as  
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 )())sin(2exp()(   ∫−=
π

π φ φφφ
λ

πρ dpdjd             (2.1) 

where λ is the wavelength and pΦ(Φ) is the azimuth angular probability distribution 

function. The most special case is when pΦ(Φ)=1/2π which is called the Clarke’s 

model scenario [7], the antenna spatial correlation has a closed form well-known as the 

Bessel function [8]. Based on (2.1), several works on spatial correlation has relied on 

numerical integration to evaluate the correlation coefficient between two sources 

based on different azimuth angular probability distribution functions [9-10]. The 

author in [11] especially discussed and derived simple generalized formula for spatial 

correlation and showed a good approximation for spatial correlation for small 

angular-spread (AS) angular distributions. 

    The above definitions of antenna spatial correlation only take the signal phase 

and the angular PDF of the incoming waves in azimuth plane. Therefore, the antenna 

spatial correlation including antenna patterns and mutual coupling effect was further 

proposed in the literature. There were two main categories for the antenna spatial 

correlation including antenna patterns and mutual coupling effect. The first is the 

parameterized correlation formulation which describes the correlation in impedance 

or scattering matrix, and the second is the correlation formulation generally defined as 

the Hermitian product of the far-field patterns of two antenna elements.  

．Parameterized Formulation: In [12], W. Wasylkiwskyj and W. K. Kahn 

suggested the antenna spatial correlation as  

2211

12
12 )(

RR
Rd =ρ                        (2.2) 

where Rii is the self impedances of the i-th antenna, and Rij is the mutual impedance 

between the i-th and j-th antennas. What needs to be noticed is this formulation is 

suitable for the minimum scattering antenna theory only. Moreover, the authors in [13] 
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proposed exact representation of antenna envelope correlation in terms of scattering 

parameter description under the assumption of uniformly incoming waves as listed in 

Equation (2.3). 

( )( )2

21

2

22

2

12

2

11

2

222112112

12 11 SSSS

SSSS
env

−−−−

+
==

∗∗

ρρ         (2.3) 

．Pattern Multiplication: This is the most direct but also the most complex 

definition. R. G. Vaughan and J. B. Andersen proposed in [8] that the spatial 

correlation is given by 
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where ‧ denotes the Hermitian product and P means the antenna pattern. Moreover, 

C. Waldschmidt and W. Wiesbeck further suggested a more general spatial 

correlation as [14] 
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E is the far-field E antenna patterns, p(Φ,θ) means the AoA distribution of interest, 

and the subscript Φ/θ denotes the field polarization for both AoA distribution and 

antenna patterns. 

Compared with the pattern multiplication, the correlation represented in 

parameter manner encloses the total radiation field of antennas and extracts the 
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correlation from the principle of energy conservation, which will in turn lose some 

important information originally existing in the integral equations. As a consequence, 

the spatial correlation in Equation (2.5) is considered the most general correlation 

formulation so far because it takes all the possible factors into consideration to 

calculate the correlation coefficient. 

 

2.3 Radiation Efficiency 
    For single antenna case, the total antenna radiation efficiency is used to take into 

account losses at the input terminals and within the antenna configurations. Such 

losses are listed as follows and refer to Figure 2.1 [3]. 

    In general, the overall efficiency can be written as  

                 ( )21 Γ−=== cdcdrdcro eeeeeee                (2.7) 

where 
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Figure 2.1 Reflection, conduction, and dielectric losses. 
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Figure 2.2 The equivalent circuit of an antenna pair in transmit mode. 

 

We in turn introduce the general definition of radiation efficiency in multiple 

antenna systems [15]. The radiation efficiency is most conveniently defined and 

computed in the transmit mode by implementing the equivalent circuit shown in 

Figure 2.2. The voltage source V and source impedance ZS1 show the excitation of the 

antenna port 1, and the load impedance ZL2 is the termination at the second antenna 

port. Z12 is the mutual impedance which can describe the mutual coupling effect 

between two antennas. One thing to be mentioned is this equivalent circuit is 

constructed based on the antenna pair with identical structure, and Z11=Z22 and 

Z12=Z21 accordingly.  

    The equivalent circuit in Figure 2.2 can be used to calculate the input impedance 

Zin, which can in turn calculate the voltage reflection coefficient Γ . We can 

determine the input impedance Zin as 

1

212
11 I

IZZZin +=                        (2.8) 
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Equation (2.8) can be transformed using the circuit loop which represents the 

equivalent circuit of antenna 2 by 

                           1
222

12
2 I

ZZ
ZI

L+
−

=                       (2.9) 

Then, we can finally determine the input impedance Zin as 

                        
222

2
12

11
L

in ZZ
ZZZ
+

−=                     (2.10) 

The total power leaving antenna 1 is shown as PZin=Real{Zin}|I1|2, and the power 

which will be absorbed by ZL2 via mutual coupling effect and cause reduction of 

radiation power is PZL2=Real{ZL2}|I2|2. The difference between PZin and PZL2 is called 

the radiation power Prad, i.e., Prad= PZin- PZL2. Therefore, the radiation efficiency erad 

which is also defined in [3] can be derived as 

                         
2LZreflrad eee =                     (2.11) 

where 

0
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refl +

−
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22
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}{Real
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IZ
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e
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L
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The radiation efficiency is the composite power efficiency representation for it 

includes not only the reflection caused by input mismatch of the excitation port but 

also the power absorption resulting from the termination at the other unexcited 

antenna branch. 

 

2.4 Dipole Antenna 
    Because the case studies we provide in the whole thesis are simulated using a 
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dipole pair, the dipole antenna is briefly introduced in this section. The dipole antenna 

is the most general antenna structure, and the current distribution on the dipole usually 

assumes the antenna is center-fed and the current vanishes at the end points. Moreover, 

to reduce the mathematical complexities, the diameter of the dipole is ideally much 

thinner than the wavelength of the operating frequency. 

With the above assumptions, the current distribution can be approximately 

written as 
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where Io is the maximum current occurring at the center-fed point, and k is the phase 

constant in the free space. After the far-field approximations and integration of all 

 

(a)                                       (b) 

Figure 2.3 (a) The λ/2 dipole and (b) the Eθ pattern in theta plane (Φ=0°). 
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the infinitesimal elements, the far-field Eθ pattern takes the form of  
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In the similar manner, the total HΦ component can be written as 
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    One of the most commonly used type is the half-wavelength (l=λ/2) dipole for its 

matching to the transmission line is simplified especially at resonance. By letting 

l=λ/2, Equations (2.15) and (2.16) can reduce to 
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The current distribution of the half-wavelength dipole and the theta-plane E-field 

pattern is plotted in Figure 2.3, and Zin=73+42j computed from the induced EMF 

method [16]. We need to notice that we assume the diameter of the dipole is ideally 

much thinner than the wavelength of the operating frequency, and only Eθ and HΦ 

fields exist. However, in the following chapters, EΦ and Hθ fields also exist in the 

simulation results since the diameter of the dipole cannot be in ideally thin manner. 
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Chapter 3 
 
A New Spatial Correlation Formulation of 
Arbitrary AoA Scenarios 
 
 

Signal fading due to multiple scattering effect is the dominant drawback 

happening in the wireless communication. Therefore, multiple antennas are proved to 

provide diversity, and the performance of the multiple antennas is determined by the 

spatial correlation between antennas. In this chapter, we will discuss this parameter 

including the AoA distributions of the spatial channel and the physical configurations 

of multiple antenna structures. We first introduce the 2-D approximate spatial 

correlation formulation and our proposed approximate spatial correlation formulation 

of arbitrary AoA scenarios in Section 3.1. Based on the proposed formulation, Section 

3.2 further introduces the 2-D spatial correlation combining with antenna patterns 

distorted by the mutual coupling effect based on the spatial correlation proposed in 

[17]. Finally, in Section 3.3, we derive a 3-D spatial correlation incorporating antenna 

mutual coupling in the parameterized manner. The new antenna spatial correlation 

formulation not only effectively reduces computation complexity without sacrificing 

accuracy but also offers a more detailed analysis presented in the parameterized 

manner. Again, we emphasize all the simulation results are provided using a dipole 

pair as the benchmark. 

 



16 

3.1 2-D Approximate Spatial Correlation 

Formulation of Arbitrary AoA Scenarios 
 

3.1.1 Spatial Correlation of Small Angular Spread 

AoA Scenarios 
The spatial channel model is different from the traditional propagation model 

which does not take into consideration the spatial angular distribution. A channel 

model that simultaneously characterizes the AoAs of multipath components is called 

the spatial channel model [18], and different phi-plane AoA PDFs have been 

proposed in the literature [19]. 

With a given AoA scenario, we may substitute it into the spatial correlation. In 

[11], the author presented the approximate spatial correlation which is suitable for 

small angular-spread AoA distribution. Consider a plane wave arriving at an array 

from azimuth angle Φ with respect to the normal bisecting two sources a distance d 

apart, and the spatial correlation between two sources can be determined as 

 )())sin(2exp()(   ∫−=
π

π φ φφφ
λ

πρ dpdjd                 (3.1) 

where λ is the wavelength and pΦ(Φ) is the azimuth angular PDF. If the angular 

energy is a Gaussian distribution, AoA distribution pΦ(Φ) can be represented as 
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where σ is the standard deviation of the distribution and Φ0 is the mean angle of the 

AoA distribution. Substitute Equation (3.2) into Equation (3.1) and make a change of 

variables, and the spatial correlation is given by 
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Under the assumption of small σz over the integration range, Equation (3.3) can be 

approximated as 

( ) ( )
( )

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
⎟
⎠
⎞

⎜
⎝
⎛

−
⎭
⎬
⎫

⎩
⎨
⎧=

2

cos2

expsin2exp

2

0

0

φσ
λ
π

φ
λ
πρ

d
djd         (3.4) 

Similarly, if the AoA distribution is small-∆ uniform distribution which ranges from 

-∆ to ∆ with mean angle Φ0, the spatial correlation can be derived as 
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    Equations (3.4) and (3.5) have provided simple generalized formula for spatial 

correlation and shown that both give good approximations. Another advantage of 

Equations (3.4) and (3.5) is they have reduced the computation time where the 

calculation of the spatial correlation originally relies on numerical integration or 

infinite series expansion. However, as shown in [11], Equations (3.4) and (3.5) cannot 

approximate well when the mean angle Φ0 is much larger than 0°, or the standard 

deviation of the distribution σ becomes higher (or ∆ becomes larger in the uniform 

distribution). That is therefore not favorable because the angular spread of the AoA 

distribution may become larger in the multiple scattering-rich environment, especially 

in the indoor environment where MIMO systems can make the best use of their 

advantages. As a result, in Section 3.1.2, we will further propose the spatial 

correlation formulation which is suitable for large angular-spread AoA distribution 

and even arbitrary AoA scenarios. 
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3.1.2 Spatial Correlation of Arbitrary AoA Scenarios 
Uniform distribution is suitable to describe large angular spread AoA in multiple 

scattering rich environments, so it is an appropriate candidate when we analyze the 

parameter of the multipath channel model. As mentioned in the previous section, the 

approximate form of the spatial correlation is presented based on Gaussian 

distribution which is suitable for small angular spread AoA distribution. However, the 

approximation may be distorted when the angular spread becomes large, and that is 

the reason why we would like to suggest a good approximate spatial correlation under 

the condition of large angular spread. For the uniform distribution, its probability density 

function is presented as 

( ) Δ+≤≤Δ−
Δ

= 00               
2
1 φφφφφp         (3.6) 

where Φ0 is the mean of the given uniform distribution and 2∆ is the range of angles 

referred to Φ0. If 2∆ is equal to 2π, the spatial correlation has a closed form and is 

well-known as the Bessel function; however, for the case that 2∆ is smaller than 2π, 

the spatial correlation is not a closed form formula and thus the time-consuming 

numerical integration is needed. 

Therefore, we propose a new approximate AoA distribution for the uniform 

distribution as 
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where N is the number of sampling Gaussian distribution, Φn is the n-th sampling 

mean AoA and σn is the n-th sampling AoA angular spread. This approximate AoA 

distribution uses the combination of many small angular spread Gaussian distributions 

to fit a given large angular spread uniform distribution as shown in Figure 3.1(a). 

There are three reasons we choose multiple Gaussian distributions to fit the large 
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angular spread uniform distribution. First of all, Gaussian distribution is a general 

distribution to describe a small angular spread AoA scenario. Second, the standard 

deviation of the Gaussian distribution is actually the angular spread of the Gaussian 

AoA distribution. Finally, that the spatial correlation of small angular spread Gaussian 

distribution has a generalized approximation formulation is the most important reason 

we choose as the fitting function of the uniform distribution. 

Substitute Equation (3.7) into Equation (3.1), we may represent the spatial 

correlation as 
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Using the small angular-spread approximate spatial correlation as shown in Equation 

(3.4), we may finally represent the spatial correlation as 
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(a)                                  (b) 

Figure 3.1 AoA distribution of (a) uniform distribution over Δ−  and Δ  and (b) 

uniform-like distribution. The solid lines are the practical distribution curves while the dash 

lines are the sampling Gaussian distributions. 
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The advantage of this approximation is it can be extended to arbitrary AoA 

scenarios as shown in Figure 3.1(b) as an example. For an AoA distribution which is 

very complex or cannot be described by a mathematical formula easily, the 

discretized summation is needed for correlation evaluation. The approximate 

formulation we propose only samples specific mean AoAs over the distribution and 

uses the sampling Gaussian distributions to calculate the spatial correlation. 

Computation time of correlation calculation can thus be saved using the proposed 

approximation formulation. What should be mentioned is the weighting coefficients 

of the sampling Gaussian distributions may not equal 1/N and should be modified 

according to the AoA scenario. 

 

3.1.3 Simulation Results 
We first show the performance of 2-D spatial correlation between two ideal 

sources either by the conventional discretized summation or our approximation 

formulation. Simulation programs are written in MATLAB® and run on PC with an 

Intel® Pentium IV 3-GHz CPU. A uniformly-distributed AoA scenario over 

[-100°,100°] with mean angle 0° is chosen as the benchmark to evaluate the spatial 

correlation. In order to find a gauge to examine either the discretized summation or 

the approximation formulation performs correctly, the computation result of the 

numerical integration is regarded as the closed-form solution.  

As from the work in [11], the approximate spatial correlation only fit well with 

the one calculated in either the closed-form or the discretized manner under the 

condition of small angular spread. For the value of angular spread larger than 20°, the 

approximate spatial correlation may perform a less desirable result. Therefore, each of 

the multiple Gaussian AoA distributions should also be chosen in the manner of small 
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angular spread, and in our case is 2.5° in the confidence of accuracy. As soon as the 

angular spread of each sampling AoA distribution is determined, we further make use 

of the characteristic of Gaussian distribution where the values within two standard 

deviations from the mean are more than 95 %. The sampling mean AoAs are thus 

chosen at every 5°, which is two standard deviations from the mean angle. 

    The correlations calculated by three different schemes in Figure 3.2 share similar 

curve trend with very little variation. Numerical integration costs more time than the 

other two schemes as shown in Table 3.1; the main efficiency comparison is made 

between discretized summation and approximation formulation, and we find that the 

computation time of approximation formulation is 36% reduced compared to that of 

discreitized summation. Moreover, of course we can sample more Gaussian 

distributions for a given arbitrary AoA distribution. However, it will be similar with 

the calculation using discretized summation and lead to redundant computation time. 

On the other hand, too few sampling small angular-spread Gaussian distributions are 

absolutely unable to describe the given arbitrary AoA distribution. 

 

Figure 3.2 Absolute value of spatial correlation using different calculation schemes. 
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TABLE 3.1 EFFICIENCY COMPARISON OF DIFFERENT SCHEMES IN FIGURE 3.2 

 

 

3.2 2-D Spatial Correlation Formulation 

Incorporating Antenna Mutual Coupling 
 

3.2.1 Formulation Derivation Incorporating Antenna 

Mutual Coupling 
    In Section 3.1, we have discussed the antenna spatial correlation taking AoA 

distribution into consideration, and introduced our proposed approximate spatial 

correlation formulation of arbitrary AoA scenarios. Besides AoA distribution, the 

characteristics of multiple antennas also play an important role in the spatial 

correlation. In [17], the authors derived an analytical expression for both the mean 

received power of each antenna and the spatial correlation between antennas with 

antenna mutual coupling. We therefore would like to combine both our proposed 

approximate antenna spatial correlation with the spatial correlation which is proposed 

in [17] to reach a more efficient calculation of the antenna spatial correlation. 

    Based on the equivalent circuit network model for multiple antenna system in 

[20], the extension version with incoming waves and load impedances ZL are shown 

in Figure 3.3. For closely spaced elements, the coupling matrix is introduced to take 

mutual coupling effect and load impedances into account. Using the circuit theory, the 
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coupling matrix is given as 

( )( ) 1−++= ZZzzC LAL             (3.10) 

where zL and zA are the load impedance and antenna self impedance, and ZL and Z are 

the load impedance matrix and antenna impedance matrix respectively. One thing 

which should be reminded is Equation (3.10) is under the assumption that the multiple 

antenna systems is composed of identical antenna elements and terminated with the 

same load impedances. 

    For a dual antenna system, the coupling matrix is assumed as 
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where a and b are called self coupling coefficient and mutual coupling coefficient 

respectively. Different from the deduction in [17], modifications have been made to 

set up the antennas at both sides of the origin of the axis so that the patterns of the 

dual antenna system can share the property of symmetry. Consider there is no mutual 

coupling the dual antenna system, and the received signal vector is given by 
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where gx(Φ) (x=1, 2) is the radiation pattern of the x-th element without mutual 

coupling, τ=2πdsin(Φ)/λ is the delay between two neighboring elements, d is the 

element spacing, λ is the wavelength and Φ is the AoA. If taking mutual coupling into 

account, we may get the received signal vector as  
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Figure 3.3 Equivalent circuit of the multiple antenna system for receiving mode. 

 

Given the AoA power spectrum distribution is p(Φ), the spatial correlation is 

therefore shown as 
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For omnidirectional element patterns without mutual coupling, the spatial correlation 

is denoted as 
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which is the same formulation of Equation (3.1). After the deduction, Equation (3.14) 

can be reduced as  
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where c is the ratio of mutual coupling coefficient b to self coupling coefficient a. 

Equation (3.17) separates the element factors, including antenna mutual coupling 

and AoA scenarios, so that the spatial correlation can be dissected for a more detailed 
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analysis. Moreover, another advantage is we can combine our proposed approximate 

antenna spatial correlation with Equation (3.17). That is to say, Rreal and Rimag can be 

calculated in our proposed approximate formulation and substitute into Equation (3.17) 

to reach a more efficient calculation of the antenna spatial correlation. 

 

Figure 3.4 HFSS simulation setup of a coupled dipole pair. 

 

3.2.2 Simulation Results 
    Two parts of simulation results are provided in this section. First of all, we will 

compare the patterns calculated from the EM simulation tool and calculated from the 

coupling matrix to verify if the coupling matrix can describe how antenna patterns 

may distort with mutual coupling effect. Second, we also offer a case study to show 

how the spatial correlation is affected by mutual coupling. We implement the case 

study with EM simulation software Ansoft® HFSS, while simulation programs are 

written in MATLAB® and run on PC with an Intel® Pentium IV 3-GHz CPU. 

    The likely candidate for the antenna elements is dipole antennas, and Figure 3.4 
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depicts the design geometry for coupled antenna simulations. The radius of the dipole 

is λ/100, and the dipole length is tuned to be 0.44 λ in order to make the dipole 

antenna resonant at the desired central frequency where it is 2.45 GHz in our  

 
Figure 3.5 The self impedance and mutual impedance ranging 0.1 λ to 1.0 λ. 

 

Figure 3.6 Self coupling and mutual coupling coefficient. 
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(a)                                   (b) 

Figure 3.7 XY-plane E-field pattern computed by HFSS where (a) is the magnitude 

and (b) is the phase of the pattern. 

 
(a)                                    (b) 

Figure 3.8 XY-plane E-field pattern computed by the coupling matrix where (a) is the 

magnitude and (b) is the phase of the pattern. 

 

simulation. With port impedances set to be 50 Ohm, the self impedance and mutual 

impedance ranging 0.1 λ to 1 λ are shown in Figure 3.5, and the results fit well with 

those shown in [3]. The self-coupling coefficient and mutual-coupling coefficient in 

the coupling matrix can be calculated using Equation (3.10) and drawn in Figure 3.6. 
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With the coupling matrix, the distorted antenna patterns can therefore be computed 

and compared with those computed from HFSS. Figure 3.7 and Figure 3.8 

respectively show the pattern of one antenna branch computed from HFSS and from 

coupling matrix. 

Compare Figure 3.7 and Figure 3.8, and we may find coupling matrix is able to 

describe the distortion of the antenna pattern, and make sure Equation (3.17) is 

another candidate of antenna spatial correlation. We further make comparison 

between antenna spatial correlation in Equation (3.17) and that using traditional 

discretized summation. A uniformly-distributed AoA scenario over [-180°,180°] is 

chosen as the benchmark to evaluate the spatial correlation. Moreover, the sampling 

small angle-spread Gaussian distributions sample their mean angles every 10° with 5° 

standard deviation for our approximation scheme which will calculate Rreal and Rimag 

in Equation (3.17). Figure 3.9 shows three antenna spatial correlations. The spatial 

correlation without mutual coupling actually behaves in the form of Bessel function. 

What is more important is the calculation results of spatial correlation using different 

strategies. Observing these two curves, there exists deviation between two calculation 

strategies. The discretized summation is usually regarded as the reference, and the 

correlation using Equation (3.17) leads to little lower value than the discretized 

summation does. This may result from that 1) Equation (3.17) is under the assumption 

of g1(Φ)=g2(Φ)=1 which is not practical for the explicit for the description of a dipole 

pattern, 2) discretized summation itself is not the closed form solution, and 3) it is 

difficult for the coupling matrix to explicitly describe the distortion of the antenna 

patterns. Figure 3.10 shows two sets of pattern where the deviation of correlation 

using two strategies is larger and very smaller, including element spacing = 0.3 and 

0.8 λ. In order to compare their difference, patterns using two strategies are 

normalized to their maximum. Obviously from the comparison of these two sets, we  
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Figure 3.9 Three kinds of absolute value of 2-D antenna spatial correlation. 

 

(a) 

 
(b) 

Figure 3.10 Pattern distortion using coupling matrix and HF EM software where (a) is 

at element spacing=0.3 λ and (b) at 0.8 λ. 
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can infer that when mutual coupling is stronger, the pattern becomes more distorted. 

When the pattern is distorted more dramatically, the coupling matrix is becoming 

harder to completely describe the fierce distortion, no matter in terms of amplitude or 

phase. The coupling matrix is originally extracted from the antenna structure, and 

using the coupling matrix to re-describe the distortion of the antenna patterns may 

result in the loss of information which the original antenna structure carries. Although 

it cannot fully describe the distortion and results in deviation of correlation value, the 

trend of the correlation in Equation (3.17) is still similar with that using discretized 

summation, and still good for the gauge of the antenna structure before physical 

implementation. 

    In terms of the physical meaning of Figure 3.9, it is again shown that mutual 

coupling can affect and reduce the signal correlation effectively at close antenna 

spacings just as the conclusion which [17] suggested. 

 

3.3 3-D Spatial Correlation Formulation 

Incorporating Antenna Mutual Coupling 
 

3.3.1 Formulation Derivation Incorporating Antenna 

Mutual Coupling 
Various definitions of antenna spatial correlation have been introduced in 

Chapter 2. However, the above definitions have their limited merits. Equation (2.3) is 

derived under the assumption of the isotropic AoA distribution, but AoA distribution 

is environment-dependent mentioned earlier. Equation (3.17) in the previous section 

is another proposal which considers the 2-D antenna pattern and AoA, but antenna 
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polarization thus is not included in the definition. Equation (2.5) is the most general 

definition of the spatial correlation; however, compared to Equation (2.3) and 

Equation (3.17) which both represent spatial correlation in parameterized manner, 

Equation (2.5) is more computationally complex because 3-D antenna patterns need to 

be computed individually. Therefore, a parameterized antenna spatial correlation 

formulation is derived which takes individual 3-D antenna pattern and AoA scenarios 

into consideration. Essential parameters can be extracted from 3-D antenna patterns 

and AoA distribution in order to represent the correlation. 

    Consider two antennas without mutual coupling, and the 3-D received signal 

vector of the two-element array can be shown as 
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where gθ(θ,Φ) and gΦ(θ,Φ) are the isolated antenna pattern in theta and phi 

polarization, and τ=2πdsin(Φ)sin(θ)/λ is the three-dimensional signal phase difference 

between two antenna elements. We further incorporate Equation (3.10) into Equation 

(3.18), and the signal vector can be rewritten as 
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where a and b are the self-coupling and mutual coupling coefficient respectively. The 

spatial correlation between two antennas is then defined as 
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where pθ,Φ(θ,Φ) is the 3-D AoA distribution in theta and phi polarization, and R12 and 

Pi (i=1, 2) are the covariance and the mean received power of the i-th antenna which 

is defined in Equation (2.6) respectively. R12 is first derived as 
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P1 is then deduced by 
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P2 is in the similar form as 
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where the lowercase c is the coupling ratio whose value is equal to b/a, A is the 

expectation value of antenna pattern in terms of the AoA PDF, Rreal and Rimag are the 

real and imaginary part of spatial correlation for single antenna pattern without mutual 
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coupling, and the subscript θ and Φ are the value in theta and phi polarization 

respectively. A, Rreal and Rimag are listed as 
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What should be mentioned is the polarization of AoA distribution is defined as 
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where XPR is the abbreviation of cross polarization ratio and we regard θ-polarization 

is the main polarization while Φ-polarization is the cross polarization. Furthermore, 

|ρ12|2 is defined as the envelope correlation which describes the effect of mutual 

coupling on the received power of two branches. 

The general correlation formulation like Equation (2.5) takes more computation 

time because in commercial EM softwares, patterns are generated from the fields 

distributed on the antennas using near-field-far-field transformation, which is 

considered a resource-consuming process. By contrast, the proposed spatial 

correlation extracts c, A and R to perform correlation calculation. That means as long 

as we can obtain an isolated 3-D antenna pattern and the coupling matrix, the antenna 

spatial correlation can thus be computed rather than by recording the individual 

antenna pattern distorted by mutual coupling. Moreover, the parameterized correlation 

formulation can also be combined with the proposed approximate correlation 

formulation in Section 3.1 to perform a more efficient correlation calculation. 
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3.3.2 Simulation Results 
We further evaluate the derived 3-D spatial correlation between two 2.45-GHz 

dipole antennas whose patterns are distorted by mutual coupling effect. The whole 

HFSS simulation setup is the same as shown in Section 3.2.2, and simulation 

programs are written in MATLAB® and run on PC with an Intel® Pentium IV 3-GHz 

CPU. The 3-D AoA scenario for this case study in Figure 3.10 is a 3-D normalized 

distribution which is an arbitrarily-chosen dual-Gaussian-distributed PDF in phi plane 

and a 5°-σ Gaussian distribution with mean 90° in theta plane. This scenario is 

practical in the indoor NLOS channel and similar to the scenario measured in [21]. 

XPR is assumed to be 0 for this case study. Furthermore, because the approximation 

formulation in Section 3.1 belongs to 2-D type, the approximate formulation is 

exploited in phi plane. As for theta-plane AoA distribution, we choose the discretized 

summation in advantage of its characteristic of small angular spread. 

 

Figure 3.11 The 3-D AoA distribution in Section 3.3.2. 



36 

 

Figure 3.12 Three kinds of absolute value of 3-D antenna spatial correlation. 

 

The computation results of the envelope correlation are shown in Figure 3.12. 

The correlation values calculated by either conventional discretized summation or 

Equation (3.21) share similar trend again, and the time computation using 

approximation formulation is greatly reduced compared to that using discreitized 

summation. Furthermore, from the observation of Figure 3.11, it can be concluded 

both the AoA PDF and antenna mutual coupling affect the result of antenna spatial 

correlation. Given an AoA distribution, antenna spatial correlation tends to decrease 

with some oscillation as element spacing increases. On the other hand, mutual 

coupling can effectively reduce the antenna correlation at very close element spacing; 

however, as the element spacing increases, the mutual coupling will reduce the impact 

on the pattern distortion, and therefore the spatial correlation will tend to become the 

same as that without mutual coupling. 

For MIMO systems, portable devices containing more than two antennas are also 
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commonly suggested in the application [22], and a spatial correlation matrix should 

be introduced to describe the correlation values between different antenna pairs. The 

multiple-antenna spatial correlation matrix comprises entries which are the spatial 

correlation values between antenna pairs of the MIMO array. If we further apply the 

approximate formulation in Section 3.1 and Equation (3.21) to calculation each entry 

in the matrix, computation time can also be significantly reduced as an additional 

contribution of our work. 
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Chapter 4 
 
A New Analysis Strategy of Radiation 
Efficiency Combined with TARC 
 
 

In the previous chapter, we have discussed antenna spatial correlation which is 

regarded as the most important factor in MIMO systems. However, antenna spatial 

correlation actually matters at the receiver ends for it is the receiving signals that 

propagate through the multiple scattering rich environments and create the signal 

diversity and enhance the channel capacity. At the transmit end, because signals are 

encoded with various coding strategies to combat the multiple scattering effect [19], 

the antenna correlation is therefore not the top factor we need to take care of when the 

MIMO systems operate in the transmit mode. It induces us to investigate what 

actually shows importance in the transmit end. 

Radiation efficiency is considered another important factor in MIMO antenna 

systems, no matter at transmit or receiving mode [15,23]. For the simplicity of 

analysis, radiation efficiency is usually calculated in transmit mode, and it is exactly 

what we would like to investigate in this chapter. The basic concept of radiation 

efficiency has been introduced in Chapter 2, so we continue the texts combined with 

further investigation of the new analysis strategy of radiation efficiency. In Section 

4.1, we introduce the total active reflection coefficient and propose newly-defined 

radiation efficiency based on TARC. Moreover, the survey of how termination 
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networks impact on radiation efficiency and spatial correlation is conducted in 

Section 4.2 to thoroughly compare what kind of termination network works the best 

when considering both of the two factors. 

 

4.1 The New TARC-Based Radiation Efficiency 

4.1.1 Total Active Reflection Coefficient 
    In general, a multi-polarization antenna is a microwave network with N 

excitation ports and two radiation ports representing vertical and horizontal 

polarization states of the radiated fields as shown in Figure 4.1(a) [24]. The 

generalized scattering matrix of an N-port antenna is an (N+2) by (N+2) matrix. Let 

us extend this concept to MIMO systems. Each antenna now radiates the RF signals 

of its own, and the above description should be modified that the general scattering 

matrix of the N-port antenna is a 2N by 2N matix, which connects all N forward 

waves at excitation ports and N received waves at radiation ports with N backward 

waves at excitation ports and N individual radiated signals as shown in Figure 4.1(b). 

If assuming there is no received waves impinging on the radiation ports, the general 

scattering matrix is shown as Equation (4.1) where ae,i is the forward waves at 

excitation ports, be,i is the reflection waves at excitation ports and br,i is the radiated 

waves at radiation ports (i=1 to N). 
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(a)                                   (b) 

Figure 4.1 Antenna analysis model for (a) multi-polarization operation and (b) MIMO 

antenna system. 

 

    The radiated power associated with the i-th port, when the other ports are 

terminated to matched loads and there is no incident wave, is calculated by 

( )∑ ∫
=
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2

ie,th-irad, dsssaP             (4.2) 

where S is the integral surface enclosing the radiated power of the antenna system. 

This assumes that the antenna system does not have any loss, and all the power 

generated by the excitations either radiates or goes through the other ports. A 

mathematical representation can thus be shown as 
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The radiated power associated with each port normalized to the excitation can be 

defined as radiation losss, which can thus be calculated based on Equation (4.3) as 
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Equation (4.4) shows the physical meaning that how much power turns into radiation 

can be computed by the total available power minus the power reflected back to the 

excitation ports for a multiport antenna system. 

    For a desired port excitation, the total active reflection coefficient (TARC) is 

defined as the square root of the available power generated from all excitations minus 

radiated power, divided by the available power as  

                     
available

radavailable
TARC P

P-P
=Γ                         (4.5) 

For example, if an N-port antenna is excited at the i-th port and the other ports are 

connected to termination, the TARC can be calculated as 
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For multiport excitation, the TARC is therefore in the form of 
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The TARC is a real number between 0 and 1. When the value of the TARC is equal to 

0, all the delivered power is radiated and when it is 1, all the power either reflects 

back or goes to the other ports. 

4.1.2 Newly-Defined Radiation Efficiency 
A general definition of radiation efficiency in multiple antenna systems is also 

introduced in Section 2.3. Different from the previous definition, we derived the 

newly-defined radiation efficiency erad as 
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Figure 4.2 MIMO-OFDM system block diagram. 
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It is wondered what is the difference between Equation (4.9) and Equation (2.11). 

Equation (2.11) is considered the composite power efficiency representation for it 

includes not only the reflection caused by input mismatch of the excitation port but 

also the power absorption resulting from the termination at the other unexcited 

antenna branch. Based on this definition, we may find Equation (2.11) is actually a 

special case of Equation (4.9). Take a dual-antenna system for example. Equation 

(2.11) will let one branch of the dual antenna system excite signals and the other 

terminated with impedance load. While in Equation (4.9), two ports of the antenna 

system simultaneously excite signal with their own port impedances. That exactly 

means if we determine the radiation efficiency using Equation (4.9) but with one 

branch feeding signals of zero amplitude, the analysis result will be the same as that 

using Equation (2.11). Moreover, if the phase difference between two signals is ± 90°, 
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Equation (4.9) will have the equivalent result as Equation (2.11) as well. 

    The most important advantage of the TARC-based definition of radiation 

efficiency is it takes into account the effect when ports of the multiple antenna system 

are fed with signals of different phases. TARC is originally developed for signals with 

various phase delays for multi-polarization operations, and this concept can be further 

extended to the multiple antenna system [23]. It is well known that mutual coupling 

causes some portion of signal power within each element to be radiated and absorbed 

by the other elements. The combination of each antenna port’s primary reflected 

signal with the coupled signals can be constructive or destructive depending on the 

phase of the component signals. MIMO array efficiency is therefore a function of 

constructive or destructive signal combination. A more detailed analysis is given as 

follows. Figure 4.2 represents the MIMO-OFDM system block diagram. 

Mathematically, the OFDM signal is expressed as a sum of the prototype pulses 

shifted in the time and frequency directions and multiplied by the data symbols. In 

continuous-time notation, the k-th OFDM symbol at the n-th transmission branch is 

given by 
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where T is symbol duration, TFFT is FFT time, N is number of FFT points, fc is RF 

central frequency, w(t-kT) is transmitter pulse shaping function, and xi,k,n is digitally 

modulated signals. We may observe from Equation (4.10) that the RF 

cosine-modulated signals contain different phase information of the data symbols, 

which results from the OFDM operation of digitally modulated signals at different 

transmission branches. This matches the condition that feeding signals of different 

phases at different antenna elements will result in constructive or destructive 

performance of radiation efficiency. Therefore, the TARC-based definition of 

radiation efficiency is considered able to take into account the effect when ports of the 

multiple antenna system are fed with signals of different phases. 

    Figure 4.3 and Figure 4.4 represent the radiation efficiency analysis using 

Equation (2.11) and Equation (4.9) respectively. The whole HFSS simulation setup is 

the same as in Chapter 3, and simulation programs are written in MATLAB® and run 

on the PC with an Intel® Pentium IV 3-GHz CPU. Because the phase information of 

the data symbols depends on many factors, we assume port 1 is excited with 

unity-amplitude and signal port 2 with exp(jxπ/180°) where x={10°, 20°, …,360°}. 

This set up contains a range of excitations with unity-amplitude but different phase 

offset distribution. Compare these two figures, and we may find the phase difference 

between antenna elements indeed deeply affects the radiation performance. Figure 4.3 

only shows -2.7 dB at worst when antenna element spacing is 0.1 λ, but the worst 

radiation efficiency will be -5 dB which means only about 30 % of the power radiates 

using the TARC-based radiation analysis. 

Another observation from Figure 4.4 is if the antenna element of MIMO is very 

close to the neighboring element, the radiation efficiency performance will have 

larger swing margin which means the radiation efficiency may be either very good or 

very bad at a given close antenna element spacing. The swing margin will become  
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Figure 4.3 Radiation efficiency analysis using Equation (2.11). 

 

Figure 4.4 Radiation efficiency analysis using Equation (4.9). 
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smaller as the antenna element spacing increases, where it means the radiation 

performance would be better and more stable as mutual coupling between antenna 

elements is less strong. 

 

4.2 Impact of Termination Networks on Radiation 

Efficiency and Spatial Correlation 
    In Section 4.1, we have introduced a new analysis strategy combined with TARC. 

Radiation efficiency is actually a concerned topic when investigating multiple antenna 

systems especially at transmit mode. On the other hand, antenna spatial correlation 

actually matters at the receiver ends for it is the receiving signals that propagate 

through the multiple scattering rich environments and create the signal diversity. This 

induces our interest to make a composite analysis between antenna spatial correlation 

and radiation efficiency since a multiple antenna system should be capable of 

operating in transmit and receiving modes under the same antenna hardware setup. 

Therefore, we would like to combine the 3-D antenna spatial correlation related to the 

impedance matrix proposed in [25] and our suggested TARC-based radiation 

efficiency to complete this survey. 

    It has been shown that different kinds of termination may pose great impact on 

both antenna spatial correlation and radiation efficiency in [25] and [15] respectively. 

In this section, three kinds of termination networks are investigated, including 

50-Ohm, self-impedance, and input-impedance termination accordingly. 

 

4.2.1 50-Ohm-Match Termination Network 
    The simulation setup is shown in Figure 4.5. By two different ways of excitation, 

we assume there exist two different field solutions respectively. Because two antennas 
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are identical and, moreover, ZS1 (=ZL1 at port 2 excitation) and ZS2 (=ZL2 at port 1 

excitation) are identical, the 3-D spatial correlation is obtained as [25] 
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where A=Z21/(Z22+ZL2) and Zin is identical to that in Equation (2.10). We will 

therefore use Equation (4.11) to evaluate the spatial correlation in the following 

sections as well as in this section. 

    In this section, ZS1=ZS2=50 Ohm first comes as the first case study. Figure 4.6 

and Figure 4.7 respectively show the spatial correlation and TARC-based radiation 

efficiency. Note that port 1 is excited with unity-amplitude signal and port 2 with 

exp(jxπ/180°) where x={10°, 20°,…, 360°} when performing the calculation of 

radiation efficiency. 

 

 

Figure 4.5 Dual antenna system setup with load impedance and source impedance. 
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Figure 4.6 Antenna spatial correlation of 50-Ohm termination network. 

 

Figure 4.7 TARC-based radiation efficiency of 50-Ohm termination network. 



49 

4.2.2 Self-Impedance-Match Termination Network 
    The same simulation procedure is run like in the previous section. However, this 

time ZS1=ZS2=Z11* which is known as the self-impedance source matching 

(termination) network. What can be mentioned in this simulation procedure is we do 

not need to re-simulate the dual antenna system which uses 50-Ohm port termination 

in the previous section to solve the new scattering matrix. By using 

][][][ 111 UZZUZZS portportnew −+= −−−
      (4.12) 

where Z is the impedance matrix, Zport is the diagonal matrix with diagonal terms, and 

U is the unitary matrix, the new scattering matrix Snew can thus be computed and used 

in calculation of TARC-based radiation efficiency. Figure 4.8 and Figure 4.9 

respectively show the spatial correlation and TARC-based radiation efficiency. Again, 

port 1 is excited with unity-amplitude signal and port 2  

 

Figure 4.8 Antenna spatial correlation of Z11* termination network. 
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Figure 4.9 TARC-based radiation efficiency of Z11* termination network. 

 

with exp(jxπ/180°) where x={10°, 20°,…, 360°} when performing the calculation of 

radiation efficiency. 

 

4.2.3 Input-Impedance-Match Termination Network 
The input impedance termination network takes into account not only self 

impedance but also mutual coupling effect. The input impedance termination network 

means max power transfer from the excitation source to the homologous antenna 

element physically. Because ZS1 is the function of ZL2 and vice versa, we may finally 

derive ZS1, based on Equation (2.10) and ZS1=Zin*, as  
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where R11 and X11 are the real and imaginary part of self impedance, R12 and X12 are 

the real and imaginary part of mutual impedance. Moreover, the new scattering matrix 

with Zin* port termination can also be computed and used in calculation of 

TARC-based radiation efficiency by Equation (4.12). However, one thing should be 

noticed that when calculating the new scattering matrix, only the real part of the port 

termination should be substituted into Equation (4.12), and the imaginary part of the 

port termination should be included into the original antenna impedance matrix. The 

above operations are mainly for abiding by the sense of max power transfer. 

Figure 4.10 and Figure 4.11 respectively show the spatial correlation and 

TARC-based radiation efficiency. 

 

 

Figure 4.10 Antenna spatial correlation of Zin* termination network. 
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Figure 4.11 TARC-based radiation efficiency of Zin* termination network. 

 

4.2.4 Composite Analysis 
Antenna spatial correlation actually matters at the receiver ends for it is the 

receiving signals that propagate through the multiple scattering rich environments and 

create the signal diversity. On the other hand, radiation efficiency is actually more 

important when investigating multiple antenna systems at transmit mode.  

We first pay attention to the spatial correlation calculated from three kinds of 

termination networks in Figure 4.6, 4.8 and 4.10 respectively. Because antenna spatial 

correlation is actually also dependent on the AoA scenarios as discussed in Chapter 3, 

we therefore adopt Equation (4.11) as the reference case for it assumes the AoA 

scenario is 3-D uniform distribution. According to the resulting performance, the 

input-impedance termination can actually decorrelate the signals between the dual 
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antenna elements. This agrees well with the result where we let ZL=Zin* in Equation 

(4.11). Since lower correlation between two antenna elements leads to higher signal 

diversity, an inference can be made that Zin* case offers the best diversity 

performance than the other two termination strategies. What’s more, the correlation 

value of 50-Ohm case and Z11* case will be high (0.45 for 50-Ohm case and 0.57 for 

Z11* case) only at element spacing < 0.2 λ. Fortunately, the value will be lower than 

0.05 as long as element spacing is larger than 0.3 λ, which can be viewed as 

decorrelation as well for both cases. A conclusion can be drawn that antenna spatial 

correlation can be high only at very close antenna element spacing which is about less 

than 0.3 λ for 50-Ohm case and Z11* case; in order to decrease the antenna spatial 

correlation at very close antenna element spacing, Zin* case can be a good candidate 

to reach totally decorrelation and high diversity performance. 

    TARC-based radiation efficiency for three termination cases is shown in Figure 

4.7, 4.9 and 4.11 respectively. We first define a parameter called radiation swing 

margin (RSM) which describes the radiation efficiency swing resulting from the 

variation of different port-excitation phases. The largest RSM happens when antenna 

element spacing is 0.1 λ for the first two cases: RSM of 50-Ohm case is about 4 dB 

which ranges from -1 to -5 dB, RSM of Z11* case is about 5.5 dB which ranges from 

-0.5 to -6 dB. Another interesting phenomenon is there are some crossing points 

occurring in the first two cases. The first crossing point of 50-Ohm and Z11* cases 

occur at antenna element spacing =0.4 λ. They can be interpreted that there exists 

element spacing which is immune from the variation of different excitation phases. A 

key to the design of MIMO antennas is therefore provided for we may find element 

spacing beneficial for radiation efficiency which will not be impacted by the random 

variation of signal excitation phases between ports. Moreover, we can observe RSM 

would be greatly reduced as element spacing becomes larger, and that can be 
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interpreted as when the mutual coupling effect is reduced, the radiation efficiency will 

become much less sensitive to the phase variation of input signal. 

Figure 4.11 brings a perfectly good result for there exists no RSM if the 

termination of the antenna system is chosen to be input-impedance match termination. 

That exactly represents this kind of termination is immune from the random variation 

of different port-excitation phases at any antenna element spacing. More explicitly, 

this is a consequence of the input impedance match termination network taking into 

account not only self impedance but also mutual coupling effect. This termination 

technique makes the new scattering matrix composed of very low return loss (S11) and 

moderate insertion loss (S12) which is dependent on the antenna element spacing, and 

finally leads to the radiation efficiency which is immune from phase variation. 

Furthermore, the “o”-marked curve in Figure 4.11 actually represents the 

conventional radiation efficiency which shares exactly the same trend with the 

TARC-based radiation efficiency. This again proves the TARC-based radiation 

efficiency is general for radiation efficiency analysis, and will become the 

conventional type for the phase-invariant case. 

A composite comparison table is shown as in TABLE 4.1. From the comparison, 

although the first crossing points of 50-Ohm and Z11* cases is at 0.4 λ, the 

corresponding radiation efficiency is about -0.6 and -0.35 dB, which means at least 8 

% of the incident power either reflects back or is absorbed by the load of the adjacent 

antenna element. On the contrary, since Zin* case results in phase-invariant radiation 

efficiency, how much power will radiate is then the only concerned topic. However, 

even if Zin* case is phase-invariant, too close antenna element spacing still results in 

undesirable radiation performance. For example, when Zin* cases is at 0.1 λ, more 

than 46 % of input power either reflects back or is absorbed by the load of the 

adjacent antenna element and not a good solution in the desire of high radiation 
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efficiency. On the other hand, when Zin* cases is at 0.4 λ, the radiation efficiency has 

the similar performance with that of Z11* case. 

 

 

TABLE 4.1 COMPOSITE ANALYSIS TABLE FOR THREE TERMINATION 
NETWORKS 
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Chapter 5 
 
Concluding Remarks 
 
 

In the thesis, we proposed two new electromagnetic analysis strategies to 

evaluate the performance of multiple antenna systems. The first is a new antenna 

spatial correlation formulation, and the other is a new analysis strategy of radiation 

efficiency combined with TARC. All the simulation results are provided using a 

dipole pair as the benchmark. 

We first introduced the proposed 2-D approximate spatial correlation 

formulation of arbitrary AoA scenarios, and derived a 3-D spatial correlation 

incorporating antenna mutual coupling and AoA scenarios. The new 3-D antenna 

spatial correlation formulation not only effectively reduces computation complexity 

without sacrificing much accuracy but also offers a more detailed analysis presented 

in the parameterized manner, which can be combined with the proposed approximate 

spatial correlation formulation of arbitrary AoA scenarios. 

Secondly, the new suggested analysis of radiation efficiency combined with 

TARC evaluates how the radiation efficiency may change when the antenna ports 

excite signals with different phases. Furthermore, the survey of how termination 

networks impact on radiation efficiency and spatial correlation is conducted based on 

a dual dipole system. A composite analysis strategy including antenna spatial 

correlation and the TARC-based radiation efficiency is offered as the gauge of if a 
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given multiple antenna system is well designed. 

Two suggested strategies make a composite analysis between antenna spatial 

correlation and radiation efficiency since a multiple antenna system operates in both 

receiving and transmit modes under the same hardware setup of the multiple antenna 

system. With the proposed analysis strategies, the design of the multiple antenna 

system can be more efficient and persuasive before physical implementation.
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