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Mobile Handsets

Student : Yu-Cheng Lin Advisor : Dr. Jenn-Hwan Tarng

Department of Communication Engineering
National Chiao Tung University

Abstract

In nowadays, antenna design mainly focuses on size reduction and multi-band or
broadband. However, in the design, multi-band,:size reduction, radiation pattern, and
antenna gain are the major issuges to be considered. It is well-known that these issues
are trade-offs one another. In the thesis, a broadband small antenna has been proposed
for GPS, GSM 1800, PCS, 3G, WLAN, and WiMAX systems. By applying binomial
curve structure, the proposed antenna can easily achieve a broad bandwidth. The
miniaturization is achieved due to an increasing resonant length by properly adjusting
geometrical parameters of the antenna. The simulated and measured results confirmed
that the proposed antenna can operate at 1.54 GHz to 2.73 GHz bands with bandwidth
of 1.19 GHz. The antenna occupies a compact volume of 25x25x0.8 mm’, which is
smaller than other designs of the volumes: 600 mm®, 1135 mm’ 1181 mm’ or
1598 mm® . Moreover, the antenna has a nearly omni-directional radiation pattern and

a reasonable peak gain of 2.25 dBi to 3.74 dBi.
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Chapter 1 Introduction

Chapter 1  Introduction

1.1 Background and Problems

Recently, many users of mobile phones are now' using mobile handsets for voice
communication as well as for access. into the wotldwide web internet. With the rapid
growth of mobile communications, there are several growing demands with handset
design requirements for small, lightweight, multifunction, and multi-band. At the same
time, the mobile handset adapts popularly the internal antenna structure also. Therefore,
these demands for wireless terminal are an explosive issue. In microwave applications,
microstrip and printed circuit antennas have many advantages such as low profile, light
weight, low cost, mass production, and direct integration to with microwave circuitry.

In order to roam worldwide and to have location based services, the operation
bands of major wireless services should be considered, such as the global system for
mobile communication (GSM, 890-960 MHz),the global positioning system (GPS,
1575.42 MHz), digital communication system (DCS, 1710-1880 MHz), personal

communication system (PCS, 1850-1990 MHz), universal mobile telecommunication
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system (UMTS, 1920-2170 MHz), wireless local area network (WLAN, 2400-2484
MHz) bands [1], and worldwide interoperability for microwave access (WiMAX,
2500-2690 MHz). Thus, the design and implementation of such a wide-band antenna
accordingly with integrated wireless communication services become a significant
topic.

Figure 1.1 shows the common mobile handsets of different generations. The bar
shaped mobile phones are shown in Fig. 1.1 (a) to 1.1 (c¢). The flip phones are shown in
Fig. 1.1 (d) to 1.1 (f). We also find that external antennas are disappeared in the newer
mobile phones such as (b) (¢), (¢) and (f). From these pictures, we find that to fit the

pocket size, handsets are getting thinner and smaller.

(a) Nokia 6150 (b) Nokia 3210 (c) Motorola L6 .
(130x47%28 mm’) (123.8% 50.5%16.7 mm®) (113%49x10.9 mm")

o —="N
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(d) Motorola V3:688x (e) Motorola V80 (f) Motorola V3 )
(80%40%23 mm”) (99x45%19.2 mm3) (98x53%13.9 mm")

Figure 1.1 Some common mobile handsets of different generations.
(a) Nokia 6150 (b) Nokia 3210 (c) Motorola L6

(d) Motorola V3688x (e) Motorola V80 (f) Motorola V3
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1.2 Related Works

There are many works reported on multi-band and broadband antennas for mobile
handsets [1]-[9]. Most of internal antennas reported so far are planar antennas [1]-[3],
meander-line antennas [4]-[5], and planar inverted F-Antennas (PIFA) [6]-[9]. The
planar monopole antennas [1]-[3] are printed on a substrate by easy processing, and that
has a simple structure. Although it has a small size, there is a limit to obtain the
broadband characteristic. For the meander-line antennas [4]-[5], although it is very
small size, its fabrication is difficult so that the production cost is very high. For the
PIFA [6]-[9], there are advantages of low profile, compact size, and multiple-band
operations for mobile phones. However, it suffers from narrow bandwidth and
limitation in antenna height (6—8 mm) to obtain the desired results. In addition, the

PIFA antenna cannot easily be placed on thessubstrate of a practical mobile phone.

1.3 Organization of Thesis

The thesis is organized as follows. In Chapter 2, some basic microstrip antennas
are presented shortly and three feeding structures are also introduced in this chapter. In
Chapter 3, three popular miniaturization techniques are presented from some literatures.
The comparisons of three miniaturization techniques are also listed in this chapter.
Chapter 4 presents the proposed antenna and investigates the effect of the geometrical
parameters of the antenna. Then, numerical and measured results of the proposed

antenna are also shown in this chapter. Finally, Conclusion is drawn in Chapter 5.
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Chapter 2  Basics of Microstrip Antennas

2.1 Introduction of Microstrip Antennas

A microstrip structure in its simplest form as illtistrated in Figure 2.1 is a layered
structure with two parallel conductors: separated by-a thin dielectric substrate and the
lower conductor acting as a ground plane. If the upper metallization is a long narrow
strip, a microstrip transmission line is formed. If the upper conductor is a patch that is
an appreciable fraction of a wavelength in extent, the structure becomes a microstrip
antenna [10]. Microstrip antennas mainly radiate electromagnetic waves from upper
conductors. Many conventional structures of antennas can be applied to microstrip
antennas. Because microstrip antennas have a very low profile, are mechanically rugged
and can be conformable, they are often incorporated into mobile radio communications

devices. Some basic microstrip antennas are described as followings.
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Substrate

Ground Plane

Figure 2.1 Geometry of the microstrip antenna.

2.2 Basic Microstrip Antennas

2.2.1 Dipole

The dipole is a common antenna: A very widely used antenna is the half-wave
dipole antenna. It is a linear current whose amplitude varies as one-half of a sine wave
with a maximum at the center. Because its radiation resistance is 73 ohms, which is very
near the 50-ohm or 75-ohm characteristic impedance of some transmission lines, its
matching to the line is simplified especially at resonance. The advantage of a half-wave
dipole is that can be made to resonate and present a zero input reactance, thus
eliminating the need for tuning to achieve a conjugate impedance match [10], a

half-wavelength dipole is illustrated in Figure 2.2.

The length of the dipole is % In fact, the physical length must be somewhat

shorter than a free space half-wavelength. As usual, the current distribution is placed

along the z-axis and for the half-sine wave current on the half-wave dipole, the current
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distribution is written as

I(z)=1, sin[ﬂ(%—|z|)] ; |Z|S% 2.1)

2z . A . :
where # = — . This current goes to zero at the ends (forz = iz) and it maximum value

I~ occurs at the center (z=0) as shown in Figure 2.3. From this current, we can

calculate the radiation pattern. Since it is a z-directed line source, we can use

n e—jﬂr o '
A=zu j 1(z)e’” 4z (2.2)
Ay
E=—jwA 2.3)
E =—jwA—(—jwA-r)r=—w(4,0+ 4,0) (2.4)
E=—jwsin04.0 (2.5)

to find the electric field as

e /P

E, = jwusin @ j 1(2)e’’* 0z (2.6)

dzr

Substituting /(z) into the integtation.and evaluating-gives

7
—ipr cos[(—)cosd]
21, ¢ sin@ 2

2.7
Ay sin” @ 2.7)

In this expression, we can identify the element factor g(#)=siné and the normalized

pattern factor

cos[(z) cos 4]

f(O)=—2— 2.8)

sin @
Both g(@) and f(#) are maximum for & :% and have a value of unity there. The

complete (normalized) far-field pattern is then

cos[(z) cosd]

F(0)=2(0)/(0) =§T 2.9)

The half-wave dipole has a narrower beamwidth of 78", and thus, a higher directivity
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value of 1.64 [10]. The 3D polar pattern of a half-wavelength dipole is shown in

Figure 2.4.

S B R NS

v

Figure 2.2 Geometry of a half-wavelength dipole.

I(Z) I

e ————
— "‘H—L,__\_\H

e e

Figure 2.3 Current distribution of a half-wavelength dipole.
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The rectangular patch is thé:most idely

used configuration. Because of the

e

e
W

. B
e

fringing effects, electrically the patch (;f the microstrip antenna looks greater than its
physical dimensions. For the principle E-plane (x-y plane), this is demonstrated in
Figure 2.5 where the dimensions of the patch along its length have been extended on

each end by a distance AL, which is a function of the effective dielectric constant

&,y and the width-to-height ratio (%) .For the dominant 7M ,mode, the resonant

frequency of the microstrip antenna is a function of its length. Usually it is given by

[10]
VO

(o == —=
oL e Jey  2L\Je,

v, 1s the speed of light in free space.

(2.10)
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(b)

Figure 2.5 Microstrip patch antenna (a) Top view (b) Side view.

2.2.3 Slot Antennas

By embedding suitable slots in the radiation patch of a microstrip antenna,
enhanced bandwidth with a reduced antenna size can be obtained. This can be
accomplished by increasing the number of resonances of single resonant antennas such
as a half-wavelength slot. A example is illustrated in Figure 2.6. It is found that, by
embedding a pair of branchlike slots of proper dimensions, the first two

broadside-radiations modes 7M ,, and 7M,, of the triangular microstrip antenna can

be perturbed such that their resonant frequencies are lowered and close to each other to
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form a wide impedance bandwidth [11].

Figure 2.6 Geometry of the slot antenna.

2.3 Architectures of Feed

There are many configurations that can'be used to feed microstrip antennas. The
four most popular architectures of feed ‘are’ microstrip line feed, probe feed, aperture

coupling feed, and coplanar waveguide feed [10].

2.3.1 Microstrip Line Feed

The microstrip line feed network is illustrated in Figure 2.7 [10]. The microstrip
line feed is easy to fabricate, simple to match by controlling the inset position and rather
simple to model. However, as the substrate thickness increases, surface wave and

spurious feed radiation increase, which for practical designs limit the bandwidth.

10
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fh
L

Microstrip
Feed Lin

Ground plane

Figure 2.7 Geometry of the microstrip line feed network.

2.3.2 Probe Feed

The probe feed is illustrated in Figure 2.8 [10]. Probe feed, where the inner
conductor of the coax is attached torthe radiation'patch while the outer conductor is
connected to the ground plane, are also widely used. The coaxial probe feed is also easy
to fabricate and match, and it has low spurious radiation, However, it is also has narrow
bandwidth and it is difficult to model, especially for thick substrates (/4 > 0.024, ).

Both the microstrip line and the probe feed possess inherent asymmetries which
generate higher order modes which produce cross-polarized radiation. To overcome

these problems, no contacting aperture coupling feed is used [10].

11
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¥k

/ N\

Dielectric Circular microstrip
substrate \ patch
Er

Coaxial connector Ground plane

Figure 2.8 Geometry of the probe feed network.

2.3.3 Aperture Coupling Feed

The aperture coupling feed-is illustrated-in Figure 2.9 [10]. The aperture coupling
feed is the most difficult of all feeding methods to fabricate and it also has narrow
bandwidth. However, it is somewhat easier to model and has moderate spurious
radiation. The aperture coupling feed consists of two substrates separated by ground
plane. On the bottom side of the lower substrate there is a microstrip feed line whose
energy is coupled to the patch through a slot on the ground plane separating the two
substrates. This arrangement allows independent optimization of the feed mechanism
and the radiating element. Typically a high dielectric material is used for the bottom
substrate. The ground plane between the substrates also isolates the feed from the
radiating element and minimizes interference of spurious radiation for pattern formation
and polarization purity. Typically matching is performed by controlling the width of the

feed line and the length of the slot.

12
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Rt
« Microsinip
line

Figure 2.9 Geometry of the aperture coupling feed network.

2.3.4 Coplanar Waveguide Feed

The coplanar waveguide feed is illustrated in Figure 2.10 [12]. The coplanar
waveguide feed is widely used in industrysand.investigated in academia for a long time.
It is an important transmission line. The advantages of coplanar waveguide feed are low
radiation loss, wide bandwidth, €asy to_integrate to MIC or MMIC, and simple to tune
the characteristic impedance by changing the ratio of the slit width and the microstrip
line width. In order to the coplanar architecture, it is not necessary to dig holes for

parallel or series to active elements.

13
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Center
strip
Ground
plane Ground
plane
Dielectric
board
(a)
Center
strip
Ground
plane Ground
plane
Dielectric
board
ESSSSSSSNSSS
Ground plane
(b)

Figure2.10 Geometry of the coplanar waveguide feed network

(a)Coplanar waveguide (b)Ground backed coplanar waveguide.

14
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Chapter 3  Miniaturization Techniques of Microstrip

Antennas

Compact microstrip antennas have_ recently received much attention and many
techniques have been reported to.teduce the size: 'of microstrip antennas at a fixed
operating frequency such as [11]-[14].The popular techniques include patch-meandering
technique, PIFA technique, and using magneto-dielectric materials. They are described

as followings:

3.1. Patch-meandering Technique

This kind of patch-meandering technique is achieved mainly by creating several
meandering slits at the non-radiating edges of a rectangular patch or at the boundary of
a circular patch [13]. The characteristics of patch-meandering technique are compact
and broadband. Compact operation of microstrip antennas can be obtained by
meandering the radiating patch. Broadband characteristic can be accomplished by

increasing the number of resonances of single resonant antennas such as a

15
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half-wavelength meandering patch.

In the following, a compact design combining the techniques of patch meandering
and shorting-pin loading for a circular microstrip antenna is demonstrated. Figure.3.1
[11] shows the geometry of a short-circuited, meandered circular microstrip antenna.
The circular patch is short-circuited at the edge with a shorting pin, and three narrow
slots of the same length ¢ and width w are cut in the patch. The shorting pin makes
the circular patch resonate at a much lower frequency compared with a conventional
circular patch of the same size, and the narrow slots meander the patch, which increases
the effective electrical length of the patch. These two factors effectively reduce the
required disk size for an antenna operated at a given frequency. Figure 3.2 [11] shows
the measured resonant frequency against slot length ¢ in Figure 3.1. As /¢/2R
increases, the resonant frequency decreases to a lower frequency. Thus, it is obviously
realized that the patch-meandering technique is a.good method for miniaturization of
microstrip antennas.

Figure 3.3 [4] shows a broadband. interior antenna with a meandering structure.
The broadband frequency response is shown in Figure 3.4 [4] and the current
distribution in the resonant frequency of the antenna is shown in Figure 3.5 [4]. From
Figure 3.5, it is obviously seen that there are three current paths in this antenna. Thus,
the broadband characteristic can be arrived by proper design of the length of each
current path. In this case, it is known that the broadband antenna can be designed by a

meandering structure.
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shorting pin

feed position —___——g == 77T

""""""""""""""""" . I~

substrate - ground

Figure 3.1 Geometry of a meandered circular microstrip antenna with a shorting pin.

2200

2000 -3

1801

1 ROO

1600

1400

Frequency (MHz)

1221 MHz
1200 |-
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Figure 3.2 Measured resonant frequency against slot length ¢ in the circular patch in

Figure 3.1; R=7.5mm, d_=6.5 mm.
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Figure 3.4 Simulated and measured return loss of a broadband interior antenna.
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) T s \_‘ _
t t ‘ he upper branch

T The lower branch

Figure 3.5 Current distribution of a broadband interior antenna.

3.2 PIFA Technique

Effective resonant length-of a antenna can be shortened by applying PIFA
technique. Figure 3.6 shows a typical design-example for a probe-fed shorted patch
antenna operated at dual bands of 1.8'and 2.45 GHz. A shorting strip of width 2.5 mm is
used for short-circuiting the rectangular patch to the ground plane. The geometry of this
structure looks like a planar inverted F. So this structure of antennas is called PIFA
(Planar inverted F antenna). Between the rectangular radiating patch and the ground
plane is an air substrate of thickness 9.6 mm. The rectangular patch has dimensions of
36 x 16 mm®, an L-shaped slit of width 1 mm and total length 40 mm is cut in the
rectangular patch for achieving an additional operating band at 2.45 GHz (the industrial,
scientific, medical [ISM] band); the lower operating band at 1.8 GHz is mainly
controlled by the dimensions of the rectangular patch [11]. The simulation and
measurement results are shown in Figure 3.7. [11] IE3D is the simulator. In this

example, it can be seen that the longer patch length corresponds to the lower resonant
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) A )
frequency is about 1 of the lower center frequency. In conventional cases, the
. A
resonant length is about By of the center frequency. In the same manner, the shorter

patch length corresponds to the higher resonant frequency is about % of the higher

center frequency. It can be obviously seen that the antenna size is greatly decreased. So
the PIFA technique is the very popular design guide for the designs of the mobile
handsets. It is widely used in the new thin and small handsets.

From Figure 3.7, the bandwidth of the lower resonant is 302 MHz (1588-1890
MHz). The wide bandwidth is just because the multiple current paths can be selected by

a roomy radiating element.

probe feed at edge

16—

fad

6 30

i

v
10155

shorting strip =~

ground plane

Figure 3.6 Geometry of a probe-fed shorted patch antenna for broadband and
dual frequency operations. The dimensions given in the figure are

in millimeters.
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Figure 3.7 Measured and simulated returnioss.of the probe-fed shorted patch antenna

shown in Figure 3.3 with a ground-plane size of 18 x 80 mm”.

3.3 Using Magneto-dielectric Materials

The magneto-dielectric material is utilized for broadening the bandwidth and
minimizing the size of antenna. Figure 3.8 [14] shows the design of meander line
antenna that is developed to get broadband characteristic with small size. This is done
by accompanied with using magnetic material as the dielectric substrate. [14] In this
design, the changing factors are permeability and permittivity. The Figure 3.9 [14]
shows the return loss against permeability of pure magnetic antenna. It can be seen that
the resonant frequency will be changed by changing the permeability. It is not only used
for reducing the sizes, but also for adjusting resonant frequency. In the same manner,
The Figure 3.10 [14] shows the return loss of broadband antenna against dielectric

constant. The resonant frequency will be changed by different permittivity. It also can

21



Chapter 3 Miniaturization Techniques of Microstrip Antennas

be used to reduce sizes and adjust resonant frequency. This design is also a broadband

structure. So the magneto-dielectric material is used to achieve broadband and

miniaturization characteristics.

W1 w2 Unit ;
gk Ak
11 :1,; . . [mm|
L3 Top
L2=" x
T ? 16 turns
# w4 %
X
X
Rottom

Figure 3.8 Structure of the meander line antenna using magneto-dielectric

material.
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Figure 3.10 Return loss of broadband antenna against dielectric constant.
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3.4 Comparison of Three Miniaturization Techniques

3.4.1 Advantages of Three Miniaturization Techniques

In this chapter, three miniaturization techniques are introduced. Patch-meandering
technique can be obtained a very small size and broadband bandwidth by proper design.
Its advantages are low profile, small size, low cost, easily fabricated. Comparing with
conventional structures, effective resonant length can be reduced nearly a half by PIFA
technique. Its advantages are low profile, small size, low cost, easily fabricated and it
can be also arrived the broadband characteristic by proper design. Different
characteristics of antennas will appear by using magneto-dielectric materials. Its

advantages are low profile, small size, broad bandwidth, adjustable frequency.

3.4.2 Disadvantages of Three Miniaturization Techniques

The disadvantages of patch-meandering technigue are low gain, hard to design.
Because of coupling effect in the adjacent limes, the energy will be storing in the
coupling capacitance. The radiation ‘efficiency will decrease to a low level. The
disadvantages of PIFA technique are hard to design, low radiation efficiency, low gain.
Because the current flows on PCB, the energy loss and lower radiation efficiency will
occur. The disadvantages of using magneto-dielectric materials are more expensive,

hard to fabricate, low gain.
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Chapter 4  The Proposed Broadband Antenna

The proposed antenna is suitable multi-band opérations covering the bands of GPS
(1575.42 MHz), GSM (1710-1880 MHz), PCS (1850-1990 MHz), 3G (1920-2170
MHz), WLAN (2400-2484 MHz);.and WiMAX (2500-2690 MHz). The antenna is a

planar antenna on a substrate, which is small enough to be installed in mobile handsets.
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4.1 Design Concept of the Proposed Antenna

Design concept of the proposed antenna

one

Determine resonant
frequency

~1

R2

Create wide-band
characterisic

~—1

three

Purpose of step | Purpose of step | Purpose of step
wo

S

Propose an antenna
shape to fit the desired
band

~ O

Figure 4.1:The purp&os‘e‘

of each design step.

The design purpose of each majof step is shown in Figure 4.1. In step one, the

main work is to determine the rough dimension of the antenna according to the required

center frequency. In step two, the broadband characteristic was created. In step three,

the work is to match the desired frequency band by adjusting the geometrical

parameters of the antenna. In step four, coupling effects between the ground plane and

the antenna was discussed. In all steps, FR4 with thickness of 0.8 mm is used for

computing by HFSS. Width of the feed line is 1.5 mm.
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Step One : Determine the rough dimension of the antenna according to the

required center frequency

The resonant (center) frequency of the simple planar rectangular antenna shown in

Figure 4.2 is given by [16]

7
o GH. 4.1
/. L +025W +1 (GHz) @.n

Here, W. (mm) and L, (mm) are the width and length of the rectangular patch,
respectively, as shown in Figure.4.2. The wanted center frequency will be achieved by
properly tuning L and W.. The computed results using Eq. (4.1) and HFSS are
compared in Table 4.1 (Up to 4GHz) for different combinations of L, and W, . Here,
W =50 mm, L =45 mm and G = 1.6 mm are fixed for simplification. The comparison
shows that Eq. (4.1) at least determines, one of resonant frequencies with reasonable
accuracy. Therefore, Eq. (4.1) is: proposed as a tough model for determining the
resonant frequency of the simple patch antenna. Sizes of L and W, will affect the
bandwidth of the planar rectangular antenna.‘Figure 4.3 (a), (b) and (c) show its return
loss versus frequency for W = 25mm,"35/mm and 45 mm, respectively. In each figure,
it is found that the bandwidth is increased with L, . It is also found that when W =25
mm, more than one resonant frequency may be created. In Table 4.1, the one of specific
size of L and W,., which are underlined, represents its resonant frequencies in the

range of 1.7 - 1.8 GHz to fulfill the desired bands.
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Figure 4.3 The computed return loss versus frequency of the simple planar rectangular
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Table 4.1 Resonant frequency comparison using Eq. (4.1) and HFSS.

omputed resonant frequency

using Eq.(4.1) | using HFSS
W /L (mm/mm)
25/20 2.64 GHz 2.7/4.0 GHz
25/25 2.23 GHz 1.8/2.8/3.7 GHz
25/30 1.93 GHz 1.7/2.4/3.2 GHz
25/35 1.70 GHz 1.6/2.9 GHz
30/20 2.53 GHz 2 GHz
30/25 2.15 GHz 1.8 GHz
30/30 1.87 GHz 1.7 GHz
30/35 1.66 GHz 1.6 GHz
35/20 2:42GHz 2.0GHz
35/25 2.07GHz 1.8GHz
35/30 1.81GHz 1.7GHz
35/35 1.61GHz 1.6GHz
40/20 2.32GHz 1.9GHz
40/25 2.00GHz 1.8GHz
40/30 1.76GHz 1.7GHz
40/35 1.57GHz 1.6GHz
45/20 2.23GHz 1.9GHz
45/25 1.93GHz 1.8GHz
45/30 1.70GHz 1.7GHz
45/35 1.52GHz 1.6GHz
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Step Two : Broaden the bandwidth

In step two, the chosen antennas (the underlined one) shown in Table 4.1, are
shaped into the one as shown in Figure 4.4, which is called the planar binomial antenna
[17]. The binomial antenna shows ultra-wideband characteristics. The formula of the
binomial curve is shown below [17].

Wy

X a Wy
)=G+(L,,-G , ——<x<—= 4.2
Si(x) (L, )(%/2) 5 5 4.2)

Here, W,, and L,, are the width and length of the binomial patch, respectively,
as shown in Figure.4.4. W = 50 mm, L = 45 mm and G = 1.6 mm are fixed for
simplification. The wanted bandwidth will be achieved by properly tuning W, and

L

»1 - From the computed return loss versus frequency as shown in Figure 4.5, it is found

that the bandwidth is increased with W,,. From the computed covering frequency band
using HFSS listed in Table 4.2 (Up to 4GHz) for different sizes of W,, and L, , it is
found that the operational frequency range is-increased with W, . The low bound of the
operational frequency range becomes.smaller when L, increases. By comparing
between Figure 4.3 and Figure 4.5, it is found'that a binomial curve structure provides

with a wider bandwidth than a simple rectangular one.
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Figure 4.5 The computed return loss versus frequency of the planar binomial antennas

with L,, =25 mm.
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Table 4.2 Computed bandwidths of the planar binomial antennas.

Operational

W, 1L, Frequency Range Bandwidth
(mm/mm) (GHz)

25/25 1.6-3.1 1.5 GHz
25/30 1.4-2.9 1.5 GHz
30/25 1.5-4 2.5 GHz
30/30 1.4-4 2.6 GHz
35/25 1.5-4 2.5 GHz
35/30 1.4-4 2.6 GHz
40/25 1.5-4 2.5 GHz
40/30 1.4-4 2.6 GHz
45/25 1.5-4 2.5 GHz
45/30 1.4-4 2.6 GHz
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Step Three : Shaping the antenna

In step three, a planar binomial antenna is shaped into the one as shown in Figure
4.6, which is called the planar hybrid-binomial antenna. Current mainly flow in edges of
an antenna. Frequency response is changed severely by modifying a shape of edges.
Therefore, some edges of the selected planar binomial antenna are selected to cut off.
Another binomial formula is selected to cut the end edge of the selected planar binomial

antenna in order to sustain the broadband characteristic. The formula is shown below

[17]
X 4 w,, W,,
=7 , - <x< 4.3
f2(x) bZX(W;)Z/2) ) X ) 4.3)

Here, W,, and L,, are the width and length of the binomial cutting area,
respectively, as shown in Figure.4.6. W = 50 mm and L = 45 mm are fixed in this step.
G=1.6 mmand W,, =25 mm are fixed forsimplification. The wanted bandwidth will
be achieved by properly tuning =L, ;. From the computed return loss versus frequency
shown in Figure 4.7, it is found-that-the bandwidth'is decreased with larger L,,. As
L,, is varied from 5 to 20 mm, the lower bound of the covering frequency band will
shift to a higher value. The components of high frequencies will also cut off. Although a
stop frequency band is created in high frequencies, the lower bound of the covering
frequency band shift to a higher value. This is not my desired result. So we make a

second adjustment.
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Figure 4.7 The computed return loss versus frequency of the first adjustment,

W,=25 mm.
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In the second adjustment, we would like to cut off frequency response higher than
2.9 GHz by cutting some parts of a planar binomial antenna and also compensate lower
frequency response of the one. The geometry of the modified antenna is shown in
Figure 4.8 which is called the planar eagle-shaped antenna. Here, W, and L, are the
width and length of the cutting area, respectively, as shown in Figure.4.8. G = 1.6 mm
are fixed for simplification. The wanted bandwidth will be achieved by properly tuning
W, and L,.From the computed return loss versus frequency shown in Figure 4.9, it is
found that the bandwidth is decreased with larger L_ . The resonant frequency will also
shift to a lower value with larger W,. From Figure 4.9, we find that there are two
purposes by tuning W, and L, . One is to compensate the components of lower
frequencies; another is to cut off the components of higher frequencies. The computed
current distribution of the unmodified antenna in £= 1.575 GHz is shown in Figure 4.10.
From Figure4.10, it is found that the' current mainly flows along edges of the antenna
and the strength of the current magnitude is-stronger near the feed point. The computed
current distribution of the modified antenna inf = 1575 MHz is shown in Figure 4.11.
From Figure 4.11, it is found that the current flows along the cutting area. The

miniaturization is achieved due to increasing resonant length formed by the cutting area.
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Figure 4.8 The geometry of the planar eagle-shaped antenna.
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Figure 4.11 The computed current distribution of the modified antenna;

f=1.575GHz, phase=320 degree:

G is a gap between the ground:plane and the antenna as shown in Figure.4.9. In

the following discussion, the influence ‘on'frequency response will be studied by

properly tuning G .W, =4mm and L, =6 mm are fixed in this discussion. From the

computed return loss versus frequency shown in Figure 4.12, it is found that the

resonant frequency will shift to a lower value with larger G . It is simply because that

there is a coupling effect between the ground plane and the antenna. The coupling effect

is created by two currents flowing on the ground plane and the antenna.
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Figure 4.12 The computed return loss versus:{requency of the planar eagle-shaped

antenna by varying G

4.2 Comparison of the Computed and Measured Results

After some numerical computations, size of the proposed antenna has been fine
tuned and determined as shown in Figure 4.13. The proposed antenna was fabricated
using FR4 substrate material. The radiation element is copper. A photograph of the
proposed antenna is shown in Figure 4.14. Agilent 8719ET is used for measuring the
return loss of the proposed antenna. In Figure 4.15, it is found that the computed and
measured return losses versus frequency are close. The computed operating frequency
range is 1.49 GHz to 2.78 GHz and the measured operating frequency range is 1.54
GHz to 2.73 GHz. The computed and measured bandwidths are 1.29 GHz and 1.19 GHz,

respectively.
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Figure 4.14 The photograph of the proposed antenna.
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Figure 4.15 The computed and measured return-losses-versus frequency of the proposed

antenna.

The far-field radiation pattern of the antenna is measured in an anechoic chamber.
The computed radiation patterns are shown in Figures 4.16, 4.17,...... , and Figure 4.21
for 1575 MHz, 1795 MHz, 1920 MHz, 2045 MHz, 2442 MHz and 2595 MHz,
respectively. The measured radiation patterns are shown in Figures 4.22, 4.23,...... , and
Figure 4.27 for 1575 MHz, 1795 MHz, 1920 MHz, 2045 MHz, 2442 MHz and 2595
MHz, respectively. From measured radiation patterns, it is found that the radiation
strength is the smallest at the feed point. The radiation patterns are nearly
omni-directional. The radiation gains are between 2.25 and 3.74 dBi. Measured
radiation patterns are asymmetric that maybe due to the effects of FR4 heterogeneity

and/or the measurement system/environment.
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Figure 4.16 The computed radiation patterns of the proposed antenna (1575 MHz)

(a)X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.17 The computed radiation patterns of the proposed antenna (1795 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.18 The computed radiation patterns of the proposed antenna (1920 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.19 The computed radiation patterns of the proposed antenna (2045 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.20 The computed radiation patterns of the proposed antenna (2442 MHz)
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Figure 4.21 The computed radiation patterns of the proposed antenna (2595 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.22 The measured radiation patterns of the proposed antenna (1575 MHz)

(a)X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.23 The measured radiation patterns of the proposed antenna (1795 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.24 The measured radiation patterns of the proposed antenna (1920 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.25 The measured radiation patterns of the proposed antenna (2045 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.26 The measured radiation patterns of the proposed antenna (2442 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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Figure 4.27 The measured radiation patterns of the proposed antenna (2595 MHz)

(a) X-Y plane (b) X-Z plane (c) Y-Z plane.
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The computed and measured peak gains of six frequencies are listed in Table 4.3.
The computed radiation efficiencies of six frequencies are also listed in Table 4.3. It is
found that the computed and measured peak gains of six frequencies are approximate.
The inaccuracy between the computed and measured results maybe causes by the effects
of measurement system/environment. The measured gains are reasonable and the
computed radiation efficiencies are high. The comparison to other published works is
listed in Table 4.4. It is found that the proposed antenna occupies a compact volume of
25%x25%0.8 mm’, which is smaller than other designs of the volumes: 600 mm’,
1135mm®, 1181 mm’ or 1598 mm’ . From above results, it is found that the proposed

antenna is suitable for applications of mobile phones.

Table4.3 The computed and measured peak gains, the computed radiation

efficiencies of six frequencies:

Frequency (MHz) LS75+4-1795 | 1920 | 2045 | 2442 | 2595

Computed peak gain (dBi) |'2.444-2.79 | 2.85 | 2.96 | 3.58 | 3.84

Measured peak gain (dBi1) | 2.25 | 2.53 | 2.54 | 2.92 | 3.7 | 3.74

Radiation efficiencies (%) | 94.4 | 94.6 | 943 | 94 | 93.7 | 92.8

Table4.4 Comparison to other published works.

. 3 (0] ting f .
Paper Size (mnt") perating Irequency Antenna gain
range
About 1000-2400MH.
[ 50x30x0.4(600) bout 1000-2400MHz 2-45 dBi
(1400 MHz)
2] 33x21.5x1.6(1135) 1460-2680 MHz 0-4.1 dBi
. . -4, 1
XETX (1220 MHz)
. 2ox1754.7(1598) 1620-2360 MHz 2331 dBi
. D=2, 1
XX (740 MHz)
1710-2510 MHz ,
51 27x12.5x3.5(1181) 1.71-3.47 dBi
(800 MHz)
1540-2730 MHz
Proposed | 5 »540.8(500) 2.25-3.74 dBi
antenna (1190 MHz)




Chapter 5 Conclusion

Chapter S Conclusion

In this thesis, a special eagle-shaped;antenna is proposed. The binomial structure
plays an important role in achieving broadband characteristic. The miniaturization is
achieved by increasing resonant length with cutting-edges. The experimental results
have validated the simulation ones. The*operating band of the proposed antenna is 1.54
GHz to 2.73 GHz and the proposed antenna'is suitable for GPS, GSM 1800, PCS, 3G,
WLAN, and WiMAX applications. The antenna occupies a compact volume of
25x25%0.8 mm’ and is small enough to be placed on the internal area of practical
mobile handsets. The simulated and measured results show that the proposed antenna
offers the broadband bandwidth, the radiated efficiencies of more than 92 %, and has

almost omni-directional radiated patterns over the entire operating band.
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