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a b s t r a c t

Wind-induced interaction between a tuned liquid column damper (TLCD) and a structure (bridge deck)
in pitching motion is investigated both theoretically and experimentally. Non-uniform cross-sections in
TLCDs are considered in general. Theoretically, the interacted equations of motion under wind excitation
were derived for a single-degree-of-freedom rotational structure equipped with a TLCD based on energy
principles. An addition term, which had never been revealed in existing literature, was discovered. The
second part in this study was to demonstrate the existence of this additional term through experimental
verification. This task was carried out by conducting large scale tests on the system of a TLCD on a
rotational structure (which is a spring-constrained steel beam pivoted at mid-span) and by making
comparisons between the experimental and analytical responses of the interacted structure subjected
to harmonic loading. To obtain all necessary parameters for computing the analytical responses in the
interaction, the individual identification of the properties of the TLCD and structure using free vibration
and forced vibration techniques was also performed. Comparison results show that analytical responses
with the additional term included can represent the actual interaction more closely than those without
the additional term. Therefore, the inclusion of the additional term in pitching interaction equations is
essential.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the aesthetical consideration accompanied
with advancement in material and construction technology has
facilitated a new generation of bridges with lighter weights and
longer spans. The down side is the high susceptibility of their
response to wind load. Thus, for structures such as these, it is
becoming more necessary to use control devices for the sake
of vibration suppression. Among many varieties of choices for
control devices, the tuned liquid column damper (TLCD) is a good
candidate, though most of the applications today are on buildings
which are subjected to horizontalmotion. The original idea of TLCD
was developed specifically for suppression of horizontal vibration
by Sakai et al. [1]. In terms of advantages over other types of
energy-dissipating dampers, the properties of TLCD (such as the
natural frequency and damping) can be reliably and precisely
determined from the length of the liquid column and the orifice
size in the liquid column. As can be seen from the literature,
many researchers, namely Xu et al. [2], Hitchcock et al. [3] and
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Balendra et al. [4], have verified its effectiveness for suppressing
wind-induced responses, among whom Hitchcock et al. [3] even
investigate a general type of TLCDs that have non-uniform cross-
sections in the horizontal and vertical columns, termed as liquid
column vibration absorbers (LCVA). The optimal parameters for
TLCD designs were also given in Gao et al. [5], Chang and Hsu [6]
and Chang [7], and later convenient guidelines, such as the design
tables and empirical formula of head loss coefficients, for practical
design were summarized by Wu et al. [8].
For suppressing wind-induced pitching (torsional) motion of

bridges, the interaction mechanism of TLCDs and structures in
pitching motion will have to be addressed. As we know, using
tuned mass dampers (TMD) for controlling the pitching motion
of bridges is to simply configure vertical TMDs on the two sides
of the bridge deck tuned to the torsional mode (e.g., Kwon and
Park [9]). The mechanism involved is basically the same as that in
the application to control torsional responses of buildings (Pansare
and Jangid [10], Jangid and Datta [11]). Unfortunately, this analogy
can not apply to TLCD because of the fluid inside. The TLCDs for
controlling bridge decks will have to move rotationally together
with the bridge deck. For simplicity, the interacted equations of
motion of a single-degree-of-freedom (SDOF) rotational structure
equipped with a TLCD with uniform cross-sections has been first
presented by Xue et al. [12] and later the optimal parameters for
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Nomenclature

Ah cross-section area in the horizontal column of a
TLCD;

Av cross-section area in the vertical column of a TLCD;
e vertical distance between the rotational center of

the structure and the horizontal liquid column in a
TLCD;

g acceleration due to gravity;
h integrating variable indicated in Fig. 1;
Jα, Cα, Kα structural mass moment of inertia, damping and

stiffness constants;
k = ω/ωd ratio of the excitation frequency versus TLCD

natural frequency (excitation frequency ratio);
L = 2Lv + Lh total length of the liquid column in a TLCD;
Le = 2Lv + νLh effective length of the liquid column in a

TLCD;
Lh horizontal column length in a TLCD;
Lv vertical column length in a TLCD;
l integrating variable indicated in Fig. 1;
M(t) external moment acting on the structure;
M̂(t̂) = MT 2d /Jα nondimensionalM(t);
M̂0 amplitude of M̂(t̂) in harmonic motion;
m = νp/(ν + p(1− ν)) parameter related to ν and p;
n = p/(1− p(1− ν)) parameter related to ν and p;
p = Lh/L ratio of the horizontal length to total length of the

liquid column;
Qnc,α (or Qnc,y) non-conservative force in the direction of

generalized coordinates α (or y);
S1 (or S2) distance between the structural rotational center

and the center of the left (or right) vertical liquid
column, as indicated in Fig. 1;

T kinetic energy;
Td = 2π

√
Le/2g natural period of a TLCD;

TαM̂ (or TŷM̂ ) frequency response function of α (or ŷ) induced
by M̂;

t time;
t̂ = t/Td nondimensional time;
V potential energy;
y liquid displacement in a TLCD;
ŷ = y/Lh non-dimensional liquid displacement in a TLCD;
ŷ0 amplitude of ŷ in harmonic motion;
α rotational angle of a structure;
α0 amplitude of α in harmonic motion;
β1 = ωα/ωd frequency tuning ratio of the structure versus

TLCD;
ρ fluid density;
ϕy amplitude of y in harmonic liquid motion;
ϕŷ = ϕy/Lh non-dimensional amplitude of y in harmonic

liquid motion;
ψ blocking ratio of the orifice in a TLCD;
µ = Jd/Jα ratio of mass moment of inertia between the

liquid and structure;
ν = Av/Ah cross-section ratio of the vertical column versus

horizontal column;
ω excitation frequency;
ωd =

√
2g/Le natural frequency of a TLCD;

ωα =
√
Kα/Jα natural frequency of a structure

ξ = Cα/2Jαωα damping ratio of a structure;
η head loss coefficient

design under a harmonic type or white noise type of wind loading
was successively investigated and presented in Xue et al. [13] and
Taflanidis et al. [14], respectively.
Fig. 1. Schematic diagram of a structure with a TLCD in pitching motion: (a)
Horizontal column of a TLCD is located below the rotational center; (b) Horizontal
column of a TLCD is located above the rotational center.

To further extend this concept to TLCDs with non-uniform
cross-sections leading tomore practical considerations in applying
to the structural control of bridge pitching motion, this paper
theoretically derived and re-examined the interaction of a single-
degree-of-freedom structure equipped with a non-uniform TLCD.
To account for the complexity of the liquid motion in the TLCD,
the derivation is carried out by completely adopting the energy
principle, the so-called Lagrange’s equation approach, for the
sake of avoiding the possibility of missing any terms. From the
equations of motion derived, it was intriguingly found that there
exists an additional term which was never revealed in existing
relevant papers. A preliminary study through simulation further
ascertained that the effect of the additional term is significant to
the response, particularly when the TLCD horizontal length ratio
becomes smaller and the ratio of the mass moment of inertia
becomes larger.
The objective in the second part of this study was to

experimentally verify the existence of this additional term. Large
scale models of TLCDs and structures were constructed, and tests
for identifying the individual parts as well as the interacted system
subjected to harmonic loading were performed for verification.
For comparison with the experimental results, a non-iterative
analytical solution of such an interaction under harmonic loading
was also derived to facilitate computation.

2. Interacted equations in pitching motion

The schematic diagram of a single-degree-of-freedom rota-
tional structure (representing a bridge deck in the pitchingmotion)
equipped with a TLCD under wind excitation is shown in Fig. 1(a)
and (b). Each sketches the situation when the elevation of the hor-
izontal column of a TLCD is below or above the rotational center
of a deformed structure. In general, the cross-sections in horizon-
tal and vertical columns of a TLCD can be non-uniform, depending
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on the choice of the designer. Some presumptions for TLCDs were
used herein to derive the equations of motion: (i) the fluid is in-
compressible (i.e., the flow rate is invariant), depicting that water
is a good choice; (ii) the sloshing behavior on the liquid surface is
negligible (this is reasonably satisfied if the structural frequency is
as low as 0.5 Hz or even lower, which is quite common for bridges);
(iii) the in-plane width of the TLCD vertical column cross-section
should be much smaller than its horizontal length.

2.1. Derivation by energy principle

By means of energy principles, the equations of interacted
motion can be derived as follows. During pitching motion, as
shown in Fig. 1, the total kinetic energy T is the sum of those from
the structure and TLCD as well, i.e.,

T = Tstructure + TTLCD (1)

in which the kinetic energy of the structure, Tstructure, is

Tstructure =
1
2
Jαα̇2; (2)

and the kinetic energy of the TLCD, TTLCD, is composed of three
parts, each part from different sections of the liquid column, i.e.,

TTLCD = TLeft vertical column + TRight vertical column + THorizontal column (3)

with

TLeft vertical column =
1
2
ρ (Lv − y) Av

(
ẏ+

Lh
2
α̇

)2
±
1
2
ρAv ·

∫ e

e∓Lv±y
(hα̇)2 dh

TRight vertical column =
1
2
ρ (Lv + y) Av

(
ẏ+

Lh
2
α̇

)2
±
1
2
ρAv ·

∫ e

e∓Lv∓y
(hα̇)2 dh

THorizontal column =
1
2
ρAhLh

(
Av
Ah
ẏ± eα̇

)2
+
1
2
ρAh ·

∫ Lh/2

−Lh/2
(lα̇)2 dl.

(4)

In Eqs. (2) and (4), α and y denote the rotational angle of the
structure and liquid displacement in the TLCD, respectively; Jα
is the mass moment of inertia of the structure with respect to
the rotational center; ρ is the fluid density; Ah(Av) and Lh(Lv)
are the cross-sectional area and column length of the horizontal
(vertical) liquid columns; e is the vertical distance between the
rotational center of the structure and the horizontal liquid column;
and h and l are the integrating variables representing the position
coordinates as indicated in Fig. 1. During the motion, the value of
y should be kept within the difference of Lv and one half of the in-
planewidth of the horizontal column cross-section formaintaining
consistent U-shape liquidmovement. The upper and lower signs in
symbols ± or∓ are the operations corresponding to the situations
in Fig. 1(a) and (b). Similarly, the potential energy in the system can
be expressed as the sum of those from the structure and TLCD, i.e.,

V = Vstructure + VTLCD (5)

in which the strain energy conserved in the structure, Vstructure, is

Vstructure =
1
2
Kαα2; (6)

and the potential energy of the liquid in the TLCD, VTLCD, is
composed of three parts, each part from different sections of the
liquid column, i.e.,

VTLCD = VLeft vertical column + VRight vertical column + VHorizontal column (7)

with

VLeft vertical column = ∓ρgAv (Lv − y) [S1 cos (θ1 ∓ α)]
VRight vertical column = ∓ρgAv (Lv + y) [S2 cos (θ2 ± α)]
VHorizontal column = ∓ρgAhLhe cosα.

(8)

In Eqs. (6) and (8), Kα is the rotational stiffness constant of the
structure; g is acceleration due to gravity; S1(S2) is the distance
between the structural rotational center and the center of the
left (right) vertical liquid column during the motion, and the
corresponding angle formed with the TLCD center line is θ1(θ2),
as depicted in Fig. 1. Note that the point of zero potential energy
is taken at the rotational center of the structure. After some
arrangements, the kinetic energy T and potential energy V in Eqs.
(1)–(8) can be simplified as

T =
1
2
Jαα̇2 + ρAvLv

(
ẏ+

Lh
2
α̇

)2
+
1
3
ρAvα̇2

[
3e2Lv ∓ 3eL2v + L

3
v + 3y

2 (∓e+ Lv)
]

+
1
2
ρAhLh

(
Av
Ah
ẏ± eα̇

)2
+
1
3
ρAhα̇2

(
Lh
2

)3
(9)

and

V =
1
2
Kαα2 ∓ ρgAhLhe cosα ∓ 2ρgAvLve cosα

+ ρgAv(L2v + y
2) cosα + ρgAvLhy sinα (10)

in which the relations S1 cos θ1 = e ∓ (Lv − y)/2, S2 cos θ2 =
e∓ (Lv + y)/2 and S1 sin θ1 = S2 sin θ2 = Lh/2 have been used for
rearranging V . As observed in Eqs. (9) and (10), the sign ± (or ∓)
appears simultaneously with the distance e. Thus, for conciseness
in the expressions, the convention of e is defined to be positive or
negative as the horizontal column of a TLCD is located below or
above the rotational center of a structure, and this convention will
be used throughout this paper in what follows.
From Newtonian mechanics, the energy principle — the

Lagrange’s equations expressed by

d
dt

(
∂ (T − V )
∂α̇

)
−
∂ (T − V )
∂α

= Qnc,α;

d
dt

(
∂ (T − V )

∂ ẏ

)
−
∂ (T − V )

∂y
= Qnc,y

(11)

shall represent the equations of the interacted motion, in which
Qnc,α and Qnc,y are the non-conservative forces in the directions of
generalized coordinates α and y, respectively. In this study, Qnc,α
is the sum of the structural viscous damping moment expressed
by −Cαα̇, and the external moment M(t) with respect to the
rotational center. The term Qnc,y, which is in fact the energy-
dissipating force induced by the head loss of flow passing through
the orifice in the horizontal column of the TLCD, is equal to
−
1
2ρη

(
Av
Ah

)
ẏ
∣∣∣( AvAh ) ẏ∣∣∣ Ah, in which η is the so-called head loss

coefficient. With the assumption of α � 1 (which implies sinα ≈
α and cosα ≈ 1), the resultant equations of motion for the
structure and liquid surface displacement can be obtained as

(Jd + Jα)α̈ + Cαα̇ + Kαα + ρνAhLh (Lv + e) ÿ

+ ρgAh(Lh + 2νLν)eα + ρgνAhLhy− ρgνAhL2vα = M(t) (12)

and

ρνAhLh (Lv + e) α̈ + ρνAh(2Lv + νLh)ÿ

+
1
2
ρην2Ahẏ|ẏ| + ρgνAhLhα + 2ρgνAhy = 0 (13)
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in which ν = Av/Ah is the cross-section ratio of the vertical
column versus horizontal column, Jd = ρAh[(1/2)νLvL2h + 2νe

2Lv
−2νeL2v+(2/3)νL

3
v+Lhe

2
+(1/12)L3h] is themassmoment of inertia

of the fluid contained in a TLCD with respect to the rotational
center. It is noted that all the terms involving the nonlinear
terms of α and y, including three terms in the left hand side of
Eq. (12), i.e.,−ρgνAhy2α−4ρνAh(e− Lv)yẏα̇−2ρνAh(e− Lv)y2α̈,
and one term in the left hand side of Eq. (13), i.e., 2ρνAh(e −
Lv)yα̇2, have been neglected under the assumption α � 1 and
y/Lh � 1. Their trivial contribution can be more easily observed
if nondimensionalization is performed on them according to the
procedure described in Section 2.2.
As observed from Eq. (12), the additional term -ρgνAhL2vα

which can be actually traced back to the potential energy
VLeft vertical column + VRight vertical column is never considered in the
existing literature (i.e., [12–14]). Itwill be denoted as the additional
term in what follows in this paper. Since this additional term is
a linear function of α, it will contribute an extra stiffness to the
structure and therefore alter the natural frequency of the structure.
In the case that the structural motion is specified, the liquid

motion in the TLCD can be determined by Eq. (13) only. As such, the
natural frequency of a TLCD can be easily shown as ωd =

√
2g/Le,

in which Le = 2Lv + νLh is defined as the effective length of
liquid column. Consequently, the natural period of a TLCD, Td, is
equal to 2π

√
Le/2g . Note that the effective length Le is equal to the

total length L of the liquid column if all cross-sections are uniform
(i.e., ν = 1).
Since this paper conducted a basic research on the interaction

between a structure and TLCD in pitching motion, a single-
degree-of-freedom structure is used for simplicity. For a multiple-
degree-of-freedom system with a dominant torsional mode in the
higher mode, the torsional modal equation should be obtained by
performing themodal decomposition technique with the torsional
mode shape component at the location where the TLCD is installed
set to one. Then the corresponding modal mass, stiffness and
damping will be used as the structural properties in the formula
described above.

2.2. Nondimensionalization for equations of motion

To facilitate further derivation, nondimensionalization for the
equations of motion in Eqs. (12) and (13) was performed and the
resultant equations are expressed as

(1+ µ)α′′ + 4πξβ1α′ + 4π2β21α +
νεr
p
ŷ′′ + 2π2

νεq
mn

α

+ 2π2
νε

n
ŷ−

π2νε

2n

(
1
p
− 1

)2
α = M̂(t̂) (14)

nr
p
α′′ + ŷ′′ +

1
2
νnη

∣∣ŷ′∣∣ ŷ′ + 2π2α + 4π2ŷ = 0 (15)

inwhich (′) represents the differentiationwith respect to t̂ = t/Td.
Other nondimensional quantities are defined as follows: ŷ = y/Lh;
M̂(t̂) = MT 2d /Jα; β1 = ωα/ωd is the natural frequency ratio
of the structure versus TLCD (ωα =

√
Kα/Jα is the structural

natural frequency); ξ = Cα/2Jαωα is the structural damping ratio;
p = Lh/L is the ratio of the horizontal column length versus
total length of a TLCD; q = e/Lh is the ratio of the distance
between the rotational center and horizontal column versus the
TLCD horizontal column length; m and n are two parameters
related to p and ν (i.e., m = νp/(ν + p(1 − ν)) is the ratio of νLh
versus (Lh+2νLv) and n = p/(1−p(1−ν)) is the ratio of Lh versus
Le); r is a parameter depending on p and q (i.e., r = pq+(1−p)/2);
µ = Jd/Jα is the ratio of mass moment of inertia of the TLCD versus
structure; and ε = ρAhL3h/Jα . The parameters µ and ε are related
to each other by

µ = ε

[
1
2
ν

(
1− p
2p

)
+ 2νq2

(
1− p
2p

)
− 2νq

(
1− p
2p

)2
+
2
3
ν

(
1− p
2p

)3
+ q2 +

1
12

]
,

which can be obtained by expressing Jd as a function of ε, p, q and

ν. It is noticed that the term −π2νε
2n

(
1
p − 1

)2
α in Eq. (14) is the

additional term in the dimensionless form.

2.3. Equivalent viscous damping under harmonic loading

If a system is subjected to a harmonic type of loading, the
nonlinear damping force term (1/2)ρην2Ahẏ|ẏ| in Eq. (13) can
be replaced by an equivalent viscous damping force expressed
as 4

3π ρην
2Ahϕyωẏ, in which ϕy is the amplitude of liquid

displacement y and ω is the circular excitation frequency (see
Gao et al. [5]). This relationship can be easily derived by equating
the energy dissipated in one cycle by the nonlinear damping
force and that by the equivalent viscous damping force. Thus, the
nondimensionalized equation in Eq. (15) can be rewritten as

nr
p
α′′ + ŷ′′ +

8
3
νnηϕŷkŷ′ + 2π2α + 4π2ŷ = 0 (16)

in which k = ω/ωd is the ratio of the excitation frequency
versus TLCD natural frequency (excitation frequency ratio); and
ϕŷ = ϕy/Lh is the nondimensionalized amplitude of the liquid
displacement.

2.4. Analytical solution to harmonic loading

By replacing α, ŷ and M̂(t̂) by the complex harmonic functions
α0ei2πkt̂ , ŷ0ei2πkt̂ and M̂0ei2πkt̂ (i =

√
−1), respectively, the

complex amplitude α0 and ŷ0 can be obtained as functions of the
force amplitude M̂0, i.e.,

α0 = TαM̂M̂0 (17)

ŷ0 = TŷM̂M̂0 (18)
in which TαM̂ and TŷM̂ are the frequency response functions of α
and ŷ induced by M̂ , expressed as

TαM̂ =
2
(
1− k2

)
+ i

( 8
3π k

2νnηϕŷ
)

G
;

TŷM̂ =

(
2k2 nrp − 1

)
G

(19)

with
G = (TB + TC · ϕŷ)+ i(TD + TE · ϕŷ) (20)

TB = 8π2
(
1− k2

) [
β21 − k

2 (1+ µ)+
νεq
2mn

−
νε

8n

(
1
p
− 1

)2]
− 2π2ε

(
ν

n
− 4k2

νr
p
+ 4k4

νnr2

p2

)
TC = −

64
3
πk3νnηξβ1; TD = 16π2kξβ1

(
1− k2

)
(21)

TE =
32
3
πk2νnη

[(
β21 +

νεq
2mn

)
− k2 (1+ µ)

−
νε

8n

(
1
p
− 1

)2]
.
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By using the relation ϕŷ = |ŷ0|, the substitution of Eqs. (19)–(21)
into square of the absolute value on both sides of Eqs. (17) and (18)
leads to

|α0|
2
=

TF · M̂20(
TB + TC ·

∣∣ŷ0∣∣)2 + (TD + TE · ∣∣ŷ0∣∣)2 (22)

∣∣ŷ0∣∣2 = TA · M̂20(
TB + TC ·

∣∣ŷ0∣∣)2 + (TD + TE · ∣∣ŷ0∣∣)2 (23)

in which

TF = 4(1− k2)2 +
(
8
3π
k2νnη

∣∣ŷ0∣∣)2 ;
TA =

(
2k2
nr
p
− 1

)2
.

(24)

By further rearranging Eq. (23) into a polynomial in
∣∣ŷ0∣∣ expressed

as

C4
∣∣ŷ0∣∣4 + C3 ∣∣ŷ0∣∣3 + C2 ∣∣ŷ0 ∣∣2 + C0 = 0 (25)

in which

C4 = T 2C + T
2
E ; C3 = 2(TB · TC + TD · TE);

C2 = T 2B + T
2
D; C0 = −TA · M̂20 ,

(26)

the value of
∣∣ŷ0∣∣ can be solved analytically. It can be shown by

extensive simulation from Eq. (25) that
∣∣ŷ0∣∣ has an unique positive

or zero solution. Consequently, the frequency response function
TαM̂ , TŷM̂ and the amplitude |α0| can be obtained by substituting
the solution of

∣∣ŷ0∣∣ back into Eqs. (19) and (22), respectively. It
should be noticed that the system is in fact not linear because both
of the frequency response functions TαM̂ and TŷM̂ depend on the
value of M̂0. To calculate the responseswithout the additional term
considered, the same formula and procedures will apply except
that the term —νε((1/p) − 1)2/(8n) involved in TB and TE of
Eq. (21) should be dropped.
To clarify the significance of difference caused by the additional

term, extensive simulated results of the analytical responses under
harmonic loadingwere calculated, using the equations provided in
Eqs. (22), (23) and (25), and the comparison between those with
and without the additional term included was made in the pre-
liminary study. It is obvious that the significance of the difference
in |α0| and

∣∣ŷ0∣∣ caused by the additional term depends on the pa-
rameters (µ, p, k and others) that are chosen. Some typical results
were tabulated in Table 1 with the parameter µ varying from 2%
to 10%, ν from 1 to 3 and p from 0.5 to 0.7. This table contains the
responses |α0| and

∣∣ŷ0∣∣ at the frequency ratio k where the largest
discrepancy occurs (largest relative error). The common parame-
ters used for generating the results in Table 1(a) and (b) are M̂0 =
0.7, ξ = 1%, β1 = 1 and η = 5. The parameter β1is taken herein
as 1.0 in that the TLCD frequency is always tuned to the vicinity
around the structural frequency in the optimal design (see [8,12–
14]). The difference in the parameters of Table 1(a) and (b) is the
value of q, which is taken to be 0.1 in (a) and 0.4 in (b) for scruti-
nizing the effect of the TLCD location with respect to the structure.
As shown in Table 1, the effect of the additional term is more

significant when p becomes smaller and µ becomes larger in
general. In some particular cases as shown in Table 1(b), for
instance, when p is equal to 0.5, a mere 2% of µ can result in |α0|
relative error as large as 29.59% for ν = 2. To illustrate the variation
of difference caused by the additional term versus the variation of
the excitation frequency ratio k, the plots of responseswere shown
in Fig. 2(a) and (b) for the two cases with the biggest relative errors
in Table 1(a) and (b) (Case 1: q = 0.1, p = 0.5, ν = 3, µ = 10%;
Fig. 2. Comparisons of the simulated analytical responses versus k under harmonic
loading; (a) Case 1: M̂0 = 0.7, ξ = 1%, β1 = 1, η = 5, q = 0.1, p = 0.5, ν =
3, µ = 10%; (b) Case 2: M̂0 = 0.7, ξ = 1%, β1 = 1, η = 5, q = 0.4, p = 0.5, ν =
1, µ = 10%.

(b) Case 2: q = 0.4, p = 0.5, ν = 1, µ = 10%). As shown in
Fig. 2, the responses caused by the additional term are obviously
different because the term provides an additional stiffness to the
original structure, and the difference in |α0| and

∣∣ŷ0∣∣ varies with
the excitation frequency ratio k.
In the practical application to bridges, using a 2% value of µ is

reasonable (normally 1%–3%). A value of 0.5 or 0.6 for p is possible
if the bridge deck (most possibly box girder) inside has no enough
horizontal space for the TLCD. For example, if a uniform TLCD is
tuned to 0.15 Hz, the required total column length L is 22.11 m.
Thus, the horizontal length calculated by using p = 0.5–0.6 is
11.05–13.27m, which is a space-demanding requirement. A larger
pwill even result in a bigger demand in horizontal space, which is
not possible to be achieved in actual implementation.
Therefore, in order to verify the existence of this additional

term, large scale models for TLCDs and structure were constructed
and extensive tests for identifying the individual parts as well
as the interacted system subjected to harmonic loading were
performed. The pertinent experimental results, including the setup
and procedures, will be described in the next three Sections 3–5.

3. Tests for identifying structural properties

To model the pitching motion of bridge sections, a large scale
spring-constrained steel beam pivoted at mid-span, which repre-
sents a typical single-degree-of-freedom rotational structure, was
constructed in the structural laboratory of National Chiao Tung
University, Taiwan. The configuration and picture of the experi-
mental setup were shown in Fig. 3(a) and (b), respectively. Since
the TLCD frame (without fluid) containsmass, it should be included
as one part of the structural mass. Tomagnify the interaction effect
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Table 1
Comparisons of the simulated analytical responses under harmonic loading:

|α0| |y0|
p ν µ (%) k Without additional

term
With additional
term

Relative error
(%)

k Without additional
term

With additional
term

Relative error
(%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(a) M̂0 = 0.7, ξ = 1%, β1 = 1, η = 5, q = 0.1

0.5

1

2 0.977 0.3572 0.4343 21.58 0.977 0.2727 0.3010 10.39
3 0.969 0.2803 0.3487 24.38 1.006 0.2566 0.2259 −12.00
5 1.006 0.2439 0.1833 −24.86 0.865 0.1054 0.1232 16.96
10 0.826 0.1033 0.1478 43.07 0.821 0.0884 0.1241 40.37

2

2 1.018 0.2264 0.1890 −16.50 0.849 0.1002 0.1092 9.02
3 0.847 0.0946 0.1099 16.10 0.830 0.0932 0.1066 14.34
5 0.803 0.0882 0.1135 28.62 0.797 0.0842 0.1069 26.89
10 0.722 0.0836 0.1453 73.79 0.720 0.0673 0.1158 72.00

3

2 0.836 0.0877 0.0998 13.78 0.819 0.0907 0.1018 12.31
3 0.801 0.0830 0.1008 21.52 0.793 0.0834 0.1002 20.06
5 0.751 0.0816 0.1150 41.00 0.748 0.0744 0.1038 39.48
10 0.640 0.0756 0.1668 120.63 0.639 0.0555 0.1216 119.05

0.6

1

2 1.010 0.3539 0.3222 −8.96 1.010 0.2527 0.2411 −4.59
3 1.012 0.2667 0.2399 −10.04 1.012 0.2182 0.2070 −5.17
5 1.023 0.1653 0.1487 −10.04 0.842 0.0970 0.1046 7.79
10 0.797 0.0998 0.1183 18.60 0.793 0.0859 0.1012 17.78

2

2 1.043 0.1425 0.1332 −6.54 0.824 0.0921 0.0967 5.08
3 0.810 0.0866 0.0941 8.66 0.801 0.0870 0.0940 8.06
5 0.764 0.0877 0.1013 15.58 0.760 0.0804 0.0925 14.99
10 0.669 0.0927 0.1296 39.83 0.668 0.0706 0.0984 39.28

3

2 0.797 0.0821 0.0888 8.10 0.789 0.0852 0.0917 7.57
3 0.761 0.0834 0.0941 12.89 0.757 0.0805 0.0904 12.36
5 0.700 0.0872 0.1089 24.85 0.699 0.0743 0.0923 24.33
10 0.564 0.0939 0.1644 75.02 0.564 0.0636 0.1110 74.54

0.7

1

2 1.014 0.2841 0.2739 −3.58 1.014 0.2253 0.2212 −1.81
3 1.020 0.2010 0.1935 −3.74 0.846 0.0976 0.0994 1.91
5 0.831 0.0956 0.0991 3.64 0.820 0.0911 0.0941 3.35
10 0.768 0.0971 0.1047 7.80 0.765 0.0835 0.0898 7.54

2

2 0.811 0.0840 0.0864 2.86 0.800 0.0872 0.0895 2.64
3 0.777 0.0845 0.0883 4.42 0.772 0.0834 0.0869 4.20
5 0.724 0.0903 0.0976 8.07 0.721 0.0786 0.0847 7.87
10 0.609 0.1053 0.1274 20.98 0.609 0.0754 0.0911 20.81

3

2 0.761 0.0823 0.0860 4.51 0.756 0.0812 0.0848 4.31
3 0.718 0.0871 0.0935 7.31 0.715 0.0780 0.0836 7.12
5 0.642 0.0974 0.1115 14.44 0.641 0.0754 0.0862 14.27
10 0.464 0.1246 0.1837 47.43 0.464 0.0762 0.1123 47.30

(b) M̂0 = 0.7, ξ = 1%, β1 = 1, η = 5, q = 0.4

0.5

1

2 0.992 0.5292 0.6604 24.80 0.992 0.1699 0.1899 11.76
3 0.993 0.4885 0.6737 37.92 0.993 0.1618 0.1901 17.49
5 0.995 0.4227 0.6967 64.81 0.995 0.1479 0.1900 28.43
10 0.997 0.2859 0.6602 130.91 0.997 0.1195 0.1816 52.01

2

2 0.992 0.3196 0.4141 29.59 0.992 0.2167 0.2467 13.86
3 0.992 0.2413 0.3243 34.40 0.992 0.1882 0.2183 15.96
5 0.994 0.1575 0.2109 33.89 1.097 0.0754 0.0610 −19.07
10 1.096 0.2046 0.1165 −43.04 0.830 0.0605 0.0837 38.31

3

2 0.987 0.1804 0.2201 22.00 1.042 0.1862 0.1657 −11.02
3 1.065 0.1859 0.1467 −21.07 0.836 0.0763 0.0877 14.92
5 0.821 0.0698 0.0892 27.84 0.813 0.0672 0.0847 26.11
10 0.769 0.0604 0.0750 61.44 0.766 0.0523 0.0836 59.66

0.6

1

2 0.991 0.5688 0.6269 10.21 0.991 0.1754 0.1842 5.00
3 0.991 0.5292 0.6095 15.18 0.991 0.1692 0.1816 7.35
5 0.992 0.4834 0.6035 24.84 0.992 0.1605 0.1794 11.77
10 0.994 0.3898 0.5716 46.66 0.994 0.1420 0.1721 21.14

2

2 0.990 0.3039 0.3402 11.97 1.024 0.2111 0.1987 −5.86
3 0.989 0.2233 0.2518 12.81 1.033 0.1821 0.1698 −6.76
5 1.056 0.1991 0.1712 −14.02 1.110 0.0638 0.0582 −8.89
10 1.112 0.1392 0.1103 −20.82 1.126 0.0586 0.0481 −17.82

3

2 1.049 0.1863 0.1700 −8.75 0.835 0.0816 0.0855 4.88
3 1.089 0.1368 0.1240 −9.34 0.818 0.0760 0.0817 7.46
5 1.143 0.1045 0.0902 −13.66 0.789 0.0685 0.0774 12.99
10 0.734 0.0701 0.0910 29.83 0.732 0.0581 0.0750 29.24
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Table 1 (continued)

|α0| |y0|
p ν µ (%) k Without additional

term
With additional
term

Relative error
(%)

k Without additional
term

With additional
term

Relative error
(%)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

0.7

1

2 0.990 0.5873 0.6111 4.06 0.990 0.1777 0.1813 2.02
3 0.990 0.5668 0.6005 5.94 0.990 0.1746 0.1797 2.94
5 0.990 0.5289 0.5786 9.39 0.989 0.1659 0.1736 4.60
10 0.989 0.4313 0.5014 16.26 1.012 0.1436 0.1320 −8.05

2

2 1.025 0.3024 0.2881 −4.72 1.026 0.1929 0.1883 −2.41
3 1.036 0.2263 0.2147 −5.10 1.038 0.1607 0.1564 −2.66
5 1.069 0.1549 0.1464 −5.49 1.122 0.0571 0.0549 −3.87
10 1.129 0.1084 0.0986 −9.03 1.139 0.0509 0.0469 −7.88

3

2 1.066 0.1432 0.1383 −3.40 0.819 0.0796 0.0815 2.36
3 1.127 0.1003 0.0962 −4.06 0.798 0.0748 0.0775 3.63
5 0.766 0.0760 0.0810 6.60 0.762 0.0687 0.0731 6.37
10 0.691 0.0793 0.0910 14.71 0.690 0.0620 0.0710 14.51
Table 2
Identified results of the structure

Structure model Natural frequency ωα (rad/s) Damping ratio ξ (%) Mass moment of inertia Jα (Nms2)
(1) (2) (3) (4)

Beam + TLCD (ν = 2) frame 0.3623× 2π 0.424 757.28
Beam + TLCD (ν = 3) frame 0.3010× 2π 0.446 1015.94
Fig. 3. Experimental setup of the spring-constrained steel beam and TLCD: (a)
Configuration of the setup; (b) Picture of the setup.

between the TLCD and structure as needed for the interaction tests,
their natural frequencieswere principally designed to be kept close
to each other. In the following tests, two sets of TLCDmodels were
designed, denoted as ν = 2 and ν = 3 (see Section 4 for their
detailed configurations), and the combined structural mass mo-
ments of inertia were accordingly adjusted by adding steel bricks
on the steel beam so that the natural frequencies can comply with
what were designed. Free vibration tests were performed by giv-
ing an initial rotation angle to the steel beam, and the responses
were recorded. A direct measurement of peak-to-peak duration
easily leads to the natural frequency ωα , while the damping ratio
ξ was obtained by using logarithmic decrementmethod. Addition-
ally, the structural rotational stiffness Kα can be identified from the
moment-rotation relation thatwas performedusing the driving ac-
tuator shown in Fig. 3. Based on the relation Kα = Jαω2α , the mass
moment of inertia Jα can be thus computed. The identified results
of the structure were tabulated in Table 2.

4. Tests for identifying TLCD properties

Two sets of TLCDmodels with horizontal length ratio ν equal to
2 and 3 were designed for the tests. Their detailed configurations
were listed in Table 3, inwhich the values of theoretical natural fre-
quencies provided in Eq. (13) are also shown for comparison with
test results. In the mid-span of the TLCD horizontal column, five
sets of orifice plates with blocking ratio ψ ranging from 0% (fully
open), 20%, 40%, 60% to 80% were designed to provide different
choices of energy-dissipating capabilities that corresponds to dif-
ferent head loss coefficients to be identified. To identify the TLCD
properties such as the natural frequency and head loss, the TLCDs
were placed on the top of the steel beamwhich can be driven by an
actuator as a platform for generating rotational motion (see Fig. 3).

4.1. TLCD natural frequency

The natural frequencies of TLCDs were identified by free
vibration tests. With the actuator commanded in displacement
mode, a harmonic rotation is firstly specified to the steel beam
for a certain duration of time until an appreciable liquid motion
is formed. A sudden stop of the actuator at the equilibrium
(horizontal) position can lead to a simple free vibration of the
liquid surface. In this way, the TLCD natural frequency ωd can be
directly measured from the peak-to-peak duration of the wave
sensor readings. The case with a blocking ratio equal to 0% was
used to minimize the damping effect. The identified frequencies
of the two sets of TLCDs were shown in Table 4. Comparison with
theoretical values shows that the relative errors are both less than
5%, which is fairly acceptable.
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Table 3
Configurations of TLCD models

Configuration TLCD (ν = 2) TLCD (ν = 3)
(1) (2) (3)

Av (cm2) 30× 15 45× 15
Ah (cm2) 15× 15 15× 15
Lh (cm) 145 145
Lv (cm) 48.33 48.33
e (cm) −62.5 −62.5
ν = Av/Ah 2 3
L = Lh + 2Lv (cm) 241.66 241.66
Le = νLh + 2Lv (cm) 386.66 531.66
Jd (Ns2m) 74.671 102.807
µ = Jd/Jα (%) 9.86 10.12
p = Lh/L 0.6 0.6
q = e/Lh −0.43 −0.43
Theoretical natural frequency ωd = (2g/Le)1/2 (rad/s) 0.36× 2π 0.31× 2π
Blocking ratio ψ (%) 0, 20, 40, 60, 80 0, 20, 40, 60, 80
Table 4
Identified natural frequencies of TLCD models

TLCD model Identified natural frequency (rad/s) Relative error (%)
(1) (2) (3)

TLCD (ν = 2) 0.3722× 2π 3.27
TLCD (ν = 3) 0.3251× 2π 4.64

Table 5
Identified head loss coefficients of TLCD models

Blocking ratio ψ (%) Head loss coefficient η
TLCD (ν = 2) TLCD (ν = 3)

(1) (2) (3)

0 7.0 9.7
20 9.1 12.4
40 14.1 20.9
60 33.5 49.0
80 149.0 230.0

4.2. TLCD head loss coefficients

The head loss coefficients corresponding to various blocking
ratios can be identified through a series of forced vibration
tests, in which harmonic rotations with a fixed amplitude and
a set of certain frequencies were specified to the steel beam by
commanding the actuator in displacementmode. Theoretically, the
analytical solution for the liquid displacement ŷ under a harmonic
rotation α of the structure can be derived in the following manner.
By replacing α and ŷ in Eq. (16) by α0ei2πkt̂ and ŷ0ei2πkt̂ , and
according to ϕŷ = |ŷ0|, the steady-state amplitude of liquid
displacement ϕŷ can be solved in terms of the rotation amplitude
α0, see Box I. In the tests, for each blocking ratio ψ , the harmonic
motions with a fixed displacement amplitude of 30 mm (i.e., α0 =
0.03 rad) and a series of different excitation frequencies were
sequentially specified to the steel beam by commanding the
actuator, and the steady-state response of the liquid displacement
was correspondingly measured by the wave sensor. The relation
of these liquid displacement amplitudes |ŷ0| versus the excitation
frequencies ratio k (k = ω/ωd) can be plotted and compared with
analytical curve shown in Box I. By curve-fitting both curves, the
value of the head loss coefficient η in Box I can be determined.
Shown in Fig. 4(a) and (b) were the plots of |ŷ0| versus k for
the two sets of TLCDs, respectively, where the experimental and
curve-fitted responses are denoted by the marks and solid curves,
respectively. The results of the identified head loss coefficients
corresponding to different blocking ratios for the two sets of TLCD
models were shown in Table 5. As observed from Table 5, the head
loss coefficients increase monotonically with the blocking ratioψ ,
and also with the cross-section ratio ν.
Fig. 4. Plots of |ŷ0| versus k (to identify head loss coefficients of TLCDs) : (a) TLCD
(ν = 2); (b) TLCD (ν = 3).

5. Tests for interaction between TLCD and structure

Based on the analytical simulated results in Table 1 and Fig. 2,
this section is to perform interaction tests on a structural model
equipped with a TLCD to verify the existence of the additional
term. Since this verification is focused on one term only, the
best and most efficient way is to choose appropriate values of
parameters (such as a larger µ and smaller p) such that the
difference in the response caused by the additional term is as
clear as possible. By the TLCD configurations shown in Table 3, the
computed mass moments of inertia for the two sets of TLCDs are
74.670 and 102.807 Nms2, which are corresponding to the ratios
of mass moment of inertia (µ = Jd/Jα) equal to 9.86% and 10.12%,
respectively. The horizontal length ratio p for both TLCDs (ν = 2
and ν = 3) is 0.6.
In this part of tests, the TLCD was placed on the top of the

steel beam (see Fig. 3) so that a two-degree-of-freedom system is
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ϕŷ = |ŷ0| =
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Box I.
Fig. 5. Error comparison of the interacted responses w/wo the additional term considered for the test structure equipped with TLCD (ν = 2).
formed to verify the interaction between the TLCD and structure.
For each blocking ratio ψ , a series of forced vibration tests were
performed by commanding the actuator in the displacementmode
to provide a harmonic motion with a fixed amplitude of 30 mm
(i.e., α0 = 0.03 rad) and a series of different frequencies to the
steel beam. The use of displacement mode in 30 mm maximum is
due to the limited capacity of the actuator to be operated within a
sustainable stability. The steady-state external force applied to the
steel beam (and moment M accordingly) was therefore measured
by the load cell sensor installed between the actuator and the steel
beam, whereas the steady-state responses including the liquid
displacement of the TLCD and the rotation of the steel beam were
measured by the wave and displacement sensors.
As mentioned in the Section 3, the natural frequency of the

TLCD was designed to tune to that of the structure for magnifying
the interaction effect. As a consequence of such a resonance
effect, the structural response is reduced, while the liquid motion
in the TLCD is amplified. Due to the fact that the interacted
responses are sensitive to the external force which is not quite
so easy to be accurately measured by the load cell under the
interference of noise, to maximize experimental accuracy, the
excitation frequencies in our interest for verifying the interaction
effect are best represented by the ones near resonance, i.e., by
choosing k near 1.
The interacted responses from tests for the two sets of TLCDs

were tabulated in columns (4), (5) of Tables 6 and 7, respectively,
in different conditions of blocking ratio. The simulated analytical
responses without the additional term considered and with the
additional term considered were also shown in columns (6), (7)
and (8), (9), respectively, for comparison. In columns (6)–(9), the
values inside the parentheses are the relative errors with respect
to the experimental results shown in columns (4) and (5). The
relative errors of the simulated responses in different conditions
of blocking ratios for the two sets of TLCDs were also plotted in
Figs. 5 and 6 for a better illustration. As observed from Tables 6
and 7 and Figs. 5 and 6, it is apparent that relative errors in
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Fig. 6. Error comparison of the interacted responses w/wo the additional term considered for the test structure equipped with TLCD (ν = 3).
Table 6
Comparison of experimental and analytical results in the pitching interaction of the structure and TLCD (ν = 2)

Structure +TLCD (ν = 2)

Experimental Analytical
Without additional term With additional term

ψ (%) k M̂0 |α0| |ŷ0| |α0| |ŷ0| |α0| |ŷ0|
(1) (2) (3) (4) (5) (6) (7) (8) (9)

0

0.8458 0.529 0.03 0.04682 0.03261 (8.70%) 0.05737 (22.53%) 0.03057 (1.90%) 0.05407 (15.48%)
0.8967 0.810 0.03 0.06297 0.03286 (9.52%) 0.07361 (16.90%) 0.03136 (4.52%) 0.07103 (12.79%)
0.9500 1.062 0.03 0.08101 0.03543 (18.10%) 0.09102 (12.35%) 0.03413 (13.75%) 0.08912 (10.00%)
1.0035 1.006 0.03 0.08440 0.03470 (15.66%) 0.09106 (7.90%) 0.03393 (13.09%) 0.09004 (6.69%)

20

0.8458 0.521 0.03 0.04722 0.03301 (10.04%) 0.05643 (19.51%) 0.03088 (2.92%) 0.05321 (12.69%)
0.8969 0.775 0.03 0.06104 0.03386 (12.87%) 0.07026 (15.11%) 0.03219 (7.29%) 0.06777 (11.02%)
0.9500 0.968 0.03 0.07392 0.03650 (21.67%) 0.08231 (11.34%) 0.03502 (16.74%) 0.08047 (8.85%)
1.0027 0.894 0.03 0.07434 0.03402 (13.38%) 0.07915 (6.47%) 0.03310 (10.33%) 0.07434 (5.03%)

40

0.8459 0.513 0.03 0.04578 0.03526 (17.53%) 0.05530 (20.77%) 0.03279 (9.29%) 0.05222 (14.05%)
0.8973 0.718 0.03 0.05597 0.03716 (23.86%) 0.06464 (15.49%) 0.03502 (16.73%) 0.06226 (11.24%)
0.9507 0.785 0.03 0.05932 0.03496 (16.54%) 0.06572 (10.79%) 0.03335 (11.16%) 0.06409 (8.04%)
1.0036 0.723 0.03 0.05786 0.03193 (6.42%) 0.06155 (6.38%) 0.03083 (2.78%) 0.06048 (4.54%)

60

0.8456 0.429 0.03 0.03773 0.03890 (29.66%) 0.04554 (20.71%) 0.03584 (19.48%) 0.04325 (14.64%)
0.8975 0.527 0.03 0.04027 0.03935 (31.15%) 0.04670 (15.97%) 0.03642 (21.39%) 0.04474 (11.10%)
0.9510 0.566 0.03 0.04058 0.03667 (22.23%) 0.04447 (9.58%) 0.03431 (14.35%) 0.04297 (5.90%)
1.0036 0.552 0.03 0.03850 0.03263 (8.76%) 0.04037 (4.84%) 0.03089 (2.98%) 0.03928 (2.02%)

80

0.8460 0.244 0.03 0.02044 0.04099 (36.62%) 0.02451 (19.94%) 0.03913 (30.44%) 0.02392 (17.04%)
0.8976 0.280 0.03 0.01938 0.03983 (32.78%) 0.02321 (19.79%) 0.03493 (16.43%) 0.02170 (11.99%)
0.9505 0.339 0.03 0.01857 0.03558 (18.58%) 0.02097 (12.94%) 0.03197 (6.57%) 0.01987 (7.03%)
1.0038 0.409 0.03 0.01749 0.03217 (7.22%) 0.01900 (8.63%) 0.02974 (0.86%) 0.01827 (4.45%)
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Table 7
Comparison of experimental and analytical results in the pitching interaction of the structure and TLCD (ν = 3)

Structure + TLCD (ν = 3)

Experimental Analytical
Without additional term With additional term

ψ (%) k M̂0 |α0| |ŷ0| |α0| |ŷ0| |α0| |ŷ0|
(1) (2) (3) (4) (5) (6) (7) (8) (9)

0

0.8476 0.900 0.03 0.04617 0.03090 (3.00%) 0.05200 (12.61%) 0.02914 (2.86%) 0.04944 (7.06%)
0.8771 1.053 0.03 0.05238 0.03097 (3.23%) 0.05840 (11.50%) 0.02938 (2.08%) 0.05606 (7.03%)
0.9386 1.325 0.03 0.06566 0.03357 (11.88%) 0.07189 (9.49%) 0.03206 (6.87%) 0.07004 (6.67%)
0.9697 1.342 0.03 0.06891 0.03442 (14.75%) 0.07436 (7.91%) 0.03308 (10.26%) 0.07285 (5.72%)

20

0.8472 0.892 0.03 0.04539 0.03218 (7.28%) 0.05153 (13.53%) 0.03022 (0.74%) 0.04839 (7.87%)
0.8771 1.025 0.03 0.05116 0.03242 (8.05%) 0.05670 (10.82%) 0.03059 (1.97%) 0.05438 (6.29%)
0.9380 1.204 0.03 0.05991 0.03373 (12.44%) 0.06467 (7.95%) 0.03209 (6.96%) 0.06290 (5.00%)
0.9689 1.187 0.03 0.06123 0.03323 (10.76%) 0.06481 (5.85%) 0.03181 (6.04%) 0.06338 (3.51%)

40

0.8479 0.823 0.03 0.04218 0.03402 (13.41%) 0.04723 (11.99%) 0.03157 (5.25%) 0.04482 (6.26%)
0.8770 0.903 0.03 0.04487 0.03418 (13.93%) 0.04943 (10.16%) 0.03187 (6.23%) 0.04729 (5.39%)
0.9381 0.968 0.03 0.04765 0.03332 (11.06%) 0.05058 (6.16%) 0.03140 (4.65%) 0.04901 (2.84%)
0.9699 0.937 0.03 0.04708 0.03185 (6.16%) 0.04910 (4.29%) 0.03021 (0.69%) 0.04780 (1.53%)

60

0.8475 0.635 0.03 0.03172 0.03601 (20.04%) 0.03587 (13.08%) 0.03260 (8.66%) 0.03382 (6.63%)
0.8773 0.665 0.03 0.03192 0.03500 (16.68%) 0.03528 (10.52%) 0.03190 (6.33%) 0.03350 (4.93%)
0.9381 0.694 0.03 0.03137 0.03288 (9.61%) 0.03343 (6.55%) 0.03038 (1.28%) 0.03209 (2.30%)
0.9691 0.691 0.03 0.03045 0.03153 (5.08%) 0.03206 (5.29%) 0.02933 (2.23%) 0.03092 (1.53%)

80

0.8468 0.352 0.03 0.01555 0.03862 (28.82%) 0.01839 (18.26%) 0.03259 (8.65%) 0.01683 (8.26%)
0.8761 0.377 0.03 0.01505 0.03593 (19.76%) 0.01726 (14.63%) 0.03083 (2.76%) 0.01595 (5.97%)
0.9374 0.456 0.03 0.01434 0.03336 (11.18%) 0.01572 (9.61%) 0.02970 (1.02%) 0.01483 (3.39%)
0.9684 0.493 0.03 0.01387 0.03168 (5.58%) 0.01489 (7.35%) 0.02864 (4.53%) 0.01415 (2.08%)
the analytical responses with the additional term considered are
smaller than the other. In other words, the analytical responses
with the additional term considered are closer to the experimental
responses. Therefore, the interacted dynamics of the TLCD and
structure in the pitching direction can be better represented by
including the additional term shown in Eq. (12) (or Eq. (14)).

6. Conclusions

The equation of motion for wind-induced interaction between
a non-uniform TLCD and structure in pitching motion has been
derived by means of energy principles, i.e., the approach of
Lagrange’s equations, and it was found that a term —ρgνAhL2vα
(see Eq. (12)), denoted as the additional term, has never been
considered previously in the literature. The analytical solution
of the interacted system subjected to harmonic load was also
derived. Extensive simulation shows that in general the effect of
the additional term becomesmore significant when the horizontal
length ratio p becomes smaller and the ratio of mass moment of
inertia µ becomes larger. An experimental verification has been
performed by conducting large scale tests of a TLCD on a rotational
structure to demonstrate the existence of this additional term.
Experimental results verify that the analytical responses with the
additional term considered represent the interaction more closely
than those without the additional term. Therefore, the inclusion of
the additional term in the pitching interaction motion of a TLCD
and structure is essential.
References

[1] Sakai F, Takaeda S, Tamaki T. Tuned liquid column damper-new type device
for suppression of building vibration. In: Proc. int. conf. on high-rise building.
1989. p. 926–31.

[2] Xu YL, Samali B, Kwok KCS. Control of along-wind response of structures by
mass and liquid dampers. ASCE J Eng Mech 1992;118(1):20–39.

[3] Hitchcock PA, Kwok KCS, Watkins RD. Characteristics of liquid column
vibration absorbers (LCVA) — I, II. Eng Struct 1997;19:126–44.

[4] Balendra T, Wang CM, Rakesh G. Effectiveness of TLCD on various structural
systems. Eng Struct 1999;21(4):291–305.

[5] Gao H, Kwok KCS, Samali B. Optimization of tuned liquid column damper. Eng
Struct 1997;19(6):476–86.

[6] Chang CC, Hsu CT. Control performance of liquid column vibration absorbers.
Eng Struct 1998;20(7):580–6.

[7] Chang CC. Mass dampers and their optimal designs for building vibration
control. Eng Struct 1999;21:454–63.

[8] Wu JC, Shih MH, Lin YY, Shen YC. Design guidelines for tuned liquid column
damper for structures responding to wind. Eng Struct 2005;27(13):1893–905.

[9] Kwon SD, Park KS. Suppression of bridge flutter using tuned mass dampers
based on robust performance design. J Wind Eng Ind Aerodyn 2004;92(11):
919–34.

[10] Pansare AP, Jangid RS. Tuned mass dampers for torsionally coupled systems.
Wind Struct 2003;6(1):23–40.

[11] Jangid RS, Datta TK. Performance of multiple tuned mass dampers for
torsionally coupled system. Earthq Eng Struct Dyn 1997;26(3):307–17.

[12] Xue SD, Ko JM, Xu YL. Tuned liquid column damper for suppressing pitching
motion of structures. Eng Struct 2000;23(11):1538–51.

[13] Xue SD, Ko JM, Xu YL. Optimumparameters of tuned liquid column damper for
suppressing pitching vibration of an undamped structure. J Sound Vibration
2000;235(4):639–53.

[14] Taflanidis AA, Angelides DC, Manos GC. Optimal design and performance of
liquid column mass dampers for rotational vibration control of structures
under white noise excitation. Eng Struct 2005;27(4):524–34.


	Wind-induced interaction of a non-uniform tuned liquid column damper and  a structure in pitching motion
	Introduction
	Interacted equations in pitching motion
	Derivation by energy principle
	Nondimensionalization for equations of motion
	Equivalent viscous damping under harmonic loading
	Analytical solution to harmonic loading

	Tests for identifying structural properties
	Tests for identifying TLCD properties
	TLCD natural frequency
	TLCD head loss coefficients

	Tests for interaction between TLCD and structure
	Conclusions
	References


