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基於獨特碼架構之頻域等化單載波系統 

之 FPGA 實現 

 

學生：陳欣瑤        指導教授：李大嵩 博士 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

頻域等化之單載波系統(SC-FDE)在新一代之無線通訊系統中佔有相當關鍵

性的地位，它不但能夠達到和正交分頻多工(OFDM)系統相當近似之效能和效

率，亦同樣具有低訊號處理複雜度之優點。另一方面，SC-FDE 並不會面臨 OFDM

所面對之高峰值對均值功率比(PAPR)問題，因此在 IEEE 802.16 標準中， SC-FDE

成為了於 OFDM 以外另一實體層技術的選擇。在本論文中，吾人將使用自行研發

之平台，實現一基於獨特碼(UW)架構之單載波系統，其中基頻演算法部分將實現

於平台之 Xilinx Virtex-II FPGA 模組。在此系統中之演算法除包括通道估計器、

頻率修正器、迴旋碼解碼器等之外，吾人也實現了基於獨特碼架構下之相位追蹤

器，使得此一單載波系統之功能性更加完整。此外，吾人更進一步提出此一獨特

碼架構於相位追蹤以外之應用，包括於時脈偏移下用以修正 FFT 窗之偏移，以及

於移動之環境下用以更新通道之估計等。最後，本篇論文中將說明獨特碼的架構

不但在理論上十分簡單，實際上也十分適合用於硬體平台的實現。 
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Student: Hsin-Yao Chen    Advisor: Dr. Ta-Sung Lee 
 

Department of Communication Engineering 

National Chiao Tung University 
 

Abstract 

 

In recent years, Single Carrier System with Frequency Domain Equalization 

(SC-FDE) becomes a key technology in the development of new wireless 

communication systems. It has similar performance, efficiency as well as low signal 

processing complexity advantages as orthogonal frequency division multiplexing 

(OFDM), but does not suffer from the high peak to average power ratio (PAPR) 

problem as in OFDM system. Therefore, SC-FDE has been adopted by IEEE 802.16 

standard as an alternative technique to OFDM in the physical layer. In this thesis, we 

propose a solution for building up a Unique-Word (UW) based SC-FDE system on a 

self-designed platform with Xilinx Virtex-II FPGA module mounted. In addition to 

channel estimator, frequency offset compensator and convolutional encoder, a 

UW-based phase offset tracker is realized to make the functionalities of the system 

more complete. Moreover, other applications of UW structure are presented, including 

FFT window synchronization and update of channel estimation in mobile environment, 

etc. Finally, we will show that the UW structure is not only theoretically simple, but 

also practically suitable for hardware implementation. 
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Chapter 1  
 
Introduction 
 

Wireless communications is one of the most active areas of technology 

development of our time. Similar to the developments in wired line capacity in the 

1990s, the demand for new wireless capacity is growing at a very rapid pace. From 

the first-generation (1G) radio systems developed in the 1970s and 1980s, 

transmitting voice over radio by analog communication techniques such as Advanced 

Mobile Phone Services (AMPS), to the 2G systems built in the 1980s and 1990s, 

featuring the adoption of digital technology such as Global System for Mobile 

Communications (GSM), Digital-AMPS (D-AMPS) and code division multiple 

access (CDMA), and further to today’s 3G wideband CDMA (WCDMA) technologies, 

whose transmission data rate can be up to 2 Mbps in good conditions. Driven by the 

transformation of a medium supporting voice telephony into a medium that is 

demanded to support other services such as the transmission of video, images, text, 

and data, future wireless system must provide high data rate services to satisfy the 

increasing needs of the next-generation wireless networks. Recent air interface 

standards for such wideband wireless metropolitan area network (MAN) systems are 

being developed by the IEEE 802.16 working group and also by the European 

Telecommunications Standards Institute (ETSI) Broadband Radio Access Network 

(BRAN) High-Performance MAN (HiperMAN) group. Such systems are installed to 

operate over non-line-of-sight (NLOS) links, serving residential and small 

office/home office (SOHO) subscribers with high data rate transmission. 
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However, as the bit rate increases, the problem of inter-symbol interference (ISI) 

becomes more serious. The above wireless access systems in residential 

neighborhoods must cope with the dominant propagation impairment of multipath 

which causes multiple echoes of the transmitted signal to be received with delay 

spreads of up to tens of microseconds. For bit rates in the range of tens of megabits 

per second, this translates to inter-symbol interference that can span up to 100 or more 

data symbols. For example, at a 5 MHz symbol rate, a 20 μs multipath delay profile 

spans 100 data symbols. This raises the question of what types of anti-multipath 

measures are necessary, and consistent with low-cost solutions.  

Several variations of orthogonal frequency-division multiplexing (OFDM) have 

been proposed as effective anti-multipath techniques [1]-[4], primarily because of the 

favorable trade-off they offer between performance in severe multipath and signal 

processing complexity. However, it is shown that when combined with frequency 

domain equalization (FDE), the single-carrier (SC) approach delivers performance 

similar to OFDM, with essentially the same overall complexity [5]-[7]. In addition, 

SC modulation uses a single carrier, instead of the many typically used in OFDM, so 

the peak-to-average transmitted power ratio for SC-modulated signals is smaller 

[8]-[10]. This in turn means that the power amplifier of an SC transmitter requires a 

smaller linear range to support a given average power (in other words, requires less 

peak power backoff). As such, this enables the use of a cheaper power amplifier than a 

comparable OFDM system; and this is a benefit of some importance, since the power 

amplifier can be one of the more costly components in a consumer broadband 

wireless transceiver. Therefore, single carrier with frequency domain equalization 

(SC-FDE) has been adopted by IEEE 802.16 standard to be one of the three modes as 

an alternative technique of OFDM in physical layer, and it is also currently a working 

assumption for uplink multiple access scheme in 3GPP Long Term Evolution (LTE), 

or Evolved UTRA. These show its potential of being an important candidate for future 

mobile wireless systems. 

Moreover, a novel approach considering phase tracking algorithms for SC-FDE 

systems, which make use of the concept of Unique Word (UW) blockwise extension 

instead of the classical concept of cyclic prefix (CP) like it is used in OFDM is 
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provided [11]-[13]. The UW is a very simple known sequence that are distributed 

along the frame, which in this paper is focused on its performance on phase tracking 

algorithms as a counterpart of the use of pilot tones for IEEE 802.11a like OFDM 

systems [14]. Besides, with the UW-based structure, the algorithm developer has a lot 

of freedom for the tasks of synchronization [15]-[17], channel estimation [18]-[19] or 

noise prediction [20], which we will discuss in Chapter 5.  

 The goal of this thesis is to realize a Single-Carrier system with 

Frequency-Domain Equalizer on field programmable gate array (FPGA)-based 

platforms, where we intend to verify the above-mentioned algorithms on a 

self-designed platform. The complete functional blocks in both the transmitter and 

receiver are provided, and the associated algorithms applied in each functional block 

are also presented. After giving an overview of system architecture, we propose a total 

solution to build up FPGA-based platforms for realizing the SC-FDE system, 

including MATLAB verification and FPGA realization. The developed system 

contains a baseband transmitter, a digital-analog converter, an analog-digital converter, 

and a baseband receiver.  

The organization of this thesis is as follows. Chapter 2 describes the proposed 

SC-FDE transceiver architecture and its corresponding schemes. In Chapter 3, the 

development environments of the proposed self-designed platform are introduced. In 

Chapter 4, the overall system realization is presented, and the performance evaluation 

is also included. Later, a further discussion of the UW-based SC-FDE system will be 

provided in Chapter 5. Finally, we make our concluding remarks in Chapter 6. 
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Chapter 2  
 
SC-FDE Baseband Transceiver 
Architecture 

This chapter focuses on the SC-FDE baseband transceiver architecture. An 

overview of the SC-FDE system will first be given. Then we divide the developed 

architecture into transmitter and receiver, and provide functional descriptions and 

associated algorithms for each block. In addition, the modified delay-locked-loop 

algorithm for timing recovery and the Unique Word based phase tracking algorithm 

adopted on the system will be described. 

2.1 Overview of SC-FDE System 

Recently, SC-FDE system has received a lot of attention as an attractive 

alternative solution for the problem of ISI in the wideband wireless system. Compared 

to the time-domain equalization that requires one or more transversal filters with the 

tap number covering the maximum channel impulse response length, FDE 

outperforms the conventional time-domain equalization and requires less complexity 

by using fast Fourier transform (FFT) and is more suitable for long channels. With 

such a comparably lower complexity similar to OFDM, SC-FDE does not suffer high 

peak-to-average power ratio (PAPR) as well as sensitivity to frequency and phase 

offsets as they are in the OFDM systems. Previous work [5][7] has also shown that 

FDE has better performance than OFDM systems in uncoded and high coding rate 

systems.  
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In our system we investigate a SC-FDE system, where the parameters are 

adapted to the IEEE 802.11a OFDM based wireless LAN (WLAN) standard. The 

transmission format at the physical layer (PHY) is frames consisting of a preamble 

part and the data payload. The preamble comprises ten short preambles and two long 

preambles, which are used for different synchronization tasks at the receiver. The data 

payload consists of six SC-FDE frames, each appended with a known sequence, 

called Unique Word, and six frames together are attached after the preamble. 

Moreover, the UW is cyclically extended in the guard time, resulting in the 

cyclic-prefix-like structure and equalization criterion can be easily achieved in the 

frequency domain. The detailed structure of preamble will be discussed in Section 

2.2.4.  

Parameters to be synchronized are the temporal position of the transmission 

frame, the carrier frequency, the clock frequency, and the temporal position of the 

FFT-window. Additionally, an estimate of the channel transfer function is needed. The 

effect of carrier phase offsets and clock phase offsets on the system performance is 

compensated for by channel equalization. After the preamble based carrier frequency 

synchronization there will always be some remaining carrier frequency offset, which 

causes phase errors in the received and equalized data symbols. In IEEE 802.11a 

systems, pilot subcarriers are used to estimate and track these phase errors. In this 

project we show, that simple UW-based phase tracking algorithms provide almost 

optimum performance in SC-FDE systems, and the main parameters of the 

investigated SC-FDE system are shown in Table 2.1. 

We summarize the advantages of SC-FDE as follows:  

 SC modulation has reduced peak-to-average ratio requirements from OFDM, 

thereby allowing the use of less costly power amplifiers 

 Performance of SC-FDE system is similar to that of OFDM system, even 

for very long channel delay spread 

 Frequency domain receiver processing has a similar complexity reduction 

advantage to that of OFDM: complexity is proportional to log of multipath 

spread 
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 Coding, while desirable, is not necessary for combating frequency 

selectivity, as it is in non-adaptive OFDM 

 SC modulation is a well-proven technology in many existing wireless and 

wired-line applications, and its radio-frequency (RF) system linearity 

requirements are well known 

Table 2-1: Main PHY Parameters of the Investigated SC-FDE System 

RRC(α=0.25)Pulse Shaping

1/3Coding Rates

QPSKModulation Schemes 

16Short Preamble Size (symbols)

64+16(CP)Long Preamble Size (symbols)

64FFT Size

16Number of Unique Word symbols/frame

48Number of data symbols/frame

64Number of total symbols/frame

6Number of frames/packet

RRC(α=0.25)Pulse Shaping

1/3Coding Rates

QPSKModulation Schemes 

16Short Preamble Size (symbols)

64+16(CP)Long Preamble Size (symbols)

64FFT Size

16Number of Unique Word symbols/frame

48Number of data symbols/frame

64Number of total symbols/frame

6Number of frames/packet

 

2.2 Transmitter Architecture 

The baseband SC-FDE transmitter architecture is shown in Figure 2.1. The 

source data is first fed into the channel encoder, e.g., using the convolution code for 

error correction at the receiver. After coding, the binary values are converted into 

Quadrature Phase Shift Keying (QPSK) values with a mapper, and a guard period is 

added between successive frames. The insertion of a guard period anticipates the 

blockwise processing needed in the receiver when using FFT operations. The guard 

period will then be filled up with a known, simple UW sequence with the UW 

generator, and every six UW-appended frames will be preceded by the preamble with 

the preamble generator. The UW and preamble are used for certain synchronization 

purposes and the detail functionalities will be discussed in Section 2.2.3. After pulse 

shaping (Root Raised Cosine Pulses) and digital-to-analog conversion the resulting 

I/Q signals are up-converted onto the desired frequency band. 
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Encoder Mapper

UW
Generator

Preamble
Generator

MUX
Upsample

&
RRC

DACData
Channel

Figure 2.1: Transmitter architecture of SC-FDE system 

2.2.1Convolutional Encoder 

A convolutional encoder typically will generate two or three output bits for each 

input bit. The output bits are dependent on the current input bit, as well as the state of 

the encoder. The state of the encoder is represented by several bits which precede the 

current bit. Figure 2.2 shows a convolutional encoder adopted in our system with code 

rate equal to 1/3 and constraint length equal to 5. Convolutional coding adds 

redundant bits in such a way that the decoder can, within limits, detect errors and 

correct them.  

+

+

+

S0 S1 S2 S3Din

g0

g1

g2

+

+

+

S0 S1 S2 S3Din

g0

g1

g2  
Figure 2.2: Convolutional encoder with code rate 1/3 and constraint length 5 
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2.2.2 Mapper / De-mapper 

Quadrature amplitude modulation (QAM) is the most popular type of modulation 

scheme since the rectangular constellations are easy to implement as they can be split 

into independent in-phase and quadrature parts. A mapper is used to map a small 

group of bits into a symbol according to the rectangular constellation adopted. Figure 

2.3 shows the rectangular constellations of QPSK, 16-QAM, and 64 QAM. The 

higher modulation order the mapper adopts, the more information a symbol can carry, 

yet higher modulation order always suffers from interference more severely. In our 

system, we adopt QPSK as our modulation scheme. 

QPSK

16-QAM

64-QAM

I
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Figure 2.3: QPSK, 16-QAM, and 64-QAM constellations 

2.2.3 Unique Word Structure 

Frequency domain equalization for single carrier system is based on the 

equivalence between the convolution of two sequences in the time domain and the 

product of their Fourier transforms. Because of the use of FFT operations, the 
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received signals have to be processed blockwise. Therefore, performing a blockwise 

transmission and inserting a Cyclic Prefix (CP) between successive blocks is 

necessary, since the cyclic extension enables the circular convolution of the 

transmitted frame and the channel impulse response. The conventional CP structure, 

however, is less useful for other purpose like synchronization as long as the content of 

the CP is not known and varies with every single frame. The overhead induced by the 

CP could be used in a more efficient way if its content would be known before and 

could be chosen in a proper way. Therefore, instead of the cyclic prefix, a known 

sequence called Unique Word (UW) is part of every processed frame [11]-[13]. 

First of all, Figure 2.4 depicts the structure of one transmitted frame, which 

consists of the original data sequence of NS symbols and the guard interval with NG 

symbols. The overall duration of one frame with N = NS+NG symbols is   

    ( )  FFT S GT NT N N T= = +  (2.1) 

where T is the symbol duration and let G GT N T= be the guard interval. 

NsT NGT

TFFT

NsT NGT

TFFT

UWUW UWUW

 

Figure 2.4: Transmitted block using the concept of UW 

A mathematical description of the investigated SC-FDE system using the UW 

instead of the traditional CP is now given. Let us denote , ( )Data is t  to be the 

continuous-time representation of the data symbols part of the i-th transmitted frame 

with , ( ) 0Data is t =  for [ ]0, FFT Gt T T∉ −  , and uw(t) is the UW symbol sequence. 

Define si(t) as the whole i-th frame. Therefore, 

 
[ ]

[ ]
, ( ) for 0,  

( )
( ) for ,  

Data i FFT G
i

FFT G FFT

s t t T T
s t

uw t t T T T
⎧ ∈ −⎪= ⎨ ∈ −⎪⎩

 (2.2) 
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Including the UW from the previous frame, an extended frame ( )s t can be defined as 

 
[ ]
[ ]

( )             for 0,  
( ) ( ) for ,0

0                        elsewhere 

i FFT

FFT G

s t t T
s t uw t T t T

⎧ ∈
⎪

= + ∈ −⎨
⎪
⎩

 (2.3) 

 With this cyclically extended frame the linear convolution (∗ ) of the i-th frame 

with the channel impulse response becomes a circular convolution ( ⊗ ) and the 

received block ( )ir t  fulfils the condition 

 ( ) ( ) ( ) ( )i i ir t s t h t s t h= ∗ = ⊗  (2.4) 

within the interval [ ],G h FFTT T T− + , where hT  is the duration of the channel impulse 

response. When restricting the received frame to FFT window [ ]0, FFTT  and 

applying the theorem of circular convolution to Eq.(2.4), we obtain the essential 

relation 

 0 0 0 0( ) ( ) ( ) ( )i i iR nf S nf H nf R nf= ⋅ =  (2.5) 

For 0 1 FFTf T=  and n Z∈ . The capitalization represents the Fourier Transform of 

the corresponding lowercase parameters in Eq.(2.4). Therefore, the frequency domain 

relation in Eq.(2.5) shows that the concept of UW is comparable to the concept of CP. 

 In this thesis, we focus on the design and performance of Unique Word based 

phase tracking algorithms [14], and we will show that the algorithm provide almost 

optimum performance in SC-FDE systems in Section 4.2 . 

2.2.4 Preamble Channel and Frame Structure 

 Referring IEEE 802.11a standard, we attach the training sequence, also called 

preamble, in front of every packet. At the receiver, preambles can be utilized to do a 

number of tasks, such as timing synchronization, frequency synchronization, and 

channel estimation. The format of preamble channel and frame structure is shown in 

Figure 2.5. Preambles can further be separated into short preamble and long preamble, 

both of which are modulated by BPSK. Short preamble, as implied by the name, has a 
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shorter length compared with long preamble. Each short preamble contains 16 

symbols with time-span 0.8 μs, and ten short preambles have a total time-span of 8 μs. 

The following parts are two long preamble symbols, and each one is protected by a 

guard interval filled with its cyclic extension, which have a total time-span of 8 μs. 

After preamble channel, data symbols with cyclically UW extension follow. 

Figure 2.5: Training sequence and frame structure of IEEE 802.11a standard 

2.2.5 Upsampler and Root Raised Cosine Filter 

 Upsampling is an operation that is often done before the pulse shaping filter to 

make the filter design simpler. If we do not increase the sample rate, we will need to 

design a very sharp filter which is not only very difficult and expensive to implement, 

but may sacrifice some of the spectrum in its roll off. Besides, a filter with a smooth 

roll off will have nicer phase characteristics as well. 

 Root raised cosines (RRC) filter is a commonly used pulse shaping filter in 

digital communication systems to limit ISI. The frequency response of an ideal root 

raised cosine filter consists of unity gain at low frequencies, the square root of raised 

cosine function in the middle, and total attenuation at high frequencies. The width of 

the middle frequencies is defined by the roll off factor constant β (0<β<1). Root raised 

cosine filter is generally used in series pairs, so that the total filtering effect is that of a 

raised cosine filter. The advantage is that if the transmit side filter is stimulated by an 

impulse, then the receive side filter is forced to filter an input pulse shape that is 

identical to its own impulse response, thereby setting up a matched filter and 

maximizing signal to noise ratio (SNR) while at the same time minimizing ISI. 

Mathematically, the frequency response ( )rrcF ω  may be written as 
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1                                    For (1 )

0                                    For (1 )              
( )

( (1 ))1 cos
2

   For (1 ) (1 )
2

c

c

rrc
c

c
c c

F

ω ω β

ω ω β
ω π ω ω β

βω
ω β ω ω β

⎧ ≤ −⎪⎪⎪⎪ ≥ +⎪⎪⎪⎪= ⎨ ⎛ ⎞− −⎪ ⎟⎜⎪ ⎟+ ⎜⎪ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎪ − < < +⎪⎪⎪⎩

 (2.6) 

where cω  is half the data rate.  

 The operation of upsampling and RRC filtering is shown in Figure 2.6, where 

H(z) is the frequency response of the pulse shaping filter and L is the upsampling rate. 

↑L H(z)x[n] y[m]↑L H(z)x[n] y[m]  
Figure 2.6: Diagram of upsampler and pulse shaping filter 

Note that this procedure is computationally inefficient because the filter operates on a 

sequence that is mostly composed of zeros. To avoid operations on zero-valued 

samples, rearrangement of the preceding block diagram is required. First of all, 

transform H(z) into its upsampled polyphase components, where h[n] is the time 

domain counterpart of H(z): 
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L p

p
p

H z h n z

h kL p z h k h kL p

h k z z

H z z

let 

 (2.7) 

Therefore, Figure 2.6 can be redrawn as Figure 2.7(a). By the Noble identity for 

interpolation which is shown in Figure 2.8, Figure 2.7(a) can further evolve into 

Figure 2.7(b) and (c). Filters hp[n] in Figure 2.7(c) is called polyphase filters. Let the 

symbol rate before upsampling be 1/T and the length of h[n] be N. Without polyphase 

simplification the computational cost is LN T (computations/sec), while that with 

polyphase structure is N T (computations/sec). Thus we save a factor of L. 
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 Figure 2.7: Evolution of the polyphse filter 

 

↑L H(zL)x[n] y[m] x[n] y[m]↑LH(z)↑L H(zL)x[n] y[m]↑L H(zL)x[n] y[m] x[n] y[m]↑LH(z)x[n] y[m]↑LH(z)
 

Figure 2.8: Noble identity 
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2.3 Receiver Architecture 

The baseband function diagram of the proposed SC-FDE receiver is shown in 

Figure 2.9. The received signal is first down-converted to the baseband. After passing 

through the timing synchronization processing blocks, short preambles are separated 

as a means for frequency synchronization. The payload part is then processed 

blockwise. Each frame is transferred to frequency domain by the FFT block and 

equalized in the frequency domain. To acquire the channel information, long preamble 

is used to do frequency domain channel estimation. After being transformed back to 

the time domain, the phase shift of the equalized data is corrected by the known UW 

structure inserted in data channel to further improve the performance. The detected 

symbol streams are then recovered by a Viterbi decoder. 

Frequency
Synchronization

Frequency
Offset Estimation

FFT

Channel
Estimation

IFFT

Carrier Phase
Offset Compensation

Carrier Phase
Offset Estimation

Timing Synchronization

Frequency Synchronization Channel Equalization

Phase Tracking

Preamble 

Unique Word 

Sampling
Rate

Reduction

Match 
Filter

Packet
Detection

Frequency
Domain Equalization

Slicer Demapper Viterbi
Decoder

Output
Data

Figure 2.9: Receiver architecture of SC-FDE system 
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2.3.1 Timing Synchronization 

2.3.1.1 Packet Detection 

Packet detection is the task of finding an approximate estimate of the start of the 

preamble of an incoming packet. It is the first data-processing block of IEEE 802.11a 

baseband receiver. As such it is the first synchronization algorithm that is performed, 

so the rest of the synchronization process is dependent on good packet detection 

performance. On the other hand, power consumption can also be taken into 

consideration since the packet detection mechanism determines when the block 

behind should start to function. The double sliding window packet detection method 

is used in the thesis. It computes the signal energy over two sliding windows, A and B, 

as shown in Figure 2.10. When the packet starts to enter window A, the energy in A 

gets higher and higher. The basic principle is to form the decision variable mn a ratio 

of total energy contained inside the two windows. The packet detection is declared 

when the value of mn crosses over the threshold value.  

A B

mn

Threshold

A B

mn

Threshold

PacketPacket

 

Figure 2.10: Double sliding window packet detection 

The algorithm is described as 
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In addition to packet detection, finer timing synchronization in a SC-FDE system 

is required to decide where to place the start of the FFT window within one frame. 

Although an SC-FDE system exhibits a guard interval, making it somewhat robust 

against timing offsets, non-optimal symbol timing will cause more inter-symbol 

interference and inter-carrier interference (ICI) in delay spread environments. This 

will result in performance degradation. To eliminate timing offset induced by different 

path delays, fine timing synchronization will be performed after coarse timing 

synchronization. 

2.3.1.2 Match Filter and Symbol Timing Recovery  

After packet detection the received signal is fed through a matched filter and 

re-sampled at the symbol rate. The matched filter is simply an FIR filter with an 

impulse response matched to the transmitted pulse. It aids in timing recovery and 

helps suppress the effects of noise. The goal of symbol-timing recovery is to sample 

message signals at the receiver for best performance. Since upsampling is done at the 

transmitter, oversampling is performed at the analog-to-digital converter (ADC) as 

well to make the design of the filters simpler. Therefore, the received symbol rate 

should be reduced before the signal is sent to the digital processing blocks afterwards. 

Although the symbol rate is typically known to the receiver, the receiver does not 

know when to sample the signal for the best noise performance. One simple method 

for recovering symbol timing is performed using a delay-locked loop (DLL). Figure 

2.11 is a block diagram of the necessary components. [22]-[24] 

Match
Filter

Symbol
Sampler

Offset
Decision

Late Sample

Early Sample

On Time Sample

DLL Block Diagram
decision
statistic

 

Figure 2.11: Block diagram of delay-locked loop 
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The goal of the DLL is to sample the waveform at the peaks in order to obtain 

the best performance in the presence of noise. If it is not sampling at the peaks, we 

say it is sampling too early or too late. The DLL finds peaks without assistance from 

the user. When it begins running, it arbitrarily selects a sample, called the on-time 

sample, from the matched filter output. The sample from the time-index one greater 

than that of the on-time sample is the late sample, and the sample from the time-index 

one less than that of the on-time sample is the early sample. The early, on-time and 

late samples together form a detection set. Figure 2.12 shows examples of detection 

sets where the on-time sample comes at a peak, before, and after the peak.  

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value
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(b) (c)  
Figure 2.12: Detection set of delay-locked-loop 

The on-time sample is the output of the DLL and will be used to decide the data 

bit sent. To achieve the best performance in the presence of noise, the DLL must 

adjust the timing of on-time samples to coincide with peaks in the waveform. It does 

this by changing the number of time-indices between on-time samples. Recall that the 

symbol duration is T and the upsample rate at the transmitter is 4. Accordingly, one 

transmitted symbol will occupies 4T in time after upsampling. Therefore, three cases 

are shown below:  
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1. In Figure 2.12(a), the on-time sample is already at the peak, and the receiver 

knows that peaks are spaced by 4T. If it then takes the next on-time sample 4T 

samples after this on-time sample, it will be at another peak.  

2. In Figure 2.12(b), the on-time sample is too early. Taking an on-time sample 

4T samples later will be too early for the next peak. To move closer to the next 

peak, the next on-time sample is taken 4T + T = 5T samples after the current 

on-time sample.  

3. In Figure 2.12(c), the on-time sample is too late. Taking an on-time sample 4T 

samples later will be too late for the next peak. To move closer to the next 

peak, the next on-time sample is taken 4T - T =3T samples after the current 

on-time sample. 

The input to the offset decision block in Figure 2.11 is called the decision 

statistic. When the decision statistic is positive, the on-time sample is too early; when 

it is zero, the on-time sample is at a peak, and when it is negative, the on-time sample 

is too late. The offset decision block could adjust the time at which the next on-time 

sample is taken based on the decision statistic. However, in the presence of noise, the 

decision statistic becomes a less reliable indicator. In this thesis, a modified DLL 

algorithm is proposed. Figure 2.13 shows a real case of the beginning of a received 

oversampled waveform, derived at the output of the match filter. From the packet 

structure discussed in Section 2.2.4, we know that this is the beginning part of short 

preambles. Since the amplitude of preamble symbol is known at the receiver, through 

simulation we know that the correct sample points of the oversampled waveform 

should be the ones circled as shown, with amplitude around 2 in our case.  
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The amplitude of the ideal 
sampling point is 
approximately 2 

The amplitude of the ideal 
sampling point is 
approximately 2 

 
Figure 2.13: Oversampled waveform with the correct sample points 

Therefore, if the detection set is chosen such that the on-time sample is “too far 

away” from the correct sample, the modified DLL algorithm will not let current 

on-time sample be the output, but shift the detection set by one symbol to make the 

new on-time sample be “closer to” the nearest correct sample and be the new output, 

as shown in Figure 2.14. The direction that the detection set is shifted is determined 

by the decision statistics as mention above. A full algorithm flow chart is shown in 

Figure 2.15. 
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Figure 2.14: Original and new detection set in proposed DLL algorithm
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Figure 2.15: Proposed DLL algorithm Flow
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2.3.2 Frequency Synchronizer  

The purpose of frequency synchronization is to correct the frequency offset, 

which is caused by the difference of oscillator frequencies at the transmitter and the 

receiver and may degrade the system performance [25]. Therefore, we try to estimate 

the frequency offset and compensate the received signals.  

Assuming that the absolute value of the frequency offset does not exceed 1
2 dDT

, 

where D is the delay between the identical samples of the two symbols; Td denotes 

the sampling period. To derive the estimated frequency offset, an intermediate 

variable z is defined as: 

 
1

*

0

L

n n D
n

z r r
−

+
=

= ∑  (2.8) 

where rn is one of the two identical symbols, and L is the symbol length. After a series 

of derivation, the estimated frequency offset f̂  can be shown by  

 
2 d

zf
DTπ

Δ = −  (2.9) 

where z  can be computed by an arc tangent of the summation of conjugate 

multiplications between these two identical symbols. To do the above task, the 

preamble channel becomes the most proper candidate. 

The 802.11a standard specifies a maximum oscillator error of 20 ppm; therefore 

the total maximum error is 40 ppm. Supposing that the carrier frequency is 5.3 GHz, 

the maximum possible frequency error is about 212 kHz. Owing to the inherent 

structures of short preamble and long preamble, the maximum unambiguous estimated 

frequency offset is 625 kHz for short preamble and 156.25 kHz for long preamble. 

Therefore, both short preamble and long preamble are required to estimate frequency 

offset so as to cover the probable frequency offset specified by the standard. In our 

thesis we use short preamble as a means to estimate the frequency offset.  



 

  22

2.3.3 Channel Estimator  

Unlike conventional time domain equalization that uses one or more transversal 

filters taps with the number of data symbols spanned by the multipath, Frequency 

domain equalization has been shown to be an attractive solution for frequency 

selective channels in a single carrier system. Compared to the time-domain 

equalization, FDE outperforms the conventional time-domain equalization when the 

channel is highly dispersive, and it requires less complexity than maximum likelihood 

sequence estimation (MLSE) by using fast Fourier transform. The main task of the 

frequency domain equalizer is to eliminate inter-symbol interference within the 

individual frames. As long as the guard interval with duration TG is longer than the 

channel impulse response (with duration Th), there is no interference between the 

information symbols of successive frames. 

The channel can be estimated using the known training symbols within the 

preamble. In our system, owing to the same symbol structure as data symbols, long 

preamble becomes the best candidate for performing this job. Let ,i kR and kX  denote 

the frequency response of the i-th received long preamble and the original long 

preamble, the estimated channel frequency response is then derived by: 
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 (2.10) 

Let Dk be the frequency response of received data symbol, the ZF channel 

equalization can be shown as: 

 k
K

k

DS
H

=  (2.11) 

where KS  denotes the frequency response of the recovered data symbol. 



 

  23

2.3.4 Phase Estimator  

The processing of the preamble takes care of the initial synchronization of the 

SC-FDE receiver. However, there will always be some remaining phase offset after 

the initial preamble based carrier frequency synchronization, varying during the 

reception of the packet, making solely initial frequency synchronization insufficient. 

Furthermore, the system will experience phase noise produced by the combination of 

the RF oscillator and the phase-locked loop (PLL). In OFDM systems this residual 

offset causes inter-carrier interferences and a rotation of the constellation. In SC-FDE 

systems this residual offset also causes a rotation of the whole constellation from one 

received frame to the another, but instead of inter-carrier interferences, which cause a 

random spreading of the constellation points, the constellation points of the individual 

symbols experience a 1-D spreading along a circle (in the case of perfect timing 

synchronization). Figure 2.16 shows the constellation diagram of one equalized frame 

(48 data symbols, 16 UW symbols) in the QPSK mode in the presence of residual 

phase offset. It is, therefore, necessary to estimate and correct the rotation of the 

received constellation points. 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Constellation with residual CFO

Real

Im
ag

UW

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Constellation with residual CFO

Real

Im
ag

UWUW

 
Figure 2.16: Constellation diagram of one equalized frame 
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 The phase rotation from one frame to the next one caused by a residual CFO 

fΔ  is 2 FFTfTπΔ , and the phase rotation from one individual symbol to the other is 

2 fTπΔ . In the classical cyclic prefix approach (as used in OFDM, and in earlier 

SC-FDE proposals [10]), the guard interval is formed by data symbols, and the cyclic 

prefix is not processed any longer at the receiver. One major advantage of the UW 

approach is the fact, that the guard interval is part of the FFT-window and is therefore 

equalized together with the information symbols. Therefore the equalized 

UW-symbols can effectively be used for different synchronization tasks. 

The mean rotation phase of the constellation diagram caused by a residual CFO 

fΔ  accumulates linearly from one frame to another. If the phase of the first frame is 

1Θ  then the phase of the n-th block is given by 1 ( 1)n nnΘ = Θ + − ΔΘ  

with 2n FFTfTπΔΘ = Δ . The straightforward approach to track the phase is to use an 

average of 16 Unique Word phase errors, and to de-rotate the constellation by the 

estimated phase. However, due to the fact that the UW-symbols are positioned at the 

end of a frame, they experience a larger phase rotation than the data symbols. 

Fortunately, according to the linearly-accumulated phase error properties mentioned 

above, it is possible to linearly de-spread the constellation points using an individual 

de-rotation once we derive the known average Unique Word phase errors [14]. 

The phase tracking algorithm is summarized in Table 2.2, and the phase 

compensation result will be given in the MATLAB floating point verification part in 

Chapter 4. 

Table 2-2: Proposed phase tracking algorithm 
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2.3.5 Viterbi Decoder  

Decoding of convolutional codes is most often performed by the Viterbi decoder, 

which is an efficient way to obtain the optimal maximum likelihood estimate of the 

encoded sequence [26][27]. Viterbi decoder can be further divided into hard-decision 

and soft-decision decoding, where hard-decision is adopted in out system. According 

to the design of the convolutional encoder in transmitter, we can derive the state 

transition table in Table 2.3 and then further illustrate the trellis diagram as shown in 

Figure 2.17 and Figure 2.18.  

The Viterbi algorithm is a recursive sequential minimization algorithm that can 

be used to find the least expensive way to route symbols from one edge of a state 

diagram to another. To do this, the algorithm uses a cost analysis mechanism to 

calculate the distance between the received symbol and the symbol associated to that 

edge. The distance between the received symbol s and the symbol associated to that 

edge in the state diagram is often referred to as the branch metric. If BM [i, j](s), is 

the metric of the branch from state i to state j, the problem is finding the path for 

which the metric, i.e. the sum of the branch metrics of the path edges, is at a minimum. 

The Viterbi algorithm solves this problem by applying the following recursive 

equation for each state transition 

 ( ) [ ]( )  min   [ ]( -1)   [ ,  ]( )PM j t PM i t BM i j s= +  (2.12) 

where PM [j](t) is the path metric associated to the (minimum cost path leading to) 

state j at time t. At the end of the decoding, it is possible to reconstruct the maximum 

likelihood sequence through a trace back starting from the possible decoder states. 

Normally for decoders using non-punctured codes, the trace back depth equals 

five-times constraint length, which is sufficient to decode the correct output in the 

presence of noise. In our system, constraint length equals 5; therefore an appropriate 

trace back depth is 25. 
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Table 2-3: State transition table 

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15
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Figure 2.17: Trellis diagram part 1 
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Figure 2.18: Trellis diagram part 2 

2.4 Summary  

In this chapter, we introduce the SC-FDE system, and propose our system 

architecture including the transmitter and receiver. At the transmitter, convolutional 

encoder, mapper, UW generator, preamble channel generator, the polyphase filter 

design of upsampler and root-raised cosine filter are gone through. At the receiver, 

timing synchronization is first mentioned, which consists of packet detection, match 

filtering and symbol timing recovery. Frequency synchronization and channel 

estimation then follow, and phase estimation is proposed. Finally, de-mapper, and 

Viterbi decoder are described in the rest part of the receiver. In this chapter we 

highlight the two algorithms proposed: the modified delay-locked-loop algorithm for 

timing recovery and the UW-based phase tracking algorithm implemented on the 

system as an independent section to give a detailed introduction. More experimental 

results and performance analysis will be given in Chapter 4. 
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Chapter 3  
 
SC-FDE System Platforms 
 

In Chapter 3, we will introduce our self-designed platform as the development 

environment. The platform is used to perform the verification of whole SC-FDE 

system including baseband and RF parts, where transmitter and receiver are 

implemented on two separated boards with their own RF modules each. The 

self-designed platform is closer to a real wireless communication system and therefore 

can take all phenomena and effects of the wireless system into account. In the 

following sections, hardware modules, hardware description language, software 

design flows, and the corresponding debugging tools of our platforms are detailed 

explained. 

3.1 Self-designed Platform  

In order to approach a real wireless communication system, the multi- 

synchronous and high-speed bus FPGA design, combined with our module-based RF, 

AD/DA, and MAC/BB hardware system, becomes the best solution. Our laboratory 

has finished and successfully tested RF, AD/DA and MAC/BB boards. The 

development environment is shown in Figure 3.1, and the close-up shot of main board 

is shown in Figure 3.2, where four Xilinx Virtex II 6000 FPGAs are mounted in 

MAC/BB board, and each MAC/BB board is able to connect with at most two AD/DA 

and two RF modules. 
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In order to avoid the interference between high speed digital bus, those layouts 

and interconnections of different modules shall be handled very carefully. Our 

measurements show that directly connected modules did achieve feasible solution 

which reduces the risk of facing interconnection problems. Further analysis and 

evaluation during development are given in the following sections. 

 

Figure 3.1: Development environment of self-designed platform 

 
Figure 3.2: Main board of self-designed platform 
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3.1.1 RF Module 

The RF module, as shown in Figure 3.3 consists of MAX2828, which is 

specifically designed for single-band IEEE 802.11a applications covering world-band 

frequencies of 4.9 GHz to 5.875 GHz. MAX2828 includes all circuitry required to 

implement the RF transceiver function, providing a fully integrated receive path, 

transmit path, voltage-controlled oscillator (VCO), frequency synthesizer, and 

baseband control interface. Only the RF switches, RF bandpass filters (BPF), RF 

baluns, and a small number of passive components are required to form the complete 

RF front-end solution. Because the balance of I/Q signals will impact on the 

waveform of RF output, the RLC components had been fine tuned. Besides, we also 

tested the frequency accuracy and power level of transmitted carriers in our interested 

band from 5.15 GHz to 5.875 GHz. One of those measurements is shown in Figure 

3.4; the power level shall be further improved with fine tuning of matching circuits. 

We used 3-wires (Clock, Data and Latch) to control the RF module from PC currently, 

and then the control mechanism will be integrated into MAC/BB after verification. In 

sum, MAX2828 completely eliminates the need for external SAW filters by 

implementing on-chip monolithic filters for both the receiver and transmitter. The 

baseband filtering and the Rx/Tx signal paths are optimized to meet the IEEE 802.11a 

and 802.11g standards. It is also suitable for the full range of the corresponding 

802.11a/g OFDM data rates (6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 

48Mbps, and 54Mbps) and 802.11g QPSK data rates (1Mbps, 2Mbps, 5.5Mbps, and 

11Mbps), at the required sensitivity levels.  
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Figure 3.3: RF module on self-designed platform 
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3.1.2 AD and DA Modules  

The AD/DA module, as shown in Figure 3.5, consists of ADS2807 and 

DAC2900. The ADS2807 is a dual, high-speed, high dynamic range, 12-bit pipelined 

Analog-to-Digital Converter (ADC). This converter includes a high-bandwidth 

track-and-hold that gives excellent spurious performance up to and beyond the 

Nyquist rate. The measured timing diagram is shown in Figure 3.6, which indicates 

the valid data during the high clock period. In addition, it is recommended that data 

hold time is 3.5 ns for saving data from bus to Static random access memory (SRAM), 

which had been verified on our AD/DA boards too. The differential nature of this 

track-and-hold and ADC circuitry minimizes even-order harmonics and gives 

excellent common-mode noise immunity. The track-and-hold can also be operated 

single-ended. Besides, it provides for setting the full-scale range of the converter 

without any external reference circuitry. The internal reference can be disabled 

allowing low-drive, external references to be used for improved tracking in 

multichannel systems.  

The DAC2900 is a monolithic, 10-bit, dual-channel, high-speed 

Digital-to-Analog Converter (DAC), and is optimized to provide high dynamic 

performance while dissipating only 310mW on a +5V single supply. Operating with 

high update rates of up to 125MSPS, the DAC2900 offers exceptional dynamic 

performance, and enables the generation of very-high output frequencies suitable for 

"Direct IF" applications. The DAC2900 has been optimized for communications 

applications in which separate I and Q data are processed while maintaining tight gain 

and offset matching. Each DAC has a high impedance differential current output, 

suitable for single-ended or differential analog output configurations. In addition, the 

DAC2900 combines high dynamic performance with a high throughput rate to create 

a cost effective solution for a wide variety of waveform synthesis applications. 
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Figure 3.5: AD/DA module on self-designed platform 
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Figure 3.6: Measured data waveform from AD/DA module 

 

3.1.3 MAC/BB Platform  

The MAC/BB is an FPGA-based module which is composed of four Xilinx 

Virtex-II 6000 modules, as shown in Figure 3.7. Recently, the demand for more 

complex programmable hardware is constantly growing to meet the formidable 
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industry requirement. The major categories of programmable hardware are 

programmable logic device (PLD) and FPGA. A PLD consists of micro-cells and a 

central inter-connection logic. Typical PLD applications are “glue logic” for 

connecting other ASICs. On the other hand, FPGAs consist of even more complex 

logic block on one chip. Typical applications are central control units (CPU) and 

DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules to 

realize our communication system. Generally, FPGA can be categorized into three 

types by its structure: 

1. Look-up-table (LUT): Xilinx, Altera, AT&T 

2. Multiplexer: Actel, Quicklogic 

3. Transistor array: Cross point 

If we focus on its programming architecture, there are two major types: 

1. SRAM: Xilinx, Altera, AT&T, Atmel 

2. Anti-fuse: Actel, Cypress, Quicklogic 

SRAM type has a merit of being able to program repeatedly while Anti-fuse type has 

the feature of one time programmable (OTP). Anti-fuse type can offer security for 

design but cannot be modified further. 

Compared to ASIC, FPGA has lower performance apparently, especially on 

power consumption and maximum supportable speed. However, as the technique of 

semiconductor industry grows, FPGA becomes more and more competitive to ASIC. 

Actually, FPGA has more integration ability and flexibility than ASIC, and 

undoubtedly, is the best candidate component for a fast-prototyping system. On the 

other hand, more and more DSP systems are implemented using FPGA rather than 

DSP processors, since when sample rates grow above a few Mhz, a DSP has to work 

very hard to transfer the data without any loss. An FPGA on the other hand dedicates 

logic for receiving the data, so can maintain high rates of I/O, Therefore, a high speed 

environment especially combined with rigid, repetitive tasks suits the FPGA. It 

outperforms conventional DSP processors on a board-for-board comparison, resulting 

in significant improvements in processing speed, size, weight, power, and costs.  
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On our MAC/BB platform, an FPGA-based module which is composed of four 

Xilinx Virtex-II 6000 modules, where each of them combines a wide variety of 

flexible features and a large range of densities up to 6 million system gates, enhancing 

programmable logic design capabilities and is a powerful alternative to 

mask-programmed gates arrays. With its advantages of very fast data rate, it can 

achieve full duplex and real time operating for wireless communication. The VHDL 

codes had been used to drive LEDs by differential clock rate from oscillator to verify 

its functionality. 

 
Figure 3.7: MAC/BB platform 

3.1.4 USB Interface  

In order to have a convenient input for the audio/video signal in the future, USB 

interface was designed into the platform, which is shown in Figure 3.8. It will comply 

with the USB specification revision 1.1, and be upgraded to USB 2.0 if necessary. The 

compatibility test is conducted with compliance software run at PC equipped with PCI 

to UTMI compliant interface card during test stage. This will make sure we can easily 

connect our platform with any signal source with USB port. The built-in USB 

interface codes for FPGA was defined and implemented. 
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Figure 3.8: USB module on self-designed platform 

3.2 Benefits of using VHDL  

 In our thesis we use VHDL (Very High Speed Integrated Circuit Hardware 
Description Language) as our hardware description language, since it has the 
following advantages:  

(1) Executable specification 

It is often reported that a large number of DSP designs meet their 

specifications first time, but fail to work when plugged into a system. 

VHDL allows this issue to be addressed in two ways: A VHDL specification 

can be executed in order to achieve a high level of confidence in its 

correctness before commencing design, and may simulate one to two orders 

of magnitude faster than a gate level description.  

A VHDL specification for a part can form the basis for a simulation 

model to verify the operation of the part in the wider system context (e.g. 

printed circuit board simulation). This depends on how accurately the 

specification handles aspects such as timing and initialization. Behavioral 

simulation can reduce design time by allowing design problems to be 

detected early on, avoiding the need to rework designs at gate level. Besides, 
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it also permits design optimization by exploring alternative architectures, 

resulting in better designs. 

(2) Portability between tools 

VHDL descriptions of hardware design and test benches are portable 

between design tools, and portable between design centers and project 

partners. One can safely invest in VHDL modeling effort and training, 

knowing that he will not be tied in to a single tool vendor, but will be free to 

preserve the investment across tools and platforms. Also, the design 

automation tool vendors are themselves making a large investment in 

VHDL, ensuring a continuing supply of state-of-the-art VHDL tools. 

(3) Technology independent design 

VHDL permits technology independent design through support for top 

down design and logic synthesis. To move a design to a new technology one 

need not start from scratch or reverse-engineer a specification - instead one 

can go back up the design tree to a behavioral VHDL description, then 

implement that in the new technology knowing that the correct functionality 

will be preserved. 

3.3 FPGA Design Flow 

In our design, we choose Xilinx ISE 6.3 and Synplify Pro 8.2 as the development 

tool for the first half of the design flow. Figure 3.9 is the main system design flow 

with FPGA and later we will give more information about the flow. 
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Figure 3.9: FPGA design flow 

(1) Design Entry 

In general, EDA tools are required to develop register transfer level (RTL) 

codes by appropriate methodologies. In Xilinx ISE 6.3, it supports three 

methods: HDL (hardware description language) Editor, Schematic Flow, and 

FSM (finite state machine) Editor. HDL Editor allows us to edit source files 

directly like VHDL [28]-[30] and Verilog [31]-[32], which are the most 

common HDLs in use today. Schematic Flow is another choice to create our 

source files by drawing the scheme with underlying HDL macros. FSM Editor 

allows us to edit by timing state diagram, which is suitable for realization 

controller, such as memory access controller. 

(2) Synthesis 

After completing editing RTL source files, we need to translate them into 

gate level called netlist files, which only contains information of logic gates 

and inter-connections. We choose to use Synplify Pro 8.2 for synthesis. 

(3) Simulation 

Design verification is an important aspect of each project design. Before 

implementing our circuit in the target device, it is a good idea to simulate and 
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verify the circuit. The most common verifications are functional simulation 

and timing simulation. 

A. Functional Simulation 

Functional simulation can be done after the schematic has been 

entered or a HDL file has been created and synthesized. Functional 

simulation gives information about the logic operation of the circuit, but it 

does not provide any information about timing delays. 

B. Timing Simulation 

The timing simulation will give us detailed information about the time it 

takes for a signal to pass from one gate to the other (gate delay) and gives 

information on the circuit’s worst-case conditions. The total delay of a 

complete circuit will depend on the number of gates the signal sees and on the 

way the gates have been placed in the FPGA. One of the most popular 

simulation tools is ModelSim, which is completely integrated into Xilinx ISE 

6.3, and can perform functional simulation and timing simulation very well. 

Thus, we choose ModelSim SE 6.1e as the simulation tool in our design flow. 

(4) Implementation 

The implementation is typically done after the design has been verified by 

functional simulation. The implementation tools will translate the netlist 

(schematic, HDL), place and route the design in the target device and generate 

a bitstream that can be downloaded into the device.  

(5) Download to FPGA 

After the process of implementation, we can download our design into 

hardware platform. To verify that signals are really working properly in circuit, 

we can use the logic analyzer (LA) to debug. Once the result does not match 

what we expect, we need to come back to modify our design and go through 

the whole design flow again. That is to say, iterative tests are required until we 

obtain the results we want.  
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3.4 Debugging Tools 

As an old saying goes, “What is a workman without his tools.” In our 

self-designed platform, we do have some useful tools for debugging as follows.  

1. Logic Analyzer:  

We use Agilent 16702B LA to perform the major task of debugging. 

There are two modules installed on it. One is 16522A Pattern Generator 

Module, and the other is 16711A Measurement Module. The former is mainly 

used for generating desired signals, such as the reset signal or some selection 

signals for model selection; the latter is used for probing signals in FPGA on 

the self-designed platform. 

2. Oscilloscope:  

It is usually used when transmitted signals are prepared by FPGA and 

sent to the DA module by specific cables. Therefore, we can verify the 

waveform shown in the oscilloscope. For our system we may expect to see 

the waveform containing preambles in the form of square wave in the head 

part and data symbols appended with UW follow behind those preambles. 

3. Spectrum Analyzer:  

Agilent PSA Series Spectrum Analyzer E4443A is chosen. It offers 

high-performance spectrum analysis up to 6.7 GHz and beyond with 

swept-tuned measurements with digital Resolution-BandWidths (RBW) 

filters. In our debugging flow, E4443A capture the transmitted 5.2GHz 

signals, down convert them to 70MHz intermediate frequency (IF), and then 

fed out to vector signal analyzer to perform advanced analysis. Its block 

diagram is shown in Figure 3.10. 

4. Vector Signal Analyzer:  

Instead of swept-tuned measurements, vector signal analyzer 89600S 

performs FFT measurements with digital FFT filters, which can measure all 
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signal characteristics (i.e. phase) and avoid very long sweeps times required 

for narrow RBW. Figure 3.11 shows the block diagram of vector signal 

analyzer, notice that it is PC-based and therefore machines only capture the 

RF signal accurately and feeds to PC, where final analysis are performed on 

PC.  

 

 

Figure 3.10: Spectrum analyzer block diagram 

 

 
Figure 3.11: Vector signal analyzer block diagram 
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3.5 Summary  

In this chapter, we introduce our self-designed platform used to perform the final 

verification of whole SC-FDE system. The platform equipped with FPGA, USB, and 

AD/DA modules as well as the RF modules by which realistic wireless channel 

characteristics can be generated. In addition, hardware description language and 

software design flows as well as corresponding debugging tools are mentioned; in 

particular the logic analyzer and oscilloscope are used to measure baseband signals, 

and spectrum analyzer and vector signal analyzer are used to capture and analyze RF 

signals. 
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Chapter 4  
 
SC-FDE System Realization 
 

The SC-FDE system is implemented on the FPGA-based hardware introduced in 

Chapter 3. This chapter is the major part of this thesis, which is organized as follows. 

In the first subsection, a complete design flow is proposed. Then the MATLAB 

verification is given, and algorithms proposed in Chapter 2 are demonstrated and the 

system performance of SC-FDE system is shown and compared with the OFDM 

system. In addition, the circuit design of the system on FPGA is detailed, and finally, 

the ModelSim simulation and experimental results will be presented, where the 

principles and concepts of circuit design on FPGA will specially be emphasized. 

4.1 Design Flow 

Digital Signal Processing (DSP) design has traditionally been divided into two 

types of activities — systems/algorithm development and hardware/software 

implementation. The majority of DSP system designers and algorithm developers use 

the MATLAB language for prototyping their DSP algorithm. Hardware designers take 

the specifications created by the DSP engineers and create a physical implementation 

of the DSP design by creating a register transfer level (RTL) model in a hardware 

description language (HDL) such as VHDL and Verilog. Our SC-FDE system can be 

regarded as a DSP system, and Figure 4.1 shows the design flow we adopt. 
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First, we have to program a floating-point MATLAB code in order to verify the 

algorithms mentioned in Chapter 2 as well as evaluate the system performance. Then, 

the floating-point MATLAB code is required to be manually converted into the 

fixed-point MATLAB code. Subsequently, RTL model is established, where we 

choose VHDL as our hardware description language and Xilinx ISE 6.3 as our 

development tool. Next, this RTL implementation is simulated by ModelSim SE 6.1e 

and synthesized onto a netlist of gates using Synplify Pro 8.2. Finally, the netlist of 

gates is placed and routed onto Xilinx FPGAs using Xilinx ISE 6.3. The detailed 

design flow will be discussed in the following sections 
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Figure 4.1: FPGA design flow 

4.2 MATLAB Verification  

 As developing a communication system, MATLAB is one of the best candidates 

for us to model and simulate the system by means of its powerful matrix computation 

ability and well-defined communication functions. MATLAB matrix functions are 

shown to be versatile in doing analysis of data obtained in filter design or 

communication theory experiments. In addition, the interactive programming and 
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graphics of MATLAB also make designers easily illustrate the system performance 

with the effects of simulated channel and quantization error and so on. Therefore, in 

this section, the function blocks and adopted algorithms mentioned in Chapter 2 will 

be verified first, and then the whole system will be constructed and the system 

performance will be expressed. 

1. RRC: 

    In our system, a 33-tap root raised cosine filter with roll off factor 

β=0.25 is designed, and its impulse response and frequency response is 

shown in Figure 4.2. In our system, the sampling rate is 40 MHz, which 

means that the data spectrum passes through the RRC pulse shaping filter 

cannot span wider than 20 MHz according to Nyquist sampling theorem. It 

can be clearly observed in the frequency response that signals with frequency 

higher than approximately 14 MHz are filtered, so that the waveform in time 

domain will become much smoother, and therefore can effectively combat the 

aliasing in AD/DA conversion and the ISI problem. Figure 4.3 shows the 

waveforms before and after RRC pulse shaping. Waveform in part (a) is the 

BPSK modulated short preamble. After the pulse shaping in transmitter side 

RRC, the smoother waveform will look like part (b). Next the waveform 

passing through RRC in the receiver side is shown in part (c). Finally, the eye 

diagram after RRC shaping is illustrated in Figure 4.4.  
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Figure 4.2: Impulse and frequency response of RRC filter with β=0.25 
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Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter 
(c) RRC shaped waveform on receiver 

 
Figure 4.4: Eye diagram of RRC shaped waveform 

2. Symbol timing recovery: 

    As we have mentioned in Section 2.3.1.2, a modified delay-lock-loop 

algorithm is adopted in our system. Here we pass our transmitted signal 

through a Rayleigh fading, multipath channel, and then process the post-RRC 

received signal by symbol timing recovery block. The waveform derived at 

the output of RRC is shown in Figure 4.5(a), while the waveform derived at 

the output of delay-lock-loop is shown in Figure 4.5(b). Compared with the 
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original short preamble pattern at the beginning of a packet, which is shown 

in Figure 4.5 (c), we can see that (b) and (c) are almost the same, except that 

the amplitude of (b) is not as constant as (c) due to the effect of multipath 

delay. Therefore, we have shown that the proposed symbol timing recovery 

algorithm not only performs the task of symbol rate reduction, but also take 

the correct sampling points precisely.  

 

Figure 4.5: (a) Received oversampling waveform  
(b) DLL selected samples on receiver (c) Original samples on transmitter 

3. Channel estimation: 

    The channel estimation result is shown in Figure 4.6, where the above 

one is the real channel frequency response, and another one is the estimated 

channel frequency response. We can see these two curves are almost the same 

though the long preamble channel estimation method. 
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Figure 4.6: Real and estimated channel frequency response 

4. Phase Tracking  

    The result of phase tracking algorithm proposed in Section 2.3.4 is 

shown as below. Figure 4.7(a) is the constellation with phase offset, and one 

can clearly identify the rotation caused by the residual carrier frequency offset. 

With the algorithm proposed, the constellation of the corrected frame is 

shown in Figure 4.7(b). We show that simple Unique Word based phase 

tracking algorithm provides almost optimum correction ability. On the other 

hand, the proposed algorithm involving symbol-by-symbol correction of 

linearly accumulated phase error is somewhat complicated for hardware 

implementation. For lower order modulation such as BPSK or QPSK that 

used in our system, to correct the constellation requires only that the 

constellation of each symbol falls in correct quadrant. Therefore, if we 

de-rotate the received symbols in one frame by the constant 
( )- /(2 - )n FFT G FFT Gj T T T Te ΔΘ − instead of - 2 /(2 - )n FFT Gj kT T Te ΔΘ , which is proposed in the 

phase tracking algorithm, the result is shown in Figure 4.7(c). This result, 

however, is enough for the slicer to determine the threshold for QPSK 

modulation, and the complexity to implement the algorithm is much lowered 

as well.   
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Figure 4.7: (a) One equalized block in the presence of residual CFO 
(b) One equalized block after the proposed phase tracking algorithm 

(c) One equalized block after the lower-complexity phase tracking algorithm 

5. System Performance:  

    The BER to SNR system performance is shown in Figure 4.8, where a 

Rayleigh fading channel with AWGN noise is generated, and the total path 

number is three, including one main path and three multipaths. We can see 

that the performance of SC-FDE system and OFDM system is comparably the 

same. Besides, performance of OFDM in frequency selective fading is 

sensitive to the strength of its forward error correction (FEC) code, since the 

FEC code used by OFDM receivers must be powerful enough that its 

correction capability is not overwhelmed by the random occurrence of low 

SNR bits sampled from subchannels lying in frequency selective null regions. 

Therefore, performance of OFDM is a little bit inferior to that of the SC-FDE.  
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Figure 4.8: System performance of SC-FDE and OFDM 

4.3 FPGA Realization  

With the introduction of advanced FPGA architectures which provide built-in 

DSP support such as embedded multipliers and block RAMs on the Xilinx Virtex-II, a 

new hardware alternative is available for designers who can get even higher levels of 

performances than those achievable on general purpose DSP processors. 

In our implementation, we adopt Xilinx Virtex-II series as our FPFA and VHDL 

as our hardware description language. The programming concepts that deserved to be 

mentioned in high level language like MATLAB and in hardware description 

language like VHDL are quite different. In general, high level language keeps its 

temporary data in a form of variables, and simply assigns the stored variable to 

another one which is used to be the input of next stage or functions if necessary, 

whereas hardware description language may need extra data buffer and related 

components to perform the same task. Since we have no choice but to add RAMs, 

FIFOs or register as data buffers, some index-related jobs or adding cyclic prefix or 

UW can be performed in the same time. The following sections will give readers more 

concepts and clear description about how we design in FPGA.  
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4.3.1 Design Principles 

1. Parallel processing:  

One of the biggest advantages of FPGA is its ability to support any level 

of parallelism. Complicated calculations can be divided into several simple 

operations and executed parallelly to enhance data throughput. The proposed 

phase tracking algorithm is a good example of parallel processing. Since each 

received symbol should be correct by two kinds of phase offset - the 

accumulated phase offset and the new phase offset generated in each symbol, 

the accumulated phase offset can then be corrected at the same time as the 

new phase offset is calculated by the Unique Word. The generally used 

function block, FIR filter, is another good example of parallel processing. An 

FIR filter consists of many multiply-and-accumulate operations so that and it 

is time-consuming if there is only a single, fixed multiply-and-accumulate 

used. To shorten the processing time, sufficient multiply-and-accumulate units 

are always utilized. There are other blocks utilizing parallel processing 

technique in this thesis which will be detailed later. By doing so, lot of buffer 

size can be saved and the area can be greatly reduced.  

2. Resource Reuse: 

    The advantage of resource reusing is apparent but important. Obviously, 

if blocks in the design can be reused without affecting the result, the area of 

the design will be greatly saved. One of the resource reusing examples in our 

design is RAMs and ROMs. Since RAMs and ROMs are widely used and 

often occupy most of the area, reusing them will definitely save an 

appreciable resources. Another example in our design is to reuse certain large 

operation units such as multipliers and dividers, whose sizes grow with the 

width of the operands. Reusing those operation units will save a sizable area 

as well.   
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3. Independent Block Design:  

A system is composed of lots of function blocks, and each block 

executes different functions. On designing we may sometimes modify certain 

blocks to achieve better performance or faster speed. It is therefore significant 

to design each block independently so that when particular blocks are updated, 

the functionalities of the whole system will not be affected. In our design, 

there is a pair of pins at every block call rdy_in and rdy_out which are used to 

“turn on” and “turn off” the block. With this design, every block is 

functioning independently and the designers can have a great freedom to 

modify the blocks or substitute the outdated blocks with the latest ones, 

without caring about adding delays and so forth.   

4. Using FIFOs as Buffers Enables Pipelining: 

Sometimes a complicated numerical computation is carried out in a 

block, and thus many summations and multiplications are serially executed in 

a path within a single clock period. Although high speed 

multiply-accumulators are embedded inside Xilinx FPGAs, these operations 

cannot be completely executed in time within a single clock period. Delays 

are often used as a solution to control the data flow between blocks. However, 

instructions in this delay-controlling structure can only be executed serially 

and critical path is long. To solve this problem, FIFO is used as an alternative 

solution. In our design, FIFO is inserted in the path and therefore the whole 

computation will be separate into few sections, each of which can be executed 

parallelly. Therefore using FIFOs enables pipeline processing, and the 

processing delay is greatly reduced.   

5. Substitute real number computation for complex number computation: 

    Inevitably, large amount of complex number computations are included 

in our SC-FDE system. In MATLAB, these complex number computations 

can be easily computed, whereas become inconvenient in VHDL since 

complex number operations cannot be carried our directly in VHDL. Hence, 

in order to deal with complex number computations, the original complex 
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number arithmetic is separated into many real number segments. For example, 

one simple complex number computation, (X+Y)/Z, will become 

(ae+ce+bf+df)/(e2+f2)+(-af-cf+be+de)i/(e2+f2) after the rearrangement, 

where X=a+bi, Y=c+di, Z=e+fi, and a, b, c, d, e, and f are real numbers. 

4.3.2 Circuit Design  

In the following paragraphs, components are roughly divided into transmitter 

components and receiver components, and all circuits follow the principles introduced 

in the previous section. Additionally, every component is hierarchically designed. 

4.3.2.1 Circuit Design of Transmitter  

Figure 4.9 shows the overview of the circuit design of the SC-FDE transmitter. 

All the circuits are synchronized with the system clock, and are initialized by the 

system reset. In our design, one data symbol is generated every 16 system clocks. 

Therefore, no delay is used between any two blocks and all the blocks are 

independently designed by the rdy_in and rdy_out pins as mentioned above. This 

allows users to save a lot of space for delay and tremendously increases the 

performance. We can see that the transmitter design of the SC-FDE system is rather 

simple. Detailed circuit designs of function blocks are described as follows. 
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Figure 4.9: Circuit design of transmitter 
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(1) Convolutional encoder: 

Figure 4.10 shows our circuit design of the convolutional encoder, named 

conv_encoder. Two entities are included in the conv_encoder, which are conv 

and p2s. The entity conv is the core of the convolutional encoder, which is 

responsible for generating coded bit, while p2s is used to serially output the 

three parallelly input coded bits. Both blocks are first initialized by the system 

reset to make sure that all the values at the output pins are set to specific initial 

values. The source data is then fed into the conv through pin din, and three 

coded bits, da, db and dc are generated simultaneously. Each source bit comes 

along with a strobe inputted to rdy_in pin, so that the conv will not function 

unless it is triggered by rdy_in. The same control mechanism is used at p2s. On 

the other hand, since one source bit comes every 16 clocks whereas the p2s 

requires only three clocks to output the three parallelly input data bits, no 

critical path problem will occur. 

conv_encoder
conv p2s

clk
rst

din

rdy_in

da
db
dc

rdy_out

clk
rst

da
db
dc

rdy_in

dout

rdy_out

conv_encoder
conv p2s

clk
rst

din

rdy_in

da
db
dc

rdy_out

clk
rst

da
db
dc

rdy_in

dout

rdy_out

 

Figure 4.10: Circuit design of convolutional encoder 

(2) Mapper / de-mapper: 

The mapper and de-mapper blocks shown in Figure 4.11 and 4.12, 

respectively, are similar except that the data flow directions of the two blocks 

are opposite. In our system, QPSK modulation is adopted, so that coded bits 

are going to be modulated into in-phase and quadrature parts. Therefore, at 

every trigger of rdy_in, the mapper block functions as a switch that maps the 

input bit stream din to d_I and d_Q iteratively. Besides, it also outputs two 

control signals rdy_out_I and rdy_out_Q along with d_I and d_Q, respectively, 

as the trigger sources for the next stage. Note that since one source bit comes 
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every 16 clocks whereas the mapper requires only three clocks to output three 

coded bits, no buffer is required to store any intermediate value. Besides, 

though theoretically the output values of mapper are +1 and -1, we do not 

expand the output width but still use ‘1’ to represent +1 and ‘0’ to represent -1, 

since no arithmetic is required before the root-raised cosine filter. On the other 

hand, the de-mapper functions in a similar way except that the data flow is in 

an opposite direction. Two input data streams, din_I and din_Q, are sent into 

the de-mapper blocks with triggers rdy_in_I and rdy_in_Q, respectively. The 

de-mapper acts as a multiplexer that combines the two input streams into 

output dout.    
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Figure 4.11: Circuit design of mapper 
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Figure 4.12: Circuit design of de-mapper 

(3) Preamble generator: 

As described in Chapter 2, preambles are BPSK modulated and consist of 

ten short preambles and two long preambles. Instead of using a large ROM to 

store the whole preamble symbol pattern with a ROM of depth 

16 10 16 64 2 304× + + × =  symbols, two small ROMs called st_rom and 

ln_rom with depth 16 and 64 are used to store one short preamble pattern and 

one long preamble pattern, respectively. We repeatedly read out short preamble 

ten times and long preamble two times, then preamble channel is generated 
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with a lot of space saved. The preamble generator pmb_gen starts to function 

as soon as system is reset, and its output rate equals to clock rate, which is 

faster than normal data and UW symbol rate. This is because the 304 preamble 

symbols have to be generated as soon as possible since data and UW symbols 

are waiting.  

Once preamble symbols are all sent, the finish pin of pmb_gen will be set 

to 1 as a flag for the multiplexer followed, and the rdy_out pin will also be set 

to 1 to start up the transmission of data and UW symbols. Meanwhile, a block 

called new_pkt is used to count the number of data symbols (excluding UW 

symbols) generated by the trigger of rdy_in from previous mapper block. This 

block is used to determine whether a packet of data symbols have been sent, 

and whether the preamble generator should start to function again. Therefore, 

when new_pkt is triggered for 48 6= 288×  times, it will output a set flag to 

reset the whole system. The preamble generator then starts to generate 

preamble symbols again after the reset.  
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Figure 4.13: Circuit design of preamble generator 

(4) Add the Unique Word to each frame: 

The Unique Word is a known sequence that is added to the guard time 

between two frames as mention in Chapter 2. This operation is done in the 

add_uw_i and add_uw_q blocks, where a little ROM with depth 16 is used to 

store the UW values. To keep the symbol rate of output UW the same as that of 

input data, every UW symbol outputs when one data symbol inputs. Therefore, 

a synchronous FIFO (First-In-First-Out) of depth 16 is used to buffer the first 



 

  57

16 input data symbols when they are waiting for the transmission of UW, and 

these data symbols will first be generated in order as soon as the transmission 

of the 16 UW is finished. Besides, the word length of data symbols and UW 

symbols are extended at the sign_ext block. Since preamble is BPSK 

modulated and its value is set to be +7 and -7, the value of the QPSK 

modulated data symbols is set to be 7 2 4⎢ ⎥± = ±⎣ ⎦  such that the IQ gain of 

preamble and data symbols are approximately the same, which will benefit the 

design of amplifier. Therefore, we extend the word length of data symbol to 4 

bits wide, which is the same as that of preamble symbols, such that both 

preamble and data symbols can share the input pin of RRC filter. 

Another block called pkt_fin is a control flag that counts the number of 

bits that are outputted from this block. Once it counts to (16 48) 6 384+ × = , it 

will send a trigger signal through finish pin to indicate that all the data symbols 

as well as UW symbols are sent, which means that a packet of data symbols 

have been generated. This control signal together with the trigger signal from 

finish pin at preamble generator are used to control the multiplexer. 
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Figure 4.14: Circuit design of Unique Word generator 

(5) Multiplexer 

The multiplexer in our design acts a switch to pass the preamble symbols 

and UW-appended data symbols sequentially. The outputs of selector, dout_I, 

dout_Q, rdy_out_I and rdy_out_Q are initially connected to the corresponding 

preamble input - pmb_I, pmb_Q, pmb_rdy_in_I and pmb_rdy_in_Q, 
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respectively. Once the transmission of preamble symbols is finished and the 

finish flag of the preamble generators are set, the output of the selector will 

switch to the corresponding data symbol input - data_I, data_Q, data_rdy_in_I 

and data_rdy_in_Q, respectively. 

Besides, since there is a root raised cosine filter following the multiplexer 

which requires several clocks to process one input symbol, a FIFO called 

polyphse_buf is used to queue the symbols that are to be processed. Data in 

polyphse_buf will be read out if “the buffer is not empty” and “the filter 

behind is ready for data”. This state is monitored by the polyphse_buf_ctrl 

block. 
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Figure 4.15: Circuit design of multiplexer 

 (6) Upsampler and Root-raised cosine filter : 

In our thesis, the upsampler and root-raised cosine filter are co-designed 

as the polyphase structure as mentioned in Chapter 2. Since the number of taps 

of the RRC filter is 32 and the upsampling rate is 4, we will then have four 

polyphase interpolator filters, each with eight coefficients. Figure 4.16 shows 

the circuit design of the one polyphase interpolator filter. We can see that all 

eight multiply-and-accumulate operations are executed in one clock cycle; 

such parallel processing can maximize data throughput.  
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Figure 4.16: Circuit design of polyphase filter 

4.3.2.2 Circuit Design of Receiver  

Figure 4.17 shows the overview of the circuit design in the receiver. Certainly, a 

pipelined architecture is adopted as in transmitter. The circuit designs of function 

blocks are given as follows. 
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Figure 4.17: Circuit design of receiver side 
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(1) Packet Detection: 

The packet detection block, pkt_det, is an implementation of double sliding 

window packet detection method. The design block diagram is shown in Figure 

4.18. In floating point MATLAB verification, two shift registers with length five 

are used. In realization, only six Delay Flip-Flops (DFF) are used since we 

merely need the accumulation results in the two registers – five of them 

correspond to register A and the other one corresponds to register B in the 

algorithm mentioned in section 2.3.1.1. Received symbols are shifted in the six 

DFFs and at every shift, total power of symbols in register A and register B are 

calculated and the ratio of them is derived. Once the ratio exceeds the specific 

threshold, the switch is triggered and turned on and all the symbols can pass to 

the next stage. Therefore, the pkt_det block plays the role of a power controller 

since all the other blocks behind will not function before a packer is detected.  
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Figure 4.18: Circuit design of double sliding window packet detection method 

(2) Symbol timing recovery (Delay-Locked Loop): 

The dll block composes of three parts. The first and second parts, dll_par 

and dll_algo are truly the implementation of the algorithm. The third part, 

dll_count, is a control block that monitors the output of the whole dll block. In 

dll_par block, every three input symbols are collected as the detection set, and 

three relationships among them are determined: whether the amplitude of the 

on-time symbol is greater than the amplitude of the correct sample, whether the 

difference between the early and late samples are too large, and whether the sign 

of the on-time sample is equal to the sign of the difference between early and late 

samples. Once this information is collected, it is forwarded through pin 
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d2_GT_thr, d3_d1_GT_diff, sign_d2_EQ_d3_d1, to the second block, dll_algo, 

which performs the DLL algorithm, determines which sample in the detection set 

should be the output, and calculates the hop distance to next detection set. On the 

other hand, since tracking process of DLL algorithm is time consuming, the 

dll_count block is used to monitor the number of output symbols from dll_algo 

block to control the lifetime of the tracking. Once twenty consecutive samples 

outputted from dll_algo are on-time samples – the detection sets in twenty 

consecutive tracking processes are at an interval of four samples, we say the 

tracking loop is locked. Therefore, the dll algorithm will no longer be performed 

and all the rest of input symbols are downsampled by 4 directly. The dll_count 

block will monitor this phenomenon and determine when to turn off DLL 

tracking algorithm.  
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Figure 4.19: Circuit design of the delay-locked loop 

(3) Frequency Offset Compensation : 

According to Eq.(2.8) in Chapter 2, frequency offset is estimated by 

identical samples of repeated symbols. In our thesis, frequency offset is 

estimated by short preambles, yet only five short preambles – the third, forth, 

fifth, sixth and seventh ones – are used in the task, so that four times of 

estimation are done. Since four is the second power of two, it is easily to average 

the four estimation results by discarding the two LSB of the summation result 

instead of using a divider. 
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Evolved from Eq.(2.8), let 
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Let y[n] be the data sequence that is to be frequency-offset compensated. The 
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Therefore, the five short preambles used are first separated from the data 

stream and fed into the freq_est block, and the value of sum
4

z
2

 is first 

calculated. Once long preamble symbols and data symbols are coming later, they 

will trigger the freq_est block to output the values of sum
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, where n accumulates according to the number of input symbols 

by counting the number of triggers from count_in. The estimated offset is then 

compensated in the freq_comp block. The full design diagram is shown in 

Figure 4.20. 
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Figure 4.20: Circuit design of the frequency offset compensation block 
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(4) FFT/IFFT :  

Fast Fourier transform (FFT) is a type of discrete Fourier transform (DFT), 

but only faster with fewer computations (summations and multiplications). A 

DFT takes N2 computations to calculate a transform for N points, whereas the 

FFT takes around Nlog2N computations to complete the same thing. Here we 

adopt a 64-tap FFT which is provided by Xilinx and can operate 12-bit 

complex (12-bit real, 12-bit imaginary) samples, and a rough design concept is 

illustrated in Figure 4.21. 

A pipelined implementation of a 64-point FFT requires a simple pipeline 

consisting of 6 butterfly computation modules. This method operates on two 

data points per clock cycle, yielding an effective data rate that is twice the 

clock rate, but requires customized butterfly computation modules for each 

stage of the FFT computation. Since a butterfly computation is carried out, the 

output signal will be in bit-reverse order. 
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Figure 4.21: Circuit design of fast Fourier transform 

(5) Channel estimation and Frequency Domain Equalization: 

Long preambles are used to carry out the major task of channel estimation. 

Conventionally, channel frequency response is first estimated and stored, and 

channel equalization is another story followed. From Eq.(2.10) and Eq.(2.11) 

in Chapter 2, conventional channel estimation and equalization strategy is 

shown in Fig 4.22. It is clear that two division operations are required; besides, 

the equalization cannot be done –the input data symbols have to be buffered – 

until the estimated channel response is derived.  
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Figure 4.22: Conventional channel estimation and equalization strategy 

In this thesis, we combine Eq. (2.10) and (2.11) into Eq.(4.3) as shown 

below, and the new strategy is shown in Fig. 4.23.  
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Obviously, only one division is required now. On the other hand, channel 

estimation and equalization are done parallelly, and data also share the task of 

channel equalization. 
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Figure 4.23: Modified channel estimation and equalization strategy 

We observe that the numerator of Eq.(4.3) is the multiplication of received 

preamble and known transmitted preamble, |Xk|2, while the denominator is that 

of the received data with known XK
*. With this analogue, operations at 

numerator and denominator can be done by sharing one multiplier, which 

complies with the design principle: resources reusing. 
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Figure 4.24 shows the design block of channel equalizer, called ch_EQ. 

The known sequence, |Xk|2 and XK
*, are stored in two ROMs called abs_xk and 

conj_xk in mul_sel block, each with depth 64. The mul_sel block monitors the 

inputs and determines what will the multiplicator and multiplicand to the 

multiplier mult behind be. If input is preamble, the stored XK
* will be sent 

together with the preamble to the multiplier; on the contrary, the data |Xk|2 will 

be sent if the input is data. Finally, the result of multiplication of preamble and 

XK
* will be sent to the half_ch block since it stores the estimation of “half” of 

the channel value in a ROM called half_ch_est with depth 64. When the 

multiplication of data and |Xk|2 is done, its result and the values in half_ch_est 

will be sent together to the divider block and complete the frequency domain 

equalization operation.  
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Figure 4.24 Circuit design of channel equalizer 

(6) Phase offset compensator: 

In Section 2.3.4, we have discussed the phase estimation algorithm. It is 

clear that the phase offset compensation is done in two steps: the compensation 

of the accumulated phase error and the compensation of the phase error inside 

one frame. On the other hand, the accumulated phase error is known at the very 

beginning of one frame, whereas the phase error inside one frame is not known 

until the phase offset estimation is derived by UW at the end of a frame. The 

algorithm then inheres a good nature of parallel processing: when the 

accumulated phase error is being compensated, the phase offset inside one 

frame can be estimated by UW. Figure 4.25 shows the design of phase 

estimator. The input symbols are first divided into data symbols part and UW 

symbols part by the UW_sw. The UW symbols are then used to estimate the 
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phase error inside one frame in the UW_ph_err_est block. Meanwhile, the 

input data symbols are firstly compensated by the accumulated phase offset in 

the acc_ph_err_comp. As the phase offset inside the n-th frame, nΘ , is 

derived, it will be written into a RAM called acc_ph_err in the 

acc_ph_err_comp block, and the data symbols then should be secondly 

rotated by nΘ . In our proposed algorithm, this rotate value 

is ( )2 /(2 - )n FFT GkT T TΔΘ ⋅ , and a simplified algorithm proposed in Section 4.2, 

it is ( ) /(2 - )n FFT G FFT GT T T TΔΘ − . The rotate value can be prepared and 

modified in the rot_val block by the designer. Finally, once the rotate value is 

ready, the data symbols can be further compensated.  
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Figure 4.25 Circuit design of phase offset compensator 

(7) Viterbi decoder: 

The circuit design of the Viterbi decoder is shown in Figure 4.26. Three 

main blocks are included: branch metric generator (BMG); add, compare, and 

select (ACS) block; and the trace back unit (TBU). The BMG unit generates 

the branch metrics for each symbol of the input sequence by comparing the 

received code symbol with the expected code symbol for each connection of 

the trellis (state) and counts the number of different bits. For a 1/3 rate code 

adopted in our system, there are eight possible symbol combinations in the 

encoded sequence: 000, 001, 010, 011, 100, 101, 110, and 111; therefore eight 

BMG units are implemented in BMG block as shown in Figure 4.27. 
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Figure 4.26: Circuit design of Viterbi decoder 
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Figure 4.27: Circuit design of branch metric generator 

The ACS unit is the heart of the Viterbi decoder. Each node in the trellis 

diagram corresponds to an ACS unit in the corresponding Viterbi decoder. 

Therefore, referring to the trellis diagram shown in Figure 2.17, there should 

be totally 16 ACS units in the ACS block as shown in Figure 4.28. The ACS 

unit has 4 inputs (two branch metrics and two path metrics) and two outputs 

(the new path metric and the survivor bit). The survivor bit is the most 

important information generated by the ACS unit. It indicates which sum 

between an input path metric and a branch metric generated the smallest result 

and was selected as the output path metric or local winner. 
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Figure 4.28: Circuit design of add, compare, and select block 

The ACS block assigns the measurement functions to each state, but the 

actual Viterbi decisions on encoder states are based on the trace back operation 

to find the path of the states. Using the trace back operation, every state from a 

current time is followed backwards through its maximum likelihood path. The 

point at which the corrected bit streams starts is called the merger point (also 

called the trace back depth). The performance of Viterbi decoder largely 

depends upon the trace back depth. The increase in trace back depth increases 

the complexity and hardware exponentially so one has to trade off between the 

performance level and the complexity and hardware. 

Normally for decoders using non-punctured codes, the trace back depth 

equals five-times constraint length, which is sufficient to decode the correct 

output in the presence of noise. In our system, the constraint length is 5, 

therefore twenty-five trace back depth is required. We adopt a 16×32 register 

array to store the path of the states.  
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4.4 ModelSim Simulation 

When developing an FPGA system, ModelSim simulation can help designers 

develop in an efficient and accurate way. It can pull out all signals and simulate how 

they work simultaneously without a limitation on the number of debugging pins. 

Therefore, designers can save a lot of time downloading to FPGA and directly 

examine the changes and interactions between signals. Figure 4.29 and 4.30 show the 

data flows at the transmitter and receiver of the SC-FDE system, respectively. The six 

data symbols are conspicuously shown. Besides, from the figures certain design 

principles such as parallel processing is observed. In Figure 4.31 the output waveform 

of the transmitter is enlarged to show the real transmitted baseband signal. The IEEE 

802.11a like output waveform with ten short preambles, two long preambles and six 

UW-appended SC-FDE data frames is clearly demonstrated, where the preamble part 

is BPSK modulated. 

PreamblePreamble

Data FrameData Frame

 

Figure 4.29: SC-FDE transmitter ModelSim simulation result 
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ParallelismParallelism

Figure 4.30: SC-FDE receiver ModelSim simulation result 

16 us16 us 24 us24 us

 
Figure 4.31: Transmitted waveform of SC-FDE system 

 

 



 

  71

4.5 Experimental Results  

In the self-design platform, we attempt to establish a real wireless environment, 

under which the adopted algorithm can be tested. Figure 4.32 shows the experimental 

environment which has been shown in Chapter 3. First, source data are stored in a 

ROM in FPGA, and passed to DA after being processed by the transmitter algorithm 

on FPGA. Next, data are transmitted by the RF module, and a received antenna is 

allocated near the RF module. Subsequently data are received by the receive antenna 

and passed to spectrum analyzer E443A and vector signal analyzer 89600S. Finally, 

received data are analyzed and shown on PC.  

Figure 4.32: Self-designed platform development environment 

Figure 4.34 shows the source data stream in the transmitter, transmitted data 

stream, and detected data stream in the receiver, where the source data stream and the 

detected data stream are specially expanded below. By comparing the source data 

stream with detected data stream we can find out that they are exactly the same, which 

confirms that our algorithm does work successfully. 
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Figure 4.33: Self-designed platform experimental result: source data and detected 
data waveform on LA 

Synthesis, map, and place and route are necessary steps in FPGA circuit design 

as well as the most time-consuming process. Besides, the insuffucuency of FPGA gate 

count is another problem worth noting. The goal in our design is to achieve a 

compromise between the hardware resource requirement and the system time 

consumed. Table 4-1 and 4-2 show the relative resource consumption of transmitter 

and receiver. It can be seen that, at the transmitter side, the upsampler and RRC is the 

only part that has multiplication operation, while at the receiver side, FFT/IFFT are 

responsible for most of the complicated calculations. Finally, Table 4-3 shows time 

consumption in our development flow, and the whole design flow includes developing 

transmitter and receiver.  
 

Table 4-1: Relative Resource consumption of the SC-FDE system at the transmitter 

100%50%    40% 12% 19% 11%Upsampler & RRC

0%0%     9% 15%  6% 25%Preamble

0%50%    30% 15% 17% 15%Mux

0%0%     5%  0%  0%  0%QPSK Mapper

0%0%     4%  5%  4%  4%Convolutional Encoder

0%0%    12% 53% 54%45%add UW

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

100%50%    40% 12% 19% 11%Upsampler & RRC

0%0%     9% 15%  6% 25%Preamble

0%50%    30% 15% 17% 15%Mux

0%0%     5%  0%  0%  0%QPSK Mapper

0%0%     4%  5%  4%  4%Convolutional Encoder

0%0%    12% 53% 54%45%add UW

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6
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Table 4-2: Relative Resource consumption of the SC-FDE system at the receiver 

0%0%31%16%15%14%Unique Word Based Phase Tracking

0%0%2%15%5%12%Viterbi

0%0%5%0%0%0%Packet Detection

5%19%5%1%2%1%Match Filter

47%41%13%10%12%10%IFFT

0%0%6%16%17%13%Frequency Estimation & Compensation

47%34%6%10%12%10%FFT

0%0%5%2%2%2%Symbol Timing Recovery (DLL)

0%0%15%21%30%28%Channel Equalization

0%6%12%9%5%10%Channel Estimation

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

0%0%31%16%15%14%Unique Word Based Phase Tracking

0%0%2%15%5%12%Viterbi

0%0%5%0%0%0%Packet Detection

5%19%5%1%2%1%Match Filter

47%41%13%10%12%10%IFFT

0%0%6%16%17%13%Frequency Estimation & Compensation

47%34%6%10%12%10%FFT

0%0%5%2%2%2%Symbol Timing Recovery (DLL)

0%0%15%21%30%28%Channel Equalization

0%6%12%9%5%10%Channel Estimation

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

 
 

Table 4-3: Time consumption of Synthesis and P&R in SC-FDE system 

19 min 33 sec3 min 58 secPlace and Route Time

7 min 2 sec2 min 37 secSynthesis Time

RXTX

19 min 33 sec3 min 58 secPlace and Route Time

7 min 2 sec2 min 37 secSynthesis Time

RXTX

 

4.6 Summary  

In this chapter, a complete communication system design flow is presented, 

including MATLAB verification, FPGA realization, ModelSim simulation, and 

experimental results. Through this design flow, we developed a UW-based SC-FDE 

system on two FPGA-based platforms, where real wireless channel effects can be 

generated by means of RF module. We also introduce some RF debugging 

instruments which make our system become much closer to real communication 

systems. The designing principles we follow are described, and the designing concept 

of each function block is detailed. We especially show that the proposed UW-based 

phase tracking algorithm is not only theoretically suitable for the SC-FDE system but 

also practically applicable in hardware design. In Chapter 5, we will give some other 

applications based on UW which are also usable in SC-FDE system. 
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Chapter 5  
 
Other Applications on Unique Word 
Structure in SC-FDE System 
 

In this thesis we have considered and implemented the phase tracking algorithms 

for single carrier systems with frequency domain equalizers based on block-by-block 

of Unique Word (UW) insertion similar to that adopted in IEEE 802.11a OFDM 

systems. We focus on the design and performance of the algorithms, and show that it 

provides almost optimum performance in SC-FDE systems. Moreover, we also 

compare the result with pilot carrier based phase tracking algorithms in OFDM 

systems. 

The Unique Word structure can be exploited not merely in the way described 

above. It can be observed that the overall baseband processing performance of 

SC-FDE systems largely depends on the design of channel estimation and 

synchronization algorithms. In fact, the deterministic properties of the UW give it a 

good nature to do various kinds of synchronization tasks as well as channel estimation 

especially in a mobile environment. Moreover, with the UW-based algorithms the SC 

systems can employing frequency-domain equalization at the receiver and benefit 

from low complexity which is suitable to implement on hardware. Therefore, in this 

chapter we investigate the use of UW and elaborate on the advantages it provides for 

equalization, channel estimation, and synchronization. A comparison between 

UW-based with CP-based SC-FDE system is also given, and their performance in 

terms of BER behavior and bandwidth efficiency are shown as well. 
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5.1 Cyclic Prefix versus Unique Word  
The frequency-domain equalization for single carrier systems is based on the 

equivalence between the convolution of two sequences in the time domain and the 

product of their Fourier transforms. Besides, the use of FFT operations anticipates that 

signals have to be processed blockwise; not only applying blockwise processing at the 

received signal but also performing a blockwise transmission and inserting a cyclic 

prefix between successive transmitted blocks. The content of the CP is obviously not 

known and varies with every single block. With a slight modification to implement 

the cyclic prefix as a training sequence – the Unique Word in this thesis, however, it 

can play two important roles: avoid the inter-block-interference (IBI) and be used in 

synchronization and channel estimation. The topic of channel estimation is especially 

of utter importance in fast fading environment. In the following section we will show 

that the UW-based SC scheme (SC-UW) scheme offers the advantages at the expense 

of only a small fraction of a dB, while in other situations it has hardly any drawback 

compared to CP-based SC scheme (SC-CP) system.  

Before introducing the algorithms taking advantage of the UW sequence that is 

provided, we can expect something a priori:  

 From a performance point of view, the SC-UW scheme inherits from the 

properties of the SC-CP scheme: it offers a similar performance as for 

OFDM, with more robustness to nonlinear distortion and phase noise. 

Moreover, the UW sequence does not contain data. Hence, it can be 

optimized to get appropriate properties (e.g., autocorrelation) and its 

symbols could even be chosen from a separate alphabet. This avoids the 

accidental presence of the UW sequence in the useful data.  

 From a synchronization point of view, the SC-UW acquisition is essentially 

the same as for the SC-CP: data-aided algorithms are known to perform 

better than their non-data-aided counterparts. They avoid decision directed 

algorithms and alleviate the problem of feeding the decisions back, which 

would mean a delay of one frame.  
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 For the channel estimation, the concept of UW is most useful when the 

channel is varying rather rapidly, like in mobile communications. The 

extension of SC-UW to the multiuser case (in a spatial division multiple 

access scheme) is easier than for SC-CP, as the users can be distinguished 

on the basis of their different UW. 

 

5.1.1 Comparison of CP and UW in Terms of 

Bandwidth Efficiency and BER Behaviour 

Figure 5.1 shows the structure of Cyclic Prefix and Unique Word. Two main 

differences are obvious when comparing the two concepts: 

 The UW is not random as the CP 

 Instead of having to throw away the cyclic prefix, we always process the 

UW, which is not removed at the receiver but is available after the 

equalization in the time domain. Hence, there is no gap anymore between 

two FFTs.  

In practical situations, the FFT is usually taken in the middle of the UW to allow 

small timing synchronization errors. Moreover, as the UW is always present on both 

edges of the data block, the transformation from linear convolution to cyclic 

convolution is kept, and the performance of the original SC-CP is also kept. 
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Figure 5.1: Single Carrier with (a) Cyclic Prefix and (b) Unique Word 
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The bandwidth efficiency is reduced for a SC-FDE by the guard period. Recall 

that TFFT and TG denote the FFT period and guard interval of a frame, respectively. 

The bandwidth efficiency of the described SC- CP and SC-UW systems without 

taking coding into account can be given as: 
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The result in Eq.(5.1) leads to an additional degradation of 5% in terms of 

bandwidth efficiency, assuming TG to be 25% of TFFT (In our thesis, frame length = 64 

symbols and UW length = 16 symbols). Furthermore, a loss in terms of the BER 

behavior is expected, and a loss as a result of additional overhead compared to a 

single carrier system with time domain equalization is anticipated as well.  

 

5.2 Application of the Unique Word Structure 

Transmission over multipath channels makes channel estimation and 

synchronization not only necessary but also important. Due to the fact that the UW is 

known, it can be used for equalization, channel estimation, or synchronization 

purposes. In the following section some algorithms and results will be given for the 

mentioned application.  

5.2.1 Synchronization  

Synchronization is indispensable criterions for high data rate wireless 

transmission. In a time-invariant environment, initial channel estimation and block 

synchronization can be done by a preamble at the beginning of every burst . In time 

varying channels, however, clock-frequency-offsets or carrier-frequency-offsets make 

tracking necessary. Tracking is mainly based on the insertion of pilot symbols; 

implementing the structure of UW, pilot sequences are available automatically. 
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The variation of the sampling time between transmitter and receiver caused by 

the clock-frequency-offset will lead to rising displacement of the FFT-window. To 

solve the problem, an autocorrelation as shown in Eq.(5.2) of two consecutive, 

received UWs, denoted by uk and uk+N, which are separated by N symbols may result 

in distinctive correlation peaks if the symbols of the UW are chosen as to have good 

correlation properties (e.g. Pseudo noise sequences, Barker sequences)[15]. 

 { }*

1
( )

GN

k k N
k

k u uφ +
=

= ⋅∑  (5.2) 

where *
ku  indicates the complex conjugate of ku .  

With the UW structure and a selected symbol sequence, this method shows 

conspicuous correlation peaks. Figure 5.2 shows the result of the autocorrelation, 

which indicates the beginning of every FFT window very precisely. The simulation is 

performed for 25SNR dB= and multipath conditions; the UW is a PN sequence. 

Nevertheless it is to mention that, if due to the fact that UW is corrupted by the 

channel and noise on the one hand or the time duration of UW is too short on the 

other hand, the correlation of the two successive UWs may not show reliable enough 

correlation peaks – the autocorrelation properties of the investigated sequences are 

partly lost.  
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Figure 5.2: Synchronization and tracking of the FFT-window 
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5.2.2 Channel Estimation  

Unavoidably, the equalization of the received message in systems employing 

single-carrier transmission is a fundamental problem in high data rate wireless 

communication, and performing the equalization requires knowledge of the channel. 

These parameters can be estimated relatively easily prior to data transmission in 

stationary environment; however, in non-stationary channels, they vary with time and 

must be tracked by some means.  

The deterministic properties of the UW can be exploited in the channel 

estimation algorithms for SC-FDE systems to track a temporally fading channel. The 

algorithm intrduced here relies on the ensemble averaging of the received signal to 

recover the channel state information (CSI). Although any time-domain or frequency 

domain equalization technique can be employed once the channel has been estimated, 

this algorithm lends itself to FDE systems since the use of the UW gives the system a 

cyclic nature. 

 System Model 

Consider a system employing SC block transmissions with a UW extension. The 

i-th length-K block ( )ix of transmitted symbols is partitioned into a length-P vector s(i) 

of data symbols and a length-Q vector u representing the UW. An illustration of this 

block structure is depicted in Figure 5.3.  

u s(i) u s(i+1) u

P Q

K K

u s(i) u s(i+1) u

P Q

K K
 

Figure 5.3: Basic UW block structure 

In order to alleviate inter-block interference, we assume that Q ≥ L where L is the 

memory order of the channel impulse response (CIR). This condition also induces 

circularity in the system, which allows us to express the i-th length-K block of 
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received symbols ( )iy  by 

 ( ) ( ) ( ) ( )i i i i= +y h x n  (5.3) 

where ( )ih  is a K K×  circulant matrix representing the channel at time i and n(i) 

is a length-K vector of uncorrelated, zero-mean, complex Gaussian noise samples, 

each with a variance of 2 2nσ  per dimension. Specifically,  
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where hm(i) is the m-th complex tap coefficient of the CIR at time i. 

Denote F as the normalized K K× DFT matrix where its (k,i)-th element is given 

by ( )
1

, exp 2k iF K j ki Kπ
−

− for , 0,..., 1k i K= − , and Fm is the first m columns of 

F while m′F  is the last m columns of F.  Referring to Eq.(5.3) , we consider the 

transformation of the received symbol vector y(i) into the frequency domain, which is 

given by 

 ( ) ( ) ( ) ( )i i i i= +Y H X N  (5.5) 

where ( ) ( )i i=Y Fy , ( ) ( )i i=N Fn , ( ) ( )i i=X Fx ,and ( ) ( ) Hi i=H Fh F is a diagonal 

matrix with the channel frequency response coefficients on the diagonal. In addition, 

the transmitted vector X(i) can be partition into a data part and a UW part as given by  

 
( )

( ) ( )P Q

i
i i⎡ ⎤′⎡ ⎤= = +⎢ ⎥⎣ ⎦

⎣ ⎦

s
X F F S U

u
 (5.6) 

where ( ) ( )Pi i=S F s  and Q′=U F u . Therefore, 

 ( ) ( ) ( ) ( ) ( )i i i i i= + +Y H S H U N  (5.7) 
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 Channel Esitmation Algorithm by UW 

If the channel is time-invariant (i.e. ( )i =H H  for all i), the received 

frequency-domain vectors { } 1
( ) N

i
i

=
Y  can be treated as a sample set of a random 

process ψ  where the mean of the process is given by 

 
1

1 ( )
N

i

i
N

ψ
=

= ∑Y  (5.8) 

If a symmetric constellation such as QPSK is employed for data transmission and no a 

priori knowledge of the transmitted message is assumed, then { }E ( ) 0i =S  and 

evaluating the expectation in Eq.(5.8) yields 

 { }lim E
N

ψ
→∞

=

=

Y

HU
 (5.9) 

While channel varies with time, as is the case in mobile environments, the 

sample size N must be limited in some way to include only those blocks received 

within the last Tc seconds, where Tc is the coherence time of the channel. In this case, 

the recursive least square (RLS) algorithm can be employed with the cost function 

 2

1
( ) ( , )

i
i k

k
i e k iϕ ρ −

=

= ∑  (5.10) 

where ρ  is the standard RLS forgetting factor that is usually close to, but less than 

one. The error term ( , )e k i in Eq.(5.10) is defined as 

 ( , ) ( ) ( )e k i k i= −Y UH  (5.11) 

where { }DU U is the diagonal matrix with the elements of U on the diagonal and 

( )iH is a length-K vector of the i-th estimated channel frequency response 

coefficients.  

Our goal is to find a channel estimation such that the error term in Eq.(5.10) is 

smallest. From the result derived from [20], taking the gradient of Eq.(5.10) with 

respect to ( )iH , setting the result equal to zero, the channel estimate vector is given by 
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1

1

1

( )1

( )

1( ) ( )
i

i k
i

i k k

ik

i

i kρ
ρ

−

− −

− =

=

= ∑
∑

r

P

H U Y  (5.12) 

The channel can therefore be updated with the i-th received block by nothing that  

 ( ) ( 1)i iρ= − +P P U  (5.13) 

 ( ) ( 1) ( )i i iρ= − +r r Y  (5.14) 

 Note that Eq.(5.12) requires the inverse of P(i) to compute the updated channel 

estimate. Since P(i) is a diagonal matrix, however, it is easy to invert. Consequently, 

this method of mobile channel estimation benefits from very low complexity since 

only three complex multiplications are required to update the channel estimate on a 

given frequency tone. As with all applications of the RLS algorithm, this application 

requires the vector r and the matrix P to be initialized. If a reliable initial channel 

estimate (0)H is available (e.g. by the preamble based channel estimation), r and P 

can be initialized to 

 (0) (0)β=r UH  (5.15) 

 (0) β=P U  (5.16) 

where β  is a positive real number. From Eq.(5.12) it is noted that 

 
1

1
1

ii
i k

k

ρρ
ρ

−

=

−
=

−∑  (5.17) 

Consequently, we may choose β to be 

 1 1lim
1 1

i

i

ρβ
ρ ρ→∞

−
= =

− −
 (5.18) 
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Defining β  as above is equivalent to initializing the channel estimation by 

transmitting an infinite number of blocks containing only the UW over a static 

channel, which is denoted here by (0)H , and computing ( )∞r and ( )∞P . This 

definition of β produces good convergence results as shown in the simulation result 

later. 

 Also, a more complex version of the stochastic algorithm can be implemented. In 

this version, the received symbols y(i) are first equalized and the data symbols are 

detected. Using the length-P vector of the detected data symbols ( )is  and the 

previous channel estimate ( 1)i −H , the contribution of the data to the received 

message is subtracted from the original received vector in the frequency domain to 

give  

 { }( ) ( ) ( ) ( 1)u Pi i D i i= − −Y Y F s H  (5.19) 

Replacing ( )iY with ( )u iY in Eq.(5.10) through (5.12), the new channel estimate can be 

obtained 

5.3 Simulation Results  

 The algorithm described in section 5.2 was implemented in computer simulations 

in order to observe its performance relative to other techniques. Two systems were 

simulated. In each of these systems, UWs were appended to every frame of QPSK 

data symbols to form blocks of K = 64 symbols. These blocks were transmitted over a 

3-tap, exponentially decaying channel with a normalized Doppler 

spread of 6  1.5  10Df
−= × . The channel realizations were generated with a Rayleigh 

fading profile from burst to burst, and Jakes’ model was used to simulate temporal 

fading within each burst. At the receiver, each system utilized its own knowledge of 

the channel to equalize the received message with a linear FDE. Each equalized 

symbol was then mapped to the nearest QPSK symbol.  

 The first system used an initial channel estimate, which was gleaned from a 

preamble, to construct a linear FDE, and only one channel estimate was obtained for 

each burst. The second system employed the stochastic channel estimation method 
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with feedback detailed in section 5.2.2. This system initialized the metrics r and P 

according to Eq. (5.15) and (5.16) where the initial channel estimate was obtained 

through a preamble. A forgetting factor of 0.96 was used. The two systems are 

summarized in Table 5-1.  

Table 5-1: Summary of simulated SC-FDE systems 

Estimated by preamble and updated by UW2

Estimated by preamble only1

Channel KnowledgeSystem

Estimated by preamble and updated by UW2

Estimated by preamble only1

Channel KnowledgeSystem

 

 Figure 5.4 depicts the probability of bit error of each of the systems described 

above. It is observed that the system that employs stochastic channel tracking 

performs better than the preamble-only system. Indeed, the system employing a 

preamble-based only channel estimation suffers greatly even in this slow-fading 

environment.  

 

Figure 5.4: Comparison of the proposed preamble based channel estimation and 
UW-update channel estimation 
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5.4 Circuit Design of Proposed Methods 

In this part, the circuit designs of the algorithms presented in previous section are 

proposed. Our purpose is to show that the UW-based synchronization and channel 

estimation algorithms are not only able to provide better performance but also have 

low complexity and are suitable for hardware designing. Besides, The design 

principles still follow the rules mentioned in section 4.3.1.  

 

(1) UW-based Synchronizer 

The design of the UW-based synchronizer is quite simple. As shown in 

Figure 5.5, the synchronizer block called UW_sync is roughly divided into 

three parts. The first part is a shift register, 80_DFF, is used to store the latest 

80 symbols input and its components can be implied by the name – 80 DFFs. 

The newest 16 symbols and the oldest 16 symbols, which are stored in DFF 

65 through 80 and DFF 1 through 16 as indicated in Figure 5.5, perform the 

conjugate multiplications and summation. Once the result of the summation 

is large than certain threshold value, that is, two consecutive UWs are 

matched, it can be inferred that these two UWs are currently stored in DFF 

1through 16 and DFF 65 through 80. Thus, one frame of symbols - symbols 

in DFF 1 through DFF 64 then pass the FFT_switch and be sent to next 

stage. 
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Figure 5.5: Circuit design of the UW-based synchronizer 
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(2) UW-based Channel Estimator 

From Eq.(5.12) through (5.14) we can see that the proposed algorithm 

gives a conspicuous structure of parallelism, since Eq.(5.13) and (5.14) are 

in identical operation format. Besides, coupled with the preamble structure 

inside one packet, the initial channel estimate (0)H is automatically 

available, and the initial values of r(0) and P(0) in Eq.(5.15) and (5.16) can 

be derived. Therefore, we can see our design in Figure 5.6 that two sets 

identical entities are implemented, except that the upper one is for 

calculating P(i) and the lower one is for r(i). Since K=64 in our system, two 

buffers reg_p and reg_r with depth 64 are used to store the value of P(i) 

and r(i), and every time the received Y(i) is inputted to this block, values of 

P(i) and r(i) will be updated according to Eq.(5.13) and (5.14), and then 

written back to corresponding buffers.   
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Figure 5.6: Circuit design of the UW-based channel estimator 
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5.5 Summary  

In this section, we presented two applications of UW other than phase tracking 

mentioned in Chapter 2 and 4. We show that the structure of UW is not only useful in 

stationary system, but also useful in the tasks such as synchronization and channel 

estimation in a mobile environment. The synchronization algorithm employs UW as a 

selected training sequence while the channel estimation algorithm utilizes the constant 

nature of the UW extension in UW-based SC systems to obtain a moving average of 

the received signal over a finite period of time, which achieve a better performance 

than traditional preamble-only channel estimation. We also show that the two 

algorithms are not only theoretically uncomplicated, but also practically simple and 

therefore appropriate for hardware implementation.  
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Chapter 6  
 
Conclusion 

 

In future wireless communication systems, the demand of higher throughput and 

higher link quality is urgently called for, since various multimedia or home 

applications will be provided and thus reliable and affordable technologies are 

required to realize those contents. SC modulation, coupled with linear frequency 

domain equalization at the receiver, has less sensitivity to transmitter nonlinearities 

and phase noise than OFDM, and its complexity and performance are similar to those 

of OFDM in wireless communication. Single carrier with frequency domain 

equalization has been adopted by IEEE 802.16 standard to be one of the three modes 

as an alternative technique of OFDM in physical layer, and it is also currently a 

working assumption for uplink multiple access scheme in 3GPP Long Term Evolution, 

or Evolved UTRA. This reveals the potential of the SC-FDE technique and therefore 

encourages us to build up a hardware system based on SC-FDE system instead of the 

theoretical analysis only. 

This thesis had described the signal processing concepts and algorithms of a 

SC-FDE system based on the UW structure in physical layer, and a self-designed 

platform equipped with four FPGA modules, USB interface, and RF modules is 

adopted to implement our system. A real wireless communication environment 

containing RF mismatch, multipath effects and so on are thus generated through real 

indoor experimental environment and RF modules on the self-designed platform. In 

our thesis we especially focus on the structure of the Unique-Word, and show that it is 

applicable to SC-FDE system in tasks such as phase tracking, synchronization and 
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channel estimation. What is more, corresponding circuit designs and analyses of the 

proposed UW-algorithms are presented; we show that those proposed UW-based 

algorithms are not only theoretically suitable for the SC-FDE system but also 

practically applicable in hardware implementation. 

To summarize, hardware implementation is highly complicated. Therefore, the 

avalailability of MATLAB simulation, proper quantization algorithms, useful HDL 

simulation software, and powerful debugging tools becomes especially significant. 

Nevertheless, some future works still remain. For example, higher modulation order 

such as 16QAM, 64 QAM and so on can be realized; in addition, the UW-based 

synchronizer and channel estimator circuit structures provided in Chapter 5 can be 

implemented and coupled with our system to further raise the performance. Finally, 

although there is a lot of room for improvement, we believe that the SC-FDE system 

implemented on the FPGA-based platform we proposed is still highly advanced 

nowadays.  
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