

國 立 交 通 大 學

電信工程學系碩士班
碩士論文

基於獨特碼架構之頻域等化單載波系統
之 FPGA 實現

FPGA Realization of a Unique Word Based

Single Carrier System

with Frequency Domain Equalization

 研 究 生：陳欣瑤 Student: Hsin-Yao Chen

 指導教授：李大嵩 博士 Advisor: Dr. Ta-Sung Lee

中 華 民 國 九 十 六 年 六 月

基於獨特碼架構之頻域等化單載波系統之 FPGA 實現

FPGA Realization of a Unique Word Based

Single Carrier System

with Frequency Domain Equalization

研 究 生：陳欣瑤 Student: Hsin-Yao Chen

指導教授：李大嵩 博士 Advisor: Dr. Ta-Sung Lee

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis

Submitted to Institute of Communication Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in
Communication Engineering

June 2007
Hsinchu, Taiwan, Republic of China

 中 華 民 國 九 十 六 年 六 月

 I

基於獨特碼架構之頻域等化單載波系統

之 FPGA 實現

學生：陳欣瑤 指導教授：李大嵩 博士

國立交通大學電信工程學系碩士班

摘要

頻域等化之單載波系統(SC-FDE)在新一代之無線通訊系統中佔有相當關鍵

性的地位，它不但能夠達到和正交分頻多工(OFDM)系統相當近似之效能和效

率，亦同樣具有低訊號處理複雜度之優點。另一方面，SC-FDE 並不會面臨 OFDM

所面對之高峰值對均值功率比(PAPR)問題，因此在 IEEE 802.16 標準中， SC-FDE

成為了於 OFDM 以外另一實體層技術的選擇。在本論文中，吾人將使用自行研發

之平台，實現一基於獨特碼(UW)架構之單載波系統，其中基頻演算法部分將實現

於平台之 Xilinx Virtex-II FPGA 模組。在此系統中之演算法除包括通道估計器、

頻率修正器、迴旋碼解碼器等之外，吾人也實現了基於獨特碼架構下之相位追蹤

器，使得此一單載波系統之功能性更加完整。此外，吾人更進一步提出此一獨特

碼架構於相位追蹤以外之應用，包括於時脈偏移下用以修正 FFT 窗之偏移，以及

於移動之環境下用以更新通道之估計等。最後，本篇論文中將說明獨特碼的架構

不但在理論上十分簡單，實際上也十分適合用於硬體平台的實現。

 II

FPGA Realization of a Unique Word Based

Single Carrier System with

Frequency Domain Equalization

Student: Hsin-Yao Chen Advisor: Dr. Ta-Sung Lee

Department of Communication Engineering

National Chiao Tung University

Abstract

In recent years, Single Carrier System with Frequency Domain Equalization

(SC-FDE) becomes a key technology in the development of new wireless

communication systems. It has similar performance, efficiency as well as low signal

processing complexity advantages as orthogonal frequency division multiplexing

(OFDM), but does not suffer from the high peak to average power ratio (PAPR)

problem as in OFDM system. Therefore, SC-FDE has been adopted by IEEE 802.16

standard as an alternative technique to OFDM in the physical layer. In this thesis, we

propose a solution for building up a Unique-Word (UW) based SC-FDE system on a

self-designed platform with Xilinx Virtex-II FPGA module mounted. In addition to

channel estimator, frequency offset compensator and convolutional encoder, a

UW-based phase offset tracker is realized to make the functionalities of the system

more complete. Moreover, other applications of UW structure are presented, including

FFT window synchronization and update of channel estimation in mobile environment,

etc. Finally, we will show that the UW structure is not only theoretically simple, but

also practically suitable for hardware implementation.

 III

Acknowledgement

First, I am very grateful to my advisor, Dr. Ta-Sung Lee, for his enthusiastic

guidance especially the training of oral presentation and being earnest in our works. I

would also thanks to Jeff Tsai who gives me a lot of technical support on the circuit

design of self-designed platform, and Yen-Yu Chen who is always patient with my

consultation. Special thanks to Lih-Gong Wu, whose priceless comments and

invaluable suggestions are indispensable to the completion of this thesis. Heartfelt

thanks are also offered to all members in the Communication Signal Processing and

System Design (CSPSD) Lab for their constant encouragement and help.

At last but not least, I would like to express my deepest gratitude to my family

for their endless love and the support all the way from the very beginning of my

postgraduate study, especially my mom for her tender encouragement, and my dad as

a constant reminder of health.

 IV

Contents

Chinese Abstract..I

English Abstract .. II

Acknowledgement.. III

Contents .. IV

List of Figures ...VII

List of Tables ... X

Acronym Glossary..XI

Abbreviation Glossary... XIV

Chapter 1 Introduction.. 1

Chapter 2 SC-FDE Baseband Transceiver Architecture............. 4

2.1 Overview of SC-FDE System.. 4

2.2 Transmitter Architecture .. 6

2.2.1 Convolutional Encoder ...7
2.2.2 Mapper / De-mapper ...8
2.2.3 Unique Word Structure ...8
2.2.4 Preamble Channel and Frame Structure ...10
2.2.5 Upsampler and Root Raised Cosine Filter..11

2.3 Receiver Architecture... 14

2.3.1 Timing Synchronization..15
2.3.2 Frequency Synchronizer ...21

 V

2.3.3 Channel Estimator...22
2.3.4 Phase Estimator...23
2.3.5 Viterbi Decoder ...25

2.4 Summary .. 27

Chapter 3 SC-FDE System Platforms 28

3.1 Self-designed Platform... 28

3.1.1 RF Module ..30
3.1.2 AD and DA Modules...32
3.1.3 MAC/BB Platform..33
3.1.4 USB Interface..35

3.2 Benefits of using VHDL .. 36

3.3 FPGA Design Flow.. 37

3.4 Debugging Tools .. 40

3.5 Summary .. 42

Chapter 4 SC-FDE System Realization.................................... 43

4.1 Design Flow... 43

4.2 MATLAB Verification ... 44

4.3 FPGA Realization .. 50

4.3.1 Design Principles ..51
4.3.2 Circuit Design ...53

4.4 ModelSim Simulation .. 69

4.5 Experimental Results ... 71

4.6 Summary .. 73

Chapter 5 Other Applications on Unique Word Structure in

SC-FDE System.. 74

5.1 Cyclic Prefix versus Unique Word... 75

 VI

5.1.1 Comparison of CP and UW in Terms of Bandwidth Efficiency and BER
Behaviour..76

5.2 Application of the Unique Word Structure... 77

5.2.1 Synchronization ..77
5.2.2 Channel Estimation...79

5.3 Simulation Results ... 83

5.4 Circuit Design of Proposed Methods... 85

5.5 Summary .. 87

Chapter 6 Conclusion ... 88

Bibliography... 90

 VII

List of Figures
Figure 2.1: Transmitter architecture of SC-FDE system...7
Figure 2.2: Convolutional encoder with code rate 1/3 and constraint length 57
Figure 2.3: QPSK, 16-QAM, and 64-QAM constellations...8
Figure 2.4: Transmitted block using the concept of UW ..9
Figure 2.5: Training sequence and frame structure of IEEE 802.11a standard11
Figure 2.6: Diagram of upsampler and pulse shaping filter..12
Figure 2.7: Evolution of the polyphse filter ..13
Figure 2.8: Noble identity ...13
Figure 2.9: Receiver architecture of SC-FDE system...14
Figure 2.10: Double sliding window packet detection ...15
Figure 2.11: Block diagram of delay-locked loop...16
Figure 2.12: Detection set of delay-locked-loop...17
Figure 2.13: Oversampled waveform with the correct sample points19
Figure 2.14: Original and new detection set in proposed DLL algorithm19
Figure 2.15: Proposed DLL algorithm Flow...20
Figure 2.16: Constellation diagram of one equalized frame23
Figure 2.17: Trellis diagram part 1..26
Figure 2.18: Trellis diagram part 2..27

Figure 3.1: Development environment of self-designed platform..............................29
Figure 3.2: Main board of self-designed platform ..29
Figure 3.3: RF module on self-designed platform ..31
Figure 3.4: Measured carrier spectrum form RF module..31
Figure 3.5: AD/DA module on self-designed platform...33
Figure 3.6: Measured data waveform from AD/DA module33
Figure 3.7: MAC/BB platform..35
Figure 3.8: USB module on self-designed platform ...36
Figure 3.9: FPGA design flow ..38
Figure 3.10: Spectrum analyzer block diagram ..41
Figure 3.11: Vector signal analyzer block diagram...41

Figure 4.1: FPGA design flow ..44
Figure 4.2: Impulse and frequency response of RRC filter with β=0.25....................45
Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter

(c) RRC shaped waveform on receiver...46

 VIII

Figure 4.4: Eye diagram of RRC shaped waveform ...46
Figure 4.5: (a) Received oversampling waveform (b) DLL selected samples on

receiver (c) Original samples on transmitter...47
Figure 4.6: Real and estimated channel frequency response48
Figure 4.7: (a) One equalized block in the presence of residual CFO (b) One

equalized block after the proposed phase tracking algorithm (c) One
equalized block after the lower-complexity phase tracking algorithm...49

Figure 4.8: System performance of SC-FDE and OFDM...50
Figure 4.9: Circuit design of transmitter ...53
Figure 4.10: Circuit design of convolutional encoder...54
Figure 4.11: Circuit design of mapper ..55
Figure 4.12: Circuit design of de-mapper ...55
Figure 4.13: Circuit design of preamble generator ...56
Figure 4.14: Circuit design of Unique Word generator...57
Figure 4.15: Circuit design of multiplexer..58
Figure 4.16: Circuit design of polyphase filter ...59
Figure 4.17: Circuit design of receiver side..59
Figure 4.18: Circuit design of double sliding window packet detection method........60
Figure 4.19: Circuit design of the delay-locked loop..61
Figure 4.20: Circuit design of the frequency offset compensation block62
Figure 4.21: Circuit design of fast Fourier transform ...63
Figure 4.22: Conventional channel estimation and equalization strategy...................64
Figure 4.23: Modified channel estimation and equalization strategy64
Figure 4.24 Circuit design of channel equalizer ...65
Figure 4.25 Circuit design of phase offset compensator...66
Figure 4.26: Circuit design of Viterbi decoder..67
Figure 4.27: Circuit design of branch metric generator ..67
Figure 4.28: Circuit design of add, compare, and select block...................................68
Figure 4.29: SC-FDE transmitter ModelSim simulation result69
Figure 4.30: SC-FDE receiver ModelSim simulation result.......................................70
Figure 4.31: Transmitted waveform of SC-FDE system...70
Figure 4.32: Self-designed platform development environment.................................71
Figure 4.33: Self-designed platform experimental result: source data and detected

data waveform on LA ...72

Figure 5.1: Single Carrier with (a) Cyclic Prefix and (b) Unique Word.....................76
Figure 5.2: Synchronization and tracking of the FFT-window78
Figure 5.3: Basic UW block structure...79

 IX

Figure 5.4: Comparison of the proposed preamble based channel estimation and
UW-update channel estimation ...84

Figure 5.5: Circuit design of the UW-based synchronizer..85
Figure 5.6: Circuit design of the UW-based channel estimator86

 X

List of Tables
Table 2-1: Main PHY Parameters of the Investigated SC-FDE System6
Table 2-2: Proposed phase tracking algorithm..24
Table 2-3: State transition table...26
Table 4-1: Relative Resource consumption of the SC-FDE system at the transmitter72
Table 4-2: Relative Resource consumption of the SC-FDE system at the receiver73
Table 4-3: Time consumption of Synthesis and P&R in SC-FDE system73
Table 5-1: Summary of simulated SC-FDE systems...84

 XI

Acronym Glossary

1G first generation

ADC analog to digital converter

AMPS advanced mobile phone services

ASIC application specific integrated circuit

AWGN additive white Gaussian noise

BER bit error rate

BMG branch metric generator

BPSK binary phase shift keying

BRAN broadband radio access network

CDMA code division multiple access

CIR channel impulse response

CP cyclic prefix

CPLD complex programmable logic device

CPU central processing unit

CSI channel side information

DAC digital to analog converter

D-AMPS digital AMPS

DFF delay flip-flop

DFT discrete Fourier transform

DLL delay-locked loop

DSP digital signal processor

EDA electronic desing automation

ETSI European Telecommunications Standards Institute

FDE frequency domain equalization

FEC forward error correction

FFT fast Fourier transform

FIFO first in, first out

 XII

FIR finite impulse response

FPGA field programmable gate array

FSM finite state machine

GSM global system for mobile communications

HDL hardware description language

HiperMAN high-performance MAN

I/O input/output

IBI inter-block interference

ICI inter-carrier interference

IEEE institute of electrical and electronics engineers

IF intermediate frequency

ISI inter-symbol interference

JTAG joint test action group

LA logic analyzer

LED light emitting diode

LSB least significant bit

LTE long term evolution

LUT look up table

MAC media access control

MAN metropolitan area network

MLSE maximum likelihood sequence estimation

NLOS non-line-of-sight

OBW occupied bandwidth

OFDM orthogonal frequency division multiplexing

OSC oscillator

OTP one time programmable

PAPR peak-to-average power ratio

PCI process control interface

PHY physical layer

PLD programmable logic device

 XIII

PLL phase-locked loop

QAM quadrature amplitude modulation

QPSK quaternary phase shift keying

RAM random access memory

RF radio frequency

ROM read-only memory

RRC root raised cosine

RTL register transfer level

SC single carrier

SNR signal to noise ratio

SoC system on a chip

SOHO small office/home office

SRAM static random access memory

USB universal serial bus

UTMI USB 2.0 transceiver macrocell interface

UTRA universal telecommunication radio access

UW unique word

VCO voltage-controlled oscillator

VHDL very high speed integrated circuit hardware description language

VSA vector signal analyzer

WCDMA wideband CDMA

WLAN wireless local area network

 XIV

Abbreviation Glossary

BB baseband

BPF bandpass filter

RBW resolution bandwidth

 1

Chapter 1

Introduction

Wireless communications is one of the most active areas of technology

development of our time. Similar to the developments in wired line capacity in the

1990s, the demand for new wireless capacity is growing at a very rapid pace. From

the first-generation (1G) radio systems developed in the 1970s and 1980s,

transmitting voice over radio by analog communication techniques such as Advanced

Mobile Phone Services (AMPS), to the 2G systems built in the 1980s and 1990s,

featuring the adoption of digital technology such as Global System for Mobile

Communications (GSM), Digital-AMPS (D-AMPS) and code division multiple

access (CDMA), and further to today’s 3G wideband CDMA (WCDMA) technologies,

whose transmission data rate can be up to 2 Mbps in good conditions. Driven by the

transformation of a medium supporting voice telephony into a medium that is

demanded to support other services such as the transmission of video, images, text,

and data, future wireless system must provide high data rate services to satisfy the

increasing needs of the next-generation wireless networks. Recent air interface

standards for such wideband wireless metropolitan area network (MAN) systems are

being developed by the IEEE 802.16 working group and also by the European

Telecommunications Standards Institute (ETSI) Broadband Radio Access Network

(BRAN) High-Performance MAN (HiperMAN) group. Such systems are installed to

operate over non-line-of-sight (NLOS) links, serving residential and small

office/home office (SOHO) subscribers with high data rate transmission.

 2

However, as the bit rate increases, the problem of inter-symbol interference (ISI)

becomes more serious. The above wireless access systems in residential

neighborhoods must cope with the dominant propagation impairment of multipath

which causes multiple echoes of the transmitted signal to be received with delay

spreads of up to tens of microseconds. For bit rates in the range of tens of megabits

per second, this translates to inter-symbol interference that can span up to 100 or more

data symbols. For example, at a 5 MHz symbol rate, a 20 μs multipath delay profile

spans 100 data symbols. This raises the question of what types of anti-multipath

measures are necessary, and consistent with low-cost solutions.

Several variations of orthogonal frequency-division multiplexing (OFDM) have

been proposed as effective anti-multipath techniques [1]-[4], primarily because of the

favorable trade-off they offer between performance in severe multipath and signal

processing complexity. However, it is shown that when combined with frequency

domain equalization (FDE), the single-carrier (SC) approach delivers performance

similar to OFDM, with essentially the same overall complexity [5]-[7]. In addition,

SC modulation uses a single carrier, instead of the many typically used in OFDM, so

the peak-to-average transmitted power ratio for SC-modulated signals is smaller

[8]-[10]. This in turn means that the power amplifier of an SC transmitter requires a

smaller linear range to support a given average power (in other words, requires less

peak power backoff). As such, this enables the use of a cheaper power amplifier than a

comparable OFDM system; and this is a benefit of some importance, since the power

amplifier can be one of the more costly components in a consumer broadband

wireless transceiver. Therefore, single carrier with frequency domain equalization

(SC-FDE) has been adopted by IEEE 802.16 standard to be one of the three modes as

an alternative technique of OFDM in physical layer, and it is also currently a working

assumption for uplink multiple access scheme in 3GPP Long Term Evolution (LTE),

or Evolved UTRA. These show its potential of being an important candidate for future

mobile wireless systems.

Moreover, a novel approach considering phase tracking algorithms for SC-FDE

systems, which make use of the concept of Unique Word (UW) blockwise extension

instead of the classical concept of cyclic prefix (CP) like it is used in OFDM is

 3

provided [11]-[13]. The UW is a very simple known sequence that are distributed

along the frame, which in this paper is focused on its performance on phase tracking

algorithms as a counterpart of the use of pilot tones for IEEE 802.11a like OFDM

systems [14]. Besides, with the UW-based structure, the algorithm developer has a lot

of freedom for the tasks of synchronization [15]-[17], channel estimation [18]-[19] or

noise prediction [20], which we will discuss in Chapter 5.

 The goal of this thesis is to realize a Single-Carrier system with

Frequency-Domain Equalizer on field programmable gate array (FPGA)-based

platforms, where we intend to verify the above-mentioned algorithms on a

self-designed platform. The complete functional blocks in both the transmitter and

receiver are provided, and the associated algorithms applied in each functional block

are also presented. After giving an overview of system architecture, we propose a total

solution to build up FPGA-based platforms for realizing the SC-FDE system,

including MATLAB verification and FPGA realization. The developed system

contains a baseband transmitter, a digital-analog converter, an analog-digital converter,

and a baseband receiver.

The organization of this thesis is as follows. Chapter 2 describes the proposed

SC-FDE transceiver architecture and its corresponding schemes. In Chapter 3, the

development environments of the proposed self-designed platform are introduced. In

Chapter 4, the overall system realization is presented, and the performance evaluation

is also included. Later, a further discussion of the UW-based SC-FDE system will be

provided in Chapter 5. Finally, we make our concluding remarks in Chapter 6.

 4

Chapter 2

SC-FDE Baseband Transceiver
Architecture

This chapter focuses on the SC-FDE baseband transceiver architecture. An

overview of the SC-FDE system will first be given. Then we divide the developed

architecture into transmitter and receiver, and provide functional descriptions and

associated algorithms for each block. In addition, the modified delay-locked-loop

algorithm for timing recovery and the Unique Word based phase tracking algorithm

adopted on the system will be described.

2.1 Overview of SC-FDE System

Recently, SC-FDE system has received a lot of attention as an attractive

alternative solution for the problem of ISI in the wideband wireless system. Compared

to the time-domain equalization that requires one or more transversal filters with the

tap number covering the maximum channel impulse response length, FDE

outperforms the conventional time-domain equalization and requires less complexity

by using fast Fourier transform (FFT) and is more suitable for long channels. With

such a comparably lower complexity similar to OFDM, SC-FDE does not suffer high

peak-to-average power ratio (PAPR) as well as sensitivity to frequency and phase

offsets as they are in the OFDM systems. Previous work [5][7] has also shown that

FDE has better performance than OFDM systems in uncoded and high coding rate

systems.

 5

In our system we investigate a SC-FDE system, where the parameters are

adapted to the IEEE 802.11a OFDM based wireless LAN (WLAN) standard. The

transmission format at the physical layer (PHY) is frames consisting of a preamble

part and the data payload. The preamble comprises ten short preambles and two long

preambles, which are used for different synchronization tasks at the receiver. The data

payload consists of six SC-FDE frames, each appended with a known sequence,

called Unique Word, and six frames together are attached after the preamble.

Moreover, the UW is cyclically extended in the guard time, resulting in the

cyclic-prefix-like structure and equalization criterion can be easily achieved in the

frequency domain. The detailed structure of preamble will be discussed in Section

2.2.4.

Parameters to be synchronized are the temporal position of the transmission

frame, the carrier frequency, the clock frequency, and the temporal position of the

FFT-window. Additionally, an estimate of the channel transfer function is needed. The

effect of carrier phase offsets and clock phase offsets on the system performance is

compensated for by channel equalization. After the preamble based carrier frequency

synchronization there will always be some remaining carrier frequency offset, which

causes phase errors in the received and equalized data symbols. In IEEE 802.11a

systems, pilot subcarriers are used to estimate and track these phase errors. In this

project we show, that simple UW-based phase tracking algorithms provide almost

optimum performance in SC-FDE systems, and the main parameters of the

investigated SC-FDE system are shown in Table 2.1.

We summarize the advantages of SC-FDE as follows:

 SC modulation has reduced peak-to-average ratio requirements from OFDM,

thereby allowing the use of less costly power amplifiers

 Performance of SC-FDE system is similar to that of OFDM system, even

for very long channel delay spread

 Frequency domain receiver processing has a similar complexity reduction

advantage to that of OFDM: complexity is proportional to log of multipath

spread

 6

 Coding, while desirable, is not necessary for combating frequency

selectivity, as it is in non-adaptive OFDM

 SC modulation is a well-proven technology in many existing wireless and

wired-line applications, and its radio-frequency (RF) system linearity

requirements are well known

Table 2-1: Main PHY Parameters of the Investigated SC-FDE System

RRC(α=0.25)Pulse Shaping

1/3Coding Rates

QPSKModulation Schemes

16Short Preamble Size (symbols)

64+16(CP)Long Preamble Size (symbols)

64FFT Size

16Number of Unique Word symbols/frame

48Number of data symbols/frame

64Number of total symbols/frame

6Number of frames/packet

RRC(α=0.25)Pulse Shaping

1/3Coding Rates

QPSKModulation Schemes

16Short Preamble Size (symbols)

64+16(CP)Long Preamble Size (symbols)

64FFT Size

16Number of Unique Word symbols/frame

48Number of data symbols/frame

64Number of total symbols/frame

6Number of frames/packet

2.2 Transmitter Architecture

The baseband SC-FDE transmitter architecture is shown in Figure 2.1. The

source data is first fed into the channel encoder, e.g., using the convolution code for

error correction at the receiver. After coding, the binary values are converted into

Quadrature Phase Shift Keying (QPSK) values with a mapper, and a guard period is

added between successive frames. The insertion of a guard period anticipates the

blockwise processing needed in the receiver when using FFT operations. The guard

period will then be filled up with a known, simple UW sequence with the UW

generator, and every six UW-appended frames will be preceded by the preamble with

the preamble generator. The UW and preamble are used for certain synchronization

purposes and the detail functionalities will be discussed in Section 2.2.3. After pulse

shaping (Root Raised Cosine Pulses) and digital-to-analog conversion the resulting

I/Q signals are up-converted onto the desired frequency band.

 7

Encoder Mapper

UW
Generator

Preamble
Generator

MUX
Upsample

&
RRC

DACData
Channel

Figure 2.1: Transmitter architecture of SC-FDE system

2.2.1Convolutional Encoder

A convolutional encoder typically will generate two or three output bits for each

input bit. The output bits are dependent on the current input bit, as well as the state of

the encoder. The state of the encoder is represented by several bits which precede the

current bit. Figure 2.2 shows a convolutional encoder adopted in our system with code

rate equal to 1/3 and constraint length equal to 5. Convolutional coding adds

redundant bits in such a way that the decoder can, within limits, detect errors and

correct them.

+

+

+

S0 S1 S2 S3Din

g0

g1

g2

+

+

+

S0 S1 S2 S3Din

g0

g1

g2
Figure 2.2: Convolutional encoder with code rate 1/3 and constraint length 5

 8

2.2.2 Mapper / De-mapper

Quadrature amplitude modulation (QAM) is the most popular type of modulation

scheme since the rectangular constellations are easy to implement as they can be split

into independent in-phase and quadrature parts. A mapper is used to map a small

group of bits into a symbol according to the rectangular constellation adopted. Figure

2.3 shows the rectangular constellations of QPSK, 16-QAM, and 64 QAM. The

higher modulation order the mapper adopts, the more information a symbol can carry,

yet higher modulation order always suffers from interference more severely. In our

system, we adopt QPSK as our modulation scheme.

QPSK

16-QAM

64-QAM

I

Q

2 4 6-6 -4 -2

2

4

6

-6

-4

-2

QPSK

16-QAM

64-QAM

I

Q

2 4 6-6 -4 -2

2

4

6

-6

-4

-2

Figure 2.3: QPSK, 16-QAM, and 64-QAM constellations

2.2.3 Unique Word Structure

Frequency domain equalization for single carrier system is based on the

equivalence between the convolution of two sequences in the time domain and the

product of their Fourier transforms. Because of the use of FFT operations, the

 9

received signals have to be processed blockwise. Therefore, performing a blockwise

transmission and inserting a Cyclic Prefix (CP) between successive blocks is

necessary, since the cyclic extension enables the circular convolution of the

transmitted frame and the channel impulse response. The conventional CP structure,

however, is less useful for other purpose like synchronization as long as the content of

the CP is not known and varies with every single frame. The overhead induced by the

CP could be used in a more efficient way if its content would be known before and

could be chosen in a proper way. Therefore, instead of the cyclic prefix, a known

sequence called Unique Word (UW) is part of every processed frame [11]-[13].

First of all, Figure 2.4 depicts the structure of one transmitted frame, which

consists of the original data sequence of NS symbols and the guard interval with NG

symbols. The overall duration of one frame with N = NS+NG symbols is

 () FFT S GT NT N N T= = + (2.1)

where T is the symbol duration and let G GT N T= be the guard interval.

NsT NGT

TFFT

NsT NGT

TFFT

UWUW UWUW

Figure 2.4: Transmitted block using the concept of UW

A mathematical description of the investigated SC-FDE system using the UW

instead of the traditional CP is now given. Let us denote , ()Data is t to be the

continuous-time representation of the data symbols part of the i-th transmitted frame

with , () 0Data is t = for []0, FFT Gt T T∉ − , and uw(t) is the UW symbol sequence.

Define si(t) as the whole i-th frame. Therefore,

[]

[]
, () for 0,

()
() for ,

Data i FFT G
i

FFT G FFT

s t t T T
s t

uw t t T T T
⎧ ∈ −⎪= ⎨ ∈ −⎪⎩

 (2.2)

 10

Including the UW from the previous frame, an extended frame ()s t can be defined as

[]
[]

() for 0,
() () for ,0

0 elsewhere

i FFT

FFT G

s t t T
s t uw t T t T

⎧ ∈
⎪

= + ∈ −⎨
⎪
⎩

 (2.3)

 With this cyclically extended frame the linear convolution (∗) of the i-th frame

with the channel impulse response becomes a circular convolution (⊗) and the

received block ()ir t fulfils the condition

 () () () ()i i ir t s t h t s t h= ∗ = ⊗ (2.4)

within the interval [],G h FFTT T T− + , where hT is the duration of the channel impulse

response. When restricting the received frame to FFT window []0, FFTT and

applying the theorem of circular convolution to Eq.(2.4), we obtain the essential

relation

 0 0 0 0() () () ()i i iR nf S nf H nf R nf= ⋅ = (2.5)

For 0 1 FFTf T= and n Z∈ . The capitalization represents the Fourier Transform of

the corresponding lowercase parameters in Eq.(2.4). Therefore, the frequency domain

relation in Eq.(2.5) shows that the concept of UW is comparable to the concept of CP.

 In this thesis, we focus on the design and performance of Unique Word based

phase tracking algorithms [14], and we will show that the algorithm provide almost

optimum performance in SC-FDE systems in Section 4.2 .

2.2.4 Preamble Channel and Frame Structure

 Referring IEEE 802.11a standard, we attach the training sequence, also called

preamble, in front of every packet. At the receiver, preambles can be utilized to do a

number of tasks, such as timing synchronization, frequency synchronization, and

channel estimation. The format of preamble channel and frame structure is shown in

Figure 2.5. Preambles can further be separated into short preamble and long preamble,

both of which are modulated by BPSK. Short preamble, as implied by the name, has a

 11

shorter length compared with long preamble. Each short preamble contains 16

symbols with time-span 0.8 μs, and ten short preambles have a total time-span of 8 μs.

The following parts are two long preamble symbols, and each one is protected by a

guard interval filled with its cyclic extension, which have a total time-span of 8 μs.

After preamble channel, data symbols with cyclically UW extension follow.

Figure 2.5: Training sequence and frame structure of IEEE 802.11a standard

2.2.5 Upsampler and Root Raised Cosine Filter

 Upsampling is an operation that is often done before the pulse shaping filter to

make the filter design simpler. If we do not increase the sample rate, we will need to

design a very sharp filter which is not only very difficult and expensive to implement,

but may sacrifice some of the spectrum in its roll off. Besides, a filter with a smooth

roll off will have nicer phase characteristics as well.

 Root raised cosines (RRC) filter is a commonly used pulse shaping filter in

digital communication systems to limit ISI. The frequency response of an ideal root

raised cosine filter consists of unity gain at low frequencies, the square root of raised

cosine function in the middle, and total attenuation at high frequencies. The width of

the middle frequencies is defined by the roll off factor constant β (0<β<1). Root raised

cosine filter is generally used in series pairs, so that the total filtering effect is that of a

raised cosine filter. The advantage is that if the transmit side filter is stimulated by an

impulse, then the receive side filter is forced to filter an input pulse shape that is

identical to its own impulse response, thereby setting up a matched filter and

maximizing signal to noise ratio (SNR) while at the same time minimizing ISI.

Mathematically, the frequency response ()rrcF ω may be written as

 12

1 For (1)

0 For (1)
()

((1))1 cos
2

 For (1) (1)
2

c

c

rrc
c

c
c c

F

ω ω β

ω ω β
ω π ω ω β

βω
ω β ω ω β

⎧ ≤ −⎪⎪⎪⎪ ≥ +⎪⎪⎪⎪= ⎨ ⎛ ⎞− −⎪ ⎟⎜⎪ ⎟+ ⎜⎪ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎪ − < < +⎪⎪⎪⎩

 (2.6)

where cω is half the data rate.

 The operation of upsampling and RRC filtering is shown in Figure 2.6, where

H(z) is the frequency response of the pulse shaping filter and L is the upsampling rate.

↑L H(z)x[n] y[m]↑L H(z)x[n] y[m]
Figure 2.6: Diagram of upsampler and pulse shaping filter

Note that this procedure is computationally inefficient because the filter operates on a

sequence that is mostly composed of zeros. To avoid operations on zero-valued

samples, rearrangement of the preceding block diagram is required. First of all,

transform H(z) into its upsampled polyphase components, where h[n] is the time

domain counterpart of H(z):

()

()

()

()

1
()

0

1
()

0

1

0

() []

[] [] []

[]

()

−

−
− +

=

−
− −

=

−
−

=

=

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

∑

∑ ∑

∑ ∑

∑

n

n

L
kL p

p
k p

L
kL p

p
p k

L
L p

p
p

H z h n z

h kL p z h k h kL p

h k z z

H z z

let

 (2.7)

Therefore, Figure 2.6 can be redrawn as Figure 2.7(a). By the Noble identity for

interpolation which is shown in Figure 2.8, Figure 2.7(a) can further evolve into

Figure 2.7(b) and (c). Filters hp[n] in Figure 2.7(c) is called polyphase filters. Let the

symbol rate before upsampling be 1/T and the length of h[n] be N. Without polyphase

simplification the computational cost is LN T (computations/sec), while that with

polyphase structure is N T (computations/sec). Thus we save a factor of L.

 13

x[n]

y[m]

…

h0

h1

hL-1

x[n]

y[m]

…

h0

h1

hL-1

↑L H0(zL)x[n] y[m]

Z-1

Z-1

Z-1

… … …

H1(zL)

HL-1(zL)

↑L H0(zL)x[n] y[m]

Z-1

Z-1

Z-1

… … …

H1(zL)

HL-1(zL)

x[n] y[m]

Z-1

Z-1

Z-1

… … …
H0(z) ↑L

H1(z) ↑L

HL-1(z) ↑L

x[n] y[m]

Z-1

Z-1

Z-1

…… … …
H0(z) ↑LH0(z) ↑L

H1(z) ↑LH1(z) ↑L

HL-1(z) ↑LHL-1(z) ↑L

(a)

(b) (c)

 Figure 2.7: Evolution of the polyphse filter

↑L H(zL)x[n] y[m] x[n] y[m]↑LH(z)↑L H(zL)x[n] y[m]↑L H(zL)x[n] y[m] x[n] y[m]↑LH(z)x[n] y[m]↑LH(z)

Figure 2.8: Noble identity

 14

2.3 Receiver Architecture

The baseband function diagram of the proposed SC-FDE receiver is shown in

Figure 2.9. The received signal is first down-converted to the baseband. After passing

through the timing synchronization processing blocks, short preambles are separated

as a means for frequency synchronization. The payload part is then processed

blockwise. Each frame is transferred to frequency domain by the FFT block and

equalized in the frequency domain. To acquire the channel information, long preamble

is used to do frequency domain channel estimation. After being transformed back to

the time domain, the phase shift of the equalized data is corrected by the known UW

structure inserted in data channel to further improve the performance. The detected

symbol streams are then recovered by a Viterbi decoder.

Frequency
Synchronization

Frequency
Offset Estimation

FFT

Channel
Estimation

IFFT

Carrier Phase
Offset Compensation

Carrier Phase
Offset Estimation

Timing Synchronization

Frequency Synchronization Channel Equalization

Phase Tracking

Preamble

Unique Word

Sampling
Rate

Reduction

Match
Filter

Packet
Detection

Frequency
Domain Equalization

Slicer Demapper Viterbi
Decoder

Output
Data

Figure 2.9: Receiver architecture of SC-FDE system

 15

2.3.1 Timing Synchronization

2.3.1.1 Packet Detection

Packet detection is the task of finding an approximate estimate of the start of the

preamble of an incoming packet. It is the first data-processing block of IEEE 802.11a

baseband receiver. As such it is the first synchronization algorithm that is performed,

so the rest of the synchronization process is dependent on good packet detection

performance. On the other hand, power consumption can also be taken into

consideration since the packet detection mechanism determines when the block

behind should start to function. The double sliding window packet detection method

is used in the thesis. It computes the signal energy over two sliding windows, A and B,

as shown in Figure 2.10. When the packet starts to enter window A, the energy in A

gets higher and higher. The basic principle is to form the decision variable mn a ratio

of total energy contained inside the two windows. The packet detection is declared

when the value of mn crosses over the threshold value.

A B

mn

Threshold

A B

mn

Threshold

PacketPacket

Figure 2.10: Double sliding window packet detection

The algorithm is described as

21 1
*

0 0
2

*

1 1

where is length of window A

where is length of window B

− −

− − −
= =

+ + +
= =

= =

= =

=

∑ ∑

∑ ∑

M M

n n m n m n m
m m

L L

n n l n l n l
l l

n
n

n

a r r r M

b r r r L

am
b

 16

In addition to packet detection, finer timing synchronization in a SC-FDE system

is required to decide where to place the start of the FFT window within one frame.

Although an SC-FDE system exhibits a guard interval, making it somewhat robust

against timing offsets, non-optimal symbol timing will cause more inter-symbol

interference and inter-carrier interference (ICI) in delay spread environments. This

will result in performance degradation. To eliminate timing offset induced by different

path delays, fine timing synchronization will be performed after coarse timing

synchronization.

2.3.1.2 Match Filter and Symbol Timing Recovery

After packet detection the received signal is fed through a matched filter and

re-sampled at the symbol rate. The matched filter is simply an FIR filter with an

impulse response matched to the transmitted pulse. It aids in timing recovery and

helps suppress the effects of noise. The goal of symbol-timing recovery is to sample

message signals at the receiver for best performance. Since upsampling is done at the

transmitter, oversampling is performed at the analog-to-digital converter (ADC) as

well to make the design of the filters simpler. Therefore, the received symbol rate

should be reduced before the signal is sent to the digital processing blocks afterwards.

Although the symbol rate is typically known to the receiver, the receiver does not

know when to sample the signal for the best noise performance. One simple method

for recovering symbol timing is performed using a delay-locked loop (DLL). Figure

2.11 is a block diagram of the necessary components. [22]-[24]

Match
Filter

Symbol
Sampler

Offset
Decision

Late Sample

Early Sample

On Time Sample

DLL Block Diagram
decision
statistic

Figure 2.11: Block diagram of delay-locked loop

 17

The goal of the DLL is to sample the waveform at the peaks in order to obtain

the best performance in the presence of noise. If it is not sampling at the peaks, we

say it is sampling too early or too late. The DLL finds peaks without assistance from

the user. When it begins running, it arbitrarily selects a sample, called the on-time

sample, from the matched filter output. The sample from the time-index one greater

than that of the on-time sample is the late sample, and the sample from the time-index

one less than that of the on-time sample is the early sample. The early, on-time and

late samples together form a detection set. Figure 2.12 shows examples of detection

sets where the on-time sample comes at a peak, before, and after the peak.

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

(a)

(b) (c)

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

Early Sample

On-Time Sample

Late Sample

Detection Set

Early Sample

On-Time Sample

Late Sample

Detection Set

sam
ple value

(a)

(b) (c)
Figure 2.12: Detection set of delay-locked-loop

The on-time sample is the output of the DLL and will be used to decide the data

bit sent. To achieve the best performance in the presence of noise, the DLL must

adjust the timing of on-time samples to coincide with peaks in the waveform. It does

this by changing the number of time-indices between on-time samples. Recall that the

symbol duration is T and the upsample rate at the transmitter is 4. Accordingly, one

transmitted symbol will occupies 4T in time after upsampling. Therefore, three cases

are shown below:

 18

1. In Figure 2.12(a), the on-time sample is already at the peak, and the receiver

knows that peaks are spaced by 4T. If it then takes the next on-time sample 4T

samples after this on-time sample, it will be at another peak.

2. In Figure 2.12(b), the on-time sample is too early. Taking an on-time sample

4T samples later will be too early for the next peak. To move closer to the next

peak, the next on-time sample is taken 4T + T = 5T samples after the current

on-time sample.

3. In Figure 2.12(c), the on-time sample is too late. Taking an on-time sample 4T

samples later will be too late for the next peak. To move closer to the next

peak, the next on-time sample is taken 4T - T =3T samples after the current

on-time sample.

The input to the offset decision block in Figure 2.11 is called the decision

statistic. When the decision statistic is positive, the on-time sample is too early; when

it is zero, the on-time sample is at a peak, and when it is negative, the on-time sample

is too late. The offset decision block could adjust the time at which the next on-time

sample is taken based on the decision statistic. However, in the presence of noise, the

decision statistic becomes a less reliable indicator. In this thesis, a modified DLL

algorithm is proposed. Figure 2.13 shows a real case of the beginning of a received

oversampled waveform, derived at the output of the match filter. From the packet

structure discussed in Section 2.2.4, we know that this is the beginning part of short

preambles. Since the amplitude of preamble symbol is known at the receiver, through

simulation we know that the correct sample points of the oversampled waveform

should be the ones circled as shown, with amplitude around 2 in our case.

 19

The amplitude of the ideal
sampling point is
approximately 2

The amplitude of the ideal
sampling point is
approximately 2

Figure 2.13: Oversampled waveform with the correct sample points

Therefore, if the detection set is chosen such that the on-time sample is “too far

away” from the correct sample, the modified DLL algorithm will not let current

on-time sample be the output, but shift the detection set by one symbol to make the

new on-time sample be “closer to” the nearest correct sample and be the new output,

as shown in Figure 2.14. The direction that the detection set is shifted is determined

by the decision statistics as mention above. A full algorithm flow chart is shown in

Figure 2.15.

Correct samples

Original
Detection Set

New Detection Set

Correct samples

Original
Detection Set

New Detection Set

Correct samples

Original
Detection Set

New Detection Set

Correct samples

Original
Detection Set

New Detection Set

Figure 2.14: Original and new detection set in proposed DLL algorithm

 20

idle
New determination set?

next_dis = 0 ?

Early or Late?

sign(d2)=sign(d3-d1)?

Late :
Need Modification ?

abs(d2) > thr. ?

Early :
Need Modification ?

abs(d2) > thr. ?

Need Modification :
Late or On Time ?

abs(d3-d1) > diff. ?

No Modification :
Late or On Time ?

abs(d3-d1) > diff. ?

Need Modification :
Early or On Time ?

abs(d3-d1) > diff. ?

No Modification :
Early or On Time ?

abs(d3-d1) > diff. ?

Yes

No

NoNoNo

Yes No

Yes Yes

No

dout = d2 dout = d3 dout = d2 dout = d1

next_dis = 4

next_dis = 3

next_dis = 5

next_dis = 4

next_dis = 2

next_dis = 3

next_dis = 1

next_dis = 2

Yes NoYes No

Yes Yes

idle
New determination set?

next_dis = 0 ?

Early or Late?

sign(d2)=sign(d3-d1)?

Late :
Need Modification ?

abs(d2) > thr. ?

Early :
Need Modification ?

abs(d2) > thr. ?

Need Modification :
Late or On Time ?

abs(d3-d1) > diff. ?

No Modification :
Late or On Time ?

abs(d3-d1) > diff. ?

Need Modification :
Early or On Time ?

abs(d3-d1) > diff. ?

No Modification :
Early or On Time ?

abs(d3-d1) > diff. ?

Yes

No

NoNoNo

Yes No

Yes Yes

No

dout = d2 dout = d3 dout = d2 dout = d1

next_dis = 4

next_dis = 3

next_dis = 5

next_dis = 4

next_dis = 2

next_dis = 3

next_dis = 1

next_dis = 2

Yes NoYes No

Yes Yes

Figure 2.15: Proposed DLL algorithm Flow

 21

2.3.2 Frequency Synchronizer

The purpose of frequency synchronization is to correct the frequency offset,

which is caused by the difference of oscillator frequencies at the transmitter and the

receiver and may degrade the system performance [25]. Therefore, we try to estimate

the frequency offset and compensate the received signals.

Assuming that the absolute value of the frequency offset does not exceed 1
2 dDT

,

where D is the delay between the identical samples of the two symbols; Td denotes

the sampling period. To derive the estimated frequency offset, an intermediate

variable z is defined as:

1

*

0

L

n n D
n

z r r
−

+
=

= ∑ (2.8)

where rn is one of the two identical symbols, and L is the symbol length. After a series

of derivation, the estimated frequency offset f̂ can be shown by

2 d

zf
DTπ

Δ = − (2.9)

where z can be computed by an arc tangent of the summation of conjugate

multiplications between these two identical symbols. To do the above task, the

preamble channel becomes the most proper candidate.

The 802.11a standard specifies a maximum oscillator error of 20 ppm; therefore

the total maximum error is 40 ppm. Supposing that the carrier frequency is 5.3 GHz,

the maximum possible frequency error is about 212 kHz. Owing to the inherent

structures of short preamble and long preamble, the maximum unambiguous estimated

frequency offset is 625 kHz for short preamble and 156.25 kHz for long preamble.

Therefore, both short preamble and long preamble are required to estimate frequency

offset so as to cover the probable frequency offset specified by the standard. In our

thesis we use short preamble as a means to estimate the frequency offset.

 22

2.3.3 Channel Estimator

Unlike conventional time domain equalization that uses one or more transversal

filters taps with the number of data symbols spanned by the multipath, Frequency

domain equalization has been shown to be an attractive solution for frequency

selective channels in a single carrier system. Compared to the time-domain

equalization, FDE outperforms the conventional time-domain equalization when the

channel is highly dispersive, and it requires less complexity than maximum likelihood

sequence estimation (MLSE) by using fast Fourier transform. The main task of the

frequency domain equalizer is to eliminate inter-symbol interference within the

individual frames. As long as the guard interval with duration TG is longer than the

channel impulse response (with duration Th), there is no interference between the

information symbols of successive frames.

The channel can be estimated using the known training symbols within the

preamble. In our system, owing to the same symbol structure as data symbols, long

preamble becomes the best candidate for performing this job. Let ,i kR and kX denote

the frequency response of the i-th received long preamble and the original long

preamble, the estimated channel frequency response is then derived by:

()

()

()

*
1, 2,2

*
1, 2,2

*
1, 2,2

1
2

1
2

1
2

k k k k
k

k k k k k k k
k

k k k k
k

H R R X
X

H X N H X N X
X

H N N X
X

= +

= + + +

= + +

 (2.10)

Let Dk be the frequency response of received data symbol, the ZF channel

equalization can be shown as:

 k
K

k

DS
H

= (2.11)

where KS denotes the frequency response of the recovered data symbol.

 23

2.3.4 Phase Estimator

The processing of the preamble takes care of the initial synchronization of the

SC-FDE receiver. However, there will always be some remaining phase offset after

the initial preamble based carrier frequency synchronization, varying during the

reception of the packet, making solely initial frequency synchronization insufficient.

Furthermore, the system will experience phase noise produced by the combination of

the RF oscillator and the phase-locked loop (PLL). In OFDM systems this residual

offset causes inter-carrier interferences and a rotation of the constellation. In SC-FDE

systems this residual offset also causes a rotation of the whole constellation from one

received frame to the another, but instead of inter-carrier interferences, which cause a

random spreading of the constellation points, the constellation points of the individual

symbols experience a 1-D spreading along a circle (in the case of perfect timing

synchronization). Figure 2.16 shows the constellation diagram of one equalized frame

(48 data symbols, 16 UW symbols) in the QPSK mode in the presence of residual

phase offset. It is, therefore, necessary to estimate and correct the rotation of the

received constellation points.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Constellation with residual CFO

Real

Im
ag

UW

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Constellation with residual CFO

Real

Im
ag

UWUW

Figure 2.16: Constellation diagram of one equalized frame

 24

 The phase rotation from one frame to the next one caused by a residual CFO

fΔ is 2 FFTfTπΔ , and the phase rotation from one individual symbol to the other is

2 fTπΔ . In the classical cyclic prefix approach (as used in OFDM, and in earlier

SC-FDE proposals [10]), the guard interval is formed by data symbols, and the cyclic

prefix is not processed any longer at the receiver. One major advantage of the UW

approach is the fact, that the guard interval is part of the FFT-window and is therefore

equalized together with the information symbols. Therefore the equalized

UW-symbols can effectively be used for different synchronization tasks.

The mean rotation phase of the constellation diagram caused by a residual CFO

fΔ accumulates linearly from one frame to another. If the phase of the first frame is

1Θ then the phase of the n-th block is given by 1 (1)n nnΘ = Θ + − ΔΘ

with 2n FFTfTπΔΘ = Δ . The straightforward approach to track the phase is to use an

average of 16 Unique Word phase errors, and to de-rotate the constellation by the

estimated phase. However, due to the fact that the UW-symbols are positioned at the

end of a frame, they experience a larger phase rotation than the data symbols.

Fortunately, according to the linearly-accumulated phase error properties mentioned

above, it is possible to linearly de-spread the constellation points using an individual

de-rotation once we derive the known average Unique Word phase errors [14].

The phase tracking algorithm is summarized in Table 2.2, and the phase

compensation result will be given in the MATLAB floating point verification part in

Chapter 4.

Table 2-2: Proposed phase tracking algorithm

-1

0

-

- 2 / 2

 0
 1
- Equalize the -th frame by
- Determine the estimate of current frame by
 averaging over the 16 UW phase errors

- De-rotate each received symbol () by

n

n FFT

j

n

j kT T

Set
for n to N

n e

r k e

Θ

Θ −

Θ =

=

Θ

()

-1

- Determine the accumulated phase offset

GT

n n n

end
Θ = Θ + Θ

-1

0

-

- 2 / 2

 0
 1
- Equalize the -th frame by
- Determine the estimate of current frame by
 averaging over the 16 UW phase errors

- De-rotate each received symbol () by

n

n FFT

j

n

j kT T

Set
for n to N

n e

r k e

Θ

Θ −

Θ =

=

Θ

()

-1

- Determine the accumulated phase offset

GT

n n n

end
Θ = Θ + Θ

 25

2.3.5 Viterbi Decoder

Decoding of convolutional codes is most often performed by the Viterbi decoder,

which is an efficient way to obtain the optimal maximum likelihood estimate of the

encoded sequence [26][27]. Viterbi decoder can be further divided into hard-decision

and soft-decision decoding, where hard-decision is adopted in out system. According

to the design of the convolutional encoder in transmitter, we can derive the state

transition table in Table 2.3 and then further illustrate the trellis diagram as shown in

Figure 2.17 and Figure 2.18.

The Viterbi algorithm is a recursive sequential minimization algorithm that can

be used to find the least expensive way to route symbols from one edge of a state

diagram to another. To do this, the algorithm uses a cost analysis mechanism to

calculate the distance between the received symbol and the symbol associated to that

edge. The distance between the received symbol s and the symbol associated to that

edge in the state diagram is often referred to as the branch metric. If BM [i, j](s), is

the metric of the branch from state i to state j, the problem is finding the path for

which the metric, i.e. the sum of the branch metrics of the path edges, is at a minimum.

The Viterbi algorithm solves this problem by applying the following recursive

equation for each state transition

 () []() min [](-1) [,]()PM j t PM i t BM i j s= + (2.12)

where PM [j](t) is the path metric associated to the (minimum cost path leading to)

state j at time t. At the end of the decoding, it is possible to reconstruct the maximum

likelihood sequence through a trace back starting from the possible decoder states.

Normally for decoders using non-punctured codes, the trace back depth equals

five-times constraint length, which is sufficient to decode the correct output in the

presence of noise. In our system, constraint length equals 5; therefore an appropriate

trace back depth is 25.

 26

Table 2-3: State transition table

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15

din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state' din s0 s1 s2 s3 state g2 g1 g0 s0' s1' s2' s3' state'
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 8

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 8

0 0 0 1 0 2 1 1 0 0 0 0 1 1 1 0 0 1 0 2 0 0 1 1 0 0 1 9

0 0 0 1 1 3 0 0 1 0 0 0 1 1 1 0 0 1 1 3 1 1 0 1 0 0 1 9

0 0 1 0 0 4 1 0 1 0 0 1 0 2 1 0 1 0 0 4 0 1 0 1 0 1 0 10

0 0 1 0 1 5 0 1 0 0 0 1 0 2 1 0 1 0 1 5 1 0 1 1 0 1 0 10

0 0 1 1 0 6 0 1 1 0 0 1 1 3 1 0 1 1 0 6 1 0 0 1 0 1 1 11

0 0 1 1 1 7 1 0 0 0 0 1 1 3 1 0 1 1 1 7 0 1 1 1 0 1 1 11

0 1 0 0 0 8 1 1 0 0 1 0 0 4 1 1 0 0 0 8 0 0 1 1 1 0 0 12

0 1 0 0 1 9 0 0 1 0 1 0 0 4 1 1 0 0 1 9 1 1 0 1 1 0 0 12

0 1 0 1 0 10 0 0 0 0 1 0 1 5 1 1 0 1 0 10 1 1 1 1 1 0 1 13

0 1 0 1 1 11 1 1 1 0 1 0 1 5 1 1 0 1 1 11 0 0 0 1 1 0 1 13

0 1 1 0 0 12 0 1 1 0 1 1 0 6 1 1 1 0 0 12 1 0 0 1 1 1 0 14

0 1 1 0 1 13 1 0 0 0 1 1 0 6 1 1 1 0 1 13 0 1 1 1 1 1 0 14

0 1 1 1 0 14 1 0 1 0 1 1 1 7 1 1 1 1 0 14 0 1 0 1 1 1 1 15

0 1 1 1 1 15 0 1 0 0 1 1 1 7 1 1 1 1 1 15 1 0 1 1 1 1 1 15

S0 S0

S8

S0

S8

S0

S8

S4

S12

S0

S8

S4

S12

S0

S8

S4

S12

S2

S10

S6

S14

S0

S8

S4

S12

S2

S10

S6

S14

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

0/000

1/111

0/000

1/111

0/110

1/001

0/000

1/111

0/000

1/111

0/000
1/111

0/110

1/001

0/101

1/010

0/011

1/100

0/110

1/001

0/101

1/010

0/011

1/100

0/110

1/001

0/000

1/111

0/011

1/100

0/101

1/010

1/001
0/110

1/010
0/101

1/100
0/011

1/001
0/110

1/111
0/000

1/100
0/011

1/010
0/101

1/000
0/111

1/110
0/001

1/101
0/010

1/011
0/100

1/110
0/001

1/000
0/111

1/011
0/100

1/101

0/010

Figure 2.17: Trellis diagram part 1

 27

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

S0

S8

S4

S12

S2

S10

S6

S14

S1

S9

S5

S13

S3

S11

S7

S15

0/000
1/111

1/001
0/110

1/010
0/101

1/100
0/011

1/001
0/110

1/111
0/000

1/100
0/011

1/010
0/101

1/000
0/111

1/110
0/001

1/101
0/010

1/011
0/100

1/110
0/001

1/000
0/111

1/011
0/100

1/101

0/010

S0

S4

S2

S6

S1

S5

S3

S7

S0

S4

S2

S6

S1

S5

S3

S7

S0

S2

S1

S3

S0

S2

S1

S3

S0

S1

S0

S1

S0

0/010

0/100

0/111

0/001

0/100

0/010

0/001

0/111

0/101

0/011

0/000

0/110

0/011

0/101

0/110

0/000 0/000 0/000 0/000

0/100

0/001

0/010

0/111

0/011

0/110

0/101

0/001

0/111

0/110

0/111

Figure 2.18: Trellis diagram part 2

2.4 Summary

In this chapter, we introduce the SC-FDE system, and propose our system

architecture including the transmitter and receiver. At the transmitter, convolutional

encoder, mapper, UW generator, preamble channel generator, the polyphase filter

design of upsampler and root-raised cosine filter are gone through. At the receiver,

timing synchronization is first mentioned, which consists of packet detection, match

filtering and symbol timing recovery. Frequency synchronization and channel

estimation then follow, and phase estimation is proposed. Finally, de-mapper, and

Viterbi decoder are described in the rest part of the receiver. In this chapter we

highlight the two algorithms proposed: the modified delay-locked-loop algorithm for

timing recovery and the UW-based phase tracking algorithm implemented on the

system as an independent section to give a detailed introduction. More experimental

results and performance analysis will be given in Chapter 4.

 28

Chapter 3

SC-FDE System Platforms

In Chapter 3, we will introduce our self-designed platform as the development

environment. The platform is used to perform the verification of whole SC-FDE

system including baseband and RF parts, where transmitter and receiver are

implemented on two separated boards with their own RF modules each. The

self-designed platform is closer to a real wireless communication system and therefore

can take all phenomena and effects of the wireless system into account. In the

following sections, hardware modules, hardware description language, software

design flows, and the corresponding debugging tools of our platforms are detailed

explained.

3.1 Self-designed Platform

In order to approach a real wireless communication system, the multi-

synchronous and high-speed bus FPGA design, combined with our module-based RF,

AD/DA, and MAC/BB hardware system, becomes the best solution. Our laboratory

has finished and successfully tested RF, AD/DA and MAC/BB boards. The

development environment is shown in Figure 3.1, and the close-up shot of main board

is shown in Figure 3.2, where four Xilinx Virtex II 6000 FPGAs are mounted in

MAC/BB board, and each MAC/BB board is able to connect with at most two AD/DA

and two RF modules.

 29

In order to avoid the interference between high speed digital bus, those layouts

and interconnections of different modules shall be handled very carefully. Our

measurements show that directly connected modules did achieve feasible solution

which reduces the risk of facing interconnection problems. Further analysis and

evaluation during development are given in the following sections.

Figure 3.1: Development environment of self-designed platform

Figure 3.2: Main board of self-designed platform

 30

3.1.1 RF Module

The RF module, as shown in Figure 3.3 consists of MAX2828, which is

specifically designed for single-band IEEE 802.11a applications covering world-band

frequencies of 4.9 GHz to 5.875 GHz. MAX2828 includes all circuitry required to

implement the RF transceiver function, providing a fully integrated receive path,

transmit path, voltage-controlled oscillator (VCO), frequency synthesizer, and

baseband control interface. Only the RF switches, RF bandpass filters (BPF), RF

baluns, and a small number of passive components are required to form the complete

RF front-end solution. Because the balance of I/Q signals will impact on the

waveform of RF output, the RLC components had been fine tuned. Besides, we also

tested the frequency accuracy and power level of transmitted carriers in our interested

band from 5.15 GHz to 5.875 GHz. One of those measurements is shown in Figure

3.4; the power level shall be further improved with fine tuning of matching circuits.

We used 3-wires (Clock, Data and Latch) to control the RF module from PC currently,

and then the control mechanism will be integrated into MAC/BB after verification. In

sum, MAX2828 completely eliminates the need for external SAW filters by

implementing on-chip monolithic filters for both the receiver and transmitter. The

baseband filtering and the Rx/Tx signal paths are optimized to meet the IEEE 802.11a

and 802.11g standards. It is also suitable for the full range of the corresponding

802.11a/g OFDM data rates (6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps,

48Mbps, and 54Mbps) and 802.11g QPSK data rates (1Mbps, 2Mbps, 5.5Mbps, and

11Mbps), at the required sensitivity levels.

 31

Figure 3.3: RF module on self-designed platform

1 AP
CL RW R

 A

R e f 2 0 d B m A t t 5 0 d B

C e n t e r 5 . 4 G H z S p a n 2 M H z2 0 0 k H z /

R B W 1 0 0 k H z

V B W 3 0 0 k H z

S W T 2 . 5 m s

0 6 . N o v 0 5 2 0 : 1 4

PR N

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0 D e l t a 2 [T 1]

 0 . 0 0 d B

 0 . 0 0 0 0 0 0 0 0 0 H z

M a r k e r 1 [T 1]

 - 5 0 . 8 0 d B m

 5 . 3 9 9 0 0 0 0 0 0 G H z

21

D a t e : 6 . N O V . 2 0 0 5 2 0 : 1 4 : 2 4
Figure 3.4: Measured carrier spectrum form RF module

 32

3.1.2 AD and DA Modules

The AD/DA module, as shown in Figure 3.5, consists of ADS2807 and

DAC2900. The ADS2807 is a dual, high-speed, high dynamic range, 12-bit pipelined

Analog-to-Digital Converter (ADC). This converter includes a high-bandwidth

track-and-hold that gives excellent spurious performance up to and beyond the

Nyquist rate. The measured timing diagram is shown in Figure 3.6, which indicates

the valid data during the high clock period. In addition, it is recommended that data

hold time is 3.5 ns for saving data from bus to Static random access memory (SRAM),

which had been verified on our AD/DA boards too. The differential nature of this

track-and-hold and ADC circuitry minimizes even-order harmonics and gives

excellent common-mode noise immunity. The track-and-hold can also be operated

single-ended. Besides, it provides for setting the full-scale range of the converter

without any external reference circuitry. The internal reference can be disabled

allowing low-drive, external references to be used for improved tracking in

multichannel systems.

The DAC2900 is a monolithic, 10-bit, dual-channel, high-speed

Digital-to-Analog Converter (DAC), and is optimized to provide high dynamic

performance while dissipating only 310mW on a +5V single supply. Operating with

high update rates of up to 125MSPS, the DAC2900 offers exceptional dynamic

performance, and enables the generation of very-high output frequencies suitable for

"Direct IF" applications. The DAC2900 has been optimized for communications

applications in which separate I and Q data are processed while maintaining tight gain

and offset matching. Each DAC has a high impedance differential current output,

suitable for single-ended or differential analog output configurations. In addition, the

DAC2900 combines high dynamic performance with a high throughput rate to create

a cost effective solution for a wide variety of waveform synthesis applications.

 33

Figure 3.5: AD/DA module on self-designed platform

Clock

Valid Data

Clock

Valid Data

Figure 3.6: Measured data waveform from AD/DA module

3.1.3 MAC/BB Platform

The MAC/BB is an FPGA-based module which is composed of four Xilinx

Virtex-II 6000 modules, as shown in Figure 3.7. Recently, the demand for more

complex programmable hardware is constantly growing to meet the formidable

 34

industry requirement. The major categories of programmable hardware are

programmable logic device (PLD) and FPGA. A PLD consists of micro-cells and a

central inter-connection logic. Typical PLD applications are “glue logic” for

connecting other ASICs. On the other hand, FPGAs consist of even more complex

logic block on one chip. Typical applications are central control units (CPU) and

DSPs up to very complex SoC design. Therefore, we adopt some FPGA modules to

realize our communication system. Generally, FPGA can be categorized into three

types by its structure:

1. Look-up-table (LUT): Xilinx, Altera, AT&T

2. Multiplexer: Actel, Quicklogic

3. Transistor array: Cross point

If we focus on its programming architecture, there are two major types:

1. SRAM: Xilinx, Altera, AT&T, Atmel

2. Anti-fuse: Actel, Cypress, Quicklogic

SRAM type has a merit of being able to program repeatedly while Anti-fuse type has

the feature of one time programmable (OTP). Anti-fuse type can offer security for

design but cannot be modified further.

Compared to ASIC, FPGA has lower performance apparently, especially on

power consumption and maximum supportable speed. However, as the technique of

semiconductor industry grows, FPGA becomes more and more competitive to ASIC.

Actually, FPGA has more integration ability and flexibility than ASIC, and

undoubtedly, is the best candidate component for a fast-prototyping system. On the

other hand, more and more DSP systems are implemented using FPGA rather than

DSP processors, since when sample rates grow above a few Mhz, a DSP has to work

very hard to transfer the data without any loss. An FPGA on the other hand dedicates

logic for receiving the data, so can maintain high rates of I/O, Therefore, a high speed

environment especially combined with rigid, repetitive tasks suits the FPGA. It

outperforms conventional DSP processors on a board-for-board comparison, resulting

in significant improvements in processing speed, size, weight, power, and costs.

 35

On our MAC/BB platform, an FPGA-based module which is composed of four

Xilinx Virtex-II 6000 modules, where each of them combines a wide variety of

flexible features and a large range of densities up to 6 million system gates, enhancing

programmable logic design capabilities and is a powerful alternative to

mask-programmed gates arrays. With its advantages of very fast data rate, it can

achieve full duplex and real time operating for wireless communication. The VHDL

codes had been used to drive LEDs by differential clock rate from oscillator to verify

its functionality.

Figure 3.7: MAC/BB platform

3.1.4 USB Interface

In order to have a convenient input for the audio/video signal in the future, USB

interface was designed into the platform, which is shown in Figure 3.8. It will comply

with the USB specification revision 1.1, and be upgraded to USB 2.0 if necessary. The

compatibility test is conducted with compliance software run at PC equipped with PCI

to UTMI compliant interface card during test stage. This will make sure we can easily

connect our platform with any signal source with USB port. The built-in USB

interface codes for FPGA was defined and implemented.

 36

Figure 3.8: USB module on self-designed platform

3.2 Benefits of using VHDL

 In our thesis we use VHDL (Very High Speed Integrated Circuit Hardware
Description Language) as our hardware description language, since it has the
following advantages:

(1) Executable specification

It is often reported that a large number of DSP designs meet their

specifications first time, but fail to work when plugged into a system.

VHDL allows this issue to be addressed in two ways: A VHDL specification

can be executed in order to achieve a high level of confidence in its

correctness before commencing design, and may simulate one to two orders

of magnitude faster than a gate level description.

A VHDL specification for a part can form the basis for a simulation

model to verify the operation of the part in the wider system context (e.g.

printed circuit board simulation). This depends on how accurately the

specification handles aspects such as timing and initialization. Behavioral

simulation can reduce design time by allowing design problems to be

detected early on, avoiding the need to rework designs at gate level. Besides,

 37

it also permits design optimization by exploring alternative architectures,

resulting in better designs.

(2) Portability between tools

VHDL descriptions of hardware design and test benches are portable

between design tools, and portable between design centers and project

partners. One can safely invest in VHDL modeling effort and training,

knowing that he will not be tied in to a single tool vendor, but will be free to

preserve the investment across tools and platforms. Also, the design

automation tool vendors are themselves making a large investment in

VHDL, ensuring a continuing supply of state-of-the-art VHDL tools.

(3) Technology independent design

VHDL permits technology independent design through support for top

down design and logic synthesis. To move a design to a new technology one

need not start from scratch or reverse-engineer a specification - instead one

can go back up the design tree to a behavioral VHDL description, then

implement that in the new technology knowing that the correct functionality

will be preserved.

3.3 FPGA Design Flow

In our design, we choose Xilinx ISE 6.3 and Synplify Pro 8.2 as the development

tool for the first half of the design flow. Figure 3.9 is the main system design flow

with FPGA and later we will give more information about the flow.

 38

System Explorer

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

Implementation

Xilinx FoundationXilinx Foundation

3. Synthesis
2. Simulation1. Design Entry

3. Synthesis
2. Simulation1. Design Entry

3. Synthesis
2. Simulation1. Design Entry

Download

Place &
Route

Mapping

FPGA FPGA FPGA

FPGA Prototyping Modules

FPGAFPGA FPGAFPGA FPGAFPGA

FPGA Modules

System Explorer

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

3. Synthesis
2. Simulation

Xilinx Foundation
1. Design Entry

Implementation

Xilinx FoundationXilinx Foundation

3. Synthesis
2. Simulation1. Design Entry

3. Synthesis
2. Simulation1. Design Entry

3. Synthesis
2. Simulation1. Design Entry

3. Synthesis
2. Simulation1. Design Entry

3. Synthesis
2. Simulation1. Design Entry

Download

Place &
Route

Mapping

FPGA FPGA FPGA

FPGA Prototyping Modules

FPGAFPGA FPGAFPGA FPGAFPGA

FPGA Modules

FPGAFPGA FPGAFPGA FPGAFPGA

FPGA Prototyping Modules

FPGAFPGA FPGAFPGA FPGAFPGA

FPGA Modules

Figure 3.9: FPGA design flow

(1) Design Entry

In general, EDA tools are required to develop register transfer level (RTL)

codes by appropriate methodologies. In Xilinx ISE 6.3, it supports three

methods: HDL (hardware description language) Editor, Schematic Flow, and

FSM (finite state machine) Editor. HDL Editor allows us to edit source files

directly like VHDL [28]-[30] and Verilog [31]-[32], which are the most

common HDLs in use today. Schematic Flow is another choice to create our

source files by drawing the scheme with underlying HDL macros. FSM Editor

allows us to edit by timing state diagram, which is suitable for realization

controller, such as memory access controller.

(2) Synthesis

After completing editing RTL source files, we need to translate them into

gate level called netlist files, which only contains information of logic gates

and inter-connections. We choose to use Synplify Pro 8.2 for synthesis.

(3) Simulation

Design verification is an important aspect of each project design. Before

implementing our circuit in the target device, it is a good idea to simulate and

 39

verify the circuit. The most common verifications are functional simulation

and timing simulation.

A. Functional Simulation

Functional simulation can be done after the schematic has been

entered or a HDL file has been created and synthesized. Functional

simulation gives information about the logic operation of the circuit, but it

does not provide any information about timing delays.

B. Timing Simulation

The timing simulation will give us detailed information about the time it

takes for a signal to pass from one gate to the other (gate delay) and gives

information on the circuit’s worst-case conditions. The total delay of a

complete circuit will depend on the number of gates the signal sees and on the

way the gates have been placed in the FPGA. One of the most popular

simulation tools is ModelSim, which is completely integrated into Xilinx ISE

6.3, and can perform functional simulation and timing simulation very well.

Thus, we choose ModelSim SE 6.1e as the simulation tool in our design flow.

(4) Implementation

The implementation is typically done after the design has been verified by

functional simulation. The implementation tools will translate the netlist

(schematic, HDL), place and route the design in the target device and generate

a bitstream that can be downloaded into the device.

(5) Download to FPGA

After the process of implementation, we can download our design into

hardware platform. To verify that signals are really working properly in circuit,

we can use the logic analyzer (LA) to debug. Once the result does not match

what we expect, we need to come back to modify our design and go through

the whole design flow again. That is to say, iterative tests are required until we

obtain the results we want.

 40

3.4 Debugging Tools

As an old saying goes, “What is a workman without his tools.” In our

self-designed platform, we do have some useful tools for debugging as follows.

1. Logic Analyzer:

We use Agilent 16702B LA to perform the major task of debugging.

There are two modules installed on it. One is 16522A Pattern Generator

Module, and the other is 16711A Measurement Module. The former is mainly

used for generating desired signals, such as the reset signal or some selection

signals for model selection; the latter is used for probing signals in FPGA on

the self-designed platform.

2. Oscilloscope:

It is usually used when transmitted signals are prepared by FPGA and

sent to the DA module by specific cables. Therefore, we can verify the

waveform shown in the oscilloscope. For our system we may expect to see

the waveform containing preambles in the form of square wave in the head

part and data symbols appended with UW follow behind those preambles.

3. Spectrum Analyzer:

Agilent PSA Series Spectrum Analyzer E4443A is chosen. It offers

high-performance spectrum analysis up to 6.7 GHz and beyond with

swept-tuned measurements with digital Resolution-BandWidths (RBW)

filters. In our debugging flow, E4443A capture the transmitted 5.2GHz

signals, down convert them to 70MHz intermediate frequency (IF), and then

fed out to vector signal analyzer to perform advanced analysis. Its block

diagram is shown in Figure 3.10.

4. Vector Signal Analyzer:

Instead of swept-tuned measurements, vector signal analyzer 89600S

performs FFT measurements with digital FFT filters, which can measure all

 41

signal characteristics (i.e. phase) and avoid very long sweeps times required

for narrow RBW. Figure 3.11 shows the block diagram of vector signal

analyzer, notice that it is PC-based and therefore machines only capture the

RF signal accurately and feeds to PC, where final analysis are performed on

PC.

Figure 3.10: Spectrum analyzer block diagram

Figure 3.11: Vector signal analyzer block diagram

 42

3.5 Summary

In this chapter, we introduce our self-designed platform used to perform the final

verification of whole SC-FDE system. The platform equipped with FPGA, USB, and

AD/DA modules as well as the RF modules by which realistic wireless channel

characteristics can be generated. In addition, hardware description language and

software design flows as well as corresponding debugging tools are mentioned; in

particular the logic analyzer and oscilloscope are used to measure baseband signals,

and spectrum analyzer and vector signal analyzer are used to capture and analyze RF

signals.

 43

Chapter 4

SC-FDE System Realization

The SC-FDE system is implemented on the FPGA-based hardware introduced in

Chapter 3. This chapter is the major part of this thesis, which is organized as follows.

In the first subsection, a complete design flow is proposed. Then the MATLAB

verification is given, and algorithms proposed in Chapter 2 are demonstrated and the

system performance of SC-FDE system is shown and compared with the OFDM

system. In addition, the circuit design of the system on FPGA is detailed, and finally,

the ModelSim simulation and experimental results will be presented, where the

principles and concepts of circuit design on FPGA will specially be emphasized.

4.1 Design Flow

Digital Signal Processing (DSP) design has traditionally been divided into two

types of activities — systems/algorithm development and hardware/software

implementation. The majority of DSP system designers and algorithm developers use

the MATLAB language for prototyping their DSP algorithm. Hardware designers take

the specifications created by the DSP engineers and create a physical implementation

of the DSP design by creating a register transfer level (RTL) model in a hardware

description language (HDL) such as VHDL and Verilog. Our SC-FDE system can be

regarded as a DSP system, and Figure 4.1 shows the design flow we adopt.

 44

First, we have to program a floating-point MATLAB code in order to verify the

algorithms mentioned in Chapter 2 as well as evaluate the system performance. Then,

the floating-point MATLAB code is required to be manually converted into the

fixed-point MATLAB code. Subsequently, RTL model is established, where we

choose VHDL as our hardware description language and Xilinx ISE 6.3 as our

development tool. Next, this RTL implementation is simulated by ModelSim SE 6.1e

and synthesized onto a netlist of gates using Synplify Pro 8.2. Finally, the netlist of

gates is placed and routed onto Xilinx FPGAs using Xilinx ISE 6.3. The detailed

design flow will be discussed in the following sections

Quantization

Coding

RTL Simulation
Logic Synthesis

Place & Route

Floating point MATLAB .m

Fixed point MATLAB .m

Bit true VHDL/Verilog .vhd/.v

Netlist of gates .edf

FPGA bit stream .bit

DSP Designer
(Manual)

Hardware Designer
(Manual)

Automatic

Automatic

Quantization

Coding

RTL Simulation
Logic Synthesis

Place & Route

Floating point MATLAB .m

Fixed point MATLAB .m

Bit true VHDL/Verilog .vhd/.v

Netlist of gates .edf

FPGA bit stream .bit

DSP Designer
(Manual)

Hardware Designer
(Manual)

Automatic

Automatic

Figure 4.1: FPGA design flow

4.2 MATLAB Verification

 As developing a communication system, MATLAB is one of the best candidates

for us to model and simulate the system by means of its powerful matrix computation

ability and well-defined communication functions. MATLAB matrix functions are

shown to be versatile in doing analysis of data obtained in filter design or

communication theory experiments. In addition, the interactive programming and

 45

graphics of MATLAB also make designers easily illustrate the system performance

with the effects of simulated channel and quantization error and so on. Therefore, in

this section, the function blocks and adopted algorithms mentioned in Chapter 2 will

be verified first, and then the whole system will be constructed and the system

performance will be expressed.

1. RRC:

 In our system, a 33-tap root raised cosine filter with roll off factor

β=0.25 is designed, and its impulse response and frequency response is

shown in Figure 4.2. In our system, the sampling rate is 40 MHz, which

means that the data spectrum passes through the RRC pulse shaping filter

cannot span wider than 20 MHz according to Nyquist sampling theorem. It

can be clearly observed in the frequency response that signals with frequency

higher than approximately 14 MHz are filtered, so that the waveform in time

domain will become much smoother, and therefore can effectively combat the

aliasing in AD/DA conversion and the ISI problem. Figure 4.3 shows the

waveforms before and after RRC pulse shaping. Waveform in part (a) is the

BPSK modulated short preamble. After the pulse shaping in transmitter side

RRC, the smoother waveform will look like part (b). Next the waveform

passing through RRC in the receiver side is shown in part (c). Finally, the eye

diagram after RRC shaping is illustrated in Figure 4.4.

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5
Impulse Response

A
m

pl
itu

de

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5
Impulse Response

A
m

pl
itu

de

Figure 4.2: Impulse and frequency response of RRC filter with β=0.25

 46

0 2 4 6 8 10 12 14 16
-10

0

10
(a)

A
m

pl
itu

de

0 20 40 60 80 100
-20

0

20
(b)

A
m

pl
itu

de

0 20 40 60 80 100 120 140
-50

0

50
(c)

A
m

pl
itu

de

Figure 4.3: (a) Original waveform (b) RRC shaped waveform on transmitter
(c) RRC shaped waveform on receiver

Figure 4.4: Eye diagram of RRC shaped waveform

2. Symbol timing recovery:

 As we have mentioned in Section 2.3.1.2, a modified delay-lock-loop

algorithm is adopted in our system. Here we pass our transmitted signal

through a Rayleigh fading, multipath channel, and then process the post-RRC

received signal by symbol timing recovery block. The waveform derived at

the output of RRC is shown in Figure 4.5(a), while the waveform derived at

the output of delay-lock-loop is shown in Figure 4.5(b). Compared with the

 47

original short preamble pattern at the beginning of a packet, which is shown

in Figure 4.5 (c), we can see that (b) and (c) are almost the same, except that

the amplitude of (b) is not as constant as (c) due to the effect of multipath

delay. Therefore, we have shown that the proposed symbol timing recovery

algorithm not only performs the task of symbol rate reduction, but also take

the correct sampling points precisely.

Figure 4.5: (a) Received oversampling waveform
(b) DLL selected samples on receiver (c) Original samples on transmitter

3. Channel estimation:

 The channel estimation result is shown in Figure 4.6, where the above

one is the real channel frequency response, and another one is the estimated

channel frequency response. We can see these two curves are almost the same

though the long preamble channel estimation method.

 48

Figure 4.6: Real and estimated channel frequency response

4. Phase Tracking

 The result of phase tracking algorithm proposed in Section 2.3.4 is

shown as below. Figure 4.7(a) is the constellation with phase offset, and one

can clearly identify the rotation caused by the residual carrier frequency offset.

With the algorithm proposed, the constellation of the corrected frame is

shown in Figure 4.7(b). We show that simple Unique Word based phase

tracking algorithm provides almost optimum correction ability. On the other

hand, the proposed algorithm involving symbol-by-symbol correction of

linearly accumulated phase error is somewhat complicated for hardware

implementation. For lower order modulation such as BPSK or QPSK that

used in our system, to correct the constellation requires only that the

constellation of each symbol falls in correct quadrant. Therefore, if we

de-rotate the received symbols in one frame by the constant
()- /(2 -)n FFT G FFT Gj T T T Te ΔΘ − instead of - 2 /(2 -)n FFT Gj kT T Te ΔΘ , which is proposed in the

phase tracking algorithm, the result is shown in Figure 4.7(c). This result,

however, is enough for the slicer to determine the threshold for QPSK

modulation, and the complexity to implement the algorithm is much lowered

as well.

 49

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
(c)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(b)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
(a)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
(c)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
(b)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
(a)

Figure 4.7: (a) One equalized block in the presence of residual CFO
(b) One equalized block after the proposed phase tracking algorithm

(c) One equalized block after the lower-complexity phase tracking algorithm

5. System Performance:

 The BER to SNR system performance is shown in Figure 4.8, where a

Rayleigh fading channel with AWGN noise is generated, and the total path

number is three, including one main path and three multipaths. We can see

that the performance of SC-FDE system and OFDM system is comparably the

same. Besides, performance of OFDM in frequency selective fading is

sensitive to the strength of its forward error correction (FEC) code, since the

FEC code used by OFDM receivers must be powerful enough that its

correction capability is not overwhelmed by the random occurrence of low

SNR bits sampled from subchannels lying in frequency selective null regions.

Therefore, performance of OFDM is a little bit inferior to that of the SC-FDE.

 50

Figure 4.8: System performance of SC-FDE and OFDM

4.3 FPGA Realization

With the introduction of advanced FPGA architectures which provide built-in

DSP support such as embedded multipliers and block RAMs on the Xilinx Virtex-II, a

new hardware alternative is available for designers who can get even higher levels of

performances than those achievable on general purpose DSP processors.

In our implementation, we adopt Xilinx Virtex-II series as our FPFA and VHDL

as our hardware description language. The programming concepts that deserved to be

mentioned in high level language like MATLAB and in hardware description

language like VHDL are quite different. In general, high level language keeps its

temporary data in a form of variables, and simply assigns the stored variable to

another one which is used to be the input of next stage or functions if necessary,

whereas hardware description language may need extra data buffer and related

components to perform the same task. Since we have no choice but to add RAMs,

FIFOs or register as data buffers, some index-related jobs or adding cyclic prefix or

UW can be performed in the same time. The following sections will give readers more

concepts and clear description about how we design in FPGA.

 51

4.3.1 Design Principles

1. Parallel processing:

One of the biggest advantages of FPGA is its ability to support any level

of parallelism. Complicated calculations can be divided into several simple

operations and executed parallelly to enhance data throughput. The proposed

phase tracking algorithm is a good example of parallel processing. Since each

received symbol should be correct by two kinds of phase offset - the

accumulated phase offset and the new phase offset generated in each symbol,

the accumulated phase offset can then be corrected at the same time as the

new phase offset is calculated by the Unique Word. The generally used

function block, FIR filter, is another good example of parallel processing. An

FIR filter consists of many multiply-and-accumulate operations so that and it

is time-consuming if there is only a single, fixed multiply-and-accumulate

used. To shorten the processing time, sufficient multiply-and-accumulate units

are always utilized. There are other blocks utilizing parallel processing

technique in this thesis which will be detailed later. By doing so, lot of buffer

size can be saved and the area can be greatly reduced.

2. Resource Reuse:

 The advantage of resource reusing is apparent but important. Obviously,

if blocks in the design can be reused without affecting the result, the area of

the design will be greatly saved. One of the resource reusing examples in our

design is RAMs and ROMs. Since RAMs and ROMs are widely used and

often occupy most of the area, reusing them will definitely save an

appreciable resources. Another example in our design is to reuse certain large

operation units such as multipliers and dividers, whose sizes grow with the

width of the operands. Reusing those operation units will save a sizable area

as well.

 52

3. Independent Block Design:

A system is composed of lots of function blocks, and each block

executes different functions. On designing we may sometimes modify certain

blocks to achieve better performance or faster speed. It is therefore significant

to design each block independently so that when particular blocks are updated,

the functionalities of the whole system will not be affected. In our design,

there is a pair of pins at every block call rdy_in and rdy_out which are used to

“turn on” and “turn off” the block. With this design, every block is

functioning independently and the designers can have a great freedom to

modify the blocks or substitute the outdated blocks with the latest ones,

without caring about adding delays and so forth.

4. Using FIFOs as Buffers Enables Pipelining:

Sometimes a complicated numerical computation is carried out in a

block, and thus many summations and multiplications are serially executed in

a path within a single clock period. Although high speed

multiply-accumulators are embedded inside Xilinx FPGAs, these operations

cannot be completely executed in time within a single clock period. Delays

are often used as a solution to control the data flow between blocks. However,

instructions in this delay-controlling structure can only be executed serially

and critical path is long. To solve this problem, FIFO is used as an alternative

solution. In our design, FIFO is inserted in the path and therefore the whole

computation will be separate into few sections, each of which can be executed

parallelly. Therefore using FIFOs enables pipeline processing, and the

processing delay is greatly reduced.

5. Substitute real number computation for complex number computation:

 Inevitably, large amount of complex number computations are included

in our SC-FDE system. In MATLAB, these complex number computations

can be easily computed, whereas become inconvenient in VHDL since

complex number operations cannot be carried our directly in VHDL. Hence,

in order to deal with complex number computations, the original complex

 53

number arithmetic is separated into many real number segments. For example,

one simple complex number computation, (X+Y)/Z, will become

(ae+ce+bf+df)/(e2+f2)+(-af-cf+be+de)i/(e2+f2) after the rearrangement,

where X=a+bi, Y=c+di, Z=e+fi, and a, b, c, d, e, and f are real numbers.

4.3.2 Circuit Design

In the following paragraphs, components are roughly divided into transmitter

components and receiver components, and all circuits follow the principles introduced

in the previous section. Additionally, every component is hierarchically designed.

4.3.2.1 Circuit Design of Transmitter

Figure 4.9 shows the overview of the circuit design of the SC-FDE transmitter.

All the circuits are synchronized with the system clock, and are initialized by the

system reset. In our design, one data symbol is generated every 16 system clocks.

Therefore, no delay is used between any two blocks and all the blocks are

independently designed by the rdy_in and rdy_out pins as mentioned above. This

allows users to save a lot of space for delay and tremendously increases the

performance. We can see that the transmitter design of the SC-FDE system is rather

simple. Detailed circuit designs of function blocks are described as follows.

clk
rst

din
rdy_in

dout
rdy_out

clk
rst

din
rdy_in

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

dout_I
dout_Q
rdy_out

RFD

df_I
df_Q

din_I
din_Q

drdy_I
drdy_Q

pf_I
pf__Q

pin_I
pin_Q

prdy_I
prdy_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

conv_encoder mapper

add_UW

pmb_generator

multiplexer

up_RRC4
|
4
|

4
|
4
|

4
|
4
|

8
|
8
|

System Clock
Asynchronous Reset

clk
rst

din
rdy_in

dout
rdy_out

clk
rst

din
rdy_in

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

dout_I
dout_Q
rdy_out

RFD

df_I
df_Q

din_I
din_Q

drdy_I
drdy_Q

pf_I
pf__Q

pin_I
pin_Q

prdy_I
prdy_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

conv_encoder mapper

add_UW

pmb_generator

multiplexer

up_RRC
clk
rst

din
rdy_in

dout
rdy_out

clk
rst

din
rdy_in

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

pkt_fin_I
pkt_fin_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

clk
rst

din_I
din_Q
rdy_in_I
rdy_in_Q

dout_I
dout_Q
rdy_out

RFD

df_I
df_Q

din_I
din_Q

drdy_I
drdy_Q

pf_I
pf__Q

pin_I
pin_Q

prdy_I
prdy_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

df_I
df_Q

din_I
din_Q

drdy_I
drdy_Q

pf_I
pf__Q

pin_I
pin_Q

prdy_I
prdy_Q

dout_I
dout_Q

rdy_out_I
rdy_out_Q

conv_encoder mapper

add_UW

pmb_generator

multiplexer

up_RRC4
|
4
|

4
|
4
|

4
|
4
|

4
|
4
|

4
|
4
|

4
|
4
|

8
|
8
|

8
|
8
|

System Clock
Asynchronous Reset
System Clock
Asynchronous Reset

Figure 4.9: Circuit design of transmitter

 54

(1) Convolutional encoder:

Figure 4.10 shows our circuit design of the convolutional encoder, named

conv_encoder. Two entities are included in the conv_encoder, which are conv

and p2s. The entity conv is the core of the convolutional encoder, which is

responsible for generating coded bit, while p2s is used to serially output the

three parallelly input coded bits. Both blocks are first initialized by the system

reset to make sure that all the values at the output pins are set to specific initial

values. The source data is then fed into the conv through pin din, and three

coded bits, da, db and dc are generated simultaneously. Each source bit comes

along with a strobe inputted to rdy_in pin, so that the conv will not function

unless it is triggered by rdy_in. The same control mechanism is used at p2s. On

the other hand, since one source bit comes every 16 clocks whereas the p2s

requires only three clocks to output the three parallelly input data bits, no

critical path problem will occur.

conv_encoder
conv p2s

clk
rst

din

rdy_in

da
db
dc

rdy_out

clk
rst

da
db
dc

rdy_in

dout

rdy_out

conv_encoder
conv p2s

clk
rst

din

rdy_in

da
db
dc

rdy_out

clk
rst

da
db
dc

rdy_in

dout

rdy_out

Figure 4.10: Circuit design of convolutional encoder

(2) Mapper / de-mapper:

The mapper and de-mapper blocks shown in Figure 4.11 and 4.12,

respectively, are similar except that the data flow directions of the two blocks

are opposite. In our system, QPSK modulation is adopted, so that coded bits

are going to be modulated into in-phase and quadrature parts. Therefore, at

every trigger of rdy_in, the mapper block functions as a switch that maps the

input bit stream din to d_I and d_Q iteratively. Besides, it also outputs two

control signals rdy_out_I and rdy_out_Q along with d_I and d_Q, respectively,

as the trigger sources for the next stage. Note that since one source bit comes

 55

every 16 clocks whereas the mapper requires only three clocks to output three

coded bits, no buffer is required to store any intermediate value. Besides,

though theoretically the output values of mapper are +1 and -1, we do not

expand the output width but still use ‘1’ to represent +1 and ‘0’ to represent -1,

since no arithmetic is required before the root-raised cosine filter. On the other

hand, the de-mapper functions in a similar way except that the data flow is in

an opposite direction. Two input data streams, din_I and din_Q, are sent into

the de-mapper blocks with triggers rdy_in_I and rdy_in_Q, respectively. The

de-mapper acts as a multiplexer that combines the two input streams into

output dout.

clk
rst

din
rdy_in

d_I
rdy_out_I

d_Q
rdy_out_Q

mapper

Figure 4.11: Circuit design of mapper

clk
rst

din_I
rdy_in_I
din_Q
rdy_in_Q

dout
rdy_out

de-mapper

Figure 4.12: Circuit design of de-mapper

(3) Preamble generator:

As described in Chapter 2, preambles are BPSK modulated and consist of

ten short preambles and two long preambles. Instead of using a large ROM to

store the whole preamble symbol pattern with a ROM of depth

16 10 16 64 2 304× + + × = symbols, two small ROMs called st_rom and

ln_rom with depth 16 and 64 are used to store one short preamble pattern and

one long preamble pattern, respectively. We repeatedly read out short preamble

ten times and long preamble two times, then preamble channel is generated

 56

with a lot of space saved. The preamble generator pmb_gen starts to function

as soon as system is reset, and its output rate equals to clock rate, which is

faster than normal data and UW symbol rate. This is because the 304 preamble

symbols have to be generated as soon as possible since data and UW symbols

are waiting.

Once preamble symbols are all sent, the finish pin of pmb_gen will be set

to 1 as a flag for the multiplexer followed, and the rdy_out pin will also be set

to 1 to start up the transmission of data and UW symbols. Meanwhile, a block

called new_pkt is used to count the number of data symbols (excluding UW

symbols) generated by the trigger of rdy_in from previous mapper block. This

block is used to determine whether a packet of data symbols have been sent,

and whether the preamble generator should start to function again. Therefore,

when new_pkt is triggered for 48 6= 288× times, it will output a set flag to

reset the whole system. The preamble generator then starts to generate

preamble symbols again after the reset.

new_pkt pmb_gen
clk
rst

rdy_in

set

pmb_generator

clk
rst

st_pmb

16

ln_pmb

64

dout
rdy_out

finish

4

Figure 4.13: Circuit design of preamble generator

(4) Add the Unique Word to each frame:

The Unique Word is a known sequence that is added to the guard time

between two frames as mention in Chapter 2. This operation is done in the

add_uw_i and add_uw_q blocks, where a little ROM with depth 16 is used to

store the UW values. To keep the symbol rate of output UW the same as that of

input data, every UW symbol outputs when one data symbol inputs. Therefore,

a synchronous FIFO (First-In-First-Out) of depth 16 is used to buffer the first

 57

16 input data symbols when they are waiting for the transmission of UW, and

these data symbols will first be generated in order as soon as the transmission

of the 16 UW is finished. Besides, the word length of data symbols and UW

symbols are extended at the sign_ext block. Since preamble is BPSK

modulated and its value is set to be +7 and -7, the value of the QPSK

modulated data symbols is set to be 7 2 4⎢ ⎥± = ±⎣ ⎦ such that the IQ gain of

preamble and data symbols are approximately the same, which will benefit the

design of amplifier. Therefore, we extend the word length of data symbol to 4

bits wide, which is the same as that of preamble symbols, such that both

preamble and data symbols can share the input pin of RRC filter.

Another block called pkt_fin is a control flag that counts the number of

bits that are outputted from this block. Once it counts to (16 48) 6 384+ × = , it

will send a trigger signal through finish pin to indicate that all the data symbols

as well as UW symbols are sent, which means that a packet of data symbols

have been generated. This control signal together with the trigger signal from

finish pin at preamble generator are used to control the multiplexer.

add_uw_i
clk
rst

din
rdy_in

FIFO

16

ROM

16
dout

rdy_out

sign_ext

din

rdy_in

dout

rdy_out rdy_in
finish

pkt_fin
4

add_uw_q
clk
rst

din
rdy_in

FIFO

16

ROM

16
dout

rdy_out

sign_ext

din

rdy_in

dout

rdy_out rdy_in
finish

pkt_fin
4

add_UW
add_uw_i

clk
rst

din
rdy_in

FIFO

16

ROM

16
dout

rdy_out

sign_ext

din

rdy_in

dout

rdy_out rdy_in
finish

pkt_fin
4

add_uw_q
clk
rst

din
rdy_in

FIFO

16

FIFO

16

ROM

16

ROM

16
dout

rdy_out

sign_ext

din

rdy_in

dout

rdy_out rdy_in
finish

pkt_fin
4

add_UW

Figure 4.14: Circuit design of Unique Word generator

(5) Multiplexer

The multiplexer in our design acts a switch to pass the preamble symbols

and UW-appended data symbols sequentially. The outputs of selector, dout_I,

dout_Q, rdy_out_I and rdy_out_Q are initially connected to the corresponding

preamble input - pmb_I, pmb_Q, pmb_rdy_in_I and pmb_rdy_in_Q,

 58

respectively. Once the transmission of preamble symbols is finished and the

finish flag of the preamble generators are set, the output of the selector will

switch to the corresponding data symbol input - data_I, data_Q, data_rdy_in_I

and data_rdy_in_Q, respectively.

Besides, since there is a root raised cosine filter following the multiplexer

which requires several clocks to process one input symbol, a FIFO called

polyphse_buf is used to queue the symbols that are to be processed. Data in

polyphse_buf will be read out if “the buffer is not empty” and “the filter

behind is ready for data”. This state is monitored by the polyphse_buf_ctrl

block.

din_I
wr_en_I
din_Q
wr_en_Q

polyphse_buf

rd_en_I
rd_en_Q

dout_I
rdy_out_I

dout_Q
rdy_out_Q

empty_I
empty_Q

rd_en_I
rd_en_Q

rfd_I
rfd_Q
ept_I
ept_Q

polyphase_buf_ctrl

pmb_I
pmb_rdy_in_I
pmb_Q
pmb_rdy_in_Q

data_I
data_rdy_in_I
data_Q
data_rdy_in_Q

dout_I
rdy_out_I

dout_Q
rdy_out_Q

selector
4

4

4

4

4

4
4

4

multiplexer

din_I
wr_en_I
din_Q
wr_en_Q

polyphse_buf

rd_en_I
rd_en_Q

dout_I
rdy_out_I

dout_Q
rdy_out_Q

empty_I
empty_Q

din_I
wr_en_I
din_Q
wr_en_Q

polyphse_buf

rd_en_I
rd_en_Q

dout_I
rdy_out_I

dout_Q
rdy_out_Q

empty_I
empty_Q

rd_en_I
rd_en_Q

rfd_I
rfd_Q
ept_I
ept_Q

rd_en_I
rd_en_Q

rfd_I
rfd_Q
ept_I
ept_Q

polyphase_buf_ctrl

pmb_I
pmb_rdy_in_I
pmb_Q
pmb_rdy_in_Q

data_I
data_rdy_in_I
data_Q
data_rdy_in_Q

dout_I
rdy_out_I

dout_Q
rdy_out_Q

selector
4

4

44

44

4

4

44

44

44

44
44

44

multiplexer

Figure 4.15: Circuit design of multiplexer

 (6) Upsampler and Root-raised cosine filter :

In our thesis, the upsampler and root-raised cosine filter are co-designed

as the polyphase structure as mentioned in Chapter 2. Since the number of taps

of the RRC filter is 32 and the upsampling rate is 4, we will then have four

polyphase interpolator filters, each with eight coefficients. Figure 4.16 shows

the circuit design of the one polyphase interpolator filter. We can see that all

eight multiply-and-accumulate operations are executed in one clock cycle;

such parallel processing can maximize data throughput.

 59

Reg0 Reg1 Reg2 Reg7
4

Data in
13 13 13 13

4 4 4

C0 C1 C2 C7

Data out17

RRC

Reg0 Reg1 Reg2 Reg7
4

Data in
13 13 13 13

4 4 4

C0 C1 C2 C7

Data out17

RRC

Figure 4.16: Circuit design of polyphase filter

4.3.2.2 Circuit Design of Receiver

Figure 4.17 shows the overview of the circuit design in the receiver. Certainly, a

pipelined architecture is adopted as in transmitter. The circuit designs of function

blocks are given as follows.

de_map
clk
rst

din_I
din_Q
rdy_in

dout
rdy_out

viterbi
clk
rst

dout
rdy_out

din
rdy_in

blk_ph_comp

acc_ph_comp
din_I
din_Q
rdy_in

dout_I
dout_Q
rdy_out

uw_ph_err
din_I
din_Q
rdy_in

rdy_out
phase

din_I
din_Q

dout_I
dout_Q
rdy_out

ph_comp

phase
rdy_in

trigger

Frequency Domain Equalization Phase Offset Compensation

pkt_det
clk
rst

din_I
din_Q

dout_I
dout_Q

rdy_in rdy_out

mf
clk
rst

din_I
din_Q

dout_I
dout_Q

rdy_in rdy_out

dll
clk
rst

din_I
din_Q

dout_I
dout_Q

rdy_in rdy_out

freq_comp

phase_in

din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

freq_est

rst

din_I
din_Q phase

rdy_in triggersw_st_pmb

clk
rst

sout_I
sout_Q

rdy_out_s

din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

ren

Timing Synchronization

Frequency Offset Compensation

FFT
clk
rst

din_I
din_Q

rdy_in

XK_RE
XK_IM

fft_dv

ch_est
clk
rst

acc_XS_RE
acc_XS_IM

rdy_out_PMB
DOUT_RE
DOUT_IM
rdy_out_D

XK_RE
XK_IM

fft_dv

DOUT_RE

rdy_out_D
DOUT_IM

ch_eq

acc_XS_RE
acc_XS_IM
rdy_out_PMB

DIN_RE
DIN_IM
rdy_out_D

clk
rst

IFFT
clk
rst

dout_Q
dout_I

rdy_out

XK_RE

rdy_in
XK_IM

sw_UW
clk
rst

uout_I
uout_Q

rdy_out_u

din_I
din_Q
rdy_in

dout_I
dout_Q
rdy_out

ln_pmb_cp_rm
clk
rst
din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

8|8|

8|8|

14|14|
14|14|

14|14|

14|14|

12|12|

14|

12|12|

12|12|

20|20|

20|20|
12|12|

12|12|

12|12|

12|12|

12|12|

12|

12|12|

de_map
clk
rst

din_I
din_Q
rdy_in

dout
rdy_out

viterbi
clk
rst

dout
rdy_out

din
rdy_in

blk_ph_comp

acc_ph_comp
din_I
din_Q
rdy_in

din_I
din_Q
rdy_in

dout_I
dout_Q
rdy_out

dout_I
dout_Q
rdy_out

uw_ph_err
din_I
din_Q
rdy_in

rdy_out
phase

din_I
din_Q

dout_I
dout_Q
rdy_out

dout_I
dout_Q
rdy_out

ph_comp

phase
rdy_in

trigger

Frequency Domain Equalization Phase Offset Compensation

pkt_det
clk
rst

din_I
din_Q

dout_I
dout_Q

rdy_in rdy_out

mf
clk
rst

din_I
din_Q

dout_I
dout_Q

rdy_in rdy_out

dll
clk
rst

din_I
din_Q

dout_I
dout_Q

rdy_in rdy_out

freq_comp

phase_in

din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

freq_est

rst

din_I
din_Q phase

rdy_in triggersw_st_pmb

clk
rst

sout_I
sout_Q

rdy_out_s

din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

ren

Timing Synchronization

Frequency Offset Compensation

FFT
clk
rst

din_I
din_Q

rdy_in

XK_RE
XK_IM

fft_dv

FFT
clk
rst

din_I
din_Q

rdy_in

XK_RE
XK_IM

fft_dv

ch_est
clk
rst

acc_XS_RE
acc_XS_IM

rdy_out_PMB
DOUT_RE
DOUT_IM
rdy_out_D

XK_RE
XK_IM

fft_dv

ch_est
clk
rst

acc_XS_RE
acc_XS_IM

rdy_out_PMB
DOUT_RE
DOUT_IM
rdy_out_D

XK_RE
XK_IM

fft_dv

DOUT_RE

rdy_out_D
DOUT_IM

ch_eq

acc_XS_RE
acc_XS_IM
rdy_out_PMB

DIN_RE
DIN_IM
rdy_out_D

clk
rst

DOUT_RE

rdy_out_D
DOUT_IM

ch_eq

acc_XS_RE
acc_XS_IM
rdy_out_PMB

DIN_RE
DIN_IM
rdy_out_D

clk
rst

IFFT
clk
rst

dout_Q
dout_I

rdy_out

XK_RE

rdy_in
XK_IM

IFFT
clk
rst

dout_Q
dout_I

rdy_out

XK_RE

rdy_in
XK_IM

sw_UW
clk
rst

uout_I
uout_Q

rdy_out_u

din_I
din_Q
rdy_in

dout_I
dout_Q
rdy_out

sw_UW
clk
rst

uout_I
uout_Q

rdy_out_u

din_I
din_Q
rdy_in

dout_I
dout_Q
rdy_out

ln_pmb_cp_rm
clk
rst
din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

ln_pmb_cp_rm
clk
rst
din_I
din_Q

rdy_in

dout_I
dout_Q

rdy_out

8|8|

8|8|

8|8|

8|8|

14|14|

14|14|
14|14|

14|14|

14|14|

14|14|

14|14|

14|14|

12|12|

12|12|

14|

12|12|

12|12|

12|12|

12|12|

20|20|

20|20|

20|20|

20|20|
12|12|

12|12|

12|12|

12|12|

12|12|

12|12|

12|12|

12|12|

12|12|

12|12|

12|

12|12|

12|12|

Figure 4.17: Circuit design of receiver side

 60

(1) Packet Detection:

The packet detection block, pkt_det, is an implementation of double sliding

window packet detection method. The design block diagram is shown in Figure

4.18. In floating point MATLAB verification, two shift registers with length five

are used. In realization, only six Delay Flip-Flops (DFF) are used since we

merely need the accumulation results in the two registers – five of them

correspond to register A and the other one corresponds to register B in the

algorithm mentioned in section 2.3.1.1. Received symbols are shifted in the six

DFFs and at every shift, total power of symbols in register A and register B are

calculated and the ratio of them is derived. Once the ratio exceeds the specific

threshold, the switch is triggered and turned on and all the symbols can pass to

the next stage. Therefore, the pkt_det block plays the role of a power controller

since all the other blocks behind will not function before a packer is detected.

acc_B
acc_out
rdy_out

din_I
din_Q

din_I
din_Q

din_I
din_Q

din_I
din_Q

din_I
din_Q

din_I
din_Q

dout
rdy_out

din_I
din_Q
rdy_in

abs acc_A
acc_out
rdy_out

din
rdy_in

dout
rdy_out

din_I
din_Q
rdy_in

abs
din
rdy_in

A
B

sub
A

comp

din_I
din_Q
rdy_in

switch

GT_thr

trigger

Q

dout_I
dout_Q
rdy_out

DFF DFF DFF DFF DFF DFF

pkt_det

8 8 8 8 8 8 8 8

8 8 8 8 8
acc_B

acc_out
rdy_out

acc_Bacc_B
acc_out
rdy_out

din_I
din_Q
din_I
din_Q

din_I
din_Q
din_I
din_Q

din_I
din_Q
din_I
din_Q

din_I
din_Q
din_I
din_Q

din_I
din_Q
din_I
din_Q

din_I
din_Q
din_I
din_Q

dout
rdy_out

din_I
din_Q
rdy_in

abs acc_A
acc_out
rdy_out

acc_Aacc_A
acc_out
rdy_out

din
rdy_in

dout
rdy_out

din_I
din_Q
rdy_in

abs
dout

rdy_out
din_I
din_Q
rdy_in

abs
din
rdy_in

A
B

sub
A

comp

din_I
din_Q
rdy_in

switch

GT_thr

trigger

Q

dout_I
dout_Q
rdy_out

DFF DFF DFF DFF DFF DFF

pkt_det

88 88 88 88 88 88 88 88

88 88 88 88 88

Figure 4.18: Circuit design of double sliding window packet detection method

(2) Symbol timing recovery (Delay-Locked Loop):

The dll block composes of three parts. The first and second parts, dll_par

and dll_algo are truly the implementation of the algorithm. The third part,

dll_count, is a control block that monitors the output of the whole dll block. In

dll_par block, every three input symbols are collected as the detection set, and

three relationships among them are determined: whether the amplitude of the

on-time symbol is greater than the amplitude of the correct sample, whether the

difference between the early and late samples are too large, and whether the sign

of the on-time sample is equal to the sign of the difference between early and late

samples. Once this information is collected, it is forwarded through pin

 61

d2_GT_thr, d3_d1_GT_diff, sign_d2_EQ_d3_d1, to the second block, dll_algo,

which performs the DLL algorithm, determines which sample in the detection set

should be the output, and calculates the hop distance to next detection set. On the

other hand, since tracking process of DLL algorithm is time consuming, the

dll_count block is used to monitor the number of output symbols from dll_algo

block to control the lifetime of the tracking. Once twenty consecutive samples

outputted from dll_algo are on-time samples – the detection sets in twenty

consecutive tracking processes are at an interval of four samples, we say the

tracking loop is locked. Therefore, the dll algorithm will no longer be performed

and all the rest of input symbols are downsampled by 4 directly. The dll_count

block will monitor this phenomenon and determine when to turn off DLL

tracking algorithm.

14

d2_GT_thr
d3_d1_GT_diff

sign_d2_EQ_d3_d1

prev_d3_d1_GT_diff
next_d3_d1_GT_diff

rdy_out

dout1_I
dout1_Q
dout2_I

dout2_Q
dout3_I

dout3_Q

rst
clk

din_I
din_Q

rdy_in

d2_GT_thr
d3_d1_GT_diff
sign_d2_EQ_d3_d1

prev_d3_d1_GT_diff
next_d3_d1_GT_diff

rdy_in

din1_I
din1_Q
din2_I
din2_Q
din3_I
din3_Q

dout_I
dout_Q
rdy_out

dout_I
dout_Q
rdy_out

dll_I
dll_Q
dll_rdy_in

din_I
din_Q
din_rdy_in

dll_par dll_algo dll_count

14

14

14

14

dll

1414

d2_GT_thr
d3_d1_GT_diff

sign_d2_EQ_d3_d1

prev_d3_d1_GT_diff
next_d3_d1_GT_diff

rdy_out

dout1_I
dout1_Q
dout2_I

dout2_Q
dout3_I

dout3_Q

rst
clk

din_I
din_Q

rdy_in

d2_GT_thr
d3_d1_GT_diff

sign_d2_EQ_d3_d1

prev_d3_d1_GT_diff
next_d3_d1_GT_diff

rdy_out

dout1_I
dout1_Q
dout2_I

dout2_Q
dout3_I

dout3_Q

rst
clk

din_I
din_Q

rdy_in

d2_GT_thr
d3_d1_GT_diff
sign_d2_EQ_d3_d1

prev_d3_d1_GT_diff
next_d3_d1_GT_diff

rdy_in

din1_I
din1_Q
din2_I
din2_Q
din3_I
din3_Q

dout_I
dout_Q
rdy_out

d2_GT_thr
d3_d1_GT_diff
sign_d2_EQ_d3_d1

prev_d3_d1_GT_diff
next_d3_d1_GT_diff

rdy_in

din1_I
din1_Q
din2_I
din2_Q
din3_I
din3_Q

dout_I
dout_Q
rdy_out

dout_I
dout_Q
rdy_out

dll_I
dll_Q
dll_rdy_in

din_I
din_Q
din_rdy_in

dll_par dll_algo dll_count

1414

1414

14

1414

dll

Figure 4.19: Circuit design of the delay-locked loop

(3) Frequency Offset Compensation :

According to Eq.(2.8) in Chapter 2, frequency offset is estimated by

identical samples of repeated symbols. In our thesis, frequency offset is

estimated by short preambles, yet only five short preambles – the third, forth,

fifth, sixth and seventh ones – are used in the task, so that four times of

estimation are done. Since four is the second power of two, it is easily to average

the four estimation results by discarding the two LSB of the summation result

instead of using a divider.

 62

Evolved from Eq.(2.8), let
1

*
, ,

0

L

i i n i n D
n

z r r
−

+
=

= ∑ denote the intermediate result

from the i-th and the (i+1)-th short preamble, the frequency offset estimated by zi

is then ˆ
2

i
i

zf
Dπ

= − where D is the length of one short preamble. Since we

take four times of estimation, the average frequency offset is derived by:

4 4

1 1ˆ
4 4 2 16

ii
i i

f z
f

π
= == = −

⋅ ⋅

∑ ∑
 (4.1)

Let y[n] be the data sequence that is to be frequency-offset compensated. The

compensation is then:

4

1

2 4

4
16

1

4 4

[]

[] let

[] cos sin
2 2

i
i

j f n

z
j n

sum i
i

sum sum

y n e

y n e z z

z zy n n j n

π

=

⋅ ⋅Δ

−

=

∑
= =

⎧ ⎫⎛ ⎞ ⎛ ⎞= −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

∑ (4.2)

Therefore, the five short preambles used are first separated from the data

stream and fed into the freq_est block, and the value of sum
4

z
2

 is first

calculated. Once long preamble symbols and data symbols are coming later, they

will trigger the freq_est block to output the values of sum
4

zcos
2

n⎛ ⎞
⎜ ⎟
⎝ ⎠

 and
sum
4

zsin
2

n⎛ ⎞
⎜ ⎟
⎝ ⎠

, where n accumulates according to the number of input symbols

by counting the number of triggers from count_in. The estimated offset is then

compensated in the freq_comp block. The full design diagram is shown in

Figure 4.20.

dout_I
dout_Q

rdy_out

clk
rst

a
b
c
d
rdy_in

clk
rst

din_I
din_Q
rdy_in

counter_in

cos_val
sin_val

freq_est freq_comp

14 14 12

14

freq_estimation

dout_I
dout_Q

rdy_out

clk
rst

a
b
c
d
rdy_in

dout_I
dout_Q

rdy_out

clk
rst

a
b
c
d
rdy_in

clk
rst

din_I
din_Q
rdy_in

counter_in

cos_val
sin_val

clk
rst

din_I
din_Q
rdy_in

counter_in

cos_val
sin_val

freq_est freq_comp

14 14 12

14

freq_estimation

Figure 4.20: Circuit design of the frequency offset compensation block

 63

(4) FFT/IFFT :

Fast Fourier transform (FFT) is a type of discrete Fourier transform (DFT),

but only faster with fewer computations (summations and multiplications). A

DFT takes N2 computations to calculate a transform for N points, whereas the

FFT takes around Nlog2N computations to complete the same thing. Here we

adopt a 64-tap FFT which is provided by Xilinx and can operate 12-bit

complex (12-bit real, 12-bit imaginary) samples, and a rough design concept is

illustrated in Figure 4.21.

A pipelined implementation of a 64-point FFT requires a simple pipeline

consisting of 6 butterfly computation modules. This method operates on two

data points per clock cycle, yielding an effective data rate that is twice the

clock rate, but requires customized butterfly computation modules for each

stage of the FFT computation. Since a butterfly computation is carried out, the

output signal will be in bit-reverse order.

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation Delay

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation

12

FFT
xin
yin

12 Xout
Yout

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation Delay

Butterfly
computation Delay Butterfly

computation Delay Butterfly
computation

12

FFT
xin
yin

12 Xout
Yout

Figure 4.21: Circuit design of fast Fourier transform

(5) Channel estimation and Frequency Domain Equalization:

Long preambles are used to carry out the major task of channel estimation.

Conventionally, channel frequency response is first estimated and stored, and

channel equalization is another story followed. From Eq.(2.10) and Eq.(2.11)

in Chapter 2, conventional channel estimation and equalization strategy is

shown in Fig 4.22. It is clear that two division operations are required; besides,

the equalization cannot be done –the input data symbols have to be buffered –

until the estimated channel response is derived.

 64

÷

* 2KX

1,kR
2,kR

kD

÷

2
kX

Buffer

Channel Estimation

Channel Equalization

÷

* 2KX

1,kR
2,kR

kD

÷÷

2
kX

Buffer

Channel Estimation

Channel Equalization

Figure 4.22: Conventional channel estimation and equalization strategy

In this thesis, we combine Eq. (2.10) and (2.11) into Eq.(4.3) as shown

below, and the new strategy is shown in Fig. 4.23.

2

* *
1, 2,

2 k k
k

k k k k

D X
S

R X R X
⋅ ⋅

=
⋅ + ⋅

 (4.3)

Obviously, only one division is required now. On the other hand, channel

estimation and equalization are done parallelly, and data also share the task of

channel equalization.

2*
KX

*
KX

1,kR
2,kR

kD

2

÷

Channel Equalization

2*
KX

*
KX

1,kR
2,kR

kD

2

÷÷

Channel Equalization

Figure 4.23: Modified channel estimation and equalization strategy

We observe that the numerator of Eq.(4.3) is the multiplication of received

preamble and known transmitted preamble, |Xk|2, while the denominator is that

of the received data with known XK
*. With this analogue, operations at

numerator and denominator can be done by sharing one multiplier, which

complies with the design principle: resources reusing.

 65

Figure 4.24 shows the design block of channel equalizer, called ch_EQ.

The known sequence, |Xk|2 and XK
*, are stored in two ROMs called abs_xk and

conj_xk in mul_sel block, each with depth 64. The mul_sel block monitors the

inputs and determines what will the multiplicator and multiplicand to the

multiplier mult behind be. If input is preamble, the stored XK
* will be sent

together with the preamble to the multiplier; on the contrary, the data |Xk|2 will

be sent if the input is data. Finally, the result of multiplication of preamble and

XK
* will be sent to the half_ch block since it stores the estimation of “half” of

the channel value in a ROM called half_ch_est with depth 64. When the

multiplication of data and |Xk|2 is done, its result and the values in half_ch_est

will be sent together to the divider block and complete the frequency domain

equalization operation.

abs_xk

64

conj_xk

64

DATA_RE
DATA_IM
DATA_rdy_in

LN_PMB_RE
LN_PMB_IM
LN_PMB_rdy_in

A_RE
A_IM

B_RE
B_IM

rdy_out

mult_sel
A_RE
A_IM

B_RE
B_IM

ND

R_PMB_RE
R_PMB_IM

R_PMB_rdy

R_DATA_rdy
R_DATA_RE
R_DATA_IM

mult

A_RE
A_IM
ND

B_RE
B_IM

D_RE
R_IM

RDY

divider
half_ch_est

64

R_PMB_RE
R_PMB_IM
R_PMB_rdy
DATA_rdy

R_RE
R_IM

rdy_out

half_ch12

12

12

12

12

12

20

12

Channel_equalizer

abs_xk

64

conj_xk

64

DATA_RE
DATA_IM
DATA_rdy_in

LN_PMB_RE
LN_PMB_IM
LN_PMB_rdy_in

A_RE
A_IM

B_RE
B_IM

rdy_out

mult_sel
abs_xk

64

abs_xk

64

conj_xk

64

DATA_RE
DATA_IM
DATA_rdy_in

LN_PMB_RE
LN_PMB_IM
LN_PMB_rdy_in

A_RE
A_IM

B_RE
B_IM

rdy_out

mult_sel
A_RE
A_IM

B_RE
B_IM

ND

R_PMB_RE
R_PMB_IM

R_PMB_rdy

R_DATA_rdy
R_DATA_RE
R_DATA_IM

mult
A_RE
A_IM

B_RE
B_IM

ND

R_PMB_RE
R_PMB_IM

R_PMB_rdy

R_DATA_rdy
R_DATA_RE
R_DATA_IM

mult

A_RE
A_IM
ND

B_RE
B_IM

D_RE
R_IM

RDY

divider

A_RE
A_IM
ND

B_RE
B_IM

D_RE
R_IM

RDY

divider
half_ch_est

64

R_PMB_RE
R_PMB_IM
R_PMB_rdy
DATA_rdy

R_RE
R_IM

rdy_out

half_ch
half_ch_est

64

R_PMB_RE
R_PMB_IM
R_PMB_rdy
DATA_rdy

R_RE
R_IM

rdy_out

half_ch12

12

12

12

12

12

20

12

Channel_equalizer

Figure 4.24 Circuit design of channel equalizer

(6) Phase offset compensator:

In Section 2.3.4, we have discussed the phase estimation algorithm. It is

clear that the phase offset compensation is done in two steps: the compensation

of the accumulated phase error and the compensation of the phase error inside

one frame. On the other hand, the accumulated phase error is known at the very

beginning of one frame, whereas the phase error inside one frame is not known

until the phase offset estimation is derived by UW at the end of a frame. The

algorithm then inheres a good nature of parallel processing: when the

accumulated phase error is being compensated, the phase offset inside one

frame can be estimated by UW. Figure 4.25 shows the design of phase

estimator. The input symbols are first divided into data symbols part and UW

symbols part by the UW_sw. The UW symbols are then used to estimate the

 66

phase error inside one frame in the UW_ph_err_est block. Meanwhile, the

input data symbols are firstly compensated by the accumulated phase offset in

the acc_ph_err_comp. As the phase offset inside the n-th frame, nΘ , is

derived, it will be written into a RAM called acc_ph_err in the

acc_ph_err_comp block, and the data symbols then should be secondly

rotated by nΘ . In our proposed algorithm, this rotate value

is ()2 /(2 -)n FFT GkT T TΔΘ ⋅ , and a simplified algorithm proposed in Section 4.2,

it is () /(2 -)n FFT G FFT GT T T TΔΘ − . The rotate value can be prepared and

modified in the rot_val block by the designer. Finally, once the rotate value is

ready, the data symbols can be further compensated.

clk
rst

din_I
din_Q

rdy_in

UW_I
UW_Q

UW_rdy_out

data_I
data_Q

data_rdy_out

UW_I
UW_Q
UW_rdy_in

ph_err
ph_rdy_out

ph_in
rdy_in

cos_val
sin_val

acc_ph_err
acc_ph_err_comp

UW_ph_err_est
ph_in
rdy_in

cos_val
sin_val
rdy_out

a
b
c
d
rdy_in

conj_mult

d_I
d_Q

rdy_out

data_buf

d_I
d_Q
wr_en

rd_en

dout_I
dout_Q
rdy_out

a
b

clk
rst dout_I

dout_Q
RDY

c
d
ND

rot_val conj_multUW_sw

12

12

12 12 12

12

12

12

ph_ofs_comp

clk
rst

din_I
din_Q

rdy_in

UW_I
UW_Q

UW_rdy_out

data_I
data_Q

data_rdy_out

UW_I
UW_Q
UW_rdy_in

ph_err
ph_rdy_out

ph_in
rdy_in

cos_val
sin_val

ph_in
rdy_in

cos_val
sin_val

acc_ph_err
acc_ph_err_comp

UW_ph_err_est
ph_in
rdy_in

cos_val
sin_val
rdy_out

a
b
c
d
rdy_in

conj_mult

d_I
d_Q

rdy_out

data_buf

d_I
d_Q
wr_en

rd_en

dout_I
dout_Q
rdy_out

a
b

clk
rst dout_I

dout_Q
RDY

c
d
ND

rot_val conj_multUW_sw

121212

121212

121212 121212 121212

121212

121212

1212

ph_ofs_comp

Figure 4.25 Circuit design of phase offset compensator

(7) Viterbi decoder:

The circuit design of the Viterbi decoder is shown in Figure 4.26. Three

main blocks are included: branch metric generator (BMG); add, compare, and

select (ACS) block; and the trace back unit (TBU). The BMG unit generates

the branch metrics for each symbol of the input sequence by comparing the

received code symbol with the expected code symbol for each connection of

the trellis (state) and counts the number of different bits. For a 1/3 rate code

adopted in our system, there are eight possible symbol combinations in the

encoded sequence: 000, 001, 010, 011, 100, 101, 110, and 111; therefore eight

BMG units are implemented in BMG block as shown in Figure 4.27.

 67

Branch metric
generator (BMG)

Add, compare,
and select (ACS)

Trace back
unit (TBU)

3

viterbi
Received

de-mapped
data symbol

16

1

Path metric

16

32

Data array

Figure 4.26: Circuit design of Viterbi decoder

BMG

BMG unit 1

BMG unit 2

BMG unit 3

BMG unit 4

BMG unit 5

BMG unit 6

BMG unit 7

BMG unit 8

Received data

3

BM1

BM2

BM3

BM4

BM5

BM6

BM7

BM8

BMG unit

XOR

Count
the

number
of 1s

Received data (0)

Expected symbol (0)

XOR
Received data (1)

Expected symbol (1)

XOR
Received data (2)

Expected symbol (2)

BM

Figure 4.27: Circuit design of branch metric generator

The ACS unit is the heart of the Viterbi decoder. Each node in the trellis

diagram corresponds to an ACS unit in the corresponding Viterbi decoder.

Therefore, referring to the trellis diagram shown in Figure 2.17, there should

be totally 16 ACS units in the ACS block as shown in Figure 4.28. The ACS

unit has 4 inputs (two branch metrics and two path metrics) and two outputs

(the new path metric and the survivor bit). The survivor bit is the most

important information generated by the ACS unit. It indicates which sum

between an input path metric and a branch metric generated the smallest result

and was selected as the output path metric or local winner.

 68

ACS unit 15

ACS unit 7

ACS unit 11

ACS unit 3

ACS unit 13

ACS unit 5

ACS unit 9

ACS unit 1

ACS unit 14

ACS unit 6

ACS unit 10

ACS unit 2

ACS unit 12

ACS unit 4

ACS unit 8

ACS unit 0

PM15

PM7

PM11

PM3

PM13

PM5

PM9

PM1

PM14

PM6

PM10

PM2

PM12

PM4

PM8

PM0

Feedback
PM

PM15
PM14

PM15
PM14

BM1~8

PM7
PM6

PM7
PM6

PM11
PM10

PM10
PM11

PM2
PM3

PM2
PM3

PM12
PM13

PM12
PM13

PM4
PM5

PM4
PM5

PM8
PM9

PM8
PM9

PM0
PM1

PM0
PM1

ACSACS unit

Adder

Adder

comparator MUX

BM1
PM1

BM2
PM2

Survivor bit

New PM

Figure 4.28: Circuit design of add, compare, and select block

The ACS block assigns the measurement functions to each state, but the

actual Viterbi decisions on encoder states are based on the trace back operation

to find the path of the states. Using the trace back operation, every state from a

current time is followed backwards through its maximum likelihood path. The

point at which the corrected bit streams starts is called the merger point (also

called the trace back depth). The performance of Viterbi decoder largely

depends upon the trace back depth. The increase in trace back depth increases

the complexity and hardware exponentially so one has to trade off between the

performance level and the complexity and hardware.

Normally for decoders using non-punctured codes, the trace back depth

equals five-times constraint length, which is sufficient to decode the correct

output in the presence of noise. In our system, the constraint length is 5,

therefore twenty-five trace back depth is required. We adopt a 16×32 register

array to store the path of the states.

 69

4.4 ModelSim Simulation

When developing an FPGA system, ModelSim simulation can help designers

develop in an efficient and accurate way. It can pull out all signals and simulate how

they work simultaneously without a limitation on the number of debugging pins.

Therefore, designers can save a lot of time downloading to FPGA and directly

examine the changes and interactions between signals. Figure 4.29 and 4.30 show the

data flows at the transmitter and receiver of the SC-FDE system, respectively. The six

data symbols are conspicuously shown. Besides, from the figures certain design

principles such as parallel processing is observed. In Figure 4.31 the output waveform

of the transmitter is enlarged to show the real transmitted baseband signal. The IEEE

802.11a like output waveform with ten short preambles, two long preambles and six

UW-appended SC-FDE data frames is clearly demonstrated, where the preamble part

is BPSK modulated.

PreamblePreamble

Data FrameData Frame

Figure 4.29: SC-FDE transmitter ModelSim simulation result

 70

ParallelismParallelism

Figure 4.30: SC-FDE receiver ModelSim simulation result

16 us16 us 24 us24 us

Figure 4.31: Transmitted waveform of SC-FDE system

 71

4.5 Experimental Results

In the self-design platform, we attempt to establish a real wireless environment,

under which the adopted algorithm can be tested. Figure 4.32 shows the experimental

environment which has been shown in Chapter 3. First, source data are stored in a

ROM in FPGA, and passed to DA after being processed by the transmitter algorithm

on FPGA. Next, data are transmitted by the RF module, and a received antenna is

allocated near the RF module. Subsequently data are received by the receive antenna

and passed to spectrum analyzer E443A and vector signal analyzer 89600S. Finally,

received data are analyzed and shown on PC.

Figure 4.32: Self-designed platform development environment

Figure 4.34 shows the source data stream in the transmitter, transmitted data

stream, and detected data stream in the receiver, where the source data stream and the

detected data stream are specially expanded below. By comparing the source data

stream with detected data stream we can find out that they are exactly the same, which

confirms that our algorithm does work successfully.

 72

Figure 4.33: Self-designed platform experimental result: source data and detected
data waveform on LA

Synthesis, map, and place and route are necessary steps in FPGA circuit design

as well as the most time-consuming process. Besides, the insuffucuency of FPGA gate

count is another problem worth noting. The goal in our design is to achieve a

compromise between the hardware resource requirement and the system time

consumed. Table 4-1 and 4-2 show the relative resource consumption of transmitter

and receiver. It can be seen that, at the transmitter side, the upsampler and RRC is the

only part that has multiplication operation, while at the receiver side, FFT/IFFT are

responsible for most of the complicated calculations. Finally, Table 4-3 shows time

consumption in our development flow, and the whole design flow includes developing

transmitter and receiver.

Table 4-1: Relative Resource consumption of the SC-FDE system at the transmitter

100%50% 40% 12% 19% 11%Upsampler & RRC

0%0% 9% 15% 6% 25%Preamble

0%50% 30% 15% 17% 15%Mux

0%0% 5% 0% 0% 0%QPSK Mapper

0%0% 4% 5% 4% 4%Convolutional Encoder

0%0% 12% 53% 54%45%add UW

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

100%50% 40% 12% 19% 11%Upsampler & RRC

0%0% 9% 15% 6% 25%Preamble

0%50% 30% 15% 17% 15%Mux

0%0% 5% 0% 0% 0%QPSK Mapper

0%0% 4% 5% 4% 4%Convolutional Encoder

0%0% 12% 53% 54%45%add UW

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

 73

Table 4-2: Relative Resource consumption of the SC-FDE system at the receiver

0%0%31%16%15%14%Unique Word Based Phase Tracking

0%0%2%15%5%12%Viterbi

0%0%5%0%0%0%Packet Detection

5%19%5%1%2%1%Match Filter

47%41%13%10%12%10%IFFT

0%0%6%16%17%13%Frequency Estimation & Compensation

47%34%6%10%12%10%FFT

0%0%5%2%2%2%Symbol Timing Recovery (DLL)

0%0%15%21%30%28%Channel Equalization

0%6%12%9%5%10%Channel Estimation

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

0%0%31%16%15%14%Unique Word Based Phase Tracking

0%0%2%15%5%12%Viterbi

0%0%5%0%0%0%Packet Detection

5%19%5%1%2%1%Match Filter

47%41%13%10%12%10%IFFT

0%0%6%16%17%13%Frequency Estimation & Compensation

47%34%6%10%12%10%FFT

0%0%5%2%2%2%Symbol Timing Recovery (DLL)

0%0%15%21%30%28%Channel Equalization

0%6%12%9%5%10%Channel Estimation

MULT 18x18BRAMIOBLUTSlice FFSlice

Selected Device : 2v6000ff1152-6

Table 4-3: Time consumption of Synthesis and P&R in SC-FDE system

19 min 33 sec3 min 58 secPlace and Route Time

7 min 2 sec2 min 37 secSynthesis Time

RXTX

19 min 33 sec3 min 58 secPlace and Route Time

7 min 2 sec2 min 37 secSynthesis Time

RXTX

4.6 Summary

In this chapter, a complete communication system design flow is presented,

including MATLAB verification, FPGA realization, ModelSim simulation, and

experimental results. Through this design flow, we developed a UW-based SC-FDE

system on two FPGA-based platforms, where real wireless channel effects can be

generated by means of RF module. We also introduce some RF debugging

instruments which make our system become much closer to real communication

systems. The designing principles we follow are described, and the designing concept

of each function block is detailed. We especially show that the proposed UW-based

phase tracking algorithm is not only theoretically suitable for the SC-FDE system but

also practically applicable in hardware design. In Chapter 5, we will give some other

applications based on UW which are also usable in SC-FDE system.

 74

Chapter 5

Other Applications on Unique Word
Structure in SC-FDE System

In this thesis we have considered and implemented the phase tracking algorithms

for single carrier systems with frequency domain equalizers based on block-by-block

of Unique Word (UW) insertion similar to that adopted in IEEE 802.11a OFDM

systems. We focus on the design and performance of the algorithms, and show that it

provides almost optimum performance in SC-FDE systems. Moreover, we also

compare the result with pilot carrier based phase tracking algorithms in OFDM

systems.

The Unique Word structure can be exploited not merely in the way described

above. It can be observed that the overall baseband processing performance of

SC-FDE systems largely depends on the design of channel estimation and

synchronization algorithms. In fact, the deterministic properties of the UW give it a

good nature to do various kinds of synchronization tasks as well as channel estimation

especially in a mobile environment. Moreover, with the UW-based algorithms the SC

systems can employing frequency-domain equalization at the receiver and benefit

from low complexity which is suitable to implement on hardware. Therefore, in this

chapter we investigate the use of UW and elaborate on the advantages it provides for

equalization, channel estimation, and synchronization. A comparison between

UW-based with CP-based SC-FDE system is also given, and their performance in

terms of BER behavior and bandwidth efficiency are shown as well.

 75

5.1 Cyclic Prefix versus Unique Word
The frequency-domain equalization for single carrier systems is based on the

equivalence between the convolution of two sequences in the time domain and the

product of their Fourier transforms. Besides, the use of FFT operations anticipates that

signals have to be processed blockwise; not only applying blockwise processing at the

received signal but also performing a blockwise transmission and inserting a cyclic

prefix between successive transmitted blocks. The content of the CP is obviously not

known and varies with every single block. With a slight modification to implement

the cyclic prefix as a training sequence – the Unique Word in this thesis, however, it

can play two important roles: avoid the inter-block-interference (IBI) and be used in

synchronization and channel estimation. The topic of channel estimation is especially

of utter importance in fast fading environment. In the following section we will show

that the UW-based SC scheme (SC-UW) scheme offers the advantages at the expense

of only a small fraction of a dB, while in other situations it has hardly any drawback

compared to CP-based SC scheme (SC-CP) system.

Before introducing the algorithms taking advantage of the UW sequence that is

provided, we can expect something a priori:

 From a performance point of view, the SC-UW scheme inherits from the

properties of the SC-CP scheme: it offers a similar performance as for

OFDM, with more robustness to nonlinear distortion and phase noise.

Moreover, the UW sequence does not contain data. Hence, it can be

optimized to get appropriate properties (e.g., autocorrelation) and its

symbols could even be chosen from a separate alphabet. This avoids the

accidental presence of the UW sequence in the useful data.

 From a synchronization point of view, the SC-UW acquisition is essentially

the same as for the SC-CP: data-aided algorithms are known to perform

better than their non-data-aided counterparts. They avoid decision directed

algorithms and alleviate the problem of feeding the decisions back, which

would mean a delay of one frame.

 76

 For the channel estimation, the concept of UW is most useful when the

channel is varying rather rapidly, like in mobile communications. The

extension of SC-UW to the multiuser case (in a spatial division multiple

access scheme) is easier than for SC-CP, as the users can be distinguished

on the basis of their different UW.

5.1.1 Comparison of CP and UW in Terms of

Bandwidth Efficiency and BER Behaviour

Figure 5.1 shows the structure of Cyclic Prefix and Unique Word. Two main

differences are obvious when comparing the two concepts:

 The UW is not random as the CP

 Instead of having to throw away the cyclic prefix, we always process the

UW, which is not removed at the receiver but is available after the

equalization in the time domain. Hence, there is no gap anymore between

two FFTs.

In practical situations, the FFT is usually taken in the middle of the UW to allow

small timing synchronization errors. Moreover, as the UW is always present on both

edges of the data block, the transformation from linear convolution to cyclic

convolution is kept, and the performance of the original SC-CP is also kept.

CP1 CP2 CP2

FFT-1 FFT-2

CP1

(a)

UW UWUW UW

FFT-2FFT-1

(b)

Data Payload

TS Overhead

CP1CP1 CP2CP2 CP2CP2

FFT-1 FFT-2

CP1

(a)

UW UWUW UW

FFT-2FFT-1

(b)

UW UWUW UW

FFT-2FFT-1

UWUW UWUWUWUW UWUW

FFT-2FFT-1

(b)

Data Payload

TS Overhead

Data Payload

TS Overhead

Figure 5.1: Single Carrier with (a) Cyclic Prefix and (b) Unique Word

 77

The bandwidth efficiency is reduced for a SC-FDE by the guard period. Recall

that TFFT and TG denote the FFT period and guard interval of a frame, respectively.

The bandwidth efficiency of the described SC- CP and SC-UW systems without

taking coding into account can be given as:

0.8

0.75

FFT
CP

FFT G

FFT G
UW

FFT

T
T T
T T

T

η

η

= =
+

−
= =

 (5.1)

The result in Eq.(5.1) leads to an additional degradation of 5% in terms of

bandwidth efficiency, assuming TG to be 25% of TFFT (In our thesis, frame length = 64

symbols and UW length = 16 symbols). Furthermore, a loss in terms of the BER

behavior is expected, and a loss as a result of additional overhead compared to a

single carrier system with time domain equalization is anticipated as well.

5.2 Application of the Unique Word Structure

Transmission over multipath channels makes channel estimation and

synchronization not only necessary but also important. Due to the fact that the UW is

known, it can be used for equalization, channel estimation, or synchronization

purposes. In the following section some algorithms and results will be given for the

mentioned application.

5.2.1 Synchronization

Synchronization is indispensable criterions for high data rate wireless

transmission. In a time-invariant environment, initial channel estimation and block

synchronization can be done by a preamble at the beginning of every burst . In time

varying channels, however, clock-frequency-offsets or carrier-frequency-offsets make

tracking necessary. Tracking is mainly based on the insertion of pilot symbols;

implementing the structure of UW, pilot sequences are available automatically.

 78

The variation of the sampling time between transmitter and receiver caused by

the clock-frequency-offset will lead to rising displacement of the FFT-window. To

solve the problem, an autocorrelation as shown in Eq.(5.2) of two consecutive,

received UWs, denoted by uk and uk+N, which are separated by N symbols may result

in distinctive correlation peaks if the symbols of the UW are chosen as to have good

correlation properties (e.g. Pseudo noise sequences, Barker sequences)[15].

 { }*

1
()

GN

k k N
k

k u uφ +
=

= ⋅∑ (5.2)

where *
ku indicates the complex conjugate of ku .

With the UW structure and a selected symbol sequence, this method shows

conspicuous correlation peaks. Figure 5.2 shows the result of the autocorrelation,

which indicates the beginning of every FFT window very precisely. The simulation is

performed for 25SNR dB= and multipath conditions; the UW is a PN sequence.

Nevertheless it is to mention that, if due to the fact that UW is corrupted by the

channel and noise on the one hand or the time duration of UW is too short on the

other hand, the correlation of the two successive UWs may not show reliable enough

correlation peaks – the autocorrelation properties of the investigated sequences are

partly lost.

0 50 100 150 200 250 300 350 400 450
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 105

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

FFT Window

Figure 5.2: Synchronization and tracking of the FFT-window

 79

5.2.2 Channel Estimation

Unavoidably, the equalization of the received message in systems employing

single-carrier transmission is a fundamental problem in high data rate wireless

communication, and performing the equalization requires knowledge of the channel.

These parameters can be estimated relatively easily prior to data transmission in

stationary environment; however, in non-stationary channels, they vary with time and

must be tracked by some means.

The deterministic properties of the UW can be exploited in the channel

estimation algorithms for SC-FDE systems to track a temporally fading channel. The

algorithm intrduced here relies on the ensemble averaging of the received signal to

recover the channel state information (CSI). Although any time-domain or frequency

domain equalization technique can be employed once the channel has been estimated,

this algorithm lends itself to FDE systems since the use of the UW gives the system a

cyclic nature.

 System Model

Consider a system employing SC block transmissions with a UW extension. The

i-th length-K block ()ix of transmitted symbols is partitioned into a length-P vector s(i)

of data symbols and a length-Q vector u representing the UW. An illustration of this

block structure is depicted in Figure 5.3.

u s(i) u s(i+1) u

P Q

K K

u s(i) u s(i+1) u

P Q

K K

Figure 5.3: Basic UW block structure

In order to alleviate inter-block interference, we assume that Q ≥ L where L is the

memory order of the channel impulse response (CIR). This condition also induces

circularity in the system, which allows us to express the i-th length-K block of

 80

received symbols ()iy by

 () () () ()i i i i= +y h x n (5.3)

where ()ih is a K K× circulant matrix representing the channel at time i and n(i)

is a length-K vector of uncorrelated, zero-mean, complex Gaussian noise samples,

each with a variance of 2 2nσ per dimension. Specifically,

0 1

0

0

() 0 () ()
() 0

() ()
()

0 () 0

0 0 () ()

L

L L

L

L

h i h i h i
h i

h i h i
i

h i

h i h i

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

h (5.4)

where hm(i) is the m-th complex tap coefficient of the CIR at time i.

Denote F as the normalized K K× DFT matrix where its (k,i)-th element is given

by ()
1

, exp 2k iF K j ki Kπ
−

− for , 0,..., 1k i K= − , and Fm is the first m columns of

F while m′F is the last m columns of F. Referring to Eq.(5.3) , we consider the

transformation of the received symbol vector y(i) into the frequency domain, which is

given by

 () () () ()i i i i= +Y H X N (5.5)

where () ()i i=Y Fy , () ()i i=N Fn , () ()i i=X Fx ,and () () Hi i=H Fh F is a diagonal

matrix with the channel frequency response coefficients on the diagonal. In addition,

the transmitted vector X(i) can be partition into a data part and a UW part as given by

()

() ()P Q

i
i i⎡ ⎤′⎡ ⎤= = +⎢ ⎥⎣ ⎦

⎣ ⎦

s
X F F S U

u
 (5.6)

where () ()Pi i=S F s and Q′=U F u . Therefore,

 () () () () ()i i i i i= + +Y H S H U N (5.7)

 81

 Channel Esitmation Algorithm by UW

If the channel is time-invariant (i.e. ()i =H H for all i), the received

frequency-domain vectors { } 1
() N

i
i

=
Y can be treated as a sample set of a random

process ψ where the mean of the process is given by

1

1 ()
N

i

i
N

ψ
=

= ∑Y (5.8)

If a symmetric constellation such as QPSK is employed for data transmission and no a

priori knowledge of the transmitted message is assumed, then { }E () 0i =S and

evaluating the expectation in Eq.(5.8) yields

 { }lim E
N

ψ
→∞

=

=

Y

HU
 (5.9)

While channel varies with time, as is the case in mobile environments, the

sample size N must be limited in some way to include only those blocks received

within the last Tc seconds, where Tc is the coherence time of the channel. In this case,

the recursive least square (RLS) algorithm can be employed with the cost function

 2

1
() (,)

i
i k

k
i e k iϕ ρ −

=

= ∑ (5.10)

where ρ is the standard RLS forgetting factor that is usually close to, but less than

one. The error term (,)e k i in Eq.(5.10) is defined as

 (,) () ()e k i k i= −Y UH (5.11)

where { }DU U is the diagonal matrix with the elements of U on the diagonal and

()iH is a length-K vector of the i-th estimated channel frequency response

coefficients.

Our goal is to find a channel estimation such that the error term in Eq.(5.10) is

smallest. From the result derived from [20], taking the gradient of Eq.(5.10) with

respect to ()iH , setting the result equal to zero, the channel estimate vector is given by

 82

1

1

1

()1

()

1() ()
i

i k
i

i k k

ik

i

i kρ
ρ

−

− −

− =

=

= ∑
∑

r

P

H U Y (5.12)

The channel can therefore be updated with the i-th received block by nothing that

 () (1)i iρ= − +P P U (5.13)

 () (1) ()i i iρ= − +r r Y (5.14)

 Note that Eq.(5.12) requires the inverse of P(i) to compute the updated channel

estimate. Since P(i) is a diagonal matrix, however, it is easy to invert. Consequently,

this method of mobile channel estimation benefits from very low complexity since

only three complex multiplications are required to update the channel estimate on a

given frequency tone. As with all applications of the RLS algorithm, this application

requires the vector r and the matrix P to be initialized. If a reliable initial channel

estimate (0)H is available (e.g. by the preamble based channel estimation), r and P

can be initialized to

 (0) (0)β=r UH (5.15)

 (0) β=P U (5.16)

where β is a positive real number. From Eq.(5.12) it is noted that

1

1
1

ii
i k

k

ρρ
ρ

−

=

−
=

−∑ (5.17)

Consequently, we may choose β to be

 1 1lim
1 1

i

i

ρβ
ρ ρ→∞

−
= =

− −
 (5.18)

 83

Defining β as above is equivalent to initializing the channel estimation by

transmitting an infinite number of blocks containing only the UW over a static

channel, which is denoted here by (0)H , and computing ()∞r and ()∞P . This

definition of β produces good convergence results as shown in the simulation result

later.

 Also, a more complex version of the stochastic algorithm can be implemented. In

this version, the received symbols y(i) are first equalized and the data symbols are

detected. Using the length-P vector of the detected data symbols ()is and the

previous channel estimate (1)i −H , the contribution of the data to the received

message is subtracted from the original received vector in the frequency domain to

give

 { }() () () (1)u Pi i D i i= − −Y Y F s H (5.19)

Replacing ()iY with ()u iY in Eq.(5.10) through (5.12), the new channel estimate can be

obtained

5.3 Simulation Results

 The algorithm described in section 5.2 was implemented in computer simulations

in order to observe its performance relative to other techniques. Two systems were

simulated. In each of these systems, UWs were appended to every frame of QPSK

data symbols to form blocks of K = 64 symbols. These blocks were transmitted over a

3-tap, exponentially decaying channel with a normalized Doppler

spread of 6 1.5 10Df
−= × . The channel realizations were generated with a Rayleigh

fading profile from burst to burst, and Jakes’ model was used to simulate temporal

fading within each burst. At the receiver, each system utilized its own knowledge of

the channel to equalize the received message with a linear FDE. Each equalized

symbol was then mapped to the nearest QPSK symbol.

 The first system used an initial channel estimate, which was gleaned from a

preamble, to construct a linear FDE, and only one channel estimate was obtained for

each burst. The second system employed the stochastic channel estimation method

 84

with feedback detailed in section 5.2.2. This system initialized the metrics r and P

according to Eq. (5.15) and (5.16) where the initial channel estimate was obtained

through a preamble. A forgetting factor of 0.96 was used. The two systems are

summarized in Table 5-1.

Table 5-1: Summary of simulated SC-FDE systems

Estimated by preamble and updated by UW2

Estimated by preamble only1

Channel KnowledgeSystem

Estimated by preamble and updated by UW2

Estimated by preamble only1

Channel KnowledgeSystem

 Figure 5.4 depicts the probability of bit error of each of the systems described

above. It is observed that the system that employs stochastic channel tracking

performs better than the preamble-only system. Indeed, the system employing a

preamble-based only channel estimation suffers greatly even in this slow-fading

environment.

Figure 5.4: Comparison of the proposed preamble based channel estimation and
UW-update channel estimation

 85

5.4 Circuit Design of Proposed Methods

In this part, the circuit designs of the algorithms presented in previous section are

proposed. Our purpose is to show that the UW-based synchronization and channel

estimation algorithms are not only able to provide better performance but also have

low complexity and are suitable for hardware designing. Besides, The design

principles still follow the rules mentioned in section 4.3.1.

(1) UW-based Synchronizer

The design of the UW-based synchronizer is quite simple. As shown in

Figure 5.5, the synchronizer block called UW_sync is roughly divided into

three parts. The first part is a shift register, 80_DFF, is used to store the latest

80 symbols input and its components can be implied by the name – 80 DFFs.

The newest 16 symbols and the oldest 16 symbols, which are stored in DFF

65 through 80 and DFF 1 through 16 as indicated in Figure 5.5, perform the

conjugate multiplications and summation. Once the result of the summation

is large than certain threshold value, that is, two consecutive UWs are

matched, it can be inferred that these two UWs are currently stored in DFF

1through 16 and DFF 65 through 80. Thus, one frame of symbols - symbols

in DFF 1 through DFF 64 then pass the FFT_switch and be sent to next

stage.

D Q D Q D Q D Q D Q D Q D Q D Q….. ….. ….. …..
80 79 65 64 17 16 15 1

…
...

…
...

d1
d2

d63
d64

…
...

conj_mult
conj_mult

conj_mult

FFT_switch

sum

set

dout1
dout2

dout63
dout64

…
...

comp

thr

UW_sync

80_DFF

D Q D Q D Q D Q D Q D Q D Q D Q….. ….. ….. …..
80 79 65 64 17 16 15 1

D Q D Q D Q D Q D Q D Q D Q D Q….. ….. ….. …..D QD Q D QD Q D QD Q D QD Q D QD Q D QD Q D QD Q D QD Q….. ….. ….. …..
80 79 65 64 17 16 15 1

…
...

…
...

d1
d2

d63
d64

…
...

conj_mult
conj_mult

conj_mult

FFT_switch

sum

set

dout1
dout2

dout63
dout64

…
...

comp

thr

UW_sync

80_DFF

12
|

Figure 5.5: Circuit design of the UW-based synchronizer

 86

(2) UW-based Channel Estimator

From Eq.(5.12) through (5.14) we can see that the proposed algorithm

gives a conspicuous structure of parallelism, since Eq.(5.13) and (5.14) are

in identical operation format. Besides, coupled with the preamble structure

inside one packet, the initial channel estimate (0)H is automatically

available, and the initial values of r(0) and P(0) in Eq.(5.15) and (5.16) can

be derived. Therefore, we can see our design in Figure 5.6 that two sets

identical entities are implemented, except that the upper one is for

calculating P(i) and the lower one is for r(i). Since K=64 in our system, two

buffers reg_p and reg_r with depth 64 are used to store the value of P(i)

and r(i), and every time the received Y(i) is inputted to this block, values of

P(i) and r(i) will be updated according to Eq.(5.13) and (5.14), and then

written back to corresponding buffers.

pin
rdy_in divider

rdy_in
divisor

dout
rdy_out

adder

div

r(i)

UW_ch_est

Y(i)

buf_in
wr_en
rd_en

FIFO

64

reg_p

buf_out
RDY

trg
vout

rdy_out

x_tho

vin
rdy_in
buf_in

vout
rdy_out

mult

fix_adder

vout
rdy_out

P(i)

buf_in
wr_en
rd_en

FIFO

64

reg_r

buf_out
RDY

trg
vout

rdy_out

x_tho

vin
rdy_in
buf_in

vout
rdy_out

mult

adder

r(i)

pin
rdy_in

rdy_in
rin
rdy_in

Yin

vout
rdy_outdly_r

pin
rdy_in divider

rdy_in
divisor

dout
rdy_out

adder

div

r(i)

UW_ch_est

Y(i)

buf_in
wr_en
rd_en

FIFO

64

reg_p

buf_out
RDY

trg
vout

rdy_out

x_tho

vin
rdy_in
buf_in

vout
rdy_out

mult

fix_adder

vout
rdy_out

P(i)

buf_in
wr_en
rd_en

FIFO

64

reg_r

buf_out
RDY

trg
vout

rdy_out

x_tho

vin
rdy_in
buf_in

vout
rdy_out

mult

adder

r(i)

pin
rdy_in

rdy_in
rin
rdy_in

Yin

vout
rdy_outdly_r

Figure 5.6: Circuit design of the UW-based channel estimator

 87

5.5 Summary

In this section, we presented two applications of UW other than phase tracking

mentioned in Chapter 2 and 4. We show that the structure of UW is not only useful in

stationary system, but also useful in the tasks such as synchronization and channel

estimation in a mobile environment. The synchronization algorithm employs UW as a

selected training sequence while the channel estimation algorithm utilizes the constant

nature of the UW extension in UW-based SC systems to obtain a moving average of

the received signal over a finite period of time, which achieve a better performance

than traditional preamble-only channel estimation. We also show that the two

algorithms are not only theoretically uncomplicated, but also practically simple and

therefore appropriate for hardware implementation.

 88

Chapter 6

Conclusion

In future wireless communication systems, the demand of higher throughput and

higher link quality is urgently called for, since various multimedia or home

applications will be provided and thus reliable and affordable technologies are

required to realize those contents. SC modulation, coupled with linear frequency

domain equalization at the receiver, has less sensitivity to transmitter nonlinearities

and phase noise than OFDM, and its complexity and performance are similar to those

of OFDM in wireless communication. Single carrier with frequency domain

equalization has been adopted by IEEE 802.16 standard to be one of the three modes

as an alternative technique of OFDM in physical layer, and it is also currently a

working assumption for uplink multiple access scheme in 3GPP Long Term Evolution,

or Evolved UTRA. This reveals the potential of the SC-FDE technique and therefore

encourages us to build up a hardware system based on SC-FDE system instead of the

theoretical analysis only.

This thesis had described the signal processing concepts and algorithms of a

SC-FDE system based on the UW structure in physical layer, and a self-designed

platform equipped with four FPGA modules, USB interface, and RF modules is

adopted to implement our system. A real wireless communication environment

containing RF mismatch, multipath effects and so on are thus generated through real

indoor experimental environment and RF modules on the self-designed platform. In

our thesis we especially focus on the structure of the Unique-Word, and show that it is

applicable to SC-FDE system in tasks such as phase tracking, synchronization and

 89

channel estimation. What is more, corresponding circuit designs and analyses of the

proposed UW-algorithms are presented; we show that those proposed UW-based

algorithms are not only theoretically suitable for the SC-FDE system but also

practically applicable in hardware implementation.

To summarize, hardware implementation is highly complicated. Therefore, the

avalailability of MATLAB simulation, proper quantization algorithms, useful HDL

simulation software, and powerful debugging tools becomes especially significant.

Nevertheless, some future works still remain. For example, higher modulation order

such as 16QAM, 64 QAM and so on can be realized; in addition, the UW-based

synchronizer and channel estimator circuit structures provided in Chapter 5 can be

implemented and coupled with our system to further raise the performance. Finally,

although there is a lot of room for improvement, we believe that the SC-FDE system

implemented on the FPGA-based platform we proposed is still highly advanced

nowadays.

 90

Bibliography
[1] J. L. J. Cimini, “Analysis and simulation of a digital mobile channel using

orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no.
7, pp. 665–675, Jul. 1985.

[2] L. Deneire, P. Vandenameele, L. van der Perre, B. Gyselinckx, and M. Engels,
“A low-complexity ML channel estimator for OFDM,” IEEE Trans. Commun.,
vol. 51, no. 2, pp. 135–140, Feb. 2003.

[3] T. Pollet, M. V. Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems
to carrier frequency offset and wiener phase noise,” IEEE Trans. Commun., vol.
43, pp. 191–193, Feb.–Apr. 1995.

[4] O. Rousseaux, G. Leus, and M. Moonen, “A sub-optimal iterative method for
maximum likelihood sequence estimation in a multipath context,” EURASIP
JASP, vol. 2002, no. 12, pp. 1437–1447, Dec. 2002.

[5] H. Sari, G. Karam, and I. Jeanclaude, “Frequency-Domain Equalization of
Mobile Radio and Terrestrial Broadcast Channels,” Proc. of the IEEE Global
Telecommun. Conference, Dec. 1994, pp. 1–5.

[6] A. Czylwik, “Comparison between adaptive OFDM and single carrier
modulation with frequency domain equalization,” in Proc. IEEE 47th Vehicular
Technology Conf. , vol. 2, 1997, pp. 865–869.

[7] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless systems,”
IEEE Commun. Mag., vol. 40, pp. 58-66, Apr. 2002.

[8] M. V. Clark, “Adaptive Frequency-Domain Equalization and Diversity
Combining for Broadband Wireless Communications,” IEEE JSAC vol. 16, no. 8,
Oct. 1998, pp. 1385–95.

[9] D. Mansour and A. H. Gray, “Unconstrained Frequency-Domain Adaptive
Filter,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.30, no.5,
Oct. 1982.

[10] N. Benvenuto and S. Tomasin, “On the comparison between OFDM and single
carrier modulation with a DFE using a frequency-domain feedforward filter,”
IEEE Trans. Commun., vol. 50, pp. 947–955, June 2002.

 91

[11] H. Witschnig, T. Mayer, A. Springer, A. Koppler, L. Maurer, M. Huemer, and R.
Weigel, “A different look on cyclic prefix for SC/FDE,” in Proc. of the IEEE
International Symposium on Personal, Indoor and Mobile Radio Commun., vol.
2, Sept. 2002, pp. 824–828.

[12] J. H. Jang, H. C. Won, and G. H. Im, “Cyclic prefixed single carrier
transmissions with SFBC over mobile wireless channels,” IEEE Signal
Processing Lett., vol. 13, no. 5, pp. 261-264, May 2006.

[13] A. Czylwik, “Low overhead pilot-aided synchronization for single carrier
modulation with frequency domain equalization,” in Proc. of the IEEE Global
Telecommun. Conference, vol. 4, 1998, pp. 2068–73.

[14] M. Huemer, H. Witschnig, and J. Hausner, “Unique word based phase tracking
algorithms for SC/FDE-systems,” in Proc. of the IEEE Global Telecommun.
Conference, vol. 1, Dec. 2003, pp. 70–74.

[15] L. Deneire, B. Gyselinckx, and M. Engels, “Training sequence versus cyclic
prefix—a new look on single carrier communication,” IEEE Commun. Lett., vol.
5, no. 7, pp. 292–294, July 2001.

[16] R. Cendrillon and M. Moonen, “Efficient equalizers for single and multi-carrier
environments with known symbol padding,” in Proc. of the Sixth International
Symposium on Signal Processing and its Applications, Aug. 2001.

[17] J. A. Gansman, M. P. Fitz, and J. V. Krogmeier, “Optimum and suboptimum
frame synchronization for pilot-symbol-assisted modulation,” IEEE Trans.
Commun., vol. 45, pp. 1327–1337, Oct. 1997.

[18] G. Leus and M. Moonen, “Semi-blind channel estimation for block transmissions
with non-zero padding,” in Proc. of the Asilomar Conference on Signals, Systems
and Computers, Nov. 2001, pp. 762–766.

[19] H. Sari, “Channel equalization and carrier synchronization issues in multicarrier
transmission,” in IEEE Synchronization Workshop, Belgium, pp. 29–36.

[20] J. Coon, M. Beach, J. McGeehan and M. Sandell, “Channel and Noise Variance
Estimation and Tracking Algorithms for Unique-Word Based Single-Carrier
Systems,” IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1488- 1496, Jun.
2006

[21] H. Meyr, M. Moeneclaey, and S. A. Fletchel, Digital Communication Receivers:
Synchronization, Channel Estimation and Signal Processing: Wiley, 1997.

 92

[22] Y. J. Jung et al., “A Dual-Loop Delay-Locked Loop Using Multiple
Voltage-Controlled Delay Lines,” IEEE JSSC, vol.36, no.5, pp. 784-791, May.
2001.

[23] H. H. Chang et al., ” A Wide-Range Delay-Locked Loop With a Fixed Latency
of One Clock Cycle,” IEEE JSSC, vol.37, no.8, pp. 1021-1027, Aug. 2002.

[24] J. G. Maneatis, “Low-Jitter Process-Independent DLL and PLL Based on
Self-Biased Techniques,” IEEE JSSC, vol. 31, pp. 1723-1732, Nov. 1996.

[25] J. V. de Beek, M. Sandell, and P. Börjesson, “ML estimation of time and
frequency offset in OFDM systems,” IEEE Trans. Signal Processing, vol. 45, pp.
1800–1805, July 1997.

[26] S. Haykin, Adaptive Filter Theory, 3rd ed. Prentice Hall, 1996.

[27] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2000.

[28] J. Bhasker, A VHDL Primer, Englewood Cliffs, NJ: Prentice-Hall, 1998.

[29] 林傳生，使用VHDL電路設計語言之數位電路設計，儒林，2000.

[30] 國家晶片系統設計中心, VHDL, July 2004.

[31] 鄭信源，Verilog硬體描述語言數位電路設計實務，儒林，2000.

[32] 國家晶片系統設計中心, Xilinx (PC), July 2004.

