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Abstract

Location estimation and tracking for the mobile devices have attracted a
significant amount of attention in recent years. The network-based location estimation
schemes have been widely adopted based on the:radio signals between the mobile
device and the base stations. The location:estimators-associated with the Kalman
filtering techniques are exploited to both.acquire location estimation and trajectory
tracking for the mobile devices. However, most of the existing schemes become
unapplicable for location tracking due to the deficiency of signal sources. In this
thesis, two predictive location tracking algorithms are proposed to alleviate this
problem. The Predictive Location Tracking (PLT) scheme utilizes the predictive
information obtained from the Kalman filter in order to provide the additional signal
inputs for the location estimator. Furthermore, the Geometric-assisted Predictive
Location Tracking (GPLT) scheme incorporates the Geometric Dilution of Precision
(GDOP) information into the algorithm design. Persistent accuracy for location
tracking can be achieved by adopting the proposed GPLT scheme, especially with
inadequate signal sources. Numerical results demonstrate that the GPLT algorithm
can achieve better precision in comparison with other network-based location tracking

schemes.
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Chapter 1

Introduction

Wireless location technologies, which are designated to estimate the position of a Mobile
Station (MS), have drawn a lot of attention over the past few decades. The Quality-of-Service
(QoS) of the positioning accuracy has been announced after the issue of the emergency 911
(E-911) subscriber safety service [1}.% With the assistance of the information derived from
the positioning system, the required performance and objectives for the targeting Mobile
Station (MS) can be achieved with augmented robustness. In recent years, there are increasing
demands for commercial applications to.adoptthe location information within their system
design, such as the navigation systems; the-location-based billing, the health care systems,
the Wireless Sensor Networks (WSNs) [2]- [4], and the Intelligent Transportation Systems
(ITS) [5] [6]. With the emergent interests in the Location-Based Services (LBSs), the location
estimation algorithms with enhanced precision become necessitate for the applications under
different circumstances.

A variety of wireless location techniques have been investigated [7]- [10]. To simplify
the introduction of these techniques, in the following we use two-dimensional (2D) cases
as application examples. The network-based location estimation schemes have been widely
proposed and employed in the wireless communication system. These schemes locate the
position of a MS based on the measured radio signals from its neighborhood Base Stations

(BSs). The representative algorithms for the network-based location estimation techniques
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Figure 1.1: Position Determination Methods: " (a) Time of Arrival (b)Time Difference of
Arrival (c) Angel of Arrival

are the Time-Of-Arrival (TOA), the Time. Difference-Of-Arrival (TDOA), and the Angle-Of-
Arrival (AOA). The TOA scheme measures the arrival time of the radio signals coming from
different wireless BSs, as shown in Fig. 1.1a; while the TDOA scheme measures the time
difference between the radio signals, as shown in Fig. 1.1b. The AOA technique is conducted
within the BS by observing the arriving angle of the signals coming from the MS, as shown
in Fig. 1.1c.

It is recognized that the equations associated with the network-based location estimation
schemes are inherently nonlinear. The uncertainties induced by the measurement noises make
it more difficult to acquire the estimated MS position with tolerable precision. The Taylor
Series Expansion (TSE) method was utilized in [11] to acquire the location estimation of the

MS from the TOA measurements. The method requires iterative processes to obtain the



location estimate from a linearized system. The major drawback of the TSE scheme is that
it may suffer from the convergence problem due to an incorrect initial guess of the MS’s po-
sition. The two-step LS method was adopted to solve the location estimation problem from
the TOA [12], the TDOA [13], and the TDOA/AOA measurements [14]. It is an approxi-
mate realization of the Maximum Likelihood (ML) estimator and does not require iterative
processes. The two-step Least Square (LS) scheme is advantageous in its computational effi-
ciency with adequate accuracy for location estimation. Instead of utilizing the Circular Line
of Position (CLOP) methods (e.g. the TSE and the two-step LS schemes), the Linear Line of
Position (LLOP) approach is presented as a new interpretation for the cell geometry from the
TOA measurements. Since the pairwise intersections of N TOA measurements will establish
(N — 1) independent linear lines, the LS method can therefore be applied to estimate the
position of the MS. The detail algorithm of the LLOP approach can be obtained by using the
TOA measurements as in [15], and the hybrid TOA/AOA measurements in [16].

In addition to the estimation of asMS’s position, trajectory tracking of a moving MS has
been studied [17] - [21]. The technique by combining the Kalman filter with the Weighted
Least Square (WLS) method is exploited in [17]. The Kalman Tracking (KT) scheme [18] [19]
distinguishes the linear part fronr the originally:-nonliriear equations for location estimation.
The linear aspect is exploited within'the.Kalman ‘filtering formulation; while the nonlinear
term is served as an external measurement input to the Kalman filter. The technique utilized
in [20] adopted the Kalman filters for both pre-processing and post-processing in order to both
mitigate the Non-Line-of-Sight (NLOS) noises and track the MS’s trajectory. The Cascade
Location Tracking (CLT) scheme as proposed in [21] utilizes the two-step LS method for
initial location estimation of the MS. The Kalman filtering technique is employed to smooth
out and to trace the position of the MS based on its previously estimated data.

The Geometric Dilution of Precision (GDOP) [22] [23] and the Cramér-Rao Lower Bound
(CRLB) [24] are the well-adopted metrics for justifying the accuracy of location estimation
based on the geometric layouts between the MS and its associated BSs. It has been indi-

cated in [25] that the environments with ill-conditioned layouts will result in relatively larger



GDOP and CRLB values. In general, the ill-conditioned situations can be classified into
two categories: (i) insufficient number of available neighborhood BSs around the MS; and
(73) the occurrence of collinearity or coplanarity between the BSs and the MS. It is noticed
that the problem caused by case (ii) can be resolved with well-planned locations of the BSs.
Nevertheless, the scenarios with insufficient signal sources (i.e. case (i)) can happen in real
circumstances, e.g. under rural environments or city valley with blocking buildings. It will
be beneficial to provide consistent accuracy for location tracking under various environments.
However, the wireless location tracking problem with deficient signal sources has not been
extensively addressed in previous studies. In the cellular-based networks, three BSs are re-
quired in order to provide three signal sources for the TOA-based location estimation. The
scheme as proposed in [26] considers the location tracking problem under the circumstances
with short periods of signal deficiency, i.e. occasionally with only two signal sources available.
The linear predictive information obtained from the Kalman filter is injected into its original
LS scheme while one of the BSs is notrobservablés However, this algorithm is regarded as a
preliminary design for signal deficient scenarios; which*does not consider the cases while only
one BS is available for location estimation. Insufficient: accuracy for location estimation and
tracking of the MS is therefore perceived;

In this thesis, a Predictive Location Tracking (PLT) algorithm is proposed to improve the
problem with insufficient measurement inputs, i.e. with only two BSs or a single BS available
to be exploited. The predictive information obtained from the Kalman filter is adopted as the
virtual signal sources, which are incorporated into the two-step LS method for location esti-
mation and tracking. Moreover, a Geometric-assisted Predictive Location Tracking (GPLT)
scheme is proposed by adopting the Geometric Dilution of Precision (GDOP) [22] concept
into its formulation in order to further enhance the performance of the original PLT algo-
rithm. The position of the virtual signal sources are relocated for the purpose of achieving
the minimum GDOP value associated with the MS’s position. Along with the acquisition of
the optimal location for the virtual signal source, the corresponding estimation and tracking

errors acquired by using the proposed GPLT scheme can therefore be reduced. Moreover,



consistent precision for location tracking of a MS is also observed by exploiting the GPLT
algorithm. Comparing with the existing techniques, the simulation results show that the pro-
posed GPLT scheme can acquire higher accuracy for location estimation and tracking even
under the situations with inadequate signal sources.

The remainder of this thesis is organized as follows. The related work, including the
mathematic modeling, the sources of ranging errors, and other existing location estimation
algorithms, is briefly described in chapter 2. The overview and motivations of the proposed
Predictive Location Tracking (PLT) and Geometric-assisted Predictive Location Tracking
(GPLT) schemes are explained in chapter 3. Chapter 4 presents the PLT algorithm with
two different scenarios; while the formulation of the GPLT scheme is exploited in chapter
5. Chapter 6 illustrates the performance evaluation of the proposed GPLT and the PLT
schemes in comparison with the existing location tracking techniques. Chapter 7 draws the

conclusions.



Chapter 2

Preliminary studies and Related

Work

2.1 Mathematical Modeling

In order to facilitate the design ¢f the proposed PI1.T:and the GPLT algorithms, the signal
model for the TOA measurements is utilized. The set 75, contains all the available measured
relative distance at the k' time step, i.e. = P sy Tiky - -+ TNy k), Where Ny denotes
the number of available BSs at the time step-&: The measured relative distance (r; ) between

the MS and the i** BS (obtained at the k' time step) can be represented as
Tik=C tix=Cr+nir+er 1=12,..N (2.1)

where ¢; ;. denotes the TOA measurement obtained from the it BS at the k" time step, and
c is the speed of light. r;j is contaminated with the TOA measurement noise n;; and the
Non-line-of-sight (NLOS) error e; ;.. It is noted that the measurement noise n; 4, is in general
considered as zero mean with Gaussian distribution. On the other hand, the NLOS error e; j
is modeled as exponentially-distributed for representing the positive bias due to the non-line-

of-sight effect [27] [28]. The noiseless relative distance ¢; 5 (in (2.1)) between the MS’s true
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Figure 2.1: Geometry of the NLOS Error

position and the i** BS can be obtained as

N[

Gk = [(zk — 2ip)® + (b — Vi) (2.2)

where @, = [z}, yi] represents the MS’s true position and @; ;, = [2; ¥ix) is the location of
the ¥ BS for i = 1 to Nj,. Therefore, théset 6f’all the available BSs at the k" time step can

be obtained as Ppgr = {1k, - - - 5 ®i ks 01 ENp k) -

2.2 Sources of Ranging Errers:

The location accuracy can be reduced dueito the influence of the measurement noises. Several

main sources of ranging errors are described in this section, which are referred to [29].

Non-Line-of-Sight Errors

In dense urban environment, there may be no direct path from the MS to the BS as shown
in Fig. 2.1. Due to reflection and diffraction, the propagating wave may actually travel
excess path lengths on the order of hundreds of meters and the direct path is blocked. This
phenomenon, which we refer to as the NLOS error, ultimately translates into a biased estimate
of the mobile’s location. This problem has been recognized as a killer issue for mobile location.
In order to mitigate the effect of the measurement bias, it is necessary to develop location

algorithms that are robust to the NLOS error.
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Multipath Errors

Multipath effects are caused by reflected signals entering the receiver antenna along with
direct path signal, as shown in Fig. .2.2.-Since the reflected path is longer than the direct
path, the multipath signal blurs the peak of theidiréct signal at the output of the receiver

correlation channel and distorts the ‘pseudorange measurement.

Receiver Measurement Processing

Advances in digital processing technology have enabled the implementation of small, afford-
able multiple channel receivers for parallel tracking of more than the minimum reference
points for navigation solutions. This technology, in conjunction with advances in the speed
and precision of microprocessor computations, has resulted in great reductions in receiver

range measurement processing errors.

2.3 Studies on Existing Location Estimation Algorithms

Different location estimation schemes have been proposed to acquire the MS’s position. Var-
ious types of information (e.g. the signal traveling distance, the received angle of the signal,

or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithm design for
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location estimation. The primarily objectives in most of the location estimation algorithms
are to obtain higher estimation accuracy with promoted computational efficiency. The super-
resolution (or high-resoluction) schemes are proposed as in [30] - [33]. The scheme studied
in [30] considers arbitrary-located antennas and a particular covariance matrix within a noisy
environment. The covariance matrix is composed of various types of properties, including
gain, phase, frequency, polarization, and AOA information. The subspace method is pro-
posed in the scheme generates these component estimates of the covariance metrix based on
an eigen-analysis or eigen-composition. The most well-known super-resolution algorithm is
the MUltiple SIgnal Classification (MUSIC) [31], It is experimentally illustrated to be a robust
solution for location estimation, especially for a near-far environment. However, it has also
be shown in [32] and [33] that the drawbacks of the MUSIC approach include (i) comparably
high sensitivity to large noise and (i) its complexity in computation.

The beamforming system is a space-time processor that operates on the output of a sensor
array. It provides spatial filtering capability by enhancing the amplitude of a coherent signal
associated with surrounding noises. Since the eonventional beamforming technique is sensitive
to the estimation error for the MS’s position; a combination of localization and beamforming
is proposed as in [34]. It increases the robustuess to.location errors without sacrificing the
computation efficiency. An enhanced algorithm for simultaneous multi-source beamforming
and adaptive multi-target tracking is studied in [35]. The correlation between the adaptive
minimum variance beamforming and the optimal source localization is also investigated and
developed as in [36].

Instead of exploiting the spatial and temporal information of the signal, the location
fingerprinting technique locates the MS based on the the RSS [37] [38]. The technique involves
both the off-line and the on-line phases. A location grid that is related to a signal signature
database for a specific service area is developed in the off-line phase; while a measured RSS
vector at the MS is delivered to the central server to compare with the location grid in the on-
line phase. In addition, a hybrid algorithm which combines the RF propagation loss model is

proposed to both mitigate the requirement of the training data and to adjust the configuration

11



changes [39]. On the other hand, the ray-tracing and ray-launching techniques are the two
ray optical approaches for location estimation. The radio signals that are launched from a
transmitter and reflected or diffracted by various objects are aggregated in a receiver. The
field strength and the signal propagation can therefore be predicted [40]; while [41] proposed
an efficient algorithm for prediction. The three dimensional indoor radio propagation models
are developed in [42] and [43]. Experimental formulas from extensive measurements of urban
and suburban propagation losses are studied as in [44] [45].

There are also different approaches adopting linearized methods to acquire the computing
efficiency while obtaining an approximate estimation of the MS’s position. The Taylor Series
Expansion (TSE) method was utilized in [46] to acquire the location estimation from the
TDOA measurements. The method requires iterative processes to obtain the location estimate
from a linearized system. The major drawback of this method is that it may suffer from the
convergence problem due to an incorrect initial guess of the MS’s position. The two-step
LS method was adopted to solve the'location estimation problem from the TOA [12], the
TDOA [13], and the TDOA/AOA measurements. [14]. It is an approximate realization of
the Maximum Likelihood (ML) estimator and does not: require iterative processes. The two-
step LS scheme is advantageous in‘its. computational efficiency with adequate accuracy for
location estimation. However, the scheme is-demonstrated to be feasible for acquiring the
MS’s position under the LOS situations.

Instead utilizing the Circular Line Of Position (CLOP) methods (e.g. the TSE and two-
step LS schemes), the Linear Line Of Position (LLOP) approach is presented as a new inter-
pretation for the cell geometry from the TOA measurements. Since two TOA measurements
that intersect at two points will generate a connecting line, two independent lines will be
created by using three BSs in the scenario of two-dimensional location estimation. Therefore,
the LS method can be adopted to estimate the location of the MS. The detail algorithm of the
LLOP approach can be obtained by using the TOA measurements as in [15], and the hybrid
TOA/AOA measurements in [16].

Some well-known schemes are improved continuously in order to achieve higher accu-

12



racy or promote the computational efficiency. The famous linear time-based algorithms, the
Taylor-Series Estimation (TSE) [46], the two-step LS method, and the Linear Line-of-Position
(LLOP) [15], are briefly described in the following subsection. For simplification, the thesis

only described the two-step LS method in two-dimensional plane.

2.3.1 Two-Step Least Square

The content of this section will show the Two-step Least Square (two-step LS) location algo-
rithm for TOA measurements and it can be obtained in [12]. For simplification, the two-step
LS method will be described for TOA measurements in a two-dimensional (2-D) plane. The
two-step LS method for TDOA measurements can be derived from the similar concept.
Assuming that (xy, yx) is the position of the mobile device, (z;k, yix) is the position of
the " BS and ik is the TOA measurement from the BS;. Since in practice, especially in
urban or in mountainous areas, the signals from the mobile device are usually unable to arrive
at the base stations directly (or in tlie oppositive direction), they always take a longer path
than the direct one. So by incorporating the influences of NLOS propagation, killer issue for

location estimation, on the location estimation, there exists
2> (@i — 1) + Wik — Uk)? = Fi— 20 1Tk = Vi 2 2 i =1,2,..N (2.3
ik = i,k Tk (yz,k yk) R e L Je Xk Yi,kYk + wz,k + yz,k ? y Ly eee ( . )

where k; ), = x?k + yfk, r;k = cti . is the measured distance between the MS and the ith BS,

and c is the speed of light. By defining a new variable ﬁ,(;) = x,(cl)Q + y,il)Q, we rewrite (2.3)

through a set of linear expressions
=21k — 2WikYk + Be S TPk — Kip  i=1,2,..N (2.4)

Let z](fl) = [92,9) g),gl) ﬁA,E,l)]T and express (2.4) in matrix form

szl(cl) < Jk (2.5)
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where

2
2T — 21k 1 e~ K1k
2
=2z — 22k 1 Tok — K2,k
Hy = Ji =
2
—2znr  —2yngk 1 TNk~ KNk

With measurement noise, the error vector is
1)
Yr = Jp — Hiz), (2.6)
When 7; 1, can be expressed as &; i, + cn; ., the error vector 1, is found to be

P = 2cBgng + cznk ® nyg

Bk = diag{&l,k?éZ,ka"'agN,k} (27)

The symbol ® represents the Schur product (element-by-element product). In addition, the
second term on the right of (2.7)scan berignored sinee the condition cn;j < & is usually

satisfied. As a result, ¥ becomeg a Gaussian random vector with covariance matrix given by
Uy =Bl = 4¢BrQ By (2.8)

Q. is the covariance matrix of measured noise, and &1 g,....{n 1 are denoted as the true values of
distances between the sources and the receiver. The element m](cl) are related by the equation,
ﬁ,(;) = ac,(cl)z —|—y,(€1)2, which means that (2.5) is still a set of nonlinear equations in two variables
x, and yr. The approach to solve the nonlinear problem is to first assume that there is
no relationship among l'](gl), y,(cl) and ﬁ,il). That can then be solved by Least Square (LS).
The final solution is obtained by imposing the known relationship to the computed result

via another LS computation. This two step procedure is an approximation of a true ML

14



1) (1)

estimator. By considering the elements of x; ” independent, the ML estimator of z; " is

z\) = argmin{(J), - Hyz;) 0 (T, - Hyzy))

= (Hi v, 'Hy) 'HL U, T, (2.9)
(1) (1)

The covariance matrix of "’ is obtained by evaluating the expectations of , ’ and (mg))(wg))T

from (2.9). The covariance matrix of :c,(:) can be calculated as [13]

cov(zN) = (HI U, H,) ! (2.10)

Since we have used the independent supposition of variables :%,(gl), g),il), and B,El) in the

estimation of :BS) though the variable 31(61) is dependent on the variable ﬁc,(cl) and g),gl), we

should revise the results as follows. Let the estimation errors of i”,(cl), g],g,l), and B,(cl) be ey k,

ek, and ez . Here and below, denote the ¢t entry of a matrix M as [M],; then the entries in

1
vector :1:%C ) become

[-’131(61)]1 =To teLk (2.11a)
[wz(fl)b = Yo t€2k (2.11b)
25 =0, + ea (2.11¢)

where x,, Yo, and [, are denoted as the true values of jc,gl), y,(j) , and B,(Cl). Let another error

vector
A, (R & (PO 2.12
V= Jk kT (2.12)
where
10 I
H,=|0 1 I = =2
11 )3
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j(2)2

and w,(f): K
~(2)2
Y

k

. Substituting 2.11a- 2.11c into 2.12, we have

[r]1 = 23oe1 s + €] 4, & 2Toe1
[Vk]2 = 2Yoak + ngg ~ 2Yoea k

[Vr]3 = esk

Obviously, the above approximations are valid only when the errors ej g, ea ), and e3, are

fairly small. Subsequently, the covariance matrix of v’ is

WV, = E[¢) ] = 4Bjeov(z")B],

B, = diag{xs,yo,0.5} (2.14)

As an approximation, elements z, aid vy, in matrix Bj can be replaced by the first two

elements :%,(;) and g),gl) in :13,(61). Similarly, the ML estimate of a:,(€2) is given by

) = (B HH T (2.15)
~ (Hy B, (cou(z!”))'B}, H, ") (2.16)
o (H, B, (cov(z\”))"'B} )T, (2.17)

1S

zZp = \/a:,?), or zp=-— m,(f) (2.18)

Here the sign of & should coincide with the sign of [wlgl)]l calculated by solving (2.9), and

So the final position estimation zj = [ 9’ i

the sign of §; coincides with the sign of [m,gl)]g.
The complete derivation of the two-step LS for TOA measurements is shown above. In
addition, the two-step LS method can be adopted to estimate MS location from the TDOA

[13], and the TDOA/AOA measurements [14]. The following two subsections describe the 3-D

16



TOA location estimation for the satellite-based system, and the 3-D TDOA/AOA location

estimation algorithm for the cellular network.

2.4 Studies on Existing Location Tracking Algorithms

2.4.1 Kalman Filtering

Kalman Filtering method is always utilized for location tracking because it utilizes the state
vector with the position, the velocity, and the acceleration of the MS to record and predict
the MS’s trajectory. The measurement and state equations for the Kalman filter can be

represented as

zr = Ms, + my (2.19)

S = Fékfl—i-pk (2.20)

The matrix M in the measurement equation'(2.19).relates the state to the measurement
zk. The matrix F in the equation (2.20) relates the state at the previous time step k-1 to
the state at the current step k. The variables-ni; and p;, denote the measurement and the
process noises associated with the covariance matricés R and Q within the Kalman filtering
formulation.

The Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of (noisy)
measurements. As such, the equations of the Kalman filter fall into two groups: time update

equations and measurement update equations. The time update equations are as following

Skik—1 = Fsp 1 (2.21)

Piyr-1 = FPrn 1 F+Q (2.22)

17



And the measurement update equations are shown

Ki = Py M (MPy;,_M" +R)™! (2.23)
Siik = Skp—1 + Ki(zx — M3y p—1) (2.24)
Py = I-KiM)Pyp_y (2.25)

The first task during the measurement update os to compute the Kalman gain, K;. The next
step is to actually measure the process to obtain zj, and then to generate a posterior:i state
estimate by incorporating the measurement as in (2.24). The final step is to obtain a posteriori
error covariance estimate via (2.25). The Kalman filter instead recursively conditions the

current estimate on all of the past measurements.

2.4.2 Kalman Tracking (KT) Algorithm

The Kalman Tracker [18], which is designed based'on the TDOA measurements, considers the
nonlinear term as an external measurement| input, to its Kalman filtering formulation. The
Kalman Tracking method for TOA ‘'measurements can-be derived from the similar concept.
It distinguishes the linear part from:the originally nonlinear equations for location estimation
and tracking.

The difference between ranges of the ith BS and the reference BS can be defined as
Tilk =Tik —T1,k = C- ti,l,k 1= 2, ceny N (2.26)

where c is the propagation speed, and N is the number of active BSs.

The squared distance between the ith BS and the MS is equal to
rie = 1% — xil? = |1l | — 2% + (1|2 (2.27)

where x; , = [£;1  9ix)? and xg = [2x  yg]? are the vectors which define the known position

of the ith BS and unknown MS position.
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These equations show a nonlinear relation between the TDOA measurements and the BS
position. From (2.26), the squared distance between the ith BS and the BS can also be

expressed as
T?,k = 7“?,1,k +2r1krink + T%k (2.28)
Using equations (2.27) and (2.28), the linear system of equations is derived as
Grxp = Uy — r1 Pk (2.29)

where
(zok —71k) (Y26 — Y1,k)

G, =
(TN — 1K) (YUNE — Y1k)

%2 et &l — 310

DO =

Ug

et =ty i [B = R

2.1k

Pk
TN,1,k
The resulting linear equation also depends on a distance measurement ry j, proportional to
the TOA between the reference BS and the MS, which has a nonlinear dependence on the BS
co-ordinates.
In [18], a Kalman tracker based on TDOA measurements is derived from the linear equa-
tion (2.29). The use of the Kalman filter allows tracking the position and speed of the MS.

The transition equation, defined for continuous movement, is linear

S =FSp_1 +pys (230)
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where 8 = [T Uk Upk ﬁy’k]T is the dynamic state vector, where its components represent
the MS position and the speed in two-dimensional Cartesian co-ordinates at discrete time k.

The matrix F is the state matrix with A equal to the time interval between samples

10 A 0
01 0 A
F = (2.31)
00 1 0
00 0 1

andp(k) =[0 0 pyr Py isthe disturbance transition vector defined as a two-dimensional
random speed vector with covariance matrix Q.
From the linear equation (2.29), it can be defined the measurement equation that relates

the state vector with the observation vector

zp = GLS, +1ny (2.32)

where matrix Gy, is constant instead of the variable matrix derived for the Extended Kalman
filter in [19] and the update equations are the-same as that in the front subsection. The noise

vector my depends on the noise in theTDOA measurement

Titk =ikt Mie =2, N (2.33)

being 77, ;. = ct?, ;, obtained from the noise free value of the TDOA between the ith BS and
the reference BS.
Substituting this expression in equation (2.29) and considering that in practice cn; 1 <<

¢, is usually satisfied, the measurement noise is found to be

m; = chnk (2.34)

B, = diag{rgvk, TS ko '"77"?\/,k} (2.35)
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with covariance matrix

C: = ¢B,R;B;, (2.36)

R, is the covariance matrix of the noise in the TDOA measurments defined from the variance

of the noise in the time delay estimation from each BS

Ry = Hyorpo HE (2.37)

Hj, is the (N-1)x(N) matrix that defines the difference of times in the TDOA method

~1 1 0 0
-1 0 1 .. 0

H, = (2.38)
APeGE, . 1

assuming that the measurements-obtained  aresuncerrelated U% poa is a diagonal matrix of

dimension equal to the number of avalaible®measurements N.

2.4.3 Cascade Location Tracking (CLT) Algorithm

The Cascade Location Tracking (CLT) scheme as proposed in [21] utilizes the two-step Least
Square (LS) method [12] [13] for initial location estimation of the MS. The two-step LS
method computes the solution z; which is also the measurement input of Kalman filter. After
the Kalman filter, we can get the final solution §; of MS. The Kalman filtering technique is
employed to smooth out and to trace the position of the MS based on its previously estimated

data. The details of the two-step LS method and Kalman filter are illustrated in front sections.
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Chapter 3

Architectural Overview of the
Proposed PLT and GPLT

Algorithms

The objective of the proposed Predictive Location Tracking (PLT) and the Geometric-assisted
Predictive Location Tracking (GPLT) algorithms is torutilize the predictive information ac-
quired from the Kalman filter to setve as the assistéd measurement inputs while the environ-
ments are deficient with signal sources. Fig! ‘3.1, Fig. 3.2 and Fig. 3.3 illustrate the system
architectures of the KT [18], the CLT [21] and the proposed PLT/GPLT schemes. The TOA
signals (7, as in (2.1)) associated with the corresponding location set of the BSs (Pgg ) are
obtained as the signal inputs to each of the system, which result in the estimated state vector
of the MS, i.e. 33 = [&, ¥ ax]T where &y, = [#}, i) represents the MS’s estimated position,
= [0z Dy k| is the estimated velocity, and a, = |Gz Gy 1] denotes the estimated acceleration.

Since the equations (i.e.(2.1) and (2.2)) associated with the network-based location es-
timation are intrinsically nonlinear, different mechanisms are considered within the existing
algorithms for location tracking. The KT scheme [18] (as shown in Fig. 3.1) explores the
linear aspect of location estimation within the Kalman filtering formulation; while the non-

linear term (i.e. B = &% + 7) is treated as an additional measurement input to the Kalman
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Figure 3.1: The Architecture Diagrams of the Kalman Tracking (KT) Scheme
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Figure 3.2: The Architecture Diagrams of the Cascade Location Tracking (CLT) Scheme
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Figure 3.3: The Architecture Diagrams of the Proposed Predictive Location Tracking (PLT)
and Geometric-assisted Predictive Location Tracking (GPLT) Scheme

filter. It is stated within the KT schemé that the'walue of the nonlinear term can be obtained
from an external location estimator; e.g# via the two-step LS method. Consequently, the
estimation accuracy of the KT algorithm greatly depeiids on the precision of the additional
location estimator. On the other hand, thexGETrscheme [21] (as illustrated in Fig. 3.2) adopts
the two-step LS method to acquire the preliminary location estimate of the MS. The Kalman
Filter is utilized to smooth out the estimation error by tracing the estimated state vector s
of the MS.

The architecture of the proposed PLT and GPLT schemes is illustrated in Fig. 3.3. It is
noticed that the GPLT algorithm involves additional transformation via the GDOP calculation
comparing with the PLT scheme. It can be seen that the PLT/GPLT algorithms will be the
same as the CLT scheme while N > 3, i.e. the number of available BSs is greater than or
equal to three. On the other hand, the effectiveness of the PLT/GPLT schemes is revealed
as 1 < N < 3, i.e. with deficient measurement inputs. The predictive state information
obtained from the Kalman filter is utilized for acquiring the assisted information, which will
be fed back into the location estimator. The extended sets for the locations of the BSs (i.e.

P%¢ . = {Psk, Pgs,r}) and the measured relative distances (i.e. r{ = {7y, 7,1 }) will be
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utilized as the inputs to the location estimator. The sets of the virtual BS’s locations Pgg, i

and the virtual measurements 7, ; are defined as follows.

Definition 1 (Virtual Base Stations) Within the PLT/GPLT formulation, the virtual Base
Stations are considered as the designed locations for assisting the location tracking of the MS
under the environments with deficient signal sources. The set of virtual BSs Ppgg, i is defined

under two different numbers of Ni as

{zy, 1} for N =2
Pgs, p = ! (3.1)

{wvl,lﬂ %Q,k} for N, =1
Definition 2 (Virtual Measurements) Within the PLT/GPLT formulation, the virtual
measurements are utilized to provide assisted measurement inputs while the signal sources are
insufficient. Associating with the designed set of virtual BSs Ppg, i, the corresponding set of

virtual measurements T, is defined as

Ty on N = 2
Py = { 1,k} f k (3.2)

{ro ks Ton et for N =1

It is noticed that the major tasks ef both.the'PLT and GPLT schemes are to design
and to acquire the values of Ppgg, , and 7, for the two cases (i.e. N = 1 and 2) with
inadequate signal sources. In both the KT and the CLT schemes, the estimated state vector
8 can only be updated by the internal prediction mechanism of the Kalman filter while
there are insufficient numbers of BSs (i.e. Ni < 3 as shown in Fig. 3.1 and 3.2 with the
dashed lines). The location estimator (i.e. the two-step LS method) is consequently disabled
owing to the inadequate number of the signal sources. The tracking capabilities of both
schemes significantly depend on the correctness of the Kalman filter’s prediction mechanism.
Therefore, the performance for location tracking can be severely degraded due to the changing
behavior of the MS, i.e. with the variations from the MS’s acceleration.

On the other hand, the proposed PLT/GPLT algorithms can still provide satisfactory

tracking performance with deficient measurement inputs, i.e. with Ny = 1 and 2. Under
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these circumstances, the location estimator is still effective with the additional virtual BSs
Pggs, ;. and the virtual measurements 7, which are imposed from the predictive output
of the Kalman filter (as shown in Fig. 3.3). It is also noted that the PLT/GPLT schemes
will perform the same as the CLT method under the case with no signal input, i.e. under
N = 0. Furthermore, the GPLT algorithm enhances the precision and the robustness of the
location estimation from the PLT scheme by considering the GDOP effect, i.e. the geographic
relationship between the locations of the BSs and the MS. By adopting the GPLT scheme, the
locations of the virtual BSs ng{k obtained from the PLT method are adjusted into Bng,g
in order to make the predicted MS possess with a minimal GDOP value. Consequently,
smaller estimation errors can be acquired by exploiting the GPLT algorithm comparing with
the PLT scheme. The virtual BS’s location set Pgézk and the virtual measurements rf ﬁT by
exploiting the PLT formulation is presented in the next section; while the adjusted location
PLT

set of the virtual BSs Pgg ;. adopting from the GPLT algorithm will be derived in chapter
5.
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Chapter 4

Formulation of the PLT Algorithm

The proposed Predictive Location Tracking (PLT) scheme will be explained in this section.
As shown in Fig. 3.3, the measurement and state equations for the Kalman filter can be

represented as

zjp—=_ Msp+ my (4.1)

sp. = Fs;, 1+ py (4.2)

where 55, = [Z1 Uy &k]T. The variablessm; and pj.-denote the measurement and the process
noises associated with the covariance matrices R and Q within the Kalman filtering formula-
]T

tion. The measurement vector z, = [Z15% Uis,k)" represents the measurement input which is

obtained from the output of the two-step LS estimator at the k' time step (as in Fig. ?7.(c)).
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Figure 4.1: The Schematic Diagram of the Two-BSs Case for the proposed PLT and GPLT
Schemes

The matrix M and the state transition matrix F can be obtained as

14070 0%0: 0
00110 0.0 0

10 AE 0 3A2 0
0 “LUOEAL S50 1A
07070 At 0
F = (4.4)
00 0 1 0 At
00 0 0 1 0
00 0 0 0 1

where At denotes the sample time interval. The main concept of the PLT scheme is to provide
additional virtual measurements (i.e. 7, as in (3.2)) to the two-step LS estimator while the
signal sources are insufficient. Two cases (i.e. the two-BSs case and the single-BS case) are

considered as follows:
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4.1 The Two-BSs Case

As shown in Fig. 4.1, it is assumed that only two BSs (i.e. BS; and BSs) associated with

two TOA measurements are available at the time step k in consideration. The main target

is to introduce an additional virtual BS along with its virtual measurement (i.e. ngvT’k =

{ a:fl LkT } and T'f LT = {rqi L,;‘F }) by acquiring the predictive output information from the Kalman
filter. Knowing that there are predicting and correcting phases within the Kalman filtering

formulation, the predictive state can therefore be utilized to compute the supplementary

PLT

virtual measurement Ly
9

as

rebl = @kt — Bp_1p |

= [IMF 8;_1jp—1 — p—1jp—1l (4.5)

where Zj;_; denotes the predicted MS’s position at time step k; while &;_,_; is the cor-

rected MS’s position obtained at thé (k — 1) time.step. It is noticed that both values are

PLT

iy is defined as the distance

available at the (k — 1) time step. The virtual measurement 7
between the previous location estimate (@g<[z—1) as the position of the virtual BS (i.e. BS, 1:
:L'Z{JT = Z,_1|x—1) and the predicted MSs position (&#,—1) as the possible position of the MS
(as shown in Fig. 4.1). It is also noted thatithe corrected state vector 8;_j,_; is available

PLT

at the current time step k; while 8y);, is unobtainable at the k" time step. By adopting Tk

(in (4.5)) as the additional signal input, the measurement vector zj can be acquired after

the three measurement inputs 4 = {ryx, rox, riLkT} and the locations of the BSs Pestk =

{Z1 5, T2k, :BiLkT} have been imposed into the two-step LS estimator. Therefore, the state

vector 8y, can be obtained with the implementation of the correcting phase of the Kalman

filter at the time step k as

S = Spp—1 + P MTMPy M7T + R (2, — My_1) (4.6)
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Figure 4.2: The Schematic Diagram of the Single-BS Case for the proposed PLT and GPLT
Schemes

where

Pur1 = FPi_poF +Q ‘ (4.7)

Pt = [IT—PriypoMiMPy 3->M" +R) "M Py (4.8)

It is noted that Py and Pjp_;;_represent the predicted and the corrected estimation

covariances within the Kalman filter. I in (4.8) is denoted as an identity matrix. As can been

PLT

observed from Fig. 4.1, the virtual measurement r, 'z

associating with the other two existing
measurements 71 ; and 7o provide a confined region for the estimation of the MS’s location

at the time step k, i.e. Ty

4.2 The Single-BS Case

In this case, only one BS (i.e. BSy) with one TOA measurement input is available at the k"
time step (as shown in Fig.4.2). Two additional virtual BSs and measurements are required

for the computation of the two-step LS estimator, i.e. ngvT,k = {«lHl, BT and o0 =
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{,,,,PLT PLT
V1, k> ’U2 k

}. Similar to the previous case, the first virtual measurement T‘P L,;f is acquired as

in (4.5) by considering #;_1),_1 as the position of the first virtual BS (i.e. wP = Tk 1)
with the predicted MS’s position (i.e. Zj,_1) as the possible position of the MS. On the other
hand, the second virtual BS’s position is assumed to locate at the predicted MS’s position (i.e.

a:f; A = Zp,—1) as illustrated in Fig. 4.2. The corresponding second virtual measurement

PLT

Ty 18 defined as the average prediction error obtained from the Kalman filtering formulation

by accumulating the previous time steps as

Togk = Z I — @i (4.9)

It is noted that rf; LT is obtained as the mean prediction error until the (k — 1) time step.
In the case while the Kalman filter is capable of providing sufficient accuracy in its predic-

tion phase, the virtual measurement rP LkT may approach zero value. Associating with the

single measurement ri ; from BS;, the two additional virtual measurements rP LkT (centered

PLT
va,k

at Zp_qjp—1) and 7 (centered at Z gx—j ) result, in & constrained region (as in Fig. 4.2) for
location estimation of the MS under the environments fvith insufficient signal sources.

It is also noticed that the variations/ofitlrermeasurement inputs are the required informa-
tion for adopting the two-step LS estimator. It-utilizes the signal variation as an indicator
to consider the weighting factor for a specific signal source, i.e. smaller weighting coeffi-
cient should be assigned to a measurement input if it encompasses comparably larger signal
variations. The weighted least square algorithm can therefore be performed within the two-
step LS estimator according to the designated weighting values associated with the signal

sources. Similar concept can be exploited to assign the weighting coefficients for the virtual

measurements. The virtual measurements can be represented as
To ke = Cug ke + My fori =1, 2 (4.10)

where (,,  is denoted as the deterministic noiseless virtual measurement; while n,, j, rep-

resents the virtual noise (i.e. the component with randomness) associated with the virtual
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PLT

s is considered as the vari-
9

measurement r,, . Based on (4.5), the signal variation of r
ance of the predicted distance ||&y;—1 — Z4—1x—1| between the previous (k — 1) time steps.

Therefore, the virtual noise can be regarded as zero mean with variance a,%v . = Vzaur(rf1 LkT )
1 )

PLT ;

= Var(||Zgp—1 — Zp_1jx—1/])- It is noted that the mean value of r, 3" is considered by the

noiseless virtual measurement (fl LkT. Similarly, since the signal variation of the second vir-

PLT

tual measurement TU2 &

is obtained as the variance of the averaged prediction errors (as in

2

(4.9)), the associated virtual noise n,, . can be considered as zero mean with variance o,
’ 2

2

_ PLT : : : :
= Var(r,% ). Consequently, the variances of the virtual noises (i.e. Ty i

and agw ,) will be

exploited as the weighting coefficients within the formulation of the two-step LS estimator.
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Chapter 5

Formulation of the GPLT
Algorithm

The geometric relationship between the MS and its associated BSs (i.e. indicated by the
corresponding GDOP value) will affeet the precision for location estimation and tracking.
The concept of the proposed GPET scheme |ig/toradjust the positions of the designed virtual
BSs such that the predicted MS#will be sithiated at a location with a smaller GDOP value.
The modified virtual BS’s positions: will therefore.be adopted associated with the existing
BSs for location estimation. Similarly, the two:BSs and the single-BS cases are considered as

follows. First, we will explain the formulations of the GDOP shortly.

5.1 The Geometric Dilution of Precision (GDOP)

The GDOP [22] is defined as the ratio between the location estimation error and the associ-
ated measurement error. It is utilized as an index for observing the location precision of the
MS under different geometric location within the networks (e.g. the cellular or the satellite
networks). In general, a larger GDOP value corresponds to a comparably worse geometric lay-
out (established by the MS and its associated BSs), which consequently results in augmented
errors for location estimation. On the other hand, as the GDOP value becomes smaller, the

effect from the geometric relationship to the location estimation accuracy will turn out to
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be insignificant. Considering the MS’s location under the two-dimensional coordinate, the

GDOP value (G) obtained at the position @, can be represented as

N

Gy, = {trace [(Hngmk)_l]} (5.1)
where
[ T —L1,k Ye—Y1,k 1
C1,k C1,k
_ T —Tq .k Y —Yik
Hwk o Gik Cik (5'2)

Th—TN bk Yk—YNg k
CNy & CNy K

It is noted that the elements within the matrix H,, can be acquired from (2.2). It has been
shown in [22] that the minimum GDOP walué frequently occurs around the center of the

network layout, e.g. the minimumGDOR: inside a K-side (K > 3) regular polygon is shown

to take place at the center of theflayout and thie value is obtained as G = TQE Moreover, the

GDOP value and the Cramer-Rap Lower-Bound;(CRLB) are demonstrated to be identical

given a Gaussian-distributed noise model [23].

5.2 The Two-BSs Case

In this case, the primary target for the GPLT scheme is to design the location of the virtual

GPLT

BS, i.e. BSy1: :ntkLT. As shown in Fig. 4.1, two parameters (i.e. the distance Tolk

(¥
and the angle 6) w.r.t. the predicted MS’s position &, are introduced to represent the

designed virtual BS’s position wﬁp kLT. The selection of these two parameters within the GPLT

algorithm is explained in the following subsections.
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5.2.1 The Computation of the Angle 6,

The main objective of the GPLT scheme is to acquire the angle 6y of a:flpkLT such that the
predicted MS (Zj);—1) will possess a minimal GDOP value within its network topology for
location estimation. As illustrated in Fig. 4.1, the following equality can be obtained based

on the geometric relationship:

. GPLT GPLT JGPLT
-1 — Ty _(Tvl,k - o8 Ok, 1k - sin O, (5.3)

As mentioned above, the position of the virtual BS ( GPkLT) is designed such that the predicted

MS (i.e. @pp,—1) will be located at a minimal GDOP position based on the extended geometric
set PG = {T1k T2k, @ ﬁPkLT} By incorporating (1) into (5.1) and (5.2), the GDOP value

(i.e. G@k‘k_l) computed at the predicted MS’s position @1 = (Zgjk—1, rk—1) can be

obtained. The associated matrix Hz, ,, becomes

Thlk—1—T1,k Y|k —1 pisis Tplk—1—T1,k  Uklk—1—Y1,k
"1,k 1k T1,k 1,k

Tp|k—1— %2,k g Y2,k o1 — Okl o1 —

H,; — klk—1 klk—1" = Trlk—1—%2,k  Yklk—1—"Y2,k (5.4)
klk—1 T2,k T2,k T2k T2k
Tpp—1— wﬁfﬁT Jk|k—1= ygng .

~GPLT ~GPLT cos 0. sin 0,
’Ul k ”1 k

It is noted that the noiseless relative distance ¢; 1 in (5.1) are approximately replaced by 7;
in (5.4) since (; 1, are considered unattainable. It can be observed from (5.4) that the matrix

H.-

Tk|k—1

ie. Hg,\,  (0k) and Gg,,_,(0x). Based on the objective of the GPLT scheme, the angle 6;"

associated with the resulting G value are regarded as functions of the angle 0,

Tk|k—1

which results in the minimal GDOP value can therefore be acquired as

m : aG'fi7k|k—1(9/€)
O = arg {1\5191,? Gmk—l(ek)} = arg {(%k =0 (5.5)

By substituting (5.4) and (5.1) into (5.5), the angle ;" can be computed as

. _1<1j:\/1+f‘2>
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where

2[5 1 (Zufk—1 — T10) rje—1 — Yr.k) + 75 1 @rpo—1 — T2.0) k-1 — Y2.0)]

I'= - - - -
75k Erie—1 — 218)% = 73 1 (rr—1 — Y1.0)% + 711 (@rp—1 — T24)% = 17 (Grpe—1 — Y2.k)

£5.7)

It is noted that the noiseless relative distance (; 5 in (5.7) are replaced by 7;j for the com-
putation of I' since (;; are in general considered unattainable. At each time instant k, the
relative angle 6} between @j,_; and wﬁp kLT can therefore be obtained such that j;_; is

located at the position with a minimal GDOP value based on its current network layout.

5.2.2 The Selection of the Distance rle{DkLT

GPLT

ok will be determined, which can be utilized

In this subsection, the virtual measurement r
for acquiring the position of the virtual BS a:ff,iLT. It is observed in (5.4) that the GDOP value
at the predicted MS’s position is primarily dominated by the relative angle (i.e. 6;) between
the MS and the BSs; while the distancednférmation (i.e. Tg{ZLT) is considered uninfluential
to the GDOP value. This uncorrelated relationship hétween the GDOP value and the relative
distance has also been observed as in'[22]. The‘following Lemma shows that the selection of

the distance rﬁiLT becomes insignificant'for the-WLS-based location estimation.

Lemma 1 A time-based location estimation problem is considered for the MS wusing the
Weighted Least Square (WLS) algorithm. Assuming that a measurement input from a specific
BS is associated with zero mean random noises, the expected value of the location estimation

error is independent to the distance between the specific BS and the MS.

Proof: Considering three TOA measurements are available for estimating the MS’s position
(as described in (2.1) with Nj = 3), it is assumed that the third TOA measurement 73, is
only contaminated with random noises with zero mean value, i.e. E[ng;] =0 and ez} =0 in
(2.1). The target of this proof is to illustrate that the expected value of the estimation error
resulting from the WLS method is independent to the magnitude of the measurement input

r3 . By combining (2.1) and (2.2), the following matrix format can be obtained:

Apby =Ty (5.8)
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where

T
bk:[l’k Yk ﬁkz]

—2r1 — 2y 1 T‘ik — K1k

Ap=| =219 —2yop 1 Ji = r%k — K2k
2

—2x3)  —2y3k 1 T3k K3k

It is noted that 8 = :c% + yz and k; ) = 33121@ + yfk for i = 1, 2, and 3. Based on (5.8), the

MS’s estimated position by adopting the WLS method (i.e. & = [#4, Jx]7) can be acquired

as
i, = C(ATw1A,) AT w1, (5.9)
where
1 010
C= (5.10)
0 1.0
U = BT = EB[(Jr — Agbr) (I — Arby)’] = 4c°BLB (5.11)

The parameter ¥ is denoted as the error covariance matrix where B = diag{(i %, (2.k, (3.1 }-
L represents the covariance matrix of measured noise. The primary concern of this proof is to
acquire the expected value of the estimation error Afy = [AZy, Agx]?, which can be obtained

by rewriting (5.9) as
Azp = C(ATO 1A TAT O AT, (5.12)

It is noted that (5.12) indicates that the estimation error vector A&y is incurred by the

variation within the vector J;. The value of AJ} is obtained by considering the variations
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from the measurement inputs as (i.e. rjr = G r +nix + €k in (2.1))

2C1k (g + erg) + (nug +e1r)? 21k (N1k +e1r)
Adk = | 20 (nog + ) + (nog +ear)® | = | 20k (n2k + €2) (5.13)
203k 3.k + 134, 2Q3,k 13k

where e3 j, is considered zero as mentioned at the beginning of this proof. The approximation is
valid by considering that the noiseless distance (; ;, is in general larger than the combined noise
effect (n; 1 +e; ). For simplicity and without lose of generality, coordinate transformation can
be adopted within (5.12) such that (z1 4, y1,5) = (0, 0). The expected value of the estimation

error (i.e. A%y = [Ag, Agr]?) can therefore be acquired by expanding (5.12) as

Blagy] = B |Srretenn) o = yse) + Grlnoe + ean)ysr C&k"&kyz,k]

T3, kY2, — T2,kY3k

. Cr(nik +eir) ok — ys k) + Cor(nag + 62,k)ys,k] (5.14)
| T3 kY2, k = T2, kY3 k
E[Agy] = FE [ Gk + exi) (22 km iz ) F62.k (n2,k + €2.0)T3 % — €37kn37kx27k]
i Y3 B2k —Y2,kT3.k
I N1k +-e Zof = "F ngk + €2)T
_ Cr(nk +€1 1) @2k — L3k) + Cok (N2, + €2.) 37’“] (5.15)

Y3,kX2E Y2 kT3 ik

It is noted that the second equalities for-both (5.14) and (5.15) are attained based on the
assumption that E[ngy| = 0. From (5.14) and (5.15), it can clearly be observed that the
expected value of the estimation error (i.e. E[Ady] = [E[A#y], E[A7]]7) is independent to
the measured distance r3 ; under the assumption that its associated measurement noise ng
is considered a zero mean random variable, i.e. Ersi] = E[(3x] + E[nsi) = E[(3x). This
completes the proof.

This lemma states that the expected value of the location estimation error is independent
to the distance between a specific BS to the MS if the noises associated with the measure-
ment inputs are statistically distributed with a zero mean value. In generic time-based location
estimation, the phenomenon stated in Lemma 1 does not usually exist since most of the mea-

surement inputs are contaminated with NLOS noises, i.e. e;;, in (2.1) is randomly distributed
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with positive mean value. The NLOS error is augmented as the distance between the specific
BS and the MS is increased, which causes the corresponding measurement input to become
unreliable comparing with the other signal sources. This result is consistent with the intuition

that BSs with closer distances to the MS are always selected for location estimation. In the

GPLT

proposed GPLT scheme, the virtual measurement Tk

is considered as a designed distance
which is infected by its corresponding zero mean virtual noise n,, , as in (4.10). Based on
Lemma 1, the selection of the distance rfﬁLT becomes uninfluential to the estimation error
while exploiting the WLS algorithm for location estimation. This result is similar to the

derived GDOP wvalue that is unrelated to the distance information between the BSs and the

MS (as can be observed from (5.4)). In the simulation section, the uncorrelated relationship

GPLT

vi i and the estimation error will further be validated by exploiting the two-step

between r
LS estimator, which is considered one of the the WLS-based algorithms for location estima-
tion. It will be demonstrated via the simulation results that the influence from the length of
the virtual measurement to the estimation error isrconsidered insignificant.

The procedures of the proposed GPLT:|scheme under the two-BSs case is explained as
follows. The target is to obtain the pesition-of the MS-at the k" time step (i.e. xy,,) based
on the available information, including the measurement and location information acquired
from both BS; and BSy along with“the predicted position of the MS (i.e. ;). Two
steps are involved within the proposed GPLT scheme: (i) the determination of the virtual
BS’s position and the virtual measurement; and (i7) the estimation and tracking of the MS’s
position. As shown in Fig. 4.1, the orientation of the virtual BS (6}") relative to the the
predicted MS’s position @y ;_; is determined based on the criterion of minimizing the GDOP
value on &y ;,_; (as obtained from (5.5) and (5.6)). As was indicated by Lemma 1 in Subsection
V.A.(2), the selection of the virtual distance rgiLT w.r.t. the predicted MS’s position &y,

is considered insignificant to the estimation errors. Therefore, the distance is selected the same

value as was designed in the PLT algorithm, i.e. rﬁiLT = rfl LT as in (4.5). The location of

the virtual BS (chGlP LT and the length of the virtual measurement (TngLT) can consequently

be acquired. It is also noticed that the design of the virtual noise can therefore be selected
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2

the same as that in the PLT scheme, i.e. zero mean random distributed with variance T,k

= Var(r[5) = Var(|Zxp—1 — Zr—15—1])-

After acquiring the information of the virtual BS as the additional signal source, the ex-

tended sets of the BSs and the measurement inputs can be established as Ppg ;= ={x1k, T2k, T ngLT
and v, = {ri, rox, 7 GP LT} As illustrated in Fig. 3.3, the extended set of signal sources are

utilized as the inputs to the two-step LS estimator. The estimated MS’s position Zj; can
therefore be obtained by adopting the correcting phase of the Kalman filter, which completes

the location estimation and tracking processes at the k' time step.

5.3 The Single-BS Case

As illustrated in Fig. 4.2, only one BS (x;) associated with the measurement input ry
is available at the considered k" time instant. Additional two virtual BSs associated with

their virtual measurements are requiredsasithe, inputs for the two-step LS estimator, i.e.

PLT __ GPLT GPLT GPLT __ GRLT GPLT
BS,.k _{Ulk ) ka }and v,k _{Tvlk ) vgk

}. By adopting the design from
the PLT scheme with the singlezBS-case, the first-virtual BS is designed to be located at

wGPLT

o p = &p_1k—1 associated with the first virtual measurement TGPkLT as defined in (4.5).

The second virtual measurement TGIZLT is also.designed to be the same as in the PLT

scheme (in (4.9)), which considers the averaged prediction error from the previous time steps.

( G’PLT)

As shown in Fig. 4.2, the position of the second virtual BS is designed at a location

with distance rGPkLT relative to the predicted MS’s position &x_1. The relative angle 6} be-

tween a:GP;CLT and Zp;_; is determined by minimizing the GDOP value based on the predicted
MS’s position Zy_;. Both of the information from BS; and BS,, alone with the predicted
MS’s position &y, are utilized for the computation of the angle " (as in (5.5) and (5.6)). It
is noticed that instead of altering the position of BS,,,, the BS,,,’s location is adjusted in order

to acquire a better GDOP value for the predicted MS &y ;_;. The design concept is primarily

owing to the fact that the average prediction error is in general smaller than the length of

GPLT GPLT
> T vo.k

each prediction within the Kalman filtering formulation, i.e. r, . The expected

MS’s position &y,_; is considered more sensitive to rzf’;iLT due to its smaller value comparing
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with ry 5, and rngLT. It will be beneficial to adjust the location of BS,, (by rotating the angle

;") such that a smaller GDOP value can be achieved at the predicted location of the MS

(Zpjp—1)-

GPLT

vo e 18 considered

As indicated by Lemma 1, the selection of the virtual measurement r

GPLT

insignificant on the precision for location estimation. Nevertheless, the distance 77"/ is

chosen as in (4.9) in order to facilitate the design of the weighting coefficient associated with

the two-step LS estimator. Similar to the design within the PLT scheme, the virtual noise

GPLT

associated with the second virtual measurement T ook
9

can be regarded as zero mean with

variance ‘772%2 . = Var(rvGQPkLT). Therefore, the information from the additional two virtual

GPLT
v1,k

GPLT

and T ke

measurements r can be acquired such as to provide sufficient signal sources
for the two-step LS location estimator. The precision for location estimation and tracking of

the MS can consequently be enhanced.
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Chapter 6

Performance Evaluation

Simulations are performed to show the effectiveness of the proposed PLT and GPLT schemes
under different numbers of BSs, including the scenarios with deficient signal sources. The
noise models and the simulation parameters are illustrated in Subsection A. Subsection B
validates the GPLT scheme accordingto the variations from the relative angle and the distance
between the MS and the designed virtual|BS. The performance comparison between the
proposed PLT and GPLT algorithms with the'other existing location tracking schemes, i.e. the
Kalman Tracking (KT) and the Cascade Location Tracking (CLT) techniques, are conducted

in Subsection C.

6.1 The Noise Models and the Simulation Parameters

Different noise models [28] [47] for the the TOA measurements are considered in the simula-
tions. The model for the measurement noise of the TOA signals is selected as the Gaussian
distribution with zero mean and 10 meters of standard deviation, i.e. n;x ~ N(0,100) . On
the other hand, an exponential distribution pe, ,(7) is assumed for the NLOS noise model of

the TOA measurements as

v
x5 €XP (—/\i’k) v>0

0 otherwise

Pe; 1. (U) =
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Figure 6.1: An Exemplify Diagram for the Scenarios with the Two-BSs Layout. Stars
(2,,1(30.2°) and @,1(210.9°)): the Positions of the Virtual BS Cause the Minimal GDOP
Value of the MS; Squares (x,1(120.5°) and x,,1(300.5%)): the Positions of the Virtual BS
Cause the Maximal GDOP Value of the MS

where A\ji, = ¢ Ty = ¢ T (G i)Sp. The parameter 7; ;, is the RMS delay spread between
the i*" BS to the MS. 7, represents the median value of ik, Which is selected as 0.1 in the
simulations. ¢ is the path loss expenent which‘issassumed to be 0.5, and the factor for shadow
fading p is set to 1 in the simulations.” Theparameters for the noise models as listed in this
subsection primarily fulfill the environment while the MS is located within the rural area. It
is noticed that the reason for selecting the rural area as the simulation scenario is due to its
higher probability to suffer from deficiency of signal sources. Moreover, the sampling time At

is chosen as 1 sec in the simulations.

6.2 Validation of the GPLT Scheme

6.2.1 Validation with Angle Effect

As mentioned in Subsection V.A.(1), the primary objective of the proposed GPLT algorithm is

to adjust the position of the virtual BS such that the predicted MS can be situated at a location
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with minimal GDOP value. The design concept implicitly indicates that the estimation error
can be reduced if the MS is possessed with a smaller GDOP value formed by its geometric
layout. In this subsection, the relationship between the estimation errors and the GDOP
values will be verified via simulations. As shown in Fig. 6.1, the two-BS case is considered
associated with the locations of the BSs are BS; = (505,2957) and BSs = (1520,1234) in
meters. The MS’s true position is located at = (1020,2100) m. The position of the virtual
BS is assumed at @, 1(f) = (1020 + 1500 cos ¢, 2100 4+ 1500sinf) m with § = 0 ~ 359°. It
can be seen that the potential positions of the virtual BS are considered to be located at a
distance 1500 meters away from the MS’s true position along with different relative angles 6.

Fig. 6.2 illustrates the comparison between the average position error (left plot), the
RMSE (right plot), and the GDOP value versus the relative angle (6) between the true MS
and the virtual BS. It is noted that the Average Position Error (Az) and the RMSE are
computed as: Az = [T, o~ &()|| /N and RMSE = [Tl — a(i)|2/N 2 here N
= 50 indicates the number of simulation runs. It'is also noticed that the GDOP value (G)
is evaluated at the MS’s true position; while the. estimated MS’s position Z(i) is obtained
by the two-step LS estimator employing the various pesitions of the virtual BS, i.e. x,1(6)
for # = 0 ~ 359°. It can be observed from both plots in Fig. 6.2 that the average position
error and the RMSE follow the similar trend. as the.computed GDOP value. Both the minimal
mean estimation error (associated with the RMSE) and the minimal GDOP value occur at the
locations of @, 1(30.2°) = (2316, 2855) m and x,,1(210.9°) = (—267.1,1330) m. It is noted that
the angle 67" for the minimal GDOP value can also be directly computed and verified from
(5.6). Moreover, the maximal GDOP values and the maximal estimation errors (including
both the average position error and the RMSE) happen around the locations of @, ;(120.5°)
= (258.7,3392) m and @, (300.5°) = (1781,807.6) m. The results can further be validated
by observing the geometric layout as in Fig. 6.2. The minimal GDOP values of the true MS
occur as the three BSs form a equilateral triangle; while the maximal GDOP values happen
as the three BSs are situated along a straight line.  The above observations validate the

effectiveness of the proposed GPLT scheme by obtaining a position of the virtual BS with a
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smaller GDOP value, which consequently reduces the corresponding estimation error. On the
other hand, the estimation errors can be severely augmented if the MS happens to be located
at a position with the maximum GDOP value by adopting other schemes. It can therefore be
concluded that the results obtained from the simulations comply with the design objectives

of the GPLT algorithm.

6.2.2 Validation with Distance Effect

In this subsection, the results obtained from Lemma 1 will be validated via simulations.
It is stated in Lemma 1 that the expected value of the estimation error is independent to
the distance between the MS and a specific BS by adopting the WLS location estimation
algorithm. In order to validate Lemma 1 by the simulation data, the estimation errors induced
by adopting the two-step LS estimator will be obtained for the evaluation of the distance effect.
Fig. 6.3 illustrates the average position error (left plot) and the RMSE (right plot) acquired
from the two-step LS method underidifferent relative distances between the MS and the
virtual BS (i.e. r,1). It is noted that the distance v, 1 is simulated from 1 to 10 m along the
angle § = 60° as shown in Fig. 6:1. The four'simulated;results are conducted under different
signal variations (i.e. op, = 10720,30;40) inlorder to exam the potential effect from the
signal variances. As can be expected; the-estimation errors are observed to be independent
to the relative distance between the MS and the virtual BS, which are similar to the results
as concluded from Lemma 1. Moreover, it is also reasonable to perceive that the increases on
the signal variances oy, will induce proportional augmentation on the RMSE (in the right
plot of Fig. 6.3); while the average position error is considered not related to the changes due
to the signal variations (in the left plot of Fig. 6.3). From the above observations via the
simulation data, the uncorrelated relationship between the distance 7,1 and the estimation

error is found to be consistent with the results as acquired from Lemma 1.

47



w

Number of BSs
N
N o

=
@
T

-
T

o
@
T

. . . .
30 60 90 120 150
Time (sec)

oo

Figure 6.4: Total Number of Available BSs (/NVj) vs. Simulation Time (sec)
6.3 Simulation Results

The performance comparisons between the KT scheme, the CLT scheme, and the proposed
PLT and GPLT algorithms are conducted ;under the rural environment. Fig. 6.4 illustrates
the scenarios with various numbers‘of BSs_(i.e. the & values) that are available at different
time instants. It can be seen that the number of BSs becomes insufficient (i.e. Ni < 3) from
the time interval of ¢ = 102 to 150 sec. [Thetotal simulation interval is set as 150 seconds.
Figs. 6.5 to 6.7 illustrate the performance comparisons of the trajectory, the velocity, and
the acceleration tracking using the four algorithms. The estimated trajectories obtained from
these schemes are illustrated via the solid lines; while the true trajectories are denoted by the
dashed lines. The locations of the BSs are represented by the red empty circles as in Fig. 6.5.
The acceleration is designed to vary at time ¢ = 40, 55, and 120 sec from a = (agk, ayi)
= (0.5, 0), (-1, 1), (0, 0) to (0.2, -0.5) m/sec? (as shown in Fig. 6.7). It is noted that the
number of BSs becomes insufficient during the second acceleration change (i.e. at ¢t = 102
sec). By observing the starting time interval between ¢t = 0 and 101 sec (where the number
of BSs is sufficient), the four algorithms provide similar performance on location tracking as
shown in the z-y plots in Fig. 6.5. As illustrated in Figs. 6.6 and 6.7, it can be seen that the
KT scheme can provide better performance on the velocity and acceleration tracking during

the transient phase (i.e from ¢ = 0 to 10 sec). The reason is attributed to its compromise
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Figure 6.5: Trajectory Tracking of the MS Using the KT (Top Plot), the CLT (2" Plot), the
PLT (37 Plot), and the GPLT (Bottom Plot) Schemes (Solid Lines: Estimated Trajectories;
Dashed Lines: True Trajectories; Red Empty Circles: the Position of the BSs)
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Figure 6.6: Velocity Tracking of the MS Using the KT (Left Plots), the CLT (Middle-Left
Plots), the PLT (Middle-Right Plots), and the GPLT (Right Plots) Schemes (Solid Lines:
Estimated Trajectories; Dashed Lines: True Trajectories)

50



KT CLT PLT GPLT

a (m/secz)

2 2
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

ay (m/secz)

2 2 2
0 50 100 150 O 50 100 150 O 50 100 150 O 50 100 150
Time (sec) Time (sec) Time (sec) Time (sec)

Figure 6.7: Acceleration Tracking of the MS Using the KT (Left Plots), the CLT (Middle-
Left Plots), the PLT (Middle-Right Plots), and the GPLT (Right Plots) Schemes (Solid Lines:
Estimated Trajectories; Dashed Lines:.True Trajectories)

between the estimated state variables, &x, Ug,-and ax. However, the KT scheme results in the
worst performance between the four schemes after the transient phase (as shown in Figs. 6.6
and 6.7). Owing to the utilization.of an*external location estimator within the KT scheme,
the estimation errors are increasingly aceumulated caused by the potential inaccuracy of the
estimator.

During the time interval between ¢ = 102 and 150 sec with inadequate signal sources, it
can be observed that only the proposed GPLT scheme can achieve satisfactory performance
in the trajectory, the velocity, and the acceleration tracking. The estimated trajectories
obtained from both the KT and the CLT schemes diverge from the true trajectories due to
the inadequate number of measurement inputs. It is noticed that the inaccuracy within the
PLT scheme is primarily resulted from the implicitly worse geometric layout at certain time
instants, which will further be explained by the GDOP plot as in Fig. 6.10.

Moreover, Figs. 6.8 and 6.9 illustrate the average position error and the RMSE (i.e.

characterizing the signal variances) for location estimation and tracking of the MS. The four
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Figure 6.10: Comparison of the Mean GDOP Values (Associated with Their Confident In-
tervals) Between the PLT and the GPLT schemes During the Time Interval with Deficient
Signal Sources

location tracking schemes are compared based.on the same simulation scenario as shown in
Fig. 6.4. It can be observed from hoth plots-that the*proposed GPLT and PLT algorithms
outperform the conventional KT and €LT-schemes. During the time interval of 40 to 55 sec
while the acceleration changes, the RMSEs obtained from these four schemes slightly deviate
for the acceleration adjustment. The main differences between these algorithms occur while
the signal sources become insufficient after the time instant of ¢ = 102 sec. The proposed
GPLT scheme can still provide consistent location estimation and tracking; while the other
three algorithms result in augmented estimation errors. The major reason is attributed to the
assisted information that is fed back into the location estimator while the signal sources are
deficient. Furthermore, the GPLT algorithm outperforms the PLT scheme (especially under
the situations with the number of BSs equal to 1) primarily due to its exploitation of the
GDOP criterion.

The comparison of the mean GDOP values (associated with their confident intervals)
between the PLT and the GPLT schemes is illustrated in Fig. 6.10. It is noted that the

averaged GDOP values are computed based on 25 simulation runs. The mean GDOP values

53



are compared only during the time interval with deficient signal sources, i.e. while the virtual
BSs and the virtual measurements are exploited in both schemes. It can be observed that
the GDOP values obtained from the GPLT algorithm are consistent during the simulation
period with reasonable variations. On the other hand, the GDOP values acquired from the
PLT scheme result in larger variations, especially during the time interval of ¢ = 129 to 141
sec. The results are consistent with those estimation errors as acquired from Figs. 6.8 and 6.9
that worse GDOP value will result in incorrect location estimation of the MS. During the time
interval of t = 102 to 128 sec, the GDOP values obtained from both schemes are considered
similar, which represent that comparable geometric topology are formed by their individual
virtual BSs. The geometric effect will not be an influential factor to the estimation error for
the MS. On the other hand, during the time interval of t = 129 to 141 sec, sudden deviates in
the GDOP values are observed by using the PLT scheme. The larger average position error
and the RMSE within the PLT algorithm (as seen from Figs. 6.8 and 6.9 at around ¢t = 135
sec) can therefore be attributed to the eorresponding increased GDOP values and variations.
Nevertheless, with the adoption of the minimal GDOP: criterion, the proposed GPLT scheme
can still maintain consistent GDOP values under different numbers of available signal inputs.
The resulting estimation error and:RMSE caniconsequently be controlled within a reliable
interval. The effectiveness of the GPLE:algorithm is therefore perceived, especially under

insufficient signal sources (i.e. Ny = 1 and 2).
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Chapter 7

Conclusion

In this paper, the Predictive Location Tracking (PLT) and the Geometric-assisted Predictive
Location Tracking (GPLT) schemes are proposed. The predictive information obtained from
the Kalman filtering formulation is exploited as the additional measurement inputs for the
location estimator. With the feedback informationt.sufficient signal sources become available
for location estimation and tracking of a|MS."Moreover, the GPLT algorithm adjusts the
locations of its virtual Base Stations based on the GDOP criterion. It is shown in the simula-
tion results that the proposed GPLLI algorithi can provide consistent accuracy for location

estimation and tracking even under theenvirenments with insufficient signal sources.
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