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摘要 

手機的定位和軌跡追蹤在近年來受到相當高的注意。手機和基地台之間傳送

的無線電訊號，在一般的網路定位估測機制下被廣泛地使用。此外，定位估測器

加上卡曼爾濾波(Kalman filtering)的技術，可同時獲得位置的估測並且追蹤手

機的軌跡。然而，這些已經存在的估測機制，在信號源不足(基地台數目小於三)

的情況下，會變得無法計算並預測手機的位置跟軌跡。在此篇論文中，有兩種可

預測的定位和軌跡追蹤演算法被提出來解決這個問題。預測定位追蹤機制

( Predictive Location Tracking (PLT) scheme) 利用從卡曼爾濾波器(Kalman 

Filter)的預測訊息，提供給定位估測器當作是額外的訊號輸入，彌補訊號源不

足而無法計算的問題。更進一步，地理輔助的預測定位追蹤機制

(Geometric-assisted Predictive Location Tracking (GPLT) scheme)更加入

了幾何精度稀釋(Geometric Dilution of Precision (GDOP))的資訊到演算法

裡。採用所提出的地理輔助的預測定位追蹤(GPLT)機制在手機的定位追縱上都可

獲得更好的正確率，特別是當訊號源不足的時候。在此篇論文中有許多模擬的結

果來證明地理輔助的預測定位追蹤(GPLT)機制跟其他兩種網路定位追蹤機制比

較，可以獲得較高的正確率和穩定性。 
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Abstract 
Location estimation and tracking for the mobile devices have attracted a 

significant amount of attention in recent years. The network-based location estimation 

schemes have been widely adopted based on the radio signals between the mobile 

device and the base stations. The location estimators associated with the Kalman 

filtering techniques are exploited to both acquire location estimation and trajectory 

tracking for the mobile devices. However, most of the existing schemes become 

unapplicable for location tracking due to the deficiency of signal sources. In this 

thesis, two predictive location tracking algorithms are proposed to alleviate this 

problem. The Predictive Location Tracking (PLT) scheme utilizes the predictive 

information obtained from the Kalman filter in order to provide the additional signal 

inputs for the location estimator. Furthermore, the Geometric-assisted Predictive 

Location Tracking (GPLT) scheme incorporates the Geometric Dilution of Precision 

(GDOP) information into the algorithm design. Persistent accuracy for location 

tracking can be achieved by adopting the proposed GPLT scheme, especially with 

inadequate signal sources. Numerical results demonstrate that the GPLT algorithm 

can achieve better precision in comparison with other network-based location tracking 

schemes. 
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Chapter 1

Introduction

Wireless location technologies, which are designated to estimate the position of a Mobile

Station (MS), have drawn a lot of attention over the past few decades. The Quality-of-Service

(QoS) of the positioning accuracy has been announced after the issue of the emergency 911

(E-911) subscriber safety service [1]. With the assistance of the information derived from

the positioning system, the required performance and objectives for the targeting Mobile

Station (MS) can be achieved with augmented robustness. In recent years, there are increasing

demands for commercial applications to adopt the location information within their system

design, such as the navigation systems, the location-based billing, the health care systems,

the Wireless Sensor Networks (WSNs) [2]- [4], and the Intelligent Transportation Systems

(ITS) [5] [6]. With the emergent interests in the Location-Based Services (LBSs), the location

estimation algorithms with enhanced precision become necessitate for the applications under

different circumstances.

A variety of wireless location techniques have been investigated [7]- [10]. To simplify

the introduction of these techniques, in the following we use two-dimensional (2D) cases

as application examples. The network-based location estimation schemes have been widely

proposed and employed in the wireless communication system. These schemes locate the

position of a MS based on the measured radio signals from its neighborhood Base Stations

(BSs). The representative algorithms for the network-based location estimation techniques
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Figure 1.1: Position Determination Methods: (a) Time of Arrival (b)Time Difference of
Arrival (c) Angel of Arrival

are the Time-Of-Arrival (TOA), the Time Difference-Of-Arrival (TDOA), and the Angle-Of-

Arrival (AOA). The TOA scheme measures the arrival time of the radio signals coming from

different wireless BSs, as shown in Fig. 1.1a; while the TDOA scheme measures the time

difference between the radio signals, as shown in Fig. 1.1b. The AOA technique is conducted

within the BS by observing the arriving angle of the signals coming from the MS, as shown

in Fig. 1.1c.

It is recognized that the equations associated with the network-based location estimation

schemes are inherently nonlinear. The uncertainties induced by the measurement noises make

it more difficult to acquire the estimated MS position with tolerable precision. The Taylor

Series Expansion (TSE) method was utilized in [11] to acquire the location estimation of the

MS from the TOA measurements. The method requires iterative processes to obtain the
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location estimate from a linearized system. The major drawback of the TSE scheme is that

it may suffer from the convergence problem due to an incorrect initial guess of the MS’s po-

sition. The two-step LS method was adopted to solve the location estimation problem from

the TOA [12], the TDOA [13], and the TDOA/AOA measurements [14]. It is an approxi-

mate realization of the Maximum Likelihood (ML) estimator and does not require iterative

processes. The two-step Least Square (LS) scheme is advantageous in its computational effi-

ciency with adequate accuracy for location estimation. Instead of utilizing the Circular Line

of Position (CLOP) methods (e.g. the TSE and the two-step LS schemes), the Linear Line of

Position (LLOP) approach is presented as a new interpretation for the cell geometry from the

TOA measurements. Since the pairwise intersections of N TOA measurements will establish

(N − 1) independent linear lines, the LS method can therefore be applied to estimate the

position of the MS. The detail algorithm of the LLOP approach can be obtained by using the

TOA measurements as in [15], and the hybrid TOA/AOA measurements in [16].

In addition to the estimation of a MS’s position, trajectory tracking of a moving MS has

been studied [17] - [21]. The technique by combining the Kalman filter with the Weighted

Least Square (WLS) method is exploited in [17]. The Kalman Tracking (KT) scheme [18] [19]

distinguishes the linear part from the originally nonlinear equations for location estimation.

The linear aspect is exploited within the Kalman filtering formulation; while the nonlinear

term is served as an external measurement input to the Kalman filter. The technique utilized

in [20] adopted the Kalman filters for both pre-processing and post-processing in order to both

mitigate the Non-Line-of-Sight (NLOS) noises and track the MS’s trajectory. The Cascade

Location Tracking (CLT) scheme as proposed in [21] utilizes the two-step LS method for

initial location estimation of the MS. The Kalman filtering technique is employed to smooth

out and to trace the position of the MS based on its previously estimated data.

The Geometric Dilution of Precision (GDOP) [22] [23] and the Cramér-Rao Lower Bound

(CRLB) [24] are the well-adopted metrics for justifying the accuracy of location estimation

based on the geometric layouts between the MS and its associated BSs. It has been indi-

cated in [25] that the environments with ill-conditioned layouts will result in relatively larger
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GDOP and CRLB values. In general, the ill-conditioned situations can be classified into

two categories: (i) insufficient number of available neighborhood BSs around the MS; and

(ii) the occurrence of collinearity or coplanarity between the BSs and the MS. It is noticed

that the problem caused by case (ii) can be resolved with well-planned locations of the BSs.

Nevertheless, the scenarios with insufficient signal sources (i.e. case (i)) can happen in real

circumstances, e.g. under rural environments or city valley with blocking buildings. It will

be beneficial to provide consistent accuracy for location tracking under various environments.

However, the wireless location tracking problem with deficient signal sources has not been

extensively addressed in previous studies. In the cellular-based networks, three BSs are re-

quired in order to provide three signal sources for the TOA-based location estimation. The

scheme as proposed in [26] considers the location tracking problem under the circumstances

with short periods of signal deficiency, i.e. occasionally with only two signal sources available.

The linear predictive information obtained from the Kalman filter is injected into its original

LS scheme while one of the BSs is not observable. However, this algorithm is regarded as a

preliminary design for signal deficient scenarios, which does not consider the cases while only

one BS is available for location estimation. Insufficient accuracy for location estimation and

tracking of the MS is therefore perceived.

In this thesis, a Predictive Location Tracking (PLT) algorithm is proposed to improve the

problem with insufficient measurement inputs, i.e. with only two BSs or a single BS available

to be exploited. The predictive information obtained from the Kalman filter is adopted as the

virtual signal sources, which are incorporated into the two-step LS method for location esti-

mation and tracking. Moreover, a Geometric-assisted Predictive Location Tracking (GPLT)

scheme is proposed by adopting the Geometric Dilution of Precision (GDOP) [22] concept

into its formulation in order to further enhance the performance of the original PLT algo-

rithm. The position of the virtual signal sources are relocated for the purpose of achieving

the minimum GDOP value associated with the MS’s position. Along with the acquisition of

the optimal location for the virtual signal source, the corresponding estimation and tracking

errors acquired by using the proposed GPLT scheme can therefore be reduced. Moreover,
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consistent precision for location tracking of a MS is also observed by exploiting the GPLT

algorithm. Comparing with the existing techniques, the simulation results show that the pro-

posed GPLT scheme can acquire higher accuracy for location estimation and tracking even

under the situations with inadequate signal sources.

The remainder of this thesis is organized as follows. The related work, including the

mathematic modeling, the sources of ranging errors, and other existing location estimation

algorithms, is briefly described in chapter 2. The overview and motivations of the proposed

Predictive Location Tracking (PLT) and Geometric-assisted Predictive Location Tracking

(GPLT) schemes are explained in chapter 3. Chapter 4 presents the PLT algorithm with

two different scenarios; while the formulation of the GPLT scheme is exploited in chapter

5. Chapter 6 illustrates the performance evaluation of the proposed GPLT and the PLT

schemes in comparison with the existing location tracking techniques. Chapter 7 draws the

conclusions.
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Chapter 2

Preliminary studies and Related

Work

2.1 Mathematical Modeling

In order to facilitate the design of the proposed PLT and the GPLT algorithms, the signal

model for the TOA measurements is utilized. The set rk contains all the available measured

relative distance at the kth time step, i.e. rk = {r1,k, . . . , ri,k, . . . , rNk,k}, where Nk denotes

the number of available BSs at the time step k. The measured relative distance (ri,k) between

the MS and the ith BS (obtained at the kth time step) can be represented as

ri,k = c · ti,k = ζi,k + ni,k + ei,k i = 1, 2, ..., Nk (2.1)

where ti,k denotes the TOA measurement obtained from the ith BS at the kth time step, and

c is the speed of light. ri,k is contaminated with the TOA measurement noise ni,k and the

Non-line-of-sight (NLOS) error ei,k. It is noted that the measurement noise ni,k is in general

considered as zero mean with Gaussian distribution. On the other hand, the NLOS error ei,k

is modeled as exponentially-distributed for representing the positive bias due to the non-line-

of-sight effect [27] [28]. The noiseless relative distance ζi,k (in (2.1)) between the MS’s true

8



MS


BS
 Direct 


Path


NLOS Path


Figure 2.1: Geometry of the NLOS Error

position and the ith BS can be obtained as

ζi,k = [(xk − xi,k)2 + (yk − yi,k)2]
1
2 (2.2)

where xk = [xk yk] represents the MS’s true position and xi,k = [xi,k yi,k] is the location of

the ith BS for i = 1 to Nk. Therefore, the set of all the available BSs at the kth time step can

be obtained as PBS,k = {x1,k, . . . , xi,k, . . . , xNk,k}.

2.2 Sources of Ranging Errors

The location accuracy can be reduced due to the influence of the measurement noises. Several

main sources of ranging errors are described in this section, which are referred to [29].

Non-Line-of-Sight Errors

In dense urban environment, there may be no direct path from the MS to the BS as shown

in Fig. 2.1. Due to reflection and diffraction, the propagating wave may actually travel

excess path lengths on the order of hundreds of meters and the direct path is blocked. This

phenomenon, which we refer to as the NLOS error, ultimately translates into a biased estimate

of the mobile’s location. This problem has been recognized as a killer issue for mobile location.

In order to mitigate the effect of the measurement bias, it is necessary to develop location

algorithms that are robust to the NLOS error.
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Figure 2.2: Multiple Reflections Arrive at the MS with Different Time Delays

Multipath Errors

Multipath effects are caused by reflected signals entering the receiver antenna along with

direct path signal, as shown in Fig. 2.2. Since the reflected path is longer than the direct

path, the multipath signal blurs the peak of the direct signal at the output of the receiver

correlation channel and distorts the pseudorange measurement.

Receiver Measurement Processing

Advances in digital processing technology have enabled the implementation of small, afford-

able multiple channel receivers for parallel tracking of more than the minimum reference

points for navigation solutions. This technology, in conjunction with advances in the speed

and precision of microprocessor computations, has resulted in great reductions in receiver

range measurement processing errors.

2.3 Studies on Existing Location Estimation Algorithms

Different location estimation schemes have been proposed to acquire the MS’s position. Var-

ious types of information (e.g. the signal traveling distance, the received angle of the signal,

or the Receiving Signal Strength (RSS)) are involved to facilitated the algorithm design for
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location estimation. The primarily objectives in most of the location estimation algorithms

are to obtain higher estimation accuracy with promoted computational efficiency. The super-

resolution (or high-resoluction) schemes are proposed as in [30] - [33]. The scheme studied

in [30] considers arbitrary-located antennas and a particular covariance matrix within a noisy

environment. The covariance matrix is composed of various types of properties, including

gain, phase, frequency, polarization, and AOA information. The subspace method is pro-

posed in the scheme generates these component estimates of the covariance metrix based on

an eigen-analysis or eigen-composition. The most well-known super-resolution algorithm is

the MUltiple SIgnal Classification (MUSIC) [31], It is experimentally illustrated to be a robust

solution for location estimation, especially for a near-far environment. However, it has also

be shown in [32] and [33] that the drawbacks of the MUSIC approach include (i) comparably

high sensitivity to large noise and (ii) its complexity in computation.

The beamforming system is a space-time processor that operates on the output of a sensor

array. It provides spatial filtering capability by enhancing the amplitude of a coherent signal

associated with surrounding noises. Since the conventional beamforming technique is sensitive

to the estimation error for the MS’s position, a combination of localization and beamforming

is proposed as in [34]. It increases the robustness to location errors without sacrificing the

computation efficiency. An enhanced algorithm for simultaneous multi-source beamforming

and adaptive multi-target tracking is studied in [35]. The correlation between the adaptive

minimum variance beamforming and the optimal source localization is also investigated and

developed as in [36].

Instead of exploiting the spatial and temporal information of the signal, the location

fingerprinting technique locates the MS based on the the RSS [37] [38]. The technique involves

both the off-line and the on-line phases. A location grid that is related to a signal signature

database for a specific service area is developed in the off-line phase; while a measured RSS

vector at the MS is delivered to the central server to compare with the location grid in the on-

line phase. In addition, a hybrid algorithm which combines the RF propagation loss model is

proposed to both mitigate the requirement of the training data and to adjust the configuration
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changes [39]. On the other hand, the ray-tracing and ray-launching techniques are the two

ray optical approaches for location estimation. The radio signals that are launched from a

transmitter and reflected or diffracted by various objects are aggregated in a receiver. The

field strength and the signal propagation can therefore be predicted [40]; while [41] proposed

an efficient algorithm for prediction. The three dimensional indoor radio propagation models

are developed in [42] and [43]. Experimental formulas from extensive measurements of urban

and suburban propagation losses are studied as in [44] [45].

There are also different approaches adopting linearized methods to acquire the computing

efficiency while obtaining an approximate estimation of the MS’s position. The Taylor Series

Expansion (TSE) method was utilized in [46] to acquire the location estimation from the

TDOA measurements. The method requires iterative processes to obtain the location estimate

from a linearized system. The major drawback of this method is that it may suffer from the

convergence problem due to an incorrect initial guess of the MS’s position. The two-step

LS method was adopted to solve the location estimation problem from the TOA [12], the

TDOA [13], and the TDOA/AOA measurements [14]. It is an approximate realization of

the Maximum Likelihood (ML) estimator and does not require iterative processes. The two-

step LS scheme is advantageous in its computational efficiency with adequate accuracy for

location estimation. However, the scheme is demonstrated to be feasible for acquiring the

MS’s position under the LOS situations.

Instead utilizing the Circular Line Of Position (CLOP) methods (e.g. the TSE and two-

step LS schemes), the Linear Line Of Position (LLOP) approach is presented as a new inter-

pretation for the cell geometry from the TOA measurements. Since two TOA measurements

that intersect at two points will generate a connecting line, two independent lines will be

created by using three BSs in the scenario of two-dimensional location estimation. Therefore,

the LS method can be adopted to estimate the location of the MS. The detail algorithm of the

LLOP approach can be obtained by using the TOA measurements as in [15], and the hybrid

TOA/AOA measurements in [16].

Some well-known schemes are improved continuously in order to achieve higher accu-
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racy or promote the computational efficiency. The famous linear time-based algorithms, the

Taylor-Series Estimation (TSE) [46], the two-step LS method, and the Linear Line-of-Position

(LLOP) [15], are briefly described in the following subsection. For simplification, the thesis

only described the two-step LS method in two-dimensional plane.

2.3.1 Two-Step Least Square

The content of this section will show the Two-step Least Square (two-step LS) location algo-

rithm for TOA measurements and it can be obtained in [12]. For simplification, the two-step

LS method will be described for TOA measurements in a two-dimensional (2-D) plane. The

two-step LS method for TDOA measurements can be derived from the similar concept.

Assuming that (xk, yk) is the position of the mobile device, (xi,k, yi,k) is the position of

the ith BS and ri,k is the TOA measurement from the BSi. Since in practice, especially in

urban or in mountainous areas, the signals from the mobile device are usually unable to arrive

at the base stations directly (or in the oppositive direction), they always take a longer path

than the direct one. So by incorporating the influences of NLOS propagation, killer issue for

location estimation, on the location estimation, there exists

r2
i,k ≥ (xi,k − xk)2 + (yi,k − yk)2 = κi,k − 2xi,kxk − yi,kyk + x2

i,k + y2
i,k i = 1, 2, ...N (2.3)

where κi,k = x2
i,k + y2

i,k. ri,k = cti,k is the measured distance between the MS and the ith BS,

and c is the speed of light. By defining a new variable β
(1)
k = x

(1)2

k + y
(1)2

k , we rewrite (2.3)

through a set of linear expressions

−2xi,kxk − 2yi,kyk + βk ≤ r2
i,k − κi,k i = 1, 2, ...N (2.4)

Let z
(1)
k = [x̂(1)

k ŷ
(1)
k β̂

(1)
k ]T and express (2.4) in matrix form

Hkz
(1)
k ≤ Jk (2.5)

13



where

Hk =




−2x1,k − 2y1,k 1

−2x2,k − 2y2,k 1

. . .

−2xN,k − 2yN,k 1




Jk =




r2
1,k − κ1,k

r2
2,k − κ2,k

.

r2
N,k − κN,k




With measurement noise, the error vector is

ψk = Jk −Hkz
(1)
k (2.6)

When ri,k can be expressed as ξi,k + cni,k, the error vector ψk is found to be

ψk = 2cBknk + c2nk ¯ nk

Bk = diag{ξ1,k, ξ2,k, ..., ξN,k} (2.7)

The symbol ¯ represents the Schur product (element-by-element product). In addition, the

second term on the right of (2.7) can be ignored since the condition cni,k ≤ ξi,k is usually

satisfied. As a result, ψk becomes a Gaussian random vector with covariance matrix given by

Ψk = E[ψkψ
T
k ] = 4c2BkQkBk (2.8)

Qk is the covariance matrix of measured noise, and ξ1,k,...,ξN,k are denoted as the true values of

distances between the sources and the receiver. The element x
(1)
k are related by the equation,

β
(1)
k = x

(1)2

k +y
(1)2

k , which means that (2.5) is still a set of nonlinear equations in two variables

xk and yk. The approach to solve the nonlinear problem is to first assume that there is

no relationship among x
(1)
k , y

(1)
k and β

(1)
k . That can then be solved by Least Square (LS).

The final solution is obtained by imposing the known relationship to the computed result

via another LS computation. This two step procedure is an approximation of a true ML
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estimator. By considering the elements of x
(1)
k independent, the ML estimator of x

(1)
k is

x
(1)
k = arg min{(Jk −Hkx k)T Ψ−1

k (Jk −Hkx k)}

= (HT
k Ψ−1

k Hk)−1HT
k Ψ−1

k Jk (2.9)

The covariance matrix of x (1)
k is obtained by evaluating the expectations of x (1)

k and (x (1)
k )(x (1)

k )T

from (2.9). The covariance matrix of x
(1)
k can be calculated as [13]

cov(x (1)
k ) = (HT

k Ψ−1
k Hk)−1 (2.10)

Since we have used the independent supposition of variables x̂
(1)
k , ŷ

(1)
k , and β̂

(1)
k in the

estimation of x
(1)
k though the variable β̂

(1)
k is dependent on the variable x̂

(1)
k and ŷ

(1)
k , we

should revise the results as follows. Let the estimation errors of x̂
(1)
k , ŷ

(1)
k , and β̂

(1)
k be e1,k,

e2,k, and e3,. Here and below, denote the `th entry of a matrix M as [M ]`; then the entries in

vector x
(1)
k become

[x (1)
k ]1 = xo + e1,k (2.11a)

[x (1)
k ]2 = yo + e2,k (2.11b)

[x (1)
k ]3 = βo + e3,k (2.11c)

where xo, yo, and βo are denoted as the true values of x̂
(1)
k , ŷ

(1)
k , and β̂

(1)
k . Let another error

vector

ψ′k = J′k −H′
kx

(2)
k (2.12)

where

H′
k =




1 0

0 1

1 1


 J′k =




[x (1)
k ]21

[x (1)
k ]22

[x (1)
k ]3




15



and x
(2)
k =




x̂
(2)2

k

ŷ
(2)2

k


. Substituting 2.11a- 2.11c into 2.12, we have

[ψk]1 = 2xoe1,k + e2
1,k ≈ 2xoe1,k

[ψk]2 = 2yoe2,k + e2
2,k ≈ 2yoe2,k

[ψk]3 = e3,k

Obviously, the above approximations are valid only when the errors e1,k, e2,k, and e3,k are

fairly small. Subsequently, the covariance matrix of ψ′ is

Ψ′
k = E[ψ′kψ

′T
k ] = 4B′

kcov(x (1)
k )B′

k

B′
k = diag{xo, yo, 0.5} (2.14)

As an approximation, elements xo and yo in matrix B′
k can be replaced by the first two

elements x̂
(1)
k and ŷ

(1)
k in x

(1)
k . Similarly, the ML estimate of x

(2)
k is given by

x
(2)
k = (H′T

k Ψ′−1

k H′−1

k )H′T
k Ψ′−1

k J′k (2.15)

≈ (H′T
k B′−1

k (cov(x (1)
k ))−1B′−1

k H′−1

k ) (2.16)

• (H′T
k B′−1

k (cov(x (1)
k ))−1B′−1

k )J′k (2.17)

So the final position estimation z k = [x̂k ŷk]T is

z k =
√

x
(2)
k , or z k = −

√
x

(2)
k (2.18)

Here the sign of x̂k should coincide with the sign of [x (1)
k ]1 calculated by solving (2.9), and

the sign of ŷk coincides with the sign of [x (1)
k ]2.

The complete derivation of the two-step LS for TOA measurements is shown above. In

addition, the two-step LS method can be adopted to estimate MS location from the TDOA

[13], and the TDOA/AOA measurements [14]. The following two subsections describe the 3-D
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TOA location estimation for the satellite-based system, and the 3-D TDOA/AOA location

estimation algorithm for the cellular network.

2.4 Studies on Existing Location Tracking Algorithms

2.4.1 Kalman Filtering

Kalman Filtering method is always utilized for location tracking because it utilizes the state

vector with the position, the velocity, and the acceleration of the MS to record and predict

the MS’s trajectory. The measurement and state equations for the Kalman filter can be

represented as

z k = Mŝk + mk (2.19)

ŝk = Fŝk−1 + pk (2.20)

The matrix M in the measurement equation (2.19) relates the state to the measurement

z k. The matrix F in the equation (2.20) relates the state at the previous time step k-1 to

the state at the current step k. The variables mk and pk denote the measurement and the

process noises associated with the covariance matrices R and Q within the Kalman filtering

formulation.

The Kalman filter estimates a process by using a form of feedback control: the filter

estimates the process state at some time and then obtains feedback in the form of (noisy)

measurements. As such, the equations of the Kalman filter fall into two groups: time update

equations and measurement update equations. The time update equations are as following

ŝk|k−1 = Fŝk−1|k−1 (2.21)

Pk|k−1 = FPk−1|k−1F + Q (2.22)
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And the measurement update equations are shown

Kk = Pk|k−1M
T (MPk|k−1M

T + R)−1 (2.23)

ŝk|k = ŝk|k−1 + Kk(z k −Mŝk|k−1) (2.24)

Pk|k = (I−KkM)Pk|k−1 (2.25)

The first task during the measurement update os to compute the Kalman gain, Kk. The next

step is to actually measure the process to obtain z k, and then to generate a posteriori state

estimate by incorporating the measurement as in (2.24). The final step is to obtain a posteriori

error covariance estimate via (2.25). The Kalman filter instead recursively conditions the

current estimate on all of the past measurements.

2.4.2 Kalman Tracking (KT) Algorithm

The Kalman Tracker [18], which is designed based on the TDOA measurements, considers the

nonlinear term as an external measurement input to its Kalman filtering formulation. The

Kalman Tracking method for TOA measurements can be derived from the similar concept.

It distinguishes the linear part from the originally nonlinear equations for location estimation

and tracking.

The difference between ranges of the ith BS and the reference BS can be defined as

ri,1,k = ri,k − r1,k = c · ti,1,k i = 2, ..., N (2.26)

where c is the propagation speed, and N is the number of active BSs.

The squared distance between the ith BS and the MS is equal to

r2
i,k = ||xi,k − xk||2 = ||x2

i,k|| − 2xT
i,kxk + ||xk||2 (2.27)

where xi,k = [x̂i,k ŷi,k]T and xk = [xk yk]T are the vectors which define the known position

of the ith BS and unknown MS position.
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These equations show a nonlinear relation between the TDOA measurements and the BS

position. From (2.26), the squared distance between the ith BS and the BS can also be

expressed as

r2
i,k = r2

i,1,k + 2r1,kri,1,k + r2
1,k (2.28)

Using equations (2.27) and (2.28), the linear system of equations is derived as

Gkxk = uk − r1,kρk (2.29)

where

Gk =




(x2,k − x1,k) (y2,k − y1,k)

... ...

(xN,k − x1,k) (yN,k − y1,k)




uk =
1
2




||x2,k||2 − ||x1,k||2 − r2
2,1,k

...

||xN,k||2 − ||x1,k||2 − r2
N,1,k




ρk =




r2,1,k

...

rN,1,k




The resulting linear equation also depends on a distance measurement r1,k, proportional to

the TOA between the reference BS and the MS, which has a nonlinear dependence on the BS

co-ordinates.

In [18], a Kalman tracker based on TDOA measurements is derived from the linear equa-

tion (2.29). The use of the Kalman filter allows tracking the position and speed of the MS.

The transition equation, defined for continuous movement, is linear

ŝk = Fŝk−1 + pk (2.30)
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where ŝk = [x̂k ŷk v̂x,k v̂y,k]T is the dynamic state vector, where its components represent

the MS position and the speed in two-dimensional Cartesian co-ordinates at discrete time k.

The matrix F is the state matrix with 4 equal to the time interval between samples

F =




1 0 4 0

0 1 0 4
0 0 1 0

0 0 0 1




(2.31)

and p(k) = [0 0 px,k py,k] is the disturbance transition vector defined as a two-dimensional

random speed vector with covariance matrix Q.

From the linear equation (2.29), it can be defined the measurement equation that relates

the state vector with the observation vector

zk = Gkŝk + mk (2.32)

where matrix Gk is constant instead of the variable matrix derived for the Extended Kalman

filter in [19] and the update equations are the same as that in the front subsection. The noise

vector mk depends on the noise in the TDOA measurement

ri,1,k = ro
i,1,k + cni,1,k i = 2, ..., N (2.33)

being ro
i,1,k = ctoi,1,k obtained from the noise free value of the TDOA between the ith BS and

the reference BS.

Substituting this expression in equation (2.29) and considering that in practice cni,1,k <<

ro
i,k is usually satisfied, the measurement noise is found to be

mk = cBknk (2.34)

Bk = diag{ro
2,k, r

o
3,k, ..., r

o
N,k} (2.35)
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with covariance matrix

Ck = c2BkRkBk (2.36)

Rk is the covariance matrix of the noise in the TDOA measurments defined from the variance

of the noise in the time delay estimation from each BS

Rk = Hkσ
2
TDOAHT

k (2.37)

Hk is the (N-1 )x(N ) matrix that defines the difference of times in the TDOA method

Hk =




−1 1 0 ... 0

−1 0 1 ... 0

... ... ... ... ...

−1 0 0 ... 1




(2.38)

assuming that the measurements obtained are uncorrelated σ2
TDOA is a diagonal matrix of

dimension equal to the number of avalaible measurements N.

2.4.3 Cascade Location Tracking (CLT) Algorithm

The Cascade Location Tracking (CLT) scheme as proposed in [21] utilizes the two-step Least

Square (LS) method [12] [13] for initial location estimation of the MS. The two-step LS

method computes the solution zk which is also the measurement input of Kalman filter. After

the Kalman filter, we can get the final solution ŝk of MS. The Kalman filtering technique is

employed to smooth out and to trace the position of the MS based on its previously estimated

data. The details of the two-step LS method and Kalman filter are illustrated in front sections.
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Chapter 3

Architectural Overview of the

Proposed PLT and GPLT

Algorithms

The objective of the proposed Predictive Location Tracking (PLT) and the Geometric-assisted

Predictive Location Tracking (GPLT) algorithms is to utilize the predictive information ac-

quired from the Kalman filter to serve as the assisted measurement inputs while the environ-

ments are deficient with signal sources. Fig. 3.1, Fig. 3.2 and Fig. 3.3 illustrate the system

architectures of the KT [18], the CLT [21] and the proposed PLT/GPLT schemes. The TOA

signals (rk as in (2.1)) associated with the corresponding location set of the BSs (PBS,k) are

obtained as the signal inputs to each of the system, which result in the estimated state vector

of the MS, i.e. ŝk = [x̂k v̂k âk]T where x̂k = [x̂k ŷk] represents the MS’s estimated position, v̂k

= [v̂x,k v̂y,k] is the estimated velocity, and âk = [âx,k ây,k] denotes the estimated acceleration.

Since the equations (i.e.(2.1) and (2.2)) associated with the network-based location es-

timation are intrinsically nonlinear, different mechanisms are considered within the existing

algorithms for location tracking. The KT scheme [18] (as shown in Fig. 3.1) explores the

linear aspect of location estimation within the Kalman filtering formulation; while the non-

linear term (i.e. β̂k = x̂2
k + ŷ2

k) is treated as an additional measurement input to the Kalman
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filter. It is stated within the KT scheme that the value of the nonlinear term can be obtained

from an external location estimator, e.g. via the two-step LS method. Consequently, the

estimation accuracy of the KT algorithm greatly depends on the precision of the additional

location estimator. On the other hand, the CLT scheme [21] (as illustrated in Fig. 3.2) adopts

the two-step LS method to acquire the preliminary location estimate of the MS. The Kalman

Filter is utilized to smooth out the estimation error by tracing the estimated state vector ŝk

of the MS.

The architecture of the proposed PLT and GPLT schemes is illustrated in Fig. 3.3. It is

noticed that the GPLT algorithm involves additional transformation via the GDOP calculation

comparing with the PLT scheme. It can be seen that the PLT/GPLT algorithms will be the

same as the CLT scheme while Nk ≥ 3, i.e. the number of available BSs is greater than or

equal to three. On the other hand, the effectiveness of the PLT/GPLT schemes is revealed

as 1 ≤ Nk < 3, i.e. with deficient measurement inputs. The predictive state information

obtained from the Kalman filter is utilized for acquiring the assisted information, which will

be fed back into the location estimator. The extended sets for the locations of the BSs (i.e.

P e
BS,k = {PBS,k, PBSv ,k}) and the measured relative distances (i.e. r e

k = {rk, rv,k}) will be
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utilized as the inputs to the location estimator. The sets of the virtual BS’s locations PBSv ,k

and the virtual measurements rv,k are defined as follows.

Definition 1 (Virtual Base Stations) Within the PLT/GPLT formulation, the virtual Base

Stations are considered as the designed locations for assisting the location tracking of the MS

under the environments with deficient signal sources. The set of virtual BSs PBSv,k is defined

under two different numbers of Nk as

PBSv ,k =




{xv1,k} for Nk = 2

{xv1,k, xv2,k} for Nk = 1
(3.1)

Definition 2 (Virtual Measurements) Within the PLT/GPLT formulation, the virtual

measurements are utilized to provide assisted measurement inputs while the signal sources are

insufficient. Associating with the designed set of virtual BSs PBSv ,k, the corresponding set of

virtual measurements rv,k is defined as

rv,k =




{rv1,k} for Nk = 2

{rv1,k, rv2,k} for Nk = 1
(3.2)

It is noticed that the major tasks of both the PLT and GPLT schemes are to design

and to acquire the values of PBSv,k and rv,k for the two cases (i.e. Nk = 1 and 2) with

inadequate signal sources. In both the KT and the CLT schemes, the estimated state vector

ŝk can only be updated by the internal prediction mechanism of the Kalman filter while

there are insufficient numbers of BSs (i.e. Nk < 3 as shown in Fig. 3.1 and 3.2 with the

dashed lines). The location estimator (i.e. the two-step LS method) is consequently disabled

owing to the inadequate number of the signal sources. The tracking capabilities of both

schemes significantly depend on the correctness of the Kalman filter’s prediction mechanism.

Therefore, the performance for location tracking can be severely degraded due to the changing

behavior of the MS, i.e. with the variations from the MS’s acceleration.

On the other hand, the proposed PLT/GPLT algorithms can still provide satisfactory

tracking performance with deficient measurement inputs, i.e. with Nk = 1 and 2. Under
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these circumstances, the location estimator is still effective with the additional virtual BSs

PBSv ,k and the virtual measurements rv,k, which are imposed from the predictive output

of the Kalman filter (as shown in Fig. 3.3). It is also noted that the PLT/GPLT schemes

will perform the same as the CLT method under the case with no signal input, i.e. under

Nk = 0. Furthermore, the GPLT algorithm enhances the precision and the robustness of the

location estimation from the PLT scheme by considering the GDOP effect, i.e. the geographic

relationship between the locations of the BSs and the MS. By adopting the GPLT scheme, the

locations of the virtual BSs PPLT
BSv ,k obtained from the PLT method are adjusted into PGPLT

BSv ,k

in order to make the predicted MS possess with a minimal GDOP value. Consequently,

smaller estimation errors can be acquired by exploiting the GPLT algorithm comparing with

the PLT scheme. The virtual BS’s location set PPLT
BSv,k and the virtual measurements rPLT

v,k by

exploiting the PLT formulation is presented in the next section; while the adjusted location

set of the virtual BSs PGPLT
BSv ,k adopting from the GPLT algorithm will be derived in chapter

5.
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Chapter 4

Formulation of the PLT Algorithm

The proposed Predictive Location Tracking (PLT) scheme will be explained in this section.

As shown in Fig. 3.3, the measurement and state equations for the Kalman filter can be

represented as

z k = Mŝk + mk (4.1)

ŝk = Fŝk−1 + pk (4.2)

where ŝk = [x̂k v̂k âk]T . The variables mk and pk denote the measurement and the process

noises associated with the covariance matrices R and Q within the Kalman filtering formula-

tion. The measurement vector z k = [x̂ls,k ŷls,k]T represents the measurement input which is

obtained from the output of the two-step LS estimator at the kth time step (as in Fig. ??.(c)).
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The matrix M and the state transition matrix F can be obtained as

M =




1 0 0 0 0 0

0 1 0 0 0 0


 (4.3)

F =




1 0 ∆t 0 1
2∆t2 0

0 1 0 ∆t 0 1
2∆t2

0 0 1 0 ∆t 0

0 0 0 1 0 ∆t

0 0 0 0 1 0

0 0 0 0 0 1




(4.4)

where ∆t denotes the sample time interval. The main concept of the PLT scheme is to provide

additional virtual measurements (i.e. rv,k as in (3.2)) to the two-step LS estimator while the

signal sources are insufficient. Two cases (i.e. the two-BSs case and the single-BS case) are

considered as follows:
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4.1 The Two-BSs Case

As shown in Fig. 4.1, it is assumed that only two BSs (i.e. BS1 and BS2) associated with

two TOA measurements are available at the time step k in consideration. The main target

is to introduce an additional virtual BS along with its virtual measurement (i.e. PPLT
BSv ,k =

{xPLT
v1,k } and rPLT

v,k = {rPLT
v1,k }) by acquiring the predictive output information from the Kalman

filter. Knowing that there are predicting and correcting phases within the Kalman filtering

formulation, the predictive state can therefore be utilized to compute the supplementary

virtual measurement rPLT
v1,k as

rPLT
v1,k = ‖x̂ k|k−1 − x̂ k−1|k−1‖

= ‖MF ŝk−1|k−1 − x̂ k−1|k−1‖ (4.5)

where x̂ k|k−1 denotes the predicted MS’s position at time step k; while x̂ k−1|k−1 is the cor-

rected MS’s position obtained at the (k − 1)th time step. It is noticed that both values are

available at the (k− 1)th time step. The virtual measurement rPLT
v1,k is defined as the distance

between the previous location estimate (x̂ k−1|k−1) as the position of the virtual BS (i.e. BSv,1:

xPLT
v1,k , x̂ k−1|k−1) and the predicted MS’s position (x̂ k|k−1) as the possible position of the MS

(as shown in Fig. 4.1). It is also noted that the corrected state vector ŝk−1|k−1 is available

at the current time step k; while ŝk|k is unobtainable at the kth time step. By adopting rPLT
v1,k

(in (4.5)) as the additional signal input, the measurement vector z k can be acquired after

the three measurement inputs re
k = {r1,k, r2,k, rPLT

v1,k } and the locations of the BSs Pe
BS,k =

{x 1,k, x 2,k, xPLT
v1,k } have been imposed into the two-step LS estimator. Therefore, the state

vector ŝk|k can be obtained with the implementation of the correcting phase of the Kalman

filter at the time step k as

ŝk|k = ŝk|k−1 + Pk|k−1M
T [MPk|k−1M

T + R]−1(z k −Mŝk|k−1) (4.6)
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where

Pk|k−1 = FPk−1|k−1F
T + Q (4.7)

Pk−1|k−1 = [ I−Pk−1|k−2M
T (MPk−1|k−2M

T + R)−1M ]Pk−1|k−2 (4.8)

It is noted that Pk|k−1 and Pk−1|k−1represent the predicted and the corrected estimation

covariances within the Kalman filter. I in (4.8) is denoted as an identity matrix. As can been

observed from Fig. 4.1, the virtual measurement rPLT
v1,k associating with the other two existing

measurements r1,k and r2,k provide a confined region for the estimation of the MS’s location

at the time step k, i.e. x̂ k|k.

4.2 The Single-BS Case

In this case, only one BS (i.e. BS1) with one TOA measurement input is available at the kth

time step (as shown in Fig.4.2). Two additional virtual BSs and measurements are required

for the computation of the two-step LS estimator, i.e. PPLT
BSv ,k = {xPLT

v1,k , xPLT
v2,k } and rPLT

v,k =
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{rPLT
v1,k , rPLT

v2,k }. Similar to the previous case, the first virtual measurement rPLT
v1,k is acquired as

in (4.5) by considering x̂ k−1|k−1 as the position of the first virtual BS (i.e. xPLT
v1,k = x̂ k−1|k−1)

with the predicted MS’s position (i.e. x̂ k|k−1) as the possible position of the MS. On the other

hand, the second virtual BS’s position is assumed to locate at the predicted MS’s position (i.e.

xPLT
v2,k , x̂ k|k−1) as illustrated in Fig. 4.2. The corresponding second virtual measurement

rPLT
v2,k is defined as the average prediction error obtained from the Kalman filtering formulation

by accumulating the previous time steps as

rPLT
v2,k =

1
k − 1

k−1∑

i=1

‖x̂ i|i − x̂ i|i−1‖ (4.9)

It is noted that rPLT
v2,k is obtained as the mean prediction error until the (k − 1)th time step.

In the case while the Kalman filter is capable of providing sufficient accuracy in its predic-

tion phase, the virtual measurement rPLT
v2,k may approach zero value. Associating with the

single measurement r1,k from BS1, the two additional virtual measurements rPLT
v1,k (centered

at x̂ k−1|k−1) and rPLT
v2,k (centered at x̂ k|k−1) result in a constrained region (as in Fig. 4.2) for

location estimation of the MS under the environments with insufficient signal sources.

It is also noticed that the variations of the measurement inputs are the required informa-

tion for adopting the two-step LS estimator. It utilizes the signal variation as an indicator

to consider the weighting factor for a specific signal source, i.e. smaller weighting coeffi-

cient should be assigned to a measurement input if it encompasses comparably larger signal

variations. The weighted least square algorithm can therefore be performed within the two-

step LS estimator according to the designated weighting values associated with the signal

sources. Similar concept can be exploited to assign the weighting coefficients for the virtual

measurements. The virtual measurements can be represented as

rvi,k = ζvi,k + nvi,k for i = 1, 2 (4.10)

where ζvi,k is denoted as the deterministic noiseless virtual measurement; while nvi,k rep-

resents the virtual noise (i.e. the component with randomness) associated with the virtual

31



measurement rvi,k. Based on (4.5), the signal variation of rPLT
v1,k is considered as the vari-

ance of the predicted distance ‖x̂ k|k−1 − x̂ k−1|k−1‖ between the previous (k − 1) time steps.

Therefore, the virtual noise can be regarded as zero mean with variance σ2
nv1,k

= Var(rPLT
v1,k )

= Var(‖x̂ k|k−1 − x̂ k−1|k−1‖). It is noted that the mean value of rPLT
vi,k

is considered by the

noiseless virtual measurement ζPLT
v1,k . Similarly, since the signal variation of the second vir-

tual measurement rPLT
v2,k is obtained as the variance of the averaged prediction errors (as in

(4.9)), the associated virtual noise nv2,k can be considered as zero mean with variance σ2
nv2,k

= Var(rPLT
v2,k ). Consequently, the variances of the virtual noises (i.e. σ2

nv1,k
and σ2

nv2,k
) will be

exploited as the weighting coefficients within the formulation of the two-step LS estimator.
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Chapter 5

Formulation of the GPLT

Algorithm

The geometric relationship between the MS and its associated BSs (i.e. indicated by the

corresponding GDOP value) will affect the precision for location estimation and tracking.

The concept of the proposed GPLT scheme is to adjust the positions of the designed virtual

BSs such that the predicted MS will be situated at a location with a smaller GDOP value.

The modified virtual BS’s positions will therefore be adopted associated with the existing

BSs for location estimation. Similarly, the two-BSs and the single-BS cases are considered as

follows. First, we will explain the formulations of the GDOP shortly.

5.1 The Geometric Dilution of Precision (GDOP)

The GDOP [22] is defined as the ratio between the location estimation error and the associ-

ated measurement error. It is utilized as an index for observing the location precision of the

MS under different geometric location within the networks (e.g. the cellular or the satellite

networks). In general, a larger GDOP value corresponds to a comparably worse geometric lay-

out (established by the MS and its associated BSs), which consequently results in augmented

errors for location estimation. On the other hand, as the GDOP value becomes smaller, the

effect from the geometric relationship to the location estimation accuracy will turn out to
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be insignificant. Considering the MS’s location under the two-dimensional coordinate, the

GDOP value (G) obtained at the position xk can be represented as

Gxk
=

{
trace

[
(HT

xk
Hxk

)−1
]} 1

2 (5.1)

where

Hxk
=




xk−x1,k

ζ1,k

yk−y1,k

ζ1,k

. . . . . .

xk−xi,k

ζi,k

yk−yi,k

ζi,k

. . . . . .

xk−xNk,k

ζNk,k

yk−yNk,k

ζNk,k




(5.2)

It is noted that the elements within the matrix Hxk
can be acquired from (2.2). It has been

shown in [22] that the minimum GDOP value frequently occurs around the center of the

network layout, e.g. the minimum GDOP inside a K-side (K ≥ 3) regular polygon is shown

to take place at the center of the layout and the value is obtained as G = 2√
K

. Moreover, the

GDOP value and the Cramer-Rao Lower Bound (CRLB) are demonstrated to be identical

given a Gaussian-distributed noise model [23].

5.2 The Two-BSs Case

In this case, the primary target for the GPLT scheme is to design the location of the virtual

BS, i.e. BSv,1: xGPLT
v1,k . As shown in Fig. 4.1, two parameters (i.e. the distance rGPLT

v1,k

and the angle θk) w.r.t. the predicted MS’s position x̂ k|k−1 are introduced to represent the

designed virtual BS’s position xGPLT
v1,k . The selection of these two parameters within the GPLT

algorithm is explained in the following subsections.

34



5.2.1 The Computation of the Angle θk

The main objective of the GPLT scheme is to acquire the angle θk of xGPLT
v1,k such that the

predicted MS (x̂ k|k−1) will possess a minimal GDOP value within its network topology for

location estimation. As illustrated in Fig. 4.1, the following equality can be obtained based

on the geometric relationship:

x̂ k|k−1 − xGPLT
v1,k = (rGPLT

v1,k · cos θk, rGPLT
v1,k · sin θk) (5.3)

As mentioned above, the position of the virtual BS (xGPLT
v1,k ) is designed such that the predicted

MS (i.e. x̂ k|k−1) will be located at a minimal GDOP position based on the extended geometric

set P e
BS,k = {x1,k, x2,k, xGPLT

v1,k }. By incorporating (1) into (5.1) and (5.2), the GDOP value

(i.e. Gx̂k|k−1
) computed at the predicted MS’s position x̂ k|k−1 = (x̂k|k−1, ŷk|k−1) can be

obtained. The associated matrix Hx̂k|k−1
becomes

Hx̂k|k−1
=




x̂k|k−1−x1,k

r1,k

ŷk|k−1−y1,k

r1,k

x̂k|k−1−x2,k

r2,k

ŷk|k−1−y2,k

r2,k

x̂k|k−1−xGPLT
v1,k

rGPLT
v1,k

ŷk|k−1−yGPLT
v1,k

rGPLT
v1,k




=




x̂k|k−1−x1,k

r1,k

ŷk|k−1−y1,k

r1,k

x̂k|k−1−x2,k

r2,k

ŷk|k−1−y2,k

r2,k

cos θk sin θk




(5.4)

It is noted that the noiseless relative distance ζi,k in (5.1) are approximately replaced by ri,k

in (5.4) since ζi,k are considered unattainable. It can be observed from (5.4) that the matrix

Hx̂k|k−1
associated with the resulting Gx̂k|k−1

value are regarded as functions of the angle θk,

i.e. Hx̂k|k−1
(θk) and Gx̂k|k−1

(θk). Based on the objective of the GPLT scheme, the angle θm
k

which results in the minimal GDOP value can therefore be acquired as

θm
k = arg

{
min
∀θk

Gx̂k|k−1
(θk)

}
= arg

{
∂Gx̂k|k−1

(θk)

∂θk
= 0

}
(5.5)

By substituting (5.4) and (5.1) into (5.5), the angle θm
k can be computed as

θm
k = tan−1

(
1±√1 + Γ2

Γ

)
(5.6)
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where

Γ =
2[r2

2,k(x̂k|k−1 − x1,k)(ŷk|k−1 − y1,k) + r2
1,k(x̂k|k−1 − x2,k)(ŷk|k−1 − y2,k)]

r2
2,k(x̂k|k−1 − x1,k)2 − r2

2,k(ŷk|k−1 − y1,k)2 + r2
1,k(x̂k|k−1 − x2,k)2 − r2

1,k(ŷk|k−1 − y2,k)2
(5.7)

It is noted that the noiseless relative distance ζi,k in (5.7) are replaced by ri,k for the com-

putation of Γ since ζi,k are in general considered unattainable. At each time instant k, the

relative angle θm
k between x̂ k|k−1 and xGPLT

v1,k can therefore be obtained such that x̂ k|k−1 is

located at the position with a minimal GDOP value based on its current network layout.

5.2.2 The Selection of the Distance rGPLT
v1,k

In this subsection, the virtual measurement rGPLT
v1,k will be determined, which can be utilized

for acquiring the position of the virtual BS xGPLT
v1,k . It is observed in (5.4) that the GDOP value

at the predicted MS’s position is primarily dominated by the relative angle (i.e. θk) between

the MS and the BSs; while the distance information (i.e. rGPLT
v1,k ) is considered uninfluential

to the GDOP value. This uncorrelated relationship between the GDOP value and the relative

distance has also been observed as in [22]. The following Lemma shows that the selection of

the distance rGPLT
v1,k becomes insignificant for the WLS-based location estimation.

Lemma 1 A time-based location estimation problem is considered for the MS using the

Weighted Least Square (WLS) algorithm. Assuming that a measurement input from a specific

BS is associated with zero mean random noises, the expected value of the location estimation

error is independent to the distance between the specific BS and the MS.

Proof : Considering three TOA measurements are available for estimating the MS’s position

(as described in (2.1) with Nk = 3), it is assumed that the third TOA measurement r3,k is

only contaminated with random noises with zero mean value, i.e. E[n3,k] = 0 and e3,k = 0 in

(2.1). The target of this proof is to illustrate that the expected value of the estimation error

resulting from the WLS method is independent to the magnitude of the measurement input

r3,k. By combining (2.1) and (2.2), the following matrix format can be obtained:

Akbk = Jk (5.8)
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where

bk =
[

xk yk βk

]T

Ak =




−2x1,k − 2y1,k 1

−2x2,k − 2y2,k 1

−2x3,k − 2y3,k 1




Jk =




r2
1,k − κ1,k

r2
2,k − κ2,k

r2
3,k − κ3,k




It is noted that βk = x2
k + y2

k and κi,k = x2
i,k + y2

i,k for i = 1, 2, and 3. Based on (5.8), the

MS’s estimated position by adopting the WLS method (i.e. x̂k = [x̂k, ŷk]T ) can be acquired

as

x̂k = C(AT
k Ψ−1Ak)−1AT

k Ψ−1Jk (5.9)

where

C =




1 0 0

0 1 0


 (5.10)

Ψ = E[ψψT ] = E[(Jk −Akbk)(Jk −Akbk)T ] = 4c2BLB (5.11)

The parameter Ψ is denoted as the error covariance matrix where B = diag{ζ1,k, ζ2,k, ζ3,k}.
L represents the covariance matrix of measured noise. The primary concern of this proof is to

acquire the expected value of the estimation error ∆x̂k = [∆x̂k, ∆ŷk]T , which can be obtained

by rewriting (5.9) as

∆x̂k = C(AT
k Ψ−1Ak)−1AT

k Ψ−1∆Jk (5.12)

It is noted that (5.12) indicates that the estimation error vector ∆x̂k is incurred by the

variation within the vector Jk. The value of ∆Jk is obtained by considering the variations
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from the measurement inputs as (i.e. ri,k = ζi,k + ni,k + ei,k in (2.1))

∆Jk =




2ζ1,k (n1,k + e1,k) + (n1,k + e1,k)2

2ζ2,k (n2,k + e2,k) + (n2,k + e2,k)2

2ζ3,k n3,k + n2
3,k



'




2ζ1,k (n1,k + e1,k)

2ζ2,k (n2,k + e2,k)

2ζ3,k n3,k




(5.13)

where e3,k is considered zero as mentioned at the beginning of this proof. The approximation is

valid by considering that the noiseless distance ζi,k is in general larger than the combined noise

effect (ni,k +ei,k). For simplicity and without lose of generality, coordinate transformation can

be adopted within (5.12) such that (x1,k, y1,k) = (0, 0). The expected value of the estimation

error (i.e. ∆x̂k = [∆x̂k, ∆ŷk]T ) can therefore be acquired by expanding (5.12) as

E[∆x̂k] = E

[
ζ1,k(n1,k + e1,k)(y2,k − y3,k) + ζ2,k(n2,k + e2,k)y3,k − ζ3,kn3,ky2,k

x3,ky2,k − x2,ky3,k

]

= E

[
ζ1,k(n1,k + e1,k)(y2,k − y3,k) + ζ2,k(n2,k + e2,k)y3,k

x3,ky2,k − x2,ky3,k

]
(5.14)

E[∆ŷk] = E

[
ζ1,k(n1,k + e1,k)(x2,k − x3,k) + ζ2,k(n2,k + e2,k)x3,k − ζ3,kn3,kx2,k

y3,kx2,k − y2,kx3,k

]

= E

[
ζ1,k(n1,k + e1,k)(x2,k − x3,k) + ζ2,k(n2,k + e2,k)x3,k

y3,kx2,k − y2,kx3,k

]
(5.15)

It is noted that the second equalities for both (5.14) and (5.15) are attained based on the

assumption that E[n3,k] = 0. From (5.14) and (5.15), it can clearly be observed that the

expected value of the estimation error (i.e. E[∆x̂k] = [E[∆x̂k], E[∆ŷk]]
T ) is independent to

the measured distance r3,k under the assumption that its associated measurement noise n3,k

is considered a zero mean random variable, i.e. E[r3,k] = E[ζ3,k] + E[n3,k] = E[ζ3,k]. This

completes the proof.

This lemma states that the expected value of the location estimation error is independent

to the distance between a specific BS to the MS if the noises associated with the measure-

ment inputs are statistically distributed with a zero mean value. In generic time-based location

estimation, the phenomenon stated in Lemma 1 does not usually exist since most of the mea-

surement inputs are contaminated with NLOS noises, i.e. ei,k in (2.1) is randomly distributed
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with positive mean value. The NLOS error is augmented as the distance between the specific

BS and the MS is increased, which causes the corresponding measurement input to become

unreliable comparing with the other signal sources. This result is consistent with the intuition

that BSs with closer distances to the MS are always selected for location estimation. In the

proposed GPLT scheme, the virtual measurement rGPLT
v1,k is considered as a designed distance

which is infected by its corresponding zero mean virtual noise nv1,k as in (4.10). Based on

Lemma 1, the selection of the distance rGPLT
v1,k becomes uninfluential to the estimation error

while exploiting the WLS algorithm for location estimation. This result is similar to the

derived GDOP value that is unrelated to the distance information between the BSs and the

MS (as can be observed from (5.4)). In the simulation section, the uncorrelated relationship

between rGPLT
v1,k and the estimation error will further be validated by exploiting the two-step

LS estimator, which is considered one of the the WLS-based algorithms for location estima-

tion. It will be demonstrated via the simulation results that the influence from the length of

the virtual measurement to the estimation error is considered insignificant.

The procedures of the proposed GPLT scheme under the two-BSs case is explained as

follows. The target is to obtain the position of the MS at the kth time step (i.e. x̂k|k) based

on the available information, including the measurement and location information acquired

from both BS1 and BS2 along with the predicted position of the MS (i.e. x̂k|k−1). Two

steps are involved within the proposed GPLT scheme: (i) the determination of the virtual

BS’s position and the virtual measurement; and (ii) the estimation and tracking of the MS’s

position. As shown in Fig. 4.1, the orientation of the virtual BS (θm
k ) relative to the the

predicted MS’s position x̂k|k−1 is determined based on the criterion of minimizing the GDOP

value on x̂k|k−1 (as obtained from (5.5) and (5.6)). As was indicated by Lemma 1 in Subsection

V.A.(2), the selection of the virtual distance rGPLT
v1,k w.r.t. the predicted MS’s position x̂k|k−1

is considered insignificant to the estimation errors. Therefore, the distance is selected the same

value as was designed in the PLT algorithm, i.e. rGPLT
v1,k = rPLT

v1,k as in (4.5). The location of

the virtual BS (xGPLT
v1,k ) and the length of the virtual measurement (rGPLT

v1,k ) can consequently

be acquired. It is also noticed that the design of the virtual noise can therefore be selected
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the same as that in the PLT scheme, i.e. zero mean random distributed with variance σ2
nv1,k

= Var(rPLT
v1,k ) = Var(‖x̂ k|k−1 − x̂ k−1|k−1‖).

After acquiring the information of the virtual BS as the additional signal source, the ex-

tended sets of the BSs and the measurement inputs can be established as Pe
BS,k = {x1,k, x2,k, xGPLT

v1,k }
and re

k = {r1,k, r2,k, rGPLT
v1,k }. As illustrated in Fig. 3.3, the extended set of signal sources are

utilized as the inputs to the two-step LS estimator. The estimated MS’s position x̂ k|k can

therefore be obtained by adopting the correcting phase of the Kalman filter, which completes

the location estimation and tracking processes at the kth time step.

5.3 The Single-BS Case

As illustrated in Fig. 4.2, only one BS (x1,k) associated with the measurement input r1,k

is available at the considered kth time instant. Additional two virtual BSs associated with

their virtual measurements are required as the inputs for the two-step LS estimator, i.e.

PGPLT
BSv ,k = {xGPLT

v1,k , xGPLT
v2,k } and rGPLT

v,k = {rGPLT
v1,k , rGPLT

v2,k }. By adopting the design from

the PLT scheme with the single-BS case, the first virtual BS is designed to be located at

xGPLT
v1,k = x̂ k−1|k−1 associated with the first virtual measurement rGPLT

v1,k as defined in (4.5).

The second virtual measurement rGPLT
v2,k is also designed to be the same as in the PLT

scheme (in (4.9)), which considers the averaged prediction error from the previous time steps.

As shown in Fig. 4.2, the position of the second virtual BS (xGPLT
v2,k ) is designed at a location

with distance rGPLT
v2,k relative to the predicted MS’s position x̂ k|k−1. The relative angle θm

k be-

tween xGPLT
v2,k and x̂ k|k−1 is determined by minimizing the GDOP value based on the predicted

MS’s position x̂k|k−1. Both of the information from BS1 and BSv1 alone with the predicted

MS’s position x̂k|k−1 are utilized for the computation of the angle θm
k (as in (5.5) and (5.6)). It

is noticed that instead of altering the position of BSv1 , the BSv2 ’s location is adjusted in order

to acquire a better GDOP value for the predicted MS x̂k|k−1. The design concept is primarily

owing to the fact that the average prediction error is in general smaller than the length of

each prediction within the Kalman filtering formulation, i.e. rGPLT
v1,k > rGPLT

v2,k . The expected

MS’s position x̂k|k−1 is considered more sensitive to rGPLT
v2,k due to its smaller value comparing
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with r1,k and rGPLT
v1,k . It will be beneficial to adjust the location of BSv2 (by rotating the angle

θm
k ) such that a smaller GDOP value can be achieved at the predicted location of the MS

(x̂k|k−1).

As indicated by Lemma 1, the selection of the virtual measurement rGPLT
v2,k is considered

insignificant on the precision for location estimation. Nevertheless, the distance rGPLT
v2,k is

chosen as in (4.9) in order to facilitate the design of the weighting coefficient associated with

the two-step LS estimator. Similar to the design within the PLT scheme, the virtual noise

associated with the second virtual measurement rGPLT
v2,k can be regarded as zero mean with

variance σ2
nv2,k

= Var(rGPLT
v2,k ). Therefore, the information from the additional two virtual

measurements rGPLT
v1,k and rGPLT

v2,k can be acquired such as to provide sufficient signal sources

for the two-step LS location estimator. The precision for location estimation and tracking of

the MS can consequently be enhanced.
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Chapter 6

Performance Evaluation

Simulations are performed to show the effectiveness of the proposed PLT and GPLT schemes

under different numbers of BSs, including the scenarios with deficient signal sources. The

noise models and the simulation parameters are illustrated in Subsection A. Subsection B

validates the GPLT scheme according to the variations from the relative angle and the distance

between the MS and the designed virtual BS. The performance comparison between the

proposed PLT and GPLT algorithms with the other existing location tracking schemes, i.e. the

Kalman Tracking (KT) and the Cascade Location Tracking (CLT) techniques, are conducted

in Subsection C.

6.1 The Noise Models and the Simulation Parameters

Different noise models [28] [47] for the the TOA measurements are considered in the simula-

tions. The model for the measurement noise of the TOA signals is selected as the Gaussian

distribution with zero mean and 10 meters of standard deviation, i.e. ni,k ∼ N (0, 100) . On

the other hand, an exponential distribution pei,k
(τ) is assumed for the NLOS noise model of

the TOA measurements as

pei,k
(υ) =





1
λi,k

exp
(
− υ

λi,k

)
υ > 0

0 otherwise
(6.1)
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Figure 6.1: An Exemplify Diagram for the Scenarios with the Two-BSs Layout. Stars
(xv,1(30.2o) and xv,1(210.9o)): the Positions of the Virtual BS Cause the Minimal GDOP
Value of the MS; Squares (xv,1(120.5o) and xv,1(300.5o)): the Positions of the Virtual BS
Cause the Maximal GDOP Value of the MS

where λi,k = c · τi,k = c · τm(ζi,k)ερ. The parameter τi,k is the RMS delay spread between

the ith BS to the MS. τm represents the median value of τi,k, which is selected as 0.1 in the

simulations. ε is the path loss exponent which is assumed to be 0.5, and the factor for shadow

fading ρ is set to 1 in the simulations. The parameters for the noise models as listed in this

subsection primarily fulfill the environment while the MS is located within the rural area. It

is noticed that the reason for selecting the rural area as the simulation scenario is due to its

higher probability to suffer from deficiency of signal sources. Moreover, the sampling time ∆t

is chosen as 1 sec in the simulations.

6.2 Validation of the GPLT Scheme

6.2.1 Validation with Angle Effect

As mentioned in Subsection V.A.(1), the primary objective of the proposed GPLT algorithm is

to adjust the position of the virtual BS such that the predicted MS can be situated at a location
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Figure 6.2: Top Plot: the Average Position Error (Solid Line) and the GDOP Value (Dashed
Line) vs the Relative Angle Between the MS and the Virtual BS (θ); Bottom Plot: the RMSE
(Solid Line) and the GDOP Value (Dashed Line) vs the Relative Angle Between the MS and
the Virtual BS (θ)
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with minimal GDOP value. The design concept implicitly indicates that the estimation error

can be reduced if the MS is possessed with a smaller GDOP value formed by its geometric

layout. In this subsection, the relationship between the estimation errors and the GDOP

values will be verified via simulations. As shown in Fig. 6.1, the two-BS case is considered

associated with the locations of the BSs are BS1 = (505, 2957) and BS2 = (1520, 1234) in

meters. The MS’s true position is located at x = (1020, 2100) m. The position of the virtual

BS is assumed at xv,1(θ) = (1020 + 1500 cos θ, 2100 + 1500 sin θ) m with θ = 0 ∼ 359o. It

can be seen that the potential positions of the virtual BS are considered to be located at a

distance 1500 meters away from the MS’s true position along with different relative angles θ.

Fig. 6.2 illustrates the comparison between the average position error (left plot), the

RMSE (right plot), and the GDOP value versus the relative angle (θ) between the true MS

and the virtual BS. It is noted that the Average Position Error (∆x) and the RMSE are

computed as: ∆x =
[∑N

i=1 ‖x− x̂(i)‖
]
/N and RMSE =

[∑N
i=1 ‖x− x̂(i)‖2/N

]1/2
where N

= 50 indicates the number of simulation runs. It is also noticed that the GDOP value (Gx)

is evaluated at the MS’s true position; while the estimated MS’s position x̂(i) is obtained

by the two-step LS estimator employing the various positions of the virtual BS, i.e. xv,1(θ)

for θ = 0 ∼ 359o. It can be observed from both plots in Fig. 6.2 that the average position

error and the RMSE follow the similar trend as the computed GDOP value. Both the minimal

mean estimation error (associated with the RMSE) and the minimal GDOP value occur at the

locations of xv,1(30.2o) = (2316, 2855) m and xv,1(210.9o) = (−267.1, 1330) m. It is noted that

the angle θm
k for the minimal GDOP value can also be directly computed and verified from

(5.6). Moreover, the maximal GDOP values and the maximal estimation errors (including

both the average position error and the RMSE) happen around the locations of xv,1(120.5o)

= (258.7, 3392) m and xv,1(300.5o) = (1781, 807.6) m. The results can further be validated

by observing the geometric layout as in Fig. 6.2. The minimal GDOP values of the true MS

occur as the three BSs form a equilateral triangle; while the maximal GDOP values happen

as the three BSs are situated along a straight line. The above observations validate the

effectiveness of the proposed GPLT scheme by obtaining a position of the virtual BS with a

45



0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Distance from MS to Virtual BS (m)

A
v

e
ra

g
e

 P
o

si
ti

o
n

 E
rr

o
r 

(m
)

 

 

σ
nv1

 = 10

σ
nv1

 = 20

σ
nv1

 = 30

σ
nv1

 = 40

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

5

10

15

Distance from MS to Virtual BS (m)

R
M

S
E

 (
m

)

 

 
σ

nv1
 = 10

σ
nv1

 = 20

σ
nv1

 = 30

σ
nv1

 = 40

Figure 6.3: Top Plot: the Average Position Errors vs the Relative Distance Between the MS
and the Virtual BS (rv1); Bottom Plot: the RMSE vs the Relative Distance Between the MS
and the Virtual BS (rv,1) (with σnv1

= 10, 20, 30, 40)

46



smaller GDOP value, which consequently reduces the corresponding estimation error. On the

other hand, the estimation errors can be severely augmented if the MS happens to be located

at a position with the maximum GDOP value by adopting other schemes. It can therefore be

concluded that the results obtained from the simulations comply with the design objectives

of the GPLT algorithm.

6.2.2 Validation with Distance Effect

In this subsection, the results obtained from Lemma 1 will be validated via simulations.

It is stated in Lemma 1 that the expected value of the estimation error is independent to

the distance between the MS and a specific BS by adopting the WLS location estimation

algorithm. In order to validate Lemma 1 by the simulation data, the estimation errors induced

by adopting the two-step LS estimator will be obtained for the evaluation of the distance effect.

Fig. 6.3 illustrates the average position error (left plot) and the RMSE (right plot) acquired

from the two-step LS method under different relative distances between the MS and the

virtual BS (i.e. rv,1). It is noted that the distance rv,1 is simulated from 1 to 106 m along the

angle θ = 60o as shown in Fig. 6.1. The four simulated results are conducted under different

signal variations (i.e. σnv1
= 10, 20, 30, 40) in order to exam the potential effect from the

signal variances. As can be expected, the estimation errors are observed to be independent

to the relative distance between the MS and the virtual BS, which are similar to the results

as concluded from Lemma 1. Moreover, it is also reasonable to perceive that the increases on

the signal variances σnv1
will induce proportional augmentation on the RMSE (in the right

plot of Fig. 6.3); while the average position error is considered not related to the changes due

to the signal variations (in the left plot of Fig. 6.3). From the above observations via the

simulation data, the uncorrelated relationship between the distance rv,1 and the estimation

error is found to be consistent with the results as acquired from Lemma 1.
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Figure 6.4: Total Number of Available BSs (Nk) vs. Simulation Time (sec)

6.3 Simulation Results

The performance comparisons between the KT scheme, the CLT scheme, and the proposed

PLT and GPLT algorithms are conducted under the rural environment. Fig. 6.4 illustrates

the scenarios with various numbers of BSs (i.e. the Nk values) that are available at different

time instants. It can be seen that the number of BSs becomes insufficient (i.e. Nk < 3) from

the time interval of t = 102 to 150 sec. The total simulation interval is set as 150 seconds.

Figs. 6.5 to 6.7 illustrate the performance comparisons of the trajectory, the velocity, and

the acceleration tracking using the four algorithms. The estimated trajectories obtained from

these schemes are illustrated via the solid lines; while the true trajectories are denoted by the

dashed lines. The locations of the BSs are represented by the red empty circles as in Fig. 6.5.

The acceleration is designed to vary at time t = 40, 55, and 120 sec from ak = (ax,k, ay,k)

= (0.5, 0), (-1, 1), (0, 0) to (0.2, -0.5) m/sec2 (as shown in Fig. 6.7). It is noted that the

number of BSs becomes insufficient during the second acceleration change (i.e. at t = 102

sec). By observing the starting time interval between t = 0 and 101 sec (where the number

of BSs is sufficient), the four algorithms provide similar performance on location tracking as

shown in the x-y plots in Fig. 6.5. As illustrated in Figs. 6.6 and 6.7, it can be seen that the

KT scheme can provide better performance on the velocity and acceleration tracking during

the transient phase (i.e from t = 0 to 10 sec). The reason is attributed to its compromise
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Dashed Lines: True Trajectories; Red Empty Circles: the Position of the BSs)
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Figure 6.7: Acceleration Tracking of the MS Using the KT (Left Plots), the CLT (Middle-
Left Plots), the PLT (Middle-Right Plots), and the GPLT (Right Plots) Schemes (Solid Lines:
Estimated Trajectories; Dashed Lines: True Trajectories)

between the estimated state variables, x̂k, v̂k, and âk. However, the KT scheme results in the

worst performance between the four schemes after the transient phase (as shown in Figs. 6.6

and 6.7). Owing to the utilization of an external location estimator within the KT scheme,

the estimation errors are increasingly accumulated caused by the potential inaccuracy of the

estimator.

During the time interval between t = 102 and 150 sec with inadequate signal sources, it

can be observed that only the proposed GPLT scheme can achieve satisfactory performance

in the trajectory, the velocity, and the acceleration tracking. The estimated trajectories

obtained from both the KT and the CLT schemes diverge from the true trajectories due to

the inadequate number of measurement inputs. It is noticed that the inaccuracy within the

PLT scheme is primarily resulted from the implicitly worse geometric layout at certain time

instants, which will further be explained by the GDOP plot as in Fig. 6.10.

Moreover, Figs. 6.8 and 6.9 illustrate the average position error and the RMSE (i.e.

characterizing the signal variances) for location estimation and tracking of the MS. The four
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Figure 6.10: Comparison of the Mean GDOP Values (Associated with Their Confident In-
tervals) Between the PLT and the GPLT schemes During the Time Interval with Deficient
Signal Sources

location tracking schemes are compared based on the same simulation scenario as shown in

Fig. 6.4. It can be observed from both plots that the proposed GPLT and PLT algorithms

outperform the conventional KT and CLT schemes. During the time interval of 40 to 55 sec

while the acceleration changes, the RMSEs obtained from these four schemes slightly deviate

for the acceleration adjustment. The main differences between these algorithms occur while

the signal sources become insufficient after the time instant of t = 102 sec. The proposed

GPLT scheme can still provide consistent location estimation and tracking; while the other

three algorithms result in augmented estimation errors. The major reason is attributed to the

assisted information that is fed back into the location estimator while the signal sources are

deficient. Furthermore, the GPLT algorithm outperforms the PLT scheme (especially under

the situations with the number of BSs equal to 1) primarily due to its exploitation of the

GDOP criterion.

The comparison of the mean GDOP values (associated with their confident intervals)

between the PLT and the GPLT schemes is illustrated in Fig. 6.10. It is noted that the

averaged GDOP values are computed based on 25 simulation runs. The mean GDOP values
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are compared only during the time interval with deficient signal sources, i.e. while the virtual

BSs and the virtual measurements are exploited in both schemes. It can be observed that

the GDOP values obtained from the GPLT algorithm are consistent during the simulation

period with reasonable variations. On the other hand, the GDOP values acquired from the

PLT scheme result in larger variations, especially during the time interval of t = 129 to 141

sec. The results are consistent with those estimation errors as acquired from Figs. 6.8 and 6.9

that worse GDOP value will result in incorrect location estimation of the MS. During the time

interval of t = 102 to 128 sec, the GDOP values obtained from both schemes are considered

similar, which represent that comparable geometric topology are formed by their individual

virtual BSs. The geometric effect will not be an influential factor to the estimation error for

the MS. On the other hand, during the time interval of t = 129 to 141 sec, sudden deviates in

the GDOP values are observed by using the PLT scheme. The larger average position error

and the RMSE within the PLT algorithm (as seen from Figs. 6.8 and 6.9 at around t = 135

sec) can therefore be attributed to the corresponding increased GDOP values and variations.

Nevertheless, with the adoption of the minimal GDOP criterion, the proposed GPLT scheme

can still maintain consistent GDOP values under different numbers of available signal inputs.

The resulting estimation error and RMSE can consequently be controlled within a reliable

interval. The effectiveness of the GPLT algorithm is therefore perceived, especially under

insufficient signal sources (i.e. Nk = 1 and 2).
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Chapter 7

Conclusion

In this paper, the Predictive Location Tracking (PLT) and the Geometric-assisted Predictive

Location Tracking (GPLT) schemes are proposed. The predictive information obtained from

the Kalman filtering formulation is exploited as the additional measurement inputs for the

location estimator. With the feedback information, sufficient signal sources become available

for location estimation and tracking of a MS. Moreover, the GPLT algorithm adjusts the

locations of its virtual Base Stations based on the GDOP criterion. It is shown in the simula-

tion results that the proposed GPLT algorithm can provide consistent accuracy for location

estimation and tracking even under the environments with insufficient signal sources.
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