利用基板合成波導共振腔設計帶通濾波器

學生:張政偉

指導教授:黄瑞彬 博士

國立交通大學電信工程學系碩士班

摘要

在本篇論文中,我們提出具有高選擇性之基板合成波導帶通濾波器。 此種帶通濾波器是利用基板合成波導共振腔所形成,藉由等效封閉矩形波 導和經驗公式,我們可轉換為基板合成波導尺寸。與傳統共振濾波器相比, 新的濾波器提供較寬的截止帶,且值得注意的是,只要適當橫向位移共振 腔或輸入輸出端和共振腔相差一個角度,就可達到抑制效果。在這裡我們 使用 CST 電磁模擬軟體分析結構的不連續邊界值電磁問題,也有實際製作 和量測濾波器的散色參數,由量測和模擬結果相比都非常一致,更可看出 新濾波器的特性。 A band-pass filter consisting of substrate integrated waveguide cavities

Student : Cheng-Wei Chang

Advisors : Dr. Ruey Bing, Hwang

Department of Communication Engineering National Chiao Tung University

In this thesis, we present a substrate integrated waveguide-based band-pass filter with wide stop-band rejection property. This band-pass filter is made up of substrate integrated waveguide cavities. By using the empirical formula for obtaining the equivalent rectangular waveguide dimensions, the substrate integrated waveguide structure could then be properly approximated by a closed rectangular waveguide. In comparison with the conventional end-to-end coupled cavity filters, we found that our new side-wall-coupled cavity filter can provide a wide rejection band. It is interesting to note that a wide rejection band can be achieved by properly shifting the second cavity in lateral direction. We employed the CST electromagnetic simulation software to analyze the electromagnetic boundary-value problem of the structure containing multiple discontinuities. In addition to the simulation analysis, we have fabricated the filters and measured their scattering parameters. The good agreement between the theoretical and measured results validates the accuracy of numerical computation, and also shows the promising performance of the proposed filters.

誌謝

本論文能夠順利完成,首先要感謝指導教授黃瑞彬老師,在碩士這兩年中的教導,無論是在做人處事或是研究方面都獲益良多。此外,老師能依照個人的興趣及能力給予指導,使我在專業上能盡情的發揮所長,相信這對於我的未來有極大的幫助。

同時也要感謝實驗室博士班浦大鈞學長在研究上給予協助,以及同學 潘俊良、許力尹和宋青峰在功課上的互相討論,還有學弟曾彥融、翁昭竹、 楊李鈞在我無聊時,能分享一些有趣的事,這兩年中有了他們,讓我的研 究所充實快樂,生活多了些色彩。

最後要感謝我的父母親和哥哥,在這兩年的求學生涯裡,不斷的給予 我支持和鼓勵,讓我無後顧之憂,能順利完成學業。

E	錄	

	i
	ii
	iii
	iv
	v
	vi
簡介	1
基板合成波導	3
基板合成波導共壁耦合帶通濾波器	7
設計基板合成波導共壁耦合帶通濾波器	7
基板合成波導共壁耦合帶通濾波器模擬與量測	10
雙層基板合成波導圓形共振帶通濾波器	20
設計雙層基板合成波導圓形共振帶通濾波器	20
雙層基板合成波導圓形共振帶通濾波器模擬與量測…	24
結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
1896	34
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	
	簡介 基板合成波導 基板合成波導共壁耦合帶通濾波器 設計基板合成波導共壁耦合帶通濾波器 設計基板合成波導其壁耦合帶通濾波器 支計雙層基板合成波導圓形共振帶通濾波器 設計雙層基板合成波導圓形共振帶通濾波器

圖目錄

圖 2	2.1(a)	`	基板合成波導結構	4
圖 2	2.1(b)	`	封閉矩形波導結構	4
圖 2	2.2、		微帶線到矩形波導的轉換電路	5
圖 2	2.3(a)	`	微帶線準 TEM 模態	5
圖 2	2.3(b)	`	矩形波導TE10模態	5
圖 2	2.4(a)	`	基板合成波導和封閉矩形波導返回損失比較圖	6
圖 2	2.4(b)	`	基板合成波導和封閉矩形波導插入損失比較圖	6
圖 3	8.1(a)	`	傳統端對端耦合濾波器之基板合成波導型態	8
圖 3	8.2(b)	`	共壁耦合带通濾波器之基板合成波導型態	9
圖 3	3.3、		基板合成波導共振腔結構	9
圖 3	8.4、		傳統端對端耦合濾波器的返回和插入損失	13
圖 3	8.5 、		位移第二個共振腔所觀察到的插入損失變化	13
圖 3	8.6(a)	`	傳統端對端耦合濾波器和共壁耦合濾波器的插入損失	
			比較圖	15
圖 3	B.6(b)	`	共壁耦合濾波器模擬和量測比較圖	15
圖 3	8.7(a)	`	共壁耦合濾波器在頻率 9.0GHz 共振腔中的電場分布	16
圖 3	8.7(b)	`	共壁耦合濾波器在頻率13.5GHz 共振腔中的電場分布	16
圖 3	8.7(c)	`	共壁耦合濾波器在頻率 15.0GHz 共振腔中的電場分布	17
圖 3	8.8(a)	`	共壁耦合濾波器在 W=3.9mm 下的模擬與量測比較圖	17
圖 3	8.8(b)	`	共壁耦合濾波器在 W=4.1mm 下的模擬與量測比較圖	18
圖 3	8.8(c)	`	共壁耦合濾波器在 W=4.5mm 下的模擬與量測比較圖	18
圖 3	8.8(d)	`	共壁耦合濾波器在 W=4.7mm 下的模擬與量測比較圖	19
圖 3	8.9、		基板合成波導共壁耦合濾波器實際電路圖	19
圖 4	l.1、		輸入輸出端和共振腔在不同角度下的圓形共振腔濾波	
			器	22
圖 4	l. 2 、		三階圓形共振腔濾波器	22
圖 4	.3、		雙層基板合成波導圓形共振濾波器	23
圖 4	l. 4(a)	`	基板合成波導圓形共振帶通濾波器α=0°到90°的插入	
			損失比較圖	26
圖 4	4.4(b)	`	正規化零點和角度α的相關圖	26
圖 4	l. 5 、		基板合成波導圓形共振帶通濾波器α=90°到180°的插	
			入損失比較圖	27
圖 4	l.6(a)	`	基板合成波導圓形共振帶通濾波器在α=45°時的模擬	
			與量測比較圖	27

圖	4.	6(b)	`	基板合成波導圓形共振帶通濾波器在α=60°時的模擬	20
				與量測比較圖	20
啚	4.	6(c)	`	基板合成波導圓形共振帶通濾波器在α=75°時的模擬	•
				與量測比較圖	28
圖	4.	6(d)	`	基板合成波導圓形共振帶通濾波器在α=90°時的模擬	•
				與量測比較圖	29
圖	4.	6(e)	`	基板合成波導圓形共振帶通濾波器在α=105°時的模擬	
				與量測比較圖	29
圖	4.	6(f)	`	基板合成波導圓形共振帶通濾波器在α=120°時的模擬	
				與量測比較圖	30
圖	4.	6(g)	•	基板合成波導圓形共振帶通濾波器在α=135°時的模擬	
				與量測比較圖	30
圖	4.	6(h)	`	基板合成波導圓形共振帶通濾波器在α=150°時的模擬	
				與量測比較圖	31
圖	4.	6(i)	`	基板合成波導圓形共振帶通濾波器在α=165°時的模擬	
				與量測比較圖	31
圖	4.	6(j)	`	基板合成波導圓形共振帶通濾波器在α=180°時的模擬	
				與量測比較圖	32
圖	4.	7、		雙層基板合成波導圓形共振帶通濾波器實際電路圖…	32
				1896	

表 2.1	基板合成波導和封閉矩形波導尺寸	5
表 3.1	傳統端對端耦合帶通濾波器設計尺寸	12
表 3.2	基板合成波導共壁耦合帶通濾波器尺寸	14
表 4.1	圓形波導 TM 模態的 P _{nm} 值	23
表 4.2	雙層基板合成波導圓形共振帶通濾波器的尺寸	25