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ABSTRACT

Traditionally, the thermal analysis methods of chip have been conducted by
solving the heat transfer equation with deterministic heat sources. However, the
technology scaling leads to that the fluctuations in physical parameters such as
channel length and oxide thickness have a substantial impact on circuit
performance, power consumption, and reliability. Ignoring the manufactured
process variations at the design stage can cause aggravated yield losses. In this
paper, we present a method to analyze the statistical temperature distribution of
full chip under considering process variations with a known within-die spatial
correlation function. To the author’s best knowledge, this is the first stochastic
thermal simulator of full chip with considering within-die process variations. This
work makes use of the Karhunen-Loeve transformation to deal with the physical
parameters with spatial correlation and takes advantage of polynomial chaos and
stochastic Galerkin method to tackle the stochastic heat transfer equation. We
demonstrate the accuracy and efficiency of the proposed methodology in
comparison to Monte Carlo simulation. The simulation results guarantee the
robust thermal yield and can guide designers to avoid the thermal failure in
nano-meter technology. Furthermore, we point out that the within-die spatial
correlation can not be neglected for the accurate temperature estimation.
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Chapter 1

Introduction

1.1 Introduction

Because of the drastic increase in power consumption of integrated circuits, thermal issues have
become the important concerns in VLSI manufacturing. The high temperature distribution and
thermal gradients have substantial impacts on timing, performance, power, and reliability. The
elevated temperature is mainly caused by huge power consumption. Furthermore, the leakage
power is expected to increase drastically and become the dominated part of total power con-
sumption. The subthreshold leakage and gate tunneling leakage are the major components of
leakage in advanced CMOS technology. The lower quantity of transistor threshold voltage re-
sults in an exponential increase in subthreshold leakage current. To control the short channel
effect and to enhance transistor driving strength, the thinner oxide thickness causes the consid-
erable gate tunneling leakage current.

An important concern of VLSI design and manufacturing in nanometer technology is the
process variation. As the technology scaling, the decreased controllability of processes has re-
sulted in the substantial variations of circuit performance. Generally, process variations can be
classified into die-to-die variation and within-die variation. The die-to-die variation is mainly
caused by the thermal gradients, equipment properties, wafer polishing, and wafer placement.
The die-to-die variation varies slowly and behaves smoothly at the large scale chip. Thus, the
die-to-die variation can be averaged over the die and be incorporated into mean value [1]. The
within-die variation is generally caused by pattern planarization in chemical mechanical pol-
ishing, and lithography effects [2]. The within-die variation affects the same type device at

different location within a chip differently and exhibits spatial correlation. The spatial correla-



tion within die means that the devices close to each other have more similar behavior than those
which are located far away. It has been shown that the within-die variations are the most im-
portant parts of all system variations which influence circuit performance [3]. Noted thét a
variation in oxide thickness caused @X difference in gate tunneling current for th@0nm

BPTM process technology [13] (Fig. 1.1). Moreover, the considerable variations in chip level
leakage power is expected as high28s in the literature [24] and the related fluctuation in
temperature distribution is considerable. It is worth to note that the phenomenon of variations
on leakage powers is more aggravated beyondifinen technology. The worst case deter-
ministic simulation can result in immoderate guard-banding, and causes low performance [23].
Furthermore, the underestimation in temperature and power consumption of circuits can lead
to unnecessary low yield. These undesirable phenomena bring about the statistical thermal

simulation being essential, especially for the leakage power dominated technology.
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Fig. 1.1: Leakage variations [13]



1.2 Motivation

The existing thermal simulating techniques can be classified into two categories, numerical
methods and analytical methods. The numerical based thermal simulators convert heat trans-
fer equations to equivalent RC networks and several efficient approaches have been devel-
oped [16, 17, 18]. Analytical methods which avoid performing directly the volume meshing of
entire substrate apply closed-forms to represent the temperature distribution, such as the Green’s
function based method [19], and the Generalized Integral Transforms (GIT) based method [14].
However, all these works view the power dissipation of chip to be deterministic, and result in the
optimistic estimate of temperature distribution. Those optimistic simulation results can gravely
decrease the manufactured yield. Therefore, reliable and robust thermal simulator must involve
process variations in physical parameters and leakage power consumption.

In this work, we propose a stochastic thermal simulation procedure and consider within-
die process variations for the leakage power dominated design. With the help of Karhunen-
Loeve expansion [9], we transform the random processes of physical parameters such as chan-
nel length and oxide thickness with known spatial correlation to a set of uncorrelated random
variables. After transforming parameters, we employ the polynomial chaos scheme and stochas-
tic Galerkin procedure to convert the stochastic heat transfer equations to a set of deterministic
problems. The formulas of temperature distribution are determined by applying an efficient
deterministic thermal solver [14] to deal with the set of deterministic heat transfer equations.
In this work, we are going to evaluate the means and variances of full-chip temperature distri-
bution and demonstrate the huge difference of simulation results between considering spatial

correlation and ignoring spatial correlation.

1.3 Our Contributions

In this work, we propose a stochastic thermal simulator and consider within-die process varia-
tions for leakage power dominated design. By using Karhunen-Loeve expansion, we transform
the random processes of physical parameters (channel length and oxide thickness) with spatial
correlation to a set of uncorrelated random variables. After transforming parameters, we em-

ploy the polynomial chaos scheme and stochastic Galerkin procedure to convert the stochastic



thermal problem to a set of deterministic problems. Then, applying an efficient deterministic

thermal solver [14] to obtain the final solutions. We are going to evaluate the mean value and
variance of full-chip temperature distribution and demonstrate the huge difference of simulation
results between considering spatial correlation and ignoring spatial correlation. To the author’s
best knowledge, this is the first stochastic thermal simulator of full chip with considering within-

die process variations in the nano-meter technology.

1.4 Organization of the Thesis

The rest of this thesis is organized as the follows. First, the detailed parameters modeling
in this work, polynomial chaos, Karhunen-Loeve expansion, and Monte Carlo technique are
introduced in chapter 2. The problem formulation, simulation flowchart and stochastic Galerkin

procedure utilized in this work are addressed in chapter 3. Finally, the experimental results and

conclusion are given in chapter 4 and 5, respectively.



Chapter 2

Preliminaries

In this chapter, we first introduce the physical design flow. Then, the parameter modeling is
presented in chapter 2.2. After that, the polynomial chaos for random space is shown in chapter
2.3. Finally, we introduce the statistical leakage power modeling in chapter 2.4 and Monte

Carlo technique in chapter 2.5.

2.1 Physical Design Flow

The physical design flow of a circuit shown in Fig. 2.1 is the phase that precedes the fabrication
of a circuit. In most general terms, physical design refers to all synthesis steps succeeding logic
design and preceding fabrication. These include logic partitioning, floorplanning, placement,
routing , compaction, extraction, and verification. Floorplanning is an essential design step
when a hierarchical/building design methodology is used. Floorplanning helps designers define
the layout hierarchy, estimate the overall required area, determine the aspect ratio for each mod-
ule. It is closely related to placement. For thermal-driven floorplanning, there are a greater deal
of flexibilities in mitigating thermal problems, but also large quantities of uncertainties with re-
gard to the accurate thermal profile. The placement stage of physical design flow is the process
of arranging the circuit components on a layout surface. The general purpose of the thermal-
aware placement methodology is to minimize the maximal temperature gradient over the chip
and get the uniform temperature distribution. Moreover, the thermal-driven methodologies con-
sider the more detailed thermal model with interconnects at the routing stage of physical design.
However, the literature [21] pointed out that the thermal-driven methodologies making efforts

at the early stage of physical design flow can gain more benefits. Thus, in this work, we will



propose a thermal simulator which is suitable to the the early stage of physical design.

Physical

Partitioning Design

Fig. 2.1: Physical design flow



2.2 Parameter Modeling

Process parameter spatial correlation has received increased attention recently. The consider-
ation of within-die spatial correlation causes the increasing number of RVs that we deal with
and the computation costs. A conventional technique partitions the layout plane into several
grids, assumes perfect correlation for all random variables (channel length, oxide thickness) in
the same grid cell, and computes a correlation matrix for those grid cells [25]. The number of
correlated random variables can be further reduced by applying principle component analysis
(PCA) [26] [27]. In PCA, linear variable transformations are used for the largest data variance,
or principle components. However, the nature of PCA often limits its capability in modeling
high dimensional parameter variations for performance modleing. An alternative formulation to
tackle with the correlated parameters is the Karhunen-Loeve expansion. A random process can
be expanded in terms of a denumerable set of orthogonal random variables with deterministic
functions which are related to the corresponding covariance kernel. The detailed parameters

modeling and Karhunen-Loeve expansion are presented in the following subsection.

2.2.1 Karhunen-Loeve Expansion

In the presence of process variations, the physical parameters such as channel length, and oxide
thickness can be modeled as random processes with given spatial covariance functions. Since
the values of physical parameters are bounded above and below, we can assume that the random
processx(x, ) of each parameter under consideration is a second-order stochastic process,
whered € ), andx = (z,y) € D,. Here,Q2 is the set of manufacturing outcomes for a specific
physical parameter, and, is the domain inc- andy- directions of chip.
DEFINITION 2.1[6] A second-order random variablg1)) is one satisfying?[|a(9)[?] <
oo. A second order stochastic proces, ¢) is a family of second-order random variables.
DEFINITION 2.2 [6] A second-order process ) is continuous in quadratic mean (g.m.)
if E[|a(x+h,9) — a(x,9)]*] — 0as|h|| — 0forallx € D, .
where|| - || is the Euclidean norm. Due to the absence of the explicit form(af J), we
utilize the following theorem to guarantee its g.m. continuity.

THEOREM 2.1 [6] A second-order procesgx, 1)) is continuous in q.m. at € D, if and



only if, its covariance functiof’(x;, x,) is continuous afx, x).
DEFINITION 2.3 [6] A second order g.m. continuous process, ) on a closed interval

D, has an orthogonal decomposition

ax,9) = ax) + 3 A6 () @)
ElGnGal = bnn [ Fn3) fa()dx = b1 2.2)

wherea(x) is the mathematical expectation of the process, 1), if, and only if, the); are the
eigenvalues and;(x) are the orthonormalized eigenfunctiong¢fx; , x,). Then the expansion
converges in g.m. uniformly a,,.

The Fourier-type series expansion form in equation (2.1) is the Karhunen-Loeve expansion
(KLE) which is an optimal way of representing a random process based on the spectral de-
composition of the given covariance kernel. The expansion converts a random process into a
model with a minimum degree of freedom and minimizes the mean-square error of the finite-
term representation [9]. From the viewpoint of practice, the summation terms of equation (2.1)
can be truncate at finite numbaf,; which is determined by the decay trend of eignevalues to
ensure the acceptable error. Notes that the decay trend is crucial, since the truncated number
determines the computational efficiency and complexity of the work. General speaking, the
smoother covariance function behaves the faster eigenvalues of KLE decay. The eigenvalues
and eigenfunctions can be derived form the following Fredholm integral equation:

[ Cxixa) fal)dxs = M) 2:3)

Form the definition of covariance function, it's with bounded, symmetric and positive defi-
nite property. The fact guarantees a number of properties for the eigenfunctions and the eigen-

values that are the solutions of equation (2.3).
1. The eigenfunction seft(x) is orthogonal and complete.
2. The eigenvalues are all positive real numbers.

3. There are at most countably infinite set of eigenvalues.



4. The covariance kernel admits of the following uniformly convergent expansion
C(x1,%x2) = > A fr(x1) fr(x2) (2.4)
k=1

The physical parameter such as channel length with spatial correlation can be expanded to a

Fourier-type series by Karhunen-Loeve expansion.

N,

e 6) = L) + 3 M A00G0) (25)
wherei(x) is the mean value function of channel lengthand f;(x) are the eigenvalues and
eigenfunctions corresponding to the given covariance function, respectivel§,afy . Here,

Q1 is the set of manufacturing outcomes for the channel length.{THeis a set of orthonor-

mal random variables with zero mean and unit variance. The system random process can be
assumed to be a Gaussian process [30], thefi¢hids a set of standard Gaussian random vari-
ables. It can be shown that the Karhunen-Loeve expansion transforms the random process with
spatial correlation to a set of uncorrelated orthonormal random variables and greatly reduces the
dimension of random variables. In the same way, the oxide thickness random process can be
transformed into a set of standard Gaussian random varig¢gledndeed, we assume that the

oxide thickness random process is independent of channel length, so the two random variables
sets ({¢:}, {s;} ) are independent. For notation, we arrafge and{c;} as{¢;} = {¢,s;} and

{&:} is used as the set of system random variables to expand bases for the random space. In the
following subsection, we will introduce the adoptive covariance function for physical parameter
random processes, and derive the eigenvalues and eigenfunctions of Karhunen-Loeve expansion

for the corresponding covariance function.

2.2.2 Spatial Correlation Modeling

Recently, the spatial correlation of within-die variations has been seriously taken into account
of the VLSI verification flow, and a precise spatial correlation function is necessary for catching
the manufacturing information. To extract the features of process variations for modeling and
constructing the covariance kernel is mainly based on the measured data, and several robust
techniques have been proposed to build the valid spatial covariance function [4] [5] with having

the positive semidefinite property [8]. In this paper, we adopt the spatial covariance function

9



introduced in [4] [6}.

1 —x |.U1—.U2‘
9 _lmizwal _

C(x1,X2)=0%€¢ 1 e (2.6)

wherex; = (z1,%1), X2 = (x2,¥2), andn, andn, are the correlation lengthes in the and
y- directions, respectively. The termindicates the standard deviation of the random process.
The covariance kernel is defined in the rectangular domginin general, the correlation of
parameters for two identical devices drops down as their distance increases. The literature [7]
further pointed that the correlation approaches zero as the distance nears half of chip dimension
for two logical gates. This observation means that the ratio of correlation length for different
chip sizes is constant for different design benchmark.

For the multi-dimensional problem, if we assume that the given covariance function is sep-
arable, the solutions of equation (2.3) can be derived independently fandy; directions.
For the covariance kernel in this work, the eigenvalues and eigenfunctions of one dimension

problem can be expressed as the following [9]:

21,02
Mo = 2.7)
7 nmwn,x + ]'
fa(x) = anicos(wp ) + ap28in(wy ;) (2.8)
1
CLH’Q = (29)
JoRuR, + DLo/2+ 1,
Ap1 = TzWp0n2 (210)
wherew,, , are the positive roots of the following characteristic equation
(n2w? — 1)sin(w,Ly) = 2n,wecos(w,Ly) (2.11)

the above characteristic equation can be obtained from combining the boundary condition and
equation 2.3.

The multi-dimensional eigenvlaues and eigenfunctions can be combined:feordy di-

rections.
_ Angn, 0
M= B, T 1, 1] (2.12)
Fula,y) = £i@) ;) (2.13)

!Although we choose this specific spatial covariance function in this work, our simulation flow can be applied
to any valid spatial covariance function.

10



wherew; , andw;, are the solutions of equation 2.11 for setting parametérsn,,) and
(Ly,,n,), respectively. The relationship between the inditeg) and indexn leads to the
eigenvalues\, form a decreasing series.

The detailed procedure of solving the eigenvalues and eigenfunctions of given covariance

kernel in this work is presented. From the following Fredholm equation:

/D C(l’l,@,yl, yz)f(l'l, y1>dx1dy1 = )‘f<x27 3/2) (2.14)

The above eigenvalues problem can be solved independentlydady directions to obtain

eigenvalues\, and),, and eigenfunctiong, (x) and f,(y).

_\11712\ 7‘1’/1*1’/2‘
/DU26 woe o f(ry,y)dedy; = ANf(@2,y2) (2.15)

|z —xzag| ly1 —y2l

[ o TS L dndn = AN L)) (216)

For the separable multi-dimension problem, we consider the following one-dimensional eigen-

values problem and extend to the two-dimension soultions :

L.’E flJl 12
/ ole” ‘ lfx(xl)da;l = o fu(x2) (2.17)
0
Taking derivative of equation 2.17 with respectitoyields

—1 [ ”C1 z2 1 Lo wy—ay )\x ’

E 0 @ fac(xl)dxl‘i_nac o € e fac(xl)dxl = ;fx(lé) (218)

Taking derivative again of equation 2.18 with respecti@ives

T2 wy—zy )\x "

;xl [f;r(x2) - 7713[: /:82 6961";2 fa:(xl)dxl] - fﬁc 1’2 +/ e = ¢x 1‘1 dl’ﬂ = gfr (xQ)
(2.19)

—2 1 T2 zj—=mp L ap—a) P —
—fx(x2)+—2[/ 5 fo(11) dx1+/ 5 fu(m)dr] = 22 (zs)  (2.20)
Nz Nz /0 Z2 o

AT )
;fx(xz)—nffm(xz) 772[ 2 ful(y)] (2.21)

T x

11



Moreover,

" 27710'2 — )\:13

I (x2) + i fo(22) =0 (2.22)

The boundary condition associated with equation 2.22 can be determined from equation (2.17)

by settingr, = 0 andzy = L,.

nafa (0) = fa(0)

The general solution of equation 2.22 is

() = crcos(wyx) + casin(w,x) (2.23)
2n,0% — \
2 T T
wy; = 7/\3;”% (2.24)

Based on the boundary condition, we can obtain the following equations for determining

coefficientse; andc,.

c1 — NpWyca =0 (2.25)
[—Newy sin(w, L, ) + cos(w, Ly )|cy + [npw, cos(w, L) + sin(w, Ly )]ca = 0 (2.26)
Limiting to nontrivial solutions of equation 2.26 yields an equationsdor

2w? — 1) sin(w,L,) = 2n,wycos(w,L 2.27
(nzwy — 1)sin(wyLy) = 2n,wecos(wy Ly) (2.27)

For givernn, andL,, the equation 2.26 can be solved to get a series of (positive) = 1,2, ....

The eigenvalues correspondinguwg, can be determined as the following :

A 2779002

= k7 2.2
S w1 (2.28)

In fact, the differentw; , gives the different coefficients; andc; , for eigenfuctions.

fiz(x) = circos(w; ) + ¢; 2510 (W; 4 )

12



The coefficients; ; andc; » can be determined by the condition that the eigenfunctions are

normalized.
/ [l (@)de = 1 (2.29)
Dy ’
1
Cia = (2.30)
V0w 2 + 1)Ly /2 +n,
Cii = MNgWigCi2 (2.31)

Trends of the two dimensional eigenvaluks of exponential kernel for the correlation

lengths {,, andn,) which are equal t0.31 can be shown in Fig. 2.2.

The Normalized Eigenvalues Decay Rate
0.2 T T T

| —— The normalized eigenvalue#
0.18| i

o

=

o
I

0.14 b

The normalized two-dimensional eigenvlaues
o o IS
=) o o N
(22} %) = N
1

o©
o
=

0.02

RO )
0 10 20 30 40 50 60 70 80 90 100
The index of two—dimensional eigenvlaues

Fig. 2.2: The eigenvalues decay rate

13



_lei—wg| _lvi=wal

The exponential kernél'(x;,x;) = 0%~ = e w can be expanded as its eigenfunc-

tions and eigenvalues.
N

C(x1,%2) = > Aefu(x1) fe(x2) (2.32)
=1

where Ny, is the truncated number for approximation. As shown in Fig. 2.3, it's the adoptive
exponential covariance surface in this work. The approximated covariance surface and relative
errors for truncated numbéy,; which is equal t®25 are shown in Fig. 2.4. Moreover, the
approximated covariance surface for truncated nunggmwhich is equal tdr5 are shown in

Fig. 2.5.

The covariance

Fig. 2.3: The exponential covariance kernel

14



The covariance
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The Covariance Error(%)
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Fig. 2.4: (a)25-term approximation of covariance surface = 4.3. (b) 25-term relative error
surface of covariance approxiamtion.
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Fig. 2.5: (a)75-term approximation of covariance surface = 4.3. (b) 75-term relative error
surface of covariance approxiamtion.
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2.3 The Bases for Random Space : Polynomial Chaos

The generalized polynomial chaos, also called the Askey-Chaos, utilizes the orthogonal poly-
nomials as the trial basis in the random space to expand the stochastic process. The original
polynomial chaos which is termed as the Hermite chaos was first introduced by Wiener [9].
Ghanem and Spanos are the pioneers that employ the Hermite orthogonal polynomials in terms
of Gaussian random variable to deal with various problems in mechanics [9]. The theorem of
Cameron and Martin [15] guarantees that a general second-order random pr@gessn be
represented in the following form:

u(Q) = col'o + Z Cu 5@1)

i1=1

co 11
+ Z Z Civis'2(&ir 5 &)
i1=112=1

E S a6 ) +
i1=11i2=113=1
wherel,.(&;,, ..., &, ) represents the polynomial chaos of ordén terms of the N-dimensional
random variableg = (&,,---&,). The polynomial chaos was so-called Hermite polynomial
chaos for the Gaussian random variables. For the Hermite polynomials with multi-dimension
(&, ..., &y ), the general expression form can be obtained as

" -
0 o~ 3E7¢

Fr(gip "'7&1\7) - ( ) ag 5

The zero, first, and second-order Hermite polynomial chaos can be given by:
Lo =1; T'1(&) =&; Ta(&) = &5 — i

whered;; is the Kronecker delta. For charity, the above general second-order random process
u(#) can be expressed as more concise form
0) = > a;%;(¢) (2.33)
j=1
where there is a one-to-one mapping between the polynomial didoand ®[.], and also
between the coefficients; andc;, ,,. The polynomial chaos of the same order with different

argument list are orthogonal to each other, so are ones of the different order. For notation, the
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polynomial chaos satisfy the following orthogonality property:
< CI)ZCI)] >=< CD? > 5ij

where< . > denotes the inter product defined in the following:

T 1

2.4 Statistical Leakage Power Modeling

—»

< f(€)g(&) > Je 28" Eqg

In this section, we will introduce the empirical models for subthreshold and gate leakage cur-
rents with the uncertainty in physical parameters such as channel length and oxide thickness.
Actually, the leakage current depends the input pattern and logic topology. We evaluate the av-
erage leakage based on HSPICE simulation for various types logic gate with considering input
pattern. From the the HSPICE simulation results, we obtain the fitting constants of the empirical
current models based on least square method. Moreover, the maximum errors of fitting model

are no more thad% in comparison with HSPICE simulation results.

2.4.1 Gate Tunneling Leakage Current

According to quantum mechanics, there is a finite probability that carriers will tunnel through
the gate oxide. The result is so-called that gate tunneling leakage current flows into the gate.
The finite probability is exponential function of oxide thickness. The gate tunneling leakage
current increases exponentially as gate oxide decreases. When the oxide thickness is thicker
than 204, the gate tunneling leakage current is relatively small in comparison to other compo-
nent leakage current such as sub-threshold leakage current. For oxide thickness thinner than
15—204, tunneling current becomes a important factor and may become comparable to sub-
threshold leakage current in advanced process. To put it briefly, the dependence of gate leakage

current on oxide thickness is given by the following formula [32]:

TO$

Tyate = (A~ C)(W - L)e™ " ¥

whereA = qs/87hey, B = 81y/2mosd*/3hq , C = (V,s/T,e)?, a is a parameter which is

ranged froml to 0.1 depending on the voltage drop across the oxidés the Plancks constant,
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andg, is the barrier height for electronics/holes in the conduction/valance band. Noted that the
parameter variations are in general aroufe20% [33]. Hence, we make use of a first-order
Taylor expansion at the nominal value of parameter oxide thickness and utilize the following

gate tunneling leakage current model derived in [28].
Lyate = age™ 7o (2.34)

whereay, anda, are the fitting constant)\7T,, indicates the fractional variations at nominal
value of oxide thickness. We incorporate the current model with the physical parameter ran-
dom process expanded by KLE and set the supply voltage equaldtts, the stochastic gate

tunneling leakage power may be expressed as:

N/ .

Py(S) = Pye 2t File s (2.35)
wherep, = age® o= denotes the deterministic nominal gate leakage pdiyeris the nominal
value of oxide thicknessy,, is the truncated number of KLE for oxide thicknegs(z*, v*)
is the eigenfunction combined with eigenvalue term of oxide thickness for some logic gate

at position(z*,y*). The gate power random process can be represent in terms of Hermite

polynomials,
pe(S) = i%@(@ (2.36)
o <pg(§_>q)z‘(g)>
Vi = <cI>§(€)> (2.37)

2.4.2 Subthreshold Leakage Current

The subthreshold leakage current is defined as the conduction current between source and
drain in an "off” state MOS transistor. We apply the following empirical model was introduced

in [10] to describe subthreshold leakage current.
Loy = boe" L0217 (2.38)

where by, b;, andb, are the fitting constant] indicates channel length. Substituting the

Karhunen-Loeve expansion form of channel length random process into equation (2.38) , the
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statistical subthreshold leakage power may be given by:

ps(g) - ﬁse(bﬂr?bzi) STk £ (@ ) Citbag (2 7. (2.39)
= Nkl 1 2
i1

wherep, denotes the nominal subthreshold leakage powes, the nominal value of channel
length, IV,, is the truncated number of KLE for channel length(z*, y*) is the eigenfunc-
tion combined with eigenvalue term of channel length for some logic gate at pogitiog‘).

Expanding the subthreshold power random process as Hermite polynomials expansion,

pa(Q) = ia@i@) (2.41)
_ <p3(5)q)i(g) > (2.42)
< ®2(&) > '

The key point is that how to obtain the coefficiefts} and{«;}. The computation of the the
coefficients will be introduced in chapter 3.3.

Actually, the subthreshold and gate leakage strongly depends on the input pattern and cir-
cuits topology. We evaluate the leakage currents with considering input pattern to obtain the
average leakage current from HSPICE simulation based on TSMC 65nm technology model
[29]. The fitting constants,, ai, by, b1, b, are obtained from the least square fitting method
with maximum errors no more tha¥o.

Noted that the total number of polynomial chaos depends on the (&lye- N,,), dimen-
sion of random variables s¢¢;} truncated from KLE. In fact, the set of polynomial chaos can
be reduced to a new one, because the projection value of gate and subthreshold leakage power

upon the polynomial basis which is function®&nd¢ will be equal to zero. For example,

— —

<ps(Q)Gsj > = <ps(Q)G><g> =0
<pg(QGis; > = <py(Q)g; >< G > =0 (2.43)

Thus, polynomial basis of the new set of polynomial chaos is function of ej‘tb@. The total

number of new polynomial chaos set may be given by,

p s—1 p s—1
Npe =1+ > TN +7)+ > [TV +7) (2.44)

s=1r=0 s=1r=0

wherep is the order of polynomial chaos.
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2.5 Monte Carlo Technique

Numerical methods that make use of random variables are known as Monte Carlo methods. This
will serve as a benchmark against which all modeling and analysis techniques will be tested.
In this work, we perform the Monte Carlo method to simulate the golden solutions for stochas-
tic thermal analysis of full chip with considering within-die spatial correlation under process
variations. An important key point is that how to generate multinormal distribution random
variables. First, the within-die spatial correlation of parameters are modeled by partitioning the
chip into V grid cells. Moreover, we assume that perfect correlations among the devices in the
same grid cell, high correlations among those in close grid cells and low or zero correlations
in far-away grid cells. Noted that the dimension of random variables sét i§hen, we con-
struct the covariance matriX with dimensionN by N based on the given covariance kernel.
From the covariance matriX, we generate the multinormal distribution random variables by

applying Cholesky factorization and the detail procedures are given in Fig. 2.6 and 2.7 [34].

Algorithm Multinormal-Cholesky

Input: Dimension N, covariance matrix ..

Output: Multinormal distributed vector X with mean 0 and covariance X..

1 Begin
Compute Cholesky factdr of > by Algorithm Cholesky-Decomposition in Fig. 2.7.
Generate vectar= (¢y, €, ..., ey)? of N independent standard normal variates.

2
3
4 X « L€
5
6

Return vectorX
End

Fig. 2.6: Procedure of Multinormal-Cholesky
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Algorithm  Cholesky-Decomposition
Input: Positive definite N x N matrix ¥ = o;;.

Output: Lower triangular matrix L = l;; such that LLT=Y%
Begin
for i=1to N do
11 — Uzl/ 0;1
for i=2to N do

1
2
3
4
5 for j=2toi—1do
6
7
8
9

liy « (03 — Zg_ll lirlir) /15

i—1
X < 04 — Zg 1 l@j

if = > 0then
lii — /T
10 else N o
11 abort (X not positive definite)

12— afor1 <i<j<N
13 Return matrixL. = (/;5)
14 End

Fig. 2.7: Procedure of Cholesky-Decomposition

Using the technique, samples of the required random variables to perform Monte Carlo
analysis can be generated. For most purposes, variations in VLSI design are assumed to be
Gaussian. Consequently, while analyzing intra-die variations, we need to generate samples of

multinormal random variables.
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Chapter 3

Stochastic Thermal Simulation
Methodology

3.1 Stochastic Thermal Simulation Problem Formulation

The silicon die consumes dynamic power and leakage power, and is the main source of heat
generation. Heat of the silicon die can be transfered to the ambient by two heat flow paths.

The first primary heat flow path is through thermal interface material, heat spreader, and heat
sink. The secondary heat flow path is through the interconnect layers, ceramic substrate, and
printed-circuit board. The typical compact thermal model for the early stage VLSI design flow

Is shown in Fig. 3.1.

Ambient Air

1/0 Pads & PCB

Interconnect Layers

S]

Secondary Hgat Flow Path

Die

Thermal Interface Materi Substrate
Heat Spreader Primary Heal Flow Path

Ambient Air

Fig. 3.1: Compact thermal model of the early design stage for stochastic heat sources.

Generally, the dynamic power is insensitive to process variations and can be assumed to be
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deterministic [31]. However, the leakage power dissipation of ICs is not deterministic any more
for sub-65nm technology. As the CMOS technology continuously scales down, the existing
fluctuations in physical parameters such as channel length and oxide thickness result in the
leakage power consumption with uncertainty. Moreover, the leakage power has became the
major contributor of the total power consumption for VLSI in today’s technology. Thus, the
thermal simulation in leakage power dominated technology must combine into statistics. By
combining the boundary condition for compact thermal model and stochastic power dissipation

process, the stochastic heat transfer equation with boundary conditions is given as [20]

V- (k(r)VT(r,t,0,w)) = U(r>8T(r,at£9,w) ;reD (3.1)
ﬁ(r)W . T(r,t,0,5) = fo(r) (3.2)

wherer = (z,y, z) is defined in the system domain = {(0, L,) x (0,L,) x (—L.,0)}, L,
and L, are the lateral sizes of dié,, is the thickness of die;(r) is the thermal conductivity
(W/m-°C) of die, o(r) is the product of the material density and specific héatnf-°C) of
die, V is the diverge operatok, is the heat-transfer coefficient on the boundary surfacef
die, f».(r) is the heat flux function on the boundary surface, apén,, is the differentiation
along the outward direction normal to the boundary surfag¢eand @ belong to the set of
manufacturing outcomes for channel lengthand oxide thicknes8r, ., respectively.

From the observations in [21] [22], the heat transfer coefficients of primary path can be
modeled as an effective heat transfer coefficignty combining the effect of each component
on the primary path. Hence, the detail information of interconnect layer is not available in
the early physical design stage, the interconnect layer was modeled as an equivalent thermal
resistance based on the material density of regular structure by [21] [22]. The heat transfer
coefficients of secondary path can be simplified to be an equivalent heat transfer coéfficient
by stacking the thermal resistance of each interconnect layer, 1/0 pads, and print circuit board.
The boundary condition in vertical surface of chip in Fig. 3.1 can be set to be adiabatic because
the area of vertical surface is exceedingly smaller than the area of horizontal surface and the
thermal conductivity of air is much less than the values of primary and secondary heat transfer

paths [19]. The heat sources generated from different sub-circuits can be attached on the top
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surface of die for modeling the boundary condition. Although the thermal properties of die,
k(r) ando(r), are position-dependent, the variations of these thermal parameters are usually
not significant and can be treated as constants while performing the thermal-aware floorplanning
and placement.

With the above description, the stochastic heat transfer equation can be rewritten as

KV?T(r,t,0,w) :UW; rebD (33)
Mtz _olwtsm| @)
ax 2=0,L¢g ay y=0,Ly
NG| (3-9)
82 Z:—Lz
W LELOD) rey ), 49
82 z=0

+ p(rt, L(r,0), Tou(r, @))|.=0

wherep(r,t, L(r,0), T,.(r,w)) is the random process of total power dissipation and it consists

of dynamic powemp,(r,t), subthreshold leakage power(r, ¢, L(r)), and gate leakage power

ps(r,t, T,.(r,)). The leakage power is greatly affected by physical parameters with uncer-
tainties such as channel length and oxide thickness, and need to be treated as a random process.

The detail illustration of total leakage power random process will be addressed in chapter 2.4.

3.2 Stochastic Thermal Simulation Flowchart

The executing flow of this work can be summarized as Fig. 3.2. Given a spatial covariance
function of technology parameter, we construct the eigenvalues and eigenfunctions of the co-
variance kernel. By applying the Karhunen-Loeve expansion method, the correlated physical
parameters random processes (channel length, and oxide thickness) are transformed into a set
of uncorrelated random variables based on these eigenvalues and eigenfunctions. With those
normalized random variables, we build the polynomial chaoses to serve as polynomial bases
for the space of random variables. According to the power consumption, we create the leakage
current models for various type logic gates from HSPICE simulation based on TSMC 65nm
technology. After the chip geometry, the package configuration, gate level placement, and dy-

namic power distribution being given, the compact thermal model of Fig. 3.1 in chapter 3.1 can
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be built. Then, we employ the stochastic Galerkin projection method to convert the stochastic

heat transfer equation to a set of deterministic heat transfer equations. The number of those de-

terministic heat transfer equations is equal to the total number of polynomial chaoses. Finally,

an efficient GIT based analytical thermal simulator [14] is utilized to solve those deterministic

heat transfer equations, and the mean value and variance of full-chip temperature distribution

can be obtained.

Technology Parameters
Spatial Correlation
Modeling

Parameters Transform

Cell Library [ | Circuit Benchmark (DEF)

and Dynamic Power

Leakage Power
Cell Library

Karhunen-Loeve
Expansion

Stochastic Heat Transfer Equation

<1l

Random Space Bases

Construct Hermite
Polynomial Chaos

—

Stochastic Galerkin Projection

Expanded as the Hermite Polynomial
Chaos with Function of Position

Coefficients

L

Deterministic Heat Transfer Equation

Analytic Thermal Simulator: GIT

Construct A Set of Spatial Space Bases to Obtain
the Function of Position Coefficients

Ll

Result

Mean and Variance of the Temperature

Distribution

Fig. 3.2: Stochastic thermal simulation flowchart
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3.3 Stochastic Galerkin Procedure

After applying the Karhunen-Loeve expansion, the system random process with spatial corre-
lation can be transformed into a set of orthonormal standard normal random variables without
correlation. From the set of uncorrelated random variagles construct the Hermite polyno-

mial chaos to serve as the bases for random space. The above-mentioned temperature random

process (r, ¢, <, ) can be reformed and be expanded as the following expansion form by using

the Hermite polynomial chaos expansion.

=

— —

T(e,t,6) = 3 Ti(r, )0,(E) (37)

I
o

Substituting the expansion form equation (3.7) into equation (3.3), the residual can be expressed

as.:
~ Npe ~ o Nec ~
R(r,t,&) = V> > Ti(r,t)®(§) — 0 > Ti(r, t)®(€) (3.8)
=0 =0

Utilizing the stochastic Galerkin principle which enforces the residual to be orthogonal to each

of the basis functions,

— —

< R, t,)0u(6) >=0  (k=0,1,..N,0) (3.9)

The orthogonality relation results in a set of deterministic equations with dimensjon

IT(r, 1)

KV2Ty(r,t) =0 e

(k=0,1,..N,) (3.10)

Employing similar Galerkin projection procedure on the system boundary conditions equation

(3.4)-(3.5), the resulting transformed equations can be given by,

A

8Tk(r,t

835 r=0,L, 8y y=0,L,
Ty (r,t )
i, 2lr ) =, T (r, 8. (3.12)
0z |,__ L

Substituting the expansion form equation (3.7) into equation (3.6), the residual can be given

by:
' = o Nee = Npe =
R (I‘,t,f) = &Z Z(I‘,t)@( ) _hs i<r7t)q)(£) —p(I‘,t,f) (313)
1=0 i=0



Applying the stochastic Galerkin projection procedure to the resifti(al ¢, 5)

el e <p(r, 1, H0(E) >
5Tl 1) = Wi, ) + =7 @20 k=12, ) (3.14)

Once the right side second term of "=" for equation (3.14) be determined, the deterministic heat

transfer equations can be formulated. Now, focusing on the leakage power projection term,

— —

<p(l‘,y,t,g)q)k( ) > = pd(x7y7t) < (Dk( ) > (315)

—

+ Hg(l',y,t) <pg<x>yag>q)k:( ) >

—

+ Hy(z,y,t) < ps(z,y,)Pr(§) >

where H,(z,y,t) and H,(x,y,t) are the function of position and switching activity for gate
tunneling and subthreshold leakage power, respectively.

Here, considering the gate tunneling power projection term,

—

< py(,, QBR(E) >= oz, y) < @O L L@vsg, (&) > (3.16)

wherep, (z, y) = ao(z, y)e® @¥ (=) is the deterministic nominal gate leakage powéty, y)
is the eigenfunction combined eigenvalue term for oxide thickng$s, y) anda, (x, y) are the
fitting constants of gate leakage power for different logic gate located different position. We

take an example for a reference positian, y*), equation (3.16) can be rewritten as
< po(a, Y7, B(E) >= 7 < €T TPy (E) > (3.17)

If the polynomial chaosb,(¢) is function of (, the value of equation 3.17 is zero. on the
contrary, let us consider an example ®f(¢) is a first order polynomial and function of
Noted that normal random variables sét= { X, X5, ..., X,,} has the following property,
<ezim P Nx, = B [[e® Vkel,2,...n (3.18)
=1
The computation of equation (3.17) can be calculated based on equation (3.18) for first order
polynomial, and based on the following equation (3.19) for second order polynomial.
n n 6-2
<elim PNy s (B4 1) [[e? Vhe1,2,...0n (3.19)

=1

The more detailed computation procedure of equation (3.17) can be shown in Fig. 3.3.

27



Algorithm  Gate Power Projection Procedure
Input:  The constants a}, { f;*}, and polynomial ®;,(€)

N / —
Output: Return the value of< % 221 i@, (€) >

1 Begin B

2 if the polynomialb, (<) contains(;
3 Return0

4 endif

5 do O =IIe %

6 if the order ofd,(¢) =1

7 Returnf,*C

8 endif B

9 elseifthe order ofd, (&) = 2
10 Return(f,")? +1]C;

11 endif

12 End

Fig. 3.3: Procedure of gate power projection

Now, considering the subthreshold leakage power projection term,

< ps(z, vy, 5)%(5) >=py(z,y) < eBlay) 32K T (ff,y)CHrbz(Ivy)Q(fE,yf)q)k(g) > (3.20)
where,
Ngi
a(z,y,¢) = {>fi (z,9)G}° (3.22)
=1

wherep,(z, y) = by(z, y)et @) L) +h(2.9)L*(@y) denotes the deterministic nominal subthresh-
old leakage powerf; (z,y) is the eigenfunction combined eigenvalue term for channel length,
bo(x,y), bi(x,y), andby(x,y) are the fitting constants of subthreshold leakage power. If the

polynomial chao®,(¢) is the function ok, the value of equation (3.20) is zero. The quadratic

form q(z*, y*, ¢ ) for reference positiofz*, y*) can be expressed a8 AC.

r "2

"y "y B
AT/ SRR
"y ot ” "y ot
sHRE o BN
A: . . . . . .
1 pl's g 1 pls% o ", 2
L ifl*szl §f2*fNZl ° ° ° fNj;l J

28



The quadratic fornt” AC can be reduced into its standard foffiD7, 7 = (1, v,y v, )T

The standard form af(z*, y*, f) is determined once the eigenvalues of A are known, the trans-
formation betweezfandﬁ Is given byg?: Qv. The real symmetric matriXd have the eigenval-
uesiit, A3, ..., \y,,, and letQ be an orthogonal matrix that diagonaliz&sso that)” AQ = D,
whereD is a diagonal matrix with the eigenvalues4fis the elements on its leading diagonal.

After the eigen-decomposition transformation, equation (3.20) can be rewritten as the following

for reference point:
<P,y Q)B(E) >= 5, < e X Ot EDNE ) (7) > (3.23)

whereC; = M Q;;£;*, the indicesi andj are the row and column index of the matrix
respectively. The computation of equation (3.23) for polynomial cig¢s) which is constant
value can be based on the following property.

2
B

n n 2—4a;
< X XX T £ (3.24)
i=1 (]_ — 2Oéj)2
For the first order polynomial chads, (),
5
n n 2—4a;
B DI D R - Vkel,2,...n (3.25)
1 — 2qy i—1 (1 — 20‘3’)5
Moreover, for the second order,
8
< X5 XA 2 G = 200+ -+ Vkel,2,...n (3.26)

(1—2a)? 5 (1-2q)2
The computation of equation (3.23) can be easily derived based on equation (3.24)-(3.26) for

different order polynomial chaos over the design system domain.

Noted that the eigen-decomposition transformation can be pre-calculated to deal with dif-
ferent logic gates placement. Because the eigenfunctiofs y) depends on the covariance
kernel for physical parameters random processes rather than design placement.

These equations, equation (3.10), equation (3.11), equation (3.12), and equation (3.14) form

a set of deterministic heat transfer equations, and its solutions can be formulated based on
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Algorithm Sub Power Projection Procedure B
Input:  The constants b, b3, { f;*}, L*, and polynomial ®;,()

N " — -
Output: Return the value of< eB" 21 fi "G+ RCOD(E) >
where B* = bt + 2b3L%, ¢*(O) = {08 f1¢, )2
Begin B

if the polynomialb, (&) containsg;
Return0
Endif

do Transform the quadratic form(g) ?AC to standard formv’ D7,
7=v,... yNn] QT AQ = D linear transfornt = Q7,

obtain the elgenvalue{s\A} of A,

2-43A 4

~N OO AWN

1"

N e(BC)

8 D*_Hiklw,c Z szf
9 if the order ofd, () =
10  Return—ZCx_ D*

1— 2b*,\A
11 endif
12 elseif the order ofCIi( v)=2
13 ReturnZ g")%ff/,; L pr
14  endif
15 End

Fig. 3.4: Procedure of sub power projection

several existing techniques. In this work, we apply the analytic technique (Generalized Integral
Transforms) [14] to serve as the deterministic solver. Once the set of coeffi€irfist)} be
obtained, mean value and variance of the temperature distribution can be solved.

The mean value and variance of temperature distribution can be expressed as:

BE{T(r,t,§)} = To(r,t) (3.27)
Var{T(r,t,§)} = fT? ) < B2(E) > (3.28)
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Chapter 4

Experimental Results

The proposed stochastic thermal simulator is implemented as a tool in C++ on HPxw9300
workstation with 16GB memory. The simulation results are obtained on the our tested place-
ment benchmark. We create a leakage power gate level cell library based on HSPICE simulation
on TSMC 65nm technology model. The nominal value of oxide thickness is $etiton and

the 30 value of parameters variations for channel lengtand oxide thicknes%,, are set to

20% of the nominal parameter values. The ratios of correlation length to chip size for x-dir
(n./L,) and y-dir(n,/L,) were set td).31 that means the correlation between two devices are
located half of chip dimension away in either directioi8. The generated tested placement
benchmark with about four millions gate counts from the floorplanning shown in Fig. 4.1 is
based on the cell library &nm technology. The experimental results can be summarized as

the following:
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Fig. 4.1: The floorplan of our test circuit
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e Accuracy and Efficiency

The accuracy and efficiency of proposed stochastic thermal simulator can be shown in
Table 4.1. We demonstrate the accuracy and efficiency of this work in comparison with
Monte Carlo Method withl00000 samples. We found thd00000 samples is the rea-
sonable number of the Monte Carlo simulation. Actually, our proposed method leads to
about1% of errors in both mean and standard deviations for choosingNhaits equal

to 75 and the order of polynomial chaos is equal tand only takes four minutes. Noted
that V,, and V,, are set equal tdV,;. The errors of mean value is strongly depended on
Ny, rather than the order of PC. The errors of standard deviation relys on nadgnibyt

only the order of PC.

Table 4.1: Accuracy and Efficiency Compared to Monte Carlo Method

Ny | Npe | PC E{T} a{T} Run | Speedup
Order | MaxErr(%) | MaxErr(%) | Time(s) (X)

25 | 51 1 4.74 9.4 83.83 1960

50 | 101 1 2.52 3.3 165.79 990

75 | 151 1 1.72 1.09 247.4 662

20 | 461 2 4.87 7.68 949.25 264

25 | 701 2 4.2 6.43 1339.58 143

30 | 991 2 3.67 1.41 2039.07 100

e Compared to the Deterministic Thermal Simulation

As shown in Fig. 4.3 and Fig. 4.4, thereli8% difference between the deterministic
nominal power consideration and stochastic power consideration in the average temper-
ature in our tested circuit. The deterministic simulation that underestimated the tem-
perature profile and hottest value of temperature can not offer designers a robust solution.
The cost function of traditional thermal-aware floorplanning, placement, and optimization
methodology is often avoiding the hot spot and smoothing the thermal profile. However,
the deterministic cost and objective function is not reliable enough in deep sub-micron
technology. The stochastic thermal simulator conducts designers to not only minimize
the mean value of temperature to avoid high temperature failure but also reduce the vari-

ance of temperature to lower thermal gradients. In addition, solutions of stochastic ther-
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mal simulator support designers to develop circuits with more tolerance of manufactured

process variations.

(@) (b)

Fig. 4.2: (a) The nominal power distribution at the top surface of die, (b) The mean power
distribution at the top surface of die.
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Fig. 4.3: (a) The 3D nominal temperature distribution at the top surface of die, (b) The 3D mean

temperature distribution at the top surface of die.
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Fig. 4.4: (a) The 2D nominal temperature distribution at the top surface of die, (b) The 2D mean

temperature distribution at the top surface of die.
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e Considering Spatial Correlation Compared to Neglecting Spatial Correlation

We demonstrated the difference between considering spatial correlation and ignoring spa-
tial correlation based on Monte Carlo simulation in our tested circuit. From the simulation
results, we observe that the mean value of temperature of method with considering spatial
correlation is close to the method without considering spatial correlation. However, the
variance of temperature profile between the two methods is different entirely . As shown
in Fig. 4.5, the results reveal that the variance of temperature distribution is larger in the
method which considers spatial correlation. Moreover, the variance value of surround-
ing the region with larger variance value is also larger. This shows that the variance of
temperature profile behaves with circumfluent phenomenon and spatial correlation. This
is because the leakage powers of neighbor region are less correlated when spatial cor-
relation is ignored. For considering spatial correlation, the leakage powers of neighbor
region are with positive interactions. From simulation solutions of the tested circuit in
Fig. 4.5(a) and Fig. 4.5(b), the method with considering spatial correlation- 4.X

times the variance of the one without considering spatial correlation. The thermal simu-
lator without considering spatial correlation will undervalue the thermal gradients. Large
temperature gradients may not only reduce lifetime of chip but also cause thermal stress

to crack circuits. [20].
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Fig. 4.5: (a) The 3D standard deviation temperature distribution at the top surface of die with
considering spatial correlation, (b) The 3D standard deviation temperature distribution at the
top surface of die without considering spatial correlation.
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Fig. 4.6: (a)The 2D standard deviation temperature distribution at the top surface of die with
considering spatial correlation, (b)The 2D standard deviation temperature distribution at the top
surface of die without considering spatial correlation.
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e Temperature Yield Estimation

The vyield loss will worsen in future technologies due to the continued significance of
leakage powers and increasing process variations. Another trouble observation is that
increased variations on leakage powers not only cause a larger spread of temperature
distribution but also higher average temperature distribution. It is worth to note that most
current thermal simulation approaches do not consider process variations and are unaware
of theirimpact on yield. These deterministic thermal simulation approaches result in yield
loss due to increased susceptibility to process variations The evaluating on thermal yield

can be formulated by the following Generalized Chebyshev Inequality [35].

COROLLARY 4.1 If E[X] = p, Var(X)= o2, then for a> 0

2

g
P > < - .
{(X>p+a} < g (4.1)
0.2
P{X <pu— < 4.2
{(X<up a}~_02+a2 (4.2)

Using the Generalized Chebyshev Inequality, we can obtain the tighter bounds of temper-
ature distribution. The probability of temperature distribution under the given temperature
constraint can be estimated by using the generalized inequality. This gives the designers a
guideline and solutions to deal with yield issues for manufactured process variations. Fur-
thermore, these solutions can serve as a stochastic thermal solver which is incorporated
into other CAD design methodologies such as timing and reliability analysis methods.

It can be shown in Fig. 4.7 that the probability of temperature distribution under upper

bound which is mean value plus three standard deviation is largeptyan
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Fig. 4.7: The mean value plus three standard deviation of temperature distribution.
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e Hot Spot Observations

Generally speaking, the general purpose of thermal-aware placement and floorplanning is
to minimize the maximal temperature gradient over the chip and to avoid the hot spot oc-
currence. The deterministic thermal simulators offer the explicit hot spot location to CAD
designer. However, the variations in leakage power result in the on-chip temperature dis-
tribution with uncertainties. It's difficulty to indicate the hot spot location under process
variations. In our tested circuit, we observe that the hot spot location can not merely
be determined by traditional deterministic thermal solver. As shown in Fig. 4.4(a), the
hot spot location is at the point: = 0 (mm),y = 5 (mm)) based on deterministic
thermal simulator. However, it can be shown in Fig. 4.8 that all the points of the line
aty = 5 (mm) have probability to become hot spot location. Therefore, the traditional

deterministic thermal simulators are unaware of the precise hot spot location.

It's crucial to precisely indicate the hot spot location for designers under manufactured

process variations. Our future work is developing a robust scheme to determine hot spot

distribution.
c The temperature profile of y = 5 (mm)
150
140F
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Fig. 4.8: The temperature profile@at= 5 (mm).

40



Chapter 5

Conclusion

In this work we have proposed a stochastic thermal simulation procedure to estimate the statis-
tical temperature distribution in the presence of within-die process variations. Our experimental
results show that the proposed method has small variation errors and high efficiency compared
to Monte Carlo simulation. The simulation results indicate that simulation without considering
spatial correlation may underestimate existing critical thermal gradient. We further point out
that the traditional deterministic thermal simulator will lose information of thermal profile in
manufactured process variations and guide designer to a optimistic way. The stochastic ther-
mal simulator we proposed offers a robust estimation of temperature distribution and serves
as a necessary machine for thermal-aware methodology with considering within-die process

variations.
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