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摘      要 

 
                                   
 
 
 
 傳統上晶片上熱分佈分析主要是考慮不具隨機性的功率消耗的熱傳方程式， 

 然而，隨著製程的演進，導致在參數如電晶體通道長度和氧化層厚度的變異 

 波動對於電路的效能、功率消耗、可靠度上有重大的影響。在晶片設計階段  

 時忽略製程上的變異將會造成嚴重的良率問題。在這篇論文，我們提出一個 

 方法分析晶片上統計型溫度分析考慮晶片上具有空間相關的製程變異。這篇 

 論文是第一篇考慮晶片上具有空間相關製程變異的統計型晶片熱分佈模擬 

 器，利用卡洛轉換(Karhunent-Loeve transformation)處理具有空間相關隨機過 

 程並且利用正交多項式(Polynomial Chaos)和隨機加勒金法(Stochastic Galerkin 
 method)解統計型熱傳方程式。與蒙地卡羅模擬法(Monte Carlo simulation)比較 

 來說明我們所提出方法的正確性和效率性。模擬的結果可以保證提供可靠的 

 溫度分佈良率，並且指引設計者去避免晶片熱毀壞的問題在次微米半導體時 

 代。最後我們更指出提供精確的晶片上溫度分佈不能忽略空間相關製程變異。 
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ABSTRACT 

 
                                   
 

Traditionally, the thermal analysis methods of chip have been conducted by 
solving the heat transfer equation with deterministic heat sources. However, the 
technology scaling leads to that the fluctuations in physical parameters such as 
channel length and oxide thickness have a substantial impact on circuit 
performance, power consumption, and reliability. Ignoring the manufactured 
process variations at the design stage can cause aggravated yield losses. In this 
paper, we present a method to analyze the statistical temperature distribution of 
full chip under considering process variations with a known within-die spatial 
correlation function. To the author’s best knowledge, this is the first stochastic 
thermal simulator of full chip with considering within-die process variations. This 
work makes use of the Karhunen-Loeve transformation to deal with the physical 
parameters with spatial correlation and takes advantage of polynomial chaos and 
stochastic Galerkin method to tackle the stochastic heat transfer equation. We 
demonstrate the accuracy and efficiency of the proposed methodology in 
comparison to Monte Carlo simulation. The simulation results guarantee the 
robust thermal yield and can guide designers to avoid the thermal failure in 
nano-meter technology. Furthermore, we point out that the within-die spatial 
correlation can not be neglected for the accurate temperature estimation.  
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Chapter 1

Introduction

1.1 Introduction

Because of the drastic increase in power consumption of integrated circuits, thermal issues have

become the important concerns in VLSI manufacturing. The high temperature distribution and

thermal gradients have substantial impacts on timing, performance, power, and reliability. The

elevated temperature is mainly caused by huge power consumption. Furthermore, the leakage

power is expected to increase drastically and become the dominated part of total power con-

sumption. The subthreshold leakage and gate tunneling leakage are the major components of

leakage in advanced CMOS technology. The lower quantity of transistor threshold voltage re-

sults in an exponential increase in subthreshold leakage current. To control the short channel

effect and to enhance transistor driving strength, the thinner oxide thickness causes the consid-

erable gate tunneling leakage current.

An important concern of VLSI design and manufacturing in nanometer technology is the

process variation. As the technology scaling, the decreased controllability of processes has re-

sulted in the substantial variations of circuit performance. Generally, process variations can be

classified into die-to-die variation and within-die variation. The die-to-die variation is mainly

caused by the thermal gradients, equipment properties, wafer polishing, and wafer placement.

The die-to-die variation varies slowly and behaves smoothly at the large scale chip. Thus, the

die-to-die variation can be averaged over the die and be incorporated into mean value [1]. The

within-die variation is generally caused by pattern planarization in chemical mechanical pol-

ishing, and lithography effects [2]. The within-die variation affects the same type device at

different location within a chip differently and exhibits spatial correlation. The spatial correla-
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tion within die means that the devices close to each other have more similar behavior than those

which are located far away. It has been shown that the within-die variations are the most im-

portant parts of all system variations which influence circuit performance [3]. Noted that a10%

variation in oxide thickness causes a15X difference in gate tunneling current for the100nm

BPTM process technology [13] (Fig. 1.1). Moreover, the considerable variations in chip level

leakage power is expected as high as20X in the literature [24] and the related fluctuation in

temperature distribution is considerable. It is worth to note that the phenomenon of variations

on leakage powers is more aggravated beyond the65nm technology. The worst case deter-

ministic simulation can result in immoderate guard-banding, and causes low performance [23].

Furthermore, the underestimation in temperature and power consumption of circuits can lead

to unnecessary low yield. These undesirable phenomena bring about the statistical thermal

simulation being essential, especially for the leakage power dominated technology.

Fig. 1.1: Leakage variations [13]
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1.2 Motivation

The existing thermal simulating techniques can be classified into two categories, numerical

methods and analytical methods. The numerical based thermal simulators convert heat trans-

fer equations to equivalent RC networks and several efficient approaches have been devel-

oped [16, 17, 18]. Analytical methods which avoid performing directly the volume meshing of

entire substrate apply closed-forms to represent the temperature distribution, such as the Green’s

function based method [19], and the Generalized Integral Transforms (GIT) based method [14].

However, all these works view the power dissipation of chip to be deterministic, and result in the

optimistic estimate of temperature distribution. Those optimistic simulation results can gravely

decrease the manufactured yield. Therefore, reliable and robust thermal simulator must involve

process variations in physical parameters and leakage power consumption.

In this work, we propose a stochastic thermal simulation procedure and consider within-

die process variations for the leakage power dominated design. With the help of Karhunen-

Loeve expansion [9], we transform the random processes of physical parameters such as chan-

nel length and oxide thickness with known spatial correlation to a set of uncorrelated random

variables. After transforming parameters, we employ the polynomial chaos scheme and stochas-

tic Galerkin procedure to convert the stochastic heat transfer equations to a set of deterministic

problems. The formulas of temperature distribution are determined by applying an efficient

deterministic thermal solver [14] to deal with the set of deterministic heat transfer equations.

In this work, we are going to evaluate the means and variances of full-chip temperature distri-

bution and demonstrate the huge difference of simulation results between considering spatial

correlation and ignoring spatial correlation.

1.3 Our Contributions

In this work, we propose a stochastic thermal simulator and consider within-die process varia-

tions for leakage power dominated design. By using Karhunen-Loeve expansion, we transform

the random processes of physical parameters (channel length and oxide thickness) with spatial

correlation to a set of uncorrelated random variables. After transforming parameters, we em-

ploy the polynomial chaos scheme and stochastic Galerkin procedure to convert the stochastic
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thermal problem to a set of deterministic problems. Then, applying an efficient deterministic

thermal solver [14] to obtain the final solutions. We are going to evaluate the mean value and

variance of full-chip temperature distribution and demonstrate the huge difference of simulation

results between considering spatial correlation and ignoring spatial correlation. To the author’s

best knowledge, this is the first stochastic thermal simulator of full chip with considering within-

die process variations in the nano-meter technology.

1.4 Organization of the Thesis

The rest of this thesis is organized as the follows. First, the detailed parameters modeling

in this work, polynomial chaos, Karhunen-Loeve expansion, and Monte Carlo technique are

introduced in chapter 2. The problem formulation, simulation flowchart and stochastic Galerkin

procedure utilized in this work are addressed in chapter 3. Finally, the experimental results and

conclusion are given in chapter 4 and 5, respectively.
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Chapter 2

Preliminaries

In this chapter, we first introduce the physical design flow. Then, the parameter modeling is

presented in chapter 2.2. After that, the polynomial chaos for random space is shown in chapter

2.3. Finally, we introduce the statistical leakage power modeling in chapter 2.4 and Monte

Carlo technique in chapter 2.5.

2.1 Physical Design Flow

The physical design flow of a circuit shown in Fig. 2.1 is the phase that precedes the fabrication

of a circuit. In most general terms, physical design refers to all synthesis steps succeeding logic

design and preceding fabrication. These include logic partitioning, floorplanning, placement,

routing , compaction, extraction, and verification. Floorplanning is an essential design step

when a hierarchical/building design methodology is used. Floorplanning helps designers define

the layout hierarchy, estimate the overall required area, determine the aspect ratio for each mod-

ule. It is closely related to placement. For thermal-driven floorplanning, there are a greater deal

of flexibilities in mitigating thermal problems, but also large quantities of uncertainties with re-

gard to the accurate thermal profile. The placement stage of physical design flow is the process

of arranging the circuit components on a layout surface. The general purpose of the thermal-

aware placement methodology is to minimize the maximal temperature gradient over the chip

and get the uniform temperature distribution. Moreover, the thermal-driven methodologies con-

sider the more detailed thermal model with interconnects at the routing stage of physical design.

However, the literature [21] pointed out that the thermal-driven methodologies making efforts

at the early stage of physical design flow can gain more benefits. Thus, in this work, we will
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propose a thermal simulator which is suitable to the the early stage of physical design.

Circuit Synthesis

Partitioning

Floorplan & Placement

Routing

Compaction

Extraction & Verification

Fabrication

Physical 
Design

Fig. 2.1: Physical design flow
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2.2 Parameter Modeling

Process parameter spatial correlation has received increased attention recently. The consider-

ation of within-die spatial correlation causes the increasing number of RVs that we deal with

and the computation costs. A conventional technique partitions the layout plane into several

grids, assumes perfect correlation for all random variables (channel length, oxide thickness) in

the same grid cell, and computes a correlation matrix for those grid cells [25]. The number of

correlated random variables can be further reduced by applying principle component analysis

(PCA) [26] [27]. In PCA, linear variable transformations are used for the largest data variance,

or principle components. However, the nature of PCA often limits its capability in modeling

high dimensional parameter variations for performance modleing. An alternative formulation to

tackle with the correlated parameters is the Karhunen-Loeve expansion. A random process can

be expanded in terms of a denumerable set of orthogonal random variables with deterministic

functions which are related to the corresponding covariance kernel. The detailed parameters

modeling and Karhunen-Loeve expansion are presented in the following subsection.

2.2.1 Karhunen-Loeve Expansion

In the presence of process variations, the physical parameters such as channel length, and oxide

thickness can be modeled as random processes with given spatial covariance functions. Since

the values of physical parameters are bounded above and below, we can assume that the random

processα(x, ϑ) of each parameter under consideration is a second-order stochastic process,

whereϑ ∈ Ω, andx = (x, y) ∈ Dp. Here,Ω is the set of manufacturing outcomes for a specific

physical parameter, andDp is the domain inx- andy- directions of chip.

DEFINITION 2.1 [6] A second-order random variableα(ϑ) is one satisfyingE[|α(ϑ)|2] <

∞. A second order stochastic processα(x, ϑ) is a family of second-order random variables.

DEFINITION 2.2 [6] A second-order processα(ϑ) is continuous in quadratic mean (q.m.)

if E[|α(x + h, ϑ)− α(x, ϑ)|2]→ 0 as‖h‖ → 0 for all x ∈ Dp .

where‖ · ‖ is the Euclidean norm. Due to the absence of the explicit form ofα(x, ϑ), we

utilize the following theorem to guarantee its q.m. continuity.

THEOREM 2.1 [6] A second-order processα(x, ϑ) is continuous in q.m. atx ∈ Dp if and
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only if, its covariance functionC(x1,x2) is continuous at(x,x).

DEFINITION 2.3 [6] A second order q.m. continuous processα(x, ϑ) on a closed interval

Dp has an orthogonal decomposition

α(x, ϑ) = α̃(x) +
∞∑
i=1

√
λifi(x)ζi(ϑ) (2.1)

E[ζmζn] = δmn ;
∫

D
fm(x)fn(x)dx = δmn (2.2)

whereα̃(x) is the mathematical expectation of the processα(x, ϑ), if, and only if, theλi are the

eigenvalues andfi(x) are the orthonormalized eigenfunctions ofC(x1,x2). Then the expansion

converges in q.m. uniformly onDp.

The Fourier-type series expansion form in equation (2.1) is the Karhunen-Loeve expansion

(KLE) which is an optimal way of representing a random process based on the spectral de-

composition of the given covariance kernel. The expansion converts a random process into a

model with a minimum degree of freedom and minimizes the mean-square error of the finite-

term representation [9]. From the viewpoint of practice, the summation terms of equation (2.1)

can be truncate at finite numberNkl which is determined by the decay trend of eignevalues to

ensure the acceptable error. Notes that the decay trend is crucial, since the truncated number

determines the computational efficiency and complexity of the work. General speaking, the

smoother covariance function behaves the faster eigenvalues of KLE decay. The eigenvalues

and eigenfunctions can be derived form the following Fredholm integral equation:

∫
Dp

C(x1,x2)fn(x2)dx2 = λnfn(x1) (2.3)

Form the definition of covariance function, it’s with bounded, symmetric and positive defi-

nite property. The fact guarantees a number of properties for the eigenfunctions and the eigen-

values that are the solutions of equation (2.3).

1. The eigenfunction setfi(x) is orthogonal and complete.

2. The eigenvalues are all positive real numbers.

3. There are at most countably infinite set of eigenvalues.

8



4. The covariance kernel admits of the following uniformly convergent expansion

C(x1,x2) =
∞∑

k=1

λkfk(x1)fk(x2) (2.4)

The physical parameter such as channel length with spatial correlation can be expanded to a

Fourier-type series by Karhunen-Loeve expansion.

L(x, θ) ' L̃(x) +
Nkl∑
i=1

√
λifi(x)ζi(θ) (2.5)

whereL̃(x) is the mean value function of channel length,λi andfi(x) are the eigenvalues and

eigenfunctions corresponding to the given covariance function, respectively, andθ ∈ ΩL. Here,

ΩL is the set of manufacturing outcomes for the channel length. The{ζi} is a set of orthonor-

mal random variables with zero mean and unit variance. The system random process can be

assumed to be a Gaussian process [30], then the{ζi} is a set of standard Gaussian random vari-

ables. It can be shown that the Karhunen-Loeve expansion transforms the random process with

spatial correlation to a set of uncorrelated orthonormal random variables and greatly reduces the

dimension of random variables. In the same way, the oxide thickness random process can be

transformed into a set of standard Gaussian random variables{ςi}. Indeed, we assume that the

oxide thickness random process is independent of channel length, so the two random variables

sets ({ζi}, {ςi} ) are independent. For notation, we arrange{ζi} and{ςi} as{ξi} = {ζi, ςj} and

{ξi} is used as the set of system random variables to expand bases for the random space. In the

following subsection, we will introduce the adoptive covariance function for physical parameter

random processes, and derive the eigenvalues and eigenfunctions of Karhunen-Loeve expansion

for the corresponding covariance function.

2.2.2 Spatial Correlation Modeling

Recently, the spatial correlation of within-die variations has been seriously taken into account

of the VLSI verification flow, and a precise spatial correlation function is necessary for catching

the manufacturing information. To extract the features of process variations for modeling and

constructing the covariance kernel is mainly based on the measured data, and several robust

techniques have been proposed to build the valid spatial covariance function [4] [5] with having

the positive semidefinite property [8]. In this paper, we adopt the spatial covariance function

9



introduced in [4] [6]1.

C(x1,x2) = σ2e−
|x1−x2|

ηx e
− |y1−y2|

ηy (2.6)

wherex1 = (x1, y1), x2 = (x2, y2), andηx andηy are the correlation lengthes in thex- and

y- directions, respectively. The termσ indicates the standard deviation of the random process.

The covariance kernel is defined in the rectangular domainDp. In general, the correlation of

parameters for two identical devices drops down as their distance increases. The literature [7]

further pointed that the correlation approaches zero as the distance nears half of chip dimension

for two logical gates. This observation means that the ratio of correlation length for different

chip sizes is constant for different design benchmark.

For the multi-dimensional problem, if we assume that the given covariance function is sep-

arable, the solutions of equation (2.3) can be derived independently forx1 andy1 directions.

For the covariance kernel in this work, the eigenvalues and eigenfunctions of one dimension

problem can be expressed as the following [9]:

λn,x =
2ηxσ

2

η2
xω

2
n,x + 1

(2.7)

fn(x) = an,1cos(wn,xx) + an,2sin(wn,xx) (2.8)

an,2 =
1√

(η2
xw

2
n,x + 1)Lx/2 + ηx

(2.9)

an,1 = ηxwn,xan,2 (2.10)

wherewn,x are the positive roots of the following characteristic equation

(η2
xw

2
x − 1)sin(wxLx) = 2ηxwxcos(wxLx) (2.11)

the above characteristic equation can be obtained from combining the boundary condition and

equation 2.3.

The multi-dimensional eigenvlaues and eigenfunctions can be combined fromx andy di-

rections.

λn =
4ηxηyσ

2

[η2
xω

2
i,x + 1][η2

yω
2
j,y + 1]

(2.12)

fn(x, y) = fi(x)fj(y) (2.13)

1Although we choose this specific spatial covariance function in this work, our simulation flow can be applied
to any valid spatial covariance function.
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where ωi,x and ωj,y are the solutions of equation 2.11 for setting parameters(Lx, ηx) and

(Ly, ηy), respectively. The relationship between the indices(i, j) and indexn leads to the

eigenvaluesλn form a decreasing series.

The detailed procedure of solving the eigenvalues and eigenfunctions of given covariance

kernel in this work is presented. From the following Fredholm equation:

∫
D

C(x1, x2, y1, y2)f(x1, y1)dx1dy1 = λf(x2, y2) (2.14)

The above eigenvalues problem can be solved independently forx andy directions to obtain

eigenvaluesλx andλy, and eigenfunctionsfx(x) andfy(y).

∫
D

σ2e−
|x1−x2|

ηx e
− |y1−y2|

ηy f(x1, y1)dx1dy1 = λf(x2, y2) (2.15)∫
D

σ2e−
|x1−x2|

ηx e
− |y1−y2|

ηy fx(x1)fy(y1)dx1dy1 = λxλyfx(x2)fy(y2) (2.16)

For the separable multi-dimension problem, we consider the following one-dimensional eigen-

values problem and extend to the two-dimension soultions :

∫ Lx

0
σ2e−

|x1−x2|
ηx fx(x1)dx1 = λxfx(x2) (2.17)

Taking derivative of equation 2.17 with respect tox2 yields

−1

ηx

∫ x2

0
e

x1−x2
ηx fx(x1)dx1 +

1

ηx

∫ Lx

x2

e
x2−x1

ηx fx(x1)dx1 =
λx

σ2
f

′

x(x2) (2.18)

Taking derivative again of equation 2.18 with respect tox2 gives

−1

ηx

[fx(x2)−
1

ηx

∫ x2

0
e

x1−x2
ηx fx(x1)dx1]−

1

ηx

[fx(x2) +
∫ x2

Lx

e
x2−x1

ηx φx(x1)dx1] =
λx

σ2
f

′′

x (x2)

(2.19)

−2

ηx

fx(x2) +
1

η2
x

[
∫ x2

0
e

x1−x2
ηx fx(x1)dx1 +

∫ Lx

x2

e
x2−x1

ηx fx(x1)dx1] =
λx

σ2
f

′′

x (x2) (2.20)

λx

σ2
f

′′

x (x2) =
−2

ηx

fx(x2) +
1

η2
x

[
λx

σ2
fx(x2)] (2.21)
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Moreover,

f
′′

x (x2) +
2ηxσ

2 − λx

λxη2
x

fx(x2) = 0 (2.22)

The boundary condition associated with equation 2.22 can be determined from equation (2.17)

by settingx2 = 0 andx2 = Lx.

ηxfx
′
(0) = fx(0)

ηxfx
′
(Lx) = −fx(Lx)

The general solution of equation 2.22 is

φx(x) = c1cos(wxx) + c2sin(wxx) (2.23)

w2
x =

2ηxσ
2 − λx

λxη2
x

(2.24)

Based on the boundary condition, we can obtain the following equations for determining

coefficientsc1 andc2.

c1 − ηxwxc2 = 0 (2.25)

[−ηxwx sin(wxLx) + cos(wxLx)]c1 + [ηxwx cos(wxLx) + sin(wxLx)]c2 = 0 (2.26)

Limiting to nontrivial solutions of equation 2.26 yields an equations forwx,

(η2
xw

2
x − 1)sin(wxLx) = 2ηxwxcos(wxLx) (2.27)

For givenηx andLx, the equation 2.26 can be solved to get a series of (positive)wi,x, i = 1, 2, ....

The eigenvalues corresponding towi,x can be determined as the following :

λi,x =
2ηxσ

2

η2
xwi,x

2 + 1
(2.28)

In fact, the differentwi,x gives the different coefficientsci,1 andci,2 for eigenfuctions.

fi,x(x) = ci,1cos(wi,xx) + ci,2sin(wi,xx)

12



The coefficientsci,1 andci,2 can be determined by the condition that the eigenfunctions are

normalized.

∫
Dp

f 2
i,x(x)dx = 1 (2.29)

ci,2 =
1√

(η2
xwi,x

2 + 1)Lx/2 + ηx

(2.30)

ci,1 = ηxwi,xci,2 (2.31)

Trends of the two dimensional eigenvaluesλn of exponential kernel for the correlation

lengths (ηx andηy) which are equal to0.31 can be shown in Fig. 2.2.
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Fig. 2.2: The eigenvalues decay rate
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The exponential kernelC(x1,x2) = σ2e−
|x1−x2|

ηx e
− |y1−y2|

ηy can be expanded as its eigenfunc-

tions and eigenvalues.

C(x1,x2) =
Nkl∑
k=1

λkfk(x1)fk(x2) (2.32)

whereNkl is the truncated number for approximation. As shown in Fig. 2.3, it’s the adoptive

exponential covariance surface in this work. The approximated covariance surface and relative

errors for truncated numberNkl which is equal to25 are shown in Fig. 2.4. Moreover, the

approximated covariance surface for truncated numberNkl which is equal to75 are shown in

Fig. 2.5.

Fig. 2.3: The exponential covariance kernel
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(a) (b)

Fig. 2.4: (a)25-term approximation of covariance surface ;σ = 4.3. (b) 25-term relative error
surface of covariance approxiamtion.

(a) (b)

Fig. 2.5: (a)75-term approximation of covariance surface ;σ = 4.3. (b) 75-term relative error
surface of covariance approxiamtion.
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2.3 The Bases for Random Space : Polynomial Chaos

The generalized polynomial chaos, also called the Askey-Chaos, utilizes the orthogonal poly-

nomials as the trial basis in the random space to expand the stochastic process. The original

polynomial chaos which is termed as the Hermite chaos was first introduced by Wiener [9].

Ghanem and Spanos are the pioneers that employ the Hermite orthogonal polynomials in terms

of Gaussian random variable to deal with various problems in mechanics [9]. The theorem of

Cameron and Martin [15] guarantees that a general second-order random processu(θ) can be

represented in the following form:

u(θ) = c0Γ0 +
∞∑

i1=1

ci1Γ1(ξi1)

+
∞∑

i1=1

i1∑
i2=1

ci1i2Γ2(ξi1 , ξi2)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3Γ3(ξi1 , ξi2 , ξi3) + ...

whereΓr(ξi1 , ..., ξin) represents the polynomial chaos of orderr in terms of the N-dimensional

random variables~ξ = (ξi1 , ..., ξin). The polynomial chaos was so-called Hermite polynomial

chaos for the Gaussian random variables. For the Hermite polynomials with multi-dimension

Γr(ξi1 , ..., ξiN ), the general expression form can be obtained as

Γr(ξi1 , ..., ξiN ) = (−1)r ∂n

∂ξi1 ...ξin

e−
1
2
~ξT ~ξ

The zero, first, and second-order Hermite polynomial chaos can be given by:

Γ0 = 1; Γ1(ξi) = ξi; Γ2(ξi) = ξiξj − δij

whereδij is the Kronecker delta. For charity, the above general second-order random process

u(θ) can be expressed as more concise form

u(θ) =
∞∑

j=1

âjΦj(~ξ) (2.33)

where there is a one-to-one mapping between the polynomial chaosΓ[.] and Φ[.], and also

between the coefficientŝaj andci1...in. The polynomial chaos of the same order with different

argument list are orthogonal to each other, so are ones of the different order. For notation, the
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polynomial chaos satisfy the following orthogonality property:

< ΦiΦj >=< Φ2
i > δij

where< . > denotes the inter product defined in the following:

< f(~ξ)g(~ξ) >=
1√

(2π)n

∫
f(~ξ)g(~ξ)e−

1
2
~ξT ~ξd~ξ

2.4 Statistical Leakage Power Modeling

In this section, we will introduce the empirical models for subthreshold and gate leakage cur-

rents with the uncertainty in physical parameters such as channel length and oxide thickness.

Actually, the leakage current depends the input pattern and logic topology. We evaluate the av-

erage leakage based on HSPICE simulation for various types logic gate with considering input

pattern. From the the HSPICE simulation results, we obtain the fitting constants of the empirical

current models based on least square method. Moreover, the maximum errors of fitting model

are no more than2% in comparison with HSPICE simulation results.

2.4.1 Gate Tunneling Leakage Current

According to quantum mechanics, there is a finite probability that carriers will tunnel through

the gate oxide. The result is so-called that gate tunneling leakage current flows into the gate.

The finite probability is exponential function of oxide thickness. The gate tunneling leakage

current increases exponentially as gate oxide decreases. When the oxide thickness is thicker

than 20̊A, the gate tunneling leakage current is relatively small in comparison to other compo-

nent leakage current such as sub-threshold leakage current. For oxide thickness thinner than

15−20Å, tunneling current becomes a important factor and may become comparable to sub-

threshold leakage current in advanced process. To put it briefly, the dependence of gate leakage

current on oxide thickness is given by the following formula [32]:

Igate = (A · C)(W · L)e
−B·Tox

Vgs
α

whereA = q3/8πhφb, B = 8π
√

2moxφ
3/2
b /3hq , C = (Vgs/Tox)

2, α is a parameter which is

ranged from1 to 0.1 depending on the voltage drop across the oxide,H is the Plancks constant,
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andφb is the barrier height for electronics/holes in the conduction/valance band. Noted that the

parameter variations are in general around10-20% [33]. Hence, we make use of a first-order

Taylor expansion at the nominal value of parameter oxide thickness and utilize the following

gate tunneling leakage current model derived in [28].

Igate = a0e
a1∆Tox (2.34)

wherea0, anda1 are the fitting constant,∆Tox indicates the fractional variations at nominal

value of oxide thickness. We incorporate the current model with the physical parameter ran-

dom process expanded by KLE and set the supply voltage equal to1 volt, the stochastic gate

tunneling leakage power may be expressed as:

pg(~ς) = p̃ge
a1

∑N
′
kl

i=1 f
′
i (x∗,y∗)ςi (2.35)

wherep̃g = a0e
a1T̃ox denotes the deterministic nominal gate leakage power,T̃ox is the nominal

value of oxide thickness,N
′
kl is the truncated number of KLE for oxide thickness,f

′
i (x

∗, y∗)

is the eigenfunction combined with eigenvalue term of oxide thickness for some logic gate

at position(x∗, y∗). The gate power random process can be represent in terms of Hermite

polynomials,

pg(~ς) =
∞∑
i=1

γiΦi(~ξ) (2.36)

γi =
< pg(~ς)Φi(~ξ) >

< Φ2
i (~ξ) >

(2.37)

2.4.2 Subthreshold Leakage Current

The subthreshold leakage current is defined as the conduction current between source and

drain in an ”off” state MOS transistor. We apply the following empirical model was introduced

in [10] to describe subthreshold leakage current.

Isub = b0e
b1L+b2L2

(2.38)

where b0, b1, and b2 are the fitting constant,L indicates channel length. Substituting the

Karhunen-Loeve expansion form of channel length random process into equation (2.38) , the
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statistical subthreshold leakage power may be given by:

ps(~ζ) = p̃se
(b1+2b2L̃)

∑N
′′
kl

i=1 f
′′
i (x∗,y∗)ζi+b2q(x∗,y∗,~ζ) (2.39)

q(x∗, y∗, ~ζ) = {
Nkl∑
i=1

f
′′

i (x∗, y∗)ζi}2 (2.40)

wherep̃s denotes the nominal subthreshold leakage power,L̃ is the nominal value of channel

length,N
′′
kl is the truncated number of KLE for channel length,f

′′
i (x∗, y∗) is the eigenfunc-

tion combined with eigenvalue term of channel length for some logic gate at position(x∗, y∗).

Expanding the subthreshold power random process as Hermite polynomials expansion,

ps(~ζ) =
∞∑
i=1

αiΦi(~ξ) (2.41)

αi =
< ps(~ζ)Φi(~ξ) >

< Φ2
i (~ξ) >

(2.42)

The key point is that how to obtain the coefficients{γi} and{αi}. The computation of the the

coefficients will be introduced in chapter 3.3.

Actually, the subthreshold and gate leakage strongly depends on the input pattern and cir-

cuits topology. We evaluate the leakage currents with considering input pattern to obtain the

average leakage current from HSPICE simulation based on TSMC 65nm technology model

[29]. The fitting constantsa0, a1, b0, b1, b2 are obtained from the least square fitting method

with maximum errors no more than2%.

Noted that the total number of polynomial chaos depends on the value(N
′
kl + N

′′
kl), dimen-

sion of random variables set{ξi} truncated from KLE. In fact, the set of polynomial chaos can

be reduced to a new one, because the projection value of gate and subthreshold leakage power

upon the polynomial basis which is function of~ς and~ζ will be equal to zero. For example,

< ps(~ζ)ζiςj > = < ps(~ζ)ζi >< ςj > = 0

< pg(~ς)ζiςj > = < pg(~ς)ςj >< ζi > = 0 (2.43)

Thus, polynomial basis of the new set of polynomial chaos is function of either~ς or ~ζ. The total

number of new polynomial chaos set may be given by,

Npc = 1 +
p∑

s=1

s−1∏
r=0

(N
′

kl + r) +
p∑

s=1

s−1∏
r=0

(N
′′

kl + r) (2.44)

wherep is the order of polynomial chaos.
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2.5 Monte Carlo Technique

Numerical methods that make use of random variables are known as Monte Carlo methods. This

will serve as a benchmark against which all modeling and analysis techniques will be tested.

In this work, we perform the Monte Carlo method to simulate the golden solutions for stochas-

tic thermal analysis of full chip with considering within-die spatial correlation under process

variations. An important key point is that how to generate multinormal distribution random

variables. First, the within-die spatial correlation of parameters are modeled by partitioning the

chip intoN grid cells. Moreover, we assume that perfect correlations among the devices in the

same grid cell, high correlations among those in close grid cells and low or zero correlations

in far-away grid cells. Noted that the dimension of random variables set isN . Then, we con-

struct the covariance matrixΣ with dimensionN by N based on the given covariance kernel.

From the covariance matrixΣ, we generate the multinormal distribution random variables by

applying Cholesky factorization and the detail procedures are given in Fig. 2.6 and 2.7 [34].

Algorithm Multinormal-Cholesky
Input: Dimension N , covariance matrix Σ.
Output: Multinormal distributed vector ~X with mean 0 and covariance Σ.
1 Begin
2 Compute Cholesky factorL of Σ by Algorithm Cholesky-Decomposition in Fig. 2.7.
3 Generate vector~ε = (ε1, ε2, ..., εN)T of N independent standard normal variates.
4 ~X ← L~ε
5 Return vector~X
6 End

Fig. 2.6: Procedure of Multinormal-Cholesky
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Algorithm Cholesky-Decomposition
Input: Positive definite N ×N matrix Σ = σij .
Output: Lower triangular matrix L = lij such that LLT=Σ
1 Begin
2 for i = 1 to N do
3 li1 ← σi1/

√
σi1

4 for i = 2 to N do
5 for j = 2 to i− 1 do
6 li1 ← (σij −

∑j−1
k=1 likljk)/ljj

7 x← σii −
∑i−1

j=1 l2ij
8 if x ≥ 0 then
9 lii ←

√
x

10 else
11 abort (Σ not positive definite)
12 lij ←

√
x for 1 ≤ i ≤ j ≤ N

13 Return matrixL = (lij)
14 End

Fig. 2.7: Procedure of Cholesky-Decomposition

Using the technique, samples of the required random variables to perform Monte Carlo

analysis can be generated. For most purposes, variations in VLSI design are assumed to be

Gaussian. Consequently, while analyzing intra-die variations, we need to generate samples of

multinormal random variables.
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Chapter 3

Stochastic Thermal Simulation
Methodology

3.1 Stochastic Thermal Simulation Problem Formulation

The silicon die consumes dynamic power and leakage power, and is the main source of heat

generation. Heat of the silicon die can be transfered to the ambient by two heat flow paths.

The first primary heat flow path is through thermal interface material, heat spreader, and heat

sink. The secondary heat flow path is through the interconnect layers, ceramic substrate, and

printed-circuit board. The typical compact thermal model for the early stage VLSI design flow

is shown in Fig. 3.1.

Heat Sink

Heat Spreader  

Ambient Air

Die
Primary Heat Flow Path

Interconnect Layers  

I/O Pads & PCB sh
Secondary Heat Flow Path

Ambient Air

z=-Lz

ph

( , , ( , , ), ( , , ))oxp r t L x y T x yθ ϖ

z=0

y=Ly

z
y

x=Lx

x

Die
Thermal Interface Material Substrate

Fig. 3.1: Compact thermal model of the early design stage for stochastic heat sources.

Generally, the dynamic power is insensitive to process variations and can be assumed to be

22



deterministic [31]. However, the leakage power dissipation of ICs is not deterministic any more

for sub-65nm technology. As the CMOS technology continuously scales down, the existing

fluctuations in physical parameters such as channel length and oxide thickness result in the

leakage power consumption with uncertainty. Moreover, the leakage power has became the

major contributor of the total power consumption for VLSI in today’s technology. Thus, the

thermal simulation in leakage power dominated technology must combine into statistics. By

combining the boundary condition for compact thermal model and stochastic power dissipation

process, the stochastic heat transfer equation with boundary conditions is given as [20]

∇ · (κ(r)∇T (r, t, θ, $)) = σ(r)
∂T (r, t, θ, $)

∂t
; r ∈ D (3.1)

κ(r)
∂T (r, t, θ, $)

∂nbs

+ hbsT (r, t, θ, $) = fbs(r) (3.2)

wherer = (x, y, z) is defined in the system domainD = {(0, Lx) × (0, Ly) × (−Lz, 0)}, Lx

andLy are the lateral sizes of die,Lz is the thickness of die,κ(r) is the thermal conductivity

(W/m·◦C) of die, σ(r) is the product of the material density and specific heat (J/m3·◦C) of

die,∇ is the diverge operator,hbs is the heat-transfer coefficient on the boundary surface,bs, of

die, fbs(r) is the heat flux function on the boundary surface, and∂/∂nbs is the differentiation

along the outward direction normal to the boundary surface.θ and $ belong to the set of

manufacturing outcomes for channel lengthΩL and oxide thicknessΩTox , respectively.

From the observations in [21] [22], the heat transfer coefficients of primary path can be

modeled as an effective heat transfer coefficienthp by combining the effect of each component

on the primary path. Hence, the detail information of interconnect layer is not available in

the early physical design stage, the interconnect layer was modeled as an equivalent thermal

resistance based on the material density of regular structure by [21] [22]. The heat transfer

coefficients of secondary path can be simplified to be an equivalent heat transfer coefficienths

by stacking the thermal resistance of each interconnect layer, I/O pads, and print circuit board.

The boundary condition in vertical surface of chip in Fig. 3.1 can be set to be adiabatic because

the area of vertical surface is exceedingly smaller than the area of horizontal surface and the

thermal conductivity of air is much less than the values of primary and secondary heat transfer

paths [19]. The heat sources generated from different sub-circuits can be attached on the top
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surface of die for modeling the boundary condition. Although the thermal properties of die,

κ(r) andσ(r), are position-dependent, the variations of these thermal parameters are usually

not significant and can be treated as constants while performing the thermal-aware floorplanning

and placement.

With the above description, the stochastic heat transfer equation can be rewritten as

κ∇2T (r, t, θ, $)=σ
∂T (r, t, θ, $)

∂t
; r ∈ D (3.3)

∂T (r, t, θ, $)

∂x

∣∣∣∣∣
x=0,Lx

=
∂T (r, t, θ, $)

∂y

∣∣∣∣∣
y=0,Ly

= 0 (3.4)

κ
∂T (r, t, θ, $)

∂z

∣∣∣∣∣
z=−Lz

=hpT (r, t, θ, $)|z=−Lz (3.5)

κ
∂T (r, t, θ, $)

∂z

∣∣∣∣∣
z=0

= hsT (r, t, θ, $)|z=0 (3.6)

+ p(r, t, L(r, θ), Tox(r, $))|z=0

wherep(r, t, L(r, θ), Tox(r, $)) is the random process of total power dissipation and it consists

of dynamic powerpd(r, t), subthreshold leakage powerps(r, t, L(r)), and gate leakage power

ps(r, t, Tox(r, $)). The leakage power is greatly affected by physical parameters with uncer-

tainties such as channel length and oxide thickness, and need to be treated as a random process.

The detail illustration of total leakage power random process will be addressed in chapter 2.4.

3.2 Stochastic Thermal Simulation Flowchart

The executing flow of this work can be summarized as Fig. 3.2. Given a spatial covariance

function of technology parameter, we construct the eigenvalues and eigenfunctions of the co-

variance kernel. By applying the Karhunen-Loeve expansion method, the correlated physical

parameters random processes (channel length, and oxide thickness) are transformed into a set

of uncorrelated random variables based on these eigenvalues and eigenfunctions. With those

normalized random variables, we build the polynomial chaoses to serve as polynomial bases

for the space of random variables. According to the power consumption, we create the leakage

current models for various type logic gates from HSPICE simulation based on TSMC 65nm

technology. After the chip geometry, the package configuration, gate level placement, and dy-

namic power distribution being given, the compact thermal model of Fig. 3.1 in chapter 3.1 can
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be built. Then, we employ the stochastic Galerkin projection method to convert the stochastic

heat transfer equation to a set of deterministic heat transfer equations. The number of those de-

terministic heat transfer equations is equal to the total number of polynomial chaoses. Finally,

an efficient GIT based analytical thermal simulator [14] is utilized to solve those deterministic

heat transfer equations, and the mean value and variance of full-chip temperature distribution

can be obtained.

Circuit Benchmark (DEF)    
and Dynamic Power

Technology Parameters 
Spatial Correlation 

Modeling

Karhunen-Loeve  
Expansion

Parameters Transform

Cell Library 
(LEF)

Leakage Power 
Cell Library

Stochastic Galerkin Projection

Stochastic Heat Transfer Equation

Expanded as the Hermite Polynomial 
Chaos with Function of Position 

Coefficients

Mean and Variance of the Temperature 
Distribution

Result

Construct Hermite
Polynomial Chaos 

Random Space Bases

Analytic Thermal Simulator: GIT

Deterministic Heat Transfer Equation

Construct A Set of Spatial Space Bases to Obtain 
the Function of Position Coefficients

Fig. 3.2: Stochastic thermal simulation flowchart
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3.3 Stochastic Galerkin Procedure

After applying the Karhunen-Loeve expansion, the system random process with spatial corre-

lation can be transformed into a set of orthonormal standard normal random variables without

correlation. From the set of uncorrelated random variables~ξ, we construct the Hermite polyno-

mial chaos to serve as the bases for random space. The above-mentioned temperature random

processT (r, t, ~ς, ~ζ) can be reformed and be expanded as the following expansion form by using

the Hermite polynomial chaos expansion.

T (r, t, ~ξ) '
Npc∑
i=0

T̂i(r, t)Φi(~ξ) (3.7)

Substituting the expansion form equation (3.7) into equation (3.3), the residual can be expressed

as:

R(r, t, ~ξ) ≡ κ∇2
Npc∑
i=0

T̂i(r, t)Φ(~ξ)− σ
∂

∂t

Npc∑
i=0

T̂i(r, t)Φ(~ξ) (3.8)

Utilizing the stochastic Galerkin principle which enforces the residual to be orthogonal to each

of the basis functions,

< R(r, t, ~ξ)Φk(~ξ) >= 0 (k = 0, 1, ...Npc) (3.9)

The orthogonality relation results in a set of deterministic equations with dimensionNpc.

κ∇2T̂k(r, t) = σ
∂T̂k(r, t)

∂t
(k = 0, 1, ...Npc) (3.10)

Employing similar Galerkin projection procedure on the system boundary conditions equation

(3.4)-(3.5), the resulting transformed equations can be given by,

∂T̂k(r, t

∂x

∣∣∣∣∣
x=0,Lx

=
∂T̂k(r, t)

∂y

∣∣∣∣∣
y=0,Ly

= 0 (3.11)

κ
∂T̂k(r, t)

∂z

∣∣∣∣∣
z=−Lz

=hpT̂k(r, t)|z=−Lz (3.12)

Substituting the expansion form equation (3.7) into equation (3.6), the residual can be given

by:

R
′
(r, t, ~ξ) ≡ ∂

∂z

Npc∑
i=0

T̂i(r, t)Φ(~ξ)− hs

Npc∑
i=0

T̂i(r, t)Φ(~ξ)− p(r, t, ~ξ) (3.13)
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Applying the stochastic Galerkin projection procedure to the residualR
′
(r, t, ~ξ),

∂

∂z
T̂k(r, t) = hsT̂k(r, t) +

< p(r, t, ~ξ)Φk(~ξ) >

< Φ2
k(

~ξ) >
; (k = 1, 2, ...Npc) (3.14)

Once the right side second term of ”=” for equation (3.14) be determined, the deterministic heat

transfer equations can be formulated. Now, focusing on the leakage power projection term,

< p(x, y, t, ~ξ)Φk(~ξ) > = pd(x, y, t) < Φk(~ξ) > (3.15)

+ Hg(x, y, t) < pg(x, y, ς)Φk(~ξ) >

+ Hs(x, y, t) < ps(x, y, ζ)Φk(~ξ) >

whereHg(x, y, t) andHs(x, y, t) are the function of position and switching activity for gate

tunneling and subthreshold leakage power, respectively.

Here, considering the gate tunneling power projection term,

< pg(x, y, ~ς)Φk(~ξ) >= p̃g(x, y) < ea1(x,y)
∑Nkl

i=1
f
′
i (x,y)ςiΦk(~ξ) > (3.16)

wherep̃g(x, y) = a0(x, y)ea1(x,y)T̃ox(x,y) is the deterministic nominal gate leakage power,f
′
i (x, y)

is the eigenfunction combined eigenvalue term for oxide thickness,a0(x, y) anda1(x, y) are the

fitting constants of gate leakage power for different logic gate located different position. We

take an example for a reference position(x∗, y∗), equation (3.16) can be rewritten as

< pg(x
∗, y∗, ~ς)Φk(~ξ) >= p̃∗g < ea∗1

∑Nkl
i=1

f
′∗
i ςiΦk(~ξ) > (3.17)

If the polynomial chaosΦk(~ξ) is function of ~ζ, the value of equation 3.17 is zero. on the

contrary, let us consider an example ofΦk(~ξ) is a first order polynomial and function of~ς.

Noted that normal random variables setX = {X1, X2, ..., Xn} has the following property,

< e
∑n

j=1
βjXjXk >= βk

n∏
i=1

e
β2

i
2 ∀k ∈ 1, 2, ..., n (3.18)

The computation of equation (3.17) can be calculated based on equation (3.18) for first order

polynomial, and based on the following equation (3.19) for second order polynomial.

< e
∑n

j=1
βjXjX2

k >= (β2
k + 1)

n∏
i=1

e
β2

i
2 ∀k ∈ 1, 2, ..., n (3.19)

The more detailed computation procedure of equation (3.17) can be shown in Fig. 3.3.
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Algorithm Gate Power Projection Procedure
Input: The constants a∗1, {f ′∗

i }, and polynomial Φk(~ξ)

Output: Return the value of< ea∗1
∑N

′
kl

i=1 f
′∗
i ςiΦk(~ξ) >

1 Begin
2 if the polynomialΦk(~ξ) containsζi
3 Return0
4 endif

5 do C∗
g =

∏N
′
kl

i=1 e
(a∗1f

′∗
i

)2

2

6 if the order ofΦk(~ξ) = 1
7 Returnf

′∗
k C∗

g
8 endif
9 elseifthe order ofΦk(~ξ) = 2
10 Return[(f

′∗
k )2 + 1]C∗

g
11 endif
12 End

Fig. 3.3: Procedure of gate power projection

Now, considering the subthreshold leakage power projection term,

< ps(x, y, ~ζ)Φk(~ξ) >= p̃s(x, y) < eB(x,y)
∑Nkl

i=1
f
′′
i (x,y)ζi+b2(x,y)q(x,y,~ζ)Φk(~ξ) > (3.20)

where,

B(x, y) = b1(x, y) + 2b2(x, y)L̃(x, y) (3.21)

q(x, y, ~ζ) = {
Nkl∑
i=1

f
′′

i (x, y)ζi}2 (3.22)

wherep̃s(x, y) = b0(x, y)eb1(x,y)L̃(x,y)+b2(x,y)L̃2(x,y) denotes the deterministic nominal subthresh-

old leakage power,f
′′
i (x, y) is the eigenfunction combined eigenvalue term for channel length,

b0(x, y), b1(x, y), andb2(x, y) are the fitting constants of subthreshold leakage power. If the

polynomial chaosΦk(~ξ) is the function of~ς, the value of equation (3.20) is zero. The quadratic

form q(x∗, y∗, ~ζ) for reference position(x∗, y∗) can be expressed as~ζT A~ζ.

A =



f
′′∗
1

2 1
2
f

′′∗
1 f

′′∗
2 . . . 1

2
f

′′∗
1 f

′′∗
Nkl

1
2
f

′′∗
1 f

′′∗
2 f

′′∗
2

2
. . . 1

2
f

′′∗
2 f

′′∗
Nkl
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1
2
f

′′∗
1 f

′′∗
Nkl
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2
f

′′∗
2 f
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Nkl

. . . f
′′∗
Nkl
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The quadratic form~ζT A~ζ can be reduced into its standard form~νT D~ν, ~ν = [ν1, ν2, ..., νNkl
]T .

The standard form ofq(x∗, y∗, ~ζ) is determined once the eigenvalues of A are known, the trans-

formation between~ζ and~ν is given by~ζ = Q~ν. The real symmetric matrixA have the eigenval-

uesλA
1 , λA

2 , ..., λA
Nkl

, and letQ be an orthogonal matrix that diagonalizesA, so thatQT AQ = D,

whereD is a diagonal matrix with the eigenvalues ofA as the elements on its leading diagonal.

After the eigen-decomposition transformation, equation (3.20) can be rewritten as the following

for reference point:

< ps(x
∗, y∗, ~ζ)Φk(~ξ) >= p̃∗s < eB∗

∑Nkl
i=1

Ciνi+b∗2
∑Nkl

i=1
λA

i ν2
i Φ

′

k(~ν) > (3.23)

whereCi =
∑Nkl

j=1 Qijf
′′∗
j , the indicesi andj are the row and column index of the matrixQ,

respectively. The computation of equation (3.23) for polynomial chaosΦ
′
k(~ν) which is constant

value can be based on the following property.

< e
∑n

j=1
αjX2

j +βjXj >=
n∏

i=1

e
β2

j
2−4αj

(1− 2αj)
1
2

(3.24)

For the first order polynomial chaosΦ
′
k(~ν),

< e
∑n

j=1
αjX2

j +βjXjXk >=
βk

1− 2αk

n∏
i=1

e
β2

j
2−4αj

(1− 2αj)
1
2

; ∀k ∈ 1, 2, ..., n (3.25)

Moreover, for the second order,

< e
∑n

j=1
αjX2

j +βjXjX2
k >=

β2
k − 2αk + 1

(1− 2αk)2

n∏
i=1

e
β2

j
2−4αj

(1− 2αj)
1
2

; ∀k ∈ 1, 2, ..., n (3.26)

The computation of equation (3.23) can be easily derived based on equation (3.24)-(3.26) for

different order polynomial chaos over the design system domain.

Noted that the eigen-decomposition transformation can be pre-calculated to deal with dif-

ferent logic gates placement. Because the eigenfunctionsf
′′
(x, y) depends on the covariance

kernel for physical parameters random processes rather than design placement.

These equations, equation (3.10), equation (3.11), equation (3.12), and equation (3.14) form

a set of deterministic heat transfer equations, and its solutions can be formulated based on
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Algorithm Sub Power Projection Procedure
Input: The constants b∗1, b∗2, {f ′′∗

i }, L̃∗, and polynomial Φk(~ξ)

Output: Return the value of< eB∗
∑N

′
kl

i=1 f
′′∗
i ζi+b∗2q∗(~ζ)Φk(~ξ) >

where B∗ = b∗1 + 2b∗2L̃
∗, q∗(~ζ) = {∑N

′
kl

i=1 f
′′∗
i ζi}2

1 Begin
2 if the polynomialΦk(~ξ) containsςi
3 Return0
4 Endif
5 do Transform the quadratic formq∗(~ζ) = ~ζT A~ζ to standard form~νT D~ν,
6 ~ν = [ν1, ..., νN

′′
kl
], QT AQ = D,linear transform~ζ = Q~ν,

7 obtain the eigenvalues{λA
i } of A,

8 D∗
s =

∏N
′′
kl

i
e

2−4b∗2λA
i

(B∗Ci)
2

(1−2b∗2λA
i )0.5 , Ci =

∑N
′′
kl

j=1 Qijf
′′∗
j .

9 if the order ofΦ
′
k(~ν) = 1

10 Return B∗Ck

1−2b∗2λA
k
D∗

s

11 endif
12 elseif the order ofΦ

′
k(~ν) = 2

13 Return(B∗Ck)2−2b∗2λA
k +1

(1−2b∗2λA
k

)2
D∗

s

14 endif
15 End

Fig. 3.4: Procedure of sub power projection

several existing techniques. In this work, we apply the analytic technique (Generalized Integral

Transforms) [14] to serve as the deterministic solver. Once the set of coefficients{T̂k(r, t)} be

obtained, mean value and variance of the temperature distribution can be solved.

The mean value and variance of temperature distribution can be expressed as:

E{T (r, t, ~ξ)} = T̂0(r, t) (3.27)

V ar{T (r, t, ~ξ)} =
Npc∑
i=1

T̂ 2
i (r, t) < Φ2

i (
~ξ) > (3.28)
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Chapter 4

Experimental Results

The proposed stochastic thermal simulator is implemented as a tool in C++ on HPxw9300

workstation with 16GB memory. The simulation results are obtained on the our tested place-

ment benchmark. We create a leakage power gate level cell library based on HSPICE simulation

on TSMC 65nm technology model. The nominal value of oxide thickness is set to1.4nm and

the 3σ value of parameters variations for channel lengthL and oxide thicknessTox are set to

20% of the nominal parameter values. The ratios of correlation length to chip size for x-dir

(ηx/Lx) and y-dir(ηy/Ly) were set to0.31 that means the correlation between two devices are

located half of chip dimension away in either direction is0.2. The generated tested placement

benchmark with about four millions gate counts from the floorplanning shown in Fig. 4.1 is

based on the cell library at65nm technology. The experimental results can be summarized as

the following:
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Fig. 4.1: The floorplan of our test circuit
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• Accuracy and Efficiency

The accuracy and efficiency of proposed stochastic thermal simulator can be shown in

Table 4.1. We demonstrate the accuracy and efficiency of this work in comparison with

Monte Carlo Method with100000 samples. We found that100000 samples is the rea-

sonable number of the Monte Carlo simulation. Actually, our proposed method leads to

about1% of errors in both mean and standard deviations for choosing thatNkl is equal

to 75 and the order of polynomial chaos is equal to1 and only takes four minutes. Noted

thatN
′
kl andN

′′
kl are set equal toNkl. The errors of mean value is strongly depended on

Nkl rather than the order of PC. The errors of standard deviation relys on not onlyNkl but

only the order of PC.

Table 4.1: Accuracy and Efficiency Compared to Monte Carlo Method

Nkl Npc PC E{T} σ{T} Run Speedup
Order MaxErr(%) MaxErr(%) Time(s) (X)

25 51 1 4.74 9.4 83.83 1960
50 101 1 2.52 3.3 165.79 990
75 151 1 1.72 1.09 247.4 662
20 461 2 4.87 7.68 949.25 264
25 701 2 4.2 6.43 1339.58 143
30 991 2 3.67 1.41 2039.07 100

• Compared to the Deterministic Thermal Simulation

As shown in Fig. 4.3 and Fig. 4.4, there is18% difference between the deterministic

nominal power consideration and stochastic power consideration in the average temper-

ature in our tested circuit. The deterministic simulation that underestimated the tem-

perature profile and hottest value of temperature can not offer designers a robust solution.

The cost function of traditional thermal-aware floorplanning, placement, and optimization

methodology is often avoiding the hot spot and smoothing the thermal profile. However,

the deterministic cost and objective function is not reliable enough in deep sub-micron

technology. The stochastic thermal simulator conducts designers to not only minimize

the mean value of temperature to avoid high temperature failure but also reduce the vari-

ance of temperature to lower thermal gradients. In addition, solutions of stochastic ther-
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mal simulator support designers to develop circuits with more tolerance of manufactured

process variations.

(a) (b)

Fig. 4.2: (a) The nominal power distribution at the top surface of die, (b) The mean power
distribution at the top surface of die.
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(a) (b)

Fig. 4.3: (a) The 3D nominal temperature distribution at the top surface of die, (b) The 3D mean
temperature distribution at the top surface of die.

(a) (b)

Fig. 4.4: (a) The 2D nominal temperature distribution at the top surface of die, (b) The 2D mean
temperature distribution at the top surface of die.
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• Considering Spatial Correlation Compared to Neglecting Spatial Correlation

We demonstrated the difference between considering spatial correlation and ignoring spa-

tial correlation based on Monte Carlo simulation in our tested circuit. From the simulation

results, we observe that the mean value of temperature of method with considering spatial

correlation is close to the method without considering spatial correlation. However, the

variance of temperature profile between the two methods is different entirely . As shown

in Fig. 4.5, the results reveal that the variance of temperature distribution is larger in the

method which considers spatial correlation. Moreover, the variance value of surround-

ing the region with larger variance value is also larger. This shows that the variance of

temperature profile behaves with circumfluent phenomenon and spatial correlation. This

is because the leakage powers of neighbor region are less correlated when spatial cor-

relation is ignored. For considering spatial correlation, the leakage powers of neighbor

region are with positive interactions. From simulation solutions of the tested circuit in

Fig. 4.5(a) and Fig. 4.5(b), the method with considering spatial correlation3X − 4X

times the variance of the one without considering spatial correlation. The thermal simu-

lator without considering spatial correlation will undervalue the thermal gradients. Large

temperature gradients may not only reduce lifetime of chip but also cause thermal stress

to crack circuits. [20].
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(a) (b)

Fig. 4.5: (a) The 3D standard deviation temperature distribution at the top surface of die with
considering spatial correlation, (b) The 3D standard deviation temperature distribution at the
top surface of die without considering spatial correlation.

(a) (b)

Fig. 4.6: (a)The 2D standard deviation temperature distribution at the top surface of die with
considering spatial correlation, (b)The 2D standard deviation temperature distribution at the top
surface of die without considering spatial correlation.
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• Temperature Yield Estimation

The yield loss will worsen in future technologies due to the continued significance of

leakage powers and increasing process variations. Another trouble observation is that

increased variations on leakage powers not only cause a larger spread of temperature

distribution but also higher average temperature distribution. It is worth to note that most

current thermal simulation approaches do not consider process variations and are unaware

of their impact on yield. These deterministic thermal simulation approaches result in yield

loss due to increased susceptibility to process variations The evaluating on thermal yield

can be formulated by the following Generalized Chebyshev Inequality [35].

COROLLARY 4.1 If E[X] = µ, Var(X)= σ2, then for a> 0

P{X ≥ µ + a} ≤ σ2

σ2 + a2
(4.1)

P{X ≤ µ− a} ≤ σ2

σ2 + a2
(4.2)

Using the Generalized Chebyshev Inequality, we can obtain the tighter bounds of temper-

ature distribution. The probability of temperature distribution under the given temperature

constraint can be estimated by using the generalized inequality. This gives the designers a

guideline and solutions to deal with yield issues for manufactured process variations. Fur-

thermore, these solutions can serve as a stochastic thermal solver which is incorporated

into other CAD design methodologies such as timing and reliability analysis methods.

It can be shown in Fig. 4.7 that the probability of temperature distribution under upper

bound which is mean value plus three standard deviation is larger than90%.
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Fig. 4.7: The mean value plus three standard deviation of temperature distribution.
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• Hot Spot Observations

Generally speaking, the general purpose of thermal-aware placement and floorplanning is

to minimize the maximal temperature gradient over the chip and to avoid the hot spot oc-

currence. The deterministic thermal simulators offer the explicit hot spot location to CAD

designer. However, the variations in leakage power result in the on-chip temperature dis-

tribution with uncertainties. It’s difficulty to indicate the hot spot location under process

variations. In our tested circuit, we observe that the hot spot location can not merely

be determined by traditional deterministic thermal solver. As shown in Fig. 4.4(a), the

hot spot location is at the point(x = 0 (mm), y = 5 (mm)) based on deterministic

thermal simulator. However, it can be shown in Fig. 4.8 that all the points of the line

at y = 5 (mm) have probability to become hot spot location. Therefore, the traditional

deterministic thermal simulators are unaware of the precise hot spot location.

It’s crucial to precisely indicate the hot spot location for designers under manufactured

process variations. Our future work is developing a robust scheme to determine hot spot

distribution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
70

80

90

100

110

120

130

140

150
The temperature profile of y = 5 (mm)

x (mm)

 T
em

pe
ra

tu
re

 

Mean value

Mean value - σ

Mean value + σ

℃

Fig. 4.8: The temperature profile aty = 5 (mm).
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Chapter 5

Conclusion

In this work we have proposed a stochastic thermal simulation procedure to estimate the statis-

tical temperature distribution in the presence of within-die process variations. Our experimental

results show that the proposed method has small variation errors and high efficiency compared

to Monte Carlo simulation. The simulation results indicate that simulation without considering

spatial correlation may underestimate existing critical thermal gradient. We further point out

that the traditional deterministic thermal simulator will lose information of thermal profile in

manufactured process variations and guide designer to a optimistic way. The stochastic ther-

mal simulator we proposed offers a robust estimation of temperature distribution and serves

as a necessary machine for thermal-aware methodology with considering within-die process

variations.
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