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中文摘要 

 
在此論文中我們利用退火模擬演算法(Simulated Annealing Algorithm)

提出無衝突演算法去解決平行渦輪碼中記憶體碰撞問題。再者，對於

平行渦輪碼中的非本質記憶體，我們提出有效使記憶體面積減少的兩

種架構；其中一種架構是由平行單埠記憶體與一個緩衝暫存器所組成

去取代原來須兩埠或雙埠記憶體所組成的架構。另外一個架構，我們

基於前一個架構上再加上一個非本質函數的非線性映對器。在前兩種

架構相較於傳統使用雙埠記憶體在 0.13 CMOS 聯電製程環境底下分別

可以節省約 37 和 46 百分比記憶體使用量。 
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Abstract 

In this thesis, a contention free algorithm for solving memory collision problem of 

parallel Turbo decoder architecture using the simulated annealing algorithm is presented. 

Furthermore, we proposed two area-efficient extrinsic memory schemes based on the 

parallel contention free Turbo decoder. One of the proposed schemes employs only 

multiple single port memories with one temporary buffer instead of the original dual 

port or two port memories. And the other scheme further employs an additional 

non-linear extrinsic mapping architecture. The proposed schemes lead to approximately 

37% and 46% memory area reduction, respectively, for 16-parallel Turbo decoder in 

comparison to the conventional dual port memory scheme under the UMC 0.13-μm 

CMOS process. 
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Chapter 1 Introduction 

 

1.1 Motivation  

Turbo code has outstanding error correcting capacity, which was first introduced in 1993 

[1], and its performance closely approaches the Shannon limit for Bit Error Rate (BER). 

The fundamental turbo decoder comprises interleaver and constituent (Soft-In/Soft-Out) 

SISO decoders. The SISO decoder performs iterative decoding based on maximum a 

posterior (MAP) probability algorithm, which often transfers into logarithm domain as 

log-MAP in the consideration of implementation complexity [2] . 

Since the Turbo decoder requires a certain number of iterations to achieve the desired 

performance, the iteratively decoding causes the lower throughout and higher latency for 

the Turbo decoder process. To apply for high speed and low latency application, a 

feasible method is to adopt the parallel SISO decoder architectures. However, one of the 

parallel SISO decoder architecture’s existing problems is that there are probably more 

than one data to access the same memory destination simultaneously, also called the 

memory collision problem [3][4]. 

An available method of solving memory collision is to use extra storage devices for 

storing the collision dates until the destination memories are in idle state and can be 

accessed [20]. However, the above solution method requires an extra temporary buffer 

and collision handling time in view of hardware aspects. Therefore, the objective of the 

present memory collision free algorithm is to distribute the extrinsic dates from parallel 

SISO decoders into the storage elements without memory collision happening. The 

proposed memory collision free algorithm can support various Turbo standards as well 

as arbitrary the number of parallel high radix SISO architecture.   
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1.2 Thesis Organization 

The thesis is organized as follows. Chapter II shows the concept of Turbo coding, 

including Turbo encoder / decoder structure, Log-MAP algorithm and Max-Log-MAP 

algorithm. The sliding window approach and the difference between the serial SISO 

structure and parallel structure are discussed in Chapter III. Chapter IV illustrates the 

parallel turbo decoder using simulated annealing algorithm achieving memory collision 

free requirement and supporting arbitrary parallel parameter P. Finally, the conclusions 

are given in Chapter V  



Chapter 2 Turbo Code 

This chapter introduces the components of turbo code, including turbo encoder, turbo 

decoder, interleaver and given an example for the specification of turbo code of 

(Consultative Committee for Space Data Systems) CCSDS standards [5]. Finally, 

performance results are compared between the max-log-MAP and log-MAP decoding 

algorithm, various code rates, different block sizes and iteration numbers.  

 

2.1 System Overview 

Fig. 2-1 shows the Turbo code application in the digital communication system which 

includes four parts: 1.) channel, 2.) modulation, de-modulation, DAC, ADC and Front 

End parts, 3.) synchronizer and channel estimation (Equalizer), 4) error correction and 

detection. Channel involves non-idea effects and distortion in the modulated continuous 

waveform. Demodulator and ADC convert the distorted analog waveform into digital 

samples. Error correction recovers these samples and renders decoded sequences. The 

error detection is primary used to verify the correctness of decoded sequences. This 

thesis assumes that the perfect synchronization and channel estimation in the receiver 

aspects.  

 

Fig. 2-1  Digital communication system 
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2.2 Turbo Encoder 

2.2.1 Turbo Encoder Process 

The turbo decoder consists of two parallel Recursive Symmetric Code (RSC) encoders, 

an interleaver and a puncture device (see Fig. 2-2). The interleaver is used for permuting 

the information uk, which is an influencing factor in the performance of Turbo code. The 

information u={u1,u2,…,uN} are transmitted through two identical structure RSC 

encoder, where encoder structure depends on the definition of code generator 

polynomial.  

For the two RSC encoders, the information directly sending into upper RSC 

encoder produce upper encoded codeword {Xs, Xp-siso1}; the lower encoded codeword 

{Xp-siso2} is obtained from the permuting information bits uInt passing through the lower 

RSC encoder. The outputs Xs is identical to information bits u, referred to as the 

systematic bits. The second output Xp-siso1 denotes the parity check bits, which will be 

used for the even sub-iteration of MAP decoding. Similarly, the other parity check bits 

Xp-siso2 will also be used to odd sub-iteration of MAP decoding. Finally, the puncturing 

block could support various code rates by multiplexing the encoded codeword sequence 

to obtain effective bandwidth utilization. 

 

Fig. 2-2  Turbo encoder diagram 
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2.2.2 Recursive Systematic Convolution (RSC) 

Good turbo codes have been constructed using short constraint length and infinite 

impulse response (IIR) convolutional codes instead of the more familiar finite impulse 

response (FIR) convolutional codes. The major reason for above finding is that the 

impulse response for IIR structure has more long free distance relative to FIR structure, 

resulting the more better performance for the IIR encoder structure [6]. 

Furthermore, several articles in [7] shown that the constituent convolution codes 

with primitive feedback polynomials can achieve larger minimum distance than 

applying other polynomials. As a result, the IIR encoder structure with primitive 

feedback polynomials is always employed for the constituent encoder of Turbo code.  

These IIR convolutional codes are also referred to as recursive convolutional codes, 

because previously encoded information bits are fed back to the input of constituent 

encoder. For instance, the generator polynomial G(D) form for constituent encoder 

shown in Fig. 2-3 is  

 31 2( ) 1     FF F

b b b

PP PG D
P P P

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

  (2.1) 

with the constraint length v=5 (constraint length v = memory order q + 1), where Pb 

indicates feedback polynomial (1+D3+D4), which fed previously encoder back to mix 

with new information sequence. PFi is forward polynomial corresponding to i-th output 

of encoder, here (1+D+D3+D4), (1+D2+D4) and (1+D+ D2+D3+D4) for1 3 . i≤ ≤

The constituent encoder total has 2v-1 distinct state, where each state expresses the 

temporal value of register components. When input sequence is fed, the temporal value 

of register components are affected by the input sequence and feedback information, 

leading to the change of register components. For previously example, let the all 

register values to be zeros, the update register values update into “1000”(called as S8) if 
 5



the high level of input information bit is sent. On the other hand, the current state 

remains to hold the all-zero state. Furthermore, the results for each state changing with 

all possible input patterns can be shown in Fig. 2-3 for the trellis expression, and the 

corresponding output encoded bits can look up in Table 2-1.  

 

Fig. 2-3  Block diagram of the RSC 

 

Fig.2-4  Trellis expression the relationship of current states and next states with 

different input sequence 
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Table 2-1  The Output encoded sequence with different input information 

corresponding to each state 

 

 

2.2.3 Trellis-Termination 

Trellis termination process is to drive the encoder to the all-zero state at the end of the 

block. In generally, the beginning of state is assumed as all-zero states for constituent 

encoder. 

 Both encoders terminated with individual tail symbols 

The ending of state, due to employing the MAP algorithm for Turbo decoding, usually 

is known as all zero state (non-zeros state also can be assume) to perform feedback 

recursively decoding. Here, a tail bits driven from any probably state (2q numbers) to 

any target state no longer than q bits when the recursive convolutional encoder consists 

of q registers.  

Due to the excursiveness property of encoder, the required M tail bits cannot be 

“predetermined”. Thus, first, we observe the register values relationship with feedback 

 7



and input information as  

  (2.2) 1Register   feedback information input information= ⊕
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1

2

3

)

  (2.3) 2Register  Register=

  (2.4) 3Register  Register=

  (2.5) 4Register = Register

where  symbols the modulo-2 addition. ⊕

Except from the first register value, the others register value are obtained from the 

previously register. However, there is no input sequence required to be encoded when 

performing termination for turbo encoder. Therefore, the simplest obtaining zero value 

for register is to use previously feedback information for performing self-cancellation. 

Furthermore, the other register values also obtain zero values by one after another when 

the first register has been zero value. The whole termination process can be expressed as 

follows  

  (2.6) 1Terminated _ Register   feedback information   feedback information = '0'= ⊕

 Compared to the case where none of trellis is terminated, the minimum distance 

here is increased from terminated bit. However, this trellis-termination method probably 

yield low minimum distance codeword because both trellis are terminated 

independently [8]. Assuming the use of rate-1/2 convolutional encoder, the overall code 

rate is ( 1 2/ 3 2 2cR K K q q= + + , where q1 and q2 indicate the memory order of first and 

second constituent encoder, respectively. It is observed that this type of termination is 

the reduction in code rate, especially for short interleaver.  

 

 

 



 Only first encoder terminated 

A common trellis termination method found in the literature is to terminate ENC1 and 

to leave ENC2 unterminated. The v1 tail bits makes that only the ending stage of ENC1 

is fed back all zero state after encoding K information symbols. Note that these tail bits 

are included in the sequence, thus, the interleaver size is K+q1. The interleaved 

sequence, of length being K+q1, is fed to ENC2 which starts encoding in the all-zero 

state and is left unterminated in an unknown state.  

 The minimum distance is guaranteed to be caused by an input sequence of weight 

greater than or equal to 2. A good spread interleaver, it is unlikely that both nonzero 

symbols in the un-interelaved input sequence are interleaved to positions near the 

encoded of the interleaved input sequence. Based on above reasons, most small 

distances are eliminated [9]. Assuming the use of rate-1/2 convolutional encoder, the 

overall code rate is ( )1/ 3cR K K q= +  

2.2.4 Puncturing  

Puncturing is the process which removes certain bits from the codeword. The purpose of 

puncturing is to increase the overall code rate for Turbo code. In general, the common 

operation of puncturing is to remove the parity check bits from the first and second 

encoders periodically.  

However, a significantly improved puncturing approach has been presented by [10]. 

This type of puncturing probably could obtain a longer minimum distance if a small 

number of systematic bits are punctured. It is well known that the minimum distance is 

caused by input sequence with low input weight. This means that the puncturing 

systematic bits are increased without or with a small loss in the contribution of 

systematic part to the overall minimum distance. Further, increasing the number of 
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puncturing systematic bits means that fewer number of parity check bits are punctured. 

This results in an improvement in the distance properties because the minimum distance 

is mainly dominated by the contribution of parity check bits, especially for well 

designed interelavers. 

2.3 Interleaver  

The purpose of the interleaver in turbo codes is to ensure that information patterns that 

cause low weight words for the first encoder is not interleaved to low-weight patterns 

for the second encoder, thus improving the code weight spectrum [11]. 

 Consequently, the excellent interleaver is an essential condition for achieving good 

distance properties. Note that achieving good distance properties require not only the 

excellent interlever, but also recursive constituent encoders. In this thesis, the 

interleaver is referred to a vectorπ . Here ( )iπ  is the interleaved position after the 

information at position ith is interleaved in the nature order. In other hands,  is 

defined as de-interleaver, which is a converse operation of the interleaver. This is, the 

de-interleaver implies that the interleaved order information

1( )iπ −

( )iπ  is conversely 

interleaved into the nature order at ith position. In other words, Considering the block 

size N in the original information sequence u=(u0,u2,…,uN-1) are interleaved into the 

interleaved information   ( )(0) (1) ( 1), , , Nu u u uπ π π π −= "

 

2.3.1 Block Interleaver 

A simple structured interleaver is block interleaver, often also called as rectangular 

interleaver in the literature. It is constructed by a rectangular of M rows by N columns, 

where the interleaver size is K=M*N. This interleaving is performed as follows. From 

the beginning of upper left corner of rectangular, the data are in turns written into the 
 10



rectangular with column by column, and then read the interleaved data with row by row, 

or vice versa. Further, the block interlaver can be expressed 

as ( ) mod  Kii i N
M

π ⎛ ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
i , where x⎢ ⎥⎣ ⎦  is the floor function, which means the 

largest integer of x.  

 However, the block interelaver is not an excellent interlaver. From the view of 

codeword weight, this interleaver produces a larger number of long distance codewords 

caused by input sequences of weight 2 and 3, but yields a large number of low distance 

codewords caused by that of weight 4. This is, for block interleaver, both the distance 

properties and error performance constrained by the input sequences of weigh 4, leading 

to no significantly improving BER capacity [12].  

 

2.3.2 Prime Interleaver 

The permutation is defined by ( )( ) modi p i sπ = +i K , where s, p are known as offset 

and step size, respectively. Note that the value of p must be chosen relatively prime to 

block size K, ensuring that the element in the interleaver differ from each other. This 

interleaver is also referred as circular-shifting interleaver in the literature.  

 For the view of distance properties, this interleaver can permute the low distance 

codeword for the first recursive encoder into the high distance codeword for the other 

recursive encoder. However, this type of interleaver is less likely to permute an input 

sequence of weigh higher than 2 with low codeword weights into another input 

sequence with high codeword weights. 

 

 11



2.3.3 Random Interleaver 

Random interleaver is generated by a random manner without any restriction on the 

selected element. This interelaver is also referred as pseudo-random interleaver in the 

literature. Modified random interleaver with some useful criterion is likely to achieve 

better performance. Usually, the performance of this type is significantly increased as 

the block size increases. 

 

2.3.4 S - Interleaver 

The S interleaver is of one of spread interleavers. Usually, the codeword of minimum 

distance are contributed by the input pattern with low weigh. The goal of these types is 

to spread the low weight input patterns, generating higher weight codewords. Here, the 

Spread factor S is usually chosen less than or equal to
2
K . This interleaver can be 

described as follows. Select a random element from the selected set {0,1,…,K-1} as the 

first element in the interleaver and delete it from the set. Then, each subsequence 

elements are moved from the selected set if current candidate position is selected 

within range compared with the previous selected element. Otherwise, current 

candidate is rejected until the selection criterion is satisfied. Repeat this process until all 

K integers are selected. 

S±

 This interleaver can achieve better performance than average to generate higher 

weight codewords. Unfortunately, the search time increases with the designed amount 

of separation, S, and the interleaer length K. Another drawback is that there is no 

guarantee that the search process will finish successfully. Further, another design 

criterion based on the constituent encoders adding into S interleaver is presented in [13] 

[14]. This goal of modified S interleaver is to eliminate low-weigh codwords with 
 12



significant contributions to the error performance. In general, the elimination of a 

specific codeword can be done by breaking up the input pattern. This modified S 

interleaver, however, is no guarantee to eliminate all low-weight codewords and find a 

properly solution.   

Usually, the random-like intelreaver structure, their performance degradation is 

significantly sharp than that of structure interleaver, such as the prime interleaver, in the 

highly codeword puncturing.  

 

2.3.5 Characteristic of Interelaver 

Minimum distance of the interleaver algorithm is a major factor which affects the error 

floor as defined as duo-distance between position i and j for a given interleaver: 

  (2.7) ( , ) | | | ( ) ( ) |duod i j i j i jπ π= − + −

where , ( )iπ ( )jπ  are “interleaved positions” of i, j, where i, j=0, 1, 2, ... , K-1 (K  is 

the number of the interleaver block), and i≠j  [15]. 

A better interleaver algorithm design usually should have three characteristics as the 

following:  

 The should be as large as possible in order to “lower correlation” between 

input sequences and interleaver output sequences.   

duod

 The distances between any two input information bits before and after the 

interleaver, denoted d( i , j )=| i – j | and d(π(i) -π(j)), i, j = 0, 1, 2, … , N-1 

should not be multiple of the intrinsic period to avoid the change of the 

feeding self-terminating weight-2, where the intrinsic period are 2v -1, if the 

memory of the RSC encoder is v. Due to the intrinsic period has a significant 

effect on the performance of turbo code, a better generator function of Turbo 
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encoder usually chooses an appropriate primitive polynomial ( of degree v ) 

as the feedback polynomial go(D).  

 The positions of any input information bit before and after interleaver, i.e., i 

and  (0≦i≦K-1), should not be both near the end of the interleaver 

block in order to avoid edge effects. This is, if i is nearly K, then both 

and should be much smaller than K. 

( )iπ

( )iπ 1( )iπ−

 

One of Interleaver designs that is optimum in the sense of breaking up the 

weigh-2 input sequences was introduced in [16]. However, it is also noted in [16] 

that braking up only the weight-2 input sequences is not sufficient to achieve good 

distance properties. This is because input sequences of weigh higher than 2 are not 

broken up and can still lead to low codeword weights. 

For achieving good distance properties, this suggests an additional design 

criterion based on the correlation between the extrinsic information. This is, an 

interleaver with good properties is designed to minimize correlation between the 

extrinsic information of constituent decoder and input sequence [17].  

2.4 Channel Model 

It is known channel models which could primary be divided into three types. First, 

AWGN is common non-fading channel model to simulate pure Gaussian noise, 

including thermal noise, uncertain effects, and so on. Second, the second type of 

channel model is defined static fading channel model, including (Line of Sign) LOS and 

NLOS types based on the signal propagation circumvent between transmitter and 

receiver. Finally, this channel model primary simulates the Doppler-effects and 

attenuation of fading mobile channel model, which can be simulated by Jake’s Model 
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with different velocity requirement. AWGN channel model is primary discussed for 

Turbo code in this thesis.   

 

 AWGN (Additive White Gaussian Noise) Channel Model 

The power spectral density is independent of the operating frequency. The adjective 

white is sued in the sense that light contains equal amounts of all frequencies within the 

visible band. We express the power spectral density of white noise, with a sample 

function denoted by w(t), as ( ) 0

2w
NS f = . The parameter N0 is usually referred to the 

input stage of the receiver of a communication system, expressing as  where k 

is Boltzmann’s constant and T

0 eN kT=

e is the equivalent noise temperature of the receiver.  

Since the autocorrelation function is the inverse Fourier transform of the power 

spectral density, the autocorrelation function can be expressed as ( ) 0 ( )
2w

NR τ δ τ= . This 

is, the autocorrelation function of white noise consists of a delta function weighted by 

the factor N0/2 and occurring atτ =0.  

 

2.5 Turbo Decoder Process 

Fig. 2-5 shows that the Turbo decoder process employs two SISO decoders to estimate a 

posterior probability (APP) of each information uk with a certain numbers of iterative 

computations such that the results have no significant BER performance loss. The Turbo 

decoding process is states as follows: 

(a) Initialized phase: the received signal codeword has to be stored into 

symmetrical buffer and parity check buffer due to iteratively decoding 

process. After the total N received data have been stored, the decoding 

 15



 16

process starts to carry out iteratively MAP decoding, where the intrinsic 

information and iteration number Iter. are initialized as zero. 

(b) 1st half iteration phase: the input codeword (ys,yp-siso1) from input buffer are 

sent into SISO decoder and then proceeds to MAP algorithm decoding, 

producing the extrinsic information which is written into extrinsic storage 

with natural order after a decoding latency. When the whole extrinsic 

information has been calculated, the stored extrinsic information with 

interleaving order are inputted as intrinsic information Li2 (Interleaver 

operation) for the 2nd half iteration phase. The decoding process then jumps 

to the next phase (c).  

(c) 2nd half iteration phase: combining the interleaving order of systematic 

information uint, parity check yp-siso2 and Li2 are carried out the extrinsic 

information Lex2. This outputted soft information Lex are firstly stored by 

interleaving order into extrinsic storage and used by natural-order as intrinsic 

information Li1 for the 1st half iteration phase (De-interleaver operation) as 

the 2nd half iteration phase has finished. If the Iter. parameter is equal to the 

specified max-iteration, the decoding process phase jumps to (d); otherwise, 

Iter. = Iter. + 1 and the decoding process returns into phase (b).  

(d) Output the estimated information uk’ phase: the log-likelihood-ratio (LLR) 

information proceeds to the De-interlaver operation, and then obtains the 

estimated information uk’ through hard decision device. The hard decision 

operation is that if the sign of LLR is positive, the information uk’ are decided 

as 1; otherwise, the information uk’ are decided as 0. 

Based on 1st and 2nd decoding phase, the operation of SISO decoder is identical and 



extrinsic storage is performed through interleaver/de-interleaver procedure. Therefore, 

the above SISO decoder, interleaver procedure can be implemented by the same 

hardware for twice half-iteration.  

 

Fig. 2-5  Turbo decoder diagram 

2.6 SISO Decoding Algorithm 

2.6.1 Log-MAP Algorithm  

The Turbo decoder iteratively decodes the parallel concatenated convolutional codes 

through log-MAP algorithm which decides the LLR of APP of each information bit uk 

[2]. The MAP algorithm is based on the log-likelihood ratio a posterior defined as  

 m Pr( 1| )( ) ln
Pr( 0 | )

k
k

k

uL X
u y

y=
=

=
 (2.8) 

where uk are the source information bits.  

The APP ratio L(uk) can be further represented in three terms: 

 m( ) ( ) ( )k i k c s ex kL X L u L R L u= + +i   (2.9) 

where  and L04 /c bL E N� c*Rs are defined as the channel values. After interleaving or 

deinterleaving, the intrinsic information is calculated from the extrinsic information of 

 17



the other constituent decoder, as shown in Fig. 2-5. This means Li1(uk) = Lex2(uk) and 

Li2(uk) = Lex1(uk). 

  The arithmetic operations of the log-MAP are described as follows. For each trellis 

transitions leaving the state k-1 toward the state k, the branch metric value is formulated 

as: 

 ( )1
1( , )
2

s s p
k k k k i c k c k k

i

S S x L L y L y xγ −
p⎧ ⎫= + ⋅ + ⋅ ⋅⎨ ⎬

⎩ ⎭
∑  (2.10) 

where (xs
k , xp

k) denotes the transmitted symmetrical and parity check bits, which takes 

values in {1,-1}. (ys
k , yp

k) represents the received symmetrical and parity check bits at 

the k-th time instant. At step k, for each trellis state Sk beginning from previous state 

Sk-1, the state metric can be calculated as:  

  (2.11) 
1

*
1 1 1

,
( ) ( ( ) ( , ))max

k k

k k k k k k k
S S

S S Sα α γ
−

− − −= + S

)S

On the other hand, on the step k, for each trellis state Sk beginning from the current 

state Sk+1, the backward metric calculation is: 

  (2.12) (
1

*
1 1 1 1

,
( ) ( ) ( , )max

k k

k k k k k k k
S S

S S Sβ β γ
+

+ + + += +

When Forward and Backward state metric are calculated, the APP ratio L(uk) can be 

re-written into: 

 

m ( )

( )
1

1

*
1 1 1

(S , ), 1

*
1 1 1

(S , ), 0

( ) ( ) ( , ) ( )

              ( ) ( , ) ( )

max

max
k k k

k k k

k k k k k k k
S u

k k k k k k k
S u

L X S S S S

S S S S

α γ β

α γ β
−

−

− − −
=

− − −
=

= + +

− +

k

+
 (2.13) 

Here the definition of Max* function is: 

 
-| - |

max*( , )  ln( ) 
                    max( , ) ln(1 exp )

x y

x y

x y e e
x y

= +

= + +
 (2.14) 

where the corrective term  can be implemented by a look-up table (LUT). -|x-y|ln(1+exp )
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2.6.2 Max-Log-MAP Algorithm 

The Max-Log-MAP is deduced from the Log-MAP decoder by substituting each max*- 

operation by a max-operation and shown in the following: 

 19

) ( ) ( ) (* , ln  = max ,x yMax x y e e x y+=  (2.15) 

Then, the correction function ln(1+e-|y-x|) in the max*(.) operation are neglected in the 

Max-MAP decoder, which has less complexity due to eliminating the need of LUT unit. 

The correction term plays the important role of improving the capacity of correcting 

error code when operated in the low-signal to noise ratio environment, due to the 

difference is usually small.  

Base on previous reason, the performance degradation is about 0.58dB compared 

to the Log-MAP algorithm [18]. However, the correction term worked in the high 

signal-to-noise-ratio environment always approximates as zero, since the difference has 

a more probability exceeding two. Another benefit for Max-Log-MAP is that 

Turbo-decoding does not require knowledge of the SNR [19].  

 

2.6.3 Initialized Procedure for Both Log-MAP and Max-Log-MAP 

Algorithm 

Initialization the state probability for and  must be initialized as follows: 0α 0β

  (2.16) 0 0

0

( ) 0
( ) ,            k 0k

S
S

α

α

=

=−∞ ≠

  (2.17) 0( ) 0
( ) ,            k 0

N

N k

S
S

β

β

=

=−∞ ≠

Except in the case for the decoder associated with the second encoder, where the trellis 

is simply left ‘open’ as follows 



  (2.18) 

0 0

0

( ) 0
( ) ,            k 0
( ) ( )

k

N k N k

S
S
S S

α

α

β α

=

=−∞ ≠

=

In the second case the backward recursion uses the value of the state probabilities 

generated by the last forward recursion step.  

 

2.7 Error Probability for Turbo Code  

For a (N,K) Turbo code, the symbol error rate of Turbo code is bound by the union 

bound [1]: 

 
1

0

1 0

2 ( ,

2

HM
j

w
j

Ed c c
P Q

N

−

=

⎛ ⎞
⎜≤
⎜ ⎟
⎝ ⎠

∑
)
⎟  (2.19) 

where N indicates the interleaver length, K is the number of information bits and M is 

number of binary codeword. Here, 

2

2
( )

2

t

x

eQ x dt
π

−
∞

= ∫ and  is codeword 

Hamming distance. Furthermore, the function of Q(x) asymptotically approaches 

0( , )H
jd c c

2

2
x

e
−

 

as x approaches infinite. Therefore, the symbol error probability is upper bound by the 

sum of (M-1) exponentials. When the Hamming distance  grows, the error 

probability decays exponentially such that the minimum Hamming distance dominates 

the asymptotic symbol error probability, as shown follows: 

0( , )H
jd c c

 min min
0

2 H
w

EP A Q d
N

⎛ ⎞
≈ ⎜

⎝ ⎠
⎟  (2.20) 

where Amin is the number of codeword at dH
min. It follows that the asymptotic bit error 

probability is:  
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min

0

2 H
w

W EP Q d
K N

⎛ ⎞
≈ ⎜

⎝ ⎠
⎟  (2.21) 

where the Wmin is the number of input sequence causing dH
min. and  

is the energy per code bit, resulting from the code rate R

c non encodedE R E −= i

c and the energy per  encoded 

bit Enon-encoded. From the view of error probability, a turbo code achieves the better 

improvement performance, requiring more number of symbols to cause the minimum 

Hamming distance as large as possible. 

 

2.8 Turbo Code Application on Telemetry and Deep Space 

Communications 

In CCSDS recommendation for telemetry channel coding, the CCSDS encoder scheme 

could be seen two components, where input information of length k bits is held in a 

frame buffer, and then the bits in the buffer are read out in two orders of the two 

component encoders. The upper component encoder operates on the bits in un-permuted 

order (“in a”), while the second component encoder receives the same bits permuted by 

the Interleaver block (“in b”) as shown in Fig. 2-6. The nominal code rates of turbo 

codes are 1/2, 1/3, 1/4, and 1/6. In addition, the frame sizes of CCSDS turbo codes are 

1784, 3568, 7136 and 8920. 

For turbo encoder termination operation, there are “four” terminal bits used to clear 

all the delay elements of the RSC encoders after the input information k bits have been 

delivered into the encoders, Thus, the actual code rate of the turbo encoder scheme is 

n/n(k+4). The interleaving pattern is a fixed sequence, which is on a bit-by-bit level of 

the entire block of data, unlike the Reed-Solomon interleaving on a symbol-by-symbol 

level. The interleaver algorithm is described by the following algorithm in Table 2-2. (as 
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excerpted from [5]): 

First express k as k=k1k2, where k1 is eight. Next do the following operations for s=1 

to k to obtain permutation numbers π(s). In the equation below, ⎢ ⎥⎣ ⎦x denotes the largest 

integer less than or equal to x, and pq denotes one of the following eight prime integers: 

 

Fig. 2-6  CCSDS Turbo encoder  
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Table 2-2  Interleaver algorithm for the Turbo code of CCSDS standard 

 

 

The turbo encoder codeblock outputs for various code rates are shown in Fig. 2-7. 

For each input to the delay elements, n symbols are outputted. The output sequence is a 

particularly periodic sampling from top to bottom of the outputs of Turbo decoder. (e.g., 

for code rate 1/3, the output sequence is Out_0a, Out_1a, Out_1b). 

 

Fig. 2-7  Turbo code for different code rates 
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2.9 Simulation and Results 

The generator polynomial of Turbo code defined as (23, 33, 25, 37)oct, and interleaver 

lengths of 1784, 3568, 7136 have been simulated in Matlab@ using Moto-Carlo method, 

where the oct expresses an abbreviation of octal. These different simulation conditions 

are performed as follows: 

 For different turbo decoding algorithm: Max-Log-MAP versus Log-MAP 

 For various block size (1784,3568,7136) 

 For different number of iteration decoding 

 For various code rate 

The Fig. 2-8 shows the performance results of Log-MAP and Max-Log-MAP 

after10-iterations for SNR value varying from 0.4dB to 0.8dB. Note that the 

performance of MAX-Log-MAP algorithm has larger degradation than that of 

Log-MAP algorithm over the low-SNR region. For low-SNR region, the corrected term 

is helpful for improving the turbo decoding in the Log-MAP algorithm.  

The Fig. 2-9 shows the performance comparison of turbo code when Log-MAP 

algorithm is performed using different block sizes (1784, 3568, 7136) after 10 iterations. 

It is observed that the larger block size has more decoding gain relative to other smaller 

block sizes. This is due to the larger block size has a long free hamming distance 

dfree ,and thus has more better capable of error correction capacity.   

The Fig. 2-10 shows the performance results of turbo code when Log-MAP 

algorithm uses different number of iterations (3,5,7,9) at 1784 block size. Note that the 

performance results have more significantly performance improving in large iterations. 

This is to say, the Turbo code has to pass through highly iterative decoding process to 

meet the desirable performance result.  



As far as the various code rate of turbo code concerning, the performance results of 

turbo code are shown in Fig. 2-11. The performance results shows that one codeword 

including more redundancy elements, such as code rate (1/6), has a greater coding gain 

relative to less redundancy elements (1/3). This is because more redundancy elements is 

helpful for correcting error codeword.  

 

 

 

Fig. 2-8  Performance results of Turbo code for different turbo decoding algorithm 
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Fig. 2-9  Performance results of Turbo code for different block sizes  

 

Fig. 2-10  Performance results of Turbo code for different iterations 
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Fig. 2-11  Performance results of Turbo code for different code rate 
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Chapter 3 VLSI Architecture of Turbo Decoder 

In this chapter, we will state the VLSI architecture of Turbo decoder. First, the sliding 

window approach divides large frame size N into equal-sized L sub-blocks to reduce the 

long decoding latency and storage memory. Then, the concurrent efficient SISO VLSI 

architecture is introduced, including OACS which is faster than original ACSO 

architecture, modified sliding window which is more suitable to high code rate (larger 

redundancy elements).  

Next, for the Turbo code of CCSDS standard, the on-line fly interleaver address is 

implemented to save more memory area requirement relative to the ROM approach. And 

the extrinsic information quantization is used to reduce the bit-width of original 

extrinsic information. Finally, we discuss the throughput of series SISO decoder 

structure and parallel SISOs decoder. The whole Turbo decoder architecture is shown in 

Fig. 3-1. 

 

Fig. 3-1  Turbo decoder architecture 

 28



 29

3.1 Sliding Window Approach 

According to MAP algorithm, the decoder needs to store a large amount of memory 

and causes a long decoding latency during the forward and backward recursion 

calculations. The sliding window technique was introduced to reduce decoding 

latency and storage memory by dividing large frame size N into equal-sized L 

sub-blocks [20], where L is typically 5 to 10 times the constraint length (encoder 

memory order + 1). The appropriate warm up length L is determined by trading off 

the performance degradation and the relative sliding window memories size.  

For SW approach, it is necessary to obtain a reliable initial value of state metric 

with a warm up phase, which recursively computes the state metrics from the 

previous L stages of estimated reliable point with all zeros values. In general, the 

initial alpha values are the last value of the previous window, and the initial beta 

values are obtained by the dummy beta calculation unit, which performs a warm up 

process with the same structure as beta processor.  

Fig. 3-2 shows how sliding window approach calculation is done among Forward 

Processor (FP), Dummy Beta Processor (DBP) and Beta Processor (BP) working 

together, as stated as follows: 

(a) In time slot T0: the DB processor accesses the input buffer and recursively 

backward computes the SM values with all zeros values from data L-1 to 0. 

On the other hand, the received input buffer data are stored in sliding 

window memory-bank1. 

(b) In time slot T1: the valid initial value of backward state metrics are obtained 

by the DB processor calculating from data 2L-1 to L, and then the received 

input data are stored into SW memory-bank2. The FP processor accesses the 



 30

memory-bank1 data (L-1~0) to calculate forward metrics values with an 

initial state. Because the soft output LLR calculation requires both the 

forward and backward state metrics, the output of FP has to be stored in 

forward SM storage due to the corresponding backward metrics being 

unready.  

(c) In time slot T2: the operation DB process for data (3L-1 to 2L) and FP 

processor follows a similar procedure as in (b). The BP uses a valid initial 

value of SM from the last value of previous DP to compute backward SM 

for the data (L-1~0), and then combines with the associate forward state 

metrics from forward SM storage to decode soft output information.  

(d) Repeat (a)~(c) until the whole soft output information is obtained.  

The input buffer can be built by multi-bank two port memory, whose storage size 

is defined by the word-length of total input soft information multiplied by 

memory-depth (L+1) , where depth L+1 can allow contention free in practice. The 

latency of this sliding window structure can be approximate as (2*L+ C) cycles 

while throughput of the MAP-based SISO decoder is defined by the number of bits 

processed, N, divided by the latency L cycles, where C is the pipeline delay of SISO 

decoder.  



 

Fig. 3-2  The operation of sliding window approach 

3.2 VLSI Architecture of SISO Decoder for CCSDS 

Standard 

This Turbo decoder is composed of one log-MAP decoder, input buffer memory, 

extrinsic memory and interleaver address calculation unit. The log-MAP decoder is used 

to decide the LLR of each information bit uk
 by the input a prior information. The input 

codeword sequential is stored in the input buffer to be used by iteratively decoding 

process. The extrinsic memory stores the extrinsic information from the output of 

log-MAP decoder, and then sends extrinsic information by an interleaving / 

de-interleaving order into the input of log-MAP decoder when all extrinsic values have 

been received. The interleaver / de-interleaver pattern can be calculated by an on-line 

interleaver address calculation unit, which can reduce significant area requirement 

relative to storing all interleaver values at the ROM table.  
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3.2.1 Log-MAP Decoder  

(1) Branch Metric Calculation (BMC) Unit 

The branch metric values are applied by computing the state metric values, LLR values 

and extrinsic values. When the input soft information is stored into the extrinsic and 

input buffer and the Lc value has been obtained by the SNR estimator [21]. The branch 

metric values are calculated according to (2.10). Due to different code rate requirement, 

to calculate branch metric values to send to the next state metric calculation unit, the 

maximum number of input sequences must be considered. The branch metric 

calculation unit is shown in Fig. 3-3, where the ‘Sat.’ means the saturation device that is 

used to avoid the overflow when the high SNR environment leading to Lc value become 

considerable large.   

 

Fig. 3-3  Block diagram of the branch metric calculation 

(2) State Metric Calculation (SMC) Unit 

The forward and backward metric calculations are calculated according to (2.11) and 

(2.12). In the trellis expression Fig.3.4 (a), the updated forward state values α(S0,k-1) 

comes from the maximum summation value of previous forward state values with 
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relative branch values with a correcting term ln(1+exp(-| α(S0,k-1) - α(S1,k-1)|)), which 

can be implemented by ACSO architecture, as shown in Fig. 3.5(a). In a similar way, the 

backward recursive calculating by the trellis expression are shown in Fig. 3.4(b).  In 

order to avoid updated value overflow occurring, the state metric calculation usually 

uses the rescaling method [21] as the state metric value increase with the recursive 

calculation times. Because the speed of Turbo decoder is determined by the maximum 

clock rate achieved for ACS architecture, we employ the OACS architecture which uses 

retiming transformation of the ACS architecture to increase the clock rate as much as 

possible [22], as shown in Fig.3.5(b).  

 

Fig. 3-4  The forward and backward recursive calculating by the trellis expression 

 

Fig. 3-5  Block diagram of the ACSO and OACS architecture 
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(3) Log-Likelihood Ratio Calculation (LLRC) unit 
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) .

According to (2.13), the LLR value could be calculated by the difference between 

N-input max* function for uk = 1 and N-input max* function for uk = 0, where N denotes 

the total state metric values numbers. However, The N-input max* function can be 

transformed into the number of log2(N)+1 for parallel tree 2-input max* function. For 

example, when the N is four, the LLR architecture can be shown in Fig.3.6 due to the 

relationship of ( ) ( ) (( )* , , ,   * * , , * ,Max A B C D Max Max A B Max C D=  

 

Fig. 3-6  Block diagram of LLR calculation architecture 

 

(4) Modified Sliding Window Scheme  

In the traditional log-MAP decoder architecture, the branch metric calculation unit is 

usually placed in front of the sliding window memories. Thus, the output branch of 

metric values needs to be stored into sliding window memories, which can then be read 

when calculating state metric. Further, we attempt to modify the placement of branch 



 35

metric for log-MAP decoder architecture such that the storing sliding memory size is 

less than that of traditional log-MAP decoder architecture.  

The Fig. 3-7 shows the branch metric calculation block are placed in back of sliding 

window memory, in which results in the received codeword (Ys, Yp) and intrinsic 

information being stored, rather than the output of branch metric calculation. Although 

there are 16 sets branch metric value calculated for 16 states Turbo decoder, we can 

only compute the maximum independent sets of branch metric value to obtain all sets, 

as shown in Table 3-1. Note that the minimum linear combination branch metric sets 

sharply increase as the code rate of Turbo decoder increases from 1/2 to 1/6. This result 

causes the larger memory storage requirement for traditional architecture than that of 

modified architecture. The major reason is that the minimum independent branch metric 

sets [23] increase at a factor of 2 when the code rate (r) goes from 1/2 to 1/6. 

 The Table 3-2 lists the sliding window memories storage comparison of our 

modified sliding window scheme and traditional SW scheme and Fig. 3.8 shows that 

our modified sliding window architecture can reduce 53.13% sliding window memory 

area overhead comprised with of the traditional sliding window architecture for code 

rate (r = 1/6). Although the storing bit requirement of sliding window memories for 

modified method are larger (25%) than of traditional SW architecture, this 

reconfigurable Turbo decoder has to support various code rate. Thus, it is obviously that 

the modified architecture is suitable to be applied for reconfigurable Turbo decoder.  

 



 

Fig. 3-7  The change of BMC block placement behinds sliding window memory 

 

 

Table 3-1  The minimum linear combination sets of branch metric values for various 

code rates  
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Table 3-2  The sliding window memories storage comparison of our modified method 

and traditional SW scheme 

 

 

Fig. 3-8  The sliding memories size requirement between traditional sliding window 

scheme [24] and our modified method for different code rate. @ (SWdepth = 32, bit(Li) = 

6, bit(received codeword) = 5, γwidth = 6, two sliding window memories) 
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3.2.2 Interleaver Address Calculation Unit 

Interleaver Address is used to shuffle the original sequence order to interleaving order 

or de-interleaving order for extrinsic information and systematic information (ys). In 

practice, the interleaver address usually has two ways to implement. One way is to store 

interleaving patterns in the ROM, and the other way is to directly implement 

interleaving function on-line circuit.  

Due to the number of interleaving patterns up to 8920 for CCSDS standard, we 

implement the reconfigurable interleaver address circuit which can select different 

interleaving sizes through control signal, as shown in Fig. 3.9. This on-line address 

calculation unit can save more area requirement relative to the ROM approach. 

 

 

Fig. 3-9  Block diagram of on-line interleaving pattern calculation 
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3.2.3 Extrinsic Information Quantization  

The quantization of extrinsic information technology proposed in [25], can reduce 

significant area requirement of extrinsic memory with a negligible performance loss. In 

the log-MAP algorithm, the extrinsic information is fed back to the branch metric 

calculator, which combines the input symbol with the extrinsic information. Minimizing 

the necessary chip area and power consumption is important, especially in mobile 

application. 

The extrinsic values pass through the non-linear quantization mapping block, and 

then are stored into extrinsic memory, where the quantization mapping function is 

shown in Fig. 3.10. Note that the extrinsic information is compressed by non-linear 

mapping, leading to significantly the reduction of extrinsic memory area. 

 

 

Fig. 3-10  Non-linear quantization for extrinsic information 

 

3.3 Serial SISO Structure  

In the single SISO decoder architecture, the estimated information is completely 
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outputted after approximately 2*Iter.*(N+2SW+C) cycles during decoding process, 

where N is the block size, SW denotes the sliding window length and C is the pipeline 

delay time. Therefore, for a given frame size N and sliding window length SW, the 

throughput of serial SISO Turbo decoder can be defined as follows: 

 sin 2 . (N+2gle clk
length

NThroughput f
)Iter SW C

≅
+

i
i i

  (3.1) 

For instance, consider N to be 1784, the SW length to be 32, Iter to be 5, where 

early stop method is applied to increase throughput, and assume the pipeline delay C 

can be neglected, the throughput of single SISO decoder could be approximately 

19.3Mbps for clock rate 200MHz applied. However, this example demonstrates the 

serial SISO structure has a long latency 18480 cycles causing low data throughput. Thus, 

the low throughput and high latency for the serial structure is difficult to be applied in 

real-time media communication application.  

 

3.4 Parallel SISOs Strcture  

Parallel decoding can significantly reduce the decoding processing latency relative to 

sequential decoding. The block size N is divided into P separate sub-blocks,{k, 

k+N/P ,…, k+(P-1)*N/P} , and each sub-block is performed by single SISO decoder. 

Thus,  the throughput of parallel structure is faster than that of the serial SISO 

structure since the multiple structure is able to generate N extrinsic information 

currently relative one extrinsic information for the serial structure in each output unit 

time, and the latency is reduced to 2*Iter.*(N/P)+2L cycles.  

Because the P-sets extrinsic are outputted from parallel SISOs simultaneously, the 

extrinsic memory requires P-distinct memory-banks with N/P depth to store it. However, 
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the beginning of each recursion state metrics requires a reliable value through “warm up 

training phase” for each forward and backward metrics per SISO decoder. To reduce the 

warm up training phase causing extra latency during decoder, there  has been a well 

developed low latency initialized state metrics process for parallel SISOs structure as 

follows [26]: 

(a) The initial forward state metrics assume zero for all SISOs in the first decoding 

iteration. 

(b) The final forward state metrics of each SISO after iteration are stored and 

become the initial state metrics for its adjacent SISO for each iteration.. 

(c) The initial value for the backward state metrics is to adopt the boundary 

backward state metrics value from the adjacent SISO decoder. 

But, this initial process needs the additional memory storage to buffer the initial 

values for FP. Furthermore, the throughput of parallel SISO structure is a function of the 

parameters block size N, window size SWlength, the number of turbo iterations I, number 

of parallel workers N and clock frequency fclk : 

  and 

2 . ( +2
parallel high radix clk

length

NThroughput f N ')Iter SW C
P

− ≅
+

i
i i

 (3.2) 

With the previous example, the throughput of 32-parallel structure could be achieved 

297.95 Mbps and the latency are shorten as approximately 1198 cycles. 

However, one of the parallel SISO decoder architecture’s existing problems is that 

there are probably more than one data to access the same memory destination 

simultaneously, also called the memory collision problem. There exists several issued 

interelaver, such as WCDMA, 3GPP and CCSDS, belonging to this “non-contention 

free interleaver”. As far as this non-contention free interleaver is concerning, we will 
 41
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present an extrinsic information location strategy in the next chapter to resolve this 

problem.   

On the other hand, many researchers have presented “contention free interelaver” 

to achieve high-parallelism with low complicated interleaver design. Even if the 

performance of contention free interleaver is superior to that of non-contention free ones 

since they have high spreading characteristic and high minimum distance to against the 

noise and interference over channel. So far, two excellent contention free interleaver 

QPP and APR interleaver , which has been be discussed in detail in [27] and [16], 

respectively.   
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Chapter 4 Solving Memory Collision Problem For 

Parallel Turbo Decoder 

4.1 Introduction 

The well-known turbo decoder is an iteratively decoding process working between the 

soft-input soft-output decoder and interleaver / de-interleaver scrambler. Thus, a certain 

amount of memory is assigned to store channel information and extrinsic information.  

For the serial Turbo structure, at each time instant, only one LLR is first written into 

extrinsic storage. As the whole decoding finishes, the SISO2 begins to read intrinsic 

information from the extrinsic storage in serial. In contrast, for the P-parallel Turbo 

structure, its major difference is to deal with the P-set extrinsic values simultaneously 

writing into the distinct storage for each time instant. Unfortunately, the read or write 

access conflicts may occurs when multiple LLRs are read and written to the same target 

memory.  

 

4.2 Memory Collision Problem for Parallel Turbo Decoder 

The problem is best illustrated by taking the interleaver table shown in Fig. 4-1 for two 

concurrently produced LLRs and assigns its address to two individual RAMs. Table 1 

shows the incoming data together with the associated targeted RAMs and relative 

addresses. In the first time-step from, one LLR is read from source RAM1 (Addr. 1) and 

written to garget RAM 2 (Addr. 3). At the same time, the other one is read from source 

RAM 2(Addr. 1) and written to target RAM1(Addr. 2), resulting in no conflicting event 

for the duration of write accesses. Unfortunately, in the second and third time-step, there 

are two data needed to be allocated at the memory simultaneously according to the 



concept of interelaver table. Consequentially, it is needed to solve that the read or write 

access conflicts which may occur with multiple LLRs, otherwise, the exchanging 

information may fail in memory accesses.  

 

 

Fig. 4-1  An example of memory collision event.  

 

4.3 Solving Memory Collision Problem Using Temporal 

Buffer Architecture  

The straightforward idea is to employ the buffer device for storing conflicting element, 

if the conflicting event occurs. Applying buffer device on the VLSI Turbo parallel 

decoder architecture, Norbert When (2002) [20] has been well developed in the Ring 

interconnect bottleneck breaker (RIBB) methodology, where the buffers are connected 

into a ring structure as shown in Fig. 4-2. 

For each buffer, there are three different sources which come from local constituent 

decoder, the left-buffer distributor and the right-buffer distributor. When the output 

value of constituent decoder is sent into the buffer cell, the extrinsic information can 

either be fed through or stored to the local RAM. By the similar way, the decision for 

whether incoming data from the left or right slide is also determined by interlever table.  

As several data sets may have the same target, the buffers need to be capable of 

storing more than one data per cycle. Furthermore, the possible maximum read/write 
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ports for memory need to match the worst case for conflicting event. Otherwise, the 

buffer does not ensure to access all data sets correctly.    

However, the above solution method requires an extra temporary buffer and collision 

handling time in view of hardware aspects. Therefore, the objective of the present 

memory collision free algorithm is to distribute the extrinsic dates from parallel SISO 

decoders into the storage elements without memory collision occurring. The proposed 

memory collision free algorithm can support various Turbo standards as well as arbitrary 

the number of parallel high radix SISO architecture in the following section.   

 

Fig. 4-2  Avoiding conflicting using temporal memory architecture    

 

4.4 Proposed Memory Contention Free Scheme for Parallel 

Turbo Decoder  

In order to obtain the maximum network flow (all memories are collision free), these 

extrinsic values must access distinct memory banks at every time instant; otherwise, the 

throughput of decoding process are delayed by occurring conflicting memory elements. 

Thus, we propose a solution for solving the extrinsic memory collision problem, as 
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discussed in the following concept.  

4.4.1 Definition of Memory Collision Problem 

Consider a P-parallel Turbo structure, whose frame size-N is divided into P number 

sub-blocks with length W defined by ceiling (N/P), and each sub-block is performed by 

individual SISO decoder. The P-parallel SISOs structure are performed in parallel 

decoding through interleaver/de-interleaver, and the interleaving position corresponds 

into {π(i),π(W+i),…, π((P-1)*W+i)}, where π(i) represents the permuted position of i-th 

natural order data for 0≦i≦W-1.  

For addressing the memory collision problem, the parallel structure can be 

distinguished into two aspects. For the interleaving aspect, when the P soft outputs are 

produced from the P-SISO decoders, it should be stored to distinct extrinsic memory 

banks. For the de-interleaver aspect π-1(i), which changes soft information ordering into 

the original sequence, the soft information are read separately from the distinct memory 

banks and used as intrinsic values for P-SISO decoding process. 

 In generally, the memory collision only occurs when accessing memory with an 

interleaving order. Consequently, for each time instant, they must access distinct 

memory banks and can be formulated as follows [3,4]: 

 ( ) (j t W j v W
W W

π π+ +⎢ ⎥ ⎢≠⎢ ⎥ ⎢⎣ ⎦ ⎣
i ) ⎥

⎥⎦
i  (4.1) 

 
1 1( ) (j t W j v W

W W
π π− −⎢ ⎥ ⎢+ +

≠⎢ ⎥ ⎢
⎣ ⎦ ⎣

i ) ⎥
⎥
⎦

i  (4.2) 

where 0≦j≦W, 0≦t, v≦P-1and t ≠ v.   

 Transforming Extrinsic Information Allocation Into Graphing Coloring Problem 
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In order to understand the relationship of (4.1) and (4.2) with soft information, for each 

time instant, the concurrent SISOs outputs are labeled as conflicting elements ‘1’, which 

means not to be allocated into the same destination for combining all conflict cases from  

(4.1) and (4.2). And then converse the relationship between all conflict elements with the 

pictorial expression.  

 Fig. 4-3 demonstrates an example of frame-size (N=16) for four-parallel SISOs 

structure using graph expression of memory collision problem. Fig. 4-3 (a) shows the 

output sequence of natural order and interleaving order π(i). According to (4.1) and(4.2), 

the output elements of each column in Fig. 4-3(a), seen as conflicting elements, should 

be allocated in parallel to different memory destinations. In Fig. 4-3(b) each pair of 

conflicting elements can be shown as two connected nodes, where BG is the edge matrix 

in which if (i,j) is ‘1’, there exists a line connecting nodes i and j; otherwise, no line 

exists.  

SISO1 

SISO2

SISO3

SISO4

Naturnal Order Interleaving Order 

SISO1 

SISO2

SISO3

SISO4
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Fig. 4-3  (a) An example of natural order and interleaving order for 4-parallel Turbo 

decoder. (b) Conversing the example of memory collision problem with graph 

expression. 

 

4.4.2  Solution to Graph Coloring Problem by Simulated Annealing 

Algorithm  

Since memory collision problem can be analogous to robust graph coloring problem [27], 

which has been proved as NP-hardness problem, the simulated annealing algorithm [28] 

can be effectively used for reaching the goal of memory collision free. 

 

 Memory Collision Free Design with Simulated Annealing (SA) Algorithm 

First, we define an objective function to calculate the number of conflicting elements for 

given extrinsic information into extrinsic memory banks mapping (C). When the 

objective function reaches the zero value, the mapping C is an available memory 

collision mapping, the detail procedures are discussed as follows: 
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For a given graph topology G = (V, E) with |V| = N, given the edge matrix BG derived 

from the memory collision problem, where c indicates the number of memories and N 

denotes the frame size. 

The objective function is defined as follows:  

 ,
( , ), C(i)=C(j)

( ) i j
i j

R MemoryMap pλ
∀

≡ ∑i  (4.3) 

  (4.4) ,
1            , ( , )

     
0            ,i j

i j E
p

otherwise
⎧ ∈⎪⎪≡⎨⎪⎪⎩

where λ denotes the penalty factor (λ>1) and C is a coloring mapping which is identical 

to memory mapping in this case, i.e., C:  V→{1,2,…,c}. This procedure is to obtain the 

solution C such that no two nodes are connected between the same memory set.  

 

The memory collision free algorithm could be stated by the following four terms: 

1. Initialized procedure: by choosing a random memory mapping to all vertexes 

(V1,V2,…,VN) also or allocate all vertexes in the Bank1. Then to set a very large 

value as the initial temperature, which has a larger probability to escape from local 

minimum (or maximum) value.   

2. Local search procedure:  The basic idea of the local search is that it starts from 

an initial solution and repeatedly replaces it with a better solution in its 

neighborhood until a better solution could not be found in the neighborhood. This 

is, if the new solution MemoryMapnew is better than the current best solution 

MemoryMapopt in terms of the objective function value, the current best solution is 

updated; otherwise, the new solution is accepted by comparing the value of 

exp((R(new solution)-R(best solution))/T) with a random number U(0,1) generated 

from a uniform distribution on the interval [0,1].  
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3. Cooling procedure: Next, the algorithm goes into the cooling schedule that 

decreases the temperature from T to T*α where the parameter attenuation constant 

α (0<α<1) controls the speed of the convergence of the algorithm. This decreasing 

the temperature causes degenerative transition to be accepted with a lower 

probability as the algorithm progresses and corresponds to a lowering of 

temperature.  

4. Terminate memory collision free algorithm: when the object function reaches zero 

value, the whole memory collision algorithm is terminated, and then the final 

memory mapping function C is outputted.   

Fig. 4-4 shows a pseudo-code of memory collision free procedure using the simulated 

annealing algorithm.  

 



 

Fig. 4-4  Using simulated annealing algorithm for solving memory collision problem. 
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4.4.3 The Extrinsic Memory Collision Free VLSI Architecture Design 

After simulated annealing algorithm is used for solving the memory collision problem, 

the final optimum solution guarantees that no two data can access the same memory 

concurrently. Fig. 4-5 demonstrates that the final optimum solution (color sets) obtained 

by SA algorithm to solve the memory collision of the previous example in Fig. 4-3.  

Fig. 4-5(a) shows that different colors correspond to different extrinsic memory banks. 

For the VLSI implementation, the memory mapping table can be stored into ROM table 

in advance as shown in Fig. 4-6. 

 

Fig. 4-5  (a) The solution of the example of Fig. 4-3 obtaining from contention free 

algorithm. (b) Conversing each color set to corresponding each node element. 

 

 52



 

Fig. 4-6  Structure of proposed memory collision free architecture for the example of 

Fig. 4-3 

4.4.4 Simulation and Experiment Results  

Since the quantization should be the trade-off between coding performance loss and 

hardware cost, the fix-point can be determined via Monte-Carlo simulation. The 

primary specifications of the Turbo decoder are given in Table 4-1, where the code 

polynomial follows the Consultative Committee for Space Data Systems (CCSDS) 

standard [5]. Fig. 4-7 demonstrates the Turbo decoding performance results after 8 

iterations for different sliding window lengths (SW) and fixed point bit-width. We can 

see that the curve of (SW=32 & fixed point) has the minimum error performance loss 

relative to that of floating point simulation. On the other hand, the curve of (SW=32 & 

fixed point & 4-bits non-linear encoded [25]) leads to larger performance loss relative to 

that of floating point simulation, but less extrinsic memory requirement in the Turbo 

decoder is expected.  
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Our proposed contention free algorithm can be used for parallel Turbo decoder 

supporting the arbitrary SISO numbers and high radix VLSI architecture. Here, we take 

the specification of Table 4-1 into account to achieve the purpose of contention free for 

8, 16 and 32-SISO numbers.  



Table 4-1  Summary of parameters for Turbo code simulation 

 

 
 

 

 

 

Fig. 4-7  BER performance of the Turbo decoder 
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The Fig. 4-8 demonstrates the change of cost functions of contention free algorithm 

for various parallel Turbo decoder applications. The contention free algorithm is 

terminated until the cost function reaches zero value. Then, the solution (color sets) is 

obtained with respect to memory banks such that each nodes (extrinsic value) has no 

occurrence of conflicting events. The Fig. 4.9-11 shows the solution of contention free 

algorithm for 8, 16 and 32-parallel Turbo decoder, where the horizontal axes denotes the 

time index (i.e., the order of output sequence of SISO decoder); and the vertical axes 

corresponds to the location of P-SISO decoders in the Turbo decoder. We can see that 

each column is drawn with different color. Thus, our proposed algorithm guarantees to 

achieve the purpose of contention free. 

In general, the circuit function needs to be verified by function verification after 

synthesis or FPGA (Field Programmable Gate Array) platform. Due to the high expense 

in the IC manufacturing, the FPGA provides more cheaper programmable and 

reconfigurable ways to verify your circuit. Even the FPGA platform offers immediate 

real electronic signals to work together with other system platform (i.e., ARM) or 

measured from oscilloscope. The Fig. 4-12 shows that the output signals of Turbo 

decoder using the Xilinx Virtex-IV XC4VLX60 FPGA. For the function verification, 

we first store all output signals into text file and then compare the output values of 

golden model from MATLAB@ with the output values of FPGA as shown in Fig. 4-13. 

When the error signal is raised, there exists some difference between golden model and 

output signals from FPGA. Otherwise, the output signals of FPGA platform are correct. 

We have simulated and verified the design logic by comparing the output results to 

MATLAB@
 fixed-point simulation and performed synthesis targeted at UMC 130nm 

CMOS technology by the Synopsis@ design compiler.  
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Fig. 4-14 shows the proposed architecture of contention free parallel Turbo decoder 

which major consists of multiple double-input-buffers, SISO decoders, Look-Up-Table 

(LUT) and some control circuits. Each SISO core consists of three recursion units for 

acquisition, forward and backward recursion which requires additional controllers for 

the state and branch metrics memories, where we assume eight iterations are performed 

for turbo decoding and clock rate is set 200MHz. There are two input memory-banks 

applied such that the decoding process could be able to continuously decode noisy 

codeword at different frame [20] and the extrinsic storage also employs P sets distinct 

memories to achieve the goal of memory collision free. Then, the results of memory 

collision free are stored into the LUT memories. One of LUT memories is used for the 

arbitrator device; the other is used for the decision device. Finally, the control circuit is 

employed such that the design can be more flexible.  

Each SISO core consists of three recursion units for acquisition, forward and 

backward recursion which requires additional controllers for the state and branch 

metrics memories, where we assume eight iterations are performed for turbo decoding 

and clock rate is set at 200MHz.  

Table 4-2 lists the area requirement of the proposed parallel collision free Turbo 

decoder implementation for various number SISO decoders. As a result, the high 

parallel Turbo decoder has larger total area size but relative its throughput also becomes 

faster than that of low parallel Turbo decoder. In practice, the hardware implementation 

should choose the appropriate parallel parameter P by achieving the throughput 

requirement and minimizing the area requirement. However, our proposed algorithm 

can support arbitrary parallel parameter P such that no conflicting element causes the 

degradation of whole throughput of Turbo decoder.   

 



 

 

Fig. 4-8  The change of cost functions of contention free algorithm for various parallel 

Turbo decoder applications.  
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Fig. 4-9  The solution of contention free algorithm for 8-parallel Turbo decoder 
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Fig. 4-10  The solution of contention free algorithm for 16-parallel Turbo decoder 
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Fig. 4-11  The solution of contention free algorithm for 32-parallel Turbo decoder 
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Fig. 4-12  The VLSI architecture implementation of Turbo decoder in the FPGA 

platform  

 

Fig. 4-13  The comparison of the output values of golden model from matlab@ with the 

output values of FPGA   
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Fig. 4-14  The block diagram for the proposed contention free parallel Turbo decoder 

Table 4-2  Parallel Turbo decoder area and through for various number of SISO 

decoders at clock frequency 200MHz.  
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4.5 An Approach for Reducing Memory Area of Parallel 

Turbo Decoder  

For parallel Turbo decoding processing, the overall decoding throughput increases 

linearly together with the hardware complexity. In particular, the temporary memories 

occupy a significant portion of total hardware. Several papers have proposed different 

strategies for reducing memory area of SISO decoder, such as sliding window memory 

and state metrics memory [29]. In this section, we present two approaches that can 

reduce a considerable amount number of extrinsic memory area for parallel Turbo 

decoder.  

 

4.5.1 Classical Extrinsic Memory Access for Single Turbo Decoder 

Fig. 4-15 shows the waveform expression of single SISO decoder and the external 

storage components, which consist of input buffer unit and extrinsic memory. Note that 

the shaded region denotes concurrent read and write access to the extrinsic memory. The 

length of shaded region can be approximated as N-L, where N is codeword block size 

and L denotes the latency of log-MAP decoder. In practice, the extrinsic memory can be 

implemented by dual port memory [30], two port memory [31], or two single port 

memories.  

4.5.2 An Area-Efficient Extrinsic Memory Scheme for Parallel Turbo 

Decoder  

The extrinsic memories occupy a considerable amount of area in the parallel Turbo 

decoder due to multiple memory banks. The reduction of extrinsic memories is necessary 

for an area efficient Turbo decoder. Fig. 4-16 demonstrates the waveform of multiple 

SISO decoders and the extrinsic memories. We can see that the length of the shaded 



region in parallel Turbo decoder scheme is shorter than that of single Turbo decoder 

scheme (Fig. 4-15), which can be approximated as (N/P)-L, where P assumes the number 

of multiple Turbo decoders. 

The length of the shaded region can become much smaller, even reaching zero, 

through the use of a larger number of SISO decoders each employing the memory 

collision free algorithm presented in previously section. When the length of the shaded 

region is small enough, the extrinsic memories can be implemented by single port 

memories with one temporary buffer used for storing the extrinsic values. [25] had 

presented an extrinsic value mapping function, which could significantly reduce the 

bit-width of the extrinsic value. Fig. 4-16 shows an area-efficient extrinsic memory 

scheme for parallel Turbo decoder where the extrinsic memories and buffer are realized 

by signal port memories. Due to the multiple single port memories used for storing 

extrinsic values, there is significant area reduction in relation to use of multiple dual port 

or two port memories. Therefore, the presented area-efficient scheme has a memory area 

reducing benefit for the parallel Turbo decoder.  

 
Fig. 4-15  The waveform expression between the single log-MAP decoder and the 
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external storage components which consist of input buffer and extrinsic memory.  

 
Fig. 4-16  The waveform expression between the multiple SISO decoders and the 

external storage components which consist of input buffers and extrinsic memories.  

 
Fig. 4-17  Structure of proposed an area-efficient extrinsic memory scheme for parallel 

Turbo decoder architecture. 
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4.5.3 Analysis of the Required Memory Size 

The hardware evaluation is obtained by using Verilog HDL codes synthesized with the 

standard cell library of UMC 0.13-μm CMOS process. Since the CCSDS standard doest 

not support parallel contention free Turbo decoder architecture, we can apply memory 

collision free algorithm introduced in previously section to realize parallel turbo decoder 

architecture. In Table 4-3, the extrinsic memory requirement of four different parallel 

Turbo decoder configurations is evaluated with the latency L of SISO decoder as 

measured by HDL simulator. Note that the proposed extrinsic storage schemes achieve  

31% area reduction(0.096 mm2) without extrinsic quantization and  41% area reduction 

(0.125 mm2) with extrinsic quantization relative to conventional extrinsic storage using 

dual port RAM, which was proposed in [30], for 8-parallel Turbo decoder architecture. 

The extrinsic memory requirement for 16-parallel Turbo decoder architecture and 

32-parallel Turbo decoder architecture are also listed in Fig.4-18. Note that a larger 

number of parallel Turbo decoder can obtain a larger percentage of memory area 

reduction as the read and write access time of extrinsic memory does not overlap such 

that the temporary buffer is not necessary.  

 

 

 

 

 

 

 



 

 

 

Table 4-3  Summary of area requirements for various organization of extrinsic memory 

architecture 
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Fig. 4-18  Comparison of area requirements for different organization of extrinsic 

memory architecture (@ UMC 0.13-μm CMOS Process Measured and latency L=104 

cycles measured). 
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Chapter 5 Conclusion 

A memory collision free algorithm to achieve high parallel SISO decoders for 

turbo-decoding has been presented. The high parallel collision free Turbo decoder has 

been implementation for VLSI architecture using the UMC-90nm standard CMOS cell 

library. As a result, the throughput of 32-memory-collision free turbo-decoding could 

achieve up to 169.25Mbps with clock frequency 200MHz, which is faster than that of 

serial SISO decoder 12Mbps   

This paper introduces a memory collision free algorithm using simulated annealing 

heuristic method for parallel Turbo decoder, in which a highly parallel structure is 

available. By applying memory collision free algorithm, we proposed two area-efficient 

extrinsic memory schemes achieving lower hardware cost for high parallel Turbo 

decoder structure. The experimental results in UMC 0.13-μm CMOS process show that 

the organization of our proposed extrinsic memory without extrinsic non-linear 

quantization can achieve around 40% memory area reduction for the 32-SISO parallel 

Turbo decoder relative to conventional extrinsic storage using dual port RAM for the 

Turbo code of CCSDS standard. On the other hand, the organization of our proposed 

extrinsic memory with extrinsic non-linear quantization can further achieve around 46% 

memory area reduction for the 16-SISO parallel Turbo decoder.  



 70

Bibliography 

[1]. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit 

error-correcting coding and decoding: Turbo-codes,” in Proc. ICC, Geneva, 

Switzerland, May 1993, pp. 1064–1070. 

[2]. Boutillon, E.   Douillard, C.   Montorsi, G. “Iterative Decoding of Concatenated 

Convolutional Codes: Implementation Issues,” Proceedings of the IEEE, June 

2007, Issue: 6, pp. 1201-1227. 

[3]. A. Nimbalker, T. K. Blankenship, B. Classon, T. E. Fuja, D. J. Costello, Jr, 

“Contention-free interleavers,” Int. Symp. on Inf. Theory, June 2004. 

[4]. A. Tarable, G. Montorsi and S. Benedetto, “Mapping of interleaving laws to 

parallel turbo decoder architectures,”, in Proc. 3rd  Int. Symp. Turbo Codes 

Related Topics, Brest, France, Sep. 2003, pp. 153-156. 

[5]. Consultative Committee for Space Data Systems, CCSDS 131.0-B-1 Blue Book 

September 2003. 

[6]. S. Dolinar and D. Divsalar, “Weight Distributions for Turbo Codes Using 

Random and Nonrandom Permutations” TDA Progress Report 42-122, Jet 

Propulsion Laboratory, Pasadena, California, pp. 56–65, August 15, 1995. 

Primitive feedback polynomials. 

[7]. D. Divsalar and F. Pollara, “On the design of turbo codes”, TDA Progress Report 

42-123, Jet Propulsion Laboratory, Pasadena, California, pp. 99–121, November 

15, 1995.  

[8]. P. Guinand and J. Lodge, “Trellis termination for turbo encoders,” in Proc. 17th 

Biennial Symp. Commun., pp. 389–392, May 30-June 1 1994. 



 71

[9]. J. Hokfelt, O. Edfors, and T. Maseng, “A survey on trellis termination alternatives 

for turbo codes,” in Proc. IEEE Vehicular Technology Conf. (VTC’99), 

pp2225–2229, May 1999. 

[10]. S. Crozier, P. Guinand, and A. Hunt, “On designing turbo-codes with data 

puncturing,” in 9th Canadian Workshop on Inform. Theory (CWIT’05), pp. 32–35, 

June 2005. 

[11]. L. C. Perez, J. Seghers, and D. J. Costello, Jr., “A distance spectrum interpretation 

of turbo codes,” IEEE Trans. Inform. Theory, vol. 42, pp.1698–1709, Nov. 1996. 

[12]. C. Berrou, "Turbo codes: some simple ideas for efficient communications",  

ESA-DSP 2001, Lisbon, Oct. 2001, and ESA-TTC 2001, Noordwijk, The 

Netherlands, Oct. 2001. 

[13]. D. Divsalar and F.Pollara, “Multiple Turbo Codes” MIL-COM’95, pp. 279-285, 

November 6-8, 1995. 

[14]. S. Benedetto and G. Montorsi, “Unveiling Turbo Codes: Some Results on  

Parallel Concatenated Coding Schemes”, IEEE Trans. on Inform. Theory, Vol. 42, 

No. 2, pp.409-428, March 1996. 

[15]. S. Crozier, J. Lodge, P. Guinand and A. Hunt, "Performance of turbo codes with 

relatively prime and golden interleaving strategies", Proc. of 6th Int. Mobile 

Satellite Conf., pp. 268-275, Ottawa, Canada, June 1999. 

[16]. C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan and M. Jézéquel, “Designing 

good permutations for turbo codes: towards a single model,” in Proc. IEEE Int. 

Conf. Communications, Paris, France, June 2004. 

[17]. E. K. Hall, S. G. Wilson, “Stream-oriented turbo codes,” IEEE Trans. Inform. 

Theory, vol.47, pp.1813-1831, July 2001. 



 72

[18]. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and 

sub-optimal MAP decoding algorithms operating in the log domain,” in ZEEE Inc. 

on Communications (Seattle,  WA,  June  1995). pp. 1009-1013. 

[19]. A.Worm, P. Hoeher, and N. Wehn, “Turbo-Decoding without SNR Estimation,” 

IEEE Communications Letters, vol. 4, no. 6, June 2000. 

[20]. M. J. Thul, F. Gilbert, and N. Wehn, “Concurrent Interleaving Architec-tures for 

High-Throughput Channel Coding,” in Proc. 2003 Conferenceon Acoustics, 

Speech, and Signal Processing (ICASSP ’03), Hong Kong,P.R.China, Apr. 2003, 

pp. 613–616. 

[21]. T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo 

decoding,” IEEE Trans. Commun., vol. 46, no. 4, pp. 421-423, Apr. 1998. 

[22]. Zhongfeng Wang, Zhipei Chi and K. K. Parhi, “Area-efficient high speed 

decoding schemes for Turbo Decoders” IEEE Transactions on very large scale 

integration (VLSI) 2002. 

[23]. TH Tsai, CH Lin, AY Wu, “A memory-reduced log-MAP kernel for turbo 

decoder,” Circuits and Systems, 2005. ISCAS 2005. IEEE International 

Symposium on Publication Date: 23-26 May 2005 On page(s): 1032- 1035 Vol. 2  

[24]. J.Ertel, J.Vogt and A.Finger, “A  high  throughput  Turbo  Decoder  for  an  

OFDM-based WLAN demonstrator,” in proceedings of 5th International ITG 

Conference, Jan. 2004. 

[25]. D. Garrett, B. Xu and C. Nicol, “Energy Efficient Turbo Decoding for 3G 

Mobile,” Proceedings of 2001 International Symposium on Low Power Electronic 

Design,pp 328-333. 



 73

[26]. R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and VLSI  

architecture for low-latency MAP turbo decoders,” IEEE Trans. on VLSI Systems, 

vol. 13, no. 4, pp. 427–438, Apr. 2005. 

[27]. J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permutation 

polynomials over integer rings,” IEEE Trans. on Inform. Theory, vol. 51, no. 1, 

pp. 101–119, Jan. 2005 

[28]. J.Y´a˜nez and J. Ram´ırez, “The robust coloring problem,” European  J.Oper. 

Res., vol. 148, no. 3, pp. 546–558, 2003. 

[29]. A.Lim and F.Wang, “Meta-heuristics for robust graph coloring problem,” in 

International Conference on Tools with Artificial Intelligence. IEEE Computer 

Society, 2004, pp. 514–518. 

[30]. C.-H. Lin, and A.-Y. Wu, “Low-power traceback MAP decoding for 

double-binary convolutional turbo decoder,” accepted for publication in Proc. 

IEEE ISCAS 2008,  Seattle, USA, May 18-21, 2008. 

[31]. J.Ertel,  J.Vogt,  A.Finger,  “A  high  throughput  Turbo  Decoder  for  

an  OFDM-based WLAN demonstrator,” in proceedings of 5th International ITG 

Conference, Jan. 2004. 

[32]. Bougard, A. Giulietti, C. Desset, L. Van der Perre, and F. Catthoor, “A low power 

high speed parallel concatenated turbo-decoding architecture,” in Proc. Int. Symp. 

Turbo Codes and Related Topics, Brest, France,Sep. 2003, pp. 511–514. 


	Chapter 1 Introduction 
	1.1 Motivation  
	1.2 Thesis Organization 
	Chapter 2 Turbo Code 
	2.1 System Overview 
	2.2 Turbo Encoder 
	2.2.1 Turbo Encoder Process 
	2.2.2 Recursive Systematic Convolution (RSC) 
	2.2.3 Trellis-Termination 
	2.2.4 Puncturing  

	2.3 Interleaver  
	2.3.1 Block Interleaver 
	2.3.2 Prime Interleaver 
	2.3.3 Random Interleaver 
	2.3.4 S - Interleaver 
	2.3.5 Characteristic of Interelaver 

	2.4 Channel Model 
	2.5 Turbo Decoder Process 
	2.6 SISO Decoding Algorithm 
	2.6.1 Log-MAP Algorithm  
	2.6.2 Max-Log-MAP Algorithm 
	2.6.3 Initialized Procedure for Both Log-MAP and Max-Log-MAP Algorithm 

	2.7 Error Probability for Turbo Code  
	2.8 Turbo Code Application on Telemetry and Deep Space Communications 
	2.9 Simulation and Results 

	Chapter 3 VLSI Architecture of Turbo Decoder 
	3.1 Sliding Window Approach 
	3.2 VLSI Architecture of SISO Decoder for CCSDS Standard 
	3.2.1 Log-MAP Decoder  
	3.2.2 Interleaver Address Calculation Unit 
	3.2.3 Extrinsic Information Quantization  

	3.3 Serial SISO Structure  
	3.4 Parallel SISOs Strcture  

	Chapter 4 Solving Memory Collision Problem For Parallel Turbo Decoder 
	4.1 Introduction 
	4.2 Memory Collision Problem for Parallel Turbo Decoder 
	4.3 Solving Memory Collision Problem Using Temporal Buffer Architecture  
	4.4 Proposed Memory Contention Free Scheme for Parallel Turbo Decoder  
	4.4.1 Definition of Memory Collision Problem 
	4.4.2  Solution to Graph Coloring Problem by Simulated Annealing Algorithm  
	4.4.3 The Extrinsic Memory Collision Free VLSI Architecture Design 
	4.4.4 Simulation and Experiment Results  

	4.5 An Approach for Reducing Memory Area of Parallel Turbo Decoder  
	4.5.1 Classical Extrinsic Memory Access for Single Turbo Decoder 
	4.5.2 An Area-Efficient Extrinsic Memory Scheme for Parallel Turbo Decoder  
	4.5.3 Analysis of the Required Memory Size 


	Chapter 5 Conclusion 


