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Decoder

Student: Kai-Hsin Tseng
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National Chial Tung University

Abstract

In this thesis, a contention free- algorithm for solving memory collision problem of
parallel Turbo decoder architecture using-the-simulated annealing algorithm is presented.
Furthermore, we proposed two area-efficient-extrinsic memory schemes based on the
parallel contention free Turbo decoder. One of the proposed schemes employs only
multiple single port memories with one temporary buffer instead of the original dual
port or two port memories. And the other scheme further employs an additional
non-linear extrinsic mapping architecture. The proposed schemes lead to approximately
37% and 46% memory area reduction, respectively, for 16-parallel Turbo decoder in

comparison to the conventional dual port memory scheme under the UMC 0.13-um

CMOS process.
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Chapter 1  Introduction

1.1 Motivation

Turbo code has outstanding error correcting capacity, which was first introduced in 1993
[1], and its performance closely approaches the Shannon limit for Bit Error Rate (BER).
The fundamental turbo decoder comprises interleaver and constituent (Soft-In/Soft-Out)
SISO decoders. The SISO decoder performs iterative decoding based on maximum a
posterior (MAP) probability algorithm, which often transfers into logarithm domain as

log-MAP in the consideration of implementation complexity [2] .

Since the Turbo decoder requires a certain humber of iterations to achieve the desired
performance, the iteratively decoding causes the lowet throughout and higher latency for
the Turbo decoder process. To=apply for-high speed and low latency application, a
feasible method is to adopt the parallel SISO decoder architectures. However, one of the
parallel SISO decoder architecture’s existing problems is that there are probably more
than one data to access the same memory destination simultaneously, also called the

memory collision problem [3][4].

An available method of solving memory collision is to use extra storage devices for
storing the collision dates until the destination memories are in idle state and can be
accessed [20]. However, the above solution method requires an extra temporary buffer
and collision handling time in view of hardware aspects. Therefore, the objective of the
present memory collision free algorithm is to distribute the extrinsic dates from parallel
SISO decoders into the storage elements without memory collision happening. The
proposed memory collision free algorithm can support various Turbo standards as well

as arbitrary the number of parallel high radix SISO architecture.
1



1.2  Thesis Organization

The thesis is organized as follows. Chapter II shows the concept of Turbo coding,
including Turbo encoder / decoder structure, Log-MAP algorithm and Max-Log-MAP
algorithm. The sliding window approach and the difference between the serial SISO
structure and parallel structure are discussed in Chapter III. Chapter IV illustrates the
parallel turbo decoder using simulated annealing algorithm achieving memory collision
free requirement and supporting arbitrary parallel parameter P. Finally, the conclusions

are given in Chapter V



Chapter 2 Turbo Code

This chapter introduces the components of turbo code, including turbo encoder, turbo
decoder, interleaver and given an example for the specification of turbo code of
(Consultative Committee for Space Data Systems) CCSDS standards [5]. Finally,
performance results are compared between the max-log-MAP and log-MAP decoding

algorithm, various code rates, different block sizes and iteration numbers.

2.1  System Overview

Fig. 2-1 shows the Turbo code application in the digital communication system which
includes four parts: 1.) channel, 2.) modulation, de-modulation, DAC, ADC and Front
End parts, 3.) synchronizer and channel estimation (Equalizer), 4) error correction and
detection. Channel involves non-idea effects-and distortion in the modulated continuous
waveform. Demodulator and ADC convert-the distorted analog waveform into digital
samples. Error correction recovers these'samples and renders decoded sequences. The
error detection is primary used to verify the correctness of decoded sequences. This
thesis assumes that the perfect synchronization and channel estimation in the receiver

aspects.

Insertion Encoder

Randomizer |—» GRS > nurbo —»] Modulation |—» D/A > PA 1

Synchronizer

and Equalizer 4“ s
De- Turbo De- : |

Randomizer [ CRC Checks [« pecoder [*1 Modulation : A/D :— Front End

Fig. 2-1 Digital communication system
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2.2  Turbo Encoder

2.2.1 Turbo Encoder Process

The turbo decoder consists of two parallel Recursive Symmetric Code (RSC) encoders,
an interleaver and a puncture device (see Fig. 2-2). The interleaver is used for permuting
the information u;, which is an influencing factor in the performance of Turbo code. The
information u={u1,u2, o } are transmitted through two identical structure RSC
encoder, where encoder structure depends on the definition of code generator
polynomial.

For the two RSC encoders, the information directly sending into upper RSC
encoder produce upper encoded codeword {X,, X, s:}; the lower encoded codeword
{Xp-siso2} 1s obtained from the permuting information bits u;,, passing through the lower
RSC encoder. The outputs X; is identical to- information bits u, referred to as the
systematic bits. The second output Xj.ss-denotes the parity check bits, which will be
used for the even sub-iteration of MAP decoding." Similarly, the other parity check bits
Xp-siso2 Will also be used to odd sub-iteration of MAP decoding. Finally, the puncturing
block could support various code rates by multiplexing the encoded codeword sequence

to obtain effective bandwidth utilization.

1 RSC Encoder —l

Input Information (L)

% K siso1
& E Encodead
Kalmoz Information
4+ RSC Encoder J
£f ine

()
Fig. 2-2  Turbo encoder diagram

4



2.2.2 Recursive Systematic Convolution (RSC)

Good turbo codes have been constructed using short constraint length and infinite
impulse response (IIR) convolutional codes instead of the more familiar finite impulse
response (FIR) convolutional codes. The major reason for above finding is that the
impulse response for IIR structure has more long free distance relative to FIR structure,
resulting the more better performance for the IIR encoder structure [6].

Furthermore, several articles in [7] shown that the constituent convolution codes
with primitive feedback polynomials can achieve larger minimum distance than
applying other polynomials. As a result, the IIR encoder structure with primitive
feedback polynomials is always employed for the constituent encoder of Turbo code.

These IIR convolutional codes aretalso referred to as recursive convolutional codes,
because previously encoded information bits are fed back to the input of constituent
encoder. For instance, the generator polynomial G(D) form for constituent encoder

shown in Fig. 2-3 is

G(D):ll fo By B 2.1)

b b

>

with the constraint length v=5 (constraint length v = memory order ¢ + 1), where Py,
indicates feedback polynomial (1+D*+D%), which fed previously encoder back to mix
with new information sequence. Py; is forward polynomial corresponding to i-th output
of encoder, here (1+D+D*+D?), (14D*+D*) and (14+D+ D*+D*+D") for1 <i <3.

The constituent encoder total has 2" distinct state, where each state expresses the
temporal value of register components. When input sequence is fed, the temporal value
of register components are affected by the input sequence and feedback information,
leading to the change of register components. For previously example, let the all

register values to be zeros, the update register values update into “1000”(called as S8) if
5



the high level of input information bit is sent. On the other hand, the current state
remains to hold the all-zero state. Furthermore, the results for each state changing with
all possible input patterns can be shown in Fig. 2-3 for the trellis expression, and the

corresponding output encoded bits can look up in Table 2-1.

Qut Oa
Encoder a
i A p 11 g G0
__’.-vl'lll‘"o A/
G1I > w1 :ﬂ} Qut 1a
62 R Sl out2a
(53 >} :"@ > ?h\w out 3a

Fig. 2-3  Block diagram of the RSC
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Fig.2-4  Trellis expression the relationship of current states and next states with

different input sequence



Table 2-1 The Output encoded sequence with different input information

corresponding to each state
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2.2.3 Trellis-Termination -

Trellis termination process is to drive the'encoder to the all-zero state at the end of the
block. In generally, the beginning of state is assumed as all-zero states for constituent
encoder.
®  Both encoders terminated with individual tail symbols
The ending of state, due to employing the MAP algorithm for Turbo decoding, usually
is known as all zero state (non-zeros state also can be assume) to perform feedback
recursively decoding. Here, a tail bits driven from any probably state (2% numbers) to
any target state no longer than q bits when the recursive convolutional encoder consists
of q registers.

Due to the excursiveness property of encoder, the required M tail bits cannot be
“predetermined”. Thus, first, we observe the register values relationship with feedback

7



and input information as

Register, = feedback information @ input information (2.2)
Register, = Register, (2.3)
Register, = Register, (2.4)
Register, = Register, (2.5)

where @& symbols the modulo-2 addition.

Except from the first register value, the others register value are obtained from the
previously register. However, there is no input sequence required to be encoded when
performing termination for turbo encoder. Therefore, the simplest obtaining zero value
for register is to use previously feedback information for performing self-cancellation.
Furthermore, the other register values also.obtain zero values by one after another when
the first register has been zero value. The whole termination process can be expressed as

follows

Terminated Register, = feedback information & feedback information="0" (2.6)

Compared to the case where none of trellis is terminated, the minimum distance
here is increased from terminated bit. However, this trellis-termination method probably
yield low minimum distance codeword because both trellis are terminated

independently [8]. Assuming the use of rate-1/2 convolutional encoder, the overall code

rate isR, = K /(3K +2q, +2q, ) , where q1 and q2 indicate the memory order of first and

second constituent encoder, respectively. It is observed that this type of termination is

the reduction in code rate, especially for short interleaver.



®  Only first encoder terminated

A common trellis termination method found in the literature is to terminate ENC1 and
to leave ENC2 unterminated. The v; tail bits makes that only the ending stage of ENC1
is fed back all zero state after encoding K information symbols. Note that these tail bits
are included in the sequence, thus, the interleaver size is K+q;. The interleaved
sequence, of length being K+q;, is fed to ENC2 which starts encoding in the all-zero
state and is left unterminated in an unknown state.

The minimum distance is guaranteed to be caused by an input sequence of weight
greater than or equal to 2. A good spread interleaver, it is unlikely that both nonzero
symbols in the un-interelaved input sequence are interleaved to positions near the
encoded of the interleaved input sequence:, Based on above reasons, most small

distances are eliminated [9]. Assaming the use of rate-1/2 convolutional encoder, the

overall code rate isR, = K /3(K#+¢q,)

2.2.4 Puncturing

Puncturing is the process which removes certain bits from the codeword. The purpose of
puncturing is to increase the overall code rate for Turbo code. In general, the common
operation of puncturing is to remove the parity check bits from the first and second
encoders periodically.

However, a significantly improved puncturing approach has been presented by [10].
This type of puncturing probably could obtain a longer minimum distance if a small
number of systematic bits are punctured. It is well known that the minimum distance is
caused by input sequence with low input weight. This means that the puncturing
systematic bits are increased without or with a small loss in the contribution of

systematic part to the overall minimum distance. Further, increasing the number of



puncturing systematic bits means that fewer number of parity check bits are punctured.
This results in an improvement in the distance properties because the minimum distance
is mainly dominated by the contribution of parity check bits, especially for well

designed interelavers.

2.3 Interleaver

The purpose of the interleaver in turbo codes is to ensure that information patterns that
cause low weight words for the first encoder is not interleaved to low-weight patterns
for the second encoder, thus improving the code weight spectrum [11].

Consequently, the excellent interleaver is an essential condition for achieving good
distance properties. Note that achieving good distance properties require not only the
excellent interlever, but also recufSive constituent encoders. In this thesis, the

interleaver is referred to a vector 7z . Here "z (i) .is the interleaved position after the

information at position iy, is interleaved in-the-nature order. In other hands, 77'(i) is
defined as de-interleaver, which is a converse operation of the interleaver. This is, the
de-interleaver implies that the interleaved order information 7 (i) is conversely
interleaved into the nature order at iy position. In other words, Considering the block

size N in the original information sequence U=(uy,uy,...,uy.;) are interleaved into the

interleaved information u_= (u”(o),uﬁ(l),---,u”( N_l))

2.3.1 Block Interleaver

A simple structured interleaver is block interleaver, often also called as rectangular
interleaver in the literature. It is constructed by a rectangular of M rows by N columns,
where the interleaver size is K=M*N. This interleaving is performed as follows. From

the beginning of upper left corner of rectangular, the data are in turns written into the
10



rectangular with column by column, and then read the interleaved data with row by row,

or vice versa. Further, the block interlaver can be  expressed

as ﬂ(i):(i-N +{ijod K, where | x| is the floor function, which means the

largest integer of x.

However, the block interelaver is not an excellent interlaver. From the view of
codeword weight, this interleaver produces a larger number of long distance codewords
caused by input sequences of weight 2 and 3, but yields a large number of low distance
codewords caused by that of weight 4. This is, for block interleaver, both the distance
properties and error performance constrained by the input sequences of weigh 4, leading

to no significantly improving BER capacity [12].

2.3.2 Prime Interleaver
The permutation is defined by 7z (#) =( pei +s)modK , where s, p are known as offset

and step size, respectively. Note that the value of p must be chosen relatively prime to
block size K, ensuring that the element in the interleaver differ from each other. This
interleaver is also referred as circular-shifting interleaver in the literature.

For the view of distance properties, this interleaver can permute the low distance
codeword for the first recursive encoder into the high distance codeword for the other
recursive encoder. However, this type of interleaver is less likely to permute an input
sequence of weigh higher than 2 with low codeword weights into another input

sequence with high codeword weights.
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2.3.3 Random Interleaver

Random interleaver is generated by a random manner without any restriction on the
selected element. This interelaver is also referred as pseudo-random interleaver in the
literature. Modified random interleaver with some useful criterion is likely to achieve
better performance. Usually, the performance of this type is significantly increased as

the block size increases.

2.3.4 S - Interleaver

The S interleaver is of one of spread interleavers. Usually, the codeword of minimum
distance are contributed by the input pattern with low weigh. The goal of these types is

to spread the low weight input pattems, generating higher weight codewords. Here, the
. K .
Spread factor S is usually chosen 'less than or equal to\/; . This interleaver can be

described as follows. Select a random element from:the selected set {0,1,...,K-1} as the
first element in the interleaver and delete it from the set. Then, each subsequence
elements are moved from the selected set if current candidate position is selected
within £§ range compared with the previous selected element. Otherwise, current
candidate is rejected until the selection criterion is satisfied. Repeat this process until all
K integers are selected.

This interleaver can achieve better performance than average to generate higher
weight codewords. Unfortunately, the search time increases with the designed amount
of separation, S, and the interleaer length K. Another drawback is that there is no
guarantee that the search process will finish successfully. Further, another design
criterion based on the constituent encoders adding into S interleaver is presented in [13]

[14]. This goal of modified S interleaver is to eliminate low-weigh codwords with
12



significant contributions to the error performance. In general, the elimination of a
specific codeword can be done by breaking up the input pattern. This modified S
interleaver, however, is no guarantee to eliminate all low-weight codewords and find a
properly solution.

Usually, the random-like intelreaver structure, their performance degradation is
significantly sharp than that of structure interleaver, such as the prime interleaver, in the

highly codeword puncturing.

2.3.5 Characteristic of Interelaver

Minimum distance of the interleaver algorithm is a major factor which affects the error

floor as defined as duo-distance between position-i and j for a given interleaver:

o i) =7 I H h @) =7 (/) | 2.7)
where (i), m(j) are “interleaved posttions™ of i, j, where i, j=0, I, 2, ... , K-1 (K is
the number of the interleaver block), and i#j __[15].

A better interleaver algorithm design usually should have three characteristics as the
following:

® Thed, should be as large as possible in order to “lower correlation” between

duo
input sequences and interleaver output sequences.

® The distances between any two input information bits before and after the
interleaver, denoted d(1,j )=/ 1—j | and d(n(i) -n(j)),1,j =0, 1, 2, ... , N-1
should not be multiple of the intrinsic period to avoid the change of the
feeding self-terminating weight-2, where the intrinsic period are 2" -1, if the
memory of the RSC encoder is v. Due to the intrinsic period has a significant

effect on the performance of turbo code, a better generator function of Turbo

13



encoder usually chooses an appropriate primitive polynomial ( of degree v )
as the feedback polynomial go(D).
® The positions of any input information bit before and after interleaver, i.e., i

and 7(i) (0=i1i=K-1), should not be both near the end of the interleaver

block in order to avoid edge effects. This is, if i is nearly K, then both

m(i)and 7' (i) should be much smaller than K.

One of Interleaver designs that is optimum in the sense of breaking up the
weigh-2 input sequences was introduced in [16]. However, it is also noted in [16]
that braking up only the weight-2 input sequences is not sufficient to achieve good
distance properties. This is because input sequences of weigh higher than 2 are not
broken up and can still lead to low codeword weights.

For achieving good distanece properties, this suggests an additional design
criterion based on the correlation. between the extrinsic information. This is, an
interleaver with good properties is designed to minimize correlation between the

extrinsic information of constituent decoder and input sequence [17].
2.4 Channel Model

It is known channel models which could primary be divided into three types. First,
AWGN is common non-fading channel model to simulate pure Gaussian noise,
including thermal noise, uncertain effects, and so on. Second, the second type of
channel model is defined static fading channel model, including (Line of Sign) LOS and
NLOS types based on the signal propagation circumvent between transmitter and
receiver. Finally, this channel model primary simulates the Doppler-effects and
attenuation of fading mobile channel model, which can be simulated by Jake’s Model

14



with different velocity requirement. AWGN channel model is primary discussed for

Turbo code in this thesis.

® AWGN (Additive White Gaussian Noise) Channel Model
The power spectral density is independent of the operating frequency. The adjective
white is sued in the sense that light contains equal amounts of all frequencies within the

visible band. We express the power spectral density of white noise, with a sample

: N, :
function denoted by w(t), as S, ( f ) = 70 The parameter Ny is usually referred to the

input stage of the receiver of a communication system, expressing as N, = kI, where k

is Boltzmann’s constant and Tk is the equivalent noise temperature of the receiver.

Since the autocorrelation funection jssthe-nverse Fourier transform of the power
. . : N, .
spectral density, the autocorrelation function can be expressed as R (T) = 75 (r). This

is, the autocorrelation function of white noise consists of a delta function weighted by

the factor Ny/2 and occurring at 7 =0.

2.5 Turbo Decoder Process

Fig. 2-5 shows that the Turbo decoder process employs two SISO decoders to estimate a
posterior probability (APP) of each information u; with a certain numbers of iterative
computations such that the results have no significant BER performance loss. The Turbo
decoding process is states as follows:
(a) [Initialized phase: the received signal codeword has to be stored into
symmetrical buffer and parity check buffer due to iteratively decoding

process. After the total N received data have been stored, the decoding

15



process starts to carry out iteratively MAP decoding, where the intrinsic
information and iteration number /ter: are initialized as zero.

(b) 1" half iteration phase: the input codeword (Vs,Vp.sisor) from input buffer are
sent into SISO decoder and then proceeds to MAP algorithm decoding,
producing the extrinsic information which is written into extrinsic storage
with natural order after a decoding latency. When the whole extrinsic
information has been calculated, the stored extrinsic information with
interleaving order are inputted as intrinsic information L, (Interleaver
operation) for the 2" half iteration phase. The decoding process then jumps

to the next phase (c).

(c) 2" half iteration phase: combining, the interleaving order of systematic
information w;,, parity check V.2 and-L;, are carried out the extrinsic
information L. This outputted soft information L., are firstly stored by
interleaving order into eXtrinsic storage and used by natural-order as intrinsic
information L,; for the I*' half iteration phase (De-interleaver operation) as
the 2" half iteration phase has finished. If the Iter: parameter is equal to the
specified max-iteration, the decoding process phase jumps to (d); otherwise,

Iter. = Iter. + I and the decoding process returns into phase (b).

(d) Output the estimated information u;’ phase: the log-likelihood-ratio (LLR)
information proceeds to the De-interlaver operation, and then obtains the
estimated information uk’ through hard decision device. The hard decision
operation is that if the sign of LLR is positive, the information u; " are decided

as /; otherwise, the information u;’ are decided as 0.
Based on /* and 2™ decoding phase, the operation of SISO decoder is identical and
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extrinsic storage is performed through interleaver/de-interleaver procedure. Therefore,
the above SISO decoder, interleaver procedure can be implemented by the same

hardware for twice half-iteration.

S I
r Estimator Le |
Li | o Lo |
| Interleaver i
Lexl Li2 y
Systematic | Y Decoder ] Inerleaver === Decoder
buffery; 501 3 5502
LLR| LLR2
Yp-s1sol r
M Interleaver .y
Parity Check - it L poaNT b Hard Decision
bufferyp P Mx yp-si502

(b)

Fig. 2-5  Turbo decoder diagram

2.6 SISO Decoding Algorithm

2.6.1 Log-MAP Algorithm

The Turbo decoder iteratively decodes the parallel concatenated convolutional codes
through log-MAP algorithm which decides the LLR of APP of each information bit uy

[2]. The MAP algorithm is based on the log-likelihood ratio a posterior defined as

>\ . Pru, =11 y)
L(X,)=In T (2.8)

. where uy are the source information bits.

The APP ratio L(ug) can be further represented in three terms:
L(X,)= L)+ LR, + L, (u,) (2.9)
.where L, = 4E, / N, and L.*R, are defined as the channel values. After interleaving or

deinterleaving, the intrinsic information is calculated from the extrinsic information of
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the other constituent decoder, as shown in Fig. 2-5. This means L;;(ux) = Lex2(ux) and
Lio(uk) = Lex1(u).

The arithmetic operations of the log-MAP are described as follows. For each trellis
transitions leaving the state k-1 toward the state &, the branch metric value is formulated

as:
1 s S
7k(Sk—l’Sk):E{x‘k(Li +L. -y k)+ZLc' V' 'xpk} (2.10)

. where (X%, x") denotes the transmitted symmetrical and parity check bits, which takes
values in {1,-1}. (y’k, y*x) represents the received symmetrical and parity check bits at
the k-th time instant. At step k, for each trellis state Sy beginning from previous state

Sk.1, the state metric can be calculated as:

,(S,)= maX*(ak—l (S ) +27.(5..,5,.) (2.11)

Si155%
On the other hand, on the step k, for‘each trellis'state Sy beginning from the current

state Sk+1, the backward metric calculation is:

ﬂk (Sk ) = maX* (ﬂkﬂ (Sk+1) + Vi (Sk > Sk+1)) (2- 12)

Sk+l’Sk
. When Forward and Backward state metric are calculated, the APP ratio L(ux) can be

re-written into:

L(j(\k): max *(ak—l(Sk—l)+7/k(Sk—19Sk)+lBk(Sk))

(St Sga gy =1

. (2.13)
- max (ak—l (S )+ 7SS+ B (S, ))
(S >S5, =0
. Here the definition of Max* function is:
max*(x,y) = In(e" +e") (2.14)

= max(x,y) +In(1+exp™)
_ where the corrective term In(1+exp™) can be implemented by a look-up table (LUT).
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2.6.2 Max-Log-MAP Algorithm

The Max-Log-MAP is deduced from the Log-MAP decoder by substituting each max*-

operation by a max-operation and shown in the following:
Max*(x,y)= ln(ex+ey) =max (x, y) (2.15)

Then, the correction function In(1+e¢™™) in the max*(.) operation are neglected in the
Max-MAP decoder, which has less complexity due to eliminating the need of LUT unit.
The correction term plays the important role of improving the capacity of correcting
error code when operated in the low-signal to noise ratio environment, due to the
difference is usually small.

Base on previous reason, the performance degradation is about 0.58dB compared
to the Log-MAP algorithm [18]. However, the eorrection term worked in the high
signal-to-noise-ratio environment always approximates as zero, since the difference has
a more probability exceeding-twos -Another. benefit for Max-Log-MAP is that

Turbo-decoding does not require knowledge of the'SNR [19].

2.6.3 Initialized Procedure for Both Log-MAP and Max-Log-MAP
Algorithm

Initialization the state probability fora,and (3, must be initialized as follows:

2 (8)) =0 216
a,(S,) = —0o0, k=0 (216
ﬁN(SO):O 2.17)
By (S,)=—o0, k=0 '

Except in the case for the decoder associated with the second encoder, where the trellis

is simply left ‘open’ as follows
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oy (S;) =0
o, (S,) =—o00, k=0

(2.18)
By (S;) = ay(Sy)

In the second case the backward recursion uses the value of the state probabilities

generated by the last forward recursion step.

2.7  Error Probability for Turbo Code
For a (N,K) Turbo code, the symbol error rate of Turbo code is bound by the union
bound [1]:

PWSASQ 2y e) (2.19)

J= 2N,

where N indicates the interleaver length, K is‘the number of information bits and M is

_t2

number of binary codeword. Heére; Q(x):J- € drand d" (¢y,¢;) 1s codeword

2.
N2

Hamming distance. Furthermore, the function of Q(x) asymptotically approaches e 2
as x approaches infinite. Therefore, the symbol error probability is upper bound by the
sum of (M-1) exponentials. When the Hamming distance " (¢y>¢;) grows, the error

probability decays exponentially such that the minimum Hamming distance dominates

the asymptotic symbol error probability, as shown follows:

Pw ~ AminQ[Q’dein NEJ (220)
0

where A, 1S the number of codeword at dein. It follows that the asymptotic bit error

probability is:
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W, E
P, x—mrglogf — 2.21

where the Wy, 1s the number of input sequence causing dein. and E=R.E

non—encoded
is the energy per code bit, resulting from the code rate R. and the energy per encoded
bit Epon-encoded- From the view of error probability, a turbo code achieves the better
improvement performance, requiring more number of symbols to cause the minimum

Hamming distance as large as possible.

2.8  Turbo Code Application on Telemetry and Deep Space

Communications

In CCSDS recommendation for telemetry.channel ¢oding, the CCSDS encoder scheme
could be seen two components,;~where input‘information of length k bits is held in a
frame buffer, and then the bits “in. the buffer are read out in two orders of the two
component encoders. The upper component eéncoder operates on the bits in un-permuted
order (“in a”), while the second component encoder receives the same bits permuted by
the Interleaver block (“in b) as shown in Fig. 2-6. The nominal code rates of turbo
codes are 1/2, 1/3, 1/4, and 1/6. In addition, the frame sizes of CCSDS turbo codes are
1784, 3568, 7136 and 8920.

For turbo encoder termination operation, there are “four” terminal bits used to clear
all the delay elements of the RSC encoders after the input information k bits have been
delivered into the encoders, Thus, the actual code rate of the turbo encoder scheme is
n/n(k+4). The interleaving pattern is a fixed sequence, which is on a bit-by-bit level of
the entire block of data, unlike the Reed-Solomon interleaving on a symbol-by-symbol
level. The interleaver algorithm is described by the following algorithm in Table 2-2. (as
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excerpted from [5]):
First express k as k=k;k,, where k; is eight. Next do the following operations for s=/

to k to obtain permutation numbers z(s). In the equation below, |x |denotes the largest

integer less than or equal to x, and p, denotes one of the following eight prime integers:
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— " Block
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Fig. 2-6 CCSDS Turbo encoder
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Table 2-2 Interleaver algorithm for the Turbo code of CCSDS standard

pP1=31: p>=37; p3=43; ps=47; ps=53:; pe=59: p7=01; ps=67;

N = Kk xk,
k, =8

pl=31p2=37 p3 =43 p4 =47
pP5=53p6=59 p7=61p8 =67

m=(s-1)mod?2
. s-1
I =S
{Zsz
. s-1 .
o [ 2 J"’kz

r = (195+])mod%

g = tmod8 + 1
¢ = (p,j+2lm)modk,

T(s) = 2(r+ck—2‘+l)—m =2(g+4c)-m

The turbo encoder codeblock-outputs for various code rates are shown in Fig. 2-7.
For each input to the delay elements, n symbols are outputted. The output sequence is a
particularly periodic sampling from top to bottom of the outputs of Turbo decoder. (e.g.,

for code rate /3, the output sequence is Out 0Oa, Out la, Out 1b).

 J

Rate %2 Turbo codeblock

A

Out_0a Out_la Out_0a Out_1b

Y

Rate 1/3 Turbo codeblock

A

Out_{a Out_la Out_1b Out_0a Out_la Out_1b

Y

Rate 1/4 Turbo codeblock

I

Out0a | Out_2a | Out_3a | Out_1b | Out_0a | Out_2a | Out_3a | Out_I1b

Y

- Rate 1/6 Turbo codeblock
Out | Out | Out | Out | Out | Out | Out | Qut | Out | Out | Out | Out
Oa | la| 2a| 3a | _1b| 3b| Oa| la| 2a| 3a| _1b | _3b

Fig. 2-7 Turbo code for different code rates
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2.9 Simulation and Results

The generator polynomial of Turbo code defined as (23, 33, 25, 37)o, and interleaver
lengths of 1784, 3568, 7136 have been simulated in Matlab® using Moto-Carlo method,
where the oct expresses an abbreviation of octal. These different simulation conditions
are performed as follows:

® For different turbo decoding algorithm: Max-Log-MAP versus Log-MAP

® For various block size (1784,3568,7136)

® For different number of iteration decoding

® For various code rate

The Fig. 2-8 shows the performance results of Log-MAP and Max-Log-MAP
after10-iterations for SNR value warying from 0.4dB to 0.8dB. Note that the
performance of MAX-Log-MAP algorithm has 'larger degradation than that of
Log-MAP algorithm over the low-SNR région. For low-SNR region, the corrected term
is helpful for improving the turbo decoding in the Log-MAP algorithm.

The Fig. 2-9 shows the performance comparison of turbo code when Log-MAP
algorithm is performed using different block sizes (1784, 3568, 7136) after 10 iterations.
It is observed that the larger block size has more decoding gain relative to other smaller
block sizes. This is due to the larger block size has a long free hamming distance
dfee ,and thus has more better capable of error correction capacity.

The Fig. 2-10 shows the performance results of turbo code when Log-MAP
algorithm uses different number of iterations (3,5,7,9) at 1784 block size. Note that the
performance results have more significantly performance improving in large iterations.
This is to say, the Turbo code has to pass through highly iterative decoding process to

meet the desirable performance result.
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As far as the various code rate of turbo code concerning, the performance results of
turbo code are shown in Fig. 2-11. The performance results shows that one codeword
including more redundancy elements, such as code rate (1/6), has a greater coding gain
relative to less redundancy elements (1/3). This is because more redundancy elements is

helpful for correcting error codeword.

Eit Error Rate(BER)

| == Log-MAP
107 | ==l = A Log-MAP

10

Fig. 2-8 Performance results of Turbo code for different turbo decoding algorithm
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Chapter 3  VLSI Architecture of Turbo Decoder

In this chapter, we will state the VLSI architecture of Turbo decoder. First, the sliding
window approach divides large frame size N into equal-sized L sub-blocks to reduce the
long decoding latency and storage memory. Then, the concurrent efficient SISO VLSI
architecture is introduced, including OACS which is faster than original ACSO
architecture, modified sliding window which is more suitable to high code rate (larger
redundancy elements).

Next, for the Turbo code of CCSDS standard, the on-line fly interleaver address is
implemented to save more memory area requirement relative to the ROM approach. And
the extrinsic information quantization is used to reduce the bit-width of original
extrinsic information. Finally, wetdiscuss the' throughput of series SISO decoder
structure and parallel SISOs deceder.. The whole Turbe decoder architecture is shown in

Fig. 3-1.
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3.1 Sliding Window Approach

According to MAP algorithm, the decoder needs to store a large amount of memory
and causes a long decoding latency during the forward and backward recursion
calculations. The sliding window technique was introduced to reduce decoding
latency and storage memory by dividing large frame size N into equal-sized L
sub-blocks [20], where L is typically 5 to 10 times the constraint length (encoder
memory order + 1). The appropriate warm up length L is determined by trading off
the performance degradation and the relative sliding window memories size.

For SW approach, it is necessary to obtain a reliable initial value of state metric
with a warm up phase, which recursively computes the state metrics from the
previous L stages of estimated reliable point with all zeros values. In general, the
initial alpha values are the last value of:the previous window, and the initial beta
values are obtained by the dummy. beta calculation unit, which performs a warm up
process with the same structure as beta processor.

Fig. 3-2 shows how sliding window approach calculation is done among Forward
Processor (FP), Dummy Beta Processor (DBP) and Beta Processor (BP) working
together, as stated as follows:
(a) In time slot 7: the DB processor accesses the input buffer and recursively
backward computes the SM values with all zeros values from data L-/ to 0.
On the other hand, the received input buffer data are stored in sliding
window memory-bank;.
(b) In time slot 7;: the valid initial value of backward state metrics are obtained
by the DB processor calculating from data 2L-/ to L, and then the received

input data are stored into SW memory-bank,. The FP processor accesses the
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memory-bank; data (L-/~0) to calculate forward metrics values with an
initial state. Because the soft output LLR calculation requires both the
forward and backward state metrics, the output of FP has to be stored in
forward SM storage due to the corresponding backward metrics being
unready.

(¢) In time slot 72: the operation DB process for data (3L-1 to 2L) and FP
processor follows a similar procedure as in (b). The BP uses a valid initial
value of SM from the last value of previous DP to compute backward SM
for the data (L-/~0), and then combines with the associate forward state
metrics from forward SM storage to decode soft output information.

(d) Repeat (a)~(c) until the wholeisoft.output information is obtained.

The input buffer can be built by multi-bank two. port memory, whose storage size
is defined by the word-length of -total input “soft information multiplied by
memory-depth (L+17) , where depth L+/ can-allow contention free in practice. The
latency of this sliding window structure can be approximate as (2*L+ C) cycles
while throughput of the MAP-based SISO decoder is defined by the number of bits
processed, N, divided by the latency L cycles, where C is the pipeline delay of SISO

decoder.
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Fig. 3-2 The operation of sliding window approach

3.2 VLSI Architecture of SISO Decoder for CCSDS

Standard

This Turbo decoder is composed of, one log-MAP- decoder, input buffer memory,
extrinsic memory and interleaver address calculation‘unit. The log-MAP decoder is used
to decide the LLR of each information bit u; by the input a prior information. The input
codeword sequential is stored in the input buffer to be used by iteratively decoding
process. The extrinsic memory stores the extrinsic information from the output of
log-MAP decoder, and then sends extrinsic information by an interleaving /
de-interleaving order into the input of log-MAP decoder when all extrinsic values have
been received. The interleaver / de-interleaver pattern can be calculated by an on-line
interleaver address calculation unit, which can reduce significant area requirement

relative to storing all interleaver values at the ROM table.
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3.2.1 Log-MAP Decoder

(1) Branch Metric Calculation (BMC) Unit

The branch metric values are applied by computing the state metric values, LLR values
and extrinsic values. When the input soft information is stored into the extrinsic and
input buffer and the L. value has been obtained by the SNR estimator [21]. The branch
metric values are calculated according to (2.10). Due to different code rate requirement,
to calculate branch metric values to send to the next state metric calculation unit, the
maximum number of input sequences must be considered. The branch metric
calculation unit is shown in Fig. 3-3, where the ‘Sat.” means the saturation device that is
used to avoid the overflow when the high SNR environment leading to L. value become

considerable large.

Enable

“ode rate
En

Fig. 3-3  Block diagram of the branch metric calculation

(2) State Metric Calculation (SMC) Unit

The forward and backward metric calculations are calculated according to (2.11) and
(2.12). In the trellis expression Fig.3.4 (a), the updated forward state values a(Syx ;)

comes from the maximum summation value of previous forward state values with
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relative branch values with a correcting term In(1+exp(-| o(Sor1) - a(S1x1)])), which
can be implemented by ACSO architecture, as shown in Fig. 3.5(a). In a similar way, the
backward recursive calculating by the trellis expression are shown in Fig. 3.4(b). In
order to avoid updated value overflow occurring, the state metric calculation usually
uses the rescaling method [21] as the state metric value increase with the recursive
calculation times. Because the speed of Turbo decoder is determined by the maximum
clock rate achieved for ACS architecture, we employ the OACS architecture which uses
retiming transformation of the ACS architecture to increase the clock rate as much as

possible [22], as shown in Fig.3.5(b).
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Fig. 3-5 Block diagram of the ACSO and OACS architecture
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(3) Log-Likelihood Ratio Calculation (LLRC) unit

According to (2.13), the LLR value could be calculated by the difference between
N-input max* function for u;= I and N-input max* function for u; = 0, where N denotes
the total state metric values numbers. However, The N-input max* function can be
transformed into the number of log2(N)+1 for parallel tree 2-input max* function. For

example, when the N is four, the LLR architecture can be shown in Fig.3.6 due to the

relationship of Max*(A,B,C,D) = Max*(Max*(A,B),Max*(C,D)).

pipeline

pipeline

pipeline

l LLR_Output

Fig. 3-6 Block diagram of LLR calculation architecture

(4) Modified Sliding Window Scheme

In the traditional log-MAP decoder architecture, the branch metric calculation unit is
usually placed in front of the sliding window memories. Thus, the output branch of
metric values needs to be stored into sliding window memories, which can then be read

when calculating state metric. Further, we attempt to modify the placement of branch
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metric for log-MAP decoder architecture such that the storing sliding memory size is

less than that of traditional log-MAP decoder architecture.

The Fig. 3-7 shows the branch metric calculation block are placed in back of sliding
window memory, in which results in the received codeword (Y, Y,) and intrinsic
information being stored, rather than the output of branch metric calculation. Although
there are /6 sets branch metric value calculated for /6 states Turbo decoder, we can
only compute the maximum independent sets of branch metric value to obtain all sets,
as shown in Table 3-1. Note that the minimum linear combination branch metric sets
sharply increase as the code rate of Turbo decoder increases from 1/2 to 1/6. This result
causes the larger memory storage requirement for traditional architecture than that of
modified architecture. The major reason is that the minimum independent branch metric
sets [23] increase at a factor of 2 when the code rate () goes from 1/2 to 1/6.

The Table 3-2 lists the sliding window memories storage comparison of our
modified sliding window scheme and. traditional'SW scheme and Fig. 3.8 shows that
our modified sliding window architecture can reduce 53./3% sliding window memory
area overhead comprised with of the traditional sliding window architecture for code
rate (r = 1/6). Although the storing bit requirement of sliding window memories for
modified method are larger (25%) than of traditional SW architecture, this
reconfigurable Turbo decoder has to support various code rate. Thus, it is obviously that

the modified architecture is suitable to be applied for reconfigurable Turbo decoder.
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Fig. 3-7 The change of BMC block placemént behinds sliding window memory

Table 3-1 The minimum linear' eombination sets of branch metric values for various
code rates
Code rate (1/2,1/3) (1/4) (1/6)
I“l]“t codeword (Xskv Xpl:lk) (Xskv Xpl:lk' X]]3:lk) (Xskv xl’l"k,xl’hk, Xll.’mk)
(+1,+1) (+1,+1,+1) (+1,+1,4+1,+1)
(+1.-1) (+1,+1,-1) (+1,4+1,+1,-1)
-1.+1 (+1.-1,+1) (+1.+1,-1,+1)
(-1.-1) (+1.-1,+1) (+1+1,-1,-1)
(-1.4+1.41) (+1.-1,41,41)
(-1.4+1.41) (+1.-1.+1.-1)
All possible combinations of (-1-1,+1) (+1.-1.-1+1)
BM. value sets (-1,-1,+1) (+1,-1,-1.-1)
(-1 +1,+1,+1)
(-1.+1.+1,-1)
(-1,+1.-1+1)
(-1,+1,-1.-1)
(-1,-1,+1+1)
(-1.-1,+1.-1)
(-1-1,-1,+1)
(-1-1,-1,-1)
Max. no. of BV value basis 2 4 8
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Table 3-2 The sliding window memories storage comparison of our modified method

and traditional SW scheme

drehitecture | Traditional Sliding Window Memory | Proposed Sliding Window
Storage Memory Storage
Code rate (For Each memory) (For Each memory)
1/ 2 radix2 177
Vi * S W (Bit(L,) + 2ebit(y* oS,
1/ 3 radix2 177
Vot * & Wi (Bit(L,) + 20bif(y* NeSTT
1,/ 4 radix2 . <STF. . . R §
(r} vt + ammﬁﬂg“lnmrﬂnw) mmﬂsets 5 H ot (bII(LI ) + S.bn('y )).5 Hfde?ih
1f6 radiz? ) . « STV . . B ,
(’} wh " awxdmg‘:wsrﬂuw) min§sets 5 H fength (bn(LI ) + 4'blf(y )).S Hfdeptk

Yoidh © The bit-width of branch metrics value.

min sets : the minimum linear combination sets for branch metrics values
bit(x) : The bit-width of variable x.

L; - Intrinsic information.

& : Symmetrical codeword.

SWaepn © Sliding Window Length.

4500
4000
3500
2000 O Trgditional Shiding
2500 somge
2000 @ Proposed Shding
1500 Window Scheme
1000

500

r=1/2 r=1/3 r=1/4 r=1/6

Fig. 3-8 The sliding memories size requirement between traditional sliding window
scheme [24] and our modified method for different code rate. @ (SW gepmn = 32, bit(Li1) =
6, bit(received codeword) = 5, Ywigm = 6, two sliding window memories)
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3.2.2 Interleaver Address Calculation Unit

Interleaver Address is used to shuffle the original sequence order to interleaving order
or de-interleaving order for extrinsic information and systematic information (y). In
practice, the interleaver address usually has two ways to implement. One way is to store
interleaving patterns in the ROM, and the other way is to directly implement

interleaving function on-line circuit.

Due to the number of interleaving patterns up to 8920 for CCSDS standard, we
implement the reconfigurable interleaver address circuit which can select different
interleaving sizes through control signal, as shown in Fig. 3.9. This on-line address

calculation unit can save more areasequirement relative to the ROM approach.

sel

223 \l 2

446 ‘

892 A\
1115 161026 22
2048

s[0]

L

[ h)

L, 7{s)

Fig. 3-9 Block diagram of on-line interleaving pattern calculation
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3.2.3 Extrinsic Information Quantization

The quantization of extrinsic information technology proposed in [25], can reduce
significant area requirement of extrinsic memory with a negligible performance loss. In
the log-MAP algorithm, the extrinsic information is fed back to the branch metric
calculator, which combines the input symbol with the extrinsic information. Minimizing
the necessary chip area and power consumption is important, especially in mobile
application.

The extrinsic values pass through the non-linear quantization mapping block, and
then are stored into extrinsic memory, where the quantization mapping function is
shown in Fig. 3.10. Note that the extrinsic information is compressed by non-linear

mapping, leading to significantly the reduction of extrinsic memory area.

output

input

\\\\\\

Fig. 3-10 Non-linear quantization for extrinsic information

3.3 Serial SISO Structure

In the single SISO decoder architecture, the estimated information is completely
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outputted after approximately 2*[ter.*(N+2SW+C) cycles during decoding process,
where N is the block size, SW denotes the sliding window length and C is the pipeline
delay time. Therefore, for a given frame size N and sliding window length SW, the

throughput of serial SISO Turbo decoder can be defined as follows:

Throughput, ,, = f, N 3.1

U Delter. (N+2e8W,

engin T C)

For instance, consider N to be 71784, the SW length to be 32, Iter to be 5, where
early stop method is applied to increase throughput, and assume the pipeline delay C
can be neglected, the throughput of single SISO decoder could be approximately
19.3Mbps for clock rate 200MHz applied. However, this example demonstrates the
serial SISO structure has a long latency /8480 cycles causing low data throughput. Thus,

the low throughput and high latency for the-serial structure is difficult to be applied in

real-time media communication application.

3.4 Parallel SISOs Strcture

Parallel decoding can significantly reduce the decoding processing latency relative to
sequential decoding. The block size N is divided into P separate sub-blocks,{%,
k+N/P ..., k+(P-1)*N/P} , and each sub-block is performed by single SISO decoder.
Thus, the throughput of parallel structure is faster than that of the serial SISO
structure since the multiple structure is able to generate N extrinsic information
currently relative one extrinsic information for the serial structure in each output unit

time, and the latency is reduced to 2*Iter. *(N/P)+2L cycles.

Because the P-sets extrinsic are outputted from parallel SISOs simultaneously, the

extrinsic memory requires P-distinct memory-banks with N/P depth to store it. However,
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the beginning of each recursion state metrics requires a reliable value through “warm up
training phase” for each forward and backward metrics per SISO decoder. To reduce the
warm up training phase causing extra latency during decoder, there has been a well
developed low latency initialized state metrics process for parallel SISOs structure as

follows [26]:

(a) The initial forward state metrics assume zero for all SISOs in the first decoding

iteration.

(b) The final forward state metrics of each SISO after iteration are stored and

become the initial state metrics for its adjacent SISO for each iteration..

(c) The initial value for the backward state metrics is to adopt the boundary

backward state metrics value from the adjacent SISO decoder.

But, this initial process needs the additional memory storage to buffer the initial
values for FP. Furthermore, the throughput of parallel SISO structure is a function of the
parameters block size N, window size SWugn, the number of turbo iterations /, number
of parallel workers N and clock frequency f. :

N
Throughputparallel and high—radix = fclk (32)

2elter. (];+2-SW +C))

length

With the previous example, the throughput of 32-parallel structure could be achieved
297.95 Mbps and the latency are shorten as approximately /798 cycles.

However, one of the parallel SISO decoder architecture’s existing problems is that
there are probably more than one data to access the same memory destination
simultaneously, also called the memory collision problem. There exists several issued
interelaver, such as WCDMA, 3GPP and CCSDS, belonging to this “non-contention

free interleaver”. As far as this non-contention free interleaver is concerning, we will
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present an extrinsic information location strategy in the next chapter to resolve this
problem.

On the other hand, many researchers have presented “contention free interelaver”
to achieve high-parallelism with low complicated interleaver design. Even if the
performance of contention free interleaver is superior to that of non-contention free ones
since they have high spreading characteristic and high minimum distance to against the
noise and interference over channel. So far, two excellent contention free interleaver
QPP and APR interleaver , which has been be discussed in detail in [27] and [16],

respectively.
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Chapter 4 Solving Memory Collision Problem For

Parallel Turbo Decoder

4.1 Introduction

The well-known turbo decoder is an iteratively decoding process working between the
soft-input soft-output decoder and interleaver / de-interleaver scrambler. Thus, a certain
amount of memory is assigned to store channel information and extrinsic information.
For the serial Turbo structure, at each time instant, only one LLR is first written into
extrinsic storage. As the whole decoding finishes, the SISO2 begins to read intrinsic
information from the extrinsic storage in serial. In contrast, for the P-parallel Turbo
structure, its major difference is to déal with th€:P-set extrinsic values simultaneously
writing into the distinct storage for each time instant, Unfortunately, the read or write
access conflicts may occurs when multiple’'LLRs are read and written to the same target

memory.

4.2  Memory Collision Problem for Parallel Turbo Decoder

The problem is best illustrated by taking the interleaver table shown in Fig. 4-1 for two
concurrently produced LLRs and assigns its address to two individual RAMs. Table 1
shows the incoming data together with the associated targeted RAMs and relative
addresses. In the first time-step from, one LLR is read from source RAM1 (Addr. 1) and
written to garget RAM 2 (Addr. 3). At the same time, the other one is read from source
RAM 2(Addr. 1) and written to target RAM1(Addr. 2), resulting in no conflicting event
for the duration of write accesses. Unfortunately, in the second and third time-step, there

are two data needed to be allocated at the memory simultaneously according to the
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concept of interelaver table. Consequentially, it is needed to solve that the read or write
access conflicts which may occur with multiple LLRs, otherwise, the exchanging

information may fail in memory accesses.

Time-Step | Read accesses from Source RAM | Write accesses into target RAM | Memory

(Read address) (Write address) Collision

1 Ml (Addr. 1) | M2 (Addr 1) | M2 (Addr. 3) | M1 (Addr. 2) X

-2

Ml (Addr.2) | M2 (Addr2) [M1 (Addr ) |MI (Adde3) | O

(¥

Ml (Addr.3) | M2 (Addr 3) [M2 (Addr.2)[M2 (Add )| O

Fig. 4-1 An example of memory collision event.

4.3  Solving Memory Collision Problem Using Temporal

Buffer Architecture

The straightforward idea is to employ the buffer device for storing conflicting element,
if the conflicting event occurs. Applying buffer device on the VLSI Turbo parallel
decoder architecture, Norbert When (2002) [20] has been well developed in the Ring
interconnect bottleneck breaker (RIBB) methodology, where the buffers are connected
into a ring structure as shown in Fig. 4-2.

For each buffer, there are three different sources which come from local constituent
decoder, the left-buffer distributor and the right-buffer distributor. When the output
value of constituent decoder is sent into the buffer cell, the extrinsic information can
either be fed through or stored to the local RAM. By the similar way, the decision for
whether incoming data from the left or right slide is also determined by interlever table.

As several data sets may have the same target, the buffers need to be capable of

storing more than one data per cycle. Furthermore, the possible maximum read/write
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ports for memory need to match the worst case for conflicting event. Otherwise, the
buffer does not ensure to access all data sets correctly.

However, the above solution method requires an extra temporary buffer and collision
handling time in view of hardware aspects. Therefore, the objective of the present
memory collision free algorithm is to distribute the extrinsic dates from parallel SISO
decoders into the storage elements without memory collision occurring. The proposed
memory collision free algorithm can support various Turbo standards as well as arbitrary

the number of parallel high radix SISO architecture in the following section.
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Fig. 4-2 Avoiding conflicting using temporal memory architecture

4.4  Proposed Memory Contention Free Scheme for Parallel

Turbo Decoder

In order to obtain the maximum network flow (all memories are collision free), these
extrinsic values must access distinct memory banks at every time instant; otherwise, the
throughput of decoding process are delayed by occurring conflicting memory elements.

Thus, we propose a solution for solving the extrinsic memory collision problem, as

45



discussed in the following concept.

4.4.1 Definition of Memory Collision Problem

Consider a P-parallel Turbo structure, whose frame size-N is divided into P number
sub-blocks with length W defined by ceiling (N/P), and each sub-block is performed by
individual SISO decoder. The P-parallel SISOs structure are performed in parallel
decoding through interleaver/de-interleaver, and the interleaving position corresponds
into {z(i),x(W+i),..., n((P-1)*W+i)}, where (i) represents the permuted position of i-th

natural order data for 0 <1< W-1.

For addressing the memory collision problem, the parallel structure can be
distinguished into two aspects. For the interleaving aspect, when the P soft outputs are
produced from the P-SISO decodets, it should: be stored to distinct extrinsic memory
banks. For the de-interleaver aspect@” (i), which changes soft information ordering into
the original sequence, the soft information are read separately from the distinct memory

banks and used as intrinsic values for P-SISO decoding process.

In generally, the memory collision only occurs when accessing memory with an
interleaving order. Consequently, for each time instant, they must access distinct

memory banks and can be formulated as follows [3,4]:

[ﬂ'(j+t'W) » 7r(j+v-W)J @.1)
wooo| W '
7+ tW) ) 7 (G +veW) 2)

wooo W '

where 0=j=W,0=t, v=P-land t # v.

® Transforming Extrinsic Information Allocation Into Graphing Coloring Problem
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In order to understand the relationship of (4.1) and (4.2) with soft information, for each
time instant, the concurrent SISOs outputs are labeled as conflicting elements “1°, which
means not to be allocated into the same destination for combining all conflict cases from
(4.1) and (4.2). And then converse the relationship between all conflict elements with the

pictorial expression.

Fig. 4-3 demonstrates an example of frame-size (N=16) for four-parallel SISOs
structure using graph expression of memory collision problem. Fig. 4-3 (a) shows the
output sequence of natural order and interleaving order 7z(i). According to (4.1) and(4.2),
the output elements of each column in Fig. 4-3(a), seen as conflicting elements, should
be allocated in parallel to different memory destinations. In Fig. 4-3(b) each pair of
conflicting elements can be shown as two connéeted nodes, where Bgis the edge matrix
in which if (i) is ‘I, there exists a line connecting nodes i and j; otherwise, no line

exists.

% Parallel %

Naturnal Order Interleaving Order

sisol— | 1 |2 134 |sisoo— |1 |8[14/6

s1Iso2— | 5| 6| 7|1 & |sisoz2— | 7121913

s1s03— | 9 [10/11112]| stsoz— 10|11 4 |16

SISO 113|14|15|16| 39— 12| 5 |15| 3

Output
Sequence

Output
Sequence

(a)
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1000101011011 000v,
0010011000101011 vy
0001000110010101 vy
1100100110101 000vy
0110010001001 101vy
1010001001110010v-
1010110010011 0001vg
N 1001100010001 110v,
1100011001010100vy,

atd

0110101100100010v,, ‘.‘";
1001001101010001 v, -7
1010110010001 001v,;
0101010011000110v,,
00110010101001107v,s
0011010100011001 v,

(b)

Fig. 4-3 (a) An example of natural order and interleaving order for 4-parallel Turbo
decoder. (b) Conversing the example-of memory collision problem with graph

expression.

442  Solution to Graph Coloring Problem by Simulated Annealing
Algorithm

Since memory collision problem can be analogous to robust graph coloring problem [27],
which has been proved as NP-hardness problem, the simulated annealing algorithm [28]

can be effectively used for reaching the goal of memory collision free.

® Memory Collision Free Design with Simulated Annealing (SA) Algorithm

First, we define an objective function to calculate the number of conflicting elements for
given extrinsic information into extrinsic memory banks mapping (C). When the
objective function reaches the zero value, the mapping C is an available memory
collision mapping, the detail procedures are discussed as follows:
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For a given graph topology G = (V, E) with | V| = N, given the edge matrix Bg derived
from the memory collision problem, where ¢ indicates the number of memories and N
denotes the frame size.

The objective function is defined as follows:

R(MemoryMap) = Ae Z Dij (4.3)
V(i) CH=C()
1 (L)) EE
= 4.4
Pij {O ,otherwise @4

where A denotes the penalty factor (A>1) and C is a coloring mapping which is identical
to memory mapping in this case, i.e., C:  V—{1,2,...,c}. This procedure is to obtain the

solution C such that no two nodes are connected between the same memory set.

The memory collision free algorithm could be stated by the following four terms:

1. Initialized procedure: by choosing a-random - memory mapping to all vertexes

(V1,V,...,Vy) also or allocate all vertexes in the Bank; Then to set a very large
value as the initial temperature, which has a larger probability to escape from local
minimum (or maximum) value.

2. Local search procedure: The basic idea of the local search is that it starts from

an initial solution and repeatedly replaces it with a better solution in its
neighborhood until a better solution could not be found in the neighborhood. This
is, if the new solution MemoryMap,., is better than the current best solution
MemoryMap,,, in terms of the objective function value, the current best solution 1s
updated; otherwise, the new solution is accepted by comparing the value of
exp((R(new solution)-R(best solution))/T) with a random number U(0,1) generated

from a uniform distribution on the interval [0,1].
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3. Cooling procedure: Next, the algorithm goes into the cooling schedule that

decreases the temperature from T to 7*a where the parameter attenuation constant
a (0<a<1) controls the speed of the convergence of the algorithm. This decreasing
the temperature causes degenerative transition to be accepted with a lower
probability as the algorithm progresses and corresponds to a lowering of
temperature.

4. Terminate memory collision free algorithm: when the object function reaches zero

value, the whole memory collision algorithm is terminated, and then the final
memory mapping function C is outputted.
Fig. 4-4 shows a pseudo-code of memory collision free procedure using the simulated

annealing algorithm.
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Simulated Annealing Algorithm for Solving Memory Collision Problem

Procedure Memory _Collision _ Free (¢,n. MnIt,T . c)
T—T

Tnitial °

VAP,

MemoryMap, , ={Bank,,..., Bank,}  Duitial Solution Generation
REPEAT{
FORI=1T0 Muxlt DO
V' — Random choice of avertex from {V*,...V"};
Current dlloccted bank for V' vertex = Bk, — Bank™{V"}
repeat{
Bamk,,,, — random choice of a memory bank from {Beank,...., Bank, }
} until {(B(m]( =Bank,.) & ( Bank |>1)or ( Bank,,|> 0)}

rrent et
AE= [R(fvfemom‘l/{({pmw) - R(fbku.aom‘bﬁ@opf)]
IF (AE <0) OR (EXP(-AE/T)>U[0,1]) THEN
Bank,,, — Bank, . \{ V'}, Bank,,, — Bank,, J{ V',
| Bank,,,,,,. |—| Bank,,,..| -1, | Bank, |- Benk .| +1,
MemoryMap,,, — MemoryMap,
End IF
End FOR
T'=aT
) UNTIL{R(MemoryMap, ) =0}

return Final optimum sohition —{ Bank, ..., Bank, }

Fig. 4-4 Using simulated annealing algorithm for solving memory collision problem.
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4.4.3 The Extrinsic Memory Collision Free VLSI Architecture Design

After simulated annealing algorithm is used for solving the memory collision problem,
the final optimum solution guarantees that no two data can access the same memory
concurrently. Fig. 4-5 demonstrates that the final optimum solution (color sets) obtained
by SA algorithm to solve the memory collision of the previous example in Fig. 4-3.
Fig. 4-5(a) shows that different colors correspond to different extrinsic memory banks.
For the VLSI implementation, the memory mapping table can be stored into ROM table

in advance as shown in Fig. 4-6.

) 51501 —» | (Bankl) | 2(Bankd) | 3 (Bankl) | 4 (Bank?)

15 51502, 3 (Bunk) | 6 (Bankd) | 7(Bank)) | § (Bankl)
4 3503 —» U (Bank3) | 10 (Banfi3) | 11 (Bank3) | 12 (Bankd)

p : SIS04 = 13 (Bunkd) | 14 (Bankl) ' 15 (Bank4) | 16 (Bank3)
1 ; siso1 > | (Bankl) | $(Bankl) | 14 (Bankl) | 6 (Bank)
1 s1s02 = 7 (Bank) | 2(Bank4) | 9 (Bank3) | 13 (Bunkd)

I oy een] $1503 — 10 (Bank3) | 11 (Bank3) | 4 (Bank2) | 16 (Bank3)
) S50 > [)(Bunkd) | 5 (Bak) | 15 Barks] | 3 Bank]

()  [lvemyiond b)

Fig. 4-5 (a) The solution of the example of Fig. 4-3 obtaining from contention free

algorithm. (b) Conversing each color set to corresponding each node element.
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Extrinsic No memory collision Intrinsic Ne memory collision

Values DCCUFS ‘alues QCcurs
SISO #1 Arbltrnt()r#_’ Memory Bank Decision SISO #1
1 #1 #1

— Arbitrator Memory Bank Decision ——
SISO #2 #2 — Py H#2 SISO #2
- Arbitrator Memory Bank Decision

SISO #3 #3 —| #3 #3 SISO #3
—— Arbitrator Memory Bank Decision ——
SISO #4 #a — #4 a4 SISO #4

- — — - = - — —
SISOF SISO2

Fig. 4-6  Structure of proposed memory collision free architecture for the example of

Fig. 4-3
4.4.4 Simulation and Experiment Results

Since the quantization should be thetrade-off between coding performance loss and
hardware cost, the fix-point can be determined wvia Monte-Carlo simulation. The
primary specifications of the Turbo decoder are given in Table 4-1, where the code
polynomial follows the Consultative. Committee -for Space Data Systems (CCSDS)
standard [5]. Fig. 4-7 demonstrates the Turbo decoding performance results after 8
iterations for different sliding window lengths (SW) and fixed point bit-width. We can
see that the curve of (SW=32 & fixed point) has the minimum error performance loss
relative to that of floating point simulation. On the other hand, the curve of (SW=32 &
fixed point & 4-bits non-linear encoded [25]) leads to larger performance loss relative to
that of floating point simulation, but less extrinsic memory requirement in the Turbo
decoder is expected.

Our proposed contention free algorithm can be used for parallel Turbo decoder
supporting the arbitrary SISO numbers and high radix VLSI architecture. Here, we take
the specification of Table 4-1 into account to achieve the purpose of contention free for

8, 16 and 32-SISO numbers.
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Table 4-1 Summary of parameters for Turbo code simulation

Application CCSDS
Generator Polynomial | 1+D+D°+ D' 1+D*+ D' 1+D+D*+D° + D
G(D) 1+0°+ D 1+0°+0 14D+
SISO Algorithin Sliding window log-MAP
SISO Architecture Radix-2
Block Size 1784
sliding Window Size 32
The Number of Iteration 8 (Fixed)
Received input: (5,2)
Extrinsic information: (6,2)
Quantization
Branch metric: (6,2)
State metric: (9,2)
10"

107

Bit Error Rate (BER)
o

10°

—{0— SW=8 & Fix-Paint
—— SW=16 & Fix-Point
4+ SW=20 & Fix-Paint

107l —— sW=32 & Fix-Point
* SW=32 & Fix-Point & IIn :
- 4 Bits Non-linearExtrisic Encoded f----4----------- femommamons
1U 1 I 1
0.3 0.4 0.5 06 0.7 0.8 0.9

Eb/NO

Fig. 4-7 BER performance of the Turbo decoder
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The Fig. 4-8 demonstrates the change of cost functions of contention free algorithm
for various parallel Turbo decoder applications. The contention free algorithm is
terminated until the cost function reaches zero value. Then, the solution (color sets) is
obtained with respect to memory banks such that each nodes (extrinsic value) has no
occurrence of conflicting events. The Fig. 4.9-11 shows the solution of contention free
algorithm for 8, 16 and 32-parallel Turbo decoder, where the horizontal axes denotes the
time index (i.e., the order of output sequence of SISO decoder); and the vertical axes
corresponds to the location of P-SISO decoders in the Turbo decoder. We can see that
each column is drawn with different color. Thus, our proposed algorithm guarantees to
achieve the purpose of contention free.

In general, the circuit function needs to be werified by function verification after
synthesis or FPGA (Field Programmable Gate Array) platform. Due to the high expense
in the IC manufacturing, the FPGA" provides: more cheaper programmable and
reconfigurable ways to verify your circuit. Even the FPGA platform offers immediate
real electronic signals to work together with other system platform (i.e., ARM) or
measured from oscilloscope. The Fig. 4-12 shows that the output signals of Turbo
decoder using the Xilinx Virtex-IV XC4VLX60 FPGA. For the function verification,
we first store all output signals into text file and then compare the output values of
golden model from MATLAB® with the output values of FPGA as shown in Fig. 4-13.
When the error signal is raised, there exists some difference between golden model and
output signals from FPGA. Otherwise, the output signals of FPGA platform are correct.

We have simulated and verified the design logic by comparing the output results to
MATLAB® fixed-point simulation and performed synthesis targeted at UMC 130nm

CMOS technology by the Synopsis® design compiler.
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Fig. 4-14 shows the proposed architecture of contention free parallel Turbo decoder
which major consists of multiple double-input-buffers, SISO decoders, Look-Up-Table
(LUT) and some control circuits. Each SISO core consists of three recursion units for
acquisition, forward and backward recursion which requires additional controllers for
the state and branch metrics memories, where we assume eight iterations are performed
for turbo decoding and clock rate is set 200MHz. There are two input memory-banks
applied such that the decoding process could be able to continuously decode noisy
codeword at different frame [20] and the extrinsic storage also employs P sets distinct
memories to achieve the goal of memory collision free. Then, the results of memory
collision free are stored into the LUT memories. One of LUT memories is used for the
arbitrator device; the other is used for the decision device. Finally, the control circuit is
employed such that the design can:be more flexible.

Each SISO core consists of three recursion units for acquisition, forward and
backward recursion which requires. additional controllers for the state and branch
metrics memories, where we assume eight iterations are performed for turbo decoding
and clock rate is set at 200MHz.

Table 4-2 lists the area requirement of the proposed parallel collision free Turbo
decoder implementation for various number SISO decoders. As a result, the high
parallel Turbo decoder has larger total area size but relative its throughput also becomes
faster than that of low parallel Turbo decoder. In practice, the hardware implementation
should choose the appropriate parallel parameter P by achieving the throughput
requirement and minimizing the area requirement. However, our proposed algorithm
can support arbitrary parallel parameter P such that no conflicting element causes the

degradation of whole throughput of Turbo decoder.
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Fig. 4-12 The VLSI architecture implementation of Turbo decoder in the FPGA

platform

S

20 10 600 800 1000 1200 1400 1600
2
— Matlab Data

2 | | | | | | | |

0 20 10 600 800 1000 1200 1400 1600
2
1
i | | | | | | | |

0 20 40 B0 a0 1000 1200 1400 1600 1800

Fig. 4-13 The comparison of the output values of golden model from matlab® with the

output values of FPGA
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Fig. 4-14 The block diagram forthe proposed cofitention free parallel Turbo decoder
Table 4-2 Parallel Turbo decoder area and through for various number of SISO

decoders at clock frequency 200MHz.

# of parallel P g 6 27
[lock size N:1784] o
SISO decoder

_ i 0.296  2.368 4.732 9.45
(16 states QACS)

Extrinsic RAMs 0061 0154 0272 0425
I/O-Data RAM 0245 07584 1.344  2.685
Look Up Table Memory  No needs 0.558  0.960  1.344
Interface/Control 0.03 0.08 0.12 017

Total area (mmié) 0.632 3974 7428 14077

Throughput rate (c0 200M H-=, ; o
2,002 74581 11893 16925
iteration:§ (Mbps)

62




4.5 An Approach for Reducing Memory Area of Parallel

Turbo Decoder

For parallel Turbo decoding processing, the overall decoding throughput increases
linearly together with the hardware complexity. In particular, the temporary memories
occupy a significant portion of total hardware. Several papers have proposed different
strategies for reducing memory area of SISO decoder, such as sliding window memory
and state metrics memory [29]. In this section, we present two approaches that can
reduce a considerable amount number of extrinsic memory area for parallel Turbo

decoder.

4.5.1 Classical Extrinsic Memiory Access for Single Turbo Decoder

Fig. 4-15 shows the waveform=expression of single. SISO decoder and the external
storage components, which consist of inputsbutfer unit and extrinsic memory. Note that
the shaded region denotes concurrent read-and write access to the extrinsic memory. The
length of shaded region can be approximated as N-L, where N is codeword block size
and L denotes the latency of log-MAP decoder. In practice, the extrinsic memory can be
implemented by dual port memory [30], two port memory [31], or two single port

memories.

4.5.2 An Area-Efficient Extrinsic Memory Scheme for Parallel Turbo

Decoder

The extrinsic memories occupy a considerable amount of area in the parallel Turbo
decoder due to multiple memory banks. The reduction of extrinsic memories is necessary
for an area efficient Turbo decoder. Fig. 4-16 demonstrates the waveform of multiple

SISO decoders and the extrinsic memories. We can see that the length of the shaded
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region in parallel Turbo decoder scheme is shorter than that of single Turbo decoder
scheme (Fig. 4-15), which can be approximated as (N/P)-L, where P assumes the number

of multiple Turbo decoders.

The length of the shaded region can become much smaller, even reaching zero,
through the use of a larger number of SISO decoders each employing the memory
collision free algorithm presented in previously section. When the length of the shaded
region is small enough, the extrinsic memories can be implemented by single port
memories with one temporary buffer used for storing the extrinsic values. [25] had
presented an extrinsic value mapping function, which could significantly reduce the
bit-width of the extrinsic value. Fig. 4-16 shows an area-efficient extrinsic memory
scheme for parallel Turbo decoder where the extrinsic memories and buffer are realized
by signal port memories. Due t0 the multiple single port memories used for storing
extrinsic values, there is significant area reduction in r€lation to use of multiple dual port
or two port memories. Therefore, the presented area-efficient scheme has a memory area

reducing benefit for the parallel Turbo decoder.

Ist Iteration
SISO1 SIS02 SISOI 1802
Input buffer Ist data Idle 2nd data Idle Ist data Idle 2nd data
i Block Size (N):
Latency (L) i He
4noneieee » ! '
SISO Output Extrinsic bits Extrinsic Bits Extrinsic bits Extrinsic bits
= | |
[ ldle ] Write | Read | !Read ]— !Read ]
Extrinsic Mem. | ! !
. Block Size (N)
() :Output Invali

) :Overlap | | |

Fig. 4-15 The waveform expression between the single log-MAP decoder and the
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external storage components which consist of input buffer and extrinsic memory.
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Fig. 4-16 The waveform expression between the multiple SISO decoders and the
external storage components which consist of input buffers and extrinsic memories.
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Fig. 4-17 Structure of proposed an area-efficient extrinsic memory scheme for parallel

Turbo decoder architecture.
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4.5.3 Analysis of the Required Memory Size

The hardware evaluation is obtained by using Verilog HDL codes synthesized with the

standard cell library of UMC 0.13-um CMOS process. Since the CCSDS standard doest

not support parallel contention free Turbo decoder architecture, we can apply memory
collision free algorithm introduced in previously section to realize parallel turbo decoder
architecture. In Table 4-3, the extrinsic memory requirement of four different parallel
Turbo decoder configurations is evaluated with the latency L of SISO decoder as
measured by HDL simulator. Note that the proposed extrinsic storage schemes achieve
31% area reduction(0.096 mm®) without extrinsic quantization and 41% area reduction
(0.125 mm?) with extrinsic quantization relative to conventional extrinsic storage using
dual port RAM, which was proposed in [30], for 8-parallel Turbo decoder architecture.
The extrinsic memory requirement  for |16-parallel -Turbo decoder architecture and
32-parallel Turbo decoder architecture are also listed in Fig.4-18. Note that a larger
number of parallel Turbo decoder can obtain-a+larger percentage of memory area
reduction as the read and write access time of extrinsic memory does not overlap such

that the temporary buffer is not necessary.
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Table 4-3 Summary of area requirements for various organization of extrinsic memory

architecture
Method Organization Area Requirement of Extrinsic Memory
Téa?lor_lal (Dual Port RAM)
xtrinsic —— -
Stor ceil(N/P)*Bit {Ex s peni™ (No. of Banks)
orage (two Port RAM)
(mm")
Single Port RAM+ e -
Proposed ](Exlillifig ?::mpcn ary ceil (N P)*Bit {Ex}] s bass “(No. of Banls)+
sic ary
o - abs(cell(N/P-L))*Bit(Ex™* No. of Banks
Extrinsic buffer) abs(ceil ))*Bit(Ex* No. of Banks)us
Storage -
Single Port RAM+ - -
(mm?) ( mg_e_ o ceil(N/P)*Bit {map{Ex} apvac *( No. of Banks)+
Extrinsic Buffer+ —— -
. . labs(ceil(IN/P-L))*Bit(map{Ex}* No. of Banks e
Extrinsic mapping[11])
Note:
L: the output extrinsic latency for half'iteration of SISO decoder (104 cycles measured).
ceil(x): the upper mteger of x.
N: Block size (1784+4 return zero bits).
SW: 32 applied.
Depth*Bit-width| the memory area requirement.
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Fig. 4-18 Comparison of area requirements for different organization of extrinsic

memory architecture (@ UMC 0.13-pum CMOS Process Measured and latency L=104

cycles measured).
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Chapter 5 Conclusion

A memory collision free algorithm to achieve high parallel SISO decoders for
turbo-decoding has been presented. The high parallel collision free Turbo decoder has
been implementation for VLSI architecture using the UMC-90nm standard CMOS cell
library. As a result, the throughput of 32-memory-collision free turbo-decoding could
achieve up to 169.25Mbps with clock frequency 200MHz, which is faster than that of
serial SISO decoder 12Mbps

This paper introduces a memory collision free algorithm using simulated annealing
heuristic method for parallel Turbo decoder, in which a highly parallel structure is
available. By applying memory collision free algorithm, we proposed two area-efficient
extrinsic memory schemes achieving lower hardware cost for high parallel Turbo
decoder structure. The experimental results in UMC '0.13-pym CMOS process show that
the organization of our proposed ‘extrinsic—memory without extrinsic non-linear
quantization can achieve around 40% memory area reduction for the 32-SISO parallel
Turbo decoder relative to conventional extrinsic storage using dual port RAM for the
Turbo code of CCSDS standard. On the other hand, the organization of our proposed
extrinsic memory with extrinsic non-linear quantization can further achieve around 46%

memory area reduction for the 16-SISO parallel Turbo decoder.
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