
國 立 交 通 大 學

電信工程學系

碩 士 論 文

用於平行渦輪碼之無衝突演算法

Contention Free Algorithm
For Parallel Turbo Decoder

 研 究 生：曾凱信

 指導教授：張振壹 教授

 共同指導教授：方偉騏 教授

中 華 民 國 九十八 年 六月

用於平行渦輪碼之無衝突演算法
Contention Free Algorithm For Parallel Turbo

Decoder

研 究 生 ： 曾凱信 Student: Kai-Hsin Tseng
指導教授 ： 張振壹 博士 Advisor: Chen-Yi Chang
共同指導教授： 方偉騏 博士 Co -Advisor: Wai-Chi Fang

國立交通大學
電信工程學系碩士班

碩士論文

A Thesis
Submitted to Institute of Communication Engineering

College of Electrical Engineering and Computer Science
National Chial Tung University

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in
Communication Engineering

June 2009
Hsinchu Taiwan, Republic of China

中 華 民 國 九十八年 六月

用於平行渦輪碼之無衝突演算法

研究生：曾凱信

指導教授：張 振 壹 博士 共同指導教授：方 偉 騏 博士

國立交通大學電信工程學系(研究所)碩士班

中文摘要

在此論文中我們利用退火模擬演算法(Simulated Annealing Algorithm)

提出無衝突演算法去解決平行渦輪碼中記憶體碰撞問題。再者，對於

平行渦輪碼中的非本質記憶體，我們提出有效使記憶體面積減少的兩

種架構；其中一種架構是由平行單埠記憶體與一個緩衝暫存器所組成

去取代原來須兩埠或雙埠記憶體所組成的架構。另外一個架構，我們

基於前一個架構上再加上一個非本質函數的非線性映對器。在前兩種

架構相較於傳統使用雙埠記憶體在 0.13 CMOS 聯電製程環境底下分別

可以節省約 37 和 46 百分比記憶體使用量。

 i

 ii

Contention Free Algorithm For Parallel Turbo

Decoder

Student: Kai-Hsin Tseng

Advisor: Chen-Yi Chang Co -Advisor: Wai-Chi Fang

Institute of Communication Engineering

National Chial Tung University

Abstract

In this thesis, a contention free algorithm for solving memory collision problem of

parallel Turbo decoder architecture using the simulated annealing algorithm is presented.

Furthermore, we proposed two area-efficient extrinsic memory schemes based on the

parallel contention free Turbo decoder. One of the proposed schemes employs only

multiple single port memories with one temporary buffer instead of the original dual

port or two port memories. And the other scheme further employs an additional

non-linear extrinsic mapping architecture. The proposed schemes lead to approximately

37% and 46% memory area reduction, respectively, for 16-parallel Turbo decoder in

comparison to the conventional dual port memory scheme under the UMC 0.13-μm

CMOS process.

 iii

誌謝

這幾年碩士的求學生涯是一段豐富的旅程。雖然這段求學路走來波折不斷，不過

在師友及家人的協助下逐一地克服困難進而更上一層樓。我要非常感謝張振壹教

授和方偉騏教授，在我遇到求學期間最困難的時候，兩位老師們給我機會及諄諄

教誨令我擁有面對更多挑戰的信心。

 SOCLab 一個和諧的團隊合作，同學之間一起討論研究、解決問題和互相的鼓

勵，讓我在此學習成長，吸收許多的寶貴的意見。感謝 正湟、秋國、盛弘學長，

翔琮同學，志文、源煌、少彥、宗翰、致中和鴻溝學弟以及在 SOCLab 每一位成

員，特別是翔琮和少彥同學在研究上和英文上給予相當大的幫忙和鼓勵。

 最後誠摯地感謝我的家人(爸爸、媽媽和姊姊)，當我最大的後盾。還時常為我

擔憂學業情形及是否溫飽，這股關懷更是我最大前進的動力。最後，我更要感謝

已在天國的阿公和阿嬤，感謝您兩位老人家對凱信我的疼愛與深深地期盼。

在每一個困境中，家人的支持是我最大的動力，教授的指導給予我一盞明燈，

實驗室的團隊合作是我的最大的力量。最後，感謝交通大學給予我這麼有系統的

專業知識及學習做人處事的環境。

 iv

CONTENTS

口試委員會審定書 ...#

中文摘要 ..i

ABSTRACT ... ii

誌謝 ... iii

CONTENTS ...iv

LIST OF FIGURES.. vii

LIST OF TABLES...x

Chapter 1 Introduction..1

1.1 Motivation ..1

1.2 Thesis Organization ..2

Chapter 2 Turbo Code ...3

2.1 System Overview..3

2.2 Turbo Encoder ..4

2.2.1 Turbo Encoder Process..4

2.2.2 Recursive Systematic Convolution (RSC) ..5

2.2.3 Trellis-Termination..7

2.2.4 Puncturing ...9

2.3 Interleaver ...10

2.3.1 Block Interleaver...10

2.3.2 Prime Interleaver...11

2.3.3 Random Interleaver...12

2.3.4 S - Interleaver ..12

 v

2.3.5 Characteristic of Interelaver ..13

2.4 Channel Model ...14

2.5 Turbo Decoder Process...15

2.6 SISO Decoding Algorithm..17

2.6.1 Log-MAP Algorithm ...17

2.6.2 Max-Log-MAP Algorithm ..19

2.6.3 Initialized Procedure for Both Log-MAP and Max-Log-MAP

Algorithm ..19

2.7 Error Probability for Turbo Code ...20

2.8 Turbo Code Application on Telemetry and Deep Space Communications ..21

2.9 Simulation and Results ...24

Chapter 3 VLSI Architecture of Turbo Decoder...28

3.1 Sliding Window Approach..29

3.2 VLSI Architecture of SISO Decoder for CCSDS Standard..........................31

3.2.1 Log-MAP Decoder ..32

3.2.2 Interleaver Address Calculation Unit ..38

3.2.3 Extrinsic Information Quantization...39

3.3 Serial SISO Structure..39

3.4 Parallel SISOs Strcture ...40

Chapter 4 Solving Memory Collision Problem For Parallel Turbo Decoder43

4.1 Introduction ..43

4.2 Memory Collision Problem for Parallel Turbo Decoder43

4.3 Solving Memory Collision Problem Using Temporal Buffer Architecture..44

4.4 Proposed Memory Contention Free Scheme for Parallel Turbo Decoder45

4.4.1 Definition of Memory Collision Problem...46

 vi

4.4.2 Solution to Graph Coloring Problem by Simulated Annealing

Algorithm ..48

4.4.3 The Extrinsic Memory Collision Free VLSI Architecture Design......52

4.4.4 Simulation and Experiment Results ..53

4.5 An Approach for Reducing Memory Area of Parallel Turbo Decoder.........63

4.5.1 Classical Extrinsic Memory Access for Single Turbo Decoder63

4.5.2 An Area-Efficient Extrinsic Memory Scheme for Parallel Turbo

Decoder ...63

4.5.3 Analysis of the Required Memory Size ..66

Chapter 5 Conclusion ..69

Bibliography ..70

 vii

LIST OF FIGURES

Fig. 2-1 Digital communication system ...3

Fig. 2-2 Turbo encoder diagram ...4

Fig. 2-3 Block diagram of the RSC ..6

Fig.2-4 Trellis expression the relationship of current states and next states with

different input sequence..6

Fig. 2-5 Turbo decoder diagram ...17

Fig. 2-6 CCSDS Turbo encoder..22

Fig. 2-7 Turbo code for different code rates...23

Fig. 2-8 Performance results of Turbo code for different turbo decoding algorithm ...25

Fig. 2-9 Performance results of Turbo code for different block sizes26

Fig. 2-10 Performance results of Turbo code for different iterations...........................26

Fig. 2-11 Performance results of Turbo code for different code rate27

Fig. 3-1 Turbo decoder architecture ...28

Fig. 3-2 The operation of sliding window approach ..31

Fig. 3-3 Block diagram of the branch metric calculation...32

Fig. 3-4 The forward and backward recursive calculating by the trellis expression....33

Fig. 3-5 Block diagram of the ACSO and OACS architecture.....................................33

Fig. 3-6 Block diagram of LLR calculation architecture..34

Fig. 3-7 The change of BMC block placement in back of sliding window memory ...36

Fig. 3-8 The sliding memories size requirement between traditional sliding window

scheme [24] and our modified method for different code rate. @ (SWdepth =

32, bit(Li) = 6, bit(received codeword) = 5, γwidth = 6, two sliding window

 viii

memories) ...37

Fig. 3-9 Block diagram of on-line interleaver pattern calculation38

Fig. 3-10 Non-linear quantization for extrinsic information ..39

Fig. 4-1 An example of memory collision event. ...44

Fig. 4-2 Avoiding conflicting using temporal memory architecture45

Fig. 4-3 (a) An example of natural order and interleaving order for 4-parallel Turbo

decoder. (b) Conversing the example of memory collision problem with

graph expression. ..48

Fig. 4-4 Using simulated annealing algorithm for solving memory collision problem.51

Fig. 4-5 (a) The solution of the example of Fig. 4-3 obtaining from contention free

algorithm. (b) Conversing each color set to corresponding each node

element..52

Fig. 4-6 Structure of proposed memory collision free architecture for the example of

Fig. 4-3..53

Fig. 4-7 BER performance of the Turbo decoder ...54

Fig. 4-8 The change of cost functions of contention free algorithm for various parallel

Turbo decoder applications...57

Fig. 4-9 The solution of contention free algorithm for 8-parallel Turbo decoder58

Fig. 4-10 The solution of contention free algorithm for 16-parallel Turbo decoder59

Fig. 4-11 The solution of contention free algorithm for 32-parallel Turbo decoder60

Fig. 4-12 The VLSI architecture implementation of Turbo decoder in the FPGA

platform ..61

Fig. 4-13 The comparison of the output values of golden model from matlab@ with the

output values of FPGA ...61

Fig. 4-14 The block diagram for the proposed contention free parallel Turbo decoder62

 ix

Fig. 4-15 The waveform expression between the single log-MAP decoder and the

external storage components which consist of input buffer and extrinsic

memory. ..64

Fig. 4-16 The waveform expression between the multiple SISO decoders and the

external storage components which consist of input buffers and extrinsic

memories. ...65

Fig. 4-17 Structure of proposed an area-efficient extrinsic memory scheme for parallel

Turbo decoder architecture. ..65

Fig. 4-18 Comparison of area requirements for different organization of extrinsic

memory architecture (@ UMC 0.13-μm CMOS Process Measured and

latency L=104 cycles measured). ...68

 x

LIST OF TABLES

Table 2-1 The Output encoded sequence with different input information

corresponding to each state...7

Table 2-2 Interleaver algorithm for the Turbo code of CCSDS standard.....................23

Table 3-1 The minimum linear combination sets of branch metric values for various

code rates ..36

Table 3-2 The sliding window memories storage comparison of our modified method

and traditional SW scheme ...37

Table 4-1 Summary of parameters for Turbo code simulation.....................................54

Table 4-2 Parallel Turbo decoder area and through for various number of SISO

decoders at clock frequency 200MHz. ...62

Table 4-3 Summary of area requirements for various organization of extrinsic memory

architecture ...67

 1

Chapter 1 Introduction

1.1 Motivation

Turbo code has outstanding error correcting capacity, which was first introduced in 1993

[1], and its performance closely approaches the Shannon limit for Bit Error Rate (BER).

The fundamental turbo decoder comprises interleaver and constituent (Soft-In/Soft-Out)

SISO decoders. The SISO decoder performs iterative decoding based on maximum a

posterior (MAP) probability algorithm, which often transfers into logarithm domain as

log-MAP in the consideration of implementation complexity [2] .

Since the Turbo decoder requires a certain number of iterations to achieve the desired

performance, the iteratively decoding causes the lower throughout and higher latency for

the Turbo decoder process. To apply for high speed and low latency application, a

feasible method is to adopt the parallel SISO decoder architectures. However, one of the

parallel SISO decoder architecture’s existing problems is that there are probably more

than one data to access the same memory destination simultaneously, also called the

memory collision problem [3][4].

An available method of solving memory collision is to use extra storage devices for

storing the collision dates until the destination memories are in idle state and can be

accessed [20]. However, the above solution method requires an extra temporary buffer

and collision handling time in view of hardware aspects. Therefore, the objective of the

present memory collision free algorithm is to distribute the extrinsic dates from parallel

SISO decoders into the storage elements without memory collision happening. The

proposed memory collision free algorithm can support various Turbo standards as well

as arbitrary the number of parallel high radix SISO architecture.

 2

1.2 Thesis Organization

The thesis is organized as follows. Chapter II shows the concept of Turbo coding,

including Turbo encoder / decoder structure, Log-MAP algorithm and Max-Log-MAP

algorithm. The sliding window approach and the difference between the serial SISO

structure and parallel structure are discussed in Chapter III. Chapter IV illustrates the

parallel turbo decoder using simulated annealing algorithm achieving memory collision

free requirement and supporting arbitrary parallel parameter P. Finally, the conclusions

are given in Chapter V

Chapter 2 Turbo Code

This chapter introduces the components of turbo code, including turbo encoder, turbo

decoder, interleaver and given an example for the specification of turbo code of

(Consultative Committee for Space Data Systems) CCSDS standards [5]. Finally,

performance results are compared between the max-log-MAP and log-MAP decoding

algorithm, various code rates, different block sizes and iteration numbers.

2.1 System Overview

Fig. 2-1 shows the Turbo code application in the digital communication system which

includes four parts: 1.) channel, 2.) modulation, de-modulation, DAC, ADC and Front

End parts, 3.) synchronizer and channel estimation (Equalizer), 4) error correction and

detection. Channel involves non-idea effects and distortion in the modulated continuous

waveform. Demodulator and ADC convert the distorted analog waveform into digital

samples. Error correction recovers these samples and renders decoded sequences. The

error detection is primary used to verify the correctness of decoded sequences. This

thesis assumes that the perfect synchronization and channel estimation in the receiver

aspects.

Fig. 2-1 Digital communication system

 3

2.2 Turbo Encoder

2.2.1 Turbo Encoder Process

The turbo decoder consists of two parallel Recursive Symmetric Code (RSC) encoders,

an interleaver and a puncture device (see Fig. 2-2). The interleaver is used for permuting

the information uk, which is an influencing factor in the performance of Turbo code. The

information u={u1,u2,…,uN} are transmitted through two identical structure RSC

encoder, where encoder structure depends on the definition of code generator

polynomial.

For the two RSC encoders, the information directly sending into upper RSC

encoder produce upper encoded codeword {Xs, Xp-siso1}; the lower encoded codeword

{Xp-siso2} is obtained from the permuting information bits uInt passing through the lower

RSC encoder. The outputs Xs is identical to information bits u, referred to as the

systematic bits. The second output Xp-siso1 denotes the parity check bits, which will be

used for the even sub-iteration of MAP decoding. Similarly, the other parity check bits

Xp-siso2 will also be used to odd sub-iteration of MAP decoding. Finally, the puncturing

block could support various code rates by multiplexing the encoded codeword sequence

to obtain effective bandwidth utilization.

Fig. 2-2 Turbo encoder diagram

 4

2.2.2 Recursive Systematic Convolution (RSC)

Good turbo codes have been constructed using short constraint length and infinite

impulse response (IIR) convolutional codes instead of the more familiar finite impulse

response (FIR) convolutional codes. The major reason for above finding is that the

impulse response for IIR structure has more long free distance relative to FIR structure,

resulting the more better performance for the IIR encoder structure [6].

Furthermore, several articles in [7] shown that the constituent convolution codes

with primitive feedback polynomials can achieve larger minimum distance than

applying other polynomials. As a result, the IIR encoder structure with primitive

feedback polynomials is always employed for the constituent encoder of Turbo code.

These IIR convolutional codes are also referred to as recursive convolutional codes,

because previously encoded information bits are fed back to the input of constituent

encoder. For instance, the generator polynomial G(D) form for constituent encoder

shown in Fig. 2-3 is

 31 2() 1 FF F

b b b

PP PG D
P P P

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

 (2.1)

with the constraint length v=5 (constraint length v = memory order q + 1), where Pb

indicates feedback polynomial (1+D3+D4), which fed previously encoder back to mix

with new information sequence. PFi is forward polynomial corresponding to i-th output

of encoder, here (1+D+D3+D4), (1+D2+D4) and (1+D+ D2+D3+D4) for1 3 . i≤ ≤

The constituent encoder total has 2v-1 distinct state, where each state expresses the

temporal value of register components. When input sequence is fed, the temporal value

of register components are affected by the input sequence and feedback information,

leading to the change of register components. For previously example, let the all

register values to be zeros, the update register values update into “1000”(called as S8) if
 5

the high level of input information bit is sent. On the other hand, the current state

remains to hold the all-zero state. Furthermore, the results for each state changing with

all possible input patterns can be shown in Fig. 2-3 for the trellis expression, and the

corresponding output encoded bits can look up in Table 2-1.

Fig. 2-3 Block diagram of the RSC

Fig.2-4 Trellis expression the relationship of current states and next states with

different input sequence

 6

Table 2-1 The Output encoded sequence with different input information

corresponding to each state

2.2.3 Trellis-Termination

Trellis termination process is to drive the encoder to the all-zero state at the end of the

block. In generally, the beginning of state is assumed as all-zero states for constituent

encoder.

 Both encoders terminated with individual tail symbols

The ending of state, due to employing the MAP algorithm for Turbo decoding, usually

is known as all zero state (non-zeros state also can be assume) to perform feedback

recursively decoding. Here, a tail bits driven from any probably state (2q numbers) to

any target state no longer than q bits when the recursive convolutional encoder consists

of q registers.

Due to the excursiveness property of encoder, the required M tail bits cannot be

“predetermined”. Thus, first, we observe the register values relationship with feedback

 7

and input information as

 (2.2) 1Register feedback information input information= ⊕

 8

1

2

3

)

 (2.3) 2Register Register=

 (2.4) 3Register Register=

 (2.5) 4Register = Register

where symbols the modulo-2 addition. ⊕

Except from the first register value, the others register value are obtained from the

previously register. However, there is no input sequence required to be encoded when

performing termination for turbo encoder. Therefore, the simplest obtaining zero value

for register is to use previously feedback information for performing self-cancellation.

Furthermore, the other register values also obtain zero values by one after another when

the first register has been zero value. The whole termination process can be expressed as

follows

 (2.6) 1Terminated _ Register feedback information feedback information = '0'= ⊕

 Compared to the case where none of trellis is terminated, the minimum distance

here is increased from terminated bit. However, this trellis-termination method probably

yield low minimum distance codeword because both trellis are terminated

independently [8]. Assuming the use of rate-1/2 convolutional encoder, the overall code

rate is (1 2/ 3 2 2cR K K q q= + + , where q1 and q2 indicate the memory order of first and

second constituent encoder, respectively. It is observed that this type of termination is

the reduction in code rate, especially for short interleaver.

 Only first encoder terminated

A common trellis termination method found in the literature is to terminate ENC1 and

to leave ENC2 unterminated. The v1 tail bits makes that only the ending stage of ENC1

is fed back all zero state after encoding K information symbols. Note that these tail bits

are included in the sequence, thus, the interleaver size is K+q1. The interleaved

sequence, of length being K+q1, is fed to ENC2 which starts encoding in the all-zero

state and is left unterminated in an unknown state.

 The minimum distance is guaranteed to be caused by an input sequence of weight

greater than or equal to 2. A good spread interleaver, it is unlikely that both nonzero

symbols in the un-interelaved input sequence are interleaved to positions near the

encoded of the interleaved input sequence. Based on above reasons, most small

distances are eliminated [9]. Assuming the use of rate-1/2 convolutional encoder, the

overall code rate is ()1/ 3cR K K q= +

2.2.4 Puncturing

Puncturing is the process which removes certain bits from the codeword. The purpose of

puncturing is to increase the overall code rate for Turbo code. In general, the common

operation of puncturing is to remove the parity check bits from the first and second

encoders periodically.

However, a significantly improved puncturing approach has been presented by [10].

This type of puncturing probably could obtain a longer minimum distance if a small

number of systematic bits are punctured. It is well known that the minimum distance is

caused by input sequence with low input weight. This means that the puncturing

systematic bits are increased without or with a small loss in the contribution of

systematic part to the overall minimum distance. Further, increasing the number of

 9

puncturing systematic bits means that fewer number of parity check bits are punctured.

This results in an improvement in the distance properties because the minimum distance

is mainly dominated by the contribution of parity check bits, especially for well

designed interelavers.

2.3 Interleaver

The purpose of the interleaver in turbo codes is to ensure that information patterns that

cause low weight words for the first encoder is not interleaved to low-weight patterns

for the second encoder, thus improving the code weight spectrum [11].

 Consequently, the excellent interleaver is an essential condition for achieving good

distance properties. Note that achieving good distance properties require not only the

excellent interlever, but also recursive constituent encoders. In this thesis, the

interleaver is referred to a vectorπ . Here ()iπ is the interleaved position after the

information at position ith is interleaved in the nature order. In other hands, is

defined as de-interleaver, which is a converse operation of the interleaver. This is, the

de-interleaver implies that the interleaved order information

1()iπ −

()iπ is conversely

interleaved into the nature order at ith position. In other words, Considering the block

size N in the original information sequence u=(u0,u2,…,uN-1) are interleaved into the

interleaved information ()(0) (1) (1), , , Nu u u uπ π π π −= "

2.3.1 Block Interleaver

A simple structured interleaver is block interleaver, often also called as rectangular

interleaver in the literature. It is constructed by a rectangular of M rows by N columns,

where the interleaver size is K=M*N. This interleaving is performed as follows. From

the beginning of upper left corner of rectangular, the data are in turns written into the
 10

rectangular with column by column, and then read the interleaved data with row by row,

or vice versa. Further, the block interlaver can be expressed

as () mod Kii i N
M

π ⎛ ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
i , where x⎢ ⎥⎣ ⎦ is the floor function, which means the

largest integer of x.

 However, the block interelaver is not an excellent interlaver. From the view of

codeword weight, this interleaver produces a larger number of long distance codewords

caused by input sequences of weight 2 and 3, but yields a large number of low distance

codewords caused by that of weight 4. This is, for block interleaver, both the distance

properties and error performance constrained by the input sequences of weigh 4, leading

to no significantly improving BER capacity [12].

2.3.2 Prime Interleaver

The permutation is defined by ()() modi p i sπ = +i K , where s, p are known as offset

and step size, respectively. Note that the value of p must be chosen relatively prime to

block size K, ensuring that the element in the interleaver differ from each other. This

interleaver is also referred as circular-shifting interleaver in the literature.

 For the view of distance properties, this interleaver can permute the low distance

codeword for the first recursive encoder into the high distance codeword for the other

recursive encoder. However, this type of interleaver is less likely to permute an input

sequence of weigh higher than 2 with low codeword weights into another input

sequence with high codeword weights.

 11

2.3.3 Random Interleaver

Random interleaver is generated by a random manner without any restriction on the

selected element. This interelaver is also referred as pseudo-random interleaver in the

literature. Modified random interleaver with some useful criterion is likely to achieve

better performance. Usually, the performance of this type is significantly increased as

the block size increases.

2.3.4 S - Interleaver

The S interleaver is of one of spread interleavers. Usually, the codeword of minimum

distance are contributed by the input pattern with low weigh. The goal of these types is

to spread the low weight input patterns, generating higher weight codewords. Here, the

Spread factor S is usually chosen less than or equal to
2
K . This interleaver can be

described as follows. Select a random element from the selected set {0,1,…,K-1} as the

first element in the interleaver and delete it from the set. Then, each subsequence

elements are moved from the selected set if current candidate position is selected

within range compared with the previous selected element. Otherwise, current

candidate is rejected until the selection criterion is satisfied. Repeat this process until all

K integers are selected.

S±

 This interleaver can achieve better performance than average to generate higher

weight codewords. Unfortunately, the search time increases with the designed amount

of separation, S, and the interleaer length K. Another drawback is that there is no

guarantee that the search process will finish successfully. Further, another design

criterion based on the constituent encoders adding into S interleaver is presented in [13]

[14]. This goal of modified S interleaver is to eliminate low-weigh codwords with
 12

significant contributions to the error performance. In general, the elimination of a

specific codeword can be done by breaking up the input pattern. This modified S

interleaver, however, is no guarantee to eliminate all low-weight codewords and find a

properly solution.

Usually, the random-like intelreaver structure, their performance degradation is

significantly sharp than that of structure interleaver, such as the prime interleaver, in the

highly codeword puncturing.

2.3.5 Characteristic of Interelaver

Minimum distance of the interleaver algorithm is a major factor which affects the error

floor as defined as duo-distance between position i and j for a given interleaver:

 (2.7) (,) | | | () () |duod i j i j i jπ π= − + −

where , ()iπ ()jπ are “interleaved positions” of i, j, where i, j=0, 1, 2, ... , K-1 (K is

the number of the interleaver block), and i≠j [15].

A better interleaver algorithm design usually should have three characteristics as the

following:

 The should be as large as possible in order to “lower correlation” between

input sequences and interleaver output sequences.

duod

 The distances between any two input information bits before and after the

interleaver, denoted d(i , j)=| i – j | and d(π(i) -π(j)), i, j = 0, 1, 2, … , N-1

should not be multiple of the intrinsic period to avoid the change of the

feeding self-terminating weight-2, where the intrinsic period are 2v -1, if the

memory of the RSC encoder is v. Due to the intrinsic period has a significant

effect on the performance of turbo code, a better generator function of Turbo

 13

encoder usually chooses an appropriate primitive polynomial (of degree v)

as the feedback polynomial go(D).

 The positions of any input information bit before and after interleaver, i.e., i

and (0≦i≦K-1), should not be both near the end of the interleaver

block in order to avoid edge effects. This is, if i is nearly K, then both

and should be much smaller than K.

()iπ

()iπ 1()iπ−

One of Interleaver designs that is optimum in the sense of breaking up the

weigh-2 input sequences was introduced in [16]. However, it is also noted in [16]

that braking up only the weight-2 input sequences is not sufficient to achieve good

distance properties. This is because input sequences of weigh higher than 2 are not

broken up and can still lead to low codeword weights.

For achieving good distance properties, this suggests an additional design

criterion based on the correlation between the extrinsic information. This is, an

interleaver with good properties is designed to minimize correlation between the

extrinsic information of constituent decoder and input sequence [17].

2.4 Channel Model

It is known channel models which could primary be divided into three types. First,

AWGN is common non-fading channel model to simulate pure Gaussian noise,

including thermal noise, uncertain effects, and so on. Second, the second type of

channel model is defined static fading channel model, including (Line of Sign) LOS and

NLOS types based on the signal propagation circumvent between transmitter and

receiver. Finally, this channel model primary simulates the Doppler-effects and

attenuation of fading mobile channel model, which can be simulated by Jake’s Model

 14

with different velocity requirement. AWGN channel model is primary discussed for

Turbo code in this thesis.

 AWGN (Additive White Gaussian Noise) Channel Model

The power spectral density is independent of the operating frequency. The adjective

white is sued in the sense that light contains equal amounts of all frequencies within the

visible band. We express the power spectral density of white noise, with a sample

function denoted by w(t), as () 0

2w
NS f = . The parameter N0 is usually referred to the

input stage of the receiver of a communication system, expressing as where k

is Boltzmann’s constant and T

0 eN kT=

e is the equivalent noise temperature of the receiver.

Since the autocorrelation function is the inverse Fourier transform of the power

spectral density, the autocorrelation function can be expressed as () 0 ()
2w

NR τ δ τ= . This

is, the autocorrelation function of white noise consists of a delta function weighted by

the factor N0/2 and occurring atτ =0.

2.5 Turbo Decoder Process

Fig. 2-5 shows that the Turbo decoder process employs two SISO decoders to estimate a

posterior probability (APP) of each information uk with a certain numbers of iterative

computations such that the results have no significant BER performance loss. The Turbo

decoding process is states as follows:

(a) Initialized phase: the received signal codeword has to be stored into

symmetrical buffer and parity check buffer due to iteratively decoding

process. After the total N received data have been stored, the decoding

 15

 16

process starts to carry out iteratively MAP decoding, where the intrinsic

information and iteration number Iter. are initialized as zero.

(b) 1st half iteration phase: the input codeword (ys,yp-siso1) from input buffer are

sent into SISO decoder and then proceeds to MAP algorithm decoding,

producing the extrinsic information which is written into extrinsic storage

with natural order after a decoding latency. When the whole extrinsic

information has been calculated, the stored extrinsic information with

interleaving order are inputted as intrinsic information Li2 (Interleaver

operation) for the 2nd half iteration phase. The decoding process then jumps

to the next phase (c).

(c) 2nd half iteration phase: combining the interleaving order of systematic

information uint, parity check yp-siso2 and Li2 are carried out the extrinsic

information Lex2. This outputted soft information Lex are firstly stored by

interleaving order into extrinsic storage and used by natural-order as intrinsic

information Li1 for the 1st half iteration phase (De-interleaver operation) as

the 2nd half iteration phase has finished. If the Iter. parameter is equal to the

specified max-iteration, the decoding process phase jumps to (d); otherwise,

Iter. = Iter. + 1 and the decoding process returns into phase (b).

(d) Output the estimated information uk’ phase: the log-likelihood-ratio (LLR)

information proceeds to the De-interlaver operation, and then obtains the

estimated information uk’ through hard decision device. The hard decision

operation is that if the sign of LLR is positive, the information uk’ are decided

as 1; otherwise, the information uk’ are decided as 0.

Based on 1st and 2nd decoding phase, the operation of SISO decoder is identical and

extrinsic storage is performed through interleaver/de-interleaver procedure. Therefore,

the above SISO decoder, interleaver procedure can be implemented by the same

hardware for twice half-iteration.

Fig. 2-5 Turbo decoder diagram

2.6 SISO Decoding Algorithm

2.6.1 Log-MAP Algorithm

The Turbo decoder iteratively decodes the parallel concatenated convolutional codes

through log-MAP algorithm which decides the LLR of APP of each information bit uk

[2]. The MAP algorithm is based on the log-likelihood ratio a posterior defined as

 m Pr(1|)() ln
Pr(0 |)

k
k

k

uL X
u y

y=
=

=
 (2.8)

where uk are the source information bits.

The APP ratio L(uk) can be further represented in three terms:

 m() () ()k i k c s ex kL X L u L R L u= + +i (2.9)

where and L04 /c bL E N� c*Rs are defined as the channel values. After interleaving or

deinterleaving, the intrinsic information is calculated from the extrinsic information of

 17

the other constituent decoder, as shown in Fig. 2-5. This means Li1(uk) = Lex2(uk) and

Li2(uk) = Lex1(uk).

 The arithmetic operations of the log-MAP are described as follows. For each trellis

transitions leaving the state k-1 toward the state k, the branch metric value is formulated

as:

 ()1
1(,)
2

s s p
k k k k i c k c k k

i

S S x L L y L y xγ −
p⎧ ⎫= + ⋅ + ⋅ ⋅⎨ ⎬

⎩ ⎭
∑ (2.10)

where (xs
k , xp

k) denotes the transmitted symmetrical and parity check bits, which takes

values in {1,-1}. (ys
k , yp

k) represents the received symmetrical and parity check bits at

the k-th time instant. At step k, for each trellis state Sk beginning from previous state

Sk-1, the state metric can be calculated as:

 (2.11)
1

*
1 1 1

,
() (() (,))max

k k

k k k k k k k
S S

S S Sα α γ
−

− − −= + S

)S

On the other hand, on the step k, for each trellis state Sk beginning from the current

state Sk+1, the backward metric calculation is:

 (2.12) (
1

*
1 1 1 1

,
() () (,)max

k k

k k k k k k k
S S

S S Sβ β γ
+

+ + + += +

When Forward and Backward state metric are calculated, the APP ratio L(uk) can be

re-written into:

m ()

()
1

1

*
1 1 1

(S ,), 1

*
1 1 1

(S ,), 0

() () (,) ()

 () (,) ()

max

max
k k k

k k k

k k k k k k k
S u

k k k k k k k
S u

L X S S S S

S S S S

α γ β

α γ β
−

−

− − −
=

− − −
=

= + +

− +

k

+
 (2.13)

Here the definition of Max* function is:

-| - |

max*(,) ln()
 max(,) ln(1 exp)

x y

x y

x y e e
x y

= +

= + +
 (2.14)

where the corrective term can be implemented by a look-up table (LUT). -|x-y|ln(1+exp)

 18

2.6.2 Max-Log-MAP Algorithm

The Max-Log-MAP is deduced from the Log-MAP decoder by substituting each max*-

operation by a max-operation and shown in the following:

 19

) () () (* , ln = max ,x yMax x y e e x y+= (2.15)

Then, the correction function ln(1+e-|y-x|) in the max*(.) operation are neglected in the

Max-MAP decoder, which has less complexity due to eliminating the need of LUT unit.

The correction term plays the important role of improving the capacity of correcting

error code when operated in the low-signal to noise ratio environment, due to the

difference is usually small.

Base on previous reason, the performance degradation is about 0.58dB compared

to the Log-MAP algorithm [18]. However, the correction term worked in the high

signal-to-noise-ratio environment always approximates as zero, since the difference has

a more probability exceeding two. Another benefit for Max-Log-MAP is that

Turbo-decoding does not require knowledge of the SNR [19].

2.6.3 Initialized Procedure for Both Log-MAP and Max-Log-MAP

Algorithm

Initialization the state probability for and must be initialized as follows: 0α 0β

 (2.16) 0 0

0

() 0
() , k 0k

S
S

α

α

=

=−∞ ≠

 (2.17) 0() 0
() , k 0

N

N k

S
S

β

β

=

=−∞ ≠

Except in the case for the decoder associated with the second encoder, where the trellis

is simply left ‘open’ as follows

 (2.18)

0 0

0

() 0
() , k 0
() ()

k

N k N k

S
S
S S

α

α

β α

=

=−∞ ≠

=

In the second case the backward recursion uses the value of the state probabilities

generated by the last forward recursion step.

2.7 Error Probability for Turbo Code

For a (N,K) Turbo code, the symbol error rate of Turbo code is bound by the union

bound [1]:

1

0

1 0

2 (,

2

HM
j

w
j

Ed c c
P Q

N

−

=

⎛ ⎞
⎜≤
⎜ ⎟
⎝ ⎠

∑
)
⎟ (2.19)

where N indicates the interleaver length, K is the number of information bits and M is

number of binary codeword. Here,

2

2
()

2

t

x

eQ x dt
π

−
∞

= ∫ and is codeword

Hamming distance. Furthermore, the function of Q(x) asymptotically approaches

0(,)H
jd c c

2

2
x

e
−

as x approaches infinite. Therefore, the symbol error probability is upper bound by the

sum of (M-1) exponentials. When the Hamming distance grows, the error

probability decays exponentially such that the minimum Hamming distance dominates

the asymptotic symbol error probability, as shown follows:

0(,)H
jd c c

 min min
0

2 H
w

EP A Q d
N

⎛ ⎞
≈ ⎜

⎝ ⎠
⎟ (2.20)

where Amin is the number of codeword at dH
min. It follows that the asymptotic bit error

probability is:

 20

 min
min

0

2 H
w

W EP Q d
K N

⎛ ⎞
≈ ⎜

⎝ ⎠
⎟ (2.21)

where the Wmin is the number of input sequence causing dH
min. and

is the energy per code bit, resulting from the code rate R

c non encodedE R E −= i

c and the energy per encoded

bit Enon-encoded. From the view of error probability, a turbo code achieves the better

improvement performance, requiring more number of symbols to cause the minimum

Hamming distance as large as possible.

2.8 Turbo Code Application on Telemetry and Deep Space

Communications

In CCSDS recommendation for telemetry channel coding, the CCSDS encoder scheme

could be seen two components, where input information of length k bits is held in a

frame buffer, and then the bits in the buffer are read out in two orders of the two

component encoders. The upper component encoder operates on the bits in un-permuted

order (“in a”), while the second component encoder receives the same bits permuted by

the Interleaver block (“in b”) as shown in Fig. 2-6. The nominal code rates of turbo

codes are 1/2, 1/3, 1/4, and 1/6. In addition, the frame sizes of CCSDS turbo codes are

1784, 3568, 7136 and 8920.

For turbo encoder termination operation, there are “four” terminal bits used to clear

all the delay elements of the RSC encoders after the input information k bits have been

delivered into the encoders, Thus, the actual code rate of the turbo encoder scheme is

n/n(k+4). The interleaving pattern is a fixed sequence, which is on a bit-by-bit level of

the entire block of data, unlike the Reed-Solomon interleaving on a symbol-by-symbol

level. The interleaver algorithm is described by the following algorithm in Table 2-2. (as

 21

excerpted from [5]):

First express k as k=k1k2, where k1 is eight. Next do the following operations for s=1

to k to obtain permutation numbers π(s). In the equation below, ⎢ ⎥⎣ ⎦x denotes the largest

integer less than or equal to x, and pq denotes one of the following eight prime integers:

Fig. 2-6 CCSDS Turbo encoder

 22

Table 2-2 Interleaver algorithm for the Turbo code of CCSDS standard

The turbo encoder codeblock outputs for various code rates are shown in Fig. 2-7.

For each input to the delay elements, n symbols are outputted. The output sequence is a

particularly periodic sampling from top to bottom of the outputs of Turbo decoder. (e.g.,

for code rate 1/3, the output sequence is Out_0a, Out_1a, Out_1b).

Fig. 2-7 Turbo code for different code rates

 23

 24

2.9 Simulation and Results

The generator polynomial of Turbo code defined as (23, 33, 25, 37)oct, and interleaver

lengths of 1784, 3568, 7136 have been simulated in Matlab@ using Moto-Carlo method,

where the oct expresses an abbreviation of octal. These different simulation conditions

are performed as follows:

 For different turbo decoding algorithm: Max-Log-MAP versus Log-MAP

 For various block size (1784,3568,7136)

 For different number of iteration decoding

 For various code rate

The Fig. 2-8 shows the performance results of Log-MAP and Max-Log-MAP

after10-iterations for SNR value varying from 0.4dB to 0.8dB. Note that the

performance of MAX-Log-MAP algorithm has larger degradation than that of

Log-MAP algorithm over the low-SNR region. For low-SNR region, the corrected term

is helpful for improving the turbo decoding in the Log-MAP algorithm.

The Fig. 2-9 shows the performance comparison of turbo code when Log-MAP

algorithm is performed using different block sizes (1784, 3568, 7136) after 10 iterations.

It is observed that the larger block size has more decoding gain relative to other smaller

block sizes. This is due to the larger block size has a long free hamming distance

dfree ,and thus has more better capable of error correction capacity.

The Fig. 2-10 shows the performance results of turbo code when Log-MAP

algorithm uses different number of iterations (3,5,7,9) at 1784 block size. Note that the

performance results have more significantly performance improving in large iterations.

This is to say, the Turbo code has to pass through highly iterative decoding process to

meet the desirable performance result.

As far as the various code rate of turbo code concerning, the performance results of

turbo code are shown in Fig. 2-11. The performance results shows that one codeword

including more redundancy elements, such as code rate (1/6), has a greater coding gain

relative to less redundancy elements (1/3). This is because more redundancy elements is

helpful for correcting error codeword.

Fig. 2-8 Performance results of Turbo code for different turbo decoding algorithm

 25

Fig. 2-9 Performance results of Turbo code for different block sizes

Fig. 2-10 Performance results of Turbo code for different iterations

 26

Fig. 2-11 Performance results of Turbo code for different code rate

 27

Chapter 3 VLSI Architecture of Turbo Decoder

In this chapter, we will state the VLSI architecture of Turbo decoder. First, the sliding

window approach divides large frame size N into equal-sized L sub-blocks to reduce the

long decoding latency and storage memory. Then, the concurrent efficient SISO VLSI

architecture is introduced, including OACS which is faster than original ACSO

architecture, modified sliding window which is more suitable to high code rate (larger

redundancy elements).

Next, for the Turbo code of CCSDS standard, the on-line fly interleaver address is

implemented to save more memory area requirement relative to the ROM approach. And

the extrinsic information quantization is used to reduce the bit-width of original

extrinsic information. Finally, we discuss the throughput of series SISO decoder

structure and parallel SISOs decoder. The whole Turbo decoder architecture is shown in

Fig. 3-1.

Fig. 3-1 Turbo decoder architecture

 28

 29

3.1 Sliding Window Approach

According to MAP algorithm, the decoder needs to store a large amount of memory

and causes a long decoding latency during the forward and backward recursion

calculations. The sliding window technique was introduced to reduce decoding

latency and storage memory by dividing large frame size N into equal-sized L

sub-blocks [20], where L is typically 5 to 10 times the constraint length (encoder

memory order + 1). The appropriate warm up length L is determined by trading off

the performance degradation and the relative sliding window memories size.

For SW approach, it is necessary to obtain a reliable initial value of state metric

with a warm up phase, which recursively computes the state metrics from the

previous L stages of estimated reliable point with all zeros values. In general, the

initial alpha values are the last value of the previous window, and the initial beta

values are obtained by the dummy beta calculation unit, which performs a warm up

process with the same structure as beta processor.

Fig. 3-2 shows how sliding window approach calculation is done among Forward

Processor (FP), Dummy Beta Processor (DBP) and Beta Processor (BP) working

together, as stated as follows:

(a) In time slot T0: the DB processor accesses the input buffer and recursively

backward computes the SM values with all zeros values from data L-1 to 0.

On the other hand, the received input buffer data are stored in sliding

window memory-bank1.

(b) In time slot T1: the valid initial value of backward state metrics are obtained

by the DB processor calculating from data 2L-1 to L, and then the received

input data are stored into SW memory-bank2. The FP processor accesses the

 30

memory-bank1 data (L-1~0) to calculate forward metrics values with an

initial state. Because the soft output LLR calculation requires both the

forward and backward state metrics, the output of FP has to be stored in

forward SM storage due to the corresponding backward metrics being

unready.

(c) In time slot T2: the operation DB process for data (3L-1 to 2L) and FP

processor follows a similar procedure as in (b). The BP uses a valid initial

value of SM from the last value of previous DP to compute backward SM

for the data (L-1~0), and then combines with the associate forward state

metrics from forward SM storage to decode soft output information.

(d) Repeat (a)~(c) until the whole soft output information is obtained.

The input buffer can be built by multi-bank two port memory, whose storage size

is defined by the word-length of total input soft information multiplied by

memory-depth (L+1) , where depth L+1 can allow contention free in practice. The

latency of this sliding window structure can be approximate as (2*L+ C) cycles

while throughput of the MAP-based SISO decoder is defined by the number of bits

processed, N, divided by the latency L cycles, where C is the pipeline delay of SISO

decoder.

Fig. 3-2 The operation of sliding window approach

3.2 VLSI Architecture of SISO Decoder for CCSDS

Standard

This Turbo decoder is composed of one log-MAP decoder, input buffer memory,

extrinsic memory and interleaver address calculation unit. The log-MAP decoder is used

to decide the LLR of each information bit uk
 by the input a prior information. The input

codeword sequential is stored in the input buffer to be used by iteratively decoding

process. The extrinsic memory stores the extrinsic information from the output of

log-MAP decoder, and then sends extrinsic information by an interleaving /

de-interleaving order into the input of log-MAP decoder when all extrinsic values have

been received. The interleaver / de-interleaver pattern can be calculated by an on-line

interleaver address calculation unit, which can reduce significant area requirement

relative to storing all interleaver values at the ROM table.

 31

3.2.1 Log-MAP Decoder

(1) Branch Metric Calculation (BMC) Unit

The branch metric values are applied by computing the state metric values, LLR values

and extrinsic values. When the input soft information is stored into the extrinsic and

input buffer and the Lc value has been obtained by the SNR estimator [21]. The branch

metric values are calculated according to (2.10). Due to different code rate requirement,

to calculate branch metric values to send to the next state metric calculation unit, the

maximum number of input sequences must be considered. The branch metric

calculation unit is shown in Fig. 3-3, where the ‘Sat.’ means the saturation device that is

used to avoid the overflow when the high SNR environment leading to Lc value become

considerable large.

Fig. 3-3 Block diagram of the branch metric calculation

(2) State Metric Calculation (SMC) Unit

The forward and backward metric calculations are calculated according to (2.11) and

(2.12). In the trellis expression Fig.3.4 (a), the updated forward state values α(S0,k-1)

comes from the maximum summation value of previous forward state values with

 32

relative branch values with a correcting term ln(1+exp(-| α(S0,k-1) - α(S1,k-1)|)), which

can be implemented by ACSO architecture, as shown in Fig. 3.5(a). In a similar way, the

backward recursive calculating by the trellis expression are shown in Fig. 3.4(b). In

order to avoid updated value overflow occurring, the state metric calculation usually

uses the rescaling method [21] as the state metric value increase with the recursive

calculation times. Because the speed of Turbo decoder is determined by the maximum

clock rate achieved for ACS architecture, we employ the OACS architecture which uses

retiming transformation of the ACS architecture to increase the clock rate as much as

possible [22], as shown in Fig.3.5(b).

Fig. 3-4 The forward and backward recursive calculating by the trellis expression

Fig. 3-5 Block diagram of the ACSO and OACS architecture

 33

(3) Log-Likelihood Ratio Calculation (LLRC) unit

 34

) .

According to (2.13), the LLR value could be calculated by the difference between

N-input max* function for uk = 1 and N-input max* function for uk = 0, where N denotes

the total state metric values numbers. However, The N-input max* function can be

transformed into the number of log2(N)+1 for parallel tree 2-input max* function. For

example, when the N is four, the LLR architecture can be shown in Fig.3.6 due to the

relationship of () () (()* , , , * * , , * ,Max A B C D Max Max A B Max C D=

Fig. 3-6 Block diagram of LLR calculation architecture

(4) Modified Sliding Window Scheme

In the traditional log-MAP decoder architecture, the branch metric calculation unit is

usually placed in front of the sliding window memories. Thus, the output branch of

metric values needs to be stored into sliding window memories, which can then be read

when calculating state metric. Further, we attempt to modify the placement of branch

 35

metric for log-MAP decoder architecture such that the storing sliding memory size is

less than that of traditional log-MAP decoder architecture.

The Fig. 3-7 shows the branch metric calculation block are placed in back of sliding

window memory, in which results in the received codeword (Ys, Yp) and intrinsic

information being stored, rather than the output of branch metric calculation. Although

there are 16 sets branch metric value calculated for 16 states Turbo decoder, we can

only compute the maximum independent sets of branch metric value to obtain all sets,

as shown in Table 3-1. Note that the minimum linear combination branch metric sets

sharply increase as the code rate of Turbo decoder increases from 1/2 to 1/6. This result

causes the larger memory storage requirement for traditional architecture than that of

modified architecture. The major reason is that the minimum independent branch metric

sets [23] increase at a factor of 2 when the code rate (r) goes from 1/2 to 1/6.

 The Table 3-2 lists the sliding window memories storage comparison of our

modified sliding window scheme and traditional SW scheme and Fig. 3.8 shows that

our modified sliding window architecture can reduce 53.13% sliding window memory

area overhead comprised with of the traditional sliding window architecture for code

rate (r = 1/6). Although the storing bit requirement of sliding window memories for

modified method are larger (25%) than of traditional SW architecture, this

reconfigurable Turbo decoder has to support various code rate. Thus, it is obviously that

the modified architecture is suitable to be applied for reconfigurable Turbo decoder.

Fig. 3-7 The change of BMC block placement behinds sliding window memory

Table 3-1 The minimum linear combination sets of branch metric values for various

code rates

 36

Table 3-2 The sliding window memories storage comparison of our modified method

and traditional SW scheme

Fig. 3-8 The sliding memories size requirement between traditional sliding window

scheme [24] and our modified method for different code rate. @ (SWdepth = 32, bit(Li) =

6, bit(received codeword) = 5, γwidth = 6, two sliding window memories)

 37

3.2.2 Interleaver Address Calculation Unit

Interleaver Address is used to shuffle the original sequence order to interleaving order

or de-interleaving order for extrinsic information and systematic information (ys). In

practice, the interleaver address usually has two ways to implement. One way is to store

interleaving patterns in the ROM, and the other way is to directly implement

interleaving function on-line circuit.

Due to the number of interleaving patterns up to 8920 for CCSDS standard, we

implement the reconfigurable interleaver address circuit which can select different

interleaving sizes through control signal, as shown in Fig. 3.9. This on-line address

calculation unit can save more area requirement relative to the ROM approach.

Fig. 3-9 Block diagram of on-line interleaving pattern calculation

 38

3.2.3 Extrinsic Information Quantization

The quantization of extrinsic information technology proposed in [25], can reduce

significant area requirement of extrinsic memory with a negligible performance loss. In

the log-MAP algorithm, the extrinsic information is fed back to the branch metric

calculator, which combines the input symbol with the extrinsic information. Minimizing

the necessary chip area and power consumption is important, especially in mobile

application.

The extrinsic values pass through the non-linear quantization mapping block, and

then are stored into extrinsic memory, where the quantization mapping function is

shown in Fig. 3.10. Note that the extrinsic information is compressed by non-linear

mapping, leading to significantly the reduction of extrinsic memory area.

Fig. 3-10 Non-linear quantization for extrinsic information

3.3 Serial SISO Structure

In the single SISO decoder architecture, the estimated information is completely

 39

outputted after approximately 2*Iter.*(N+2SW+C) cycles during decoding process,

where N is the block size, SW denotes the sliding window length and C is the pipeline

delay time. Therefore, for a given frame size N and sliding window length SW, the

throughput of serial SISO Turbo decoder can be defined as follows:

 sin 2 . (N+2gle clk
length

NThroughput f
)Iter SW C

≅
+

i
i i

 (3.1)

For instance, consider N to be 1784, the SW length to be 32, Iter to be 5, where

early stop method is applied to increase throughput, and assume the pipeline delay C

can be neglected, the throughput of single SISO decoder could be approximately

19.3Mbps for clock rate 200MHz applied. However, this example demonstrates the

serial SISO structure has a long latency 18480 cycles causing low data throughput. Thus,

the low throughput and high latency for the serial structure is difficult to be applied in

real-time media communication application.

3.4 Parallel SISOs Strcture

Parallel decoding can significantly reduce the decoding processing latency relative to

sequential decoding. The block size N is divided into P separate sub-blocks,{k,

k+N/P ,…, k+(P-1)*N/P} , and each sub-block is performed by single SISO decoder.

Thus, the throughput of parallel structure is faster than that of the serial SISO

structure since the multiple structure is able to generate N extrinsic information

currently relative one extrinsic information for the serial structure in each output unit

time, and the latency is reduced to 2*Iter.*(N/P)+2L cycles.

Because the P-sets extrinsic are outputted from parallel SISOs simultaneously, the

extrinsic memory requires P-distinct memory-banks with N/P depth to store it. However,

 40

the beginning of each recursion state metrics requires a reliable value through “warm up

training phase” for each forward and backward metrics per SISO decoder. To reduce the

warm up training phase causing extra latency during decoder, there has been a well

developed low latency initialized state metrics process for parallel SISOs structure as

follows [26]:

(a) The initial forward state metrics assume zero for all SISOs in the first decoding

iteration.

(b) The final forward state metrics of each SISO after iteration are stored and

become the initial state metrics for its adjacent SISO for each iteration..

(c) The initial value for the backward state metrics is to adopt the boundary

backward state metrics value from the adjacent SISO decoder.

But, this initial process needs the additional memory storage to buffer the initial

values for FP. Furthermore, the throughput of parallel SISO structure is a function of the

parameters block size N, window size SWlength, the number of turbo iterations I, number

of parallel workers N and clock frequency fclk :

 and

2 . (+2
parallel high radix clk

length

NThroughput f N ')Iter SW C
P

− ≅
+

i
i i

 (3.2)

With the previous example, the throughput of 32-parallel structure could be achieved

297.95 Mbps and the latency are shorten as approximately 1198 cycles.

However, one of the parallel SISO decoder architecture’s existing problems is that

there are probably more than one data to access the same memory destination

simultaneously, also called the memory collision problem. There exists several issued

interelaver, such as WCDMA, 3GPP and CCSDS, belonging to this “non-contention

free interleaver”. As far as this non-contention free interleaver is concerning, we will
 41

 42

present an extrinsic information location strategy in the next chapter to resolve this

problem.

On the other hand, many researchers have presented “contention free interelaver”

to achieve high-parallelism with low complicated interleaver design. Even if the

performance of contention free interleaver is superior to that of non-contention free ones

since they have high spreading characteristic and high minimum distance to against the

noise and interference over channel. So far, two excellent contention free interleaver

QPP and APR interleaver , which has been be discussed in detail in [27] and [16],

respectively.

 43

Chapter 4 Solving Memory Collision Problem For

Parallel Turbo Decoder

4.1 Introduction

The well-known turbo decoder is an iteratively decoding process working between the

soft-input soft-output decoder and interleaver / de-interleaver scrambler. Thus, a certain

amount of memory is assigned to store channel information and extrinsic information.

For the serial Turbo structure, at each time instant, only one LLR is first written into

extrinsic storage. As the whole decoding finishes, the SISO2 begins to read intrinsic

information from the extrinsic storage in serial. In contrast, for the P-parallel Turbo

structure, its major difference is to deal with the P-set extrinsic values simultaneously

writing into the distinct storage for each time instant. Unfortunately, the read or write

access conflicts may occurs when multiple LLRs are read and written to the same target

memory.

4.2 Memory Collision Problem for Parallel Turbo Decoder

The problem is best illustrated by taking the interleaver table shown in Fig. 4-1 for two

concurrently produced LLRs and assigns its address to two individual RAMs. Table 1

shows the incoming data together with the associated targeted RAMs and relative

addresses. In the first time-step from, one LLR is read from source RAM1 (Addr. 1) and

written to garget RAM 2 (Addr. 3). At the same time, the other one is read from source

RAM 2(Addr. 1) and written to target RAM1(Addr. 2), resulting in no conflicting event

for the duration of write accesses. Unfortunately, in the second and third time-step, there

are two data needed to be allocated at the memory simultaneously according to the

concept of interelaver table. Consequentially, it is needed to solve that the read or write

access conflicts which may occur with multiple LLRs, otherwise, the exchanging

information may fail in memory accesses.

Fig. 4-1 An example of memory collision event.

4.3 Solving Memory Collision Problem Using Temporal

Buffer Architecture

The straightforward idea is to employ the buffer device for storing conflicting element,

if the conflicting event occurs. Applying buffer device on the VLSI Turbo parallel

decoder architecture, Norbert When (2002) [20] has been well developed in the Ring

interconnect bottleneck breaker (RIBB) methodology, where the buffers are connected

into a ring structure as shown in Fig. 4-2.

For each buffer, there are three different sources which come from local constituent

decoder, the left-buffer distributor and the right-buffer distributor. When the output

value of constituent decoder is sent into the buffer cell, the extrinsic information can

either be fed through or stored to the local RAM. By the similar way, the decision for

whether incoming data from the left or right slide is also determined by interlever table.

As several data sets may have the same target, the buffers need to be capable of

storing more than one data per cycle. Furthermore, the possible maximum read/write
 44

ports for memory need to match the worst case for conflicting event. Otherwise, the

buffer does not ensure to access all data sets correctly.

However, the above solution method requires an extra temporary buffer and collision

handling time in view of hardware aspects. Therefore, the objective of the present

memory collision free algorithm is to distribute the extrinsic dates from parallel SISO

decoders into the storage elements without memory collision occurring. The proposed

memory collision free algorithm can support various Turbo standards as well as arbitrary

the number of parallel high radix SISO architecture in the following section.

Fig. 4-2 Avoiding conflicting using temporal memory architecture

4.4 Proposed Memory Contention Free Scheme for Parallel

Turbo Decoder

In order to obtain the maximum network flow (all memories are collision free), these

extrinsic values must access distinct memory banks at every time instant; otherwise, the

throughput of decoding process are delayed by occurring conflicting memory elements.

Thus, we propose a solution for solving the extrinsic memory collision problem, as

 45

discussed in the following concept.

4.4.1 Definition of Memory Collision Problem

Consider a P-parallel Turbo structure, whose frame size-N is divided into P number

sub-blocks with length W defined by ceiling (N/P), and each sub-block is performed by

individual SISO decoder. The P-parallel SISOs structure are performed in parallel

decoding through interleaver/de-interleaver, and the interleaving position corresponds

into {π(i),π(W+i),…, π((P-1)*W+i)}, where π(i) represents the permuted position of i-th

natural order data for 0≦i≦W-1.

For addressing the memory collision problem, the parallel structure can be

distinguished into two aspects. For the interleaving aspect, when the P soft outputs are

produced from the P-SISO decoders, it should be stored to distinct extrinsic memory

banks. For the de-interleaver aspect π-1(i), which changes soft information ordering into

the original sequence, the soft information are read separately from the distinct memory

banks and used as intrinsic values for P-SISO decoding process.

 In generally, the memory collision only occurs when accessing memory with an

interleaving order. Consequently, for each time instant, they must access distinct

memory banks and can be formulated as follows [3,4]:

 () (j t W j v W
W W

π π+ +⎢ ⎥ ⎢≠⎢ ⎥ ⎢⎣ ⎦ ⎣
i) ⎥

⎥⎦
i (4.1)

1 1() (j t W j v W

W W
π π− −⎢ ⎥ ⎢+ +

≠⎢ ⎥ ⎢
⎣ ⎦ ⎣

i) ⎥
⎥
⎦

i (4.2)

where 0≦j≦W, 0≦t, v≦P-1and t ≠ v.

 Transforming Extrinsic Information Allocation Into Graphing Coloring Problem

 46

In order to understand the relationship of (4.1) and (4.2) with soft information, for each

time instant, the concurrent SISOs outputs are labeled as conflicting elements ‘1’, which

means not to be allocated into the same destination for combining all conflict cases from

(4.1) and (4.2). And then converse the relationship between all conflict elements with the

pictorial expression.

 Fig. 4-3 demonstrates an example of frame-size (N=16) for four-parallel SISOs

structure using graph expression of memory collision problem. Fig. 4-3 (a) shows the

output sequence of natural order and interleaving order π(i). According to (4.1) and(4.2),

the output elements of each column in Fig. 4-3(a), seen as conflicting elements, should

be allocated in parallel to different memory destinations. In Fig. 4-3(b) each pair of

conflicting elements can be shown as two connected nodes, where BG is the edge matrix

in which if (i,j) is ‘1’, there exists a line connecting nodes i and j; otherwise, no line

exists.

SISO1

SISO2

SISO3

SISO4

Naturnal Order Interleaving Order

SISO1

SISO2

SISO3

SISO4

 47

Fig. 4-3 (a) An example of natural order and interleaving order for 4-parallel Turbo

decoder. (b) Conversing the example of memory collision problem with graph

expression.

4.4.2 Solution to Graph Coloring Problem by Simulated Annealing

Algorithm

Since memory collision problem can be analogous to robust graph coloring problem [27],

which has been proved as NP-hardness problem, the simulated annealing algorithm [28]

can be effectively used for reaching the goal of memory collision free.

 Memory Collision Free Design with Simulated Annealing (SA) Algorithm

First, we define an objective function to calculate the number of conflicting elements for

given extrinsic information into extrinsic memory banks mapping (C). When the

objective function reaches the zero value, the mapping C is an available memory

collision mapping, the detail procedures are discussed as follows:

 48

For a given graph topology G = (V, E) with |V| = N, given the edge matrix BG derived

from the memory collision problem, where c indicates the number of memories and N

denotes the frame size.

The objective function is defined as follows:

 ,
(,), C(i)=C(j)

() i j
i j

R MemoryMap pλ
∀

≡ ∑i (4.3)

 (4.4) ,
1 , (,)

0 ,i j

i j E
p

otherwise
⎧ ∈⎪⎪≡⎨⎪⎪⎩

where λ denotes the penalty factor (λ>1) and C is a coloring mapping which is identical

to memory mapping in this case, i.e., C: V→{1,2,…,c}. This procedure is to obtain the

solution C such that no two nodes are connected between the same memory set.

The memory collision free algorithm could be stated by the following four terms:

1. Initialized procedure: by choosing a random memory mapping to all vertexes

(V1,V2,…,VN) also or allocate all vertexes in the Bank1. Then to set a very large

value as the initial temperature, which has a larger probability to escape from local

minimum (or maximum) value.

2. Local search procedure: The basic idea of the local search is that it starts from

an initial solution and repeatedly replaces it with a better solution in its

neighborhood until a better solution could not be found in the neighborhood. This

is, if the new solution MemoryMapnew is better than the current best solution

MemoryMapopt in terms of the objective function value, the current best solution is

updated; otherwise, the new solution is accepted by comparing the value of

exp((R(new solution)-R(best solution))/T) with a random number U(0,1) generated

from a uniform distribution on the interval [0,1].

 49

 50

3. Cooling procedure: Next, the algorithm goes into the cooling schedule that

decreases the temperature from T to T*α where the parameter attenuation constant

α (0<α<1) controls the speed of the convergence of the algorithm. This decreasing

the temperature causes degenerative transition to be accepted with a lower

probability as the algorithm progresses and corresponds to a lowering of

temperature.

4. Terminate memory collision free algorithm: when the object function reaches zero

value, the whole memory collision algorithm is terminated, and then the final

memory mapping function C is outputted.

Fig. 4-4 shows a pseudo-code of memory collision free procedure using the simulated

annealing algorithm.

Fig. 4-4 Using simulated annealing algorithm for solving memory collision problem.

 51

4.4.3 The Extrinsic Memory Collision Free VLSI Architecture Design

After simulated annealing algorithm is used for solving the memory collision problem,

the final optimum solution guarantees that no two data can access the same memory

concurrently. Fig. 4-5 demonstrates that the final optimum solution (color sets) obtained

by SA algorithm to solve the memory collision of the previous example in Fig. 4-3.

Fig. 4-5(a) shows that different colors correspond to different extrinsic memory banks.

For the VLSI implementation, the memory mapping table can be stored into ROM table

in advance as shown in Fig. 4-6.

Fig. 4-5 (a) The solution of the example of Fig. 4-3 obtaining from contention free

algorithm. (b) Conversing each color set to corresponding each node element.

 52

Fig. 4-6 Structure of proposed memory collision free architecture for the example of

Fig. 4-3

4.4.4 Simulation and Experiment Results

Since the quantization should be the trade-off between coding performance loss and

hardware cost, the fix-point can be determined via Monte-Carlo simulation. The

primary specifications of the Turbo decoder are given in Table 4-1, where the code

polynomial follows the Consultative Committee for Space Data Systems (CCSDS)

standard [5]. Fig. 4-7 demonstrates the Turbo decoding performance results after 8

iterations for different sliding window lengths (SW) and fixed point bit-width. We can

see that the curve of (SW=32 & fixed point) has the minimum error performance loss

relative to that of floating point simulation. On the other hand, the curve of (SW=32 &

fixed point & 4-bits non-linear encoded [25]) leads to larger performance loss relative to

that of floating point simulation, but less extrinsic memory requirement in the Turbo

decoder is expected.

 53

Our proposed contention free algorithm can be used for parallel Turbo decoder

supporting the arbitrary SISO numbers and high radix VLSI architecture. Here, we take

the specification of Table 4-1 into account to achieve the purpose of contention free for

8, 16 and 32-SISO numbers.

Table 4-1 Summary of parameters for Turbo code simulation

Fig. 4-7 BER performance of the Turbo decoder

 54

 55

The Fig. 4-8 demonstrates the change of cost functions of contention free algorithm

for various parallel Turbo decoder applications. The contention free algorithm is

terminated until the cost function reaches zero value. Then, the solution (color sets) is

obtained with respect to memory banks such that each nodes (extrinsic value) has no

occurrence of conflicting events. The Fig. 4.9-11 shows the solution of contention free

algorithm for 8, 16 and 32-parallel Turbo decoder, where the horizontal axes denotes the

time index (i.e., the order of output sequence of SISO decoder); and the vertical axes

corresponds to the location of P-SISO decoders in the Turbo decoder. We can see that

each column is drawn with different color. Thus, our proposed algorithm guarantees to

achieve the purpose of contention free.

In general, the circuit function needs to be verified by function verification after

synthesis or FPGA (Field Programmable Gate Array) platform. Due to the high expense

in the IC manufacturing, the FPGA provides more cheaper programmable and

reconfigurable ways to verify your circuit. Even the FPGA platform offers immediate

real electronic signals to work together with other system platform (i.e., ARM) or

measured from oscilloscope. The Fig. 4-12 shows that the output signals of Turbo

decoder using the Xilinx Virtex-IV XC4VLX60 FPGA. For the function verification,

we first store all output signals into text file and then compare the output values of

golden model from MATLAB@ with the output values of FPGA as shown in Fig. 4-13.

When the error signal is raised, there exists some difference between golden model and

output signals from FPGA. Otherwise, the output signals of FPGA platform are correct.

We have simulated and verified the design logic by comparing the output results to

MATLAB@
 fixed-point simulation and performed synthesis targeted at UMC 130nm

CMOS technology by the Synopsis@ design compiler.

 56

Fig. 4-14 shows the proposed architecture of contention free parallel Turbo decoder

which major consists of multiple double-input-buffers, SISO decoders, Look-Up-Table

(LUT) and some control circuits. Each SISO core consists of three recursion units for

acquisition, forward and backward recursion which requires additional controllers for

the state and branch metrics memories, where we assume eight iterations are performed

for turbo decoding and clock rate is set 200MHz. There are two input memory-banks

applied such that the decoding process could be able to continuously decode noisy

codeword at different frame [20] and the extrinsic storage also employs P sets distinct

memories to achieve the goal of memory collision free. Then, the results of memory

collision free are stored into the LUT memories. One of LUT memories is used for the

arbitrator device; the other is used for the decision device. Finally, the control circuit is

employed such that the design can be more flexible.

Each SISO core consists of three recursion units for acquisition, forward and

backward recursion which requires additional controllers for the state and branch

metrics memories, where we assume eight iterations are performed for turbo decoding

and clock rate is set at 200MHz.

Table 4-2 lists the area requirement of the proposed parallel collision free Turbo

decoder implementation for various number SISO decoders. As a result, the high

parallel Turbo decoder has larger total area size but relative its throughput also becomes

faster than that of low parallel Turbo decoder. In practice, the hardware implementation

should choose the appropriate parallel parameter P by achieving the throughput

requirement and minimizing the area requirement. However, our proposed algorithm

can support arbitrary parallel parameter P such that no conflicting element causes the

degradation of whole throughput of Turbo decoder.

Fig. 4-8 The change of cost functions of contention free algorithm for various parallel

Turbo decoder applications.

 57

Fig. 4-9 The solution of contention free algorithm for 8-parallel Turbo decoder

 58

Fig. 4-10 The solution of contention free algorithm for 16-parallel Turbo decoder

 59

Fig. 4-11 The solution of contention free algorithm for 32-parallel Turbo decoder

 60

Fig. 4-12 The VLSI architecture implementation of Turbo decoder in the FPGA

platform

Fig. 4-13 The comparison of the output values of golden model from matlab@ with the

output values of FPGA

 61

Fig. 4-14 The block diagram for the proposed contention free parallel Turbo decoder

Table 4-2 Parallel Turbo decoder area and through for various number of SISO

decoders at clock frequency 200MHz.

 62

 63

4.5 An Approach for Reducing Memory Area of Parallel

Turbo Decoder

For parallel Turbo decoding processing, the overall decoding throughput increases

linearly together with the hardware complexity. In particular, the temporary memories

occupy a significant portion of total hardware. Several papers have proposed different

strategies for reducing memory area of SISO decoder, such as sliding window memory

and state metrics memory [29]. In this section, we present two approaches that can

reduce a considerable amount number of extrinsic memory area for parallel Turbo

decoder.

4.5.1 Classical Extrinsic Memory Access for Single Turbo Decoder

Fig. 4-15 shows the waveform expression of single SISO decoder and the external

storage components, which consist of input buffer unit and extrinsic memory. Note that

the shaded region denotes concurrent read and write access to the extrinsic memory. The

length of shaded region can be approximated as N-L, where N is codeword block size

and L denotes the latency of log-MAP decoder. In practice, the extrinsic memory can be

implemented by dual port memory [30], two port memory [31], or two single port

memories.

4.5.2 An Area-Efficient Extrinsic Memory Scheme for Parallel Turbo

Decoder

The extrinsic memories occupy a considerable amount of area in the parallel Turbo

decoder due to multiple memory banks. The reduction of extrinsic memories is necessary

for an area efficient Turbo decoder. Fig. 4-16 demonstrates the waveform of multiple

SISO decoders and the extrinsic memories. We can see that the length of the shaded

region in parallel Turbo decoder scheme is shorter than that of single Turbo decoder

scheme (Fig. 4-15), which can be approximated as (N/P)-L, where P assumes the number

of multiple Turbo decoders.

The length of the shaded region can become much smaller, even reaching zero,

through the use of a larger number of SISO decoders each employing the memory

collision free algorithm presented in previously section. When the length of the shaded

region is small enough, the extrinsic memories can be implemented by single port

memories with one temporary buffer used for storing the extrinsic values. [25] had

presented an extrinsic value mapping function, which could significantly reduce the

bit-width of the extrinsic value. Fig. 4-16 shows an area-efficient extrinsic memory

scheme for parallel Turbo decoder where the extrinsic memories and buffer are realized

by signal port memories. Due to the multiple single port memories used for storing

extrinsic values, there is significant area reduction in relation to use of multiple dual port

or two port memories. Therefore, the presented area-efficient scheme has a memory area

reducing benefit for the parallel Turbo decoder.

Fig. 4-15 The waveform expression between the single log-MAP decoder and the

 64

external storage components which consist of input buffer and extrinsic memory.

Fig. 4-16 The waveform expression between the multiple SISO decoders and the

external storage components which consist of input buffers and extrinsic memories.

Fig. 4-17 Structure of proposed an area-efficient extrinsic memory scheme for parallel

Turbo decoder architecture.

 65

 66

4.5.3 Analysis of the Required Memory Size

The hardware evaluation is obtained by using Verilog HDL codes synthesized with the

standard cell library of UMC 0.13-μm CMOS process. Since the CCSDS standard doest

not support parallel contention free Turbo decoder architecture, we can apply memory

collision free algorithm introduced in previously section to realize parallel turbo decoder

architecture. In Table 4-3, the extrinsic memory requirement of four different parallel

Turbo decoder configurations is evaluated with the latency L of SISO decoder as

measured by HDL simulator. Note that the proposed extrinsic storage schemes achieve

31% area reduction(0.096 mm2) without extrinsic quantization and 41% area reduction

(0.125 mm2) with extrinsic quantization relative to conventional extrinsic storage using

dual port RAM, which was proposed in [30], for 8-parallel Turbo decoder architecture.

The extrinsic memory requirement for 16-parallel Turbo decoder architecture and

32-parallel Turbo decoder architecture are also listed in Fig.4-18. Note that a larger

number of parallel Turbo decoder can obtain a larger percentage of memory area

reduction as the read and write access time of extrinsic memory does not overlap such

that the temporary buffer is not necessary.

Table 4-3 Summary of area requirements for various organization of extrinsic memory

architecture

 67

 68

Fig. 4-18 Comparison of area requirements for different organization of extrinsic

memory architecture (@ UMC 0.13-μm CMOS Process Measured and latency L=104

cycles measured).

 69

Chapter 5 Conclusion

A memory collision free algorithm to achieve high parallel SISO decoders for

turbo-decoding has been presented. The high parallel collision free Turbo decoder has

been implementation for VLSI architecture using the UMC-90nm standard CMOS cell

library. As a result, the throughput of 32-memory-collision free turbo-decoding could

achieve up to 169.25Mbps with clock frequency 200MHz, which is faster than that of

serial SISO decoder 12Mbps

This paper introduces a memory collision free algorithm using simulated annealing

heuristic method for parallel Turbo decoder, in which a highly parallel structure is

available. By applying memory collision free algorithm, we proposed two area-efficient

extrinsic memory schemes achieving lower hardware cost for high parallel Turbo

decoder structure. The experimental results in UMC 0.13-μm CMOS process show that

the organization of our proposed extrinsic memory without extrinsic non-linear

quantization can achieve around 40% memory area reduction for the 32-SISO parallel

Turbo decoder relative to conventional extrinsic storage using dual port RAM for the

Turbo code of CCSDS standard. On the other hand, the organization of our proposed

extrinsic memory with extrinsic non-linear quantization can further achieve around 46%

memory area reduction for the 16-SISO parallel Turbo decoder.

 70

Bibliography

[1]. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo-codes,” in Proc. ICC, Geneva,

Switzerland, May 1993, pp. 1064–1070.

[2]. Boutillon, E. Douillard, C. Montorsi, G. “Iterative Decoding of Concatenated

Convolutional Codes: Implementation Issues,” Proceedings of the IEEE, June

2007, Issue: 6, pp. 1201-1227.

[3]. A. Nimbalker, T. K. Blankenship, B. Classon, T. E. Fuja, D. J. Costello, Jr,

“Contention-free interleavers,” Int. Symp. on Inf. Theory, June 2004.

[4]. A. Tarable, G. Montorsi and S. Benedetto, “Mapping of interleaving laws to

parallel turbo decoder architectures,”, in Proc. 3rd Int. Symp. Turbo Codes

Related Topics, Brest, France, Sep. 2003, pp. 153-156.

[5]. Consultative Committee for Space Data Systems, CCSDS 131.0-B-1 Blue Book

September 2003.

[6]. S. Dolinar and D. Divsalar, “Weight Distributions for Turbo Codes Using

Random and Nonrandom Permutations” TDA Progress Report 42-122, Jet

Propulsion Laboratory, Pasadena, California, pp. 56–65, August 15, 1995.

Primitive feedback polynomials.

[7]. D. Divsalar and F. Pollara, “On the design of turbo codes”, TDA Progress Report

42-123, Jet Propulsion Laboratory, Pasadena, California, pp. 99–121, November

15, 1995.

[8]. P. Guinand and J. Lodge, “Trellis termination for turbo encoders,” in Proc. 17th

Biennial Symp. Commun., pp. 389–392, May 30-June 1 1994.

 71

[9]. J. Hokfelt, O. Edfors, and T. Maseng, “A survey on trellis termination alternatives

for turbo codes,” in Proc. IEEE Vehicular Technology Conf. (VTC’99),

pp2225–2229, May 1999.

[10]. S. Crozier, P. Guinand, and A. Hunt, “On designing turbo-codes with data

puncturing,” in 9th Canadian Workshop on Inform. Theory (CWIT’05), pp. 32–35,

June 2005.

[11]. L. C. Perez, J. Seghers, and D. J. Costello, Jr., “A distance spectrum interpretation

of turbo codes,” IEEE Trans. Inform. Theory, vol. 42, pp.1698–1709, Nov. 1996.

[12]. C. Berrou, "Turbo codes: some simple ideas for efficient communications",

ESA-DSP 2001, Lisbon, Oct. 2001, and ESA-TTC 2001, Noordwijk, The

Netherlands, Oct. 2001.

[13]. D. Divsalar and F.Pollara, “Multiple Turbo Codes” MIL-COM’95, pp. 279-285,

November 6-8, 1995.

[14]. S. Benedetto and G. Montorsi, “Unveiling Turbo Codes: Some Results on

Parallel Concatenated Coding Schemes”, IEEE Trans. on Inform. Theory, Vol. 42,

No. 2, pp.409-428, March 1996.

[15]. S. Crozier, J. Lodge, P. Guinand and A. Hunt, "Performance of turbo codes with

relatively prime and golden interleaving strategies", Proc. of 6th Int. Mobile

Satellite Conf., pp. 268-275, Ottawa, Canada, June 1999.

[16]. C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan and M. Jézéquel, “Designing

good permutations for turbo codes: towards a single model,” in Proc. IEEE Int.

Conf. Communications, Paris, France, June 2004.

[17]. E. K. Hall, S. G. Wilson, “Stream-oriented turbo codes,” IEEE Trans. Inform.

Theory, vol.47, pp.1813-1831, July 2001.

 72

[18]. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and

sub-optimal MAP decoding algorithms operating in the log domain,” in ZEEE Inc.

on Communications (Seattle, WA, June 1995). pp. 1009-1013.

[19]. A.Worm, P. Hoeher, and N. Wehn, “Turbo-Decoding without SNR Estimation,”

IEEE Communications Letters, vol. 4, no. 6, June 2000.

[20]. M. J. Thul, F. Gilbert, and N. Wehn, “Concurrent Interleaving Architec-tures for

High-Throughput Channel Coding,” in Proc. 2003 Conferenceon Acoustics,

Speech, and Signal Processing (ICASSP ’03), Hong Kong,P.R.China, Apr. 2003,

pp. 613–616.

[21]. T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo

decoding,” IEEE Trans. Commun., vol. 46, no. 4, pp. 421-423, Apr. 1998.

[22]. Zhongfeng Wang, Zhipei Chi and K. K. Parhi, “Area-efficient high speed

decoding schemes for Turbo Decoders” IEEE Transactions on very large scale

integration (VLSI) 2002.

[23]. TH Tsai, CH Lin, AY Wu, “A memory-reduced log-MAP kernel for turbo

decoder,” Circuits and Systems, 2005. ISCAS 2005. IEEE International

Symposium on Publication Date: 23-26 May 2005 On page(s): 1032- 1035 Vol. 2

[24]. J.Ertel, J.Vogt and A.Finger, “A high throughput Turbo Decoder for an

OFDM-based WLAN demonstrator,” in proceedings of 5th International ITG

Conference, Jan. 2004.

[25]. D. Garrett, B. Xu and C. Nicol, “Energy Efficient Turbo Decoding for 3G

Mobile,” Proceedings of 2001 International Symposium on Low Power Electronic

Design,pp 328-333.

 73

[26]. R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and VLSI

architecture for low-latency MAP turbo decoders,” IEEE Trans. on VLSI Systems,

vol. 13, no. 4, pp. 427–438, Apr. 2005.

[27]. J. Sun and O. Y. Takeshita, “Interleavers for turbo codes using permutation

polynomials over integer rings,” IEEE Trans. on Inform. Theory, vol. 51, no. 1,

pp. 101–119, Jan. 2005

[28]. J.Y´a˜nez and J. Ram´ırez, “The robust coloring problem,” European J.Oper.

Res., vol. 148, no. 3, pp. 546–558, 2003.

[29]. A.Lim and F.Wang, “Meta-heuristics for robust graph coloring problem,” in

International Conference on Tools with Artificial Intelligence. IEEE Computer

Society, 2004, pp. 514–518.

[30]. C.-H. Lin, and A.-Y. Wu, “Low-power traceback MAP decoding for

double-binary convolutional turbo decoder,” accepted for publication in Proc.

IEEE ISCAS 2008, Seattle, USA, May 18-21, 2008.

[31]. J.Ertel, J.Vogt, A.Finger, “A high throughput Turbo Decoder for

an OFDM-based WLAN demonstrator,” in proceedings of 5th International ITG

Conference, Jan. 2004.

[32]. Bougard, A. Giulietti, C. Desset, L. Van der Perre, and F. Catthoor, “A low power

high speed parallel concatenated turbo-decoding architecture,” in Proc. Int. Symp.

Turbo Codes and Related Topics, Brest, France,Sep. 2003, pp. 511–514.

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Organization
	Chapter 2 Turbo Code
	2.1 System Overview
	2.2 Turbo Encoder
	2.2.1 Turbo Encoder Process
	2.2.2 Recursive Systematic Convolution (RSC)
	2.2.3 Trellis-Termination
	2.2.4 Puncturing

	2.3 Interleaver
	2.3.1 Block Interleaver
	2.3.2 Prime Interleaver
	2.3.3 Random Interleaver
	2.3.4 S - Interleaver
	2.3.5 Characteristic of Interelaver

	2.4 Channel Model
	2.5 Turbo Decoder Process
	2.6 SISO Decoding Algorithm
	2.6.1 Log-MAP Algorithm
	2.6.2 Max-Log-MAP Algorithm
	2.6.3 Initialized Procedure for Both Log-MAP and Max-Log-MAP Algorithm

	2.7 Error Probability for Turbo Code
	2.8 Turbo Code Application on Telemetry and Deep Space Communications
	2.9 Simulation and Results

	Chapter 3 VLSI Architecture of Turbo Decoder
	3.1 Sliding Window Approach
	3.2 VLSI Architecture of SISO Decoder for CCSDS Standard
	3.2.1 Log-MAP Decoder
	3.2.2 Interleaver Address Calculation Unit
	3.2.3 Extrinsic Information Quantization

	3.3 Serial SISO Structure
	3.4 Parallel SISOs Strcture

	Chapter 4 Solving Memory Collision Problem For Parallel Turbo Decoder
	4.1 Introduction
	4.2 Memory Collision Problem for Parallel Turbo Decoder
	4.3 Solving Memory Collision Problem Using Temporal Buffer Architecture
	4.4 Proposed Memory Contention Free Scheme for Parallel Turbo Decoder
	4.4.1 Definition of Memory Collision Problem
	4.4.2 Solution to Graph Coloring Problem by Simulated Annealing Algorithm
	4.4.3 The Extrinsic Memory Collision Free VLSI Architecture Design
	4.4.4 Simulation and Experiment Results

	4.5 An Approach for Reducing Memory Area of Parallel Turbo Decoder
	4.5.1 Classical Extrinsic Memory Access for Single Turbo Decoder
	4.5.2 An Area-Efficient Extrinsic Memory Scheme for Parallel Turbo Decoder
	4.5.3 Analysis of the Required Memory Size

	Chapter 5 Conclusion

