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In this paper, an enhanced mean-shift tracking algorithm using joint spatial-color feature and a novel
similarity measure function is proposed. The target image is modeled with the kernel density estimation
and new similarity measure functions are developed using the expectation of the estimated kernel den-
sity. With these new similarity measure functions, two similarity-based mean-shift tracking algorithms
are derived. To enhance the robustness, the weighted-background information is added into the proposed
tracking algorithm. Further, to cope with the object deformation problem, the principal components of
the variance matrix are computed to update the orientation of the tracking object, and corresponding
eigenvalues are used to monitor the scale of the object. The experimental results show that the new sim-
ilarity-based tracking algorithms can be implemented in real-time and are able to track the moving
object with an automatic update of the orientation and scale changes.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In visual tracking, object representation is an important issue,
because it can describe the correlation between the appearance
and the state of the object. An appropriate object representation
makes the target model more distinguishable from the back-
ground, and achieves a better tracking result. Comaniciu et al.
(2003) used the spatial kernels weighted by a radially symmetric
normalized distance from the object center to represent blob ob-
jects. This representation makes mean-shift tracking more effi-
cient. Radially symmetric kernel preserves representation of the
distance of a pixel from the center even the object has a large set
of transformations, but this approach only contains the color infor-
mation of the target and the spatial information is discarded. Para-
meswaran et al. (2006) proposed the tunable kernels for tracking,
which simultaneously encodes appearance and geometry that en-
able the use of mean-shift iterations. A method was presented to
modulate the feature histogram of the target that uses a set of spa-
tial kernels with different bandwidths to encode the spatial infor-
mation. Under certain conditions, this approach can solve the
problem of similar color distribution blocks with different spatial
configurations.

Another problem in the visual tracking is how to track the scale
of object. In the work by Comaniciu et al. (2003), the mean-shift
algorithm is run several times, and for each different window size,
the similarity measure Bhattacharyya coefficient is computed for
ll rights reserved.

18; fax: +886 3 5715998.
comparison. The window size yielding the largest Bhattacharyya
coefficient, i.e. the most similar distribution, is chosen as the up-
dated scale. Parameswaran et al. (2006), Birchfield and Rangarajan
(2005) and Porikli and Tuzel (2005) use the similar variation meth-
od to solve the scale problem. But this method is not always stable,
and easily makes the tracker lose the target. Collins (2003) ex-
tended the mean-shift tracker by adapting Lindeberg’s theory
(Lindeberg, 1998) of feature scale selection based on local maxima
of differential scale-space filters. It uses blob tracking and a scale
kernel to accurately capture the target’s variation in scale. But
the detailed iteration method was not described in the paper. An
EM-like algorithm (Zivkovic and Krose, 2004) was proposed to esti-
mate simultaneously the position of the local mode and used the
covariance matrix to describe the approximate shape of the object.
However, implementation details such as deciding the scale size
from the covariance matrix were not given. Other attempts were
made to study different representation methods. Zhang et al.
(2004) represented the object by a kernel-based model, which of-
fers more accurate spatial–spectral description than general blob
models. Later, they further extend the work to cope with the scal-
ing and rotation problem under the assumption of affine transfor-
mation (Zhang et al., 2005). Zhao and Tao (2005) proposed the
color correlogram to use the correlation of colors to solve the re-
lated problem. But these methods did not consider the influence
of complex background.

This work extends the traditional mean-shift tracking algorithm
to improve the performance of arbitrary object tracking. At the
same time, the proposed method tries to estimate the scale and
orientation of the target. This idea is similar to the CAMSHIFT
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algorithm (Bradski, 1998) except spatial probability information as
well as background influence are considered. The subject of this
paper is divided into two parts. The first part is to develop the
new spatial-color mean-shift trackers for the purpose of capturing
the target more accurately than the traditional mean-shift tracker.
The second part is to develop a method for solving the scale and
orientation problem mentioned above. The solution, though seems
straightforward, has never been proposed in literature. The effec-
tiveness proved by experiments shows a further enhancement on
the mean-shift algorithm.

2. Model definition

Birchfield and Rangarajan (2005) proposed the concept of spa-
tial histogram, or spatiogram, in which each histogram bin con-
tains the mean and covariance information of the locations of the
pixels belonging to that bin. This idea involves the spatially
weighted mean and covariance of the locations of the pixels. The
spatiogram captures the spatial information of the general histo-
gram bins. However, as shown in Fig. 1, if cyan and blue belong
to the same bin, these two blocks have the same spatiogram, even
though they have different color patterns.

Let the image of interest have M pixels and the associated color
space can be classified into B bins. For example, in RGB color space,
if each color is divided into 8 intervals, the total number of bins is
512. The image can be described as Ix ¼ fxi; cxi

; bxi
gi¼1;...;M where xi

is the location of pixel i with color feature vector cxi
which belongs

to the bxi
th bin. The color feature vector has the dimension d which

is the color channels for the pixel (for example, in RGB color space,
d = 3 and cxi

¼ ðRxi
;Gxi

;Bxi
Þ). To keep the robustness of color

description of the spatiogram, we extend the spatiogram and de-
fine a new joint spatial-color model of the image Ix as

hIx ðbÞ ¼ nb;lP;b;
X
P;b

;lC;b;
X
C;b

* +
; b ¼ 1; . . . ;B ð1Þ

where nb, lP,b, and
P

P;b are the same as the spatiogram proposed by
Birchfield and Rangarajan (2005). Namely, nb is the number of pix-
els, lP,b the mean vector of pixel locations, and

P
P;b the covariance

matrix of pixel locations belonging to the bth bin. In (1), we add two
additional elements. lC,b is the mean vector of the color feature vec-
tors and

P
C;b is the associated covariance matrix.

3. Spacial-colour mean-shift object tracking algorithm

Using the spatial-color feature and the concept of expectation
(Yang et al., 2005), two different tracking algorithms are proposed
as the following.

3.1. Spatial-color mean-shift tracking algorithm (tracker 1)

The p.d.f. of the selected pixel x,cx,bx in the image model hIx ðbÞ
(see (1)) can be estimated using kernel density function.
Fig. 1. Illustration of the same spatial information with different color distribution
for one bin.
pðx; cx; bxÞ ¼
1
B

XB

b¼1

KP x� lP;b;
X
P;b

 !
KC cx � lC;b;

X
C;b

 !
dðbx � bÞ

ð2Þ

where KP and KC are multivariate Gaussian kernel functions and can
be regarded as the spatially weighted and color-feature weighted
function respectively. It is also possible to use a smooth kernel such
as Gaussian (Yang et al., 2005). Using the concept of the expectation
of the estimated kernel density, we can define a new similarity
measure function between the model hIx ðbÞ and candidate
Iy ¼ fyj; cyj

; byj
gj¼1;...;N as

JðIx; IyÞ ¼ JðyÞ ¼ 1
N

XN

j¼1

pðyj; cyj
; byj
Þ

¼ 1
NB

XN

j¼1

XB

b¼1

KP yj � lP;b;
X
P;b

 !
KC cyj

� lC;b;
X
C;b

 !
dðbyj

� bÞ

ð3Þ

The spatial-color model in (2) under measures like (3) might be sen-
sitive to small spatial changes. This problem was discussed by
O’Conaire et al. (2007) and Birchfield and Rangarajan (2007). How-
ever, this model also gives advantages of orientation estimation. As
shown in Fig. 2, if there is no deformation between candidate and
target, and the distance of motion is not excessively large between
two adjacent frames, we can consider the motion of object of two
frames as a pure translation. Under these assumptions, the center
of target model x0 is proportional to the center of candidate y in
the candidate image. As a result, we can normalize the pixels loca-
tion and then obtain the new similarity measure function as the
following:

JðyÞ ¼ 1
NB

XN

j¼1

XB

b¼1

KP yj � y � ðlP;b � x0Þ;
X
P;b

 !

� KC cyj
� lC;b;

X
C;b

 !
dðbyj

� bÞ ð4Þ

The best candidate for matching can be found by computing the
maximum value of the similarity measure. Let the gradient of the
similarity function with respect to the vector y equal to 0, i.e.,
rJ(y) = 0, we can obtain the new position ynew of the target to be
tracked,

rJðyÞ ¼ 0

) 1
NB

XN

j¼1

XB

b¼1

X
P;b

 !�1

ðyj � y � lP;b þ x0ÞKPKCdðbyj
� bÞ ¼ 0

)
XN

j¼1

XB

b¼1

X
P;b

 !�1

KPKCdðbyj
� bÞ

8<:
9=;ðy � x0Þ

¼
XN

j¼1

XB

b¼1

X
P;b

 !�1

ðyj � lP;bÞKPKCdðbyj
� bÞ
,P bμ

0x

,P bμ

y

Fig. 2. Illustration of pure translation.
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y � x0 ¼
XN

j¼1

XB

b¼1

X
P;b

 !�1

KPKCdðbyj
� bÞ

8<:
9=;
�1

�
XN

j¼1

XB

b¼1

X
P;b

 !�1

ðyj � lP;bÞKPKCdðbyj
� bÞ

8<:
9=; ð5Þ

As a result, the new position ynew is described as (6).

ynew ¼
XN

j¼1

XB

b¼1

X
P;b

 !�1

KPKCdðbyj
� bÞ

8<:
9=;
�1

�
XN

j¼1

XB

b¼1

X
P;b

 !�1

ðyj � lP;bÞKPKCdðbyj
� bÞ

8<:
9=;þ x0 ð6Þ

where

KP ¼ KP yj � yold � lP;b þ x0;
X
P;b

 !

¼ 1

2pj
P

P;bj
1=2 e

�1
2 yj�yold�lP;bþx0ð ÞT

P
P;b

� ��1

yj�yold�lP;bþx0ð Þ

 !
ð7Þ

and

KC ¼ KC cyj
� lC;b;

X
C;b

 !

¼ 1

ð2pÞ3=2j
P
C;b
j1=2 e

�1
2 cyj

�lC;b

� �T P
C;b

� ��1

ðcyj
�lC;bÞ

 !
ð8Þ

Eq. (6) is the mean shift vector as well as an iterative function with
respect to y. In the sequel, we define yold as the current position.

3.2. Tracking algorithm with reduced complexity (tracker 2)

Based on the definition of the p.d.f. in (2), the kernel density
functions of (7) and (8) have to be computed in each iterative step
during tracking. Therefore, it is possible to reduce the computa-
tional complexity when the variation of the target image is small.
Rewrite (2) as

pðbÞ ¼ 1
M

XM

i¼1

KP xi � lP;bðiÞ;
X
P;bðiÞ

0@ 1AKC cxi
� lC;bðiÞ;

X
C;bðiÞ

0@ 1Adðb� bðiÞÞ

ð9Þ

where b(i) is the color bin to which pixel i belongs. We can derive
new kernel density estimation functions as

KP xi � lP;bðiÞ;
X
P;bðiÞ

0@ 1A

¼ 1

2pj
P

P;bðiÞj
1=2 e

�1
2 xi�lP;bðiÞð ÞT

P
P;bðiÞ

� ��1

xi�lP;bðiÞð Þ

 !
ð10Þ

KC cxi
� lC;bðiÞ;

X
C;bðiÞ

0@ 1A

¼ 1

ð2pÞ3=2j
P

C;bðiÞj
1=2 e

�1
2 cxi

�lC;bðiÞð ÞT
P
C;bðiÞ

� ��1

cxi
�lC;bðiÞð Þ

 !
ð11Þ
KP and KC are also the spatially weighted and color-feature weighted
functions which depend on the image model. Using the similar con-
cept of the expectation of the estimated kernel density, another
new similarity measure function between the model and candidate
Iy ¼ fyj; cyj

; byj
gj¼1;...;N can be defined as

JðIx; IyÞ ¼ JðyÞ ¼ 1
N

XN

j¼1

Gðey jÞpðbyj
Þ ð12Þ

where ey j ¼ 1
a ðy � yjÞ and y is the center of the candidate image.

Gðey jÞ is a spatially weighted function depending on the candidate
image and a ¼ Max

j¼1�N
y � yj

�� ��.

The best candidate is obtained by finding the maximum value of
the similarity measure, i.e.,

rJðyÞ ¼ 0

) 1
aN

XN

j¼1

ðy � yjÞG
0ðey jÞpðbyj

Þ ¼ 0

) y
XN

j¼1

G0ðey jÞpðbyj
Þ ¼

XN

j¼1

yjG
0ðey jÞpðbyj

Þ

) y ¼
PN

j¼1yjG
0ðey jÞpðbyj

ÞPN
j¼1G0ðey jÞpðbyj

Þ

ð13Þ

The spatially weighted term G0ðey jÞ can be derived by choosing func-
tion G as the Epanechnikov kernel function:

KðxÞ ¼
1

2Cd
ðdþ 2Þð1� xk k2Þ; if xk k < 1

0; otherwise

(
ð14Þ

where d is the dimension of space, Cd is the volume of the unit
d-Dimensional sphere. Let K(x) = k(kxk2), we obtain

kðxÞ ¼
1

2Cd
ðdþ 2Þð1� xÞ; if x < 1

0; otherwise

(
For two-dimensional image processing applications (d = 2 and
Cd = p), the kernel function is reduced to

kðxÞ ¼
1

2p ð2þ 2Þð1� xÞ ¼ 2
p ð1� xÞ; if x < 1

0; otherwise

(
ð15Þ

Assigning G(x) = k(x), the derivative of G becomes a constant as

G0ðxÞ ¼ k0ðxÞ ¼ � 2
p

ð16Þ

The result is simple and easy to compute. Finally, by substituting
(16) into (13), we can obtain the second similarity-based mean-shift
algorithm as follows:

ynew ¼
PN

j¼1yjpðbyj
ÞPN

j¼1pðbyj
Þ

ð17Þ
3.3. Weighted-background information

Like most of the tracking algorithms, the proposed method may
arrive at an incorrect result if the background contains similar
information in foreground. The problem becomes more serious if
the scale and orientation of the target have to be followed. One
way to reduce the influence of background is to apply a weighting
function to the image surrounding the target. The combination of
the weighting function with the spatial-color mean-shift tracking
algorithms proposed before is explained below.

Let NF,b be the normalized histogram of the foreground of the
bth bin

P
bNF;b ¼ 1

� �
, and NO,b the normalized histogram of the

background of the bth bin
P

bNO;b ¼ 1
� �

. The histogram of
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background is computed in the region around the foreground (tar-
get). The size is equal to two times the target size and the area is
equal to three times the target area. Define the background influ-
ence factor of the bth bin as NF;b

NO;b
for NO,b – 0. The maximum value

of the factor for all bins are defined as b ¼maxb¼1�B;
NO;b–0

NF;b
NO;b

� �
. When

b� 1, certain bins in background contain more related features

than the corresponding foreground bins. This should results in a
small background weighting factor for those bins. Note that we ex-
clude the cases when NO,b = 0 in computing b. Therefore, we should
also make the background weighting factor small for the cases
when b � 1. Based on the analysis, the background weighting fac-
tor can be defined as

Wb ¼
1� e�

b
b0

� �
1
b

NF;b
NO;b

; if NO;b–0

1; if NF;b–0 and NO;b ¼ 0
0; otherwise

8>><>>: ð18Þ

where b0 is a constant. Note that when NF,b – 0 and NO,b = 0, the
background has no influence to the foreground at the bth bin.
Therefore, it is given the largest weighting in (18). The weighted-
background information is added into the mean-shift tracking algo-
rithms developed in (6) and (17), and the algorithms is derived
again as

ynew ¼
XN

j¼1

XB

b¼1

X
P;b

 !�1

Wbyj
KPKCd½byj

� b�

8<:
9=;
�1

�
XN

j¼1

XB

b¼1

X
P;b

 !�1

ðyj � lP;bÞWbyj
KPKCd½byj

� b�

8<:
9=;þ x0

ð19Þ

and

ynew ¼
PN

j¼1yjWbyj
pðbyj

ÞPN
j¼1Wbyj

pðbyj
Þ

ð20Þ
3.4. Update of scale and orientation

The characteristic values of the covariance matrix of the spatial-
color distribution can be utilized to represent the scale and orien-
tation of the target. A similar idea was proposed in the algorithm
called CAMSHIFT (Bradski, 1998). From the experimental results
shown later, this simple calculation provides a fairly robust scale
and orientation tracking performance which greatly enhances the
capability of mean-shift algorithm.

We define several new elements as follows. lT is the total mean
vector of the locations of all pixels in the target,

P0
W is the within-

class covariance matrix of the B bins by adding the background
weighting.

P0
B is the between-class covariance matrix of the B bins

by adding the background weighting.
P0

T is the total covariance
matrix of locations of all data by adding the background weighting.

lT ¼
1
M

XB

b¼1

nblP;b ð21Þ

X0
W

¼
XB

b¼1

XM

i¼1

Wbðxi � lP;bÞðxi � lP;bÞ
Td½bxi

� b� ð22Þ

X0
B

¼
XB

b¼1

WbnbðlP;b � lTÞðlP;b � lTÞ
T ð23Þ

X0
T

¼
XM

i¼1

Wbðxi � lTÞðxi � lTÞ
Td½bxi

� b� ð24Þ
It can be shown first that
P0

T can be computed from the between-
class covariance matrix and within-class covariance matrix asX0

T

¼
XM

i¼1

Wbðxi � lTÞðxi � lTÞ
Td½bxi

� b�

¼
XB

b¼1

XM

i¼1

Wbðxi � lP;b þ lP;b � lTÞðxi � lP;b þ lP;b � lTÞ
Td½bxi

� b�

¼
XB

b¼1

XM

i¼1

Wbðxi � lP;bÞðxi � lP;bÞ
Td½bxi

� b�

þ
XB

b¼1

XM

i¼1

Wbðxi � lP;bÞðxi � lIÞ
Td½bxi

� b�

þ
XB

b¼1

XM

i¼1

WbðlP;b � lTÞðxi � lP;bÞ
Td½bxi

� b�

þ
XB

b¼1

XM

i¼1

WbðlP;b � lTÞðlP;b � lTÞ
Td½bxi

� b� ð25Þ

BecauseXB

b¼1

XM

i¼1

WbðlP;b � lTÞðxi � lP;bÞ
Td½bxi

� b�

¼
XB

b¼1

WbðlP;b � lTÞ
XM

i¼1

ðxi � lP;bÞ
Td½bxi

� b�

¼
XB

b¼1

WbðlP;b � lTÞðnblP;b � nblP;bÞ
T ¼ 0

andXB

b¼1

XM

i¼1

WbðlP;b � lTÞðlP;b � lTÞ
Td½bxi

� b�

¼
XB

b¼1

WbðlP;b � lTÞðlP;b � lTÞ
T
XM

i¼1

d½bxi
� b�

¼
XB

b¼1

WbnbðlP;b � lTÞðlP;b � lTÞ
T

we can obtainX0
T

¼
XB

b¼1

XM

i¼1

Wbðxi � lP;bÞðxi � lP;bÞ
Td½bxi

� b�

þ
XB

b¼1

WbnbðlP;b � lTÞðlP;b � lTÞ
T

¼
X0

W

þ
X0

B

ð26Þ

Based on (26), we can compute
P0

T by the information of bins. It
means that even the target does not contain the model completely.
We can also obtain the approximated

P0
T from the bins in the tar-

get. Suppose the data dimension is limited to 2. Using principle
component analysis method to solve the eigen-equation (Hastie
et al., 2001), we have,

X0
T

v ¼ kv ð27Þ

The corresponding eigen-vectors, v1 and v2, are the direction of long
axis and short axis of the data distribution. k1 and k2 are the largest
and smallest eigen-values. Further, suppose the data is uniformly
distributed in an ellipse. The principle direction of the ellipse is v1

and the length of long axis and short axis is equal to two times of
k1 and k2, respectively. So v1, 2k1 and 2k2 are the orientation and
scales of the target.



J.-S. Hu et al. / Pattern Recognition Letters 29 (2008) 2165–2173 2169
4. Experiment results

The proposed spatial-color mean-shift tracking algorithms were
implemented in C and tested on a 2.8GHz Pentium 4 PC with 1GB
memory. We use normalized color variables r and g as the feature
space as

r ¼ Red
ðRedþ Greenþ BlueÞ ; g ¼ Green

ðRedþ Greenþ BlueÞ

The color histograms are divided into 512 bins, i.e. the value B of (1)
is equal to 512. Three video clips are used in the first experiment for
fixed scale and orientation cases: the face sequence for face track-
ing; the cup sequence with complex appearance in complex back-
ground; and the walking girl sequence which is obtained from
Fig. 3. Face sequence of frames 33, 93, 117, 126, 183, 256, 271, and 455. (Red: tracker
references to color in this figure legend, the reader is referred to the web version of thi

Fig. 4. Distance error of face sequence. (*Note: we only cons

Fig. 5. Cup sequence of frames 4, 45, 63, 69, 81, 105, 166, and 243. (Red: tracker 1, blue: t
to color in this figure legend, the reader is referred to the web version of this article.)
Adam et al. (2006) with partial occlusions. To demonstrate the scale
and orientation tracking ability, two video clips are tested in the
second experiment. The first sequence is the person walking away
from and toward the camera with a large variation of scale. The sec-
ond sequence which is obtained from the CAVIAR database (2004)
illustrates the problem of large deformation. The image size of face
sequence, cup sequence, walking girl sequence, and walking person
sequence are 320 � 240, and the image size of the CAVIAR database
is 352 � 288. The tracking window sizes of face sequence, cup se-
quence, walking girl sequence are 59 � 82, 50 � 65, and 27 � 98,
respectively. In the following figures, tracker 1 means the algorithm
of (19) and its extension while tracker 2 the algorithm of (20) and
its extension. To compute the tracking error, the ground-truth of
the object location is marked visually in every 10 frames and the er-
ror is determined by Euclidean distance.
1, blue: tracker 2, green: traditional mean-shift tracker). (For interpretation of the
s article.)

ider the distance error which is smaller than 50 pixels).

racker 2, green: traditional mean-shift tracker). (For interpretation of the references
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4.1. Spatial-color mean-shift trackers with single scale tracking

Part of the frames in the face tracking experiment is shown
in Fig. 3. Fig. 4 shows the tracking error. For comparison pur-
pose, traditional mean-shift algorithm is also implemented
(marked as tMS in the figures). This example shows under sim-
ple background, all these methods have similar performance but
on the average, the proposed methods outperform the tradi-
tional one.

Similarly, tracking of a cup with complex feature in a complex
background are shown in Figs. 5 and 6. As shown in Fig. 6, tradi-
Fig. 6. Distance error of cup sequence. (*Note: we only consi

Fig. 7. Walking girl sequence of frames 28, 111, 124, 130, 153, 166, 196, and 220. (Red: tr
the references to color in this figure legend, the reader is referred to the web version of

Fig. 8. Walking person tracking results of spatial-color mean-shift tracker1 wi
tional mean-shift algorithm has a larger tracking error and some-
times loses the target.

In the case of partial occlusion (Fig. 7), tracker 1 always captures
the target under the circumstances of the variation of illumination
and partial occlusion, but tracker 2 and traditional mean-shift fail
in the tracking process.

4.2. Spatial-color mean-shift trackers with scale and orientation

Figs. 8 and 9 shows the results of the spatial-color mean-shift
trackers with the PCA method. In the video clip, the target person
der the distance error which is smaller than 50 pixels).

acker 1, blue: tracker 2, green: traditional mean-shift tracker). (For interpretation of
this article.)

th PCA scale method (frames 83, 358, 494, 598, 689, 733, 914, and 1000).



Fig. 9. Walking person tracking results of spatial-color mean-shift tracker2 with PCA scale method (frames 83, 358, 494, 598, 689, 733, 914, and 1000).

Fig. 10. Surveillance tracking results of spatial-color mean-shift tracker1 with PCA scale method (frames 3, 24, 32, 51, 59, 286, 318, and 353).

Fig. 11. Surveillance tracking results of spatial-color mean-shift tracker2 with PCA scale method (frames 3, 24, 32, 51, 59, 286, 318, and 353).

Table 1
The preprocessing time of both trackers (in second)

Tracker 1 Tracker 2

Face sequence 0.027858 0.031299
Cup sequence 0.017306 0.022448
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walks away from and toward the camera, the two trackers capture
the target at all times. These show that both trackers are capable of
tracking the size of the target. In the surveillance sequence ob-
tained from the CAVIAR database (2004), a person walks, lies
down, and finally stands up and resumes walking. These different
actions give significant deformation of the target. Figs. 10 and 11
show that the trackers proposed in this paper always track the tar-
get with the corresponding scale, orientation, and shape.

4.3. Performance analysis

The performance of the proposed algorithms is analyzed in two
different aspects: the preprocessing time of building the model and
the computational time for each iterative step. The face sequence
and cup sequence are used to test the performance of the proposed
trackers. The models are built from the first image of these two se-
quences, and the preprocessing procedure is executed five times to



Fig. 12. The computing time of tracker 1 for the first 200 frames of face sequence.
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obtain the average computing time. Table 1 shows the preprocess-
ing time of both trackers.

Figs. 12 and 13 show the iteration time of the first 200 frames of
face sequence and cup sequence for tracker 1. The average time of
total frames (about 2300 frames) is 0.035855 s (about 28 frames/s).
Fig. 13. The computing time of tracker 1 fo

Fig. 14. The computing time of tracker 2 fo

Fig. 15. The computing time of tracker 2 fo
The average time of an iteration of total frames (about 1900
frames) of cup sequence is 0.017854 (about 56 frames/s). Figs. 14
and 15 show the results for tracker 2. The average time of total
frames is 0.020670 s (about 48 frames/s). The average time of an
iteration of total frames of cup sequence is 0.006608 (about
r the first 200 frames of cup sequence.

r the first 200 frames of face sequence.

r the first 200 frames of face sequence.
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151 frames/s). The tracking time of tracker 2 is smaller than that of
tracker 1 because tracker 2 computes KP and KC at the preprocess-
ing stage instead of at each iteration. Nevertheless, both trackers
satisfy the real-time requirement of current image sampling rate
for most cameras (30 frames/s).
5. Conclusion

A spatial-color mean-shift object tracking algorithm is pro-
posed in this paper. Combining the spatial information with color
feature makes the model more robust in tracking applications.
New tracking algorithms are proposed based on the proposed
similarity measure using the concept of the expectation of the
estimated kernel density. Moreover, the principal component
analysis is applied to the covariance matrix of the spatial-color
distribution to access the scale and orientation of the target.
The experiment results show the effectiveness and real-time
capability of the proposed algorithms. The update of scale and
orientation in this paper are based on the image tracked by the
proposed algorithm. This information is not considered for the
tracking in the next step, which is an interesting research topic
for further study. To do so, a modified model like the affine trans-
formation in Zhang et al. (2005), might have to be considered.
However, this means certain scale and orientation restrictions
are imposed on the target image. These aspects will be investi-
gated in our future research.
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