A PHEREAEREE B A TR e
BT 2R
Support-Vector based Fuzzy Neural Networks
and its Applications to Pattern Classification and

Function Approximation

Fd ;}. ‘;E“_ ’h‘ P! ,L»v—;fd 4 &# é___ A 7} A5 Jh“f‘?
D gtjj' 0 2 },@' *
Support-Vector based Fuzzy Neural Networks and its Applications

to Pattern Classification and Function Approximation

oA LELRN Student : Chang-Mao Yeh
Ry kg gL Advisor : Dr. Chin-Teng Lin

A Dissertation
Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electrical and Control Engineering
September 2006
Hsinchu, Taiwan, Republic of China

PERREA LS -

il

L BHOPEH LREZ H AT Fios

st SRRt * BB RF Y FEZ2S A HEYREZEY AN
AR e D e n S R TR A e Sl B AT e B Y R
EF A RPGELEFRRELR R B o inRag 2 T A2 TR
B2 E | BAF S R 0 D G AT R R E R TR A
HE URCE R S TR R F

Amv B EAFe L ERRIE IR SRE DRI R - BATHAE
v ® o 84 5 e B (SVFNNs) o SYENNs -3 it & 72 AP & 3 R iR AR A 3 5 4 b
L e B (SWDfris AR s i Fuieduill d i emd # o £ v (SR & it 55 5 »/e
T FE RIRB TN 00 A ST Y RO A S 2 B A o A A PR)
- 1B i & WOk oo Sodic(adaptive fuzzy kernel) » & (7 #0972 RIZ 0 2 R P2
SR L FS £ Y A7 2 B E 232 (Mercer’s theorem) » SVFNNs 0% ¥ i
HAG RBEY A Y- BRI AERILD B A D R RR o B
o By BRI E 5 B Pw Soficzs SN e SVR k3B oA ek
Pl Bl bk 2 A BB MR ARR 0 2 RS2 £ R iR R
3 i - SVFNNs & * 3] Iris ~ Vehicle ~ Dna ~ Satimage ~ Ijcnnl I B F# & fo
BEHE ERESECGE 5 R A S S BT R R RSB A PR
SVFNNs ¢ fié * g b enfihs A0 ™ § {%4F it (generalization) 2. T Ad A 4

AT A g GEFLAE I e BedT i) v o

Support-Vector based Fuzzy Neural Networks and its
Applications to Pattern Classification and Function

Approximation

Student: Chang-Mao Yeh Advisor: Chin-Teng Lin
Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

Fuzzy neural networks (ENNs) have been proposed and successfully
applied to solving these problems such:as classification, identification, control,
pattern recognition, and image processing;ete. Fuzzy neural networks usually
use the backpropagation or C-cluster type learning algorithms to learn the
parameters of the fuzzy rules and membership functions from the training data.
However, such learning algorithm only aims at minimizing the training error,
and it cannot guarantee the lowest testing error rate in the testing phase. In
addition, the local solutions and slow convergence often impose practical
constraints in the function approximation problems

In this dissertation, novel fuzzy neural networks combining with support
vector learning mechanism called support-vector based fuzzy neural networks
(SVFNNSs) are proposed for pattern classification and function approximation.
The SVFNNs combine the capability of minimizing the empirical risk
(training error) and expected risk (testing error) of support vector learning in
high dimensional data spaces and the efficient human-like reasoning of FNN
in handling uncertainty information. First, we propose a novel adaptive fuzzy

kernel, which has been proven to be a Mercer kernel, to construct initial fuzzy

i

rules. A learning algorithm consisting of three learning phases is developed to
construct the SVFNNs and train the parameters. In the first phase, the fuzzy
rules and membership functions are automatically determined by the
clustering principle. In the second phase, the parameters of FNN are
calculated by the SVM and SVR with the proposed adaptive fuzzy kernel
function for pattern classification and function approximation, respectively. In
the third phase, the relevant fuzzy rules are selected by the proposed fuzzy
rule reduction method. To investigate the effectiveness of the proposed

SVFNNS, they are applied to the Iris ~ Vehicle ~ Dna ~ Satimage and Ijcnnl

datasets for classification, and one- and two- variable functions for
approximation, respectively. Experimental results show that the proposed
SVFNNs can achieve good pattern classification and function approximation
performance with drastically reduced number of fuzzy kernel functions (fuzzy

rules).

il

5L P BRI E ke B BB AL e
HFEOEINLE 2 I B E > AR LA THEF > £5]7 2F
PEF RPN RZ RN A 4 o ",f K- ¥ sl Ea,

4 AR R R B#4“J%ﬂmﬁwﬁﬁ? CRAl A s
2 S Livdp BRI L FEEDZ e o ERAEL RO BALSLE T
PHEFROE BN RIFD SR FA SRR ABLRIET
MAAAYEEFFY = 0 5 p 29 fRflz =8 % o ‘]‘5’35';*5 FF
B E > R R BB R o R R SR T
WA R A LT T R ERE AR B AR (e o

~

ERA 26 FARHAMRAEF AL Brr Mk FEL L)
DA HA K EERLE > N EPE R im;\#ibk’ii:& v A E (S
2 BB N FEG o 2 RHAARTRE FERBEFT p A
Bos o e pEs RBFAGE] D APl eSS 5 E kT 58 ¥ g
o AP BERE . Py A ad R o
R B e £ AR TR LR I R
— A2 A% 3 > A REAF I Y 32 > 2 AL IR 4L
W ZRMEREEE CEE BE 2 REAEER pF B @
Ao AT T WERA P o A EEARRE FH O EEY o
B ENRCRER S Sl i °

1S G RHERPEETERT S E R @R ALK

F_*

LSTEE S R

A E“llﬂ&m—a}“k ;\mﬁA DN NP S R =) B R

il

CONTENTS

B oo s e s s e e e e s e i
ADSEFACE . ccueeueireiensaensnesenssessuessensaessassssssasssassssssssssssssssssessassssssassssssssssaessassssssassssssasssases i
B = R iii
CONTENTS.c.cotititinintinininiiississississississississssssssssssessessssssssssssssssssssasssssssssssssssssesns iv
LIST OF FIGURESuuiiiiiininintnninsississississsssssssssssssssssssisssssssssssssssssssssssssssssnees vi
LIST OF TABLES.......ccoiiinininsninisnnnsinsessissnsssessississessessesssssassassassassssssessssssssesssses vii
CHAPTER 1 INTRODUCTION ...uccoiiiiicsicsensensenssnsssssessessessesssssesssssssssssssssssssssssssses 1

1.1 Fuzzy Neural NetWorkco.eoimmmmmeeeeeneenienieneecniesceeeteseese e 1

1.2 Support Vector Machineo i i i ettt 3

1.3 Research Objectives and Organization of this dissertation...........c..cccccevereenneenee. 4

CHAPTER 2 SUPPORT-VECTOR -“BASED FUZZY NEURAL

NETWORK AND THE ADAPTIVE FUZZY KERNELvenvevvecrersecnces 6
2.1 Structure of the FINNooiiiiiiiiiccceee e 6
2.2 Fuzzy Clustering and Input/Output Space Partitioningcc.cccceevveveeneeniennenne. 9
2.3 Fuzzy RUle GENEIationcccueeiiiiiiieiienieeiieeieeiee e esieesveereessaeeseesaseenseennns 11
2.4 Adaptive Fuzzy Kernel for the SVM/SVR ... 14

CHAPTER 3 SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK FOR PATTERN CLASSIFICATIONcccvvierersecsuicsensaecsnccsessae 18
3.1 Maximum Margin AIZOTithmccoeeviiiiiiiiiiriieieeeee e 19
3.2 Learning Algorithm of SVFNN ..o 22
3.3 Experimental RESUILScceeviieiiiiiiiiiieiceeceee e 29
3.4 DISCUSSIONS ...euvieniieeniieiieeteestteeteestteebeestteeabeesseesabeeaseesateebeeenseeseesnseenseesnseenseas 35

v

CHAPTER 4 SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK FOR FUNCTION APPROXIMATION.....cccceevurrecsurcrersaecsnccsessae 36

4.1 Support Vector Regression Algorithmccooevveiiiiiciienieniiicieciecee e 36
4.2 Learning Algorithm of SVENN L....cccooiiiiiiiiiecceeee e 39
4.3 Experimental RESUILSccviiiiiiiiiiiciecieceece e 43
4.4 DIISCUSSIONS ..vveutieiiietiesiieeteesiteeteesteeteesateeseesateasbeassaeaseesaseenseaanseeseesnseenseannns 56
CHAPTER 5 CONCLUSIONScccuitrtiniesnissesssnssssssssssssssssssssssssasssssssssssssssssssssassssssss 57
REFERENCES......uucoiiitininninsninenssicssissssssissssssssssissssssesssssssssssssssssssssssssssssssassssssns 59
LISTS OF PUBLICATIONcuioviiiinuinsenssessanssssssnssasssessssssssssssssssssssssssssssassssssasssssses 67
VITA uoiitiinininsuicsensesssisssssesssisssssssssstssssssssssssssssssssstsssese 69

LIST OF FIGURES

Fig. 2.1 The structure of the four-layered fuzzy neural network. 7
Fig. 2.2 The aligned clustering-based partition method giving both less

number of clusters as well as less number of membership functions.

Fig. 2.3 The clustering arrangement allowing overlap and selecting the

member points according to the labels (or classes) attached to them.

.. 11
Fig 3.1 Optimal canonical separating hyperplane with the largest margin
between the tWo ClasSes.eeriiiiiiriiiiieie e 20
Fig. 3.2 map the training data nonlinearly into a higher-dimensional feature
] 0 Lo PSP UUSRURPPRP 21
Fig. 4.1 the soft margin loss setting forairegression problem........................ 37
Fig. 4.2 (a) The desired output of:the function.show in (4.8). (b) The resulting
approximation by SVENN. .l i e, 45
Fig 4.3 (a) The desired output of the function show in (4.9) (b) The resulting
approximation by SVENN. . il 46
Fig 4.4 (a) The desired output of the function show in (4.10). (b) The resulting
approximation by SVFNN.........oc e 47
Fig 4.5 (a) The desired output of the function show in (4.11). (b) The resulting
approximation by SVFNN.........cccoiiiiiiiee e 48

vi

LIST OF TABLES

TABLE 3.1 Experimental results of SVFNN classification on the Iris dataset.

... 32
TABLE 3.2 Experimental results of SVFNN classification on the Vehicle
ATASEL. ettt 32
TABLE 3.3 Experimental results of SVFNN classification on the Dna dataset.
... 33
TABLE 3.4 Experimental results of SVFNN classification on the Satimage
ATASEL. ettt 33
TABLE 3.5 Experimental results of SVFNN classification on the Ijnnl
ATASEL. ettt 34

TABLE 3.6 Classification error rate comparisons among FNN,
RBF-kernel-based SVM, . RSVM:and SVFNN classifiers, where
NA means “not available”. .. e e cosisieveeienierieeierieneeieneene 34
TABLE 4.1 (a) Experimental results/of SVENN on the first function using the
training data without noise. (b) Experimental results of SVFNN
on the first function-using thetraining data with noise............... 51
TABLE 4.2 (a) Experimental results of SVFNNon the second function using
the training data without noise. (b) Experimental results of

SVFNN on the second function using the training data with noise.

TABLE 4.3 (a) Experimental results of SVFNN on the third function using the
training data without noise. (b) Experimental results of SVFNN
on the third function using the training data with noise.............. 53
TABLE 4.4 (a) Experimental results of SVFNN on the fourth function using
the training data without noise. (b) Experimental results of

SVFNN on the fourth function using the training data with noise.

... 54
TABLE 4.5 Comparisons RMSE using the training data without noise......... 55
TABLE 4.6 Comparisons RMSE using the training data with noise.............. 55

vii

CHAPTER 1
INTRODUCTION

It is an important key issue in many scientific and engineering fields to classify
the acquired data or estimate an unknown function from a set of input-output data
pairs. As is widely known, fuzzy neural networks (FNNs) have been proposed and
successfully applied to solving these problems such as classification, identification,
control, pattern recognition, and image processing. most previous researches issue the
method of automatically generating fuzzy rules from numerical data and use the
backpropagation (BP) and/or C-clustet type learning algorithms to train parameters of
fuzzy rules and membership functions from:the training data. However, such learning
algorithm only aims at minimizing the training error, and it cannot guarantee the
lowest testing error rate in the testing phase. In addition, the local solutions and slow
convergence often impose practical constraints in the function approximation
problems. Therefore, it is desired to develop a novel FNNs, that achieve good pattern
classification and function approximation performance with drastically reduced

number of fuzzy kernel functions (fuzzy rules).

1.1 Fuzzy Neural Network

Both fuzzy logic and neural networks are aimed at exploiting human-like
knowledge processing capability. The fuzzy logic system using linguistic information
can model the qualitative aspects of human knowledge and reasoning processes
without employing precise quantitative analyses [1]. However, the selection of fuzzy

if-then rules often conventionally relies on a substantial amount of heuristic

1

observation to express proper strategy’s knowledge. Obviously, it is difficult for
human experts to examine all the input-output data to find a number of proper rules
for the fuzzy system. Artificial neural networks are efficient computing models which
have shown their strengths in solving hard problems in artificial intelligence. The
neural networks are a popular generation of information processing systems that
demonstrate the ability to learn from training data [2]. However, one of the major
criticisms is their being black boxes, since no satisfactory explanation of their
behavior has been offered. This is a significant weakness, for without the ability to
produce comprehensible decision, it is hard to trust the reliability of networks
addressing real-world problems. Much research has been done on fuzzy neural
networks (FNNs), which combine the capability of fuzzy reasoning in handling
uncertain information and the capability of mneural networks in learning from
processes [3]-[5]. Fuzzy neural networks are very effective in solving actual problems
described by numerical examples: of -anunknown process. They have been
successfully applied to classification, identification, control, pattern recognition, and
image processing, etc. In particular, many learning algorithms of fuzzy (neural) have
been presented and applied in pattern classification and decision-making systems [6],
[7]. Moreover, several researchers have investigated the fuzzy-rule-based methods for
function approximation and pattern classification [8]-[15].

A fuzzy system consists of a bunch of fuzzy if-then rules. Conventionally, the
selection of fuzzy if-then rules often relies on a substantial amount of heuristic
observation to express proper strategy’s knowledge. Obviously, it is difficult for
human experts to examine all the input-output data to find a number of proper rules
for the fuzzy system. Most pre-researches used the backpropagation (BP) and/or
C-cluster type learning algorithms to train parameters of fuzzy rules and membership

functions from the training data [16], [17]. However, such learning only aims at

2

minimizing the classification error in the training phase, and it cannot guarantee the
lowest error rate in the testing phase. Therefore we apply the support vector
mechanism with the superior classification power into learning phase of FNN to

tackle these problems.

1.2 Support Vector Machine

Support vector machines (SVM) has been revealed to be very effective for
general-purpose pattern classification [18]. The SVM performs structural risk
minimization and creates a classifier with minimized VC dimension. As the VC
dimension is low, the expected: probability. of'.error is low to ensure a good
generalization. The SVM keeps' the training error fixed while minimizing the
confidence interval. So, the “SVM “has good' generalization ability and can
simultaneously minimize the empirical’ tisk' and the expected risk for pattern
classification problems. SVM construct a decision plane separating two classes with
the largest margin, which is the maximum distance between the closest vector to the
hyperplane. In other word, the main idea of a support vector machine is to construct a
hyperplane as the decision surface in such a way that the margin of separation
between positive and negative examples is maximized. More importantly, an SVM
can work very well in a high dimensional feature space. The support vector method
can also be applied in regression (functional approximation) problems. When SVM is
employed to tackle the problems of function approximation and regression estimation,
it is referred as the support vector regression (SVR). SVR can perform high accuracy

and robustness for function approximation with noise.

However, the optimal solutions of SVM rely heavily on the property of selected
kernel functions, whose parameters are always fixed and are chosen solely based on
heuristics or trial-and-error nowadays. The regular SVM suffers from the difficulty of
long computational time in using nonlinear kernels on large datasets which come from
many real applications. Therefore, our dissertation proposes a systematical procedure

to reduce the support vectors to deal with this problem.

1.3 Research Objectives and Organization of this

dissertation

In this dissertation, novel fuzzy neural networks (FNNs) combining with support
vector learning mechanism called —support-vector-based fuzzy neural networks
(SVFNNSs) are proposed for pattern, classification and function approximation. The
SVFNNs combine the capability of minimizing-the empirical risk (training error) and
expected risk (testing error) of support vector learning in high dimensional data
spaces and the efficient human-like reasoning of FNN in handling uncertainty
information. There have been some researches on combining SVM with FNN
[19]-[22]. In [19], a self-organizing map with fuzzy class memberships was used to
reduce the training samples to speed up the SVM training. The objective of [20]-[22]
was on improving the accuracy of SVM on multi-class pattern recognition problems.
The overall objective of this dissertation is to develop a theoretical foundation for the
FNN using the SVM method. We exploit the knowledge representation power and
learning ability of the FNN to determine the kernel functions of the SVM adaptively,
and propose a novel adaptive fuzzy kernel function, which has been proven to be a

Mercer kernel. The SVFNNs can not only well maintain the classification accuracy,

4

but also reduce the number of support vectors as compared with the regular SVM.
Organization and objectives of the dissertation are as follows.

In chapter 2, a novel adaptive fuzzy kernel is proposed for combining FNN with
SVM. We exploit the knowledge representation power and learning ability of the FNN
to determine the kernel functions of the SVM adaptively and develop a novel adaptive
fuzzy kernel function. The objective of this chapter is to prove that the adaptive fuzzy
kernel conform to the Mercer theory.

In chapter 3, a support-vector based fuzzy neural network (SVFNN) is proposed.
This network is developed for solving pattern recognition problem. Compared to
conventional neural fuzzy network approaches, the objective of this chapter is to
construct the learning algorithm of the proposed SVFNN with simultaneously
minimizing the empirical risk and the expected tisk for good generalization ability
and characterize the proposed SVENN with good classification performance.

In chapter 4, a support=vector’based-fuzzy neural network for function
approximation is proposed. This networkis developed for solving function
approximation. The objective of this chapter is to integrate the statistical support
vector learning method into FNN and characterize the proposed SVFNN with the
capability of good robustness against noise.

The applications and simulated results of the SVFNNSs are presented at the ends

of Chapter 3 and 4, respectively. Finally, conclusions are made on Chapter 5.

CHAPTER 2

SUPPORT-VECTOR BASED FUZZY NEURAL
NETWORK AND THE ADAPTIVE FUZZY
KERNEL

In this chapter, adaptive fuzzy kernel is proposed for applying the SVM
technique to obtain the optimal parameters of FNN. The adaptive fuzzy kernel
provides the SVM with adaptive local representation power, and thus brings the
advantages of FNN (such as adaptive learning and economic network structure) into
the SVM directly. On the other*hand, the ' SVM provides the advantage of global
optimization to the FNN and also ‘its ability to minimize the expected risk; while the

FNN originally works on the prihciple of minimizing only the training error.

2.1 Structure of the FNN

A four-layered fuzzy neural network (FNN) is shown in Fig 2.1, which is
comprised of the input, membership function, rule, and output layers. Layer 1 accepts
input variables, whose nodes represent input linguistic variables. Layer 2 is to
calculate the membership values, whose nodes represent the terms of the respective
linguistic variables. Nodes at Layer 3 represent fuzzy rules. The links before Layer 3
represent the preconditions of fuzzy rules, and the link after Layer 3 represent the
consequences of fuzzy rules. Layer 4 is the output layer. This four-layered network

realizes the following form of fuzzy rules:

Rule R; : If x; is Ajjand ...x;is Ay..... and xps 18 Ay, Theny is d;, j=1, 2, ---, N, (2.1)
where Aj are the fuzzy sets of the input variables x;, i =1, 2, ---, M and d; are the
consequent parameter of y. For the ease of analysis, a fuzzy rule 0 is added as:
Rule0: If x;isAjpand........ and x,s is Ay, Then y is d, (2.2)
where Ay is a universal fuzzy set, whose fuzzy degree is 1 for any input value x;,
i=1,2, ---, M and d, is the consequent parameter of y in the fuzzy rule 0. Define
0" and a'” as the output and input variables of a node in layer P, respectively. The
signal propagation and the basic functions in each layer are described as follows.
Layer 1- Input layer: No computation is done in this layer. Each node in this
layer, which corresponds to one input variable, only transmits input values to the next
layer directly. That is
O Eafian (2.3)
where x,,i=1,2, ---, M are th&:input variables of the FNN.

y

Layer 4 e

Layer 3 @

Layer 2

Layer 1 ' ‘

Fig. 2.1 The structure of the four-layered fuzzy neural network.

7

Layer 2 — Membership function layer: Each node in this layer is a membership
function that corresponds one linguistic label (e.g., fast, slow, etc.) of one of the input
variables in Layer 1. In other words, the membership value which specifies the degree

to which an input value belongs to a fuzzy set is calculated in Layer 2:

0% =u(a?) (2.4)
where u”’() is a membership function u”’():R—[0, 1], i=1, 2, -, M, j=1I,
2, ---, N. With the use of Gaussian membership function, the operation performed in
this layer is

(‘152)_”7(/)2
0¥=c 2.5)

where mjand o j are, respectively, the center. (or-mean) and the width (or variance)

of the Gaussian membership function of the j-th termof the i-th input variable x;.
Layer 3 — Rule layer: A node in this-layer represents one fuzzy logic rule and

performs precondition matching of a‘rule. Here we use the AND operation for each

Layer 2 node
> [D; (x-m)" [D; (x-m))]
— S(X-m S(X-m
OV =TJa> = ™0™, (2.6)
i=1
, 1 1 _ T T
where D, =diag| —, -, — |, m~[my, my;, ..., myy]", X=[x1, X2, x3, =, Xp]" 18
o O

the FNN input vector. The output of a Layer-3 node represents the firing strength of
the corresponding fuzzy rule.
Layer 4 — Output layer: The single node O in this layer is labeled with X, which

computes the overall output as the summation of all input signals:

N
OW=>%"d xa" +d,, 2.7)
Jj=1

where the connecting weight d; is the output action strength of the Layer 4 output
associated with the Layer 3 rule and the scalar dj is a bias. Thus the fuzzy neural

network mapping can be rewritten in the following input-output form:

N N M
09 =3"d,xa® +d,=>d [[u"(x,)+d,. (2.8)
Jj=1 J=1 i=1

2.2 Fuzzy Clustering and Input/Output Space Partitioning

For constructing the initial fuzzy rules of the FNN, the fuzzy clustering method
is used to partition a set of data into a number of overlapping clusters based on the

distance in a metric space between the data points.and the cluster prototypes.

—

Fig. 2.2 The aligned clustering-based partition method giving both less number of

clusters as well as less number of membership functions.

Each cluster in the product space of the input-output data represents a rule in the
rule base. The goal is to establish the fuzzy preconditions in the rules. The
membership functions in Layer 2 of FNN can be obtained by projections onto the

various input variables x;, spanning the cluster space. In this work, we use an aligned

clustering-based approach proposed in [23]. This method produces a partition result as
shown in Fig. 2.2.

The input space partitioning is also the first step in constructing the fuzzy kernel
function in the SVFNNSs. The purpose of partitioning has a two-fold objective:

e It should give us a minimum yet sufficient number of clusters or fuzzy
rules.
e It must be in spirit with the SVM-based classification scheme.

To satisfy the aforementionéd conditions, We use a clustering method which
takes care of both the input and output values of a data set. That is, the clustering is
done based on the fact that the points lying m:a cluster also belong to the same class
or have an identical value of the output'variable. The class information of input data is
only used in the training stage to generate the clustering-based fuzzy rules; however,
in testing stage, the input data excite the fuzzy rules directly without using class
information. In addition, we also allow existence of overlapping clusters, with no
bound on the extent of overlap, if two clusters contain points belonging to the same
class. We may have a clustering like the one shown in Fig. 2.3. Thus a point may be
geometrically closer to the center of a cluster, but it can belong only to the nearest

cluster, which has the points belonging to the same class as that point.

10

V —Class I

Fig. 2.3 The clustering arrangement allowing overlap and selecting the member points

according to the labels (or classes) attached to them.

2.3 Fuzzy Rule Generation

A rule corresponds to a clusterin the input space, with m; and D; representing the
center and variance of that cluster. For-each-incoming pattern x, the strength a rule is
fired can be interpreted as the “degree the incoming pattern belongs to the
corresponding cluster. It is generally represented by calculating degree of membership
of the incoming pattern in the cluster [24]. For computational efficiency, we can use

the firing strength derived in (2.6) directly as this degree measure

M a
FI(x)=]]a® = ™™ omlepo,1], (2.9)
i=1

where F’(x)€[0, 1]. In the above equation the term [P (x-m) [D,(x-m)] is the

distance between x and the center of cluster j. Using this measure, we can obtain the
following criterion for the generation of a new fuzzy rule. Let x be the newly

incoming pattern. Find

J=arg max F’/(x), (2.10)

1< j<c(t)

11

where ¢(f) is the number of existing rules at time ¢. If F’ < F(¢), then a new rule is

generated, where F(f)e(0, 1) is a prespecified threshold that decays during the

learning process. Once a new rule is generated, the next step is to assign initial centers
and widths of the corresponding membership functions. Since our goal is to minimize
an objective function and the centers and widths are all adjustable later in the
following learning phases, it is of little sense to spend much time on the assignment of
centers and widths for finding a perfect cluster. Hence we can simply set

m,_... =X, (2.11)

[e()+1]

-1 1 1
ewn = lag[ln(F’) ln(Fj)j| (2.12)

according to the first-nearest-neighbor_heuristic [25], where y >0 decides the

overlap degree between two clusters. Similar methods are used in [26], [27] for the
allocation of a new radial basis unit. However, in [26] the degree measure doesn’t take
the width D; into consideration. In [27]; the-width of each unit is kept at a prespecified
constant value, so the allocation result is, in fact, the same as that in [26]. In this
dissertation, the width is taken into account in the degree measure, so for a cluster
with larger width (meaning a larger region is covered), fewer rules will be generated
in its vicinity than a cluster with smaller width. This is a more reasonable result.
Another disadvantage of [26] is that another degree measure (the Euclidean distance)
is required, which increases the computation load.

After a rule is generated, the next step is to decompose the multidimensional
membership function formed in (2.11) and (2.12) to the corresponding 1-D
membership function for each input variable. To reduce the number of fuzzy sets of
each input variable and to avoid the existence of highly similar ones, we should check
the similarities between the newly projected membership function and the existing

12

ones in each input dimension. Before going to the details on how this overall process
works, let us consider the similarity measure first. Since Gaussian membership
functions are used in the SVFNNs, we use the formula of the similarity measure of
two fuzzy sets with Gaussian membership functions derived previously in [28].
Suppose the fuzzy sets to be measured are fuzzy sets A and B with membership
function ,(x)= exp{—(x—)/ 012} and ,(x)= exp{—(x —c,)?/ 0'22} , respectively.
The union of two fuzzy sets 4 and B is a fuzzy set AUB such that

u, 5(x)=max[u, (x),uy(x)], for every xeU . The intersection of two fuzzy sets 4
and B is a fuzzy set AN B such that u, ,(x)=minfu(x),u,(x)], for every xeU .

The size or cardinality of fuzzy set A, M(A4), equals the sum of the support values of 4:

M(A) = Zu ,(x) . Since the area of. thé bell-shiaped function, exp{—(x—m)’>/c’}, is

el
or [29] and its height is always 1, it can‘be approximated by an isosceles triangle
with unity height and the length.of 'bottom edge 20~/ . We can then compute the
fuzzy similarity measure of two fuzzy sets with such kind of membership functions.

Assume ¢, >¢, asin [28], we can compute M |A mB| by

. 1 h2|:C2—C1+\/;(O'1+62):| 1 hz[cz—cl+«/;(al—0'2)]
M|AmB|=Zl;(mln[uA(x),uB(x)])zg i o) + Tro—o) (2.13)

11 e,—¢ V(0 +)]
+ :
2 \/;(0'1_0'2)

where /(-) = max{0, -} . So the approximate similarity measure is

M|AnB| M|ANB|

E(A,B) = -
(4,B) M|AUB| O'l\/;+0'2\/;—M|A(-\B

: (2.14)

where we use the fact that M(A)+ M (B)=M(ANB)+M(Av B) [28]. By

using this similarity measure, we can check if two projected membership functions

are close enough to be merged into one single membership

13

function ,uc(x)zexp{—(x—c3)2 / 032} . The mean and variance of the merged

membership function can be calculated by

c, =cl+Tcz, (2.15)

o, =%. (2.16)

2.4 Adaptive Fuzzy Kernel for the SVM/SVR

The proposed fuzzy kernel K(X,z) in this dissertation is defined as

A u (x)-u(z), if x and z are both in the j-th cluster
K(X, Z):]z:f[j(l) j(l) J (217)
0, otherwise,
where ;(=[x1, X2, X3, 0 Xy eRM and 2=[z;, 25, Z3, """, Zum] eRY are any two

training samples, and u; (xi) is the membership furction of the j-th cluster. Let the
training set be S={(x;, ¥), (X2, ¥2), *#%(X,, ¥»)} With explanatory variables x;and the

corresponding class labels y;, for all i=1, 2, ---, v, where v is the total number of

training samples. Assume the training samples are partitioned into / clusters through
fuzzy clustering in Section II. We can perform the following permutation of training

samples

cluster 1= {(Xi,yll)an-a(xila%lq)}

cluster 2={.(xf,yf),---,(X§2,yi)} (2.18)

cluster | = {(x'l,yf),...,(qu ,y,i/)},

where k,, g=1, 2, ---,] is the number of points belonging to the g-th cluster, so

14

!
that we have Zkg = v. Then the fuzzy kernel can be calculated by using the training
g=1

set in (2.18), and the obtained kernel matrix K can be rewritten as the following form

.0 0
k= !)R (2.19)
0 0 K,
where K,, g=1 2, -] is defined as
(o) k() e K(xa)]
« K(xf,xlg) K(x5,x5 . : o (220,
= en*c* .
¢ : K(x,fg_l,x,fg)
K(x,f'g,xlg) K(x,fg,xfgfl) K(xfg,x,f’g)

In order that the fuzzy Kernel fumnction defined by (2.17) is suitable for
application in SVM, we must prove that the fuzzy kernel function is symmetric and
positive-definite Gram Matrices [30].»Toprove this, we first quote the following
theorems.

Theorem 1 (Mercer theorem [30]) : Let X be a compact subset of R". Suppose K

is a continuous symmetric function such that the integral operator Tk : Ly(X)—La(X)
(TKf)(-)=fK(-,X)f(X) dx >0, (2.21)
X

is positive; that is

jK(x, z) f(x)f (2)dxdz >0, Vf eL,(X) (2.22)

XxX

forall f eL,(X). Then we can expand K(X, z) in a uniformly convergent series

(on X'xX') in terms of Tx’s eigen-functions ¢, € L,(X), normalized in such a way

that H(ijLz =1, and positive associated eigenvalues 4, >0,

15

K(x, z)zizj¢j(x)¢j(z). (2.23)

The kernel is referred to as Mercer’s kernel as it satisfies the above Mercer
theorem.
Proposition 1 [31] : A function K(x, z) is a valid kernel iff for any finite set it

produces symmetric and positive-definite Gram matrices.

Proposition 2 [32] : Let K; and K, be kernels over Xx X, X < R". Then the
K(x,z) = K,(x,2)K,(x,z) function is also a kernel.

Definition 1 [33] : A function f:R— R is said to be a positive-definite
function if the matrix [f(x, —x,)]€ R™ is positive semidefinite for all choices of
points {x,,---,x,} R andall n=1, 2p0eev.:- .

Proposition 3 [33] : A block diagonal matrix with the positive-definite diagonal
matrices is also a positive-definite matrix.

Theorem 2 : For the fuzzy kernel defined by (2.17), if the membership functions
u(xl.):R —[0, 1], i=1, 2, ---, n, are positive-definite functions, then the fuzzy

kernel is a Mercer kernel.

Proof:

First, we prove that the formed kernel matrix K = (K (x. x))n1 is a
i,j=

1°]
symmetric matrix. According to the definition of fuzzy kernel in (2.17), if x, and z,

are in the j-th cluster,

otherwise,

K(x,z)=K(z, x)=0.

16

So the kernel matrix is indeed symmetric. By the elementary properties of
Proposition 2, the product of two positive-defined functions is also a kernel function.
And according to Proposition 3, a block diagonal matrix with the positive-definite
diagonal matrices is also a positive-definite matrix. So the fuzzy kernel defined by
(2.17) is a Mercer kernel.

Since the proposed fuzzy kernel has been proven to be a Mercer kernel, we
can apply the SVM technique to obtain the optimal parameters of SVFNNs. It is noted
that the proposed SVFNNSs is not a pure SVM, so it dose not minimize the empirical
risk and expected risk exactly as SVMs do. However, it can achieve good

classification performance with drastically reduced number of fuzzy kernel functions.

17

CHAPTER 3
SUPPORT-VECTOR BASED FUZZY NEURAL
NETWORK FOR PATTERN CLASSIFICATION

In this chapter, we develop a support-vector-based fuzzy neural network (SVFNN)
for pattern classification, which is the realization of a new idea for the adaptive kernel
functions used in the SVM. The use of the proposed fuzzy kernels provides the SVM
with adaptive local representation power, and thus brings the advantages of FNN
(such as adaptive learning and economic network structure) into the SVM directly. On
the other hand, the SVM provides.the advantage. of global optimization to the FNN
and also its ability to minimize.the expected risk; while the FNN originally works on
the principle of minimizing only: the. training error. The proposed learning algorithm
of SVFNN consists of three phases. In the first phase, the initial fuzzy rule (cluster)
and membership of network structure are automatically established based on the fuzzy
clustering method. The input space partitioning determines the initial fuzzy rules,
which is used to determine the fuzzy kernels. In the second phase, the means of
membership functions and the connecting weights between layer 3 and layer 4 of
SVFNN (see Fig. 2.1) are optimized by using the result of the SVM learning with the
fuzzy kernels. In the third phase, unnecessary fuzzy rules are recognized and
eliminated and the relevant fuzzy rules are determined. Experimental results on five
datasets (Iris, Vehicle, Dna, Satimage, Ijcnnl) from the UCI Repository, Statlog
collection and IJCNN challenge 2001 show that the proposed SVFNN classification

method can automatically generate the fuzzy rules, improve the accuracy of

18

classification, reduce the number of required kernel functions, and increase the speed

of classification.

3.1 Maximum Margin Algorithm

An SVM constructs a binary classifier from a set of labeled patterns called
training examples. Let the training set be S = {(x1, y1), (X2, 12), ..., (Xy, W)} with
explanatory variables x,eR? and the corresponding binary class labels
v, e{—1+1}, for all i=1, ---,v, where v denotes the number of data, and d denotes

the dimension of the datasets. The SVM generates a maximal margin linear decision
rule of the form

f(x)=sign(w:x+b), (3.1)
Where w is the weight vector.and b lis-a'bias. The-margin M can be calculated by
M=2/||w|| that show in Fig. 3.1. Fot obtaining the largest margin, the weight vector, w,

must be calculated by
min lIIWII2
2
st y(xw+b)-1>0, Vi=1, -,v. (3.2)

The optimization problem be converted to a quadratic programming problem,

which can be formulated as follows:

. 5 1 <
Maximize L(a)= E ai—E E yiyjaia_/.xij
i=1

i,j=1
subjectto o, 20, i=1,2,...,v and Za,.yl:O.(3.3)
i=1

where « ; denotes Lagrange multiplier.

19

Class 1

v

Fig 3.1 Optimal canonical separating hyperplane with the largest margin between the

two classes.

In practical applications for non-ideal-data, the data contain some noise and
overlap. The slack variables &, which allow training patterns to be misclassified in the
case of linearly non-separable problems, and the regularization parameter C, which
sets the penalty applied to margin-errors controlling the trade-off between the width
of the margin and training set error, are added to SVM. The equation is altered as

follows:
1 C
min —[wl? + =) &
2 2 Z‘é
st y(xw+b)21-&, Vi=1, - 0. (3.4)
To construct a non-linear decision rule, the kernel method mappin an input

vector x € R’ into a vector of a higher-dimensional feature space F (#(x), where ¢

represents a mapping R? — R?) is discovered. Therefore, the maximal margin linear

20

classifier can solve the linear and non-linear classification problem in this feature
space. Fig. 3.2 show the training data map into a higher-dimensional feature space.
However, the computation cannot easily map the input vector to the feature space. If
the dimension of transformed training vectors is very large, then the computation of

the dot products is prohibitively expensive. The transformed function ¢(x;) is not

known a priori. The Mercer’s theorem provides a solution for those problems. The

equation @(x;)-#(x;) can be calculated directly by a positive definite symmetric
kernel function K(x,;,x;)=¢(x,)-#(x,) which complies with Mercer’s theorem.

Popular choices for Kernel function include

—12
Gaussian kernel : K(x,X) = exp(—u) (3.52)
o
: _ X X,y
and Polynemial kernel ;: 'K (x:X) = (=) . (3.5b)

To obtain an optimal hyperplane /fof any linear or nonlinear space, Eq. (3.4) can

be rewritten to the following dual quadratic optimization

m?.X Za ——Zy,yjaaK(xi,xj)

l/l

subjectto 0<e¢, <C, i=1,2,..,v and Zyl.aizo. (3.6)

i=1

A

o o
o ot ® e Dx—odx) .
el e
’ @ @ ’ e o ® ’
e > ®) o
e o ° . >
®
¢ e | © © e % o ¢
o V'S
2 2
K(x,,x;)=9(x,) #(x;

Fig.3.2 map the training data nonlinearly into a higher- dlmensmnal feature space

21

The dual Lagrangian L(¢) must be maximized with respect toa;>0. The

training patterns with nonzero Lagrange multipliers are called support vectors. The

separating function is given as follows

S(x)= Sign[%)’i o K (x,x) + bo} . (3.7)

i=1
where N;, denotes the number of support vectors; x;denotes a support vectors;

o denotes a corresponding Lagrange coefficient, and by denotes the constant given
by
1 * *
by = —5[(wox (D) +(w,x (—1))}, (3.8)

where x (1) denote some support vector:belonging to the first class and

0<g, <C. x*(—l) denote some support vector belonging to the second class, where
0<¢a, <C. In next section, we proposed the learning algorithm of SVFNN that

combine the capability of minimizing the empirical risk (training error) and expected
risk (testing error) of support vector learning in high dimensional data spaces and the

efficient human-like reasoning of FNN in handling uncertainty information.

3.2 Learning Algorithm of SVFNN

The learning algorithm of the SVFNN consists of three phases. The details are
given below:
Learning Phase 1 — Establishing initial fuzzy rules

The first phase establishes the initial fuzzy rules, which were usually derived

from human experts as linguistic knowledge. Because it is not always easy to derive

22

fuzzy rules from human experts, the method of automatically generating fuzzy rules
from numerical data is issued. The input space partitioning determines the number of
fuzzy rules extracted from the training set and also the number of fuzzy sets. We use
the centers and widths of the clusters to represent the rules. To determine the cluster to
which a point belongs, we consider the value of the firing strength for the given
cluster. The highest value of the firing strength determines the cluster to which the
point belongs. The whole algorithm for the generation of new fuzzy rules as well as

fuzzy sets in each input variable is as follows. Suppose no rules are existent initially.

IF x is the first incoming input pattern THEN do
PART 1. { Generate a fiew rule with center m,=x and width

D, :d,-ag(;...;}
o O

init init
IF the output pattern y=belongs to class 1 (namely, y=[1 0]),

{ Wg,,, =[1 0] for indicating output node 1 been excited, }

ELSE {w =[0 1] for indicating output node 2 been

Con-1

excited. }

}

ELSE for each newly incoming input X, do

PART 2. {Find J =arg max F’(x), asdefinedin (2.9).

1<j<c(t)
IF WCon—J # y 4

{ set c(t+1)=c(t)+1 and generate a new fuzzy rule, with

23

-1 ,. 1 1
m, ,=x , D..., _;dmg[ln(F")"“’ ln(FJ)] and

Weon ey =Y » Where y decides the overlap degree between two

clusters. In addition, after decomposition, we have m =X,

new—i i

c,.. =—xxIn(F’)y, i=1---,M . Do the following fuzzy

measure for each input variable i:
{ Degree(i,t)=max,. ., E[p(m,, . 0,,.). 1(m,. c,)]
, where E(«) is defined in (2.14).
IF Degree(i, t) < p(t)
THEN adopt this new membership function, and set
ky=k, +ly.where 'k, is the number of partitions of]

the ith input-variable.

ELSE merge the-new-membership function with closest one

Miyer—i = Metpgess = W)
G = O = O new-i + Cctosest
2
} 1} ELSE
{If F/<F,(t)
{generate a new fuzzy rule with m,,. ., =X,

=—dia Lo
o= T (F) ()

], and the respective consequent

weight We,, . =Y - In addition, we also need to do the

fuzzy measure for each input variablei. } 1} }

24

In the above algorithm, o, 1is a prespecified constant, c(¢) is the rule number

init

at time #, y decides the overlap degree between two clusters, and the threshold F,

mn

determines the number of rules generated. For a higher value of F, , more rules are

generated and, in general, a higher accuracy is achieved. The value p(¢) is a scalar

similarity criterion, which is monotonically decreasing such that higher similarity

between two fuzzy sets is allowed in the initial stage of learning. The pre-specified

values are given heuristically. In general, F(¢)=0.35, 8=0.05, o,

. =05, y=2.
In addition, after we determine the precondition part of fuzzy rule, we also need to
properly assign the consequence part of fuzzy rule. Here we define two output nodes
for doing two-cluster recognition. If 'output node.1 obtains higher exciting value, we
know this input-output pattern belongs to class 1. Hence, initially, we should assign

the proper weight w for: the, consequence /part of fuzzy rule. The above

Con-1

. . 2\ - .
procedure gives us means (m;) and variances (o) in (2.9). Another parameter in

(2.7) that needs concern is the weight d; associated with each a;“) . We shall see later

in Learning Phase 2 how we can use the results from the SVM method to determine

these weights.

Learning Phase 2 - Calculating the parameters of SVFNN

Through learning phase (1), the initial structure of SVFNN is established and we
can then use SVM [34], [35] to find the optimal parameters of SVFNN based on the
proposed fuzzy kernels. The dual quadratic optimization of SVM [36] is solved in

order to obtain an optimal hyperplane for any linear or nonlinear space:

25

vV \i

maximize L(Ez) = Zai L Z yiyjaiajK(xi,xj)

i=1 253

subjectto 0<¢; <C,i=1, 2, -+, v, and) y,&, =0, (3.9)
i=1

where K(xi,x j) is the fuzzy kernel in (2.17) and C is a user-specified positive
parameter to control the tradeoff between complexity of the SVM and the number of

nonseparable points. This quadratic optimization problem can be solved and a

solution o =(a1° Y Oy ey O) can be obtained, where « are Lagrange

nsv

coefficients, and nsv is the number of support vectors. The corresponding support

vectors sv=[sx,, sXx,, -+, SX,, ---, §X, | can be obtained, and the constant

1

(threshold) dy in (2.7) is

nsy

=)
where nsv is the number of fuzzy tules (support vectors); the support vector x (1)
belongs to the first class and support vector.x (1) belongs to the second class. Hence,
the fuzzy rules of SVFNN are reconstructed by using the result of the SVM learning
with fuzzy kernels. The means and variances of the membership functions can be

calculated by the values of support vector m; =sx, /=1, 2, -+, nsv, in (2.5) and (2.6)

and the variances of the multidimensional membership function of the cluster that the
support vector belongs to, respectively. The coefficients d; in (2.7) corresponding to
m, =sx; can be calculated by d; =y,a;. In this phase, the number of fuzzy rules
can be increased or decreased. The adaptive fuzzy kernel is advantageous to both the
SVM and the FNN. The use of variable-width fuzzy kernels makes the SVM more
efficient in terms of the number of required support vectors, which are corresponding
to the fuzzy rules in SVFNN.

26

Learning Phase 3 — Removing irrelevant fuzzy rules

In this phase, we propose a method for reducing the number of fuzzy rules
learning in Phases 1 and 2 by removing some irrelevant fuzzy rules and retuning the
consequent parameters of the remaining fuzzy rules under the condition that the
classification accuracy of SVFNN is kept almost the same. Several methods including
orthogonal least squares (OLS) method and singular value decomposition QR
(SVD-QR) had been proposed to select important fuzzy rules from a given rule base
[37]-[39]. In [37] the SVD-QR algorithm select a set of independent fuzzy basis
function that minimize the residual error in a least squares sense. In [38], an
orthogonal least-squares method tries to minimize the fitting error according to the
error reduction ratio rather than simplify the model structure [39]. The proposed
method reduces the number of fuzzy rules-by minimizing the distance measure
between original fuzzy rules and reduced fuzzy rules without losing the generalization

performance. To achieve this goal, we rewrite (2.8) as

.
(-my)

N N M 5
09 =>d xa"+d,=>dJ]e 7 +d,, (3.11)
Jj=1 j=1 =1

where N is the number of fuzzy rules after Learning phases 1 and 2. Now we try to

approximate it by the expansion of a reduced set :

Re 2 Re 2
(x; —miy) (x,—m,»q)
R —
Z Re? Re?

R, M M
OR@) Zﬂq y a(];e(4) +d, = Zﬂqu % +d,and afe(‘”(x) = He i (3.12)
1 g=l1 a

q= i=1

where R: is the number of reducing fuzzy rules with N> R, f is the consequent

o . R R
parameters of the remaining fuzzy rules, and m,° and o,° are the mean and

variance of reducing fuzzy rules. To this end, one can minimize [40]

27

"0(4) —OR®

5 N R. N R
| =>d xd,xd"(m)+ Y B,x B xa " (mi)=2xY" 3" d x B, xa (m), (3.13)
Jyq=1

Jq=1 Jj=1 ¢=1

Re

Re __
where m° =[m,,

my;, ---,my:|" . Evidently, the problem of finding reduced fuzzy

rules consists of two parts: one is to determine the reduced fuzzy rules and the other is

to compute the expansion coefficients £, . This problem can be solved by choosing

the more important R. fuzzy rules from the old N fuzzy rules. By adopting the
sequential optimization approach in the reduced support vector method in [41], the
approximation in (3.4) can be achieved by computing a whole sequence of reduced

set approximations
p
Re(4) __ Re(4)
OF Cmduhl, < e, (3.14)
g=1

for =1, 2, ---, Rz. Then, theymean and-variance parameters, mje

and o;fe, in
the expansion of the reduced fuzzy-rule setin+(3.4)-can be obtained by the following
iterative optimization rule [41] :
S 4 R
Z d;xa; (mg)xm,
m = : (3.15)
4 Re
> d, xa'?(mk)
j=1

. Re Re .
According to (3.7), we can find the parameters, m,” and o,°, corresponding

to the first most important fuzzy rule and then remove this rule from the original

fuzzy rule set represented by my, /=1, 2, ---, N and put (add) this rule into the reduced

fuzzy rule set. Then the procedure for obtaining the reduced rules is repeated. The
optimal coefficients B, 9=1, 2, -, R, are then computed to approximate

N R
OW=>d xa, by 0% =3 p xal[41], and can be obtained as

J=1 g=1

28

where

)

)
R.xR, — :

ale® (i)
and

a/"" (m,)

()
R, xN — .

a,"" (m,)

and

®:[d13d25”'5d]v]‘

Re(4) Re
g, (m,

2
s
Re(4
a «)(mz)
Re(4
a,*" (m,)

aﬁfm (m,_,)

Re(4) Re
g, (m R

Re(4) /... Re
ap (mRz

Re(4) /... Re
ag. (mR:

4" (my)

Re(4
aRZCEI) (m,)

a;""(my)

(3.16)

(3.17)

(3.18)

(3.19)

The whole learning scheme is iterated until the new rules are sufficiently sparse.

3.3 Experimental Results

The classification performance of the proposed SVFNN is evaluated on five

well-known benchmark datasets. These five datasets can be obtained from the UCI

repository of machine learning databases [42] and the Statlog collection [43] and

IJCNN challenge 2001 [44], [45], respectively.

A. Data and Implementation

From the UCI Repository, we choose one dataset: Iris dataset. From Statlog

29

collection we choose three datasets: Vehicle, Dna and Satimage datasets. The problem
Ijennl1 is from the first problem of IJICNN challenge 2001. These five datasets will be
used to verify the effectiveness of the proposed SVFNN classifier. The first dataset
(Iris dataset) is originally a collection of 150 samples equally distributed among three
classes of the Iris plant namely Setosa, Verginica, and Versicolor. Each sample is
represented by four features (septal length, septal width, petal length, and petal width)
and the corresponding class label. The second dataset (Vehicle dataset) consists of 846
samples belonging to 4 classes. Each sample is represented by 18 input features. The
third dataset (Dna dataset) consists of 3186 feature vectors in which 2000 samples are
used for training and 1186 samples are used for testing. Each sample consists of 180
input attributes. The data are classified into three physical classes. All Dna examples
are taken from Genbank 64.1. The'four dataset (Satimage dataset) is generated from
Landsat Multispectral Scanner image data. In-this. dataset, 4435 samples are used for
training and 2000 samples are used fortesting-—Fhe data are classified into six physical
classes. Each sample consists of 36'input attributes. The five dataset (Ijcnnl dataset)
consists of 22 feature vectors in which 49990 samples are used for training and 45495
samples are used for testing. Each sample consists of 22 input attributes. The data are
classified into two physical classes. The computational experiments were done on a
Pentium I11-1000 with 1024MB RAM using the Linux operation system.

For each problem, we estimate the generalized accuracy using different cost
parameters C=[2'%, 2", 2" ..., 2% in (3.1). We apply 2-fold cross-validation for 100
times on the whole training data in Dna, Satimage and Ijennl, and then average all the
results. We choose the cost parameter C that results in the best average
cross-validation rate for SVM training to predict the test set. Because Iris and Vehicle

datasets don’t contain testing data explicitly, we divide the whole data in Iris and

30

Vehicle datasets into two halves, for training and testing datasets, respectively.
Similarly, we use the above method to experiment. Notice that we scale all training

and testing data to be in [-1, 1].

B. Experimental Results

Tables 3.1 to 3.5 present the classification accuracy rates and the number of used
fuzzy rules (i.e., support vectors) in the SVFNN on Iris, Vehicle, Dna, Satimage and
[jcnnl datasets, respectively. The criterion of determining the number of reduced
fuzzy rules is the difference of the accuracy values before and after reducing one
fuzzy rule. If the difference is larger than 0.5%, meaning that some important support
vector has been removed, then we stop the rule reduction. In Table 3.1, the SVFNN is
verified by using Iris dataset, where the constant » in the symbol SVFNN-#z means the
number of the learned fuzzy rules. The SVFNN uses fourteen fuzzy rules and
achieves an error rate of 2.6% on'the training data and an error rate of 4% on the
testing data. When the numbet of | fuzzy tules. is reduced to seven, its error rate
increased to 5.3%. When the number of fuzzy rules 1s reduced to four, its error rate is
increased to 13.3%. Continuously decreasing the number of fuzzy rules will keep the
error rate increasing. From Table 3:2 to 3.5, we have the similar experimental results
as those in Table 3.1.

These experimental results show that the proposed SVFNN is good at reducing
the number of fuzzy rules and maintaining the good generalization ability. Moreover,
we also refer to some recent other classification performance include support vector
machine and reduced support vectors methods [46]-[48]. The performance
comparisons among the existing fuzzy neural network classifiers [49], [50], the
RBF-kernel-based SVM (without support vector reduction) [46], reduced support
vector machine (RSVM) [48] and the proposed SVFNN are made in Table 3.6.

31

TABLE 3.1 Experimental results of SVFNN classification on the Iris dataset.

SVFNN-#n Training process Testing process
(SVENN with n Number of
Error rate C Error rate
fuzzy rules) misclassification
SVFNN-14 2.6% 2" 3 4%
SVFNN -11 2.6% 2" 3 4%
SVFNN -9 2.6% 2" 3 4%
SVFNN -7 4% 2" 4 5.3%
SVFNN -4 17.3% 2" 10 13.3%
1. Input dimension is 4.
2. The number of training data is 75.
3. The number of testing data is 75.

TABLE 3.2 Experimental results of SVENN classification on the Vehicle dataset.

SVFNN-n Training process Testing porcess
(SVFNN with n Number of
Error rate C))) Error rate

fuzzy rules) misclassification
SVFNN-321 13.1% 2! 60 14.2%
SVFNN-221 13.1% 2" 60 14.2%
SVFNN-171 13.1% 2! 60 14.2%
SVFNN-125 14.9% 2" 61 14.5%
SVFNN-115 29.6% 2! 113 26.7%

1. Input dimension is 18.

2. The number of training data is 423.

3. The number of testing data is 423.

32

TABLE 3.3 Experimental results of SVFNN classification on the Dna dataset.

SVFNN-#n Training process Testing process
(SVFNN with n Number of
fuzzy rules) Frror Rate ¢ misclassification Frror rate
SVFNN-904 6.2% 2t 64 5.4%
SVFNN-704 6.2% 2 64 5.4%
SVFNN-504 6.2% 2t 64 5.4%
SVFNN-334 6.4% 2° 69 5.8%
SVFNN-300 9.8% 2* 139 11.7%
1. Input dimension is 180.
2. The number of training data is 2000.
3. The number of testing data is 1186,

TABLE 3.4 Experimental results of SVENN classification on the Satimage dataset.

SVENN-n Training process Testing process
(SVFNN with n Number of

fuzzy rules) Frror Rate ¢ misclassification Frror Rate
SVFNN-1886 13.1% 2° 176 8.8%
SVFNN-1586 13.1% 2° 176 8.8%
SVFNN-1286 13.1% 2° 176 8.8%
SVFNN-986 13.1% 2° 176 8.8%
SVFNN-899 13.7% 2° 184 9.2%
SVFNN-786 19.8% 2° 316 15.8%

1. Input dimension is 36.

2. The number of training data is 4435.

3. The number of testing data is 2000.

33

TABLE 3.5 Experimental results of SVFNN classification on the Ijnnl dataset.

SVFNN-n Training process Testing porcess
(SVFNN with n Number of
fuzzy rules) Frror rate ¢ misclassification Frror rate
SVFNN-1945 4.2% 2" 1955 4.3%
SVFNN-1545 4.2% 2" 1955 4.3%
SVFNN-1245 4.2% 2" 1955 4.3%
SVFNN-1021 4.3% 2" 2047 4.5%
SVFNN-977 14.5% 2" 7416 16.3%
1. Input dimension is 22.
2. The number of training data is 49990.
3. The number of testing data is,45495.

TABLE 3.6 Classification error rate’ comparisons among FNN, RBF-kernel-based

SVM, RSVM and SVFNN classifiers, where NA means “not available”.

NN 40,50 | o emetbased RSVM [48] SVFNN
SVM [46]
Datasets | Number Number of Number of Number
of fuzzy |Error rate| support |Error rate| support |Error rate| of Fuzzy |Error rate
rules vectors vectors rules

Iris NA 4.3% 16 3.3% NA NA 7 5.3%
Vehicle NA 29.9% 343 13.4% NA NA 125 14.5%
Dna NA 16.4% 1152 4.2% 372 7.7% 334 5.8%
Satimage | NA 8.9% 2170 8.3% 1826 10.1% 889 9.2%
Ijennl NA NA 4555 1.2% 200 8.4% 1021 4.5%

34

3.4 Discussions

These experimental results show that the proposed SVFNN is good at reducing
the number of fuzzy rules and maintaining the good generalization ability. These
results indicate that the SVFNN classifier produces lower testing error rates as
compared to FNN classifiers [49], [50], and uses less support vectors as compared to
the regular SVM using fixed-width RBF kernels [46]. As compared to RSVM [48],
the proposed SVFNN can not only achieve high classification accuracy, but also
reduce the number of support vectors quit well. It is noticed that although the SVFNN
uses more support vectors in the Ijcnnl dataset than the RSVM, it maintains much
higher classification accuracy than the RSVM. In summary, the proposed SVFNN
classifier exhibits better generalization ‘ability .on the testing data and use much

smaller number of fuzzy rules.

35

CHAPTER 4
SUPPORT-VECTOR BASED FUZZY NEURAL
NETWORK FOR FUNCTION APPROXIMATION

In this chapter, a novel support-vector based fuzzy neural network (SVFNN)
which integrates the statistical support vector learning method into FNN and exploits
the knowledge representation power and learning ability of the FNN to determine the
kernel functions of the SVR adaptively is proposed. The SVFNN combine the
capability of good robustness against noise and the efficient human-like reasoning of
FNN in handling uncertainty information. The*.use of the proposed fuzzy kernels
provides the SVR with adaptive local representation power such that the number of
support vectors can be further teduced:"The proposed learning algorithm consists of
three learning phases to construct and.train the SVFNN. In the first phase, the fuzzy
rules and membership functions are automatically determined based on the fuzzy
clustering method. In the second phase, the parameters of FNN are calculated by the
SVR with the proposed adaptive fuzzy kernel function for function approximation. In
the third phase, the relevant fuzzy rules are selected by the proposed fuzzy rule
reduction method. The proposed SVFNN method can automatically generate the
fuzzy rules and achieve good approximation performance with drastically reduced

number of fuzzy rule and robustness.

4.1 Support Vector Regression Algorithm

In &-SV regression, the goal is to find a function f{x) that has at most & deviation

36

from the actually obtained targets y; for all the training data, and at the same time is as
flat as possible. In other words, we do not care about errors as long as they are less
than g, but will not accept any deviation larger than this.
For this reasons, the linear regression function is considered first as follows:
AX)=w'x+b 4.1)

Where w is the weight vector and b is a bias. The error of approximation is used
instead of the margin between an optimal separating hyperplane and support vectors.
Vapnik introduced a general type of loss function, the linear loss function with

e-insensitivity zone:

y=f(x)

(4.2)

) 0 if|v- ()| <5,
s |y - f(x)| -& otherwise.

The loss is equal to zero ifithe difference between the predicted f(x) and the
measured value is less than €. The g-insensitivity loss-function defines an ¢ tube. If the
predicted value is within the tube, ithe-loss-is, zeto. For all other predicted points
outside the tube, the loss is equal<to-the magnitude of the difference between the
predicted value and the radius € of the tube. Figure 4.1 shows the soft margin loss

setting for a regression problem.

v

Fig. 4.1 the soft margin loss setting for a regression problem

37

From Fig. 4.1, the slack variables &, & cope with the large outliers in the

regression problem. In formulating support vector algorithm for regression, the
objective is to minimize the empirical risk and ||w||> simultaneously. The primal

problem can therefore be defined as follows:

[
minimize %||w||2 +CY (& +E)
i=1
yi—f(x)<e+g, (4.3)
subject to { f(X)—y, <e+&
E,E 20

The constant C>0 determines the trade-off between the flatness of f(x) and the
amount up to which deviations larger than ¢ are tolerated. The optimization problem

can be converted to the dual optimization problem, which can be formulated as

follows:
maximize
L(aa)=-eX (@) P2 -) e (@)@ -a X,
i=1 i=1 ij=1
subject to ZO‘; = Zal. ,0<a <C, 0<e,<C,i=1, 2, -+, v (4.4)

i=1 i=1

The kernel method can be added to above optimization to solve the nonlinear problem,
too. The parameter ¢ in the e-insensitive function and the regular constant C are
powerful means for regularization and adaptation to the noise in training data. Both
parameters control the network complexity and the generalization capability of SVR.
In next section, we proposed the learning algorithm of SVFNN that combine the
capability of good robustness against noise and the efficient human-like reasoning of
FNN in handling uncertainty information. The SVFNN use the fuzzy kernels to
provide the SVR with adaptive local representation power such that the number of

support vectors can be further reduced.

38

4.2 Learning Algorithm of SVFNN

The proposed learning algorithm of SVFNN consists of three phases. In the
first phase, the initial fuzzy rule (cluster) and membership of network structure are
automatically established based on the fuzzy clustering method. The input space
partitioning determines the initial fuzzy rules, which is used to determine the fuzzy
kernels. In the second phase, the means of membership functions and the connecting
weights between layer 3 and layer 4 of SVFNN (see Fig. 2.1) are optimized by using
the result of the support vector learning method with the fuzzy kernels function
approximation. In the third phase, unnecessary fuzzy rules are recognized and
eliminated and the relevant fuzzy rules are determined.

Learning Phase 1 — Establishing initial fuzzy rules

The first phase establishes=the initial fuzzy rules. The input space partitioning
determines the number of fuzzy rules extracted from the training set and also the
number of fuzzy sets. We use the centers and widths of the clusters to represent the
rules. To determine the cluster to which a point belongs, we consider the value of the
firing strength for the given cluster. The highest value of the firing strength

determines the cluster to which the point belongs. The input vector x; will combine
the corresponding output value y; in the training set S={(x;, ¥1), (X2, ¥2), ***, (Xus Jv)}

to input the learning phase 1. For generating a compact structure, the Cartesian
product-space of the input and output is applied to the clustering algorithm [60]. The
training samples are partitioned into characteristic regions where the system behaviors
are approximated. The input data set is formed by combining the input vector x=[x;,
X2, X3, ..., xy]" and the corresponding output value y;. Based on the clustering-based

approach to construct initial fuzzy rules of FNN, first the input data is partitioned. For

39

each incoming pattern b,
b=[x;y]". (4.5)
The whole algorithm of SVFNN for the generation of new fuzzy rules as well as

fuzzy sets in each input variable is as follows. Suppose no rules are existent initially.

IF b=[x;y](n+1)x1 1s the first incoming input pattern THEN do

PART 1. { Generate a new rule with center m,=b and width

1 1 ..
Dlzdiag[—,---,—]. After decomposition, we have n
o o

init init
one-dimensional membership functions, with m;=b; and o ;=0
ity =1, =+, nt1.
b
ELSE for each newly incoming input b=[x;y], do

PART 2. {Find J =arg max F/(z), ‘as defined;in (2.10).

1< j<ett)
IF F'>Fu()

do nothing
ELSE

{ sete(t+1)=c(t)+1 and generate a new fuzzy rule, with m,,,, =b,

-1 1 1

D _;diag[ln(FJ)’“.’ln(FJ)

], where y decides the overlap

degree between two clusters. In addition, after decomposition, we have

m, =b, o, =—yxIn(F"), i=1,--,M . Do the following fuzzy

measure for each input variable i:

{ Degree(l" t) = maXlSjSki El:ﬂ(mnewfi’ O-new—i)’ ll’l(m;'/" G;’j):'

40

, where E(«) is defined in (2.14).
IF Degree(i, t) < p(t)
THEN adopt this new membership function, and set

k, =k, +1, where k, is the number of partitions of]

the ith training pattern.

ELSE merge the new membership function with closest one

m =m _ mnew—i + mclosest
new—i — '"“closest — 7 s

o =0 _ O-new—i + O-closest
new—i ~ = closest — 7 .

oy

In the above algorithm, o7 is a prespecified constant, c(¢) is the rule number

init

at time #, y decides the overlap degree between two clusters, and the threshold F,

mn

determines the number of the generated-rules: For a higher value of £, more rules
are generated and, in general, a higher accuracy is achieved. The value p(¢) is a

scalar similarity criterion, which is monotonically decreasing such that higher
similarity between two fuzzy sets is allowed in the initial stage of learning. The
pre-specified values are given heuristically. In addition, after we determine the
precondition part of fuzzy rule, we also need to properly assign the consequence part

of fuzzy rule. Hence, initially, we should assign the proper weight w. , for the

on—1

consequence part of fuzzy rule. The above procedure gives us means (m,) and

variances (a;) in (2.12). Another parameter in (2.7) that needs concern is the weight

41

d; associated with each a§4) . It is presented in Learning Phase 2 to show how we can

use the results from the SVR method to determine these weights.

Learning Phase 2 - Calculating the parameters of SVFNN
Through above method, the optimal parameters of SVFNN are trained by using

the & -insensitivity loss function SVR [35] based on the fuzzy kernels [61]. The dual

quadratic optimization of SVR [36], [62] is solved in order to obtain an optimal

hyperplane for any linear or nonlinear space:

maximize L(a,a*) = —52((1; +a)+ Zv:(a: -a)y, —% i (a; —ai)(a; —aj)K(xi,xj)
i=1 i=1

ij=1

subject to constraints Zai*=2ai ,OSa;SC, 0L, <C,i=1 2, -+, v. (4.6)

i=1 i=1
where K (xi,x j) is the fuzzy-kernel that-is defined as (2.17), & is a previously

chosen nonnegative number for-. ¢ -insensitive-foss function and C is a user-specified

positive parameter to control the tradeoff between complexity of the SVR and the

number of nonseparable points. This quadratic optimization problem can be solved
and a solution 5:(051, Ayy e , a) and « =(a1*, a, ... , a:sv) can be

. * . .
obtained, where ¢, and «, are Lagrange coefficients, and nsv is the number of

support vectors. The corresponding support vectors
sv =[sx,, sx,, ---, sX,, ---, §X,] can be obtained, and the constant (threshold) dj
in (2.7) is
1 \4 . nsy N
d, = ;(Z(y,=x/w,)) with w,=> (e), (4.7)
i=l1 i=1

where nsv is the number of fuzzy rules (support vectors). Hence, the fuzzy rules of

SVFNN are reconstructed by using the result of the SVR learning with fuzzy kernels.

42

The means and variances of the membership functions can be calculated by the values

of support vector m, =sx, /=1, 2, ---, nsv, in (2.6) and (2.7) and the variances of the

multidimensional membership function of the cluster that the support vector belongs

to, respectively. The coefficients d; in (2.8) corresponding to m, =sx; can be

calculated by d; = yj(a;—aj). In this phase, the number of fuzzy rules can be

increased or decreased. The adaptive fuzzy kernel is advantageous to both the SVR
and the FNN. The use of variable-width fuzzy kernels makes the SVR more efficient
in terms of the number of required support vectors, which are corresponding to the
fuzzy rules in SVFNN.
Learning Phase 3 — Removing irrelevant fuzzy rules

In this phase, the number of fuzzy rules’learning in Phases 1 and 2 are reduced
by removing some irrelevant fuzzy rules. ‘The ‘method of reducing fuzzy rules
attempts to reduce the numbet: of fuzzy rules by minimizing the distance measure
between original fuzzy rules and reduced fuzzy rules without losing the generalization

performance. The reducing method is the same as in Section 2 of Chapter 3

4.3 Experimental Results

In this section we present some experimental results to demonstrate the
performance and capabilities of the proposed SVFNN. First, we apply the SVFNN to
four function approximation problems to examine its rule-reduction performance.
Then the robustness of SVFNN is evaluated by these functions with noise.

A. Setup
1) Functions for approximation:

The function approximation problems include one- and two- variable functions

43

which have been widely used in the literature [63]-[65]:
The fist function is a one-variable sinc function defined as

sin(x)

FOx) = with xe[-10, 10]. (4.8)

X

The second function is one-variable function defined as
FP(x)=x*"7 with xe[-2, 2]. (4.9)
The third function is a two-variable Gaussian function defined as
O, y)=exp{-2(x> + y*)} with xe[-1, 1], ye[-1, 1]. (4.10)

The fourth function, which exhibits a more complex structure, is defined as

. 2 2
O,y = SOV V) i ve[ol 1], ye[-L 1], (&11)
10\/x2+y2

Plots of these four functions aré shown in subplots (a) of Figs. 4.2-4.5.

-10 -5 0] 5 10

44

o

08F

06

04t

02t

02fﬁ\ i /\
0 5 0 5 10

(b)
Fig.4.2 (a) The desired output of the function show in (4.8). (b) The resulting
approximation by SVFNN.

45

(b)
Fig 4.3 (a) The desired output of the function show in (4.9) (b) The resulting
approximation by SVFNN.

46

(b)
Fig 4.4 (a) The desired output of the function show in (4.10). (b) The resulting
approximation by SVFNN.

47

Fig 4.5 (a) The desired output of the function show in (4.11). (b) The resulting

approximation by SVFNN,
2) Training and Testing data:

There are two sets of training data for-cach function, one is noiseless and the
other is noisy. In the first function, the'noiseless fraining set has 50 points that are
generated by randomly selecting, where 7x €[+10, 10]. The testing set has 200 points
that are randomly generated by the same function in the same range. The training and
testing sets of the second function are generated by the same way, where x e[-2, 2].
In the third function, the 150 training examples are generated by randomly selecting,
where xe[-1, 1], ye[-1, 1]. The testing set has 600 points that are randomly
generated by the same function in the same range. In the fourth function, The 150

training examples are generated by randomly selecting, where xe[-1, 1],

ye[-1, 1]. The testing set has 600 points that is randomly generated by the same

function in the same range. The noisy training sets are generated by adding
independent and identically distributed (i.i.d.) Gaussian noise, with zero mean and

0.25 standard deviation, to the original training sets.

48

ﬁz(blzge(x’ y) = f(j) (.X, Y) + 0'2581’] = 1, Y 4. (412)
Here ¢, ~N(0, 1), the zero mean unit variance Gaussian noise. It is noted that

the signal to noise ratio (SNR) is roughly equal to 4 (1/0.25=4).
3) experimental particular

The computational experiments were done on a Pentium III-1000 with 1024MB
RAM using the Microsoft window operation system. The simulations were conducted
in the Matlab environment. The root-mean-square-error (RMSE) is used to quantify

the performance of methods and it is defined as

RMSEz\/Zv:(yi—j/i)z/v (4.13)

where y; is the desired output, y, is the system output, and v is the number of the
used training or testing data. The ¢ -insensitivity parameter and cost parameter C in
(4.6) are selected from the range of & =[0.1, 0.01, 0.001, 0.0001] and C=[10"", 10°,
10", ..., 10°], respectively. For the SVFNN training, we choose the e -insensitivity
parameter and cost parameter C that results in the best RMSE average to calculate the
testing RMSE. Similarly, the parameters of SVR for comparison are also selected by
using the same method, too.
B. Experimental Results

Tables 4.1 to 4.5 show the training and testing RMSEs and the number of used
fuzzy rules (i.e., support vectors) in the SVFNN on the approximation of the four
functions ((4.8) to (4.11)), respectively. The training and testing RMSEs can reach a
nice level by selecting a proper parameter set for { &, C }. The criterion of

determining the number of reduced fuzzy rules is the difference of the accuracy

values before and after reducing one fuzzy rule. If the difference is larger than 0.2%,

49

meaning that some important support vector has been removed, then we stop the rule
reduction. In Table 4.1 (a), the SVFNN is verified by the one-variable sinc function
defined as (4.8), where the constant » in the symbol SVFNN-n means the number of
the learned fuzzy rules. It uses sixteen fuzzy rules and achieves a root mean square
error (RMSE) value of 0.0007 on the training data and an RMSE value of 0.0026 on
the testing data. When the number of fuzzy rules is reduced to twelve, its testing error
rate increased to 0.0029. When the number of fuzzy rules is reduced to eleven, its
testing error rate is increased to 0.01. Continuously decreasing the number of fuzzy
rules will keep the error rate increasing. Therefore, twelve fuzzy rules are used in this
case. From Tables 4.2 (a) to 4.4 (a), we have the similar experimental results as those
in Table 4.1 (a). Plots of these experimental results are shown in subplots (b) of Figs.
4.2-4.5. In Table 4.1 (b), the independent and identically distributed (i.i.d.) Gaussian
noise, with zero mean and 0.25,standard deviation, is added to the function for
approximation. It uses sixteen-fuzzy tules-and achieves a root mean square error
(RMSE) value of 0.0085 on the training data'and an RMSE value of 0.042 on the
testing data. When the number of fuzzy rules is reduced to twelve, its testing error rate
is increased to 0.045. When the number of fuzzy rules is reduced to eleven, its testing
error rate is increased to 0.091. Therefore, twelve fuzzy rules are also used in this case.
From Table 4.2 (b) to 4.4 (b), we have the similar experimental results as those in
Table 4.1 (b) These experimental results show that the proposed SVFNN can properly
reduce the number of required fuzzy rules and maintain the robustness against noise.
The performance comparisons among the Adaptive-network-based fuzzy
inference system (ANFIS) [66], the robust neural network [67], the RBF-kernel-based
SVR (without support vector reduction) [68], and the proposed SVFNN are made in

Tables 4.5 and 4.6.

50

TABLE 4.1 (a) Experimental results of SVFNN on the first function using the training
data without noise. (b) Experimental results of SVFNN on the first

function using the training data with noise.

(a)
Training process Testing process
SVFNN-n (SVFNN
with n fuzzy rules) C RMSE RMSE
SVFNN - 16 100 0.0007 0.0026
SVFNN - 14 100 0.0007 0.0026
SVFNN — 12 100 0.0007 0.0029
SVFNN — 11 100 0.001 0.01
1. The first function is Oy = SINO) “With x e [-10, 10].
X
2. The number of training data is 50.
3. The number of testing data 1s-200.

(b)
Training process Testing process
SVFNN-# (SVFNN
with n fuzzy rules) C RMSE RMSE
SVFNN - 16 100 0.0085 0.042
SVFNN — 14 100 0.0085 0.042
SVFNN — 12 100 0.0085 0.045
SVFNN — 11 100 0.031 0.091
1. The first functionis £0(x) = SIN(Y) with e [-10, 10].
X
2. The number of training data is 50.
3. The number of testing data is 200.

51

TABLE 4.2 (a) Experimental results of SVFNN on the second function using the
training data without noise. (b) Experimental results of SVFNN on the

second function using the training data with noise.

(a)
Training process Testing porcess
SVFNN-n (SVFNN
with n fuzzy rules) C RMSE RMSE
SVFNN - 19 100 0.0009 0.0056
SVFNN - 16 100 0.0009 0.0056
SVFNN - 12 100 0.0009 0.0060
SVFNN - 11 100 0.0015 0.0092
1. The second function is f@)y=5&%> with xe[-2, 2].
2. The number of trainihg dataris 50.
3. The number of testing data is 200.

(b)
Training process Testing porcess
SVFNN-n (SVFNN
with n fuzzy rules) C RMSE RMSE
SVFNN - 25 100 0.001 0.078
SVFNN - 20 100 0.001 0.078
SVFNN - 15 100 0.001 0.081
SVFNN - 14 100 0.0057 0.139
1. The second functionis @ (x)=x*" with xe[-2, 2].
2. The number of training data is 50.
3. The number of testing data is 200.

52

TABLE 4.3 (a) Experimental results of SVFNN on the third function using the
training data without noise. (b) Experimental results of SVFNN on the

third function using the training data with noise.

(a)
Training process Testing process
SVFNN-#n (SVFNN
with n fuzzy rules) C RMSE RMSE
SVFNN- 33 1000 0.0018 0.0037
SVFNN- 24 1000 0.0018 0.0037
SVFNN- 17 1000 0.0018 0.0040
SVFNN- 16 1000 0.002 0.0089
1. The third function is £, y) =exp{—2(x* + y*)} with
xe[-1, 1], ye[-1, 1]«
2. The number of traiding data is 150.
3. The number of testing data 1s:600.

(b)
Training process Testing process
SVFNN-#n (SVFNN
with n fuzzy rules) C RMSE RMSE
SVFNN- 32 1000 0.018 0.051
SVFNN- 22 1000 0.018 0.051
SVFNN- 17 1000 0.018 0.054
SVFNN- 16 1000 0.045 0.121
1. The third functionis f®(x,y) =exp{-2(x* + y*)} with
xe[-1, 1], ye[-1, 1].
2. The number of training data is 150.
3. The number of testing data is 600.

53

TABLE 4.4 (a) Experimental results of SVFNN on the fourth function using the
training data without noise. (b) Experimental results of SVFNN on the

fourth function using the training data with noise.

(a)
Training process Testing process
SVFNN-# (SVFNN
with n fuzzy rules) C RMES RMES
SVFNN —40 100 0.0059 0.0098
SVFNN - 30 100 0.0059 0.0098
SVFNN - 21 100 0.0063 0.01
SVFNN - 20 100 0.0099 0.032

I. The fourth function is e, y)zsin(10\1x2+y2) with xe[-1, 1],

10Jx +)?
yel-L 1]
2. The number of training.data is 150.
3. The number of testing data is-600.

(b)
Training process Testing process
SVFNN-n (SVFNN
with n fuzzy rules) C RMES RMES
SVFNN —45 100 0.01 0.071
SVFNN - 34 100 0.01 0.071
SVFNN -22 100 0.01 0.073
SVENN — 20 100 0.058 0.152

yel-1, 1]

2. The number of training data is 150.
3. The number of testing data is 600.

1. The fourth function is e, y):sin(IO— VX7 with xe[-1, 1],
’ 104/x% + 37

54

TABLE 4.5 Comparisons RMSE using the training data without noise.

RBF-kernel-based SVR

FUNCTION | ANFIS [66] Robust NN [67] 681 SVENN
Number of Number of Number of Number of
RMSE RMSE RMSE RMSE
fuzzy rules neurons support vectors Fuzzy rules
%) 11 0.0071 12 0.0011 28 0.0018 12 0.0029
ARE)) 11 0.0067 12 0.0047 50 0.0054 12 0.006
90, y) 9 0.0039 22 0.0035 122 0.0018 17 0.004
P,) 16 0.015 35 0.0057 145 0.0092 21 0.01
TABLE 4.6 Comparisons RMSE using-the training data with noise.
FUNCTION ANFIS [66] Robust NN [67] | RBE=kernel-based SVR [68] SVFNN
Number of Number of Number of Number of
RMSE RMSE RMSE RMSE
fuzzy rules neurons support vectors Fuzzy rules
£9 (x) 15 | 0.726 12 0.053 49 0.035 12 0.045
£9 (x) 12 0.5 12 0.07 49 0.07 15 0.081
£9 (x,y) 9 0305 | 22 0.056 139 0.04 17 0.054
9 (x,y)| 16 1.76 30 0.09 150 0.062 22 0.073

55

4.4 Discussions

These results indicate that the SVFNN maintains the function approximation
accuracy and uses less support vectors as compared to the regular SVR using
fixed-width RBF kernels. The computational cost of the proposed SVFNN is also less
than the regular SVR in the testing stage. In addition, according to Table 4.6 the
testing results of SVFNN trained by the noisy data are close to results of SVFNN
trained by the data without noise. It demonstrates that the proposed SVFNN have
better robustness compared to ANFIS and the robust neural network, although the
SVFNN uses little more rules compared with the ANFIS. In summary, the proposed
SVFNN exhibits better generalization ability, maintains more robustness and uses less

fuzzy rules.

56

CHAPTER 5
CONCLUSIONS

In this dissertation we proposed a support-vector-based fuzzy neural networks
(SVFNNs) for solving more complex classification and function approximation
problems. SVFNNs combines the superior classification power of support vector
machine (SVM) in high dimensional data spaces and the efficient human-like
reasoning of FNN in handling uncertainty information. The SVFNN:Ss is the realization
of a new idea for the adaptive kernél functions used in the SVM. The use of the
proposed fuzzy kernels provides the SVM with.adaptive local representation power,
and thus brings the advantages of FNN (such as dadaptive learning and economic
network structure) into the SVMudirectly. SVENNs combine the capability of good
robustness against noise and global generalization of support vector learning and the
efficient human-like reasoning of FNN in handling uncertainty information. A novel
adaptive fuzzy kernel function is also proposed to bring the advantages of FNNs to
the SVR directly and the use of the proposed fuzzy kernels provides the SVR with
adaptive local representation power. The major advantages of the proposed SVFNNs

are as follows:

(1) The proposed SVFNNs can automatically generate fuzzy rules, and improve the
accuracy and learning speed of classification.

(2) It combined the optimal classification ability of SVM and the human-like
reasoning of fuzzy systems. It improved the classification ability by giving SVM

with adaptive fuzzy kernels and increased the speed of classification by reduced

57

fuzzy rules.

(3) The fuzzy kernels using the variable-width fuzzy membership functions can make
the SVM more efficient in terms of the number of required support vectors, and
also make the learned FNN more understandable to human.

(4) The ability of the structural risk minimization induction principle, which forms
the basis for the SVM method to minimize the expected risk, gives better
generalization ability to the FNN classification.

(5) The proposed SVFNN can automatically generate fuzzy rules and improve the
accuracy of function approximation.

(6) The combination of the robust regression ability of SVR and the human-like
reasoning of fuzzy systems improves the robust regression ability of FNN by

using SVR training and increases the speed of execution by reduced fuzzy rules.

In the future work, we will try'to develop, a mechanism to automatically select
the appropriate initial values of the parameters used in the first phase training and the
penalty parameter in the second phase training. We will also apply the proposed
method to deal with complex and huge classification problem and more complex and

noisy functions.

58

REFERENCES

[1] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, New
York: Wiley, 2001.

[2] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, NIJ:
Prentice-Hall, 1992.

[3] M. Y. Chen and D. A. Linkens, “Rule-base self-generation and simplification for
data-driven fuzzy models,” Fuzzy Set and Syst., Vol. 142, pp 243-265, March
2004.

[4] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans.

Syst. Man. Cybern., Vol. 23, pp«665-685sMay 1993.

[5] K. Tanaka, M. Sano, and H. Wantanabe, “Modeling and control of carbon
monoxide concentration using'a neuro-fuzzy technique,” /IEEE Trans. Fuzzy Syst.,
Vol. 3, pp. 271-279, Aug. 1995.

[6] L. Y. Cai and H. K. Kwan, “Fuzzy classifications using fuzzy inference networks,”
IEEE Trans. Syst., Man, Cybern. Pt B, Vol. 28, pp. 334-347, June. 1998.

[7] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms,
New York: Plenum, 1981.

[8] J. C. Bezdek, S. K. Chuah, and D. Leep, “Generalized K-nearest neighbor rules,”
Fuzzy Sets Syst., Vol. 18, pp. 237-256, Apr. 1986.

[9] J. S. Wang and C. S. G. Lee, “Self-Adaptive Neuro-Fuzzy Inference Systems for
Classification Applications,” IEEE Trans. Fuzzy Syst., Vol. 10, pp. 790-802, Dec.
2002.

[10] L. I. Kuncheva, “How good are fuzzy if-then classifiers?,” IEEE Trans. Syst.,

59

Man, Cybern. Pt B, Vol. 30, pp. 501-509, Aug. 2000.
[11] H. Ishibuchi and T. Nakashima “Effect of rule weights in fuzzy rule-based
classification systems,” I[EEE Trans. Fuzzy Syst., Vol. 9, pp. 506-515, Aug. 2001.

[12] W. Y. Wang, T. T. Lee, C. L. Liu, and C. H. Wang, “Function approximation
using fuzzy neural networks with robust learning algorithm,” IEEE Trans. Syst.,
Man, Cybern. Pt B, Vol. 27, pp. 740-747, Aug. 1997.

[13] C. C. Chuang, S. F. Su, and S. S. Chen, “Robust TSK fuzzy modeling for
function approximation with outliers,” [EEE Trans. Fuzzy Syst, Vol. 9, pp.
810-821, Dec. 2001.

[14] H. Pomares, 1. Rojas, J. Ortega, J. Gonzalez, and A. Prieto, “Systematic approach
to a self-generating fuzzy rule-table for function approximation,” IEEE Trans.
Syst., Man, Cybern. Pt B, Vol. 30, pp. 431-447;.June 2000.

[15] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy
rules by generalized dynamic fuzzy-neural-networks,” IEEE Trans. Fuzzy Syst.,
Vol. 9, pp. 578-594, Aug. 2001.

[16] B. Gabrys and A. Bargiela “General fuzzy min-max neural network for clustering
and classification,” IEEE Trans. Neural Networks, Vol. 11, pp. 769-783, May
2000.

[17] K. Nozaki, H. Ishibuchi, and H. Tanaka, “Adaptive fuzzy rule-based
classification system” IEEE Trans. Fuzzy Syst., Vol. 4, pp. 238-250, Aug. 1996.
[18] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, Vol. 20,

pp. 273-297, 1995.

[19] S. Sohn and C. H. Dagli, “Advantages of using fuzzy class memberships in

self-organizing map and support vector machines,” Proc. International Joint

Conference on Neural Networks (IJCNN’01), Vol. 3, pp. 1886-1890, July 2001.

60

[20] C. F. Lin and S. D. Wang, “Fuzzy support vector machines,” IEEE Trans. Neural
Networks, Vol. 13, pp. 464-471, March 2002.

[21] T. Inoue and S. Abe, “Fuzzy support vector machines for pattern classification,”
Proc. International Joint Conference on Neural Networks (IJCNN’01), Vol. 2, pp.
15-19, July 2001.

[22] J. T. Jeng and T. T. Lee, “Support vector machines for the fuzzy neural
networks,” IEEE International Conference on Systems, Man, and Cybernetics
(SMC’99), Vol. 6, pp. 12-15, Oct. 1999.

[23] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference
network and its applications,” IEEE Trans. Fuzzy Syst., Vol. 6, pp. 12-32, Feb.
1998.

[24] F. Hoppner, F. Klawonn, R Kruse, and T. Runkler, Fuzzy cluster analysis:
methods for classification, data-analysis and image recognition, New York: Wiley,
1999.

[25] C. T. Lin and C. S. G. Lee**Neural-network-based fuzzy logic control and
decision system,” IEEE Trans. Comput., Vol. 40, pp. 1320-1336, Dec. 1991.

[26] J. Platt, “A resource allocating network for function interpolation,” Neural
Computat., Vol. 3, pp. 213-225, 1991.

[27] J. Nie and D. A. Linkens, “ Learning control using fuzzified self-organizing
radial basis function network,” IEEE Trans. Fuzzy Syst., Vol. 40, pp. 280-287, Nov.
1993.

[28] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning for
neural-network-based fuzzy logic control systems,” IEEE Trans. Fuzzy Syst., Vol.
2, pp. 46-63, Feb. 1994.

[29] A. Papoulis, Probability Random Variables and Stochastic Processes, McGraw

61

Hill, Inc., 1984.

[30] J. Mercer, “Functions of positive and negative type and their connection with the
theory of integral equations,” Philosophical Transactions of the Royal Society
London, A209, pp. 415-446,1909.

[31] S. Saitoh, Theory of Reproducing Kernels and Its Application, Longman
Scientific & Technical.

[32] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.
[33] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,

1985.

[34] V. Vapnik, Statistical Learning Theory, New York: Wiley, 1998.

[35] V. N. Vapnik, The Nature of Statistical Learning Theory, New York:
Springer-Verlag, 1990.

[36] B. Scholkopf, C. J. C: Butges;—and—A. 'J. Smola, Advances in Kernel
Methods—Support Vector Learning; Cambridge, MA: MIT Press, 1999.

[37] J. Hohensoh and J. M. Mendel, “Two-pass orthogonal least-squares algorithm to
train and reduce the complexity of fuzzy logic systems,” Journal of Intelligent and
Fuzzy Systems, vol. 4, pp. 295-308, 1996.

[38] G. Mouzouris and J. M. Mendel, “A singular-value-QR decomposition based
method for training fuzzy logic systems in uncertain environments,” Journal of
Intelligent and Fuzzy Systems, vol. 5, pp. 367-374, 1997.

[39] J. Yen and L. Wang “Simplifying fuzzy rule-based models using orthogonal
transformation methods,” IEEE Trans. Syst, Man, Cybern. Pt B, Vol. 29, pp.
13-24, Feb. 1999.

[40] C. J. C. Burges, “Simplified support vector decision rules,” in Proc. 13th Int.

62

Conf. Machine Learning, L. Saitta, Ed. San Mateo, CA:Morgan Kaufmann, 1996,
pp. 71-77.

[41] B. Scholkopf, S. Mika, C. Burges, etc “Input space versus feature space in
kernel-based methods,” IEEE Trans. Neural Networks, Vol. 10, pp.1000-1017,
Sep. 1999.

[42] C. L. Blake and C. J. Merz, (1998) UCI repository of Machine Learning

Databases, Univ. California, Dept. Inform. Comput. Sci., Irvine, CA. [Online].

Available: http://www.ics.uci.edu/~mlearn/MLRepository.html.

[43] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, (1994) Machine Learning,

Neural and Statistical Classification [Online]. Available: ftp://ftp.stams.strath.ac.

uk/pub/.

[44] D. Prokhorov. IJCNN 2001l%*neural network competition. presented at Slide

Presentation in IJCNN’Ol: [Online] http://www.geocities.com/ijcnn/nncijecnn0

1.pd

[45] [Online]. Available: http://www.¢esie.ntu.edu.tw/~cjlin/libsvmtools/binary/

[46] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector
machines,” IEEE Trans. Neural Networks, Vol. 13, pp. 415-525, March 2002.
[47] Y. J. Lee and O. L. Mangasarian, “RSVM: reduced support vector machines,”
Proc. Ist SIAM Int. Conf. Data mining, 2001.
[48] K. M. Lin and C. J. Lin, “A study on reduced support vector machines,” I[EEE
Trans. Neural Networks, Vol. 14, pp.1449-1459, Nov. 2003.
[49] H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou “An efficient fuzzy classifier
with feature selection based on fuzzy entropy,” IEEE Trans. Syst., Man, Cybern.
Pt B, Vol. 31, pp. 426-432, June 2001.

[50] M. R. Berthold and J. Diamond, “Constructive training of probabilistic neural

63

http://www.ics.uci.edu/~mlearn/MLRepository.html
ftp://ftp.stams.strath.ac. uk/pub/
ftp://ftp.stams.strath.ac. uk/pub/
http://www.geocities.com/ijcnn/nncijcnn0 1.pdf
http://www.geocities.com/ijcnn/nncijcnn0 1.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/binary/

networks,” Neurocomputing, Vol. 19, pp. 167-183, 1998.

[51] D. S. Chen and R. C. Jain, “A robust back-propagation learning algorithm for
function approximation,” /EEE Trans. Neural Networks, Vol. 5, pp. 467-479,
May 1994.

[52] K. Liano, “Robust error measure for supervised neural network learning with
outliers,” IEEE Trans. Neural Networks, Vol. 7, pp. 246-647, Jan. 1996.

[53] C. C. Lee, P. C. Chung, J. R. Tsai, and C. 1. Chang, “Robust radial basis function
neural networks,” IEEE Trans. Syst., Man, Cybern. Pt B, Vol. 29, pp. 674-685,
Dec. 1999

[54] C. C. Chuang, S. F. Su, and C. C. Hsiao, “The annealing robust backpropagation
(ARBP) learning algorithm,” IEEE Trans. Neural Networks, Vol. 11, pp.
1067-1077, Sep. 2000.

[55] C. C. Chuang, J. T. Jeng, and.P. T. Lin,*“Annealing robust radial basis function
networks for function appreximation-with-eutliers” Neurocomputing, Vol. 56, pp.
123-139, 2004.

[56] M. Figueiredo and F. Gomide, “Design of fuzzy systems using neurofuzzy
networks,” IEEE Trans. Neural Networks, Vol. 10, pp. 815-827, July 1999.

[57] C. C. Chuang, S. F. Su, J. T. Jeng, and C. C. Hsiao, “Robust support vector
regression network for function approximation with outliers,” IEEE Trans.
Neural Networks, Vol. 13, pp. 1322-1330, Nov. 2002.

[58] J. H. Chiang, and P. Y. Hao, “Support vector learning mechanism for fuzzy
rule-based modeling: a new approach,” IEEE Trans. Fuzzy Syst., Vol. 12, pp.
1-12, Feb. 2004.

[59] Z. Sun and Y. Sun, “Fuzzy support vector machine for regression estimation,”

IEEE International Conference on Systems, Man, and Cybernetics (SMC’03),

64

Vol. 4, pp. 3336-3341, Oct. 2003.

[60] M. Setnes, R. Babuska, and H. B. Verbruggen, “Rule-based modeling: precision
and transparency,” IEEE Trans. Syst., Man, Cybern. Pt C, Vol. 28, pp. 165-169,
Feb. 1998.

[61] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support vector
based fuzzy neural network for pattern classification,” IEEE Trans. Fuzzy Syst.,
Vol. 14, pp. 31-41, Feb. 2006.

[62] B. Scholkopf, P. Simard, A. J. Smola, and V. N. Vapnik, “Prior knowledge in
support vector kernels,” Advances in Neural Information Processing Systems,
Vol. 10, MIT Press, Cambridge, MA.

[63] V. Vapnik, S. Golowich, and A. J. Smola, “Support vector method for function
approximation, regression gstimation, and signal processing,” in Neural
Information Processing Systems. Cambridge,.MA: MIT Press, vol. 9. 1997.

[64] K. Liano, “Robust error measure for-supervised neural network learning with
outliers,” IEEE Trans. Neural Networks, Vol. 7, pp.246-250, Jan. 1996.

[65] A. Suarez and J. F. Lutsko, “Globally optimal fuzzy decision trees for
classification and regression,” [EEE Trans. Pattern Analysis and Machine
Intelligence, Vol. 21, pp. 1297-1311, Dec. 1999

[66] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice-Hall,
Upper Saddle River, NJ, 1997.

[67] F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian
learning,” Proc. International Joint Conference on Neural Networks (IJCNN’97),
Vol. 3, pp. 1930-1935, Jun 1997.

[68] S. R. Gunn. (1999) Support vector regression-Matlab toolbox. Univ.

65

Southampton, Southampton, U. K.. [Online]. Available: http://kernel-machines.

org.

66

LISTS OF PUBLICATION

¥ 7. ¥ £ 5 (Chang-Mao Yeh)

ENFAARERZIPIHmT (R 42 0B

[1] C.T. Lin, C. M. Yeh, J. F. Chung, S. F. Liang, and H. C. Pu, “Support vector
based fuzzy neural networks,” [International Journal of Computational
Intelligence Research, Vol. 1, pp. 138-150, Dec. 2005. (1.2 2t)

[2] C.T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support vector
based fuzzy neural network for pattern,classification,” IEEE Trans. Fuzzy Syst.,

Vol. 14, pp. 31-41, Feb. 20065(2.4 2L)

[3] C. T. Lin, K. W. Fan, C. M: Yeh, H.-C: Pu,'and-F. Y. Wu, “High-accuracy skew
estimation of document images,” International Journal of fuzzy systems, Vol. 8,

pp- 119-126, Sep. 2006. (0.6 2k)
FE2ZPIme
[1] C. T. Lin and C. M. Yeh, “Self-tuning error correcting output coding support
vector machine for multi-class classification,” submitted to /IEEE Trans. Systems,

Man, and Cybernetics Part B

[2] C. T. Lin and C. M. Yeh, and S. F. Liang, “Support-vector based fuzzy neural
network for function approximation,” submitted to /EEE Trans. Neural Networks

GEE TR

[1] C.T.Lin, C. M. Yeh, and C. F. Hsu, “Fuzzy neural network classification design
using support vector machine,” IEEE International Conference on Circuits and
Systems, pp.724-727, May 2004.

[2] C.T.Lin, C. M. Yeh, H. C. Pu, and S. F. Liang,”Skew estimation of document
images using fuzzy c-regression models,” Conference of computer vision,

Graphics, and image processing, pp.38-43, Aug. 2004.

67

[3] C.T. Lin, S. F. Liang, C. M. Yeh, and K. W. Fan, “Fuzzy neural network design
using support vector regression for function approximation with outliers,” /[EEE
International Conference on Systems, Man, and Cybernetics, pp2763-2768. Oct.
2005.

68

VITA

WL EEY
Mol ¥
4 p: ¢ EAR60£ET 2 24 p

WD YR AP RPN SRR H Y
< : Support-Vector based Fuzzy Neural Networks and its applications
T

1. R8I #6" WM=ZHAHLE
2. A ® 86 £ 61 w'*wui g
3. %R 90& 9 W :%‘fﬁﬁ

1% R 86 £421 4 P b

69

	摘 要
	Abstract
	誌 謝
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1�INTRODUCTION
	1.1 Fuzzy Neural Network
	1.2 Support Vector Machine
	1.3 Research Objectives and Organization of this dissertatio

	CHAPTER 2�SUPPORT-VECTOR BASED FUZZY NEURAL NETWORK AND THE
	2.1 Structure of the FNN
	2.2 Fuzzy Clustering and Input/Output Space Partitioning
	2.3 Fuzzy Rule Generation
	2.4 Adaptive Fuzzy Kernel for the SVM/SVR

	CHAPTER 3�SUPPORT-VECTOR BASED FUZZY NEURAL NETWORK FOR PATT
	3.1 Maximum Margin Algorithm
	3.2 Learning Algorithm of SVFNN
	3.3 Experimental Results
	3.4 Discussions

	CHAPTER 4�SUPPORT-VECTOR BASED FUZZY NEURAL NETWORK FOR FUNC
	4.1 Support Vector Regression Algorithm
	4.2 Learning Algorithm of SVFNN
	4.3 Experimental Results
	C
	C
	C
	C
	C
	C
	C
	C

	4.4 Discussions

	CHAPTER 5�CONCLUSIONS
	REFERENCES
	LISTS OF PUBLICATION
	VITA

