

國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

支持向量模糊類神經網路及其在資料分類和函

數近似之應用

Support-Vector based Fuzzy Neural Networks

and its Applications to Pattern Classification and

Function Approximation

研 究 生：葉 長 茂

指導教授：林 進 燈

中 華 民 國 九 十 六 年 一 月

i

支持向量模糊類神經網路及其在資料分類和

函數近似之應用

 Support-Vector based Fuzzy Neural Networks and its Applications

to Pattern Classification and Function Approximation

研 究 生：葉長茂 Student：Chang-Mao Yeh

指導教授：林進燈 博士 Advisor：Dr. Chin-Teng Lin

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

in
Electrical and Control Engineering

September 2006
Hsinchu, Taiwan, Republic of China

中華民國九十六年一月
ii

支持向量模糊類神經網路及其在資料分類和函

數近似之應用

摘 要

模糊類神經網路經常使用倒傳遞學習演算法或分群學習演算法學習調整模

糊規則和歸屬函數的參數以解決資料分類和函數回歸等問題，但是此學習演算法

經常不能將訓練誤差及預測誤差同時地最小化，這將造成在資料分類之預測階段

無法達到最好的分類效能，且對含有雜訊的訓練資料進行回歸近似時，常有過度

訓練而造成回歸效能大大降低的問題。

本論文結合支持向量學習機制與模糊類神經網路的優點，提出一個新的支持

向量模糊類神經網路(SVFNNs)，此 SVFNNs 將高維度空間具有極優越分類能力的

支持向量機(SVM)和極優越強健抗雜訊能力的支持向量回歸(SVR)與能夠有效處

理不確定環境資訊的類似人類思考的模糊類神經網路之優點結合。首先我們提出

一個適應模糊核心函數(adaptive fuzzy kernel)，進行模糊法則建構，此模糊核心

函數滿足支持向量學習所須之默塞爾定理(Mercer’s theorem)， SVFNNs 的學習演

算法有參個學習階段，在第一個階段，藉由分群原理自動產生模糊規則和歸屬函

數，在第二階段，利用具有適應模糊核心函數之 SVM 和 SVR 來計算模糊神經網路

的參數，最後在第三階段，透過降低模糊規則的方法來移除不重要的模糊規則。

我們將 SVFNNs 應用到 Iris、Vehicle、Dna、Satimage、Ijcnn1 五個資料集和兩

個單變數及雙變數函數進行資料分類與函數近似應用，實驗結果顯示我們提出的

SVFNNs 能在使用較少的模糊規則下有很好的概化(generalization)之資料分類

效能和強健抗雜訊的函數近似效能。

i

Support-Vector based Fuzzy Neural Networks and its

Applications to Pattern Classification and Function

Approximation

Student: Chang-Mao Yeh Advisor: Chin-Teng Lin

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

Fuzzy neural networks (FNNs) have been proposed and successfully

applied to solving these problems such as classification, identification, control,

pattern recognition, and image processing, etc. Fuzzy neural networks usually

use the backpropagation or C-cluster type learning algorithms to learn the

parameters of the fuzzy rules and membership functions from the training data.

However, such learning algorithm only aims at minimizing the training error,

and it cannot guarantee the lowest testing error rate in the testing phase. In

addition, the local solutions and slow convergence often impose practical

constraints in the function approximation problems

In this dissertation, novel fuzzy neural networks combining with support

vector learning mechanism called support-vector based fuzzy neural networks

(SVFNNs) are proposed for pattern classification and function approximation.

The SVFNNs combine the capability of minimizing the empirical risk

(training error) and expected risk (testing error) of support vector learning in

high dimensional data spaces and the efficient human-like reasoning of FNN

in handling uncertainty information. First, we propose a novel adaptive fuzzy

kernel, which has been proven to be a Mercer kernel, to construct initial fuzzy

i

rules. A learning algorithm consisting of three learning phases is developed to

construct the SVFNNs and train the parameters. In the first phase, the fuzzy

rules and membership functions are automatically determined by the

clustering principle. In the second phase, the parameters of FNN are

calculated by the SVM and SVR with the proposed adaptive fuzzy kernel

function for pattern classification and function approximation, respectively. In

the third phase, the relevant fuzzy rules are selected by the proposed fuzzy

rule reduction method. To investigate the effectiveness of the proposed

SVFNNs, they are applied to the Iris、Vehicle、Dna、Satimage and Ijcnn1

datasets for classification, and one- and two- variable functions for

approximation, respectively. Experimental results show that the proposed

SVFNNs can achieve good pattern classification and function approximation

performance with drastically reduced number of fuzzy kernel functions (fuzzy

rules).

ii

誌 謝

首先感謝指導教授林進燈院長多年來的指導。在學術上，林教授以

其深厚的學識涵養及孜孜不倦的教導，使我在博士研究期間，學到了許

多寶貴的知識、研究的態度及解決問題的能力。除了學術上的收穫之外，

也相當感謝林教授在日常生活上給予的關心與鼓勵，每當我在最徬徨的

時侯，總能指點我正確的方向，在我最失意的時侯，讓我重拾信心，另

外林教授的學識淵博、做事衝勁十足、熱心待人誠懇與風趣幽默等特質，

都是我非常值得學習的地方。今日之所以能夠順利完成學業，都是老師

悉心的教導，在此對林教授獻上最誠摯的敬意。此外亦非常感謝諸位口

試委員在論文上所給于的寶貴建議與指教，使得本論文更加完備。

在家人方面，首先感謝我的父親葉哲元先生與母親林寶葉女士從小

到大對我的教養與栽培，由於您們長年以來的支持與鼓勵，使得我無後

顧之憂的專心於學業方面。及感謝我的哥哥長青與妹妹蕙蘭平日對我的

關心。同時也感謝我的妻小：維珊和子鴻和芸芸；多年來因為學業的關

係，很少陪伴你們，日後當會好好的補償你們。

在學校方面，感謝勝富和翊方學長在研究與生活的熱心幫忙，這段

一起研究討論的日子，不但讓我學到研究方法，也讓我學到解決問題的

能力。及感謝實驗室裡每位學長、學弟及同學在學業及日常的照顧，這

段一起唸書、閒話家常的日子，不僅讓我總能抱著愉快的心情學習，更

讓我在這求學過程多釆多姿。

在工作方面，感謝學校內長官與同事多年來的支持，得以使我能夠

順利完成本論文。

最後，謹以本論文獻給我的家人與關心我的師長與朋友們。

iii

CONTENTS

摘 要 ...i

Abstract...i

誌 謝 ...iii

CONTENTS..iv

LIST OF FIGURES ...vi

LIST OF TABLES...vii

CHAPTER 1 INTRODUCTION...1

1.1 Fuzzy Neural Network..1

1.2 Support Vector Machine ...3

1.3 Research Objectives and Organization of this dissertation...................................4

CHAPTER 2 SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK AND THE ADAPTIVE FUZZY KERNEL6

2.1 Structure of the FNN...6

2.2 Fuzzy Clustering and Input/Output Space Partitioning ..9

2.3 Fuzzy Rule Generation ... 11

2.4 Adaptive Fuzzy Kernel for the SVM/SVR ...14

CHAPTER 3 SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK FOR PATTERN CLASSIFICATION ...18

3.1 Maximum Margin Algorithm ...19

3.2 Learning Algorithm of SVFNN..22

3.3 Experimental Results ..29

3.4 Discussions ...35

iv

CHAPTER 4 SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK FOR FUNCTION APPROXIMATION..36

4.1 Support Vector Regression Algorithm ..36

4.2 Learning Algorithm of SVFNN ..39

4.3 Experimental Results ..43

4.4 Discussions ...56

CHAPTER 5 CONCLUSIONS..57

REFERENCES..59

LISTS OF PUBLICATION..67

VITA...69

v

LIST OF FIGURES

Fig. 2.1 The structure of the four-layered fuzzy neural network. 7
Fig. 2.2 The aligned clustering-based partition method giving both less

number of clusters as well as less number of membership functions.
.. 9

Fig. 2.3 The clustering arrangement allowing overlap and selecting the
member points according to the labels (or classes) attached to them.
.. 11

Fig 3.1 Optimal canonical separating hyperplane with the largest margin
between the two classes.. 20

Fig. 3.2 map the training data nonlinearly into a higher-dimensional feature
space ... 21

Fig. 4.1 the soft margin loss setting for a regression problem........................ 37
Fig. 4.2 (a) The desired output of the function show in (4.8). (b) The resulting

approximation by SVFNN.. 45
Fig 4.3 (a) The desired output of the function show in (4.9) (b) The resulting

approximation by SVFNN.. 46
Fig 4.4 (a) The desired output of the function show in (4.10). (b) The resulting

approximation by SVFNN.. 47
Fig 4.5 (a) The desired output of the function show in (4.11). (b) The resulting

approximation by SVFNN.. 48

vi

LIST OF TABLES

TABLE 3.1 Experimental results of SVFNN classification on the Iris dataset.
... 32

TABLE 3.2 Experimental results of SVFNN classification on the Vehicle
dataset. .. 32

TABLE 3.3 Experimental results of SVFNN classification on the Dna dataset.
... 33

TABLE 3.4 Experimental results of SVFNN classification on the Satimage
dataset. .. 33

TABLE 3.5 Experimental results of SVFNN classification on the Ijnn1
dataset. .. 34

TABLE 3.6 Classification error rate comparisons among FNN,
RBF-kernel-based SVM, RSVM and SVFNN classifiers, where
NA means “not available”... 34

TABLE 4.1 (a) Experimental results of SVFNN on the first function using the
training data without noise. (b) Experimental results of SVFNN
on the first function using the training data with noise............... 51

TABLE 4.2 (a) Experimental results of SVFNN on the second function using
the training data without noise. (b) Experimental results of
SVFNN on the second function using the training data with noise.
... 52

TABLE 4.3 (a) Experimental results of SVFNN on the third function using the
training data without noise. (b) Experimental results of SVFNN
on the third function using the training data with noise.............. 53

TABLE 4.4 (a) Experimental results of SVFNN on the fourth function using
the training data without noise. (b) Experimental results of
SVFNN on the fourth function using the training data with noise.
... 54

TABLE 4.5 Comparisons RMSE using the training data without noise......... 55
TABLE 4.6 Comparisons RMSE using the training data with noise.............. 55

vii

CHAPTER 1

INTRODUCTION

It is an important key issue in many scientific and engineering fields to classify

the acquired data or estimate an unknown function from a set of input-output data

pairs. As is widely known, fuzzy neural networks (FNNs) have been proposed and

successfully applied to solving these problems such as classification, identification,

control, pattern recognition, and image processing. most previous researches issue the

method of automatically generating fuzzy rules from numerical data and use the

backpropagation (BP) and/or C-cluster type learning algorithms to train parameters of

fuzzy rules and membership functions from the training data. However, such learning

algorithm only aims at minimizing the training error, and it cannot guarantee the

lowest testing error rate in the testing phase. In addition, the local solutions and slow

convergence often impose practical constraints in the function approximation

problems. Therefore, it is desired to develop a novel FNNs, that achieve good pattern

classification and function approximation performance with drastically reduced

number of fuzzy kernel functions (fuzzy rules).

1.1 Fuzzy Neural Network

Both fuzzy logic and neural networks are aimed at exploiting human-like

knowledge processing capability. The fuzzy logic system using linguistic information

can model the qualitative aspects of human knowledge and reasoning processes

without employing precise quantitative analyses [1]. However, the selection of fuzzy

if-then rules often conventionally relies on a substantial amount of heuristic
1

observation to express proper strategy’s knowledge. Obviously, it is difficult for

human experts to examine all the input-output data to find a number of proper rules

for the fuzzy system. Artificial neural networks are efficient computing models which

have shown their strengths in solving hard problems in artificial intelligence. The

neural networks are a popular generation of information processing systems that

demonstrate the ability to learn from training data [2]. However, one of the major

criticisms is their being black boxes, since no satisfactory explanation of their

behavior has been offered. This is a significant weakness, for without the ability to

produce comprehensible decision, it is hard to trust the reliability of networks

addressing real-world problems. Much research has been done on fuzzy neural

networks (FNNs), which combine the capability of fuzzy reasoning in handling

uncertain information and the capability of neural networks in learning from

processes [3]-[5]. Fuzzy neural networks are very effective in solving actual problems

described by numerical examples of an unknown process. They have been

successfully applied to classification, identification, control, pattern recognition, and

image processing, etc. In particular, many learning algorithms of fuzzy (neural) have

been presented and applied in pattern classification and decision-making systems [6],

[7]. Moreover, several researchers have investigated the fuzzy-rule-based methods for

function approximation and pattern classification [8]-[15].

A fuzzy system consists of a bunch of fuzzy if-then rules. Conventionally, the

selection of fuzzy if-then rules often relies on a substantial amount of heuristic

observation to express proper strategy’s knowledge. Obviously, it is difficult for

human experts to examine all the input-output data to find a number of proper rules

for the fuzzy system. Most pre-researches used the backpropagation (BP) and/or

C-cluster type learning algorithms to train parameters of fuzzy rules and membership

functions from the training data [16], [17]. However, such learning only aims at
2

minimizing the classification error in the training phase, and it cannot guarantee the

lowest error rate in the testing phase. Therefore we apply the support vector

mechanism with the superior classification power into learning phase of FNN to

tackle these problems.

1.2 Support Vector Machine

Support vector machines (SVM) has been revealed to be very effective for

general-purpose pattern classification [18]. The SVM performs structural risk

minimization and creates a classifier with minimized VC dimension. As the VC

dimension is low, the expected probability of error is low to ensure a good

generalization. The SVM keeps the training error fixed while minimizing the

confidence interval. So, the SVM has good generalization ability and can

simultaneously minimize the empirical risk and the expected risk for pattern

classification problems. SVM construct a decision plane separating two classes with

the largest margin, which is the maximum distance between the closest vector to the

hyperplane. In other word, the main idea of a support vector machine is to construct a

hyperplane as the decision surface in such a way that the margin of separation

between positive and negative examples is maximized. More importantly, an SVM

can work very well in a high dimensional feature space. The support vector method

can also be applied in regression (functional approximation) problems. When SVM is

employed to tackle the problems of function approximation and regression estimation,

it is referred as the support vector regression (SVR). SVR can perform high accuracy

and robustness for function approximation with noise.

3

However, the optimal solutions of SVM rely heavily on the property of selected

kernel functions, whose parameters are always fixed and are chosen solely based on

heuristics or trial-and-error nowadays. The regular SVM suffers from the difficulty of

long computational time in using nonlinear kernels on large datasets which come from

many real applications. Therefore, our dissertation proposes a systematical procedure

to reduce the support vectors to deal with this problem.

1.3 Research Objectives and Organization of this

dissertation

In this dissertation, novel fuzzy neural networks (FNNs) combining with support

vector learning mechanism called support-vector-based fuzzy neural networks

(SVFNNs) are proposed for pattern classification and function approximation. The

SVFNNs combine the capability of minimizing the empirical risk (training error) and

expected risk (testing error) of support vector learning in high dimensional data

spaces and the efficient human-like reasoning of FNN in handling uncertainty

information. There have been some researches on combining SVM with FNN

[19]-[22]. In [19], a self-organizing map with fuzzy class memberships was used to

reduce the training samples to speed up the SVM training. The objective of [20]-[22]

was on improving the accuracy of SVM on multi-class pattern recognition problems.

The overall objective of this dissertation is to develop a theoretical foundation for the

FNN using the SVM method. We exploit the knowledge representation power and

learning ability of the FNN to determine the kernel functions of the SVM adaptively,

and propose a novel adaptive fuzzy kernel function, which has been proven to be a

Mercer kernel. The SVFNNs can not only well maintain the classification accuracy,

4

but also reduce the number of support vectors as compared with the regular SVM.

Organization and objectives of the dissertation are as follows.

In chapter 2, a novel adaptive fuzzy kernel is proposed for combining FNN with

SVM. We exploit the knowledge representation power and learning ability of the FNN

to determine the kernel functions of the SVM adaptively and develop a novel adaptive

fuzzy kernel function. The objective of this chapter is to prove that the adaptive fuzzy

kernel conform to the Mercer theory.

In chapter 3, a support-vector based fuzzy neural network (SVFNN) is proposed.

This network is developed for solving pattern recognition problem. Compared to

conventional neural fuzzy network approaches, the objective of this chapter is to

construct the learning algorithm of the proposed SVFNN with simultaneously

minimizing the empirical risk and the expected risk for good generalization ability

and characterize the proposed SVFNN with good classification performance.

In chapter 4, a support-vector based fuzzy neural network for function

approximation is proposed. This network is developed for solving function

approximation. The objective of this chapter is to integrate the statistical support

vector learning method into FNN and characterize the proposed SVFNN with the

capability of good robustness against noise.

The applications and simulated results of the SVFNNs are presented at the ends

of Chapter 3 and 4, respectively. Finally, conclusions are made on Chapter 5.

5

CHAPTER 2

SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK AND THE ADAPTIVE FUZZY

KERNEL

In this chapter, adaptive fuzzy kernel is proposed for applying the SVM

technique to obtain the optimal parameters of FNN. The adaptive fuzzy kernel

provides the SVM with adaptive local representation power, and thus brings the

advantages of FNN (such as adaptive learning and economic network structure) into

the SVM directly. On the other hand, the SVM provides the advantage of global

optimization to the FNN and also its ability to minimize the expected risk; while the

FNN originally works on the principle of minimizing only the training error.

2.1 Structure of the FNN

A four-layered fuzzy neural network (FNN) is shown in Fig 2.1, which is

comprised of the input, membership function, rule, and output layers. Layer 1 accepts

input variables, whose nodes represent input linguistic variables. Layer 2 is to

calculate the membership values, whose nodes represent the terms of the respective

linguistic variables. Nodes at Layer 3 represent fuzzy rules. The links before Layer 3

represent the preconditions of fuzzy rules, and the link after Layer 3 represent the

consequences of fuzzy rules. Layer 4 is the output layer. This four-layered network

realizes the following form of fuzzy rules:

6

Rule Rj : If x1 is A1j and …xi is Aij….. and xM is AMj, Then y is dj , j=1, 2, …, N, (2.1)

where Aij are the fuzzy sets of the input variables xi, i =1, 2, …, M and dj are the

consequent parameter of y. For the ease of analysis, a fuzzy rule 0 is added as:

 Rule 0 : If x1 is A10 and …….. and xM is AM0, Then y is d0, (2.2)

where Ak0 is a universal fuzzy set, whose fuzzy degree is 1 for any input value xi,

i =1, 2, …, M and is the consequent parameter of y in the fuzzy rule 0. Define

O

0d

(P) and a(P) as the output and input variables of a node in layer P, respectively. The

signal propagation and the basic functions in each layer are described as follows.

Layer 1- Input layer: No computation is done in this layer. Each node in this

layer, which corresponds to one input variable, only transmits input values to the next

layer directly. That is

(1) (1)
iO a ix= = , (2.3)

where ix , i=1, 2, …, M are the input variables of the FNN.

Layer 1

Layer 4

Layer 3

Layer 2

d1
dN

d2

∑

x1 x2

d0

xM

y

"""

R1 R2
RN """

"" " "

Fig. 2.1 The structure of the four-layered fuzzy neural network.

7

Layer 2 – Membership function layer: Each node in this layer is a membership

function that corresponds one linguistic label (e.g., fast, slow, etc.) of one of the input

variables in Layer 1. In other words, the membership value which specifies the degree

to which an input value belongs to a fuzzy set is calculated in Layer 2:

 , (2.4) (2) () (2)(j
i iO u a=)

Mwhere is a membership function j=1,

2, …, N. With the use of Gaussian membership function, the operation performed in

this layer is

() ()j
iu ⋅ () () : [0, 1], 1, 2, , ,j

iu R i⋅ → = "

(2) 2

2

()

(2)
i ij

ij

a m

O e σ

−
−

= , (2.5)

where mij and σij are, respectively, the center (or mean) and the width (or variance)

of the Gaussian membership function of the j-th term of the i-th input variable xi.

Layer 3 – Rule layer: A node in this layer represents one fuzzy logic rule and

performs precondition matching of a rule. Here we use the AND operation for each

Layer 2 node

 [()] [()](3) (3)

1

T
j j j j

M

i
i

O a e−

=

= =∏ D x-m D x-m , (2.6)

where
1

1 , ,j
j M

diag
σ σ
⎛ ⎞

= ⎜⎜
⎝ ⎠

D " 1

j
⎟⎟ , mj=[m1j, m2j, …, mMj]T, x=[x1, x2, x3, …, xM]T is

the FNN input vector. The output of a Layer-3 node represents the firing strength of

the corresponding fuzzy rule.

Layer 4 – Output layer: The single node O(4) in this layer is labeled with Σ, which

computes the overall output as the summation of all input signals:

8

 (4) (4)
0

1

N

j j
j

O d a
=

d= × +∑ , (2.7)

where the connecting weight dj is the output action strength of the Layer 4 output

associated with the Layer 3 rule and the scalar d0 is a bias. Thus the fuzzy neural

network mapping can be rewritten in the following input-output form:

 . (2.8) (4) (4) ()
0

1 1 1

()
MN N

j
j j j i i

j j i

O d a d d u x
= = =

= × + = +∑ ∑ ∏ 0d

2.2 Fuzzy Clustering and Input/Output Space Partitioning

For constructing the initial fuzzy rules of the FNN, the fuzzy clustering method

is used to partition a set of data into a number of overlapping clusters based on the

distance in a metric space between the data points and the cluster prototypes.

A

B

C

1bx

2bx

1x

2x

Fig. 2.2 The aligned clustering-based partition method giving both less number of
clusters as well as less number of membership functions.

9

Each cluster in the product space of the input-output data represents a rule in the

rule base. The goal is to establish the fuzzy preconditions in the rules. The

membership functions in Layer 2 of FNN can be obtained by projections onto the

various input variables xi spanning the cluster space. In this work, we use an aligned

clustering-based approach proposed in [23]. This method produces a partition result as

shown in Fig. 2.2.

The input space partitioning is also the first step in constructing the fuzzy kernel

function in the SVFNNs. The purpose of partitioning has a two-fold objective:

• It should give us a minimum yet sufficient number of clusters or fuzzy

rules.

• It must be in spirit with the SVM-based classification scheme.

To satisfy the aforementioned conditions, we use a clustering method which

takes care of both the input and output values of a data set. That is, the clustering is

done based on the fact that the points lying in a cluster also belong to the same class

or have an identical value of the output variable. The class information of input data is

only used in the training stage to generate the clustering-based fuzzy rules; however,

in testing stage, the input data excite the fuzzy rules directly without using class

information. In addition, we also allow existence of overlapping clusters, with no

bound on the extent of overlap, if two clusters contain points belonging to the same

class. We may have a clustering like the one shown in Fig. 2.3. Thus a point may be

geometrically closer to the center of a cluster, but it can belong only to the nearest

cluster, which has the points belonging to the same class as that point.

10

⊗

⊗
⊗

D

----Class Ⅰ

----Class Ⅱ

Fig. 2.3 The clustering arrangement allowing overlap and selecting the member points

according to the labels (or classes) attached to them.

2.3 Fuzzy Rule Generation

A rule corresponds to a cluster in the input space, with mj and Dj representing the

center and variance of that cluster. For each incoming pattern x, the strength a rule is

fired can be interpreted as the degree the incoming pattern belongs to the

corresponding cluster. It is generally represented by calculating degree of membership

of the incoming pattern in the cluster [24]. For computational efficiency, we can use

the firing strength derived in (2.6) directly as this degree measure

 [()] [()](3)

1

()
T

j j j j
M

j
i

i

F a e−

=

= =∏ D x-m D x-mx]1,0[∈ , (2.9)

where []() 0, 1jF ∈x . In the above equation the term is the

distance between x and the center of cluster j. Using this measure, we can obtain the

following criterion for the generation of a new fuzzy rule. Let x be the newly

incoming pattern. Find

[()] [()]
T

j j j jD x - m D x - m

 , (2.10)
1 ()

arg max ()j

j c t
J

≤ ≤
= xF

11

where c(t) is the number of existing rules at time t. If ()JF F t≤ , then a new rule is

generated, where () (0, 1)F t ∈ is a prespecified threshold that decays during the

learning process. Once a new rule is generated, the next step is to assign initial centers

and widths of the corresponding membership functions. Since our goal is to minimize

an objective function and the centers and widths are all adjustable later in the

following learning phases, it is of little sense to spend much time on the assignment of

centers and widths for finding a perfect cluster. Hence we can simply set

 [() 1]c t + =m x , (2.11)

 [() 1]
1 1 1

ln() ln()c t Jdiag
F Fχ+ J

⎡ ⎤−
= ⋅ ⎢ ⎥

⎣ ⎦
D " , (2.12)

according to the first-nearest-neighbor heuristic [25], where 0χ ≥ decides the

overlap degree between two clusters. Similar methods are used in [26], [27] for the

allocation of a new radial basis unit. However, in [26] the degree measure doesn’t take

the width Dj into consideration. In [27], the width of each unit is kept at a prespecified

constant value, so the allocation result is, in fact, the same as that in [26]. In this

dissertation, the width is taken into account in the degree measure, so for a cluster

with larger width (meaning a larger region is covered), fewer rules will be generated

in its vicinity than a cluster with smaller width. This is a more reasonable result.

Another disadvantage of [26] is that another degree measure (the Euclidean distance)

is required, which increases the computation load.

After a rule is generated, the next step is to decompose the multidimensional

membership function formed in (2.11) and (2.12) to the corresponding 1-D

membership function for each input variable. To reduce the number of fuzzy sets of

each input variable and to avoid the existence of highly similar ones, we should check

the similarities between the newly projected membership function and the existing

12

ones in each input dimension. Before going to the details on how this overall process

works, let us consider the similarity measure first. Since Gaussian membership

functions are used in the SVFNNs, we use the formula of the similarity measure of

two fuzzy sets with Gaussian membership functions derived previously in [28].

Suppose the fuzzy sets to be measured are fuzzy sets A and B with membership

function { }2 2
1 1() exp ()A x x cµ σ= − − and { }2 2

2 2() exp ()B x x cµ σ= − − , respectively.

The union of two fuzzy sets A and B is a fuzzy set A B∪ such that

, for every () max[(), ()]A B A Bu x u x u x∪ = x U∈ . The intersection of two fuzzy sets A

and B is a fuzzy set A B∩ such that () min[(), ()]A B A Bu x u x u x∩ = , for every .

The size or cardinality of fuzzy set A, M(A), equals the sum of the support values of A:

x U∈

() ()A
x U

M A u
∈

= ∑ x . Since the area of the bell-shaped function, exp{ }, is 22 /)(σmx −−

σ π [29] and its height is always 1, it can be approximated by an isosceles triangle

with unity height and the length of bottom edge 2σ π . We can then compute the

fuzzy similarity measure of two fuzzy sets with such kind of membership functions.

Assume as in [28], we can compute 1c c≥ 2 M A B∩ by

2 2
2 1 1 2 2 1 1 2

1 2 2 1

2
2 1 1 2

1 2

() (1 1(min[(), ()])
2 2() ()

()1 ,
2 ()

A B
x U

h c c h c c
M A B u x u x

h c c

π σ σ π σ σ

π σ σ π σ σ

π σ σ

π σ σ

∈

)⎡ ⎤ ⎡− + + − + − ⎤
⎣ ⎦ ⎣∩ = = +

+ −

⎡ ⎤− − +⎣ ⎦+
−

∑ ⎦
 (2.13)

where . So the approximate similarity measure is () max{0, }⋅ = ⋅h

1 2

(,)
M A B M A B

E A B
M A B M A Bσ π σ π

∩ ∩
= =

∪ + − ∩
, (2.14)

where we use the fact that () () () ()M A M B M A B M A B+ = ∩ + ∪ [28]. By

using this similarity measure, we can check if two projected membership functions

are close enough to be merged into one single membership

13

function { }2 2
3 3() exp ()c x x cµ σ= − − . The mean and variance of the merged

membership function can be calculated by

1 2
3 2

c cc +
= , (2.15)

1
3 2

2σ σσ +
= . (2.16)

2.4 Adaptive Fuzzy Kernel for the SVM/SVR

The proposed fuzzy kernel in this dissertation is defined as)ˆ,ˆ(zxK

�() () () �
=1

, if and are both in the -th cluster
,

0, otherwise,

M

j i j i
i

u x u z j
K

⎧
⋅⎪=⎨

⎪⎩

∏ x z
x z

�
� (2.17)

where �x =[x1, x2, x3, …, xM] ∈RM and =[zz� 1, z2, z3, …, zM] ∈RM are any two

training samples, and ()j iu x is the membership function of the j-th cluster. Let the

training set be S={(x1, y1), (x2, y2), …, (xv, yv)} with explanatory variables and the

corresponding class labels y

ix

i, for all 1, 2, ,i v= " , where v is the total number of

training samples. Assume the training samples are partitioned into l clusters through

fuzzy clustering in Section II. We can perform the following permutation of training

samples

() (){ }
() (){ }

() (){ }

1

2

1 1
1

2 2
1

1

1 , , , ,

2 , , , ,

, , , ,
l

k

k

l l l
k

cluster y y

cluster y y

cluster l y y

=

=

=

x x

x x

x x

…

…

#

…

1

2

l

1 1
1 k

2 2
1 k

l
1 k ,

, l

 (2.18)

where is the number of points belonging to the g-th cluster, so , 1, 2,gk g = "

14

that we have
1

l

g
g

k
=
∑ = v. Then the fuzzy kernel can be calculated by using the training

set in (2.18), and the obtained kernel matrix K can be rewritten as the following form

1

2 v v

l

R ×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

K 0 0
0 K

K
0

0 0 K

"
% #

% %
"

⎥∈
⎥

, l

 (2.19)

where is defined as , 1, 2,g g =K "

() () (
() ()

(
() () (

1 1 1 2 1

2 1 2 2

1

1 1

, , ,

, ,

, , ,

g

g g g g

g g g g g

g g g g

g g
k

g g g g g
k k k k

K x x K x x K x

K x x K x x

K x

K x x K x x K x

−

−

⎡
⎢
⎢
⎢= ⎢
⎢
⎢
⎢⎣

K

"

% #

% %

"

In order that the fuzzy kernel function defined

application in SVM, we must prove that the fuzzy kernel

positive-definite Gram Matrices [30]. To prove this, we

theorems.

Theorem 1 (Mercer theorem [30]) : Let X be a compa

is a continuous symmetric function such that the integral op

 () ()()()K
X

T f K f d⋅ = ⋅∫ , x x x

is positive; that is

 () () () 0,
X X

K f f d d f
×

≥ ∀∫ x, z x z x z

for all 2 ()f L X∈ . Then we can expand K(x, z) in a u

(on X X×) in terms of TK’s eigen-functions 2 ()j L Xφ ∈ ,

that
2

1j L
φ = , and positive associated eigenvalues 0jλ >

15
)

)
)

,

g

g g

g

g

g
k

k k

g
k

g
k

x

R
x

x

×

⎤
⎥
⎥
⎥∈⎥
⎥
⎥
⎥⎦

 (2.20)

by (2.17) is su

function is symm

 first quote the

ct subset of Rn.

erator TK : L2(X)

0,≥

2 ()L∈ X

niformly conver

 normalized in s

,
itable for

etric and

following

Suppose K

→L2(X)

(2.21)

(2.22)

gent series

uch a way

 . (2.23) () () (
1

j j j
j

K λ φ φ
∞

=

=∑x, z x z)

The kernel is referred to as Mercer’s kernel as it satisfies the above Mercer

theorem.

Proposition 1 [31] : A function K(x, z) is a valid kernel iff for any finite set it

produces symmetric and positive-definite Gram matrices.

Proposition 2 [32] : Let K1 and K2 be kernels over X X× , . Then the

 function is also a kernel.

nX R⊆

1 2(((K K K=x, z) x, z) x, z)

Definition 1 [33] : A function is said to be a positive-definite

function if the matrix

:f R R→

[()] n n
i jf x x R ×− ∈ is positive semidefinite for all choices of

points 1{ , , }nx x ⊂" R and all 1, 2,n = "" .

Proposition 3 [33] : A block diagonal matrix with the positive-definite diagonal

matrices is also a positive-definite matrix.

Theorem 2 : For the fuzzy kernel defined by (2.17), if the membership functions

 are positive-definite functions, then the fuzzy

kernel is a Mercer kernel.

() : [0, 1], 1, 2, ,iu x R i n→ = " ,

Proof:

First, we prove that the formed kernel matrix ()()
, 1

 = ,
n

i j
K

=
K i jx x is a

symmetric matrix. According to the definition of fuzzy kernel in (2.17), if and

are in the j-th cluster,

ix iz

 , () () () () () ()j j j j
k=1 k=1

, ,
n n

k k k kK u x u z u z u x K= ⋅ = ⋅ =∏ ∏x z z x

otherwise,

),(zxK = =0. (,)K z x

16

So the kernel matrix is indeed symmetric. By the elementary properties of

Proposition 2, the product of two positive-defined functions is also a kernel function.

And according to Proposition 3, a block diagonal matrix with the positive-definite

diagonal matrices is also a positive-definite matrix. So the fuzzy kernel defined by

(2.17) is a Mercer kernel. �

 Since the proposed fuzzy kernel has been proven to be a Mercer kernel, we

can apply the SVM technique to obtain the optimal parameters of SVFNNs. It is noted

that the proposed SVFNNs is not a pure SVM, so it dose not minimize the empirical

risk and expected risk exactly as SVMs do. However, it can achieve good

classification performance with drastically reduced number of fuzzy kernel functions.

17

CHAPTER 3

SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK FOR PATTERN CLASSIFICATION

In this chapter, we develop a support-vector-based fuzzy neural network (SVFNN)

for pattern classification, which is the realization of a new idea for the adaptive kernel

functions used in the SVM. The use of the proposed fuzzy kernels provides the SVM

with adaptive local representation power, and thus brings the advantages of FNN

(such as adaptive learning and economic network structure) into the SVM directly. On

the other hand, the SVM provides the advantage of global optimization to the FNN

and also its ability to minimize the expected risk; while the FNN originally works on

the principle of minimizing only the training error. The proposed learning algorithm

of SVFNN consists of three phases. In the first phase, the initial fuzzy rule (cluster)

and membership of network structure are automatically established based on the fuzzy

clustering method. The input space partitioning determines the initial fuzzy rules,

which is used to determine the fuzzy kernels. In the second phase, the means of

membership functions and the connecting weights between layer 3 and layer 4 of

SVFNN (see Fig. 2.1) are optimized by using the result of the SVM learning with the

fuzzy kernels. In the third phase, unnecessary fuzzy rules are recognized and

eliminated and the relevant fuzzy rules are determined. Experimental results on five

datasets (Iris, Vehicle, Dna, Satimage, Ijcnn1) from the UCI Repository, Statlog

collection and IJCNN challenge 2001 show that the proposed SVFNN classification

method can automatically generate the fuzzy rules, improve the accuracy of

18

classification, reduce the number of required kernel functions, and increase the speed

of classification.

3.1 Maximum Margin Algorithm

An SVM constructs a binary classifier from a set of labeled patterns called

training examples. Let the training set be S = {(x1, y1), (x2, y2), …, (xv, yv)} with

explanatory variables and the corresponding binary class labels

, for all , where v denotes the number of data, and d denotes

the dimension of the datasets. The SVM generates a maximal margin linear decision

rule of the form

d
i ∈x R

{ 1, 1}iy ∈ − + 1, ,i = " v

() sign()f b= ⋅ +x w x , (3.1)

Where w is the weight vector and b is a bias. The margin M can be calculated by

M=2/||w|| that show in Fig. 3.1. For obtaining the largest margin, the weight vector, ,

must be calculated by

w

 21min
2
w

 s.t. () 1 0, 1,i iy b i ,v+ − ≥ ∀ =x w " . (3.2)

The optimization problem be converted to a quadratic programming problem,

which can be formulated as follows:

1 , 1

1Maximize ()
2

α α αα
= =

= −∑ ∑
v v

T
i i j i j

i i j

L y y x xi j

subject to 0iα ≥ , i = 1, 2,…., v and . (3.3)
1

0
v

i i
i

yα
=

=∑

whereαi denotes Lagrange multiplier.

19

Class 1

Class 2

M

(wTx)+b=0

Fig 3.1 Optimal canonical separating hyperplane with the largest margin between the
two classes.

In practical applications for non-ideal data, the data contain some noise and

overlap. The slack variablesξ , which allow training patterns to be misclassified in the

case of linearly non-separable problems, and the regularization parameter C, which

sets the penalty applied to margin-errors controlling the trade-off between the width

of the margin and training set error, are added to SVM. The equation is altered as

follows:

 221min
2 2 i

i

C ξ+ ∑w

s.t. () 1 , 1,i i iy b i ,vξ+ ≥ − ∀ =x w " . (3.4)

To construct a non-linear decision rule, the kernel method mappin an input

vector into a vector of a higher-dimensional feature space F (d∈x R ()φ x , where φ

represents a mapping) is discovered. Therefore, the maximal margin linear d →R Rq

20

classifier can solve the linear and non-linear classification problem in this feature

space. Fig. 3.2 show the training data map into a higher-dimensional feature space.

However, the computation cannot easily map the input vector to the feature space. If

the dimension of transformed training vectors is very large, then the computation of

the dot products is prohibitively expensive. The transformed function ()iφ x is not

known a priori. The Mercer’s theorem provides a solution for those problems. The

equation () ()i jφ φ⋅x x can be calculated directly by a positive definite symmetric

kernel function (,) () ()φ φ= ⋅i j i jK x x x x which complies with Mercer’s theorem.

Popular choices for Kernel function include

Gaussian kernel :
2

2(,) exp()
2

K
σ
−

= −
x xx x (3.5a)

and Polynomial kernel : 2
2(,) (1)K

σ
⋅

= +
x xx x . (3.5b)

To obtain an optimal hyperplane for any linear or nonlinear space, Eq. (3.4) can

be rewritten to the following dual quadratic optimization

 max
α

() ()
1 1

1 ,
2

α α αα= −∑ ∑
v v

i j i j
i i, j

L y y x xi iK j
= =

 subject to 0 , 1, 2,...,C i vα≤ ≤ = and . (3.6) i
1

0
v

i i
i

y a =∑
=

Fig.3.2 map the training data nonlinearly into a higher-dimensional feature space

Φ:x → φ(x)

(,) () ()i j i jK φ φ= ⋅x x x x

21

The dual Lagrangian ()αL must be maximized with respect toαi ≥ 0. The

training patterns with nonzero Lagrange multipliers are called support vectors. The

separating function is given as follows

0
0

1

() sign ()α
=

⎛ ⎞
= ⎜

⎝ ⎠
∑

svN

i i i
i

+ ⎟f y K bx x x . (3.7)

where Nsv denotes the number of support vectors; xi denotes a support vectors;

0
iα denotes a corresponding Lagrange coefficient, and b0 denotes the constant given

by

 () (* *
0 0 0

1 (1) (1)
2)⎡ ⎤= − + −⎣ ⎦b w x w x , (3.8)

where x*(1) denote some support vector belonging to the first class and

0 α≤ ≤ Ci . x*(−1) denote some support vector belonging to the second class, where

0 α≤ ≤ Ci . In next section, we proposed the learning algorithm of SVFNN that

combine the capability of minimizing the empirical risk (training error) and expected

risk (testing error) of support vector learning in high dimensional data spaces and the

efficient human-like reasoning of FNN in handling uncertainty information.

3.2 Learning Algorithm of SVFNN

The learning algorithm of the SVFNN consists of three phases. The details are

given below:

Learning Phase 1 – Establishing initial fuzzy rules

The first phase establishes the initial fuzzy rules, which were usually derived

from human experts as linguistic knowledge. Because it is not always easy to derive

22

fuzzy rules from human experts, the method of automatically generating fuzzy rules

from numerical data is issued. The input space partitioning determines the number of

fuzzy rules extracted from the training set and also the number of fuzzy sets. We use

the centers and widths of the clusters to represent the rules. To determine the cluster to

which a point belongs, we consider the value of the firing strength for the given

cluster. The highest value of the firing strength determines the cluster to which the

point belongs. The whole algorithm for the generation of new fuzzy rules as well as

fuzzy sets in each input variable is as follows. Suppose no rules are existent initially.

IF x is the first incoming input pattern THEN do

PART 1. { Generate a new rule with center and width 1m = x

1
1 1, ,
init init

diag
σ σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

D " ,

IF the output pattern belongs to class 1 (namely,), y [1 0]y =

{ 1 [1 0]Con− =w for indicating output node 1 been excited, }

ELSE { 1 [0 1]Con− =w for indicating output node 2 been

excited.}

}

ELSE for each newly incoming input , do x

PART 2. {Find as defined in (2.9).
1 (t)

arg max (),j

j c
J

≤ ≤
= xF

IF Con J− ≠ yw ,

{ set and generate a new fuzzy rule, with (1) () 1c t c t+ = +

23

(1)c t+ =m x , () ()(1)
1 1 1, ,

ln lnc t J
diag

F Fχ+

⎛ ⎞− ⎜ ⎟=
⎜ ⎟
⎝ ⎠

D "
J

 and

, where (1)Con c t− + = yw χ decides the overlap degree between two

clusters. In addition, after decomposition, we have , new i im x− =

ln()J
new i Fσ χ− = − × , 1, ,i M= " . Do the following fuzzy

measure for each input variable i:

{ 1(,) max (,), (,)
ij k new i new i ij ijDegree i t E m mµ σ µ σ≤ ≤ − −⎡ ⎤≡ ⎣ ⎦

, where E(‧) is defined in (2.14).

IF (,) ()Degree i t tρ≤

THEN adopt this new membership function, and set

1i ik k= + , where is the number of partitions oik f

the ith input variable.

ELSE merge the new membership function with closest one

2
new i closest

new i closest
m mm m −

−

+
= = ,

2
σ σσ σ −

−
+

= = new i closest
new i closest .

} } ELSE

{If ()J
inF F t≤

{generate a new fuzzy rule with (1) ,c t+ =m x

() ()(1)
1 1 1, ,

ln lnc t J J
diag

F Fχ+

⎛− ⎜=
⎜ ⎟
⎝ ⎠

D "
⎞
⎟ , and the respective consequent

weight (1)Con a t− + = yw . In addition, we also need to do the

fuzzy measure for each input variable i. } } }

24

In the above algorithm, initσ is a prespecified constant, is the rule number

at time t,

()c t

χ decides the overlap degree between two clusters, and the threshold inF

determines the number of rules generated. For a higher value of inF , more rules are

generated and, in general, a higher accuracy is achieved. The value ()tρ is a scalar

similarity criterion, which is monotonically decreasing such that higher similarity

between two fuzzy sets is allowed in the initial stage of learning. The pre-specified

values are given heuristically. In general, 35.0)(=tF , 05.0=β , 5.0=initσ , χ =2.

In addition, after we determine the precondition part of fuzzy rule, we also need to

properly assign the consequence part of fuzzy rule. Here we define two output nodes

for doing two-cluster recognition. If output node 1 obtains higher exciting value, we

know this input-output pattern belongs to class 1. Hence, initially, we should assign

the proper weight for the consequence part of fuzzy rule. The above

procedure gives us means () and variances (

1Con−w

ijm 2
ijσ) in (2.9). Another parameter in

(2.7) that needs concern is the weight dj associated with each . We shall see later

in Learning Phase 2 how we can use the results from the SVM method to determine

these weights.

(4)
ja

Learning Phase 2 - Calculating the parameters of SVFNN

Through learning phase (1), the initial structure of SVFNN is established and we

can then use SVM [34], [35] to find the optimal parameters of SVFNN based on the

proposed fuzzy kernels. The dual quadratic optimization of SVM [36] is solved in

order to obtain an optimal hyperplane for any linear or nonlinear space:

25

 maximize () ()1 ,
2

L y y Kα α α α= −∑ ∑ x x
JG v v

i i j i j i j
i=1 i, j=1

subject to 0 , 1, 2, ,C i v,α≤ ≤ = "i and , (3.9) 0
i=1

yα =∑
v

i i

where is the fuzzy kernel in (2.17) and C is a user-specified positive

parameter to control the tradeoff between complexity of the SVM and the number of

nonseparable points. This quadratic optimization problem can be solved and a

solution can be obtained, where

(,K x xi j)

)(0 0 0
0 1 2, ,, nsvα α α α=
JG

0
iα are Lagrange

coefficients, and nsv is the number of support vectors. The corresponding support

vectors can be obtained, and the constant

(threshold) d

[, , ,]i1 2sv = sx , sx , sx sx" " nsv

0 in (2.7) is

 () (* *
0 0 0

1 (1) (1)
2

d w x w x⎡)= ⋅ + ⋅ −⎣ 0
1

nsv

i i i
i

w y xα
=

=∑⎤⎦ with , (3.10)

where nsv is the number of fuzzy rules (support vectors); the support vector x*(1)

belongs to the first class and support vector x*(-1) belongs to the second class. Hence,

the fuzzy rules of SVFNN are reconstructed by using the result of the SVM learning

with fuzzy kernels. The means and variances of the membership functions can be

calculated by the values of support vector j j=m sx , j=1, 2, …, nsv, in (2.5) and (2.6)

and the variances of the multidimensional membership function of the cluster that the

support vector belongs to, respectively. The coefficients dj in (2.7) corresponding to

j j=m sx can be calculated by d y α=j j j . In this phase, the number of fuzzy rules

can be increased or decreased. The adaptive fuzzy kernel is advantageous to both the

SVM and the FNN. The use of variable-width fuzzy kernels makes the SVM more

efficient in terms of the number of required support vectors, which are corresponding

to the fuzzy rules in SVFNN.

26

Learning Phase 3 – Removing irrelevant fuzzy rules

In this phase, we propose a method for reducing the number of fuzzy rules

learning in Phases 1 and 2 by removing some irrelevant fuzzy rules and retuning the

consequent parameters of the remaining fuzzy rules under the condition that the

classification accuracy of SVFNN is kept almost the same. Several methods including

orthogonal least squares (OLS) method and singular value decomposition QR

(SVD-QR) had been proposed to select important fuzzy rules from a given rule base

[37]-[39]. In [37] the SVD-QR algorithm select a set of independent fuzzy basis

function that minimize the residual error in a least squares sense. In [38], an

orthogonal least-squares method tries to minimize the fitting error according to the

error reduction ratio rather than simplify the model structure [39]. The proposed

method reduces the number of fuzzy rules by minimizing the distance measure

between original fuzzy rules and reduced fuzzy rules without losing the generalization

performance. To achieve this goal, we rewrite (2.8) as

2

2

()

(4) (4)
0

1 1 1

i ij

ij

x m
MN N

j j j
j j i

O d a d d e σ

−
−

= = =

= × + = +∑ ∑ ∏ 0d , (3.11)

where N is the number of fuzzy rules after Learning phases 1 and 2. Now we try to

approximate it by the expansion of a reduced set :

2Re

2Re

()

Re(4) Re(4)
0 0

1 1 1

i iq
z z

iq

x m
R R M

q q q
q q i

O a d e dσβ β

−
−

= = =

= × + = +∑ ∑ ∏ and

2

Re

Re

2

()

Re(4)

1

()
i

iq

iqx m
M

q
i

a e σ

−
−

=

=∏x (3.12)

where Rz is the number of reducing fuzzy rules with N > Rz, qβ is the consequent

parameters of the remaining fuzzy rules, and and Re
iqm Re

iqσ are the mean and

variance of reducing fuzzy rules. To this end, one can minimize [40]

27

2(4) Re(4) (4) Re(4) Re (4) Re

, 1 , 1 1 1

() () 2 (
z zR RN N

j q j q j q j q j q j q
j q j q j q

O O d d a a d aβ β β
= = = =

− = × × + × × − × × ×∑ ∑ ∑∑m m)m , (3.13)

where . Evidently, the problem of finding reduced fuzzy

rules consists of two parts: one is to determine the reduced fuzzy rules and the other is

to compute the expansion coefficients

Re Re Re Re
1 2[, , ,]T

q q q Mqm m m=m "

iβ . This problem can be solved by choosing

the more important Rz fuzzy rules from the old N fuzzy rules. By adopting the

sequential optimization approach in the reduced support vector method in [41], the

approximation in (3.4) can be achieved by computing a whole sequence of reduced

set approximations

Re(4) Re(4)

1

r

r q
q

O β
=

= ×∑ qa , (3.14)

for r=1, 2, …, RZ. Then, the mean and variance parameters, and Re
qm Re

qσ , in

the expansion of the reduced fuzzy-rule set in (3.4) can be obtained by the following

iterative optimization rule [41] :

(4) Re

1Re
1

(4) Re

1

()

()

N

j j q
j

q N

j j q
j

d a

d a

=
+

=

× ×
=

×

∑

∑

m m
m

m

j

. (3.15)

According to (3.7), we can find the parameters, and Re
qm Re

qσ , corresponding

to the first most important fuzzy rule and then remove this rule from the original

fuzzy rule set represented by mj, j=1, 2, …, N and put (add) this rule into the reduced

fuzzy rule set. Then the procedure for obtaining the reduced rules is repeated. The

optimal coefficients , 1, 2, ,q q ,zRβ = " are then computed to approximate

 by [41], and can be obtained as (4)

1

N

j
j

O d
=

= ×∑ ja aRe(4) Re

1

zR

q q
q

O β
=

= ×∑

28

 , (3.16) 1
1 2[,,]

z z z zR R R R Nβ β β β −
× ×= = ×K K ×Θ

z zR Ra m

zR Nm

where

Re(4) Re Re(4) Re Re(4) Re
1 1 1 2 1

Re(4) Re Re(4) Re
2 1 2 2

Re(4) Re
1

Re(4) Re Re(4) Re Re(4) Re
1 1

() () ()

() ()
()

() () ()

z

z z

z z

z z z

R

R R
R R

R R R

a a a

a a
a

a a

×
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

m m m

m m
K

m

m m

"

% #
% %

"

 (3.17)

and

Re(4) Re(4) Re(4)
1 1 1 2 1

Re(4) Re(4)
2 1 2 2

Re(4)
1

Re(4) Re(4) Re(4)
1 1

() () ()

() ()
()

() () ()

x

z

z

z z

R

R N
R N

R R N

a a a

a a
a

a a a

×
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

m m m

m m
K

m

m m

"

% #
% %

"

 (3.18)

and

1 2[, , ,]Nd d dΘ = " . (3.19)

The whole learning scheme is iterated until the new rules are sufficiently sparse.

3.3 Experimental Results

The classification performance of the proposed SVFNN is evaluated on five

well-known benchmark datasets. These five datasets can be obtained from the UCI

repository of machine learning databases [42] and the Statlog collection [43] and

IJCNN challenge 2001 [44], [45], respectively.

A. Data and Implementation

From the UCI Repository, we choose one dataset: Iris dataset. From Statlog

29

collection we choose three datasets: Vehicle, Dna and Satimage datasets. The problem

Ijcnn1 is from the first problem of IJCNN challenge 2001. These five datasets will be

used to verify the effectiveness of the proposed SVFNN classifier. The first dataset

(Iris dataset) is originally a collection of 150 samples equally distributed among three

classes of the Iris plant namely Setosa, Verginica, and Versicolor. Each sample is

represented by four features (septal length, septal width, petal length, and petal width)

and the corresponding class label. The second dataset (Vehicle dataset) consists of 846

samples belonging to 4 classes. Each sample is represented by 18 input features. The

third dataset (Dna dataset) consists of 3186 feature vectors in which 2000 samples are

used for training and 1186 samples are used for testing. Each sample consists of 180

input attributes. The data are classified into three physical classes. All Dna examples

are taken from Genbank 64.1. The four dataset (Satimage dataset) is generated from

Landsat Multispectral Scanner image data. In this dataset, 4435 samples are used for

training and 2000 samples are used for testing. The data are classified into six physical

classes. Each sample consists of 36 input attributes. The five dataset (Ijcnn1 dataset)

consists of 22 feature vectors in which 49990 samples are used for training and 45495

samples are used for testing. Each sample consists of 22 input attributes. The data are

classified into two physical classes. The computational experiments were done on a

Pentium III-1000 with 1024MB RAM using the Linux operation system.

For each problem, we estimate the generalized accuracy using different cost

parameters C=[212, 211, 210, …, 2-2] in (3.1). We apply 2-fold cross-validation for 100

times on the whole training data in Dna, Satimage and Ijcnn1, and then average all the

results. We choose the cost parameter C that results in the best average

cross-validation rate for SVM training to predict the test set. Because Iris and Vehicle

datasets don’t contain testing data explicitly, we divide the whole data in Iris and

30

Vehicle datasets into two halves, for training and testing datasets, respectively.

Similarly, we use the above method to experiment. Notice that we scale all training

and testing data to be in [-1, 1].

B. Experimental Results

Tables 3.1 to 3.5 present the classification accuracy rates and the number of used

fuzzy rules (i.e., support vectors) in the SVFNN on Iris, Vehicle, Dna, Satimage and

Ijcnn1 datasets, respectively. The criterion of determining the number of reduced

fuzzy rules is the difference of the accuracy values before and after reducing one

fuzzy rule. If the difference is larger than 0.5%, meaning that some important support

vector has been removed, then we stop the rule reduction. In Table 3.1, the SVFNN is

verified by using Iris dataset, where the constant n in the symbol SVFNN-n means the

number of the learned fuzzy rules. The SVFNN uses fourteen fuzzy rules and

achieves an error rate of 2.6% on the training data and an error rate of 4% on the

testing data. When the number of fuzzy rules is reduced to seven, its error rate

increased to 5.3%. When the number of fuzzy rules is reduced to four, its error rate is

increased to 13.3%. Continuously decreasing the number of fuzzy rules will keep the

error rate increasing. From Table 3.2 to 3.5, we have the similar experimental results

as those in Table 3.1.

These experimental results show that the proposed SVFNN is good at reducing

the number of fuzzy rules and maintaining the good generalization ability. Moreover,

we also refer to some recent other classification performance include support vector

machine and reduced support vectors methods [46]-[48]. The performance

comparisons among the existing fuzzy neural network classifiers [49], [50], the

RBF-kernel-based SVM (without support vector reduction) [46], reduced support

vector machine (RSVM) [48] and the proposed SVFNN are made in Table 3.6.

31

TABLE 3.1 Experimental results of SVFNN classification on the Iris dataset.

Training process Testing process SVFNN-n

(SVFNN with n

fuzzy rules)
Error rate C

Number of

misclassification
Error rate

SVFNN-14 2.6% 212 3 4%

SVFNN -11 2.6% 212 3 4%

SVFNN -9 2.6% 212 3 4%

SVFNN -7 4% 212 4 5.3%

SVFNN -4 17.3% 212 10 13.3%

1. Input dimension is 4.

2. The number of training data is 75.

3. The number of testing data is 75.

TABLE 3.2 Experimental results of SVFNN classification on the Vehicle dataset.

Training process Testing porcess SVFNN-n

(SVFNN with n

fuzzy rules)
Error rate C

Number of

misclassification
Error rate

SVFNN-321 13.1% 211 60 14.2%

SVFNN-221 13.1% 211 60 14.2%

SVFNN-171 13.1% 211 60 14.2%

SVFNN-125 14.9% 211 61 14.5%

SVFNN-115 29.6% 211 113 26.7%

1. Input dimension is 18.

2. The number of training data is 423.

3. The number of testing data is 423.

32

TABLE 3.3 Experimental results of SVFNN classification on the Dna dataset.

Training process Testing process SVFNN-n

(SVFNN with n

fuzzy rules)
Error Rate C

Number of

misclassification
Error rate

SVFNN-904 6.2% 24 64 5.4%

SVFNN-704 6.2% 24 64 5.4%

SVFNN-504 6.2% 24 64 5.4%

SVFNN-334 6.4% 24 69 5.8%

SVFNN-300 9.8% 24 139 11.7%

1. Input dimension is 180.

2. The number of training data is 2000.

3. The number of testing data is 1186.

TABLE 3.4 Experimental results of SVFNN classification on the Satimage dataset.

Training process Testing process SVFNN-n

(SVFNN with n

fuzzy rules)
Error Rate C

Number of

misclassification
Error Rate

SVFNN-1886 13.1% 26 176 8.8%

SVFNN-1586 13.1% 26 176 8.8%

SVFNN-1286 13.1% 26 176 8.8%

SVFNN-986 13.1% 26 176 8.8%

SVFNN-899 13.7% 26 184 9.2%

SVFNN-786 19.8% 26 316 15.8%

1. Input dimension is 36.

2. The number of training data is 4435.

3. The number of testing data is 2000.

33

TABLE 3.5 Experimental results of SVFNN classification on the Ijnn1 dataset.

Training process Testing porcess SVFNN-n

(SVFNN with n

fuzzy rules)
Error rate C

Number of

misclassification
Error rate

SVFNN-1945 4.2% 212 1955 4.3%

SVFNN-1545 4.2% 212 1955 4.3%

SVFNN-1245 4.2% 212 1955 4.3%

SVFNN-1021 4.3% 212 2047 4.5%

SVFNN-977 14.5% 212 7416 16.3%

1. Input dimension is 22.

2. The number of training data is 49990.

3. The number of testing data is 45495.

TABLE 3.6 Classification error rate comparisons among FNN, RBF-kernel-based

SVM, RSVM and SVFNN classifiers, where NA means “not available”.

FNN [49, 50]
RBF-kernel-based

SVM [46]
RSVM [48] SVFNN

Datasets Number

of fuzzy

rules

Error rate

Number of

support

vectors

Error rate

Number of

support

vectors

Error rate

Number

of Fuzzy

rules

Error rate

Iris NA 4.3% 16 3.3% NA NA 7 5.3%

Vehicle NA 29.9% 343 13.4% NA NA 125 14.5%

Dna NA 16.4% 1152 4.2% 372 7.7% 334 5.8%

Satimage NA 8.9% 2170 8.3% 1826 10.1% 889 9.2%

Ijcnn1 NA NA 4555 1.2% 200 8.4% 1021 4.5%

34

3.4 Discussions

These experimental results show that the proposed SVFNN is good at reducing

the number of fuzzy rules and maintaining the good generalization ability. These

results indicate that the SVFNN classifier produces lower testing error rates as

compared to FNN classifiers [49], [50], and uses less support vectors as compared to

the regular SVM using fixed-width RBF kernels [46]. As compared to RSVM [48],

the proposed SVFNN can not only achieve high classification accuracy, but also

reduce the number of support vectors quit well. It is noticed that although the SVFNN

uses more support vectors in the Ijcnn1 dataset than the RSVM, it maintains much

higher classification accuracy than the RSVM. In summary, the proposed SVFNN

classifier exhibits better generalization ability on the testing data and use much

smaller number of fuzzy rules.

35

CHAPTER 4

SUPPORT-VECTOR BASED FUZZY NEURAL

NETWORK FOR FUNCTION APPROXIMATION

In this chapter, a novel support-vector based fuzzy neural network (SVFNN)

which integrates the statistical support vector learning method into FNN and exploits

the knowledge representation power and learning ability of the FNN to determine the

kernel functions of the SVR adaptively is proposed. The SVFNN combine the

capability of good robustness against noise and the efficient human-like reasoning of

FNN in handling uncertainty information. The use of the proposed fuzzy kernels

provides the SVR with adaptive local representation power such that the number of

support vectors can be further reduced. The proposed learning algorithm consists of

three learning phases to construct and train the SVFNN. In the first phase, the fuzzy

rules and membership functions are automatically determined based on the fuzzy

clustering method. In the second phase, the parameters of FNN are calculated by the

SVR with the proposed adaptive fuzzy kernel function for function approximation. In

the third phase, the relevant fuzzy rules are selected by the proposed fuzzy rule

reduction method. The proposed SVFNN method can automatically generate the

fuzzy rules and achieve good approximation performance with drastically reduced

number of fuzzy rule and robustness.

4.1 Support Vector Regression Algorithm

In ε-SV regression, the goal is to find a function f(x) that has at most ε deviation

36

from the actually obtained targets yi for all the training data, and at the same time is as

flat as possible. In other words, we do not care about errors as long as they are less

than ε, but will not accept any deviation larger than this.

For this reasons, the linear regression function is considered first as follows:

f(x)=wTx+b (4.1)

Where w is the weight vector and b is a bias. The error of approximation is used

instead of the margin between an optimal separating hyperplane and support vectors.

Vapnik introduced a general type of loss function, the linear loss function with

ε-insensitivity zone:

0 (
()

() otherwise.
if y - f

y f
y - fε

) ,ε
ε

⎧ ≤⎪− = ⎨ −⎪⎩

x
x

x
 (4.2)

The loss is equal to zero if the difference between the predicted f(x) and the

measured value is less than ε. The ε-insensitivity loss function defines an ε tube. If the

predicted value is within the tube, the loss is zero. For all other predicted points

outside the tube, the loss is equal to the magnitude of the difference between the

predicted value and the radius ε of the tube. Figure 4.1 shows the soft margin loss

setting for a regression problem.

yi

ζ

ε

ε

ζ*

 yi

Fig. 4.1 the soft margin loss setting for a regression problem

37

From Fig. 4.1, the slack variables *,i iξ ξ cope with the large outliers in the

regression problem. In formulating support vector algorithm for regression, the

objective is to minimize the empirical risk and ||w||2 simultaneously. The primal

problem can therefore be defined as follows:

2 *

1

*

*

1minimize ()
2

()
subject to ()

, 0

l

i i
i

i i

i i

i i

C

y f
f y

ξ ξ

ε ξ
ε ξ

ξ ξ

=

+ +

− ≤ +⎧
⎪ − ≤ +⎨
⎪ ≥⎩

∑w

x
x

 (4.3)

The constant C>0 determines the trade-off between the flatness of f(x) and the

amount up to which deviations larger than ε are tolerated. The optimization problem

can be converted to the dual optimization problem, which can be formulated as

follows:

maximize

()* * * * *1, () () ()(
2

T
i i i i jL yα α ε α α α α α α α α= − + + − − − −∑ ∑ ∑ x x

v v v

i i i
i=1 i=1 i, j=1

) i jj

subject to *
i i

i=1 i=1

α α=∑ ∑
v v

, (4.4) *0 , 0 , 1, 2,i C C iα α≤ ≤ ≤ ≤ = "i , v

The kernel method can be added to above optimization to solve the nonlinear problem,

too. The parameter ε in the ε-insensitive function and the regular constant C are

powerful means for regularization and adaptation to the noise in training data. Both

parameters control the network complexity and the generalization capability of SVR.

In next section, we proposed the learning algorithm of SVFNN that combine the

capability of good robustness against noise and the efficient human-like reasoning of

FNN in handling uncertainty information. The SVFNN use the fuzzy kernels to

provide the SVR with adaptive local representation power such that the number of

support vectors can be further reduced.

38

4.2 Learning Algorithm of SVFNN

 The proposed learning algorithm of SVFNN consists of three phases. In the

first phase, the initial fuzzy rule (cluster) and membership of network structure are

automatically established based on the fuzzy clustering method. The input space

partitioning determines the initial fuzzy rules, which is used to determine the fuzzy

kernels. In the second phase, the means of membership functions and the connecting

weights between layer 3 and layer 4 of SVFNN (see Fig. 2.1) are optimized by using

the result of the support vector learning method with the fuzzy kernels function

approximation. In the third phase, unnecessary fuzzy rules are recognized and

eliminated and the relevant fuzzy rules are determined.

Learning Phase 1 – Establishing initial fuzzy rules

The first phase establishes the initial fuzzy rules. The input space partitioning

determines the number of fuzzy rules extracted from the training set and also the

number of fuzzy sets. We use the centers and widths of the clusters to represent the

rules. To determine the cluster to which a point belongs, we consider the value of the

firing strength for the given cluster. The highest value of the firing strength

determines the cluster to which the point belongs. The input vector will combine

the corresponding output value y

ix

i in the training set S={(x1, y1), (x2, y2), …, (xv, yv)}

to input the learning phase 1. For generating a compact structure, the Cartesian

product-space of the input and output is applied to the clustering algorithm [60]. The

training samples are partitioned into characteristic regions where the system behaviors

are approximated. The input data set is formed by combining the input vector x=[x1,

x2, x3, …, xM]T and the corresponding output value yi. Based on the clustering-based

approach to construct initial fuzzy rules of FNN, first the input data is partitioned. For

39

each incoming pattern b,

 b=[x;y]T. (4.5)

The whole algorithm of SVFNN for the generation of new fuzzy rules as well as

fuzzy sets in each input variable is as follows. Suppose no rules are existent initially.

IF b=[x;y] (1 is the first incoming input pattern THEN do)n + ×1

bPART 1. { Generate a new rule with center and width 1m =

1
1 1, ,
init init

diag
σ σ
⎛ ⎞

= ⎜
⎝ ⎠

D " ⎟

F z

. After decomposition, we have n

one-dimensional membership functions, with m1i=bi and σ1i=σ

init, i=1, …, n+1.

}

ELSE for each newly incoming input b=[x;y], do

PART 2. {Find as defined in (2.10).
1 (t)

arg max (),j

j c
J

≤ ≤
=

IF)(tFF in
J ≥

 do nothing

ELSE

{ set and generate a new fuzzy rule, with , (1) () 1c t c t+ = + (1)+ =c tm b

() ()(1)
1 1 1, ,

ln lnc t J
diag

F Fχ+

⎛ ⎞− ⎜
J

=
⎜
⎝ ⎠

D " ⎟
⎟

, where χ decides the overlap

degree between two clusters. In addition, after decomposition, we have

, − =new i im b ln()J
new i Fσ χ− = − × , 1, ,i M= " . Do the following fuzzy

measure for each input variable i:

{ 1(,) max (,), (,)
ij k new i new i ij ijDegree i t E m mµ σ µ σ≤ ≤ − −⎡ ⎤≡ ⎣ ⎦

40

, where E(‧) is defined in (2.14).

IF (,) ()Degree i t tρ≤

THEN adopt this new membership function, and set

1i ik k= + , where is the number of partitions oik f

the ith training pattern.

ELSE merge the new membership function with closest one

2
new i closest

new i closest
m mm m −

−

+
= = ,

2
σ σσ σ −

−
+

= = new i closest
new i closest .

} } }

In the above algorithm, initσ is a prespecified constant, is the rule number

at time t,

()c t

χ decides the overlap degree between two clusters, and the threshold inF

determines the number of the generated rules. For a higher value of inF , more rules

are generated and, in general, a higher accuracy is achieved. The value ()tρ is a

scalar similarity criterion, which is monotonically decreasing such that higher

similarity between two fuzzy sets is allowed in the initial stage of learning. The

pre-specified values are given heuristically. In addition, after we determine the

precondition part of fuzzy rule, we also need to properly assign the consequence part

of fuzzy rule. Hence, initially, we should assign the proper weight for the

consequence part of fuzzy rule. The above procedure gives us means () and

variances (

1Con−w

ijm

2
ijσ) in (2.12). Another parameter in (2.7) that needs concern is the weight

41

dj associated with each . It is presented in Learning Phase 2 to show how we can

use the results from the SVR method to determine these weights.

(4)
ja

Learning Phase 2 - Calculating the parameters of SVFNN

Through above method, the optimal parameters of SVFNN are trained by using

the ε-insensitivity loss function SVR [35] based on the fuzzy kernels [61]. The dual

quadratic optimization of SVR [36], [62] is solved in order to obtain an optimal

hyperplane for any linear or nonlinear space:

maximize () ()* * * * *1, () () ()()
2i i i i jL yα α ε α α α α α α α α= − + + − − − −∑ ∑ ∑ x x

v v v

i i i j
i=1 i=1 i, j=1

,K i j

 constraints subject to *
i i

i=1 i=1

α α=∑ ∑
v v

, . (4.6) *0 , 0 , 1, 2,i C C iα α≤ ≤ ≤ ≤ = "i , v

)where is the fuzzy kernel that is defined as (2.17), ε is a previously

chosen nonnegative number for ε-insensitive loss function and C is a user-specified

positive parameter to control the tradeoff between complexity of the SVR and the

number of nonseparable points. This quadratic optimization problem can be solved

and a solution

(,K x xi j

()1 2, ,, nsvα α α α=
JG

 and ()* * * *
1 2, ,, nsvα α α α=

JG
 can be

obtained, where iα and *
iα are Lagrange coefficients, and nsv is the number of

support vectors. The corresponding support vectors

 can be obtained, and the constant (threshold) d[, , ,i1 2sv = sx , sx , sx sx" "]nsv 0

in (2.7) is

 0 0
1

1 (())
v

T
i i

i

d y
v =

= −∑ x w with , (4.7) *
0

1

(
nsv

i i
i

α α
=

= −∑w) ix

where nsv is the number of fuzzy rules (support vectors). Hence, the fuzzy rules of

SVFNN are reconstructed by using the result of the SVR learning with fuzzy kernels.

42

The means and variances of the membership functions can be calculated by the values

of support vector j j=m sx , j=1, 2, …, nsv, in (2.6) and (2.7) and the variances of the

multidimensional membership function of the cluster that the support vector belongs

to, respectively. The coefficients dj in (2.8) corresponding to j j=m sx can be

calculated by *(j jd y)α α= −j j . In this phase, the number of fuzzy rules can be

increased or decreased. The adaptive fuzzy kernel is advantageous to both the SVR

and the FNN. The use of variable-width fuzzy kernels makes the SVR more efficient

in terms of the number of required support vectors, which are corresponding to the

fuzzy rules in SVFNN.

Learning Phase 3 – Removing irrelevant fuzzy rules

In this phase, the number of fuzzy rules learning in Phases 1 and 2 are reduced

by removing some irrelevant fuzzy rules. The method of reducing fuzzy rules

attempts to reduce the number of fuzzy rules by minimizing the distance measure

between original fuzzy rules and reduced fuzzy rules without losing the generalization

performance. The reducing method is the same as in Section 2 of Chapter 3

 4.3 Experimental Results

In this section we present some experimental results to demonstrate the

performance and capabilities of the proposed SVFNN. First, we apply the SVFNN to

four function approximation problems to examine its rule-reduction performance.

Then the robustness of SVFNN is evaluated by these functions with noise.

A. Setup

1) Functions for approximation:

The function approximation problems include one- and two- variable functions

43

which have been widely used in the literature [63]-[65]:

The fist function is a one-variable sinc function defined as

x
xxf)sin()()1(= with]10,10[−∈x . (4.8)

The second function is one-variable function defined as

 with 3/2)2()(xxf =]2,2[−∈x . (4.9)

The third function is a two-variable Gaussian function defined as

 with)}(2exp{),(22)3(yxyxf +−=]1,1[−∈x ,]1,1[−∈y . (4.10)

The fourth function, which exhibits a more complex structure, is defined as

2 2
(4)

2 2

sin(10)(,)
10

x yf x y
x y

+
=

+
 with]1,1[−∈x ,]1,1[−∈y . (4.11)

Plots of these four functions are shown in subplots (a) of Figs. 4.2-4.5.

(a)

44

(b)

Fig.4.2 (a) The desired output of the function show in (4.8). (b) The resulting
approximation by SVFNN.

(a)

45

(b)

Fig 4.3 (a) The desired output of the function show in (4.9) (b) The resulting
approximation by SVFNN.

(a)

46

(b)

Fig 4.4 (a) The desired output of the function show in (4.10). (b) The resulting
approximation by SVFNN.

(a)

47

(b)

Fig 4.5 (a) The desired output of the function show in (4.11). (b) The resulting

approximation by SVFNN.
2) Training and Testing data:

There are two sets of training data for each function, one is noiseless and the

other is noisy. In the first function, the noiseless training set has 50 points that are

generated by randomly selecting, where]10,10[−∈x . The testing set has 200 points

that are randomly generated by the same function in the same range. The training and

testing sets of the second function are generated by the same way, where .

In the third function, the 150 training examples are generated by randomly selecting,

where , . The testing set has 600 points that are randomly

generated by the same function in the same range. In the fourth function, The 150

training examples are generated by randomly selecting, where ,

. The testing set has 600 points that is randomly generated by the same

function in the same range. The noisy training sets are generated by adding

independent and identically distributed (i.i.d.) Gaussian noise, with zero mean and

0.25 standard deviation, to the original training sets.

]2,2[−∈x

]1,1[−∈x]1,1[−∈y

]1,1[−∈x

]1,1[−∈y

48

,25.0),(),()()(
l

jj
noise yxfyxf ε+= .4,,1 "=j (4.12)

Here)1,0(~Νlε , the zero mean unit variance Gaussian noise. It is noted that

the signal to noise ratio (SNR) is roughly equal to 4 (1/0.25=4).

3) experimental particular

The computational experiments were done on a Pentium III-1000 with 1024MB

RAM using the Microsoft window operation system. The simulations were conducted

in the Matlab environment. The root-mean-square-error (RMSE) is used to quantify

the performance of methods and it is defined as

∑
=

−=
v

i
ii vyy

1

2 /)ˆ(RMSE (4.13)

where yi is the desired output, is the system output, and v is the number of the

used training or testing data. The ε-insensitivity parameter and cost parameter C in

(4.6) are selected from the range of ε=[0.1, 0.01, 0.001, 0.0001] and C=[10

iŷ

-1, 100,

101, …, 105], respectively. For the SVFNN training, we choose the ε-insensitivity

parameter and cost parameter C that results in the best RMSE average to calculate the

testing RMSE. Similarly, the parameters of SVR for comparison are also selected by

using the same method, too.

B. Experimental Results

Tables 4.1 to 4.5 show the training and testing RMSEs and the number of used

fuzzy rules (i.e., support vectors) in the SVFNN on the approximation of the four

functions ((4.8) to (4.11)), respectively. The training and testing RMSEs can reach a

nice level by selecting a proper parameter set for {ε, C }. The criterion of

determining the number of reduced fuzzy rules is the difference of the accuracy

values before and after reducing one fuzzy rule. If the difference is larger than 0.2%,

49

meaning that some important support vector has been removed, then we stop the rule

reduction. In Table 4.1 (a), the SVFNN is verified by the one-variable sinc function

defined as (4.8), where the constant n in the symbol SVFNN-n means the number of

the learned fuzzy rules. It uses sixteen fuzzy rules and achieves a root mean square

error (RMSE) value of 0.0007 on the training data and an RMSE value of 0.0026 on

the testing data. When the number of fuzzy rules is reduced to twelve, its testing error

rate increased to 0.0029. When the number of fuzzy rules is reduced to eleven, its

testing error rate is increased to 0.01. Continuously decreasing the number of fuzzy

rules will keep the error rate increasing. Therefore, twelve fuzzy rules are used in this

case. From Tables 4.2 (a) to 4.4 (a), we have the similar experimental results as those

in Table 4.1 (a). Plots of these experimental results are shown in subplots (b) of Figs.

4.2-4.5. In Table 4.1 (b), the independent and identically distributed (i.i.d.) Gaussian

noise, with zero mean and 0.25 standard deviation, is added to the function for

approximation. It uses sixteen fuzzy rules and achieves a root mean square error

(RMSE) value of 0.0085 on the training data and an RMSE value of 0.042 on the

testing data. When the number of fuzzy rules is reduced to twelve, its testing error rate

is increased to 0.045. When the number of fuzzy rules is reduced to eleven, its testing

error rate is increased to 0.091. Therefore, twelve fuzzy rules are also used in this case.

From Table 4.2 (b) to 4.4 (b), we have the similar experimental results as those in

Table 4.1 (b) These experimental results show that the proposed SVFNN can properly

reduce the number of required fuzzy rules and maintain the robustness against noise.

The performance comparisons among the Adaptive-network-based fuzzy

inference system (ANFIS) [66], the robust neural network [67], the RBF-kernel-based

SVR (without support vector reduction) [68], and the proposed SVFNN are made in

Tables 4.5 and 4.6.

50

TABLE 4.1 (a) Experimental results of SVFNN on the first function using the training

data without noise. (b) Experimental results of SVFNN on the first

function using the training data with noise.

(a)

 Training process Testing process
SVFNN-n (SVFNN

with n fuzzy rules) C RMSE RMSE

SVFNN – 16 100 0.0007 0.0026

SVFNN – 14 100 0.0007 0.0026

SVFNN – 12 100 0.0007 0.0029

SVFNN – 11 100 0.001 0.01

1. The first function is
x

xxf)sin()()1(=]10,10[with −∈x .

2. The number of training data is 50.

3. The number of testing data is 200.

(b)

Training process Testing process

SVFNN-n (SVFNN

with n fuzzy rules) C RMSE RMSE

SVFNN – 16 100 0.0085 0.042

SVFNN – 14 100 0.0085 0.042

SVFNN – 12 100 0.0085 0.045

SVFNN – 11 100 0.031 0.091

1. The first function is
x

xxf)sin()()1(=]10,10[with −∈x .

2. The number of training data is 50.

3. The number of testing data is 200.

51

TABLE 4.2 (a) Experimental results of SVFNN on the second function using the

training data without noise. (b) Experimental results of SVFNN on the

second function using the training data with noise.

(a)

Training process Testing porcess
SVFNN-n (SVFNN

with n fuzzy rules) C RMSE RMSE

SVFNN – 19 100 0.0009 0.0056

SVFNN – 16 100 0.0009 0.0056

SVFNN – 12 100 0.0009 0.0060

SVFNN - 11 100 0.0015 0.0092

1. The second function is with . 3/2)2()(xxf =]2,2[−∈x

2. The number of training data is 50.

3. The number of testing data is 200.

(b)

Training process Testing porcess

SVFNN-n (SVFNN

with n fuzzy rules) C RMSE RMSE

SVFNN – 25 100 0.001 0.078

SVFNN – 20 100 0.001 0.078

SVFNN – 15 100 0.001 0.081

SVFNN - 14 100 0.0057 0.139

1. The second function is with . 3/2)2()(xxf =]2,2[−∈x

2. The number of training data is 50.

3. The number of testing data is 200.

52

TABLE 4.3 (a) Experimental results of SVFNN on the third function using the

training data without noise. (b) Experimental results of SVFNN on the

third function using the training data with noise.

(a)

Training process Testing process
SVFNN-n (SVFNN

with n fuzzy rules) C RMSE RMSE

SVFNN- 33 1000 0.0018 0.0037

SVFNN- 24 1000 0.0018 0.0037

SVFNN- 17 1000 0.0018 0.0040

SVFNN- 16 1000 0.002 0.0089

1. The third function is with
, .

)}(2exp{),(22)3(yxyxf +−=

]1,1[−∈x]1,1[−∈y
2. The number of training data is 150.

3. The number of testing data is 600.

(b)

 Training process Testing process
SVFNN-n (SVFNN

with n fuzzy rules) C RMSE RMSE

SVFNN- 32 1000 0.018 0.051

SVFNN- 22 1000 0.018 0.051

SVFNN- 17 1000 0.018 0.054

SVFNN- 16 1000 0.045 0.121

1. The third function is with
, .

)}(2exp{),(22)3(yxyxf +−=

]1,1[−∈x]1,1[−∈y
2. The number of training data is 150.

3. The number of testing data is 600.

53

TABLE 4.4 (a) Experimental results of SVFNN on the fourth function using the

training data without noise. (b) Experimental results of SVFNN on the

fourth function using the training data with noise.

(a)

 Training process Testing process
SVFNN-n (SVFNN

with n fuzzy rules) C RMES RMES

SVFNN – 40 100 0.0059 0.0098

SVFNN – 30 100 0.0059 0.0098

SVFNN – 21 100 0.0063 0.01

SVFNN – 20 100 0.0099 0.032

1. The fourth function is 2 2
(4)

2 2

sin(10)(,)
10

x yf x y
x y

+
=

+
 with ,

[1, 1]x∈ −

[1, 1]y∈ −

2. The number of training data is 150.

3. The number of testing data is 600.

(b)

 Training process Testing process
SVFNN-n (SVFNN

with n fuzzy rules) C RMES RMES

SVFNN – 45 100 0.01 0.071

SVFNN – 34 100 0.01 0.071

SVFNN – 22 100 0.01 0.073

SVFNN – 20 100 0.058 0.152

1. The fourth function is 2 2
(4)

2 2

sin(10)(,)
10

x yf x y
x y

+
=

+
 with ,

[1, 1]x∈ −

[1, 1]y∈ −

2. The number of training data is 150.

3. The number of testing data is 600.

54

TABLE 4.5 Comparisons RMSE using the training data without noise.

FUNCTION ANFIS [66] Robust NN [67]
RBF-kernel-based SVR

[68]
SVFNN

Number of

fuzzy rules
RMSE

Number of

neurons
RMSE

Number of

support vectors
RMSE

Number of

Fuzzy rules
RMSE

)()1(xf 11 0.0071 12 0.0011 28 0.0018 12 0.0029

)()2(xf 11 0.0067 12 0.0047 50 0.0054 12 0.006

),()3(yxf 9 0.0039 22 0.0035 122 0.0018 17 0.004

),()4(yxf 16 0.015 35 0.0057 145 0.0092 21 0.01

TABLE 4.6 Comparisons RMSE using the training data with noise.

FUNCTION ANFIS [66] Robust NN [67] RBF-kernel-based SVR [68] SVFNN

Number of

fuzzy rules
RMSE

Number of

neurons
RMSE

Number of

support vectors
RMSE

Number of

Fuzzy rules
RMSE

(1) ()noisef x 15 0.726 12 0.053 49 0.035 12 0.045

(2) ()noisef x 12 0.5 12 0.07 49 0.07 15 0.081

(3) (,)noisef x y 9 0.305 22 0.056 139 0.04 17 0.054

(4) (,)noisef x y 16 1.76 30 0.09 150 0.062 22 0.073

55

4.4 Discussions

These results indicate that the SVFNN maintains the function approximation

accuracy and uses less support vectors as compared to the regular SVR using

fixed-width RBF kernels. The computational cost of the proposed SVFNN is also less

than the regular SVR in the testing stage. In addition, according to Table 4.6 the

testing results of SVFNN trained by the noisy data are close to results of SVFNN

trained by the data without noise. It demonstrates that the proposed SVFNN have

better robustness compared to ANFIS and the robust neural network, although the

SVFNN uses little more rules compared with the ANFIS. In summary, the proposed

SVFNN exhibits better generalization ability, maintains more robustness and uses less

fuzzy rules.

56

CHAPTER 5

CONCLUSIONS

In this dissertation we proposed a support-vector-based fuzzy neural networks

(SVFNNs) for solving more complex classification and function approximation

problems. SVFNNs combines the superior classification power of support vector

machine (SVM) in high dimensional data spaces and the efficient human-like

reasoning of FNN in handling uncertainty information. The SVFNNs is the realization

of a new idea for the adaptive kernel functions used in the SVM. The use of the

proposed fuzzy kernels provides the SVM with adaptive local representation power,

and thus brings the advantages of FNN (such as adaptive learning and economic

network structure) into the SVM directly. SVFNNs combine the capability of good

robustness against noise and global generalization of support vector learning and the

efficient human-like reasoning of FNN in handling uncertainty information. A novel

adaptive fuzzy kernel function is also proposed to bring the advantages of FNNs to

the SVR directly and the use of the proposed fuzzy kernels provides the SVR with

adaptive local representation power. The major advantages of the proposed SVFNNs

are as follows:

(1) The proposed SVFNNs can automatically generate fuzzy rules, and improve the

accuracy and learning speed of classification.

(2) It combined the optimal classification ability of SVM and the human-like

reasoning of fuzzy systems. It improved the classification ability by giving SVM

with adaptive fuzzy kernels and increased the speed of classification by reduced

57

fuzzy rules.

(3) The fuzzy kernels using the variable-width fuzzy membership functions can make

the SVM more efficient in terms of the number of required support vectors, and

also make the learned FNN more understandable to human.

(4) The ability of the structural risk minimization induction principle, which forms

the basis for the SVM method to minimize the expected risk, gives better

generalization ability to the FNN classification.

(5) The proposed SVFNN can automatically generate fuzzy rules and improve the

accuracy of function approximation.

(6) The combination of the robust regression ability of SVR and the human-like

reasoning of fuzzy systems improves the robust regression ability of FNN by

using SVR training and increases the speed of execution by reduced fuzzy rules.

In the future work, we will try to develop a mechanism to automatically select

the appropriate initial values of the parameters used in the first phase training and the

penalty parameter in the second phase training. We will also apply the proposed

method to deal with complex and huge classification problem and more complex and

noisy functions.

58

REFERENCES

[1] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, New

York: Wiley, 2001.

[2] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Cliffs, NJ:

Prentice-Hall, 1992.

[3] M. Y. Chen and D. A. Linkens, “Rule-base self-generation and simplification for

data-driven fuzzy models,” Fuzzy Set and Syst., Vol. 142, pp 243-265, March

2004.

[4] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Trans.

Syst. Man. Cybern., Vol. 23, pp. 665-685, May 1993.

[5] K. Tanaka, M. Sano, and H. Wantanabe, “Modeling and control of carbon

monoxide concentration using a neuro-fuzzy technique,” IEEE Trans. Fuzzy Syst.,

Vol. 3, pp. 271-279, Aug. 1995.

[6] L. Y. Cai and H. K. Kwan, “Fuzzy classifications using fuzzy inference networks,”

IEEE Trans. Syst., Man, Cybern. Pt B, Vol. 28, pp. 334-347, June. 1998.

[7] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms,

New York: Plenum, 1981.

[8] J. C. Bezdek, S. K. Chuah, and D. Leep, “Generalized K-nearest neighbor rules,”

Fuzzy Sets Syst., Vol. 18, pp. 237-256, Apr. 1986.

[9] J. S. Wang and C. S. G. Lee, “Self-Adaptive Neuro-Fuzzy Inference Systems for

Classification Applications,” IEEE Trans. Fuzzy Syst., Vol. 10, pp. 790-802, Dec.

2002.

[10] L. I. Kuncheva, “How good are fuzzy if-then classifiers?,” IEEE Trans. Syst.,

59

Man, Cybern. Pt B, Vol. 30, pp. 501-509, Aug. 2000.

[11] H. Ishibuchi and T. Nakashima “Effect of rule weights in fuzzy rule-based

classification systems,” IEEE Trans. Fuzzy Syst., Vol. 9, pp. 506-515, Aug. 2001.

[12] W. Y. Wang, T. T. Lee, C. L. Liu, and C. H. Wang, “Function approximation

using fuzzy neural networks with robust learning algorithm,” IEEE Trans. Syst.,

Man, Cybern. Pt B, Vol. 27, pp. 740-747, Aug. 1997.

[13] C. C. Chuang, S. F. Su, and S. S. Chen, “Robust TSK fuzzy modeling for

function approximation with outliers,” IEEE Trans. Fuzzy Syst., Vol. 9, pp.

810-821, Dec. 2001.

[14] H. Pomares, I. Rojas, J. Ortega, J. Gonzalez, and A. Prieto, “Systematic approach

to a self-generating fuzzy rule-table for function approximation,” IEEE Trans.

Syst., Man, Cybern. Pt B, Vol. 30, pp. 431-447, June 2000.

[15] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy

rules by generalized dynamic fuzzy neural networks,” IEEE Trans. Fuzzy Syst.,

Vol. 9, pp. 578-594, Aug. 2001.

[16] B. Gabrys and A. Bargiela “General fuzzy min-max neural network for clustering

and classification,” IEEE Trans. Neural Networks, Vol. 11, pp. 769-783, May

2000.

[17] K. Nozaki, H. Ishibuchi, and H. Tanaka, “Adaptive fuzzy rule-based

classification system” IEEE Trans. Fuzzy Syst., Vol. 4, pp. 238-250, Aug. 1996.

[18] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, Vol. 20,

pp. 273-297, 1995.

[19] S. Sohn and C. H. Dagli, “Advantages of using fuzzy class memberships in

self-organizing map and support vector machines,” Proc. International Joint

Conference on Neural Networks (IJCNN’01), Vol. 3, pp. 1886-1890, July 2001.

60

[20] C. F. Lin and S. D. Wang, “Fuzzy support vector machines,” IEEE Trans. Neural

Networks, Vol. 13, pp. 464-471, March 2002.

[21] T. Inoue and S. Abe, “Fuzzy support vector machines for pattern classification,”

Proc. International Joint Conference on Neural Networks (IJCNN’01), Vol. 2, pp.

15-19, July 2001.

[22] J. T. Jeng and T. T. Lee, “Support vector machines for the fuzzy neural

networks,” IEEE International Conference on Systems, Man, and Cybernetics

(SMC’99), Vol. 6, pp. 12-15, Oct. 1999.

[23] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference

network and its applications,” IEEE Trans. Fuzzy Syst., Vol. 6, pp. 12-32, Feb.

1998.

[24] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy cluster analysis:

methods for classification, data analysis and image recognition, New York: Wiley,

1999.

[25] C. T. Lin and C. S. G. Lee “Neural-network-based fuzzy logic control and

decision system,” IEEE Trans. Comput., Vol. 40, pp. 1320-1336, Dec. 1991.

[26] J. Platt, “A resource allocating network for function interpolation,” Neural

Computat., Vol. 3, pp. 213-225, 1991.

[27] J. Nie and D. A. Linkens, “ Learning control using fuzzified self-organizing

radial basis function network,” IEEE Trans. Fuzzy Syst., Vol. 40, pp. 280-287, Nov.

1993.

[28] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning for

neural-network-based fuzzy logic control systems,” IEEE Trans. Fuzzy Syst., Vol.

2, pp. 46-63, Feb. 1994.

[29] A. Papoulis, Probability Random Variables and Stochastic Processes, McGraw

61

Hill, Inc., 1984.

[30] J. Mercer, “Functions of positive and negative type and their connection with the

theory of integral equations,” Philosophical Transactions of the Royal Society

London, A209, pp. 415-446,1909.

[31] S. Saitoh, Theory of Reproducing Kernels and Its Application, Longman

Scientific & Technical.

[32] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.

[33] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,

1985.

[34] V. Vapnik, Statistical Learning Theory, New York: Wiley, 1998.

[35] V. N. Vapnik, The Nature of Statistical Learning Theory, New York:

Springer-Verlag, 1990.

[36] B. Schölkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel

Methods—Support Vector Learning, Cambridge, MA: MIT Press, 1999.

[37] J. Hohensoh and J. M. Mendel, “Two-pass orthogonal least-squares algorithm to

train and reduce the complexity of fuzzy logic systems,” Journal of Intelligent and

Fuzzy Systems, vol. 4, pp. 295-308, 1996.

[38] G. Mouzouris and J. M. Mendel, “A singular-value-QR decomposition based

method for training fuzzy logic systems in uncertain environments,” Journal of

Intelligent and Fuzzy Systems, vol. 5, pp. 367-374, 1997.

[39] J. Yen and L. Wang “Simplifying fuzzy rule-based models using orthogonal

transformation methods,” IEEE Trans. Syst., Man, Cybern. Pt B, Vol. 29, pp.

13-24, Feb. 1999.

[40] C. J. C. Burges, “Simplified support vector decision rules,” in Proc. 13th Int.

62

Conf. Machine Learning, L. Saitta, Ed. San Mateo, CA:Morgan Kaufmann, 1996,

pp. 71-77.

[41] B. Scholkopf, S. Mika, C. Burges, etc “Input space versus feature space in

kernel-based methods,” IEEE Trans. Neural Networks, Vol. 10, pp.1000-1017,

Sep. 1999.

[42] C. L. Blake and C. J. Merz, (1998) UCI repository of Machine Learning

Databases, Univ. California, Dept. Inform. Comput. Sci., Irvine, CA. [Online].

Available: http://www.ics.uci.edu/~mlearn/MLRepository.html.

[43] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, (1994) Machine Learning,

Neural and Statistical Classification [Online]. Available: ftp://ftp.stams.strath.ac.

uk/pub/.

[44] D. Prokhorov. IJCNN 2001 neural network competition. presented at Slide

Presentation in IJCNN’01. [Online] http://www.geocities.com/ijcnn/nncijcnn0

1.pdf

[45] [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/binary/

[46] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector

machines,” IEEE Trans. Neural Networks, Vol. 13, pp. 415-525, March 2002.

[47] Y. J. Lee and O. L. Mangasarian, “RSVM: reduced support vector machines,”

Proc. 1st SIAM Int. Conf. Data mining, 2001.

[48] K. M. Lin and C. J. Lin, “A study on reduced support vector machines,” IEEE

Trans. Neural Networks, Vol. 14, pp.1449-1459, Nov. 2003.

[49] H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou “An efficient fuzzy classifier

with feature selection based on fuzzy entropy,” IEEE Trans. Syst., Man, Cybern.

Pt B, Vol. 31, pp. 426-432, June 2001.

[50] M. R. Berthold and J. Diamond, “Constructive training of probabilistic neural

63

http://www.ics.uci.edu/~mlearn/MLRepository.html
ftp://ftp.stams.strath.ac. uk/pub/
ftp://ftp.stams.strath.ac. uk/pub/
http://www.geocities.com/ijcnn/nncijcnn0 1.pdf
http://www.geocities.com/ijcnn/nncijcnn0 1.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/binary/

networks,” Neurocomputing, Vol. 19, pp. 167-183, 1998.

[51] D. S. Chen and R. C. Jain, “A robust back-propagation learning algorithm for

function approximation,” IEEE Trans. Neural Networks, Vol. 5, pp. 467-479,

May 1994.

[52] K. Liano, “Robust error measure for supervised neural network learning with

outliers,” IEEE Trans. Neural Networks, Vol. 7, pp. 246-647, Jan. 1996.

[53] C. C. Lee, P. C. Chung, J. R. Tsai, and C. I. Chang, “Robust radial basis function

neural networks,” IEEE Trans. Syst., Man, Cybern. Pt B, Vol. 29, pp. 674-685,

Dec. 1999

[54] C. C. Chuang, S. F. Su, and C. C. Hsiao, “The annealing robust backpropagation

(ARBP) learning algorithm,” IEEE Trans. Neural Networks, Vol. 11, pp.

1067-1077, Sep. 2000.

[55] C. C. Chuang, J. T. Jeng, and P. T. Lin, “Annealing robust radial basis function

networks for function approximation with outliers” Neurocomputing, Vol. 56, pp.

123-139, 2004.

[56] M. Figueiredo and F. Gomide, “Design of fuzzy systems using neurofuzzy

networks,” IEEE Trans. Neural Networks, Vol. 10, pp. 815-827, July 1999.

[57] C. C. Chuang, S. F. Su, J. T. Jeng, and C. C. Hsiao, “Robust support vector

regression network for function approximation with outliers,” IEEE Trans.

Neural Networks, Vol. 13, pp. 1322-1330, Nov. 2002.

[58] J. H. Chiang, and P. Y. Hao, “Support vector learning mechanism for fuzzy

rule-based modeling: a new approach,” IEEE Trans. Fuzzy Syst., Vol. 12, pp.

1-12, Feb. 2004.

[59] Z. Sun and Y. Sun, “Fuzzy support vector machine for regression estimation,”

IEEE International Conference on Systems, Man, and Cybernetics (SMC’03),

64

Vol. 4, pp. 3336-3341, Oct. 2003.

[60] M. Setnes, R. Babuska, and H. B. Verbruggen, “Rule-based modeling: precision

and transparency,” IEEE Trans. Syst., Man, Cybern. Pt C, Vol. 28, pp. 165-169,

Feb. 1998.

[61] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support vector

based fuzzy neural network for pattern classification,” IEEE Trans. Fuzzy Syst.,

Vol. 14, pp. 31-41, Feb. 2006.

[62] B. Schölkopf, P. Simard, A. J. Smola, and V. N. Vapnik, “Prior knowledge in

support vector kernels,” Advances in Neural Information Processing Systems,

Vol. 10, MIT Press, Cambridge, MA.

[63] V. Vapnik, S. Golowich, and A. J. Smola, “Support vector method for function

approximation, regression estimation, and signal processing,” in Neural

Information Processing Systems. Cambridge, MA: MIT Press, vol. 9. 1997.

[64] K. Liano, “Robust error measure for supervised neural network learning with

outliers,” IEEE Trans. Neural Networks, Vol. 7, pp.246-250, Jan. 1996.

[65] A. Suarez and J. F. Lutsko, “Globally optimal fuzzy decision trees for

classification and regression,” IEEE Trans. Pattern Analysis and Machine

Intelligence, Vol. 21, pp. 1297-1311, Dec. 1999

[66] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A

Computational Approach to Learning and Machine Intelligence, Prentice-Hall,

Upper Saddle River, NJ, 1997.

[67] F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian

learning,” Proc. International Joint Conference on Neural Networks (IJCNN’97),

Vol. 3, pp. 1930-1935, Jun 1997.

[68] S. R. Gunn. (1999) Support vector regression-Matlab toolbox. Univ.

65

Southampton, Southampton, U. K.. [Online]. Available: http://kernel-machines.

org.

66

 LISTS OF PUBLICATION

著作目錄
姓名: 葉長茂(Chang-Mao Yeh)

已刊登或被接受之期刊論文：(總共 4.2 點)

[1] C.T. Lin, C. M. Yeh, J. F. Chung, S. F. Liang, and H. C. Pu, “Support vector

based fuzzy neural networks,” International Journal of Computational

Intelligence Research, Vol. 1, pp. 138-150, Dec. 2005. (1.2 點)

[2] C.T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support vector

based fuzzy neural network for pattern classification,” IEEE Trans. Fuzzy Syst.,

Vol. 14, pp. 31-41, Feb. 2006. (2.4 點)
[3] C. T. Lin, K. W. Fan, C. M. Yeh, H. C. Pu, and F. Y. Wu, “High-accuracy skew

estimation of document images,” International Journal of fuzzy systems, Vol. 8,
pp. 119-126, Sep. 2006. (0.6 點)

待審之期刊論文：

[1] C. T. Lin and C. M. Yeh, “Self-tuning error correcting output coding support

vector machine for multi-class classification,” submitted to IEEE Trans. Systems,

Man, and Cybernetics Part B
[2] C. T. Lin and C. M. Yeh, and S. F. Liang, “Support-vector based fuzzy neural

network for function approximation,” submitted to IEEE Trans. Neural Networks

研討會論文：

[1] C.T. Lin, C. M. Yeh, and C. F. Hsu, “Fuzzy neural network classification design

using support vector machine,” IEEE International Conference on Circuits and

Systems, pp.724-727, May 2004.

[2] C.T. Lin, C. M. Yeh, H. C. Pu, and S. F. Liang,”Skew estimation of document

images using fuzzy c-regression models,” Conference of computer vision,

Graphics, and image processing, pp.38-43, Aug. 2004.

67

[3] C.T. Lin, S. F. Liang, C. M. Yeh, and K. W. Fan, “Fuzzy neural network design

using support vector regression for function approximation with outliers,” IEEE

International Conference on Systems, Man, and Cybernetics, pp2763-2768. Oct.

2005.

68

VITA

博士候選人學經歷資料

姓名: 葉長茂

性別: 男

生日: 中華民國 60 年 7 月 24 日

籍貫: 台灣省彰化縣

論文題目: 中文: 支持向量模糊神經網路及其應用

 英文: Support-Vector based Fuzzy Neural Networks and its applications

學歷:

1. 民國 83 年 6 月 國立雲林科技大學 電子系畢業。

2. 民國 86 年 6 月 國立雲林科技大學 電子與資訊研究所畢業。

3. 民國 90 年 9 月 國立交通大學電機及控制工程研究所博士班。

經歷:

1. 民國 86 年起至今 中州技術學院 講師

69

	摘 要
	Abstract
	誌 謝
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1�INTRODUCTION
	1.1 Fuzzy Neural Network
	1.2 Support Vector Machine
	1.3 Research Objectives and Organization of this dissertatio

	CHAPTER 2�SUPPORT-VECTOR BASED FUZZY NEURAL NETWORK AND THE
	2.1 Structure of the FNN
	2.2 Fuzzy Clustering and Input/Output Space Partitioning
	2.3 Fuzzy Rule Generation
	2.4 Adaptive Fuzzy Kernel for the SVM/SVR

	CHAPTER 3�SUPPORT-VECTOR BASED FUZZY NEURAL NETWORK FOR PATT
	3.1 Maximum Margin Algorithm
	3.2 Learning Algorithm of SVFNN
	3.3 Experimental Results
	3.4 Discussions

	CHAPTER 4�SUPPORT-VECTOR BASED FUZZY NEURAL NETWORK FOR FUNC
	4.1 Support Vector Regression Algorithm
	4.2 Learning Algorithm of SVFNN
	4.3 Experimental Results
	C
	C
	C
	C
	C
	C
	C
	C

	4.4 Discussions

	CHAPTER 5�CONCLUSIONS
	REFERENCES
	LISTS OF PUBLICATION
	VITA

