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支持向量模糊類神經網路及其在資料分類和函

數近似之應用 

 

摘      要 

模糊類神經網路經常使用倒傳遞學習演算法或分群學習演算法學習調整模

糊規則和歸屬函數的參數以解決資料分類和函數回歸等問題，但是此學習演算法

經常不能將訓練誤差及預測誤差同時地最小化，這將造成在資料分類之預測階段

無法達到最好的分類效能，且對含有雜訊的訓練資料進行回歸近似時，常有過度

訓練而造成回歸效能大大降低的問題。 

本論文結合支持向量學習機制與模糊類神經網路的優點，提出一個新的支持

向量模糊類神經網路(SVFNNs)，此 SVFNNs 將高維度空間具有極優越分類能力的

支持向量機(SVM)和極優越強健抗雜訊能力的支持向量回歸(SVR)與能夠有效處

理不確定環境資訊的類似人類思考的模糊類神經網路之優點結合。首先我們提出

一個適應模糊核心函數(adaptive fuzzy kernel)，進行模糊法則建構，此模糊核心

函數滿足支持向量學習所須之默塞爾定理(Mercer’s theorem)， SVFNNs 的學習演

算法有參個學習階段，在第一個階段，藉由分群原理自動產生模糊規則和歸屬函

數，在第二階段，利用具有適應模糊核心函數之 SVM 和 SVR 來計算模糊神經網路

的參數，最後在第三階段，透過降低模糊規則的方法來移除不重要的模糊規則。

我們將 SVFNNs 應用到 Iris、Vehicle、Dna、Satimage、Ijcnn1 五個資料集和兩

個單變數及雙變數函數進行資料分類與函數近似應用，實驗結果顯示我們提出的

SVFNNs 能在使用較少的模糊規則下有很好的概化(generalization)之資料分類

效能和強健抗雜訊的函數近似效能。 
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Abstract 

Fuzzy neural networks (FNNs) have been proposed and successfully 

applied to solving these problems such as classification, identification, control, 

pattern recognition, and image processing, etc. Fuzzy neural networks usually 

use the backpropagation or C-cluster type learning algorithms to learn the 

parameters of the fuzzy rules and membership functions from the training data. 

However, such learning algorithm only aims at minimizing the training error, 

and it cannot guarantee the lowest testing error rate in the testing phase. In 

addition, the local solutions and slow convergence often impose practical 

constraints in the function approximation problems  

In this dissertation, novel fuzzy neural networks combining with support 

vector learning mechanism called support-vector based fuzzy neural networks 

(SVFNNs) are proposed for pattern classification and function approximation. 

The SVFNNs combine the capability of minimizing the empirical risk 

(training error) and expected risk (testing error) of support vector learning in 

high dimensional data spaces and the efficient human-like reasoning of FNN 

in handling uncertainty information. First, we propose a novel adaptive fuzzy 

kernel, which has been proven to be a Mercer kernel, to construct initial fuzzy 
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rules. A learning algorithm consisting of three learning phases is developed to 

construct the SVFNNs and train the parameters. In the first phase, the fuzzy 

rules and membership functions are automatically determined by the 

clustering principle. In the second phase, the parameters of FNN are 

calculated by the SVM and SVR with the proposed adaptive fuzzy kernel 

function for pattern classification and function approximation, respectively. In 

the third phase, the relevant fuzzy rules are selected by the proposed fuzzy 

rule reduction method. To investigate the effectiveness of the proposed 

SVFNNs, they are applied to the Iris、Vehicle、Dna、Satimage and Ijcnn1 

datasets for classification, and one- and two- variable functions for 

approximation, respectively. Experimental results show that the proposed 

SVFNNs can achieve good pattern classification and function approximation 

performance with drastically reduced number of fuzzy kernel functions (fuzzy 

rules). 
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CHAPTER 1 

INTRODUCTION  

It is an important key issue in many scientific and engineering fields to classify 

the acquired data or estimate an unknown function from a set of input-output data 

pairs. As is widely known, fuzzy neural networks (FNNs) have been proposed and 

successfully applied to solving these problems such as classification, identification, 

control, pattern recognition, and image processing. most previous researches issue the 

method of automatically generating fuzzy rules from numerical data and use the 

backpropagation (BP) and/or C-cluster type learning algorithms to train parameters of 

fuzzy rules and membership functions from the training data. However, such learning 

algorithm only aims at minimizing the training error, and it cannot guarantee the 

lowest testing error rate in the testing phase. In addition, the local solutions and slow 

convergence often impose practical constraints in the function approximation 

problems. Therefore, it is desired to develop a novel FNNs, that achieve good pattern 

classification and function approximation performance with drastically reduced 

number of fuzzy kernel functions (fuzzy rules). 

1.1 Fuzzy Neural Network 

Both fuzzy logic and neural networks are aimed at exploiting human-like 

knowledge processing capability. The fuzzy logic system using linguistic information 

can model the qualitative aspects of human knowledge and reasoning processes 

without employing precise quantitative analyses [1]. However, the selection of fuzzy 

if-then rules often conventionally relies on a substantial amount of heuristic 
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observation to express proper strategy’s knowledge. Obviously, it is difficult for 

human experts to examine all the input-output data to find a number of proper rules 

for the fuzzy system. Artificial neural networks are efficient computing models which 

have shown their strengths in solving hard problems in artificial intelligence. The 

neural networks are a popular generation of information processing systems that 

demonstrate the ability to learn from training data [2]. However, one of the major 

criticisms is their being black boxes, since no satisfactory explanation of their 

behavior has been offered. This is a significant weakness, for without the ability to 

produce comprehensible decision, it is hard to trust the reliability of networks 

addressing real-world problems. Much research has been done on fuzzy neural 

networks (FNNs), which combine the capability of fuzzy reasoning in handling 

uncertain information and the capability of neural networks in learning from 

processes [3]-[5]. Fuzzy neural networks are very effective in solving actual problems 

described by numerical examples of an unknown process. They have been 

successfully applied to classification, identification, control, pattern recognition, and 

image processing, etc. In particular, many learning algorithms of fuzzy (neural) have 

been presented and applied in pattern classification and decision-making systems [6], 

[7]. Moreover, several researchers have investigated the fuzzy-rule-based methods for 

function approximation and pattern classification [8]-[15]. 

A fuzzy system consists of a bunch of fuzzy if-then rules. Conventionally, the 

selection of fuzzy if-then rules often relies on a substantial amount of heuristic 

observation to express proper strategy’s knowledge. Obviously, it is difficult for 

human experts to examine all the input-output data to find a number of proper rules 

for the fuzzy system. Most pre-researches used the backpropagation (BP) and/or 

C-cluster type learning algorithms to train parameters of fuzzy rules and membership 

functions from the training data [16], [17]. However, such learning only aims at 
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minimizing the classification error in the training phase, and it cannot guarantee the 

lowest error rate in the testing phase. Therefore we apply the support vector 

mechanism with the superior classification power into learning phase of FNN to 

tackle these problems.  

 

 

1.2 Support Vector Machine 

Support vector machines (SVM) has been revealed to be very effective for 

general-purpose pattern classification [18]. The SVM performs structural risk 

minimization and creates a classifier with minimized VC dimension. As the VC 

dimension is low, the expected probability of error is low to ensure a good 

generalization. The SVM keeps the training error fixed while minimizing the 

confidence interval. So, the SVM has good generalization ability and can 

simultaneously minimize the empirical risk and the expected risk for pattern 

classification problems. SVM construct a decision plane separating two classes with 

the largest margin, which is the maximum distance between the closest vector to the 

hyperplane. In other word, the main idea of a support vector machine is to construct a 

hyperplane as the decision surface in such a way that the margin of separation 

between positive and negative examples is maximized. More importantly, an SVM 

can work very well in a high dimensional feature space. The support vector method 

can also be applied in regression (functional approximation) problems. When SVM is 

employed to tackle the problems of function approximation and regression estimation, 

it is referred as the support vector regression (SVR). SVR can perform high accuracy 

and robustness for function approximation with noise.  
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However, the optimal solutions of SVM rely heavily on the property of selected 

kernel functions, whose parameters are always fixed and are chosen solely based on 

heuristics or trial-and-error nowadays. The regular SVM suffers from the difficulty of 

long computational time in using nonlinear kernels on large datasets which come from 

many real applications. Therefore, our dissertation proposes a systematical procedure 

to reduce the support vectors to deal with this problem. 

 

1.3 Research Objectives and Organization of this 

dissertation 

In this dissertation, novel fuzzy neural networks (FNNs) combining with support 

vector learning mechanism called support-vector-based fuzzy neural networks 

(SVFNNs) are proposed for pattern classification and function approximation. The 

SVFNNs combine the capability of minimizing the empirical risk (training error) and 

expected risk (testing error) of support vector learning in high dimensional data 

spaces and the efficient human-like reasoning of FNN in handling uncertainty 

information. There have been some researches on combining SVM with FNN 

[19]-[22]. In [19], a self-organizing map with fuzzy class memberships was used to 

reduce the training samples to speed up the SVM training. The objective of [20]-[22] 

was on improving the accuracy of SVM on multi-class pattern recognition problems. 

The overall objective of this dissertation is to develop a theoretical foundation for the 

FNN using the SVM method. We exploit the knowledge representation power and 

learning ability of the FNN to determine the kernel functions of the SVM adaptively, 

and propose a novel adaptive fuzzy kernel function, which has been proven to be a 

Mercer kernel. The SVFNNs can not only well maintain the classification accuracy, 
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but also reduce the number of support vectors as compared with the regular SVM. 

Organization and objectives of the dissertation are as follows.  

In chapter 2, a novel adaptive fuzzy kernel is proposed for combining FNN with 

SVM. We exploit the knowledge representation power and learning ability of the FNN 

to determine the kernel functions of the SVM adaptively and develop a novel adaptive 

fuzzy kernel function. The objective of this chapter is to prove that the adaptive fuzzy 

kernel conform to the Mercer theory.  

In chapter 3, a support-vector based fuzzy neural network (SVFNN) is proposed. 

This network is developed for solving pattern recognition problem. Compared to 

conventional neural fuzzy network approaches, the objective of this chapter is to 

construct the learning algorithm of the proposed SVFNN with simultaneously 

minimizing the empirical risk and the expected risk for good generalization ability 

and characterize the proposed SVFNN with good classification performance.  

In chapter 4, a support-vector based fuzzy neural network for function 

approximation is proposed. This network is developed for solving function 

approximation. The objective of this chapter is to integrate the statistical support 

vector learning method into FNN and characterize the proposed SVFNN with the 

capability of good robustness against noise. 

The applications and simulated results of the SVFNNs are presented at the ends 

of Chapter 3 and 4, respectively. Finally, conclusions are made on Chapter 5.   
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CHAPTER 2 

SUPPORT-VECTOR BASED FUZZY NEURAL 

NETWORK AND THE ADAPTIVE FUZZY 

KERNEL  

In this chapter, adaptive fuzzy kernel is proposed for applying the SVM 

technique to obtain the optimal parameters of FNN. The adaptive fuzzy kernel 

provides the SVM with adaptive local representation power, and thus brings the 

advantages of FNN (such as adaptive learning and economic network structure) into 

the SVM directly. On the other hand, the SVM provides the advantage of global 

optimization to the FNN and also its ability to minimize the expected risk; while the 

FNN originally works on the principle of minimizing only the training error.  

 

2.1 Structure of the FNN 

A four-layered fuzzy neural network (FNN) is shown in Fig 2.1, which is 

comprised of the input, membership function, rule, and output layers. Layer 1 accepts 

input variables, whose nodes represent input linguistic variables. Layer 2 is to 

calculate the membership values, whose nodes represent the terms of the respective 

linguistic variables. Nodes at Layer 3 represent fuzzy rules. The links before Layer 3 

represent the preconditions of fuzzy rules, and the link after Layer 3 represent the 

consequences of fuzzy rules. Layer 4 is the output layer. This four-layered network 

realizes the following form of fuzzy rules:  
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Rule Rj : If x1 is A1j and …xi is Aij….. and xM is AMj, Then y is dj , j=1, 2, …, N, (2.1) 

where Aij are the fuzzy sets of the input variables xi, i =1, 2, …, M and dj are the 

consequent parameter of y. For the ease of analysis, a fuzzy rule 0 is added as: 

         Rule 0 :  If  x1 is A10 and …….. and xM is AM0, Then y is d0,  (2.2) 

where Ak0 is a universal fuzzy set, whose fuzzy degree is 1 for any input value xi, 

i =1, 2, …, M and  is the consequent parameter of y in the fuzzy rule 0. Define 

O

0d

(P) and a(P) as the output and input variables of a node in layer P, respectively. The 

signal propagation and the basic functions in each layer are described as follows. 

Layer 1- Input layer: No computation is done in this layer. Each node in this 

layer, which corresponds to one input variable, only transmits input values to the next 

layer directly. That is  

(1) (1)
iO a ix= = , (2.3) 

where ix , i=1, 2, …, M are the input variables of the FNN.  
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Layer 4 
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d2
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xM 
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R1 R2
RN """

"" " "

 
Fig. 2.1 The structure of the four-layered fuzzy neural network. 
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Layer 2 – Membership function layer: Each node in this layer is a membership 

function that corresponds one linguistic label ( e.g., fast, slow, etc.) of one of the input 

variables in Layer 1. In other words, the membership value which specifies the degree 

to which an input value belongs to a fuzzy set is calculated in Layer 2: 

 , (2.4) (2) ( ) (2)(j
i iO u a= )

Mwhere  is a membership function  j=1, 

2, …, N. With the use of Gaussian membership function, the operation performed in 

this layer is  

( ) ( )j
iu ⋅ ( ) ( ) : [0, 1], 1, 2, , ,j

iu R i⋅ → = "

 

( 2) 2

2

( )

(2)
i ij

ij

a m

O e σ

−
−

= , (2.5) 

where mij and σij are, respectively, the center (or mean) and the width (or variance) 

of the Gaussian membership function of the j-th term of the i-th input variable xi.  

Layer 3 – Rule layer: A node in this layer represents one fuzzy logic rule and 

performs precondition matching of a rule. Here we use the AND operation for each 

Layer 2 node 

 [ ( )] [ ( )](3) (3)

1

T
j j j j

M

i
i

O a e−

=

= =∏ D x-m D x-m , (2.6) 

where 
1

1 , ,j
j M

diag
σ σ
⎛ ⎞

= ⎜⎜
⎝ ⎠

D " 1

j
⎟⎟ , mj=[m1j, m2j, …, mMj]T, x=[x1, x2, x3, …, xM]T is 

the FNN input vector. The output of a Layer-3 node represents the firing strength of 

the corresponding fuzzy rule.  

Layer 4 – Output layer: The single node O(4) in this layer is labeled with Σ, which 

computes the overall output as the summation of all input signals:  
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 (4) (4)
0

1

N

j j
j

O d a
=

d= × +∑ , (2.7) 

where the connecting weight dj is the output action strength of the Layer 4 output 

associated with the Layer 3 rule and the scalar d0 is a bias. Thus the fuzzy neural 

network mapping can be rewritten in the following input-output form: 

 . (2.8) (4) (4) ( )
0

1 1 1

( )
MN N

j
j j j i i

j j i

O d a d d u x
= = =

= × + = +∑ ∑ ∏ 0d

2.2 Fuzzy Clustering and Input/Output Space Partitioning  

For constructing the initial fuzzy rules of the FNN, the fuzzy clustering method 

is used to partition a set of data into a number of overlapping clusters based on the 

distance in a metric space between the data points and the cluster prototypes.  

A

B

C

 

 

 

1bx

2bx

1x

2x

 
 

 

 

Fig. 2.2 The aligned clustering-based partition method giving both less number of 
clusters as well as less number of membership functions. 
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Each cluster in the product space of the input-output data represents a rule in the 

rule base. The goal is to establish the fuzzy preconditions in the rules. The 

membership functions in Layer 2 of FNN can be obtained by projections onto the 

various input variables xi  spanning the cluster space. In this work, we use an aligned 

clustering-based approach proposed in [23]. This method produces a partition result as 

shown in Fig. 2.2. 

The input space partitioning is also the first step in constructing the fuzzy kernel 

function in the SVFNNs. The purpose of partitioning has a two-fold objective: 

• It should give us a minimum yet sufficient number of clusters or fuzzy 

rules. 

• It must be in spirit with the SVM-based classification scheme. 

To satisfy the aforementioned conditions, we use a clustering method which 

takes care of both the input and output values of a data set. That is, the clustering is 

done based on the fact that the points lying in a cluster also belong to the same class 

or have an identical value of the output variable. The class information of input data is 

only used in the training stage to generate the clustering-based fuzzy rules; however, 

in testing stage, the input data excite the fuzzy rules directly without using class 

information. In addition, we also allow existence of overlapping clusters, with no 

bound on the extent of overlap, if two clusters contain points belonging to the same 

class. We may have a clustering like the one shown in Fig. 2.3. Thus a point may be 

geometrically closer to the center of a cluster, but it can belong only to the nearest 

cluster, which has the points belonging to the same class as that point. 
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Fig. 2.3 The clustering arrangement allowing overlap and selecting the member points 

according to the labels (or classes) attached to them. 
 

2.3 Fuzzy Rule Generation 

A rule corresponds to a cluster in the input space, with mj and Dj representing the 

center and variance of that cluster. For each incoming pattern x, the strength a rule is 

fired can be interpreted as the degree the incoming pattern belongs to the 

corresponding cluster. It is generally represented by calculating degree of membership 

of the incoming pattern in the cluster [24]. For computational efficiency, we can use 

the firing strength derived in (2.6) directly as this degree measure 

 [ ( )] [ ( )](3)

1

( )
T

j j j j
M

j
i

i

F a e−

=

= =∏ D x-m D x-mx  ]1,0[∈ , (2.9) 

where [ ]( ) 0, 1jF ∈x . In the above equation the term  is the 

distance between x and the center of cluster j.  Using this measure, we can obtain the 

following criterion for the generation of a new fuzzy rule. Let x be the newly 

incoming pattern. Find 

[ ( )] [ ( )]
T

j j j jD x - m D x - m

 , (2.10) 
1 ( )

arg max ( )j

j c t
J

≤ ≤
= xF
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where c(t) is the number of existing rules at time t. If ( )JF F t≤ , then a new rule is 

generated, where ( ) (0, 1)F t ∈  is a prespecified threshold that decays during the 

learning process. Once a new rule is generated, the next step is to assign initial centers 

and widths of the corresponding membership functions. Since our goal is to minimize 

an objective function and the centers and widths are all adjustable later in the 

following learning phases, it is of little sense to spend much time on the assignment of 

centers and widths for finding a perfect cluster. Hence we can simply set 

 [ ( ) 1]c t + =m x , (2.11) 

 [ ( ) 1]
1 1 1

ln( ) ln( )c t Jdiag
F Fχ+ J

⎡ ⎤−
= ⋅ ⎢ ⎥

⎣ ⎦
D " , (2.12) 

according to the first-nearest-neighbor heuristic [25], where 0χ ≥ decides the 

overlap degree between two clusters. Similar methods are used in [26], [27] for the 

allocation of a new radial basis unit. However, in [26] the degree measure doesn’t take 

the width Dj into consideration. In [27], the width of each unit is kept at a prespecified 

constant value, so the allocation result is, in fact, the same as that in [26]. In this 

dissertation, the width is taken into account in the degree measure, so for a cluster 

with larger width (meaning a larger region is covered), fewer rules will be generated 

in its vicinity than a cluster with smaller width. This is a more reasonable result. 

Another disadvantage of [26] is that another degree measure (the Euclidean distance) 

is required, which increases the computation load.  

After a rule is generated, the next step is to decompose the multidimensional 

membership function formed in (2.11) and (2.12) to the corresponding 1-D 

membership function for each input variable. To reduce the number of fuzzy sets of 

each input variable and to avoid the existence of highly similar ones, we should check 

the similarities between the newly projected membership function and the existing 
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ones in each input dimension. Before going to the details on how this overall process 

works, let us consider the similarity measure first. Since Gaussian membership 

functions are used in the SVFNNs, we use the formula of the similarity measure of 

two fuzzy sets with Gaussian membership functions derived previously in [28]. 

Suppose the fuzzy sets to be measured are fuzzy sets A  and B  with membership 

function { }2 2
1 1( ) exp ( )A x x cµ σ= − −  and { }2 2

2 2( ) exp ( )B x x cµ σ= − − , respectively. 

The union of two fuzzy sets A and B is a fuzzy set A B∪  such that 

, for every ( ) max[ ( ), ( )]A B A Bu x u x u x∪ = x U∈ . The intersection of two fuzzy sets A 

and B is a fuzzy set A B∩  such that ( ) min[ ( ), ( )]A B A Bu x u x u x∩ = , for every . 

The size or cardinality of fuzzy set A, M(A), equals the sum of the support values of A: 

x U∈

( ) ( )A
x U

M A u
∈

= ∑ x . Since the area of the bell-shaped function, exp{ }, is 22 /)( σmx −−

σ π  [29] and its height is always 1, it can be approximated by an isosceles triangle 

with unity height and the length of bottom edge 2σ π . We can then compute the 

fuzzy similarity measure of two fuzzy sets with such kind of membership functions. 

Assume  as in [28], we can compute 1c c≥ 2 M A B∩  by 

2 2
2 1 1 2 2 1 1 2

1 2 2 1

2
2 1 1 2

1 2

( ) (1 1(min[ ( ), ( )])
2 2( ) ( )

( )1             ,
2 ( )

A B
x U

h c c h c c
M A B u x u x

h c c

π σ σ π σ σ

π σ σ π σ σ

π σ σ

π σ σ

∈

)⎡ ⎤ ⎡− + + − + − ⎤
⎣ ⎦ ⎣∩ = = +

+ −

⎡ ⎤− − +⎣ ⎦+
−

∑ ⎦
 (2.13) 

where . So the approximate similarity measure is ( ) max{0, }⋅ = ⋅h

 
1 2

( , )
M A B M A B

E A B
M A B M A Bσ π σ π

∩ ∩
= =

∪ + − ∩
, (2.14) 

where we use the fact that ( ) ( ) ( ) ( )M A M B M A B M A B+ = ∩ + ∪  [28]. By 

using this similarity measure, we can check if two projected membership functions 

are close enough to be merged into one single membership 
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function { }2 2
3 3( ) exp ( )c x x cµ σ= − − . The mean and variance of the merged 

membership function can be calculated by  

1 2
3 2

c cc +
= , (2.15) 

1
3 2

2σ σσ +
= . (2.16) 

2.4 Adaptive Fuzzy Kernel for the SVM/SVR 

The proposed fuzzy kernel  in this dissertation is defined as  )ˆ,ˆ( zxK

�( ) ( ) ( ) �
=1

,  if   and  are both in the -th cluster
,

0,                            otherwise, 

M

j i j i
i

u x u z j
K

⎧
⋅⎪=⎨

⎪⎩

∏ x z
x z

�
�  (2.17) 

where �x =[x1, x2, x3, …, xM] ∈RM and =[zz� 1, z2, z3, …, zM] ∈RM are any two 

training samples, and ( )j iu x  is the membership function of the j-th cluster. Let the 

training set be S={(x1, y1), (x2, y2), …, (xv, yv)} with explanatory variables and the 

corresponding class labels y

ix

i, for all 1, 2, ,i v= " , where v is the total number of 

training samples. Assume the training samples are partitioned into l clusters through 

fuzzy clustering in Section II. We can perform the following permutation of training 

samples  

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

1

2

1 1
1

2 2
1

1

1 , , , ,

2 , , , ,

, , , ,
l

k

k

l l l
k

cluster y y

cluster y y

cluster l y y

=

=

=

x x

x x

x x

…

…

#

…

1

2

l

1 1
1 k

2 2
1 k

l
1 k ,

, l

 (2.18) 

where  is the number of points belonging to the g-th cluster, so , 1, 2,gk g = "
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that we have 
1

l

g
g

k
=
∑ = v. Then the fuzzy kernel can be calculated by using the training 

set in (2.18), and the obtained kernel matrix K can be rewritten as the following form 

 

1

2 v v

l

R ×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

K 0 0
0 K

K
0

0 0 K

"
% #

# % %
"

⎥∈
⎥

, l

 (2.19) 

where  is defined as , 1, 2,g g =K "

( ) ( ) (
( ) ( )

(
( ) ( ) (

1 1 1 2 1

2 1 2 2

1

1 1

, , ,

, ,

, , ,

g

g g g g

g g g g g

g g g g

g g
k

g g g g g
k k k k

K x x K x x K x

K x x K x x

K x

K x x K x x K x

−

−

⎡
⎢
⎢
⎢= ⎢
⎢
⎢
⎢⎣

K

"

% #

# % %

"

In order that the fuzzy kernel function defined 

application in SVM, we must prove that the fuzzy kernel 

positive-definite Gram Matrices [30]. To prove this, we

theorems. 

Theorem 1 (Mercer theorem [30]) : Let X be a compa

is a continuous symmetric function such that the integral op

 ( ) ( )( )( )K
X

T f K f d⋅ = ⋅∫ , x x x

is positive; that is 

 ( ) ( ) ( ) 0,
X X

K f f d d f
×

≥ ∀∫ x, z x z x z

for all 2 ( )f L X∈ . Then we can expand K(x, z) in a u

(on X X× ) in terms of TK’s eigen-functions 2 ( )j L Xφ ∈ ,

that 
2

1j L
φ = , and positive associated eigenvalues 0jλ >

15 
)

)
)

,

g

g g

g

g

g
k

k k

g
k

g
k

x

R
x

x

×

⎤
⎥
⎥
⎥∈⎥
⎥
⎥
⎥⎦

  (2.20) 

by (2.17) is su

function is symm

 first quote the 

ct subset of Rn. 

erator TK : L2(X)

0,≥  

2 ( )L∈ X  

niformly conver

 normalized in s

, 
itable for 

etric and 

following 

Suppose K 

→L2(X) 

(2.21) 

(2.22) 

gent series 

uch a way 



 

 . (2.23) ( ) ( ) (
1

j j j
j

K λ φ φ
∞

=

=∑x, z x z)

The kernel is referred to as Mercer’s kernel as it satisfies the above Mercer 

theorem. 

Proposition 1 [31] : A function K(x, z) is a valid kernel iff for any finite set it 

produces symmetric and positive-definite Gram matrices.  

Proposition 2 [32] : Let K1 and K2 be kernels over X X× , . Then the 

 function is also a kernel. 

nX R⊆

1 2( ( (K K K=x, z) x, z) x, z)

Definition 1 [33] : A function  is said to be a positive-definite 

function if the matrix 

:f R R→

[ ( )] n n
i jf x x R ×− ∈  is positive semidefinite for all choices of 

points 1{ , , }nx x ⊂" R  and all 1, 2,n = "" . 

Proposition 3 [33] : A block diagonal matrix with the positive-definite diagonal 

matrices is also a positive-definite matrix.  

Theorem 2 : For the fuzzy kernel defined by (2.17), if the membership functions 

 are positive-definite functions, then the fuzzy 

kernel is a Mercer kernel.  

( ) : [0, 1], 1, 2, ,iu x R i n→ = " ,

Proof:  

First, we prove that the formed kernel matrix ( )( )
, 1

 = ,
n

i j
K

=
K i jx x  is a 

symmetric matrix. According to the definition of fuzzy kernel in (2.17), if  and  

are in the j-th cluster,  

ix iz

 , ( ) ( ) ( ) ( ) ( ) ( )j j j j
k=1 k=1

, ,
n n

k k k kK u x u z u z u x K= ⋅ = ⋅ =∏ ∏x z z x

otherwise, 

),( zxK = =0. ( , )K z x
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So the kernel matrix is indeed symmetric. By the elementary properties of 

Proposition 2, the product of two positive-defined functions is also a kernel function. 

And according to Proposition 3, a block diagonal matrix with the positive-definite 

diagonal matrices is also a positive-definite matrix. So the fuzzy kernel defined by 

(2.17) is a Mercer kernel. � 

  Since the proposed fuzzy kernel has been proven to be a Mercer kernel, we 

can apply the SVM technique to obtain the optimal parameters of SVFNNs. It is noted 

that the proposed SVFNNs is not a pure SVM, so it dose not minimize the empirical 

risk and expected risk exactly as SVMs do. However, it can achieve good 

classification performance with drastically reduced number of fuzzy kernel functions.  
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CHAPTER 3 

SUPPORT-VECTOR BASED FUZZY NEURAL 

NETWORK FOR PATTERN CLASSIFICATION 

In this chapter, we develop a support-vector-based fuzzy neural network (SVFNN) 

for pattern classification, which is the realization of a new idea for the adaptive kernel 

functions used in the SVM. The use of the proposed fuzzy kernels provides the SVM 

with adaptive local representation power, and thus brings the advantages of FNN 

(such as adaptive learning and economic network structure) into the SVM directly. On 

the other hand, the SVM provides the advantage of global optimization to the FNN 

and also its ability to minimize the expected risk; while the FNN originally works on 

the principle of minimizing only the training error. The proposed learning algorithm 

of SVFNN consists of three phases. In the first phase, the initial fuzzy rule (cluster) 

and membership of network structure are automatically established based on the fuzzy 

clustering method. The input space partitioning determines the initial fuzzy rules, 

which is used to determine the fuzzy kernels. In the second phase, the means of 

membership functions and the connecting weights between layer 3 and layer 4 of 

SVFNN (see Fig. 2.1) are optimized by using the result of the SVM learning with the 

fuzzy kernels. In the third phase, unnecessary fuzzy rules are recognized and 

eliminated and the relevant fuzzy rules are determined. Experimental results on five 

datasets (Iris, Vehicle, Dna, Satimage, Ijcnn1) from the UCI Repository, Statlog 

collection and IJCNN challenge 2001 show that the proposed SVFNN classification 

method can automatically generate the fuzzy rules, improve the accuracy of 
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classification, reduce the number of required kernel functions, and increase the speed 

of classification. 

 

3.1 Maximum Margin Algorithm 

An SVM constructs a binary classifier from a set of labeled patterns called 

training examples. Let the training set be S = {(x1, y1), (x2, y2), …, (xv, yv)} with 

explanatory variables  and the corresponding binary class labels 

, for all , where v denotes the number of data, and d denotes 

the dimension of the datasets. The SVM generates a maximal margin linear decision 

rule of the form  

d
i ∈x R

{ 1, 1}iy ∈ − + 1, ,i = " v

( ) sign( )f b= ⋅ +x w x ,  (3.1) 

Where w is the weight vector and b is a bias. The margin M can be calculated by 

M=2/||w|| that show in Fig. 3.1. For obtaining the largest margin, the weight vector, , 

must be calculated by  

w

                      21min
2
w   

                      s.t.  ( ) 1 0, 1,i iy b i ,v+ − ≥ ∀ =x w " . (3.2) 

The optimization problem be converted to a quadratic programming problem, 

which can be formulated as follows: 

 
1 , 1

1Maximize    ( )
2

α α αα
= =

= −∑ ∑
v v

T
i i j i j

i i j

L y y x xi j  

subject to  0iα ≥ ,  i = 1, 2,…., v  and   . (3.3) 
1

0
v

i i
i

yα
=

=∑

whereαi denotes Lagrange multiplier.  
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(wTx)+b=0 
 

 

 

 

 

 

 

 

Fig 3.1 Optimal canonical separating hyperplane with the largest margin between the 
two classes.  

 

In practical applications for non-ideal data, the data contain some noise and 

overlap. The slack variablesξ , which allow training patterns to be misclassified in the 

case of linearly non-separable problems, and the regularization parameter C, which 

sets the penalty applied to margin-errors controlling the trade-off between the width 

of the margin and training set error, are added to SVM. The equation is altered as 

follows: 

                      221min
2 2 i

i

C ξ+ ∑w   

s.t.  ( ) 1 , 1,i i iy b i ,vξ+ ≥ − ∀ =x w " .  (3.4) 

To construct a non-linear decision rule, the kernel method mappin an input 

vector  into a vector of a higher-dimensional feature space F (d∈x R ( )φ x , where φ  

represents a mapping ) is discovered. Therefore, the maximal margin linear d →R Rq
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classifier can solve the linear and non-linear classification problem in this feature 

space. Fig. 3.2 show the training data map into a higher-dimensional feature space. 

However, the computation cannot easily map the input vector to the feature space. If 

the dimension of transformed training vectors is very large, then the computation of 

the dot products is prohibitively expensive. The transformed function ( )iφ x  is not 

known a priori. The Mercer’s theorem provides a solution for those problems. The 

equation ( ) ( )i jφ φ⋅x x  can be calculated directly by a positive definite symmetric 

kernel function ( , ) ( ) ( )φ φ= ⋅i j i jK x x x x  which complies with Mercer’s theorem. 

Popular choices for Kernel function include 

Gaussian kernel :  
2

2( , ) exp( )
2

K
σ
−

= −
x xx x   (3.5a) 

and Polynomial kernel : 2
2( , ) (1 )K

σ
⋅

= +
x xx x . (3.5b) 

To obtain an optimal hyperplane for any linear or nonlinear space, Eq. (3.4) can 

be rewritten to the following dual quadratic optimization 

 max
α

( ) ( )
1 1

1 ,
2

α α αα= −∑ ∑
v v

i j i j
i i, j

L y y x xi iK j
= =

 

 subject to  0 ,  1, 2,...,C i vα≤ ≤ =  and . (3.6) i
1

0
v

i i
i

y a =∑
=

 

 

 

 

 

 

Fig.3.2 map the training data nonlinearly into a higher-dimensional feature space 

Φ:x → φ(x) 

( , ) ( ) ( )i j i jK φ φ= ⋅x x x x
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The dual Lagrangian ( )αL  must be maximized with respect toαi ≥ 0. The 

training patterns with nonzero Lagrange multipliers are called support vectors. The 

separating function is given as follows  

0
0

1

( ) sign ( )α
=

⎛ ⎞
= ⎜

⎝ ⎠
∑

svN

i i i
i

+ ⎟f y K bx x x . (3.7) 

where Nsv denotes the number of support vectors; xi denotes a support vectors; 

0
iα  denotes a corresponding Lagrange coefficient, and b0 denotes the constant given 

by 

 ( ) (* *
0 0 0

1 (1) ( 1)
2 )⎡ ⎤= − + −⎣ ⎦b w x w x , (3.8) 

where x*(1) denote some support vector belonging to the first class and 

0 α≤ ≤ Ci . x*(−1) denote some support vector belonging to the second class, where 

0 α≤ ≤ Ci . In next section, we proposed the learning algorithm of SVFNN that 

combine the capability of minimizing the empirical risk (training error) and expected 

risk (testing error) of support vector learning in high dimensional data spaces and the 

efficient human-like reasoning of FNN in handling uncertainty information. 

 

3.2 Learning Algorithm of SVFNN 

The learning algorithm of the SVFNN consists of three phases. The details are 

given below: 

Learning Phase 1 – Establishing initial fuzzy rules  

The first phase establishes the initial fuzzy rules, which were usually derived 

from human experts as linguistic knowledge. Because it is not always easy to derive 
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fuzzy rules from human experts, the method of automatically generating fuzzy rules 

from numerical data is issued. The input space partitioning determines the number of 

fuzzy rules extracted from the training set and also the number of fuzzy sets. We use 

the centers and widths of the clusters to represent the rules. To determine the cluster to 

which a point belongs, we consider the value of the firing strength for the given 

cluster. The highest value of the firing strength determines the cluster to which the 

point belongs. The whole algorithm for the generation of new fuzzy rules as well as 

fuzzy sets in each input variable is as follows. Suppose no rules are existent initially. 

 

 

IF x is the first incoming input pattern THEN do 

PART 1. { Generate a new rule with center  and width 1m = x

1
1 1, ,
init init

diag
σ σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

D " ,  

IF the output pattern  belongs to class 1 (namely, ), y [1 0]y =

{ 1 [1 0]Con− =w  for indicating output node 1 been excited, } 

ELSE  { 1 [0 1]Con− =w for indicating output node 2 been 

excited.} 

}  

ELSE for each newly incoming input , do x

PART 2. {Find  as defined in (2.9).  
1 (t)

arg max ( ),j

j c
J

≤ ≤
= xF

IF Con J− ≠ yw , 

{ set and generate a new fuzzy rule, with ( 1) ( ) 1c t c t+ = +
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( 1)c t+ =m x , ( ) ( )( 1)
1 1 1, ,

ln lnc t J
diag

F Fχ+

⎛ ⎞− ⎜ ⎟=
⎜ ⎟
⎝ ⎠

D "
J

 and 

, where ( 1)Con c t− + = yw χ decides the overlap degree between two 

clusters. In addition, after decomposition, we have , new i im x− =

ln( )J
new i Fσ χ− = − × , 1, ,i M= " . Do the following fuzzy 

measure for each input variable i: 

{ 1( , ) max  ( , ), ( , )
ij k new i new i ij ijDegree i t E m mµ σ µ σ≤ ≤ − −⎡ ⎤≡ ⎣ ⎦  

, where E(‧) is defined in (2.14). 

IF ( , ) ( )Degree i t tρ≤  

THEN adopt this new membership function, and set 

1i ik k= + , where is the number of partitions oik f 

the ith input variable. 

ELSE merge the new membership function with closest one

2
new i closest

new i closest
m mm m −

−

+
= = , 

2
σ σσ σ −

−
+

= = new i closest
new i closest . 

}  } ELSE 

{If ( )J
inF F t≤   

{generate a new fuzzy rule with ( 1) ,c t+ =m x

( ) ( )( 1)
1 1 1, ,

ln lnc t J J
diag

F Fχ+

⎛− ⎜=
⎜ ⎟
⎝ ⎠

D "
⎞
⎟ , and the respective consequent 

weight ( 1)Con a t− + = yw .     In addition, we also need to do the 

fuzzy measure for each input variable i.  }  } } 
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In the above algorithm, initσ  is a prespecified constant,  is the rule number 

at time t, 

( )c t

χ  decides the overlap degree between two clusters, and the threshold inF  

determines the number of rules generated. For a higher value of inF , more rules are 

generated and, in general, a higher accuracy is achieved. The value ( )tρ  is a scalar 

similarity criterion, which is monotonically decreasing such that higher similarity 

between two fuzzy sets is allowed in the initial stage of learning. The pre-specified 

values are given heuristically. In general, 35.0)( =tF , 05.0=β , 5.0=initσ , χ =2. 

In addition, after we determine the precondition part of fuzzy rule, we also need to 

properly assign the consequence part of fuzzy rule. Here we define two output nodes 

for doing two-cluster recognition. If output node 1 obtains higher exciting value, we 

know this input-output pattern belongs to class 1. Hence, initially, we should assign 

the proper weight  for the consequence part of fuzzy rule. The above 

procedure gives us means ( ) and variances (

1Con−w

ijm 2
ijσ ) in (2.9). Another parameter in 

(2.7) that needs concern is the weight dj associated with each . We shall see later 

in Learning Phase 2 how we can use the results from the SVM method to determine 

these weights.  

(4)
ja

 

Learning Phase 2 - Calculating the parameters of SVFNN 

Through learning phase (1), the initial structure of SVFNN is established and we 

can then use SVM [34], [35] to find the optimal parameters of SVFNN based on the 

proposed fuzzy kernels. The dual quadratic optimization of SVM [36] is solved in 

order to obtain an optimal hyperplane for any linear or nonlinear space: 
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 maximize ( ) ( )1 ,
2

L y y Kα α α α= −∑ ∑ x x
JG v v

i i j i j i j
i=1 i, j=1

 

subject to 0 ,  1, 2, ,C i v,α≤ ≤ = "i  and , (3.9) 0
i=1

yα =∑
v

i i

where  is the fuzzy kernel in (2.17) and C is a user-specified positive 

parameter to control the tradeoff between complexity of the SVM and the number of 

nonseparable points. This quadratic optimization problem can be solved and a 

solution   can be obtained, where 

( ,K x xi j )

)( 0 0 0
0 1 2, , ....., nsvα α α α=
JG

0
iα  are Lagrange 

coefficients, and nsv is the number of support vectors. The corresponding support 

vectors  can be obtained, and the constant 

(threshold) d

[ , , , ]i1 2sv = sx , sx , sx sx" " nsv

0 in (2.7) is 

 ( ) (* *
0 0 0

1 (1) ( 1)
2

d w x w x⎡ )= ⋅ + ⋅ −⎣ 0
1

nsv

i i i
i

w y xα
=

=∑⎤⎦   with , (3.10) 

where nsv is the number of fuzzy rules (support vectors); the support vector x*(1) 

belongs to the first class and support vector x*(-1) belongs to the second class. Hence, 

the fuzzy rules of SVFNN are reconstructed by using the result of the SVM learning 

with fuzzy kernels. The means and variances of the membership functions can be 

calculated by the values of support vector j j=m sx , j=1, 2, …, nsv, in (2.5) and (2.6) 

and the variances of the multidimensional membership function of the cluster that the 

support vector belongs to, respectively. The coefficients dj in (2.7) corresponding to 

j j=m sx  can be calculated by d y α=j j j . In this phase, the number of fuzzy rules 

can be increased or decreased. The adaptive fuzzy kernel is advantageous to both the 

SVM and the FNN. The use of variable-width fuzzy kernels makes the SVM more 

efficient in terms of the number of required support vectors, which are corresponding 

to the fuzzy rules in SVFNN.  
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Learning Phase 3 – Removing irrelevant fuzzy rules 

In this phase, we propose a method for reducing the number of fuzzy rules 

learning in Phases 1 and 2 by removing some irrelevant fuzzy rules and retuning the 

consequent parameters of the remaining fuzzy rules under the condition that the 

classification accuracy of SVFNN is kept almost the same. Several methods including 

orthogonal least squares (OLS) method and singular value decomposition QR 

(SVD-QR) had been proposed to select important fuzzy rules from a given rule base 

[37]-[39]. In [37] the SVD-QR algorithm select a set of independent fuzzy basis 

function that minimize the residual error in a least squares sense. In [38], an 

orthogonal least-squares method tries to minimize the fitting error according to the 

error reduction ratio rather than simplify the model structure [39]. The proposed 

method reduces the number of fuzzy rules by minimizing the distance measure 

between original fuzzy rules and reduced fuzzy rules without losing the generalization 

performance. To achieve this goal, we rewrite (2.8) as 
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where N is the number of fuzzy rules after Learning phases 1 and 2. Now we try to 

approximate it by the expansion of a reduced set : 
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where Rz is the number of reducing fuzzy rules with N > Rz, qβ is the consequent 

parameters of the remaining fuzzy rules, and  and Re
iqm Re

iqσ  are the mean and 

variance of reducing fuzzy rules. To this end, one can minimize [40] 
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2(4) Re(4) (4) Re(4) Re (4) Re

, 1 , 1 1 1

( ) ( ) 2 (
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j q j q j q j q j q j q
j q j q j q

O O d d a a d aβ β β
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− = × × + × × − × × ×∑ ∑ ∑∑m m )m , (3.13) 

where . Evidently, the problem of finding reduced fuzzy 

rules consists of two parts: one is to determine the reduced fuzzy rules and the other is 

to compute the expansion coefficients 

Re Re Re Re
1 2[ , , , ]T

q q q Mqm m m=m "

iβ . This problem can be solved by choosing 

the more important Rz fuzzy rules from the old N fuzzy rules. By adopting the 

sequential optimization approach in the reduced support vector method in [41], the 

approximation in (3.4) can be achieved by  computing a whole sequence of reduced 

set approximations  
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r q
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O β
=

= ×∑ qa , (3.14) 

for r=1, 2, …, RZ. Then, the mean and variance parameters,  and Re
qm Re

qσ , in 

the expansion of the reduced fuzzy-rule set in (3.4) can be obtained by the following 

iterative optimization rule [41] :  
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According to (3.7), we can find the parameters,  and Re
qm Re

qσ ,  corresponding 

to the first most important fuzzy rule and then remove this rule from the original 

fuzzy rule set represented by mj, j=1, 2, …, N and put (add) this rule into the reduced 

fuzzy rule set. Then the procedure for obtaining the reduced rules is repeated. The 

optimal coefficients , 1, 2, ,q q ,zRβ = " are then computed to approximate 

 by [41], and can be obtained as (4)

1

N

j
j
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and 
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and 

1 2[ , , , ]Nd d dΘ = " .   (3.19) 

The whole learning scheme is iterated until the new rules are sufficiently sparse. 

 

 

3.3 Experimental Results  

The classification performance of the proposed SVFNN is evaluated on five 

well-known benchmark datasets. These five datasets can be obtained from the UCI 

repository of machine learning databases [42] and the Statlog collection [43] and 

IJCNN challenge 2001 [44], [45], respectively.  

A. Data and Implementation 

From the UCI Repository, we choose one dataset: Iris dataset. From Statlog 
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collection we choose three datasets: Vehicle, Dna and Satimage datasets. The problem 

Ijcnn1 is from the first problem of IJCNN challenge 2001. These five datasets will be 

used to verify the effectiveness of the proposed SVFNN classifier. The first dataset 

(Iris dataset) is originally a collection of 150 samples equally distributed among three 

classes of the Iris plant namely Setosa, Verginica, and Versicolor. Each sample is 

represented by four features (septal length, septal width, petal length, and petal width) 

and the corresponding class label. The second dataset (Vehicle dataset) consists of 846 

samples belonging to 4 classes. Each sample is represented by 18 input features. The 

third dataset (Dna dataset) consists of 3186 feature vectors in which 2000 samples are 

used for training and 1186 samples are used for testing. Each sample consists of 180 

input attributes. The data are classified into three physical classes. All Dna examples 

are taken from Genbank 64.1. The four dataset (Satimage dataset) is generated from 

Landsat Multispectral Scanner image data. In this dataset, 4435 samples are used for 

training and 2000 samples are used for testing. The data are classified into six physical 

classes. Each sample consists of 36 input attributes. The five dataset (Ijcnn1 dataset) 

consists of 22 feature vectors in which 49990 samples are used for training and 45495 

samples are used for testing. Each sample consists of 22 input attributes. The data are 

classified into two physical classes. The computational experiments were done on a 

Pentium III-1000 with 1024MB RAM using the Linux operation system.  

For each problem, we estimate the generalized accuracy using different cost 

parameters C=[212, 211, 210, …, 2-2] in (3.1). We apply 2-fold cross-validation for 100 

times on the whole training data in Dna, Satimage and Ijcnn1, and then average all the 

results. We choose the cost parameter C that results in the best average 

cross-validation rate for SVM training to predict the test set. Because Iris and Vehicle 

datasets don’t contain testing data explicitly, we divide the whole data in Iris and 
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Vehicle datasets into two halves, for training and testing datasets, respectively. 

Similarly, we use the above method to experiment. Notice that we scale all training 

and testing data to be in [-1, 1].  

 

B. Experimental Results 

Tables 3.1 to 3.5 present the classification accuracy rates and the number of used 

fuzzy rules (i.e., support vectors) in the SVFNN on Iris, Vehicle, Dna, Satimage and 

Ijcnn1 datasets, respectively. The criterion of determining the number of reduced 

fuzzy rules is the difference of the accuracy values before and after reducing one 

fuzzy rule. If the difference is larger than 0.5%, meaning that some important support 

vector has been removed, then we stop the rule reduction. In Table 3.1, the SVFNN is 

verified by using Iris dataset, where the constant n in the symbol SVFNN-n means the 

number of the learned fuzzy rules. The SVFNN uses fourteen fuzzy rules and 

achieves an error rate of 2.6% on the training data and an error rate of 4% on the 

testing data. When the number of fuzzy rules is reduced to seven, its error rate 

increased to 5.3%. When the number of fuzzy rules is reduced to four, its error rate is 

increased to 13.3%. Continuously decreasing the number of fuzzy rules will keep the 

error rate increasing. From Table 3.2 to 3.5, we have the similar experimental results 

as those in Table 3.1. 

These experimental results show that the proposed SVFNN is good at reducing 

the number of fuzzy rules and maintaining the good generalization ability. Moreover, 

we also refer to some recent other classification performance include support vector 

machine and reduced support vectors methods [46]-[48]. The performance 

comparisons among the existing fuzzy neural network classifiers [49], [50], the 

RBF-kernel-based SVM (without support vector reduction) [46], reduced support 

vector machine (RSVM) [48] and the proposed SVFNN are made in Table 3.6.  
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TABLE 3.1 Experimental results of SVFNN classification on the Iris dataset. 

Training process Testing process SVFNN-n 

(SVFNN with n 

fuzzy rules) 
Error rate C 

Number of 

misclassification
Error rate 

SVFNN-14 2.6% 212 3 4% 

SVFNN -11 2.6% 212 3 4% 

SVFNN -9 2.6% 212 3 4% 

SVFNN -7 4% 212 4 5.3% 

SVFNN -4 17.3% 212 10 13.3% 

1. Input dimension is 4. 

2. The number of training data is 75. 

3. The number of testing data is 75. 

 

TABLE 3.2 Experimental results of SVFNN classification on the Vehicle dataset. 

 
Training process Testing porcess SVFNN-n 

(SVFNN with n 

fuzzy rules) 
Error rate C 

Number of 

misclassification
Error rate 

SVFNN-321 13.1% 211 60 14.2% 

SVFNN-221 13.1% 211 60 14.2% 

SVFNN-171 13.1% 211 60 14.2% 

SVFNN-125 14.9% 211 61 14.5% 

SVFNN-115 29.6% 211 113 26.7% 

1. Input dimension is 18. 

2. The number of training data is 423. 

3. The number of testing data is 423. 
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TABLE 3.3 Experimental results of SVFNN classification on the Dna dataset. 

 
Training process Testing process SVFNN-n 

(SVFNN with n 

fuzzy rules) 
Error Rate C 

Number of 

misclassification
Error rate 

SVFNN-904 6.2% 24 64 5.4% 

SVFNN-704 6.2% 24 64 5.4% 

SVFNN-504 6.2% 24 64 5.4% 

SVFNN-334 6.4% 24 69 5.8% 

SVFNN-300 9.8% 24 139 11.7% 

1. Input dimension is 180. 

2. The number of training data is 2000. 

3. The number of testing data is 1186. 

 

 

TABLE 3.4 Experimental results of SVFNN classification on the Satimage dataset. 

 

Training process Testing process SVFNN-n 

(SVFNN with n 

fuzzy rules) 
Error Rate C 

Number of 

misclassification
Error Rate 

SVFNN-1886 13.1% 26 176 8.8% 

SVFNN-1586 13.1% 26 176 8.8% 

SVFNN-1286 13.1% 26 176 8.8% 

SVFNN-986 13.1% 26 176 8.8% 

SVFNN-899 13.7% 26 184 9.2% 

SVFNN-786 19.8% 26 316 15.8% 

1. Input dimension is 36. 

2. The number of training data is 4435. 

3. The number of testing data is 2000. 

 

33 



 

 

TABLE 3.5 Experimental results of SVFNN classification on the Ijnn1 dataset. 

 

Training process Testing porcess SVFNN-n 

(SVFNN with n 

fuzzy rules) 
Error rate C 

Number of 

misclassification
Error rate 

SVFNN-1945 4.2% 212 1955 4.3% 

SVFNN-1545 4.2% 212 1955 4.3% 

SVFNN-1245 4.2% 212 1955 4.3% 

SVFNN-1021 4.3% 212 2047 4.5% 

SVFNN-977 14.5% 212 7416 16.3% 

1. Input dimension is 22. 

2. The number of training data is 49990. 

3. The number of testing data is 45495. 

 

 

TABLE 3.6 Classification error rate comparisons among FNN, RBF-kernel-based 

SVM, RSVM and SVFNN classifiers, where NA means “not available”. 

 

FNN [49, 50] 
RBF-kernel-based 

SVM [46] 
RSVM [48] SVFNN 

Datasets Number 

of fuzzy 

rules 

Error rate 

Number of 

support 

vectors 

Error rate

Number of 

support 

vectors 

Error rate

Number 

of Fuzzy 

rules 

Error rate

Iris NA 4.3% 16 3.3% NA NA 7 5.3% 

Vehicle NA 29.9% 343 13.4% NA NA 125 14.5% 

Dna NA 16.4% 1152 4.2% 372 7.7% 334 5.8% 

Satimage NA 8.9% 2170 8.3% 1826 10.1% 889 9.2% 

Ijcnn1 NA NA 4555 1.2% 200 8.4% 1021 4.5% 

34 



 

 

3.4 Discussions 

These experimental results show that the proposed SVFNN is good at reducing 

the number of fuzzy rules and maintaining the good generalization ability. These 

results indicate that the SVFNN classifier produces lower testing error rates as 

compared to FNN classifiers [49], [50], and uses less support vectors as compared to 

the regular SVM using fixed-width RBF kernels [46]. As compared to RSVM [48], 

the proposed SVFNN can not only achieve high classification accuracy, but also 

reduce the number of support vectors quit well. It is noticed that although the SVFNN 

uses more support vectors in the Ijcnn1 dataset than the RSVM, it maintains much 

higher classification accuracy than the RSVM. In summary, the proposed SVFNN 

classifier exhibits better generalization ability on the testing data and use much 

smaller number of fuzzy rules.   
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CHAPTER 4 

SUPPORT-VECTOR BASED FUZZY NEURAL 

NETWORK FOR FUNCTION APPROXIMATION 

In this chapter, a novel support-vector based fuzzy neural network (SVFNN) 

which integrates the statistical support vector learning method into FNN and exploits 

the knowledge representation power and learning ability of the FNN to determine the 

kernel functions of the SVR adaptively is proposed. The SVFNN combine the 

capability of good robustness against noise and the efficient human-like reasoning of 

FNN in handling uncertainty information. The use of the proposed fuzzy kernels 

provides the SVR with adaptive local representation power such that the number of 

support vectors can be further reduced. The proposed learning algorithm consists of 

three learning phases to construct and train the SVFNN. In the first phase, the fuzzy 

rules and membership functions are automatically determined based on the fuzzy 

clustering method. In the second phase, the parameters of FNN are calculated by the 

SVR with the proposed adaptive fuzzy kernel function for function approximation. In 

the third phase, the relevant fuzzy rules are selected by the proposed fuzzy rule 

reduction method. The proposed SVFNN method can automatically generate the 

fuzzy rules and achieve good approximation performance with drastically reduced 

number of fuzzy rule and robustness. 

4.1 Support Vector Regression Algorithm 

In ε-SV regression, the goal is to find a function f(x) that has at most ε deviation 
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from the actually obtained targets yi for all the training data, and at the same time is as 

flat as possible. In other words, we do not care about errors as long as they are less 

than ε, but will not accept any deviation larger than this.  

For this reasons, the linear regression function is considered first as follows: 

f(x)=wTx+b (4.1) 

Where w is the weight vector and b is a bias. The error of approximation is used 

instead of the margin between an optimal separating hyperplane and support vectors. 

Vapnik introduced a general type of loss function, the linear loss function with 

ε-insensitivity zone: 

0 (
( )

( ) otherwise.
if y - f

y f
y - fε

) ,ε
ε

⎧ ≤⎪− = ⎨ −⎪⎩

x
x

x
 (4.2) 

The loss is equal to zero if the difference between the predicted f(x) and the 

measured value is less than ε. The ε-insensitivity loss function defines an ε tube. If the 

predicted value is within the tube, the loss is zero. For all other predicted points 

outside the tube, the loss is equal to the magnitude of the difference between the 

predicted value and the radius ε of the tube. Figure 4.1 shows the soft margin loss 

setting for a regression problem.  
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Fig. 4.1 the soft margin loss setting for a regression problem 
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From Fig. 4.1, the slack variables *,i iξ ξ  cope with the large outliers in the 

regression problem. In formulating support vector algorithm for regression, the 

objective is to minimize the empirical risk and ||w||2 simultaneously. The primal 

problem can therefore be defined as follows: 

2 *

1
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*

1minimize ( )
2

( )
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, 0
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i i
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i i

i i

i i
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f y
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 (4.3) 

 

The constant C>0 determines the trade-off between the flatness of f(x) and the 

amount up to which deviations larger than ε are tolerated. The optimization problem 

can be converted to the dual optimization problem, which can be formulated as 

follows: 

maximize     

( )* * * * *1, ( ) ( ) ( )(
2

T
i i i i jL yα α ε α α α α α α α α= − + + − − − −∑ ∑ ∑ x x

v v v

i i i
i=1 i=1 i, j=1

) i jj
  

subject to  *
i i

i=1 i=1

α α=∑ ∑
v v

,  (4.4) *0 , 0 ,  1, 2,i C C iα α≤ ≤ ≤ ≤ = "i , v

The kernel method can be added to above optimization to solve the nonlinear problem, 

too. The parameter ε in the ε-insensitive function and the regular constant C are 

powerful means for regularization and adaptation to the noise in training data. Both 

parameters control the network complexity and the generalization capability of SVR. 

In next section, we proposed the learning algorithm of SVFNN that combine the 

capability of good robustness against noise and the efficient human-like reasoning of 

FNN in handling uncertainty information. The SVFNN use the fuzzy kernels to 

provide the SVR with adaptive local representation power such that the number of 

support vectors can be further reduced. 
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4.2 Learning Algorithm of SVFNN 

  The proposed learning algorithm of SVFNN consists of three phases. In the 

first phase, the initial fuzzy rule (cluster) and membership of network structure are 

automatically established based on the fuzzy clustering method. The input space 

partitioning determines the initial fuzzy rules, which is used to determine the fuzzy 

kernels. In the second phase, the means of membership functions and the connecting 

weights between layer 3 and layer 4 of SVFNN (see Fig. 2.1) are optimized by using 

the result of the support vector learning method with the fuzzy kernels function 

approximation. In the third phase, unnecessary fuzzy rules are recognized and 

eliminated and the relevant fuzzy rules are determined.    

Learning Phase 1 – Establishing initial fuzzy rules  

The first phase establishes the initial fuzzy rules. The input space partitioning 

determines the number of fuzzy rules extracted from the training set and also the 

number of fuzzy sets. We use the centers and widths of the clusters to represent the 

rules. To determine the cluster to which a point belongs, we consider the value of the 

firing strength for the given cluster. The highest value of the firing strength 

determines the cluster to which the point belongs. The input vector  will combine 

the corresponding output value y

ix

i in the training set S={(x1, y1), (x2, y2), …, (xv, yv)} 

to input the learning phase 1. For generating a compact structure, the Cartesian 

product-space of the input and output is applied to the clustering algorithm [60]. The 

training samples are partitioned into characteristic regions where the system behaviors 

are approximated. The input data set is formed by combining the input vector x=[x1, 

x2, x3, …, xM]T and the corresponding output value yi. Based on the clustering-based 

approach to construct initial fuzzy rules of FNN, first the input data is partitioned. For 
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each incoming pattern b, 

  b=[x;y]T. (4.5) 

The whole algorithm of SVFNN for the generation of new fuzzy rules as well as 

fuzzy sets in each input variable is as follows. Suppose no rules are existent initially. 

IF b=[x;y] ( 1  is the first incoming input pattern THEN do )n + ×1

bPART 1. { Generate a new rule with center  and width 1m =

1
1 1, ,
init init

diag
σ σ
⎛ ⎞

= ⎜
⎝ ⎠

D " ⎟

F z

. After decomposition, we have n

one-dimensional membership functions, with m1i=bi and σ1i=σ

init, i=1, …, n+1.  

}  

ELSE for each newly incoming input b=[x;y], do 

PART 2. {Find  as defined in (2.10).  
1 (t)

arg max ( ),j

j c
J

≤ ≤
=

IF )(tFF in
J ≥  

   do nothing 

ELSE

{ set  and generate a new fuzzy rule, with , ( 1) ( ) 1c t c t+ = + ( 1)+ =c tm b

( ) ( )( 1)
1 1 1, ,

ln lnc t J
diag

F Fχ+

⎛ ⎞− ⎜
J

=
⎜
⎝ ⎠

D " ⎟
⎟

, where χ decides the overlap 

degree between two clusters. In addition, after decomposition, we have 

, − =new i im b ln( )J
new i Fσ χ− = − × , 1, ,i M= " . Do the following fuzzy 

measure for each input variable i: 

{ 1( , ) max  ( , ), ( , )
ij k new i new i ij ijDegree i t E m mµ σ µ σ≤ ≤ − −⎡ ⎤≡ ⎣ ⎦  
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, where E(‧) is defined in (2.14). 

IF ( , ) ( )Degree i t tρ≤  

THEN adopt this new membership function, and set 

1i ik k= + , where is the number of partitions oik f 

the ith training pattern. 

ELSE merge the new membership function with closest one 

2
new i closest

new i closest
m mm m −

−

+
= = , 

2
σ σσ σ −

−
+

= = new i closest
new i closest .  

}  }  } 

 

In the above algorithm, initσ  is a prespecified constant,  is the rule number 

at time t, 

( )c t

χ  decides the overlap degree between two clusters, and the threshold inF  

determines the number of the generated rules. For a higher value of inF , more rules 

are generated and, in general, a higher accuracy is achieved. The value ( )tρ  is a 

scalar similarity criterion, which is monotonically decreasing such that higher 

similarity between two fuzzy sets is allowed in the initial stage of learning. The 

pre-specified values are given heuristically. In addition, after we determine the 

precondition part of fuzzy rule, we also need to properly assign the consequence part 

of fuzzy rule. Hence, initially, we should assign the proper weight  for the 

consequence part of fuzzy rule. The above procedure gives us means ( ) and 

variances (

1Con−w

ijm

2
ijσ ) in (2.12). Another parameter in (2.7) that needs concern is the weight 
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dj associated with each . It is presented in Learning Phase 2 to show how we can 

use the results from the SVR method to determine these weights.  

(4)
ja

 

Learning Phase 2 - Calculating the parameters of SVFNN 

Through above method, the optimal parameters of SVFNN are trained by using 

the ε-insensitivity loss function SVR [35] based on the fuzzy kernels [61]. The dual 

quadratic optimization of SVR [36], [62] is solved in order to obtain an optimal 

hyperplane for any linear or nonlinear space: 

maximize  ( ) ( )* * * * *1, ( ) ( ) ( )( )
2i i i i jL yα α ε α α α α α α α α= − + + − − − −∑ ∑ ∑ x x

v v v

i i i j
i=1 i=1 i, j=1

,K i j
 

 constraints subject to *
i i

i=1 i=1

α α=∑ ∑
v v

, .  (4.6) *0 , 0 ,  1, 2,i C C iα α≤ ≤ ≤ ≤ = "i , v

)where  is the fuzzy kernel that is defined as (2.17), ε is a previously 

chosen nonnegative number for ε-insensitive loss function and C is a user-specified 

positive parameter to control the tradeoff between complexity of the SVR and the 

number of nonseparable points.  This quadratic optimization problem can be solved 

and a solution  

( ,K x xi j

( )1 2, , ....., nsvα α α α=
JG

 and ( )* * * *
1 2, , ....., nsvα α α α=

JG
 can be 

obtained, where iα  and *
iα  are Lagrange coefficients, and nsv is the number of 

support vectors. The corresponding support vectors 

 can be obtained, and the constant (threshold) d[ , , ,i1 2sv = sx , sx , sx sx" " ]nsv 0 

in (2.7) is 

 0 0
1

1 ( ( ))
v

T
i i

i

d y
v =

= −∑ x w   with , (4.7) *
0

1

(
nsv

i i
i

α α
=

= −∑w ) ix

where nsv is the number of fuzzy rules (support vectors). Hence, the fuzzy rules of 

SVFNN are reconstructed by using the result of the SVR learning with fuzzy kernels. 
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The means and variances of the membership functions can be calculated by the values 

of support vector j j=m sx , j=1, 2, …, nsv, in (2.6) and (2.7) and the variances of the 

multidimensional membership function of the cluster that the support vector belongs 

to, respectively. The coefficients dj in (2.8) corresponding to j j=m sx  can be 

calculated by *( j jd y )α α= −j j . In this phase, the number of fuzzy rules can be 

increased or decreased. The adaptive fuzzy kernel is advantageous to both the SVR 

and the FNN. The use of variable-width fuzzy kernels makes the SVR more efficient 

in terms of the number of required support vectors, which are corresponding to the 

fuzzy rules in SVFNN.  

Learning Phase 3 – Removing irrelevant fuzzy rules 

In this phase, the number of fuzzy rules learning in Phases 1 and 2 are reduced 

by removing some irrelevant fuzzy rules. The method of reducing fuzzy rules 

attempts to reduce the number of fuzzy rules by minimizing the distance measure 

between original fuzzy rules and reduced fuzzy rules without losing the generalization 

performance. The reducing method is the same as in Section 2 of Chapter 3 

 4.3 Experimental Results  

In this section we present some experimental results to demonstrate the 

performance and capabilities of the proposed SVFNN. First, we apply the SVFNN to 

four function approximation problems to examine its rule-reduction performance. 

Then the robustness of SVFNN is evaluated by these functions with noise. 

A. Setup  

1) Functions for approximation:  

The function approximation problems include one- and two- variable functions 
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which have been widely used in the literature [63]-[65]: 

The fist function is a one-variable sinc function defined as  

x
xxf )sin()()1( =  with ]10,10[−∈x . (4.8) 

The second function is one-variable function defined as 

                with 3/2)2( )( xxf = ]2,2[−∈x . (4.9) 

The third function is a two-variable Gaussian function defined as 

      with )}(2exp{),( 22)3( yxyxf +−= ]1,1[−∈x , ]1,1[−∈y . (4.10) 

The fourth function, which exhibits a more complex structure, is defined as  

2 2
(4)

2 2

sin(10 )( , )
10

x yf x y
x y

+
=

+
 with ]1,1[−∈x , ]1,1[−∈y .  (4.11) 

Plots of these four functions are shown in subplots (a) of Figs. 4.2-4.5.  

 

 

 

(a) 
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(b) 

Fig.4.2 (a) The desired output of the function show in (4.8). (b) The resulting 
approximation by SVFNN. 
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(b) 

Fig 4.3 (a) The desired output of the function show in (4.9) (b) The resulting 
approximation by SVFNN. 
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(b) 

Fig 4.4 (a) The desired output of the function show in (4.10). (b) The resulting 
approximation by SVFNN. 
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(b) 

 
Fig 4.5 (a) The desired output of the function show in (4.11). (b) The resulting 

approximation by SVFNN. 
2) Training and Testing data: 

There are two sets of training data for each function, one is noiseless and the 

other is noisy. In the first function, the noiseless training set has 50 points that are 

generated by randomly selecting, where ]10,10[−∈x . The testing set has 200 points 

that are randomly generated by the same function in the same range. The training and 

testing sets of the second function are generated by the same way, where . 

In the third function, the 150 training examples are generated by randomly selecting, 

where , . The testing set has 600 points that are randomly 

generated by the same function in the same range. In the fourth function, The 150 

training examples are generated by randomly selecting, where , 

. The testing set has 600 points that is randomly generated by the same 

function in the same range. The noisy training sets are generated by adding 

independent and identically distributed (i.i.d.) Gaussian noise, with zero mean and 

0.25 standard deviation, to the original training sets.  

]2,2[−∈x

]1,1[−∈x ]1,1[−∈y

]1,1[−∈x

]1,1[−∈y
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,25.0),(),( )()(
l

jj
noise yxfyxf ε+=  .4,,1 "=j  (4.12) 

Here )1,0(~Νlε , the zero mean unit variance Gaussian noise. It is noted that 

the signal to noise ratio (SNR) is roughly equal to 4 (1/0.25=4).  

3) experimental particular 

The computational experiments were done on a Pentium III-1000 with 1024MB 

RAM using the Microsoft window operation system. The simulations were conducted 

in the Matlab environment. The root-mean-square-error (RMSE) is used to quantify 

the performance of methods and it is defined as 

∑
=

−=
v

i
ii vyy

1

2 /)ˆ(RMSE  (4.13) 

where yi is the desired output,  is the system output, and v is the number of the 

used training or testing data. The ε-insensitivity parameter and cost parameter C in 

(4.6) are selected from the range of ε=[0.1, 0.01, 0.001, 0.0001] and C=[10

iŷ

-1, 100, 

101, …, 105], respectively. For the SVFNN training, we choose the ε-insensitivity 

parameter and cost parameter C that results in the best RMSE average to calculate the 

testing RMSE. Similarly, the parameters of SVR for comparison are also selected by 

using the same method, too.   

B. Experimental Results 

Tables 4.1 to 4.5 show the training and testing RMSEs and the number of used 

fuzzy rules (i.e., support vectors) in the SVFNN on the approximation of the four 

functions ((4.8) to (4.11)), respectively. The training and testing RMSEs can reach a 

nice level by selecting a proper parameter set for {ε, C }. The criterion of 

determining the number of reduced fuzzy rules is the difference of the accuracy 

values before and after reducing one fuzzy rule. If the difference is larger than 0.2%, 
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meaning that some important support vector has been removed, then we stop the rule 

reduction. In Table 4.1 (a), the SVFNN is verified by the one-variable sinc function 

defined as (4.8), where the constant n in the symbol SVFNN-n means the number of 

the learned fuzzy rules. It uses sixteen fuzzy rules and achieves a root mean square 

error (RMSE) value of 0.0007 on the training data and an RMSE value of 0.0026 on 

the testing data. When the number of fuzzy rules is reduced to twelve, its testing error 

rate increased to 0.0029. When the number of fuzzy rules is reduced to eleven, its 

testing error rate is increased to 0.01. Continuously decreasing the number of fuzzy 

rules will keep the error rate increasing. Therefore, twelve fuzzy rules are used in this 

case. From Tables 4.2 (a) to 4.4 (a), we have the similar experimental results as those 

in Table 4.1 (a). Plots of these experimental results are shown in subplots (b) of Figs. 

4.2-4.5. In Table 4.1 (b), the independent and identically distributed (i.i.d.) Gaussian 

noise, with zero mean and 0.25 standard deviation, is added to the function for 

approximation. It uses sixteen fuzzy rules and achieves a root mean square error 

(RMSE) value of 0.0085 on the training data and an RMSE value of 0.042 on the 

testing data. When the number of fuzzy rules is reduced to twelve, its testing error rate 

is increased to 0.045. When the number of fuzzy rules is reduced to eleven, its testing 

error rate is increased to 0.091. Therefore, twelve fuzzy rules are also used in this case. 

From Table 4.2 (b) to 4.4 (b), we have the similar experimental results as those in 

Table 4.1 (b) These experimental results show that the proposed SVFNN can properly 

reduce the number of required fuzzy rules and maintain the robustness against noise.    

The performance comparisons among the Adaptive-network-based fuzzy 

inference system (ANFIS) [66], the robust neural network [67], the RBF-kernel-based 

SVR (without support vector reduction) [68], and the proposed SVFNN are made in 

Tables 4.5 and 4.6.  
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TABLE 4.1 (a) Experimental results of SVFNN on the first function using the training 

data without noise. (b) Experimental results of SVFNN on the first 

function using the training data with noise. 

(a) 

 Training process Testing process 
SVFNN-n (SVFNN 

with n fuzzy rules) C RMSE RMSE 

SVFNN – 16 100 0.0007 0.0026 

SVFNN – 14 100 0.0007 0.0026 

SVFNN – 12 100 0.0007 0.0029 

SVFNN – 11 100 0.001 0.01 

1. The first function is 
x

xxf )sin()()1( = ]10,10[ with −∈x . 

2. The number of training data is 50. 

3. The number of testing data is 200. 

 

 

 

 

 

 

 

 

 

(b) 

 
Training process Testing process 

SVFNN-n (SVFNN 

with n fuzzy rules) C RMSE RMSE 

SVFNN – 16 100 0.0085 0.042 

SVFNN – 14 100 0.0085 0.042 

SVFNN – 12 100 0.0085 0.045 

SVFNN – 11 100 0.031 0.091 

1. The first function is 
x

xxf )sin()()1( = ]10,10[ with −∈x . 

2. The number of training data is 50. 

3. The number of testing data is 200. 
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TABLE 4.2 (a) Experimental results of SVFNN on the second function using the 

training data without noise. (b) Experimental results of SVFNN on the 

second function using the training data with noise. 

(a) 

Training process Testing porcess 
SVFNN-n (SVFNN 

with n fuzzy rules) C RMSE RMSE 

SVFNN – 19 100 0.0009 0.0056 

SVFNN – 16 100 0.0009 0.0056 

SVFNN – 12 100 0.0009 0.0060 

SVFNN - 11 100 0.0015 0.0092 

1. The second function is  with . 3/2)2( )( xxf = ]2,2[−∈x

2. The number of training data is 50. 

3. The number of testing data is 200. 

 

 

 

 

 

 

 

 

 

 

(b) 

 
Training process Testing porcess 

SVFNN-n (SVFNN 

with n fuzzy rules) C RMSE RMSE 

SVFNN – 25 100 0.001 0.078 

SVFNN – 20 100 0.001 0.078 

SVFNN – 15 100 0.001 0.081 

SVFNN - 14 100 0.0057 0.139 

1. The second function is  with . 3/2)2( )( xxf = ]2,2[−∈x

2. The number of training data is 50. 

3. The number of testing data is 200. 
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TABLE 4.3 (a) Experimental results of SVFNN on the third function using the 

training data without noise. (b) Experimental results of SVFNN on the 

third function using the training data with noise. 

(a) 

Training process Testing process 
SVFNN-n (SVFNN 

with n fuzzy rules) C RMSE RMSE 

SVFNN- 33 1000 0.0018 0.0037 

SVFNN- 24 1000 0.0018 0.0037 

SVFNN- 17 1000 0.0018 0.0040 

SVFNN- 16 1000 0.002 0.0089 

1. The third function is  with 
, . 

)}(2exp{),( 22)3( yxyxf +−=

]1,1[−∈x ]1,1[−∈y
2. The number of training data is 150. 

3. The number of testing data is 600. 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 Training process Testing process 
SVFNN-n (SVFNN 

with n fuzzy rules) C RMSE RMSE 

SVFNN- 32 1000 0.018 0.051 

SVFNN- 22 1000 0.018 0.051 

SVFNN- 17 1000 0.018 0.054 

SVFNN- 16 1000 0.045 0.121 

1. The third function is  with 
, . 

)}(2exp{),( 22)3( yxyxf +−=

]1,1[−∈x ]1,1[−∈y
2. The number of training data is 150. 

3. The number of testing data is 600. 
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TABLE 4.4 (a) Experimental results of SVFNN on the fourth function using the 

training data without noise. (b) Experimental results of SVFNN on the 

fourth function using the training data with noise. 

(a) 

 Training process Testing process 
SVFNN-n (SVFNN 

with n fuzzy rules) C RMES RMES 

SVFNN – 40 100 0.0059 0.0098 

SVFNN – 30 100 0.0059 0.0098 

SVFNN – 21 100 0.0063 0.01 

SVFNN – 20 100 0.0099 0.032 

1. The fourth function is 2 2
(4)

2 2

sin(10 )( , )
10

x yf x y
x y

+
=

+
 with , 

 

[ 1, 1]x∈ −

[ 1, 1]y∈ −

2. The number of training data is 150. 

3. The number of testing data is 600. 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 Training process Testing process 
SVFNN-n (SVFNN 

with n fuzzy rules) C RMES RMES 

SVFNN – 45 100 0.01 0.071 

SVFNN – 34 100 0.01 0.071 

SVFNN – 22 100 0.01 0.073 

SVFNN – 20 100 0.058 0.152 

1. The fourth function is 2 2
(4)

2 2

sin(10 )( , )
10

x yf x y
x y

+
=

+
 with , 

 

[ 1, 1]x∈ −

[ 1, 1]y∈ −

2. The number of training data is 150. 

3. The number of testing data is 600. 
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TABLE 4.5 Comparisons RMSE using the training data without noise. 

 

FUNCTION ANFIS [66] Robust NN [67] 
RBF-kernel-based SVR 

[68] 
SVFNN 

 
Number of 

fuzzy rules
RMSE 

Number of  

neurons 
RMSE

Number of 

support vectors
RMSE

Number of 

Fuzzy rules 
RMSE

)()1( xf  11 0.0071 12 0.0011 28 0.0018 12 0.0029

)()2( xf  11 0.0067 12 0.0047 50 0.0054 12 0.006

),()3( yxf  9 0.0039 22 0.0035 122 0.0018 17 0.004

),()4( yxf  16 0.015 35 0.0057 145 0.0092 21 0.01 

 

 

TABLE 4.6 Comparisons RMSE using the training data with noise. 

 

FUNCTION ANFIS [66] Robust NN [67] RBF-kernel-based SVR [68] SVFNN 

 
Number of 

fuzzy rules
RMSE 

Number of 

neurons
RMSE

Number of 

support vectors
RMSE 

Number of 

Fuzzy rules 
RMSE

(1) ( )noisef x  15 0.726 12 0.053 49 0.035 12 0.045

(2) ( )noisef x  12 0.5 12 0.07 49 0.07 15 0.081

(3) ( , )noisef x y  9 0.305 22 0.056 139 0.04 17 0.054

(4) ( , )noisef x y  16 1.76 30 0.09 150 0.062 22 0.073
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4.4 Discussions  

These results indicate that the SVFNN maintains the function approximation 

accuracy and uses less support vectors as compared to the regular SVR using 

fixed-width RBF kernels. The computational cost of the proposed SVFNN is also less 

than the regular SVR in the testing stage. In addition, according to Table 4.6 the 

testing results of SVFNN trained by the noisy data are close to results of SVFNN 

trained by the data without noise. It demonstrates that the proposed SVFNN have 

better robustness compared to ANFIS and the robust neural network, although the 

SVFNN uses little more rules compared with the ANFIS. In summary, the proposed 

SVFNN exhibits better generalization ability, maintains more robustness and uses less 

fuzzy rules. 
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CHAPTER 5 

CONCLUSIONS 

In this dissertation we proposed a support-vector-based fuzzy neural networks 

(SVFNNs) for solving more complex classification and function approximation 

problems. SVFNNs combines the superior classification power of support vector 

machine (SVM) in high dimensional data spaces and the efficient human-like 

reasoning of FNN in handling uncertainty information. The SVFNNs is the realization 

of a new idea for the adaptive kernel functions used in the SVM. The use of the 

proposed fuzzy kernels provides the SVM with adaptive local representation power, 

and thus brings the advantages of FNN (such as adaptive learning and economic 

network structure) into the SVM directly. SVFNNs combine the capability of good 

robustness against noise and global generalization of support vector learning and the 

efficient human-like reasoning of FNN in handling uncertainty information. A novel 

adaptive fuzzy kernel function is also proposed to bring the advantages of FNNs to 

the SVR directly and the use of the proposed fuzzy kernels provides the SVR with 

adaptive local representation power. The major advantages of the proposed SVFNNs  

are as follows: 

(1) The proposed SVFNNs can automatically generate fuzzy rules, and improve the 

accuracy and learning speed of classification.  

(2) It combined the optimal classification ability of SVM and the human-like 

reasoning of fuzzy systems. It improved the classification ability by giving SVM 

with adaptive fuzzy kernels and increased the speed of classification by reduced 
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fuzzy rules. 

(3) The fuzzy kernels using the variable-width fuzzy membership functions can make 

the SVM more efficient in terms of the number of required support vectors, and 

also make the learned FNN more understandable to human. 

(4) The ability of the structural risk minimization induction principle, which forms 

the basis for the SVM method to minimize the expected risk, gives better 

generalization ability to the FNN classification. 

(5) The proposed SVFNN can automatically generate fuzzy rules and improve the 

accuracy of function approximation.  

(6) The combination of the robust regression ability of SVR and the human-like 

reasoning of fuzzy systems improves the robust regression ability of FNN by 

using SVR training and increases the speed of execution by reduced fuzzy rules. 

 

In the future work, we will try to develop a mechanism to automatically select 

the appropriate initial values of the parameters used in the first phase training and the 

penalty parameter in the second phase training. We will also apply the proposed 

method to deal with complex and huge classification problem and more complex and 

noisy functions. 
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