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Abstract

In this dissertation, the bang-bang sliding mode control is proposed to design the
switching controller for a buck DC-DC converter. Normally, the on and off states of
the switching device is modeled as an input switching between 1 and 0, and the
reaching-and-sliding (RAS) regions are crucially related to the parameters of the
sliding function. As a result, the sliding ' motions may not globally exist and different
switching behaviors may be generated. With the bang-bang sliding mode control, the
system trajectories of a buck DC-DC converter will clearly depicted in the phase
plane and experimental results”.will be given .for verifications. Besides, some
considerations about the practical implementation are also included and a periodic
ramp signal is added into the controller to achieve constant switching frequency. Then,
the bang-bang sliding mode control is also adopted to design the switching controller
for a class of switched systems. Two sufficient conditions to guarantee the existence
of stable sliding motions will be given and the complex switching behaviors resulting
from two switching functions will be clearly described. Moreover, the robustness of
this switching controller to model uncertainties will be discussed. Finally, numerical

simulations are given for demonstrations.
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Chapter 1 Introduction

1.1 Research Motivation

The sliding mode control (SMC) is well known for its robustness to parameter
variations and bounded matched disturbances [1-6]. With this advantage, the sliding
mode control has been extensively applied to various fields of engineering
applications, e.g., robotic systems, electric drives and switching power converters
[7-10]. The basic idea of the sliding mode control is enforcing the system trajectories
to reach a predetermined sliding surface or sliding regime in a finite time and then
stay on it thereafter. Once the sliding mode,occurs, the controlled system will possess
excellent robustness and invarianée propeértiesto thé.matched disturbance.

When the input only takes two possible‘values, it is called the bang-bang input,
which originates from the optimal control-and some examples can be found in [11].
While a bang-bang input is only available in'the sliding mode control, it is referred to
as the bang-bang sliding mode control. The major difference between it and the
conventional sliding mode control is that the reaching-and-sliding (RAS) region may
not be globally satisfied [12,13].

Switching power converters are the most significant systems with their control
inputs only switching between 0 and 1. For the switched systems consisting of two
subsystems, their inputs also take only two possible values of 1 and —1. Therefore, it
is proper to design the switching controllers of these systems via bang-bang sliding
mode control. This dissertation will mainly focus on the design of the switching
controller for a buck DC-DC converter based on bang-bang sliding mode control and

then apply it to stabilize the switched systems.



1.2 Sliding Mode in Switching Power Converters

A variety of SMC-based methods have been proposed for switching power
converters [12,14-26]. Compared to the state-space average method [27,28], the
sliding mode theory provides large signal stability and is more robust to uncertainties.
Earlier, Sira-Ramirez presented detailed analyses about bilinear switched-networks
and showed that based on the sliding mode theory, the output voltage regulation of a
buck DC-DC converter could be achieved via indirect control with the exactly known
model [12]. Then, Carpita and Marchesoni presented a robust sliding mode controller
for the power conditioning system with resistive load variation and input disturbance;
however, they didn’t consider how the_system performances are affected by different
choice of the coefficients in sliding, functions:[17]. During that time, Spiazzi et al.
proposed general purpose sliding mode” control -for DC-DC switching power
converters [25,26]. More detailed analyses‘about the-system stability were given and a
simple method for switching power converters to operate at a constant switching
frequency was proposed. Recently, Tan et al. give guidelines on the practical design
of the sliding mode controller for buck DC-DC converters [19] and propose other
SMC-based controllers to operate switching power converters at a constant switching
frequency [20-22]. He and Luo also give another type of SMC-based controller to
achieve constant switching frequency [23,24].

From above, there are mainly two purposes in these works. First, design a sliding
function on which the system dynamics can be stabilized. For buck DC-DC
converters, the simplest sliding function can be determined from the linear
combination of state variables in the phase-variable control canonical form [17,19,25].

Other types of sliding functions are proposed by adding an integral term of the output



voltage error [20,24]. Second, modify the controllers such that switching power
converters can operate at a constant switching frequency with the invariant property to
input and load variations. Several possible methods have been proposed to achieve
this objective [20,21,24,26]. Based on the equivalent control in the sliding mode, the
duty cycle control signal of a PWM controller can be determined from the work of
Tan et al. [20] and He and Luo [24]. An adjustable hysteresis band is proposed based
on the adaptive feedforward and feedback control scheme in [21]. The adaptive
feedforward loop is adopted to reduce the frequency deviation resulting from the input
voltage variation. As for the adaptive feedback loop, it is used to adjust the parameter
of the sliding function such that the frequency deviation resulting from the load
variation can be eliminated. Another simple method is adding a periodic ramp signal
into the hysteresis-type sliding mede controller and then using an additional PI-type
compensator to reduce the steady:state error.in the sliding mode [26]. Among these
methods, the last one possesses-the advantage-of easier realization and preserves the
original fast dynamic response in‘transient-state. Therefore, this method will be
adopted in this dissertation for the purpose of controlling the buck DC-DC converter
at a constant switching frequency.

In switching power converters, their large-signal models depend on the different
states of switching devices or diodes. Thus, large-signal multi-models should be
adopted to describe the overall system dynamics and these switching power
converters are treated as switched systems [29,30]. As a result, the stabilization

problems in switched systems are very significant and worthy of research.



1.3 Stabilization Problems in Switched Systems

Switched systems are a special class of hybrid systems consisting of more than one
subsystem [31]. Recently, more and more attentions have been paid to this filed and
one of the most attractive problems is to stabilize the switched systems consisting of
unstable subsystems (see, e.g., [31-35] and the references cited therein). In the work
of Wicks et al. [33,34], they incorporated the sliding mode theory to design the
switching controllers for the switched systems with stable convex combinations of
two subsystem matrices. In the work of Xu and Antsaklis [36], they discussed three
classes of switched systems with subsystems possessing unstable foci, unstable nodes
and saddle points. Their main idea is,to.choose an active subsystem such that the
distance of the state to the origin is minimized, where the switching criterions are
based on the angles of the subsystem vector fields and the geometric properties of the
phase plane. In [37], Bacciotti proposed another stabilizing switching rule based on
the damping feedback originated from' the work by Jurdjevic and Quinn [38]. In his
later work with Ceragioli [39], a state-static-memoryless stabilizing feedback law was
proposed to stabilize a different class of switched systems, in which one of the
subsystems has a pair of conjugate imaginary eigenvalues. Recently, Lin and
Antasklis consider a class of uncertain switched systems satisfying the assumptions
that their subsystems contain stable auxiliary systems and there exist no unstable
sliding motions [40]. Motivated by the works of Wicks ef al. [33,34], this dissertation
will extend the bang-bang sliding mode control to design the switching controller for
another class of switched systems. Compared with their work, we will give more
theoretical analyses about the sliding motions in the switched systems and provide

two important assumptions to guarantee the existence of stable sliding motions.



1.4 Organization of the Dissertation

The remaining contents of this dissertation are organized as follows. In Chapter 2,
the fundaments of the sliding mode theory are given as preliminaries and then the
properties of the bang-bang sliding mode control are discussed. In Chapter 3, the
switching controller of a buck DC-DC converter is designed based on the bang-bang
sliding mode control. The switching behaviors will be analyzed in the phase plane and
experiment results will be given for verifications. Some practical considerations will
also be included and the original controller will be modified to achieve constant
switching frequency by adding a periodic ramp signal. In Chapter 4, the bang-bang
sliding mode control is extended to design the switching controller for a class of
switched systems and two important assumptions to. guarantee the existence of stable
sliding motions will be given. Moreover, it-will show that the switching control laws
consist of two switching functions~and‘the-complex switching behaviors will be
clearly described. Further, the robustness: of ‘this switching controller to the model
uncertainties will be discussed. Finally, conclusions and suggestions for future

research are given in Chapter 5.



Chapter 2 Bang-Bang Sliding Mode Control

In this chapter, the basic sliding mode theory is first introduced in §2.1 as
preliminaries. Then, the problem resulting from the fixed input and the existence
condition of sliding motion will be presented. Finally, the features of the bang-bang
sliding mode control are discussed and three modes of the switching behaviors near

the switching surface are described in §2.2.

2.1 Preliminaries of General Sliding Mode Control

Generally, there are two fundamental steps to design a sliding mode control. First,
choose an appropriate sliding sutface or'sliding manifold S to guarantee the system
stability in the sliding mode s=0. Second, derive the control algorithm such that the
system trajectories can reach the sliding=surface-in a finite time and then stay

thereafter [1-6]. For example, considet ‘a'linear time invariant system expressed as
X = Ax + Bu+ Bh(x,z) 2.1)

where A is the nxn system matrix, B is the nxm input matrix, X is the nx1 state vector,
u is the mx1 input vector and h is the mx1 matched input disturbance. Without loss of
generality, the pair (A,B) is assumed to be controllable and B is of full rank.

In the first step, the sliding surface is selected as
s=Cx (2.2)

where s=[s1,52,...,5»]" and C is a mxn coefficient matrix. Note that the choice of C
must guarantee the existence of stable sliding motions and several approaches have
been proposed, e.g., the transformation matrix method [41], the eigenstructure
assignment method [42] and the Lyapunov-based method [43]. Then, design the input

u=[u; us ... u,] by discontinuous feedback, where



ul:{”f(x) )20 2.3)
ui

(x). s(x)<0"

With the control algorithm (2.3), the reaching-and-sliding (RAS) condition must be

satisfied by

5,8, <=os], s,#0 (2.4)
where o; are positive. Once (2.4) is satisfied, the system trajectories could reach the
sliding mode s=0 in a finite time and then stay thereafter [1].

Next, consider a single input bilinear system [11] expressed as
x = f(x)+ug(x)+h(x,z) (2.5)
where f and g are both nx1 vector functions and h is a nx1 external disturbance vector.

While the sliding mode occurring, the following invariance conditions [12] are

satisfied

s=0.a0d Ly, ,s=0 (2.6)
where Lt,,g+hs denotes the directional derivative of the scalar function s with respect

to the vector filed f+ug+h. Then, the equivalent control u., can be defined as

15
u,, (x)=— Lfg; 2.7)

Theoretically, the ideal sliding dynamics or equivalent system dynamics can be
obtained by substituting u., into (2.5). However, there exist two considerable
problems in (2.7). First, u,, must satisfy the intermediate condition [14], i.e., u., must

be bounded by

min(u+,u_)< ueq(x)< max(zf,u_) (2.8)
Therefore, RAS-condition can only be satisfied in the region determined from (2.8),
which is referred to as the reaching-and-sliding (RAS) region [13]. Second, the

existence of sliding motion on s is guaranteed if the transversality condition [12] is

satisfied by
Lys#0 (2.9)

For the linear time invariant system (2.1), it is easy to satisfy the transverality



condition by choosing a C such that the mxm square matrix CB is invertible, i.e.,
(CB)"! exists. However, for bilinear systems, the state variables are involved in g(X)
and thus, (2.9) may not be satisfied in some region, in which the stability can not be

guaranteed.

2.2 Properties of Bang-Bang Sliding Mode Control

In this dissertation, the sliding mode theory is applied to the systems with the input
only switching between two fixed values, which is referred to as bang-bang sliding
mode control. With the constrained input, the RAS-condition may not be globally
satisfied and thus the system trajectories will not slide along s=0 outside the
RAS-region. Generally, the switching behaviors around s=0, as shown in Fig. 2.1, can
be classified into three following.modes [44]:

1. Refractive mode: the system trajectories are directed toward s=0 on one side
and away from s=0 on the other side:

2. Attractive mode: the system ‘trajectories are directed toward s=0 on both
sides.

3. Rejective mode: the system trajectories are directed away from s=0 on both

sides.

Fig. 2.1 Three modes of switching behaviors on s=0.

(a) Refractive mode. (b) Attractive mode. (c) Rejective mode.



Mathematically, these switching modes can be represented by following equations:

$(x) . -5(x)._ >0 ons(x)=0 (2.10)
for the refractive mode,

s(x)-5(x)<0  around s(x)=0 (2.11)
for the attractive mode, and

s(x)-$(x)>0  around s(x)=0 (2.12)

for the rejective mode. Obviously, the attractive mode on s(X)=0 is the sliding mode.
In switching power converters, if they can be stabilized by the sliding mode control,
only refractive mode and attractive mode will occur on s(X)=0. Usually, they are
designed to operate only in the attractive mode (i.e., the sliding mode), and slide on it
thereafter. Sometimes, they may be designed to operate from refractive mode to
attractive mode purposely for achieving faster system dynamics.

In next chapter, it will show that there exist only refractive mode and attractive
mode around the sliding funetion in the sbuck’ DC-DC converter. The system
trajectories will be clearly depicted in‘the-phase plane and verified by experimental
results. In Chapter 4, the switching behaviors “in switched systems will be more
complicated since the derived switching control laws consist of two switching
functions: one is the predetermined sliding function and the other one is the switching
boundary resulting from the bilinear model of switched systems. It will show that only
attractive mode will occur around the sliding function but all three switching modes
may exist around the other switching boundary. Besides, there may exist unstable
hyper-switching motion around the intersection of these two switching functions in
high-order switched systems. This complicated switching phenomenon will be briefly

discussed in Chapter 5 as our future research.



Chapter 3 Bang-Bang Sliding Mode Control in Switching

Power Converters

With the switching property, the sliding mode theory provides an intuitive way to
control switching power converters [12,15]. Compared with the state-space average
method [27,28], the sliding mode theory leads to large signal stability. Besides, it is
robust to uncertainties and much easier for the implementation.

For simplicity, a buck DC-DC converter is conventionally modeled as a linear
system by neglecting the unknown parasitic resistance, which usually results in a
small uncertain variation and then reduces the system precision. For improvement, the
unknown parasitic resistance is’taken fintoConsideration, which makes the buck
DC-DC converter modeled as an uncertain bilinear system. However, it is not easy to
deal with such an uncertain bilinear model'by-conventional control technologies.

Generally, most of the existing works are based on the assumption that the buck
DC-DC converter operates only in the continuous conduction mode (CCM). However,
if the components’ values are not appropriately selected, the buck DC-DC converter
may operate in the discontinuous conduction mode (DCM). In this chapter, it will
show that the buck DC-DC converter can be finally driven into the predetermined
sliding mode regardless of the existence of DCM during the transient state.

The remainder of this chapter is organized as follows. In §3.1, the model of a buck
DC-DC converter with parasitic resistance is first introduced as an uncertain bilinear
system. Then, it is modified as a linear system in the phase-variable control canonical
form. In §3.2, the design procedures of bang-bang sliding mode control will be given

and the system trajectories with different switching behaviors will be clearly depicted

10



in the phase plane. Then, experimental results of the buck DC-DC converter subject to
load variation and different choices of sliding functions will be demonstrated in §3.3.
Finally, some considerations about the practical implementation and the method of
operating the switching power converters at a constant switching frequency will be

included in §3.4.

3.1 Model Description of Buck DC-DC Converter

A buck DC-DC converter with resistive load is illustrated in Fig. 3.1, where E is the
DC voltage source, L is the inductor, C is the capacitor, i, is the inductor current, ic is
the capacitor voltage, v, is the output voltage, D is the diode, S is the switching device,
R is the resistive load and 7, is the unknown parasitic resistance in the circuit. Note
that R=Ro+AR, where Ry is the dominal'valué:of resistive load and AR varies in the
range of [or, or;]. Clearly, R € [Rin,Rmax ], Where Ryin—Ro+0r and Ryax=Ro+0r.

Assume that the buck DC-DE€ conyerter-operates in CCM. Then, the state-space

equation can be expressed as

1
: 0 [ . r, . E
H= LT H+ L OHwZu (3.1)
Vel |=— —— | 0 OfYe 0

where u represents the on state and off state of the switching device S by the values of
1 and 0. Note that (3.1) is linear in control and linear in state variables i; and v¢, but
not jointly linear in control and state variables. That means (3.1) is a bilinear system
[11].

Now, let the desired output voltage be a constant V,;. Define v,—V; and ic/C as the

new state variables x; and x,. Then, we have
X, =dv,-V,)dt=dv,/dt=i./C=x, (3.2)

Note that v, is equivalent to v¢ if the equivalent serial resistance (ESR) of C is

11



neglected. From Fig. 3.1, it is easy to obtain that
i, =i.+v,/R=Cx,+(x,+V,)/R
Further differentiating (3.3) and using the first equation in (3.1), it leads to
1 1 E v, v

S —— X, ———X, +——1U iu——=L
LC RC LC LC LC

Let X be [x; x2]”, (3.2) and (3.4) could be rewritten as

X=AXx+(B+AB(X))u+h

where

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Significantly, the bilinear system*3:1) is changed into (3.5), which is a linear system

with control input # and encounters the state-dependent uncertainty AB(X) and

external input h. Since both AB(X)u and h are matched disturbances, it is suitably to

design the controller with the sliding mode control technique.

S oL
o——m —
+ . +|°

= AD ve/=C VO

Fig. 3.1 Buck DC-DC converter with resistive load.

12



3.2 Design Procedures and Phase Plane Analysis

In this section, the design procedures of bang-bang sliding mode control for a buck
DC-DC converter are introduced first. Then, the RAS-regions will be shown to
crucially relate to the coefficients of sliding functions. Finally, the system trajectories

with different sliding functions will be clearly depicted in the phase plane.

3.2.1 Design Procedures of Bang-Bang Sliding Mode Control

In general, there are two fundamental steps to design a sliding mode control. First,
choose an appropriate sliding function s to guarantee the system stability in the sliding
mode s=0. Second, derive the control algorithm such that the system trajectories can
reach the sliding surface in a finite ¢ime and then stay on s=0 thereafter. However,
unlike the conventional sliding mode controly, the control input u# in (3.5) only
switches between 1 and 0, which makes the controller design more restrictive.

In the first step, let the sliding function or sliding line be chosen as
§=x, +Ax, (3.10)

where A is a positive constant. Obviously, it will guarantee that the system dynamics
is stable in the sliding mode s=0 since the system is represented in the phase-variable
control canonical form. For the second step, the bang-bang sliding mode control

algorithm is purposely designed as
u :O.S(l—sgn(s)) (3.11)

which switches between 1 and 0 depending on the scalar sign of s. Most importantly,

(3.11) must satisfy the following RAS-condition:
s§s<0, Vs#0 (3.12)

such that the system trajectories will reach the sliding line, but may be not in a finite
time, and then stay thereafter. From (3.5) and (3.10), the derivative of the sliding

function with respect to time is
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jz_J_%+(A_J_}b+l1u—ligu—fi (3.13)

1 1 E—-rji V
-—x +(/1— sz o lal T fors<0
LC

. LlC RIC VLC (3.14)
L 1{1__}62__‘1 fors >0
LC RC)? LC

If the following inequality is satisfied

Vo E-rily X, + /I—L x L (3.15)
LC LC LCc™' RC)’ LC '

the RAS-condition (3.12) is guaranteed. The region described by the inequality (3.15)

is the RAS-region. Replacing i; by (3.3), (3.15) can be rewritten into two inequalities

as

(R+Qﬂ@—RE<_(R+Q)%+( _J__QJ%
RLC RLC RC L

| : v (3.16)

_EXI +(/1_R)x2 <E
Clearly, the RAS-region must be determined from s and two lines, /; and /,, with the
slopes being m=(R+r;)/(RLCA-L—RCr;) and my=R/(RLCA-L) respectively. Since m;
and m, are related to the values of components in the buck DC-DC converter and A,
the relations among /;, /; and s can be classified into six cases: “A, B, C, D, E, F” as
listed in Table 3.1 and they are also plotted in Fig. 3.2. Note that
Pi((RVraVi—RE)/(R+7,),0) and P2(—V;0) are the crossing points of /; and /, in

X1-axis.
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Table 3.1 The relations among /;, /; and s.

Case A my, mp
A 0<A<1/RC-R/L m <0, my<0, m <mr<—A (L/IC>R?)
B 1/RC—R/L<A<1/RC m;<0, my<0, my<m<-A
C A=1/RC m1<0, my=00, m<—A<m,
D 1/RC<A<1/RCH+rjL m<0, my>0, mi<—A<m,
E A=1/RC+r,/L m1=o0, my>0, —A<myr< m
F 1/RCHrj/L<A m1>0, my>0, —A<m,< my

ll “ xz 12 11 “ xz 12 N\ xz

A\
15
P1 XI P2 P
Pz\w \

Case A Case B Case C

A,

P>

Fig. 3.2 Six cases with /, /; and s in the phase plane.
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3.2.2 Phase Plane Analysis

In normal operation, the output voltage v, of a buck DC-DC converter is

nonnegative, which implies
x, =v,=V,z2-V, (3.17)
and then the system trajectories should be inherently in the right-half plane of x;=—V.

Moreover, when a buck DC-DC converter operates in CCM, iy, should be larger than

zero and (3.3) can be consequently rewritten as

. v, ()
i(t)> 7 (3.18)

While the components of the buck DC-DC converter are not well designed, it may

operate in DCM with ;=0 and the system dynamics is governed by

iet)= —v"Tft) (3.19)

Since x;=v,—V,; and x,=ic/C, (3.18).and (3.19).can be rewritten as

X, +RCx, >V, (3.20)
and

x,+RCx, =V, (3.21)
Note that the linear function (3.21) is referred to as the drifting line in this dissertation.

According to (3.17), (3.20) and (3.21), the system trajectories of a buck DC-DC

converter should be restricted to the region:

Q- x, 2=V, 3
X, +RCx, 2V, (3-22)

as shown in Fig. 3.3, where the system trajectories with different initial conditions are
also included for u=0(dashed line) and u=1 (solid line). The system trajectories
depicted by dashed line and solid line will converge to Qi(—V;0) and Q,(E-V,4,0)
respectively. All the system trajectories with u=0 move clockwise to reach the drifting
line first and then approach Q;. As for the system trajectories with u=1, they move

spirally clockwise to O».
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Fig. 3.3 System trajectories with different initial conditions.

According to Table 3.1, the RAS-regions could be-mainly classified into two types:
A<1/RC as Type-I and 2>1/RC as Type-H.-Clearly, Type-I consists of case A, case B
and case C and Type-II consists of case. D, ease E and case F. For Type-I, Q is the
RAS-region and separated into )y and QQ; by s=0, as depicted in Fig. 3.4. From (3.16),

Oy and Q; are bounded as

s>0
[, <0
Q, = ? , foru=0 (3.23)
x>V,
x, +RCx, >-V,
s<0

[ >0
Q= : , foru=1 (3.24)
x>V,

x, +RCx, >-V,

Two system trajectories related to Jo in € and J; in ; are also shown in Fig. 3.4,
where Jy and J; represent the initial conditions. Since all the system trajectories in €

and Q, satisfy the RAS-condition (3.12), the system trajectories starting from J, and
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J; will approach the sliding line and then generate the desired sliding mode s=0. From

(3.10), the system dynamics will be exponentially stable in the sliding mode.
Obviously, the RAS-condition is globally satisfied in Q for the cases of Type-I and

the system trajectories will never enter the drifting line. Thus, if the following

inequality is satisfied
A<1/RC (3.25)

all the switching behaviors around s=0 are exactly of the attractive mode as discussed
in §2.2, and the buck DC-DC converter will operate only in CCM. Typically, A will be
chosen as 1/RC such that the RAS-region is large enough [19]. However, the system
dynamics with 4 =1/RC may be too slow if faster response is required during the
start-up or in the transient state.

As for the cases of Type-II, the switching'behaviors are more complicated than the
cases of Type-I, due to the RAS-condition is only locally satisfied in Q. From (3.16),
four sub-regions, Qo, 'y, Q) ahd OQ'y, as shown in Fig. 3.5, can be obtained and they

are bounded as

5>10
Q, = h <0 , foru=0 (3.26)
x, >V,
X, +RCx, >-V,
s>0
Q) =4 1,>0 , foru=0 (3.27)
x, >V,
s<0
Q= h>0 , foru=1 (3.28)
x, >V,
X, +RCx, >-V,
s<0
Q= [,<0 , foru=1 (3.29)
X, +RCx, >-V,

where Qp and Q' are related to ¥=0 and Q; and '; are related to u=1. There are
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mainly five kinds of system trajectories shown in Fig. 3.5, corresponding to five
different points Jo, Ji, J2, J3 and J4. For the system trajectories through Jy and J;, they
are just like the cases of Type-I, which will reach the sliding line. For the system
trajectory through J,, it may come from €; or start from Q'y. From Fig. 3.5, this
system trajectory will enter the sub-region Q. For the system trajectory through Js, it
may come from g or start from Q';. Also viewing from Fig. 3.5, this system
trajectory will enter the sub-region ;. Finally, for the system trajectory through J4, it
comes from 'y and then moves along the drifting line with #=0. Once this system
trajectory passes through the sliding line, it will move into the sub-region 'y, where
u is changed from 0 to 1. According to the trends of these five system trajectories, all
of them will be eventually reach the segment, between S; and S, of the sliding line
and then slide along it to the origin. Compared with the cases of Type-I, the system
trajectories of Type-II may include. DCM 'in.the transient state, but they can still be
successfully driven into the sliding line’and-kept on s=0 with a larger convergent rate.
Obviously, it corresponds to the+ discussion.in §2.2 that the switching power
converters will possess faster dynamic response while they are operated from
refractive mode to attractive mode.

From the above analyses, the bang-bang sliding mode control is shown to be an
effective method to drive all the system trajectories to reach the sliding line and then
converge to the origin, i.e., the output voltage regulation of the buck DC-DC
converter is theoretically achieved. In next section, several experiments will be

conducted to verify the proposed bang-bang sliding mode control.
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Fig. 3.5 System trajectories in the cases of Type-II.
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3.3 Experimental Results

A lab-prototype of buck DC-DC converter for theoretically verifying is fabricated
as shown in Fig. 3.6, in which s, denotes the gate driver signal, ic is the sensed
capacitor current, v, is the sensed output voltage, and a PC-based controller is used to
implement the bang-bang sliding mode control. The maximum sampling rate is
limited at 20kHz and the parameters of the buck DC-DC converter are listed in Table
3.2. In the following examples, it will show the performances of the bang-bang sliding
mode control in output voltage regulation subject to different sliding functions and

load variations.

S =7 -
- Y Y g
TRF530 T\ *i

El+ 4 +]° +
1= AD vo==C Vo|R
1N5822 s -—
—Pp

Fig. 3.6 The bang-bang sliding mode controller for the buck DC-DC converter.

Table 3.2 Parameters of the buck DC-DC converter.

Parameter FE L C R V4
Value 12.28(V)  2.47(mH) 470(uF) 15.35(Q2)  &(V)
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Example 3.1:

The experimental results shown in Fig. 3.7, Fig. 3.8 and Fig. 3.9 are obtained by
choosing three different sliding functions with 4=100, 4=500 and A=1000. All the
system trajectories are all successfully driven to the corresponding sliding lines and
then move toward the origin, as shown in Fig. 3.7. For the system trajectory with
A=100, it corresponds to the case of Type-I that goes through J;. As for the system
trajectories with A=500 and 1000, they correspond to the case of Type-II that goes
through J;. Note that 1/RC=141.8 and thus the case with A=100 is of Type-I, and the
cases with 4=500 and 1000 are of Type-II. From Fig. 3.8, it is easy to find that the
system trajectories with smaller 4 will reach the sliding line faster than those with
larger A. However, from Fig. 3.9, their convergent rates of the output voltage errors

will be slower than those with larger 4.

Remark 3.1

From Fig. 3.9, there are steady-state errors in the output voltages, which can be
reduced if A is increased. The steady-state errors result from the use of phase-variable
control canonical form in the design of sliding function, which is equivalent to a
PD-type feedback control [19,45]. Another reason of the existence of steady-state

errors is that the averaging value of the sliding function may not be ideally zero [26].

Example 3.2:

Let A=100, 3500 and 20000. The experimental results are shown in Fig. 3.10, Fig.
3.11 and Fig. 3.12. Fig. 3.10 shows three system trajectories with A=100, 3500 and
20000. The system trajectory with A=100 has been described in example 3.1. As for
the system trajectories with A=3500 and 20000, they correspond to the cases of

Type-II that goes through J, and J4 respectively. Note that there exists DCM during the
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transient state in the case with 4=20000. From Fig. 3.11, it can also be found that the
sliding functions with 4=3500 and A4=20000 do not always converge since the
RAS-condition for the cases of Type-II is not globally satisfied. However, these
system trajectories will eventually enter the RAS-region and reach the sliding line
after a short time. Unlike example 3.1, Fig. 3.12 shows that larger A4 will lead to larger
overshoot, which may not be desired in some applications.

In this example, it shows that the experimental results actually confirm the
switching behaviors described in §3.3 and the bang-bang sliding mode control can

successfully drive these system trajectories into the corresponding sliding lines.

Example 3.3:

Let A=1000, 3300 and 4000 and-connect the buck DC-DC converter to a variable
resistive load with the value 0f-20.5Q and 6.9€. Fig. 3.13 shows the output voltage
errors of experimental results, wheré the-sub-figures on the left side demonstrate the
transient state from light load (3W), te.heavy load (9W) and the sub-figures on the
right side demonstrate the transient state from heavy load to light load. Obviously, if A
is chosen to be larger than 1000, the buck DC-DC converter will possess the
robustness to load variations with less than 0.3V deviation, i.e., less than 3.75% of V.
[

From above examples, we can choose a suitable A to attain the desired
performances, as summarized in Table 3.3. If the overshoot is larger than the desired
specification, it can be improved by decreasing the value of A according to Fig. 3.12.
If the steady-state error of the output voltage is larger than the acceptable value, it can
be reduced by increasing A according to Fig. 3.9. While the convergent rate is too

slow, it can be accelerated by increasing A also viewing from Fig. 3.9.
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Fig. 3.10 System trajectories with different A in example 3.2.

25



0.004 0.006 0.008 0.01

0.002

10000
0

ol N
uonound Buipls

Time(s)

Fig. 3.11 Sliding functions with different A in example 3.2.
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Fig. 3.12 Output voltage errors with different 4 in example 3.2.
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Fig. 3.13 Output voltage etrors by load variations.

Table 3.3 Tune-up of “4 .in terms of the desired performance.

Desired performance A
Reduce overshoot Decreased
Reduce output error Increased
Increase convergent rate Increased
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3.4 Discussions

Theoretical analyses of the bang-bang sliding mode control for a buck DC-DC
converter are given in §3.2, and the hardware to realize the control algorithm in the
PC-based environment is demonstrated in §3.3. It shows that the experimental results
agree with the theoretical analyses. However, there are still some gaps between the
PC-based controller and the practical controller by analog circuits such that the
original control algorithm could not be directly implemented. Thus, some
modifications for practical design will be included in this section. Besides, there exists
unavoidable switching frequency deviation in the bang-bang sliding mode controller,
which results from different sliding functions, input voltage, output voltage and load
variations. The deviation in switching fréquéncy fis not desired since it makes the
input and output filters design more difficult. Based on the method proposed in [25], a
periodic ramp signal will be adopted-in this‘section-to achieve the constant switching
frequency. More detailed discussions®about ‘the bang-bang sliding motions in the
steady state will be given. Finally, numerical simulations will demonstrate the

effectiveness by these modifications and some conclusions will be given.

3.4.1 Modifications of State Variables and Sliding Function

Usually, there is only one external reference voltage V,.ravailable in analog circuits.
The sensed output voltage v, cannot be directly compared with V. but should be
scaled with a predetermined scalar «. Therefore, the original state variable x; will be

redefined by a new variable z; as

V.
Z=av, -V, = a(vo —’7’} =a(v, -V,)=ax, (3.30)
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Obviously, « is determined from the ratio of V. to V; and z; 1s x; multiplied by .
Similar to the procedures in §3.1, define another state variable z, as the derivative of

z; with respective to time, i.e.,

_dz _,dn

— =ax 3.31
Zy dt i 2 ( )

From (3.30) and (3.31), the system dynamics is represented as

0 | 0 0
z=|_ 1 1 g+ @B ut| Vg (3.32)
LC RC] |LC LC

where z is [z, z]". Note that ry is neglected in this section for simplification.

Compared with (3.5), z; and z, are the original state variables multiplied by «, the
input vector is B multiplied by « and the external input vector is h scaled down by «a.
The system matrix A is unchanged and thus.the system dynamics of (3.32) is still the
same as (3.5). As for the RAS:region, it“can “also be derived from the similar
procedures described in §3.2.

With the state variables z; and z,, the sliding function becomes
s=z,+ Az, =alx, + Ax,) (3.33)
Note that, in (3.25), to make RAS-region large enough, A is usually chosen as f/C,

where /~1/R and R is supposed to be known. Then, substituting the feedback signals

into (3.33), it results in

s =%ic +%(vv -7,) (3.34)
In switching power converters, the value of capacitance C is typically in the range of
microfarad. Therefore, the coefficients in (3.34) will be too large for practical
implementation, e.g., in analog circuits, saturations may occur in operational
amplifiers. A straightforward idea to solve this problem is multiplying the sliding
function with a scalar »C. Then, the sliding function eventually becomes

s = 7C(22 + /121): 7(0a'c + ,B(avo V. » (3.35)
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where y is an adjustable positive number. Note that multiplying the sliding function
with »C will not affect the overall system dynamics and the RAS-region, and it makes
the sliding function independent of capacitance value. Now, there are two
undetermined parameters £ and y in (3.35). For £, it is equivalent to A4 and can be
adjusted according to Table 3.3. As for y, it is used to scale the original sliding

function in a reasonable range.

3.4.2 Constant Switching Frequency Strategy

Practically, the switching power converters cannot operate at an infinite switching
frequency and a hysteresis band is usually used by the SMC-based controllers.
However, the switching frequency of, the. hysteresis-type SMC-based controller is
affected by line and load variations and thus, several methods as introduced in
Chapter 1 have been proposed to modify the  SMC-based controllers to control
switching power converters at a constant switching frequency.

In order to achieve the same purpose, the bang-bang sliding motions inside the
hysteresis region will first be discussed. Then, a brief review of existing methods for
SMC-based controllers will be given. Finally, the simplest method of adding a
periodic ramp signal to control bang-bang sliding motions at a constant frequency will

be discussed.

A) Bang-Bang Sliding Motions Inside the Hysteresis Region

In the sliding mode theory, the input is assumed to be capable of switching at an
infinite frequency such that the controlled system can be theoretically in the sliding
mode. However, for the switching power converters, the switching devices cannot be

operated with an infinite switching frequency and thus a hysteresis band is usually
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introduced to avoid this unachievable requirement. While a hysteresis band is

introduced around the s=0, the control law in (3.11) will become

0, s>¢ 336
u=
I, s<-¢ (3.36)

where ¢ is the width of the hysteresis band. In the steady-state operation, the
bang-bang sliding motions inside the hysteresis region are illustrated in Fig. 3.14, in
which f{z,u") and fiz,u") denote the vectors of state variable velocity with =1 and
u =0 respectively. The time taken for f{z,u") to move from point P to point Q and the
time taken for f{z,u ) to move from point Q to point R are denoted as A#; and At,,

which can be calculated by

A = 2¢
: g}"ad(S)'f(Z,u_) (337)
—2&
At

*Sgrad(s) flzu)
As shown in [19], if A is ideally chosen as:1/RC, the switching frequency fs can be

%)

Vel 1——

i _1 e E (3.38)
T AL+ AL 2¢L

approximately obtained as

From (3.38), fa is mainly affected by the variations of input voltage and output
voltage. Besides, if the resistive load is not exactly known (i.e., A cannot be exactly
set as 1/RC), it will also affect fi,. With the hysteresis band being used, the control
scheme of the hysteresis-type bang-bang sliding mode controller is shown in Fig.

3.15.
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Fig. 3.14 Bang-bang sliding motions inside the hysteresis region.

Fig. 3.15 Hysteresis-type bang-bang sliding mode controller
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B) Existing methods for fixed frequency sliding mode controller

As discussed in previous paragraph, fs, is highly dependent on the input voltage,
output voltage and the resistive load. To control the switching power converters at a
constant f,, several methods have been briefly introduced in Chapter 1. In [20], an
extra state defined as the integral of output voltage error is used to formulate the
specific sliding function, which results in a PID-type PWM controller. Then, the
equivalent control u., can be derived from the invariance conditions in the sliding
mode. However, R is still involved in the representation of u., such that u., cannot be
perfectly realized. Compared with [20], the sliding function in [24] is designed as the
function of inductor current, output voltage and the integral of output voltage error.
With this sliding function, the system is initially in the sliding mode, i.e., s(t=0)=0. As
a result, u,, can be theoretically obtained for all time. Significantly, an adaptive law is
proposed to eliminate the effect of the un-modeled parasitic resistance in the circuit.
In [21], the idea of adopting a variable-hysteresis band adjusted by adaptive
feedforward and feedback control is preposed: The adaptive feedforward loop is used
to reduce the deviation of f, resulting from the input voltage variation. As for the
adaptive feedback loop, it is used to adjust the coefficients of the sliding function such
that the deviation of £, resulting from the load variation can also be reduced. Actually,
the measuring of input voltage is needed for the adaptive feedforward control scheme
to directly change the width of hysteresis band &, and the measuring of the output load
current i, is also needed for the adaptive feedback control scheme to compute the
resistive load R. The simplest method is that proposed in [26], which is implemented
by adding a periodic ramp signal and a PI-type compensator into the hysteresis-type
sliding mode controller. This method possesses the advantages that fi, is constant
under all operation conditions and it can be directly controlled by varying the

frequency of the periodic ramp signal. Therefore, it will be used in this dissertation
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and some design considerations will be given in the next.

C) Hysteresis-Type Bang-Bang Sliding Mode Controller at fixed-frequency

First, define a periodic ramp signal smp With the amplitude, frequency and period
being denoted as &amp, framp and Tramp respectively. Then, add Sramp into the original
control scheme as the block diagram shown in Fig. 3.16, in which s, is the summation
of 5 and Srmp, Sg 1S the gate driver signal and & is the hysteresis band of s. The ideal
steady-state waveforms of s, sramp and s, are given Fig. 3.17. From Fig. 3.17, it can be

found that these signals should satisfy the following equations:

Ain 2¢
(SL_O + 4, dr ] + [— Eramp T %Atm] =Sel,_y, =€ (3.39)
0 ramp
and
Tramp
{SL% + 3] e ] R . <€ (3.40)
Aton

Note that (3.39) and (3.40) are-used:to-guarantee that S will switch off during each
cycle and it can immediately switch on at the beginning of each cycle. To satisfy
(3.40), &amp 1s typically chosen to be larger than ¢.

While a converter operates at a constant switching frequency, Afon/Tramp 1S

equivalent to the duty cycle d and (3.39) can be expressed as
g, +(2d -1)e,,, =€ (3.41)

Besides, (3.40) can be rewritten
— &~ Epmp <€ (3.42)
Obviously, when f;,, is synchronizing to framp, the bang-bang sliding motions inside the
hysteresis region will be governed by (3.41) and (3.42). From (3.41), if the averaging
value of s is zero, & will be smaller than & when d>0.5, and & will be larger than &

when d<0.5. The waveforms with @>0.5 have been shown in Fig. 3.17 and the

waveforms with d<0.5 are given in Fig. 3.18 as a comparison.
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¢

Fig. 3.16 Hysteresis-type bang-bang sliding mode controller at switching constant

frequency:

Fig. 3.17 Waveforms of the signals inside the hysteresis region (¢>0.5).
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Fig. 3.18 Waveforms of the signals inside the hysteresis region (4<0.5).

Ideally, sramp should not affect the avetaging value of s. But, it may deteriorate s
such that the averaging value of's will be a nonzero value &. In this situation, the
waveforms are non-ideal as given in Fig. 3.19, where &=0.5(&1—¢&2), and & and &

are not necessary to be positive. The equations of (3.41) and (3.42) will become
£y +(2d 1), = € (3.43)
and
— &~ Epamp <—E (3.44)
The waveforms with positive & have been shown in Fig. 3.19 and the waveforms with
negative & are also given in Fig. 3.20 as a comparison. Compared with Fig. 3.18, d is
smaller when & is positive, and d is larger when & is negative. Thus, a nonzero &
may lead to steady-state error in the output voltage. In order to reduce the steady-state
error, a PI-type compensator will be further incorporated into the control scheme and

the block diagram is shown in Fig. 3.21.

In next section, numerical simulations based on the control scheme in Fig. 3.16 will
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first be given to show the effectiveness of adding an additional periodic ramp signal
for achieving constant switching frequency. Then, a PI-type compensator will further
be incorporated into the controller and numerical simulations will demonstrate the

reduction of the steady-state error in the output voltage.

Fig. 3.19 Waveforms of'the signals'inside the-hysteresis region ( &,>0).

Fig. 3.20 Waveforms of the signals inside the hysteresis region ( &,<0).
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Hysteresis-Type Fixed-Frequency Bang-Bang Sliding
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Fig. 3.21 Hysteresis-type fixed-frequency bang-bang sliding mode controller with a

PI-type compensator.

3.4.3 Numerical Simulation Results

Consider a buck DC-DC converter with the same parameters listed in Table 3.2 and
set ¢as 0.1. The parameters £ and y of the sliding function in (3.35) are chosen as 0.5
and 1. In the following examples, it will first show the simulation results with only the
periodic ramp signal sqmp being added, as the control scheme in Fig. 3.16. Then, the
bang-bang sliding motions inside the hysteresis region with different V; and different
&amp Wil be discussed. Finally, the control scheme in Fig. 3.21 will be employed to

shown the effectiveness of reducing steady-state errors by incorporating the Pl-type
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compensator.
Example 3.4

Consider four cases with the desired output voltage V; being set as (a) 3V, (b) 5V,
(¢) 7V and (d) 10V. When the reference voltage V. is provided as 3.3V, the
corresponding « are calculated as the values of 1.1, 0.66, 0.47 and 0.33. Besides, framp
is set as 20kHz and &amp is set as 0.5. The simulation results of the output voltage
errors by percentage in four cases are presented in Fig. 3.22 and the system
trajectories are shown in Fig. 3.23, in which the x-axis and y-axis are defined in the
output voltage and capacitor current. Viewing from Fig. 3.22, there exist un-avoidable
steady-state errors in the output voltage and the minimum error will occur in the
situation when ¥, is about half of input voltage, i.e., d is around 0.5. For the case (a)
and case (d), the steady-state errors even exceed 10%. The waveforms of case (b) and
case (d) are represented in Figs3.24 and Fig: 3.25. Obviously, & is positive in Fig.
3.24 and negative in Fig. 3.25, whichicortespond to the situations in Fig. 3.19 and Fig.
3.20 respectively. Besides, the gate signal sg will synchronize to Sramp 1f &amp 1S
properly chosen to be enough larger than ¢. In this example, &amp is 5 times the value

of &
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Example 3.5

Consider four cases with &.mp being set as (a) 0.15, (b) 0.25, (¢) 1 and (d) 5. Let Vg
be 5V and then « is calculated as 0.66 for these cases. The simulation results of the
output voltage errors by percentage in four cases are presented in Fig. 3.26. From Fig.
3.26, with the same ¥, the steady-state error will be increased when &amp 1s increased.
It results from that & is larger for the cases with larger &amp, as shown in Fig. 3.27.
Although the best output performance exists in case (a), s; will not synchronize to
Sramp and the waveforms of this case are represented in Fig. 3.28. In this example, it
shows that &.mp should be chosen larger enough to guarantee that s, can synchronize
to Sramp. However, larger &amp may make the steady-state error beyond the acceptable
range. In next example, a PI-type compensator will be incorporated into the control

scheme to reduce the steady-state etrors.
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Fig. 3.26 Output voltage errors by percentage in four cases with different & ramp.
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Example 3.6

Let &amp=1 and V=5 and introduce a PI-type compensator into the control scheme
as shown in Fig. 3.21, where the proportional constant and integral constant are
defined as Kp and K. Then, consider three cases with Kp being set as the same value
of 1 and K; being set as (a) 50, (b) 100 and (c) 200 respectively. To show the
effectiveness of adding a PI-type compensator, the simulation results are represented
in Fig. 3.29. Obviously, the steady-state errors can be effectively eliminated and the
buck DC-DC converter can operate at a desired frequency famp by the modified
bang-bang sliding mode control scheme given in Fig. 3.21. The waveforms of case (c)
are given in Fig. 3.30, in which samp and s, are scaled down and the magnitude of s is
too small such that spmp and s. are almost the same. Note that there will exist a very

small deviation in s for compensating the steady-state error.
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Fig. 3.29 Output voltage errors by percentage in three cases with different K.
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Fig. 3.30 Waveforms ofithe ease (c) in example 3.6.

Some considerations for practical implementation by analog circuits are first given
in §3.4.1. Then, the original controller.is modified to operate at a constant switching
frequency in §3.4.2 and the steady-state bang-bang sliding motions inside the
hysteresis region are clearly discussed. In §3.4.3, the simulation results are given to
demonstrate the effectiveness of the proposed control scheme. Altogether, the
purposes of scaling the original sliding function into a reasonable range and
controlling the buck DC-DC converter at a constant switching frequency are both

achieved.
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Chapter 4 Bang-Bang Sliding Mode Control in Switched

Systems

In this chapter, a switching controller based on the bang-bang sliding mode control
will be proposed for a class of switched systems consisting of two second-order
unstable subsystems. In §4.1, the stabilization problem in these switched systems is
first briefly introduced and two important assumptions will be given for the
bang-bang sliding mode control to guarantee the existence of stable sliding motions.
Then, the design procedures and the system stabilities related to three types of
reaching modes are provided in §4.2. Another class of switched systems with model
uncertainties is considered in §4.3 and theé robustnéss of the bang-bang sliding mode
control to model uncertainties will'be discussed. Finally, several numerical simulation

results are demonstrated in §4.4.
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4.1 Problem Statement

Consider a switched system consisting of two second-order subsystems, given by

X = A X (4.1)
where G(t): [0,00)—> {1,2}, xeR? and both A; and A, are 2x2 constant non-Hurwitz
matrices. The main purpose in this chapter is to determine the switching conditions
for these two subsystems such that the overall system dynamics is stabilized.

Interestingly, (4.1) can be rewritten into a second-order homogeneous bilinear
system, similar to the procedure in [37], controlled by a switching input as
X = AX +uNXx (4.2)
where A=0.5(A;+A;), N=0.5(A;—A,)sand the switching input ue {-1, 1}. Clearly, the
stabilization problem in (4.1) is equivalent ‘to:designing the switching input u to
stabilize (4.2). To deal with the stabilization problem'in (4.2), first define A4; and c; as
the i-th eigenvaule and its corresponding left eigenvector of A+uoN, where u is a real
number. Then, the bang-bang sliding mode control is proposed to stabilize the system

(4.2) under the following assumptions:

Assumption 4.1.
There exists a ug in the range of (=1, 1) such that the eigenvalues, A, and A, of

A+uoN are stable and real.
Assumption 4.2.

There exists at least one left eigenvector C; corresponding to A; that satisfies

rank([C; ;C;N])=2.
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Similar to several literatures [32-34], the existence of stable matrices combination
A+ugN is also required in this dissertation. Besides, A; and A, are further assumed to
be real, as declared in Assumption 4.1, such that their left eigenvectors ¢; and C; are
real and could be used as the coefficient vector of a sliding function [13,46]. As for
Assumption 4.2, it is required to guarantee the existence of stable sliding motions,
which will be explained later.

In next section, with both assumptions being satisfied, a switching controller based
on the bang-bang sliding mode control will be proposed for the homogenous bilinear
system (4.2). It will show that the switching input must be determined from two
switching functions rather than a single one as the general sliding controls. The
stability of the switched system will be proven and different switching behaviors

resulting from these two switching functions will be clearly described.
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4.2 Design Procedures of Bang-Bang Sliding Mode Control

Under Assumption 4.1, system (4.2) can be further rewritten as

% = AX +1gNX (4.3)

where Ag=A+uoN, us=—uop+u and ue{-1,1}. Obviously, system (4.3) is still a
homogeneous bilinear system but possesses a stable system matrix Ag with real
eigenvalues and a new input us. Let A be one of the eigenvalues of Ags and c be the

corresponding left eigenvectors, i.e.,

CA = ic (4.4)

Then, the sliding function s(X) can be defined as

s(x)=.ex (4.5)

Note that ¢ must satisfy the “condition of rank([C;CN])=2. From (4.2)—(4.5), the
derivative of s(X) with respectivé-to time is

§(X)=c(A+u,N )X +ucNX = 1 5(X)+u CNX (4.6)

Since ue{—1, 1}, choose u=—sgn(o(x))-sgn(s(x)), where o(x)=CNXx, and then ug will be

g ==ty 1= =t, = sgnlp())-sgn(s(x) @
From (4.5)—(4.7), we have
$(x)5(x)= 2 5(x)" + [, =sgnlp()-sgnls ()] p(x)-5(x)
= 250" =1, p(x)-5(x) sgn{p(x))-sn(s(x)- p(x)-5(x)
= 7.0 =y sgn(p()-sgn(s()+ 1} x| s(x)
= 2(x) et |o(x)-|s(x)
<—a-|p(x)-[s(x) (4.8)
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where o=(1+ug-sgn(p(X))-sgn(s(X))) and 0<a<2. Note that there are two features
different from general sliding mode controls. First, us possesses two switching
functions sgn(p(X)) and sgn(s(X)), i.e., us will switch around two sets defined as
Q={X|s(X)=0} and On={X|p(X)=0}. According to Assumption 4.2, X(¢) will not belong
to QO and Qy simultaneously, except the equilibrium point X=0, and thus the state
space can be well separated into four regions as shown in Fig. 4.1, in which ug can be
determined and it will switch when system trajectories pass through Q; or Q.

Second, the equation (4.8) is similar to the RAS-condition (2.4), but the reaching
rate in (4.8) is o multiplied with a state-dependent term |p(X)|. In general sliding mode
controls, the system trajectories can be theoretically driven to the sliding mode only
when the reaching rate is nonzero. However, in equation (4.8), |p(X)| may always be
zero ( i.e., once the system trajectory reach Qy, it'will stay in QQy thereafter) such that
the reaching rate is zero. With-this observation,.the reaching modes related to the

state-dependent term |p(X)| can be concluded-into three types, as depicted in Fig. 4.2.

A Xo
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Us=-Uyt | -7
”~
MS_'M()'I _odd X1
~ - - \ 2
- -~ us_'u()' 1
-~ - g
MS—-M()‘|‘1

Fig. 4.1 Four regions in the state space separated by Q; and Q.
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For the reaching mode of type 1, without crossing (y, the system trajectory starts
from p; and then reaches ) at p; in a finite time, which is the same as the reaching
mode in general sliding controls. It is known that the equivalent control u., can be

obtained as

omey T U -CNx = u, -p(x): 0 (4.9)
Since the system trajectory stays in € and does not belong to Qu, ., will be zero,

except the equilibrium point X=0. By substituting us=u.,=0 into (4.3), the equivalent

system dynamics becomes

X = A X (4.10)
where Ag is stable. Therefore, the system (4.3) is stabilized once its system trajectory
is constrained in the sliding mode.

For the reaching mode of type 2, the system: trajectory starts from (; and passes
through Qy at g, but not stay in-Qy. Aftert that, it reaches ), at p; in a finite time and
then is stabilized with the same”equivalent system dynamics as (4.10). Intuitively,
when the system is switched from one subsystem to another subsystem through
P(X)=0, the derivatives of p(X) with respective to time for both subsystems must have
the same sign. As discussed in §2.2, the switching behaviors around p(X)=0 are of the
refractive mode and can be mathematically represented by (2.10). In other words, the

reaching mode of type 2 is guaranteed if
,r')(x)hﬁ:A1 -,[)(X)|A‘:A2 >0 for p(x)=0 and x#0 4.11)
which is equivalent to

LAlxp(X)-LAZXp(X)>O for p(X)=O and x#0 4.12)

Note that L,, p(x) and Ly p(x) are the directional derivatives of p(X) with

respective to the vector fields A;x and AX. That means the projections of A;x and AxX

onto the gradient of p(X) are in the same direction as shown in Fig. 4.3, in which y"
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and ¢~ denote the regions of {X|[CNA; x>0, ctNA;x>0} and {X|cNA;x<0, cNAx<0},
and they are bounded by two lines (L;: CNA;Xx=0 and L,: cNA;x=0). Clearly, if
switching occurs inside the regions of " and y~ (i.e., (4.12) is satisfied), the system
trajectories will pass through Qy. Such reaching mode is classified into type 2.

As for the reaching mode of type 3, the system trajectory starts from r; and hits Qy
at r,. Different from that of type 2, this system trajectory is constrained in QQy and

cNXx is always zero. From (4.6), the system dynamics is governed by
s=As (4.13)

such that the system trajectory cannot reach € in a finite time but exponentially
approaches €, instead, i.e., this system trajectory will exponentially converge to the
equilibrium point X=0, the intersection of €); and Q. Interestingly, the switching
control (4.7) forces the system trajectoti€s’ to, switch along Qy, which means the
switching motion along Qp is-anothet sliding mode in this situation. Hence, the

following inequality will be satisfied:
P(X) a0 andp(x)r,) - >0 (4.14)

and it can be further written as

0", s(x

LAZXp(X <0, for p(x )>0
0, 5(x)>0
(x)<0

)
; (4.15)

)
Alxp(x)> 0, for p(Xx
(x)

(
<0,forp(x 0", s(x

0, s(x)<0

L
Ly,plX
LAzxp(X) >0, for P(X)

Obviously, (4.15) express another sliding condition along Qy for s(X)>0 and s(X)<0.
From above, the bang-bang sliding mode control can theoretically stabilize the
homogenous bilinear system (4.2). According to the switching input derived in (4.7),

the switched system of (4.1) can be stabilized with the switching conditions as

G(t):{ L, sgn(cNx)-sgn(cx)<0

2, Sgn(CNX)-sgn(cx)> 0 (4.16)

In this section, it shows that with Assumption 4.1 and Assumption 4.2 being

satisfied, the bang-bang sliding mode control can be adopted to determine the
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switching conditions for the switched systems consisting of two second-order unstable
subsystems. In next section, it will be extended to another class of switched systems

with model uncertainties.
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4.3 Stabilization of the Switched Systems with Model Uncertainties

As general sliding mode controls, the bang-bang sliding mode control is robust to
model uncertainties in switched systems. Here, consider another class of switched

systems containing model uncertainties, described by

X = AG([)X + AAG([)X (417)

where AA;(;, are the model uncertainties and max
ol

AAG(Z)

<y, v is a constant. With
Assumption 4.1 and Assumption 4.2, (4.17) can be expressed as

X = AgX+ugNX+AA )X (4.18)
Obviously, the problem of designing a switching controller to stabilize (4.17) is
changed into designing a robust switching controller for a homogenous bilinear
system with state-dependent disturbance AAsX. Similar to the design procedures in

§4.2, the equivalent control in the sliding mode can be derived from

t,, - CNX+CAA ()X =0 (4.19)
Compared with (4.9), (4.19) contains CAAs»X- and thus u., may be affected by the
model uncertainties. If CAA )X is Zero in the sliding mode, u., will not be affected by
the model uncertainties and is zero. However, in general cases, u., should be
expressed as

u,, =—(CNX)" -CAA X (4.20)
Note that the existence of (CNx)' is guaranteed in the sliding mode, except x=0.
Substituting (4.20) into (4.18), the equivalent system dynamics will be

X = AjX—(CNX) ™ -CAA ;) X- NX+AA )X (4.21)

Assume that the norm of N is bounded by a constant £ (i.e.,

N || < /), and choose a

symmetric positive-definite matrix P such that x'Px is a candidate of Lyapunov
function, which is denoted as V. Then, the derivative of V" with respective to time can

be obtained as
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P =x" (AP +PA Jx—(cNx) " -cAA, x- x (NP + PN )x
+x7(AA, P+ PAA )X

CAA, X

< —x Q== APl + 24P (4.22)
¢6(t)(x) 2 2

<—x"Qx+ 28|P[Ix|I” +25P|l[x
) o APl +271PI

where Q is a symmetric positive-definite matrix and @) (X)=CAAsX. Besides, it is
known that

Ao QX" < X" Qx < 4, Q)|X| (4.23)

where Ai,(*) and A ) denote the minimum eigenvalue and maximum eigenvalue
of a matrix respectively. Further, for some X, in the sliding mode, define max|@s(X;)|
and |p(X;)| as /x and Iy, and denote the ratio of /5 to /5 as /, which are shown in Fig. 4.4

in the geometric view.

Fig. 4.4 Geometric view of /y and [, related to model uncertainties.
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Substituting /n, /x and / into (4.22), it leads to

V <4, (Q)=28-1-|P|—27|P|)IX| (4.24)
Note that / is a constant value for all the X, in the sliding mode and it is finite since
Assumption 4.2 is satisfied, ie., |o(X;)| is nonzero, except X,=0. Thus, it can be

concluded that V' is a Lyapunov function if the following inequality is satisfied

ﬂ’min (Q)
21P]

—p-1-y>0 (4.25)
and it yields x(#)=>0 as t> 0.

From above, the stability of the switched system is guaranteed in the sliding mode
if (4.25) is satisfied. However, it still needs to check the reaching condition for the
switched system since the model uncertainties also affect the original reaching rate.

Similar to (4.8), the reaching condition for the switched system with model

uncertainties is
~(A)-s(x) + - o) = B (XL} 50| o(x) -s(x) (4.26)

where o is some positive constant. Obviously, there are three state-dependent terms

related to the reaching rate and the ‘RAS-condition can be guaranteed only when (4.26)
1s satisfied for all X in Rz, except x=0. While Assumption 4.2 is satisfied, CAA; can be

represented in the linear combination of ¢ and cN as
CAA =w, C+w, CN (4.27)

where w,; and w,,; are the coefficients of i-th model uncertainty represented by vectors
¢ and cN. With two model uncertainties in the switched system, the reaching rate can

be expressed as

(W —|w,; ) |S(X] + (a - ‘wm‘)- |p(x)|, i=12 (4.28)
Clearly, if wy; and w,,; are bounded by

‘WS‘,[‘ < /1

,i=12 (4.29)
and

W, |<a. i=1,2 (4.30)
(4.26) is satisfied and the system trajectories will reach the sliding mode in a finite

56



time. Note that o takes two possible values of 1—uy and 1+uo, and the minimum value
of a is obtained as 1—|ug|, which is used to check (4.30). Besides, there may also exist
the reaching mode of type 3 with the system dynamics described by (4.13). While
(4.29) is satisfied, the system trajectory can still exponentially converge to the
equilibrium point x=0.

From above, it shows that the proposed switching controller is robust to the model
uncertainties if (4.25) and (4.26) (or, (4.29) and (4.30)) are both satisfied. In next
section, numerical simulations will be given to demonstrate the effectiveness of the

proposed bang-bang sliding mode control.

57



4.4 Numerical Simulation Results

In this section, several examples are given to show the cases discussed in §4.2 and
§4.3. First, three possible reaching modes under the bang-bang sliding mode control
are illustrated in example 4.1 (with reaching modes of type 1 or type 2), and example
4.2 (with reaching modes of type 1 or type 3). Finally, a switched system with model

uncertainties is considered in example 4.3.

Example 4.1:
Consider the second-order switched system given in [34], which consists of two

unstable subsystems expressed as

a5 w3 s
E A= Flsin R AT *31)

where the eigenvalues of A; and A, are {1.5+i2.1794, 1.5-i2.1794} and {0.3852,
—10.3852} respectively. First, rewrite (4.31) into @a'second-order homogenous bilinear

system as

X = AX + uNX -05 0 X + =335 =3 X 4.32
= u = u .
0 -3 7 10 ( )

and choose uy as 0.09. Then, Assumption 4.1 is satisfied since AX+uoNX has stable
eigenvalues 4,=—1.0979 and A,=—1.8171 with left eigenvectors ¢;=[0.9122 —0.4097]
and C,=[-0.5322 0.8466] correspondingly. Assumption 4.2 is also satisfied by
checking rank[c;;c;N]=2. Therefore, the sliding function can be chosen as ¢;X and

from (4.16), the switching conditions of (4.31) can be obtained as

(1) 1, sgn(—6.0604x, —8.6577x, )-sgn(0.9122x, —0.4097x,)< 0
T 2, sen(-6.0604x, ~8.6577x, )-5gn(0.9122x, —0.4097x,)>0  (4:33)
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Under the switching conditions (4.33), the simulation results of (4.31) are shown in
Fig. 4.5 including four possible system trajectories. For the system trajectories starting
from [0.50.5]" and [-0.5 —0.5]", they reach the sliding mode Q in a finite time
without crossing Qn, which shows the reaching mode of type 1. As for the system
trajectories starting from [-0.5 0.5]” and [0.5 —0.5]", they present the reaching mode
of type 2, passing through Qu and then reaching the sliding mode €. For all these
system trajectories, once they are in the sliding mode Q;, they will always stay in it

and move toward the equilibrium point X=0.

Remark 4.1:
For the system trajectories with reaching mode of type 2, (4.12) must be satisfied.
This can be easily verified by substituting xXn=[7-—0.77]", where xyeQn and 7eR,

into CNA;x and ctNAxX. For any-nonzero 7, we have

Ly P(Xyy ) Loy p(Xy )= ENAX -ENA, X = 229.55367° > 0 (4.34)
which guarantees (4.12). Thus, fof.the system trajectories reaching Qy, they will pass
through Q and such reaching mode is classified into type 2 and only stable sliding

motions exist in this switched system.

Example 4.2:
Consider a second-order switched system, consisting of two unstable subsystems

given as

[ o7 -2 [-13 2
A1_—3.65 4.8 Ay = 235 3.2 (4.35)

where the eigenvalues of A; and A, are {-0.6415, 0.6145} and {0.117, —4.617}

respectively. First, rewrite (4.35) into a second-order homogenous bilinear system as

X = AX + uNX —03 0 X + b=2 X 436
= u = u
—~0.65 0.8 3 4 (4.36)
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and choose 1y as —0.3. Then, Assumption 4.1 is satisfied since AX+uoNX has stable
eigenvalues 4;=—0.1 and 1,=—0.9 with left eigenvectors c;=[-0.4472 —0.8944] and
C=[-0.6402 0.7682] correspondingly. Assumption 4.2 is also satisfied by checking
rank[C;;C;N]=2. Therefore, the sliding function s can be chosen as ¢;X and from (4.16),
the switching conditions of (4.35) can be obtained as

o) = { 1, sgn(—2.2361x, —2.6683x, ) sgn(—0.4472x, —0.8944x, )< 0 437)

2, sgn(—2.2361x, —2.6683x, )-sgn(—0.4472x, —0.8944x,)> 0

Under the switching conditions (4.37), the simulation results of (4.35) are shown in
Fig. 4.6 including four possible system trajectories. Different from example 4.1, the
system trajectories may stay in € or Qy, depending on which sliding mode that the
system trajectories reach first. For the system trajectories starting from [—0.5 0.5]” and
[0.5 —0.5]", they reach Q; first, presenting the réaching mode of type 1. For the system
trajectories starting from [0.2 0.8]" and [-0.2 =0:8]",:they reach Qy first and then stay
in it. Although the system trajectories cannot reach €, they truly slide along Qy and
converge to X=0 exponentially as described in §4.3. Clearly, for all these system
trajectories, they will stay in the sliding mode € or Qu, and move toward the

equilibrium point X=0.

Remark 4.2:

For the system trajectories sliding along Qy, the inequalities in (4.15) must be
satisfied, which can be verified by the following process. First, under the condition of
A(X) being around zero, assume s(X)=7 and p(X)=0, where 7 is a nonzero number and
0 —0. Then, we have

s(x)] [ ¢ ~0.4472 —0.8944 r
= X = X = (4.38)
p(x)| |cN 2.2361 —2.6833 5
Since Assumption 4.2 is satisfied, the square matrix in (4.38) is invertible and the

solution of X can be obtained as
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¢ ]'[z] [-0.83850+0.27955
- = (4.39)
cN| [0] |—0.69887—-0.13980
Further, by substituting the X in (4.39) into L, , p(x) and L Ax p(x), it results in

Lo p(x)=cNAl | |7 2604560 (4.40)
' cN o

and

Lo p(x)=eNA| | [T |=o14r-a45 4.41)
? cN o

Hence,

AxP X)=—1.4z‘+5<0 for p(X)=0>0,s(X)=7>0

LA ()=0>0.5(
Lup(x)= 2.60+5>0 for p(x)=5<0,5(x)=7>0
Lap(X)= 2.6t+5<0 for p(x)=5>0,5(x)=7<0 o
L p(X)==1.4r+5>0 for p(x)=5<0,s(x)=7<0

d

This verifies (4.15) and Qy is really a slidingsmode in this example.

Example 4.3:
Consider the switched system givenin example'4:1 again but containing the model
uncertainties AA ;) with the values of
0.15 03 0.12 0.25
AA]Z , AAZZ —
0.45 0.15 04 0.1
Then, it can be obtained that y=max(||AA||,]|AA2||)=0.5427 and ||N||=£=13.6473. When

a Q is given, a corresponding P can be obtained by Matlab software, e.g.,
~10.6189 0.0070 o 1 0 43
~10.0070 0.4747)" T |0 2 (443)
with 2,,(Q)=1 and ||P|=0.6193. Further, let X,.=[7 2.22697]", where X,€Q; and

neR, we can obtain that /N=25.34017, [,=0.42517n and /=0.0168. Then, (4.25) is

satisfied from the following calculation:

ﬂ’”f”(Q)—,B~l—7/= L 13.6437-0.0168-0.5427
2|P|| 1.2386 (4.44)
=0.0356 >0
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which guarantees that the switched system is robust to the model uncertainties in the
sliding mode. Next, check the reaching condition in (4.26) and the coefficients in
(4.27) can be obtained as wy;=—0.1635, w,1=—0.0168, w,,=0.1546 and w,,=0.0143.

Obviously, (4.29) can be satisfied by checking:

<|4/=1.0979 ,

W, w, |[<a=091,i=12 (4.45)
Therefore, the reaching condition is also satisfied in the presence of model
uncertainties. Then, the switching conditions in (4.37) can be used to stabilize the
switched system and the system trajectories in the numerical simulation are shown in
Fig. 4.7.

In this example, it shows that the bang-bang sliding mode control can stabilize the

second-order switched system with model uncertainties if (4.25) and (4.26) are

satisfied for the mode uncertainties.

Fig. 4.5 System trajectories of example 4.1: reaching modes of type 1 and type 2.
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Fig. 4.7 System trajectories of example 4.3.
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

This dissertation is devoted to design the switching controller for a buck DC-DC
converter and stabilize a class of switched systems based on the bang-bang sliding
mode control. The basic theorems related to the bang-bang sliding mode control are
first introduced in Chapter 2 and then, three modes of switching motions around the
switching surface are described. The contributions of this dissertation are summarized
as follows.

In Chapter 3, the design procedures of the bang-bang sliding mode control for a
buck DC-DC converter are given. The system trajectories are clearly depicted in the
phase plane and their RAS-regions are analyzed 'in detail with respect to different
sliding functions. The experimental results obtained from the prototype hardware are
demonstrated and the buck DC-DC converter is:shown to be robust to resistive load
variations. Besides, some modifications of the original bang-bang sliding mode
control are included for the practical implementation. The purpose of operating the
converter at a constant switching frequency is achieved by incorporating a periodic
ramp signal and a Pl-type compensator. In the simulation results, it shows that the
buck DC-DC converter can ideally operate at a constant switching frequency invariant
to operation points and the steady-state errors resulting from the nonzero averaging
value of sliding function can be eliminated by the compensator.

In Chapter 4, the bang-bang sliding mode control is extended to design the
switching controller for a class of switched systems consisting of two unstable
second-order subsystems. Two important assumptions are derived for the existence of

stable sliding motions. Three types of reaching modes are clearly discussed and
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verified by numerical simulation results. Besides, a switched system with model
uncertainties is considered and we show that the bang-bang sliding mode control is
robust in the presence of model uncertainties. Compared with other methods, the
bang-bang sliding mode control only consists of the state-static-memoryless feedback

laws and thus it can be easily realized.

5.2 Future Work

In this dissertation, it shows that the bang-bang sliding mode control is effective in
designing the switching controllers for buck DC-DC converters and a specific class of
switched systems. Nevertheless, there still exist some issues worthy of further studies.
In Chapter 3, the work of determining the.coefficients of the sliding function and the
PI-type compensator are separated in tworindependeént steps. However, it can integrate
these steps into one step by designing the original sliding function with the integral
term of output voltage error. Without-separately designing the sliding function and the
PI-type compensator, the overall system'dynamics in the sliding mode can be properly
assigned and it can be referred to the work in [20].

A unified approach has been proposed to design the PWM-based sliding mode
voltage controllers for boost and buck-boost DC-DC converters [22]. However, it is
still difficult to design a static sliding mode without the integral term. Therefore, the
work in Chapter 4 has the potentiality of being extended to the converters having
un-negligible bilinear terms in their large-signal models.

The existence of stable sliding motions in Chapter 4 is only guaranteed for
second-order switched systems. However, for high-order switched system, there may
exist unstable hyper-switching motions, i.e., the system trajectories switch along both

of s(X)=0 and p(x)=0, and then become unstable. In order to apply the bang-bang
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sliding mode control in high-order switched systems, the conditions for the existence
of stable hyper-switching motion and the exclusion of hyper-switching motion are

both deserving of further research.
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