中文摘要
英文摘要
日 銾V
表目錄
圖目錄IX
第一章 諸論1
1.1 前言1
1.2 塑膠膜片之抗反射技術現況5
1.2.1 製程技術的種類
1.2.2 塑膠膜片塗佈技術問題
1.3 研究動機
1.4 研究目的12
第二章 文獻回顧與基礎理論13
2.1 次波長結構應用於抗反射發展歷史13
2.1.1 次波長結構之光學理論探討15
2.1.2 次波長結構之製程技術16
2.2 抗反射之光學理論概述25
2.2.1 等效介質理論(EMT)25
2.2.2 嚴格耦合波理論(RCWA)26

2.2.3 有限時域差分法(FDTD)	27
2.3 奈米針尖陣列製作技術	29
2.3.1 自組裝遮蔽物乾蝕刻機制	29
第三章 三維奈米針尖陣列的光學模擬分析	32
3.1 FullWAVE 軟體簡介	32
3.2 奈米針尖結構的設計	33
3.2.1 三角錐結構設計	33
3.2.2 半圓形柱結構設計	34
3.3 光學模擬分析結果與討論	35
3.3.1 模擬分析結果	35
3.3.2 結果比較與討論	
第四章 實驗方法與設備	40
4.1 實驗流程	40
4.2 實驗材料	41
4.3 實驗設備	41
4.3.1 電子迴旋共振微波電漿化學氣相沈積系統	41
4.3.2 精密微電鑄系統	43
4.3.3 奈米轉印-微熱壓成形機	45
4.4 分析儀器設備	47
4.4.1 場發射掃描式電子顯微鏡	47
4.4.2 紫外光/可見光/紅外光分光光譜儀	48

4.4.3 接觸角量測儀	49
4.5 實驗步驟	51
4.5.1 自組裝之乾蝕刻技術製備奈米針尖陣列	51
4.5.2 精密微電鑄奈米針尖陣列模具	52
4.5.3 奈米針尖結構熱壓成形於塑膠基材	53
第五章 結果與討論	57
5.1 矽奈米針尖陣列特性分析	57
5.1.1 矽奈米針尖之表面形貌分析	57
5.1.2 矽奈米針尖陣列之反射率光譜分析	59
5.2 精密微電鑄奈米針尖陣列	59
5.3 塑膠膜片奈米針尖陣列之特性分析	60
5.3.1 PMMA 奈米針尖陣列之表面形貌	60
5.3.2 PMMA 奈米針尖陣列之反射率光譜分析	64
5.3.3 PMMA 奈米針尖陣列之接觸角分析	69
第六章 結論	72
第七章 未來研究與建議	75
參考文獻	76

表目錄

33
34
47
49
50
52
53
55

圖目錄

圖 1.1 入射光通過不同介質所產生的反射與穿透1
圖 1.2 抗反射膜(AR film)使用效果(左上:無 AR 右下:有 AR)
圖 1.3 抗反射(AR)塑膠膜片結構4
圖 1.4 非均質層之結構示意圖(a)次波長結構、(b)多孔性的膜層5
圖 1.5 成長薄膜之間所引起的熱膨脹破裂10
圖 1.6 塗層壓力不均勻產生蠕蟲狀的痕跡10
圖 2.1 (a)Nature 期刊中的仿蛾眼表面結構之電子顯微鏡影像、(b)反射
率光譜圖14
圖 2.2 (a) 表面結構形式不同所相對應不同的漸變折射率之示意圖、
(b) 不同深度的蛾眼結構之電子顯微鏡影像圖15
圖 2.3 (a) 週期性的矽次波長結構之 SEM 影像圖、(b)矽基板與矽次波
長結構之反射率光譜圖
圖 2.4 矽基板表面的圓柱狀奈米結構之 AFM 影像圖17
圖 2.5 不同深度的奈米結構在不同波長範圍的反射率情形18
圖 2.6 陽極氧化鋁模版微影技術製作次波長結構流程圖19
圖 2.7 (a)週期性的陽極氧化鋁模版、(b)矽次波長結構之 SEM 影像圖
(c)次波長結構反射率光譜圖20
圖 2.8 (a) 奈米轉印蝕刻大面積的矽奈米柱陣列之製造流程、(b) 矽的
次波長抗反射結構之 SEM 影像圖
圖 2.9 次波長抗反射結構之反射率光譜圖

圖 2.10 以全像曝光技術製作母模版流程
圖 2.11 全像曝光技術的 AR 結構之 SEM 影像圖
圖 2.12 在 PMMA 基材表面兩面製作抗反射膜結構所得反射率光譜圖
圖 2.13 陽極處理與 SF6 氣體對矽基板蝕刻方式24
圖 2.14 矽奈米孔洞柱狀次波長結構 (a)上視圖 (b)橫截面影像 24
圖 2.15 在矽基材表面製作抗反射孔洞柱狀結構所得反射率光譜24
圖 2.16 等效介質理論之表面結構分割示意圖 (a)多層膜堆的折射率形
式、(b)連續的梯度折射率模式25
圖 2.17 RCWA 與 EMT 兩種理論對二維結構不同入射角度之反射率分
析圖
圖 2.18 二維 Yee 晶格只考慮 E 場極化
圖 2.19 三維 Yee 晶格
圖 2.20 自組裝奈米遮蔽乾蝕刻機制之示意圖:(1)電漿蝕刻的反應
氣體(CH ₄ +SiH ₄ +Ar+H ₂)、(2) 奈米級保護顆粒的形成、(3) 物
理性蝕刻形成奈米針尖陣列31
圖 3.1 Rsoft CAD 視窗建立 2D 模式
圖 3.2 (a)三角錐結構平面示意圖 (b)三角錐結構三維示意圖
圖 3.3 連續型之三維三角錐結構
圖 3.4 (a)半圓形柱結構平面示意圖 (b)半圓形柱結構三維示意圖 34
圖 3.5 連續型之半圓形柱結構

圖 3.6 不同深寬比長度的三角錐結構在可見光波段(a)穿透率光譜 (b)
反射率光譜3	6
圖 3.7 不同深寬比長度的半圓形柱結構在可見光波段(a)穿透率光譜	
(b)反射率光譜3	7
圖 3.8 不同的深寬比長在各光波段部份的反射率關係(a)三角錐結構	
(b)半圓柱結構	9
圖 4.1 實驗流程圖4	0.
圖 4.2 電子迴旋共振微波電漿化學氣相沈積系統 (a) 系統結構示意	
(b) 實體圖(台大凝態研究中心.尖端材料實驗室)4	2
圖 4.3 精密電鑄設備	4
圖 4.4 精密電鑄設備外部控制部分 (a)定電流模式之電源供應器 (b))
電鑄槽溶液的溫度控制	4
圖 4.5 電鑄槽內部裝置	5
圖 4.6 微熱壓成形機4	6
圖 4.7 模溫機4	6
圖 4.8 LabView 圖控式操作介面4	7
圖 4.9 場發射掃描式電子顯微鏡4	8
圖 4.10 紫外光/可見光/紅外光分光光譜儀 (a) MODELV.570(b)量測	
穿透率模组 (c) 量測反射率模组4	8
圖 4.11 接觸角量測儀系統 (a) FTA125 設備 (b)軟體操作介面(c)分材	斤
量測角度5	0

圖 5.1 各種不同長度的矽奈米針尖之 SEM 橫截面影像 (a)320 nm

圖 5.7 不同長度的 PMMA 奈米針尖在可見光波段之反射率光譜.....64 圖 5.8 不同深寬比的 PMMA 奈米針尖在 550 nm 可見光波段時之反射