第二章 文獻回顧與基礎理論

利用鍍膜方式以增進光學元件之穿透率,首次於西元1817年由德 國Fraunhofer研究院,利用酸蝕法成功的製造抗反射膜使透鏡之透光 率增加[17],而後演進至今,現今於光學鏡片上進行光學鍍膜衍然已 成為光學系統設計與製作之標準製程。而關於探討次波長結構 (sub-wavelength structure;SWS)之抗反射功能則於西元1967年由 C.G.Bernhard 首先於文中描述,發現自然界許多昆蟲的眼睛,例如 飛蛾的眼睛(moth-eye),即具有相同於人類所使用的鍍膜方式所產 生之抗反射功能,觀察蛾眼的表面具有一些尺寸小於波長的突起結 構,此結構本身就是一種自然界中的抗反射結構。

2.1 次波長結構應用於抗反射發展歷史

1973年P.B. Clapham、M. C.Hutley 兩人於Nature期刊一篇研究中 首先製作仿自然界人造蛾眼結構[18],製程利用全像干涉的方法在玻 璃表面上塗佈光阻(photoresist),以人工方式製作出小於波長的圓 錐形之規則陣列,尺寸大小約為200 nm左右,量測結果發現正如自然 界蛾眼結構一樣,表面的圓錐型光阻陣列結構具有降低反射率的效 果,如圖2.1所示。

圖2.1 (a)Nature期刊中的仿蛾眼表面結構之電子顯微鏡影像、 (b)反射率光譜圖

然後在1982年Wilson等人,嘗試進一步將蛾眼結構的光學抗反射 特性加以分析[19],發現抗反射隨著表面結構的形狀不同而改變,因 此提出解釋,認為結構之所以造成抗反射特性為材料表面因形貌造成 材質折射率呈現梯度變化所致,並且隨著表面蛾眼結構深度的增加, 反射率則呈現逐漸下降的趨勢,如圖2.2所示。意即當材料表面具有 小於波長的突起結構,能夠在空氣與表面結構之間產生有效的梯度折 射率 (gradation of refractive index),能夠抑制反射並且光的散射可 以忽略,後來稱之為蛾眼效應 (moth-eye effect)。

圖 2.2 (a) 表面結構形式不同所相對應不同的漸變折射率之示意圖 (b) 不同深度的蛾眼結構之電子顯微鏡影像圖

2.1.1次波長結構之光學理論探討

關於這樣定性的描述與發現,並不足以科學角度來解釋此一特殊 的光學現象,於是後續便吸引更多包含次波長光學原理探討、奈米光 學模擬分析及奈米結構製程之眾多學術研究投入與探討。 其中光學 原理探討方面M.G.Moharam與 T.K.Gaylord兩位大師自1981至1995陸 續提出多篇論文,其中包含針對一維及二維光柵之次波長效應進行分 析並建立理論模式,以準確提供光學模擬所需之模型,其分析方法主 要為利用嚴格向量理論,或所謂之嚴格耦合波理論(RCWA)加以分 析Maxwell波動方程式,然而針對三維之複雜空間模型,利用此分析 方式無法順利求得解析解,亦即無法計算求得正確之光場傳遞結果。 因此後續理論模式之推導的相關研究便數量逐漸減少。另一方面,隨 著半導體製程技術能夠製作出更小更精確的小尺度的結構,意即大面 積微奈米結構之製程技術日漸成熟,相關研究轉而投入製程之相關研 究,其中包含1987年Yuzo Ono、1999及2001東北大學K. Hane教授、 1992年M.E. Motamedi、1997年Philippe Lalanney、2000年K. Hadobas 等,均成功利用曝光顯影或電子束顯影技術於矽晶圓上製作不同之奈 米結構並驗證其抗反射效能。

2.1.2次波長結構之製程技術

上述日本東北藝術工科大學的K.Hane教授,首先在西元1999年 同時利用電子束微影(electron beam lithography)以及迅速的原子束 (SF₆ fast atom beam)兩種技術,先在結晶性的矽基板上定義出所要 的圖形結構[20],然後蝕刻出具有週期性排列的二維次波長結構陣列 (two-dimensional sub-wavelength structure),如圖2.3所示。此次波 長結構外觀形貌為錐狀、深度為350 nm、週期性距離為150 nm,在波 長200~2500 nm範圍中,發現具有次波長結構的矽基板在波長400 nm 處之反射率,可以從原本矽基板的57 %降低到0.5 %,印證了具有次 波長結構的表面能夠降低原先基板的反射率。

圖 2.3 (a) 週期性的矽次波長結構之 SEM 影像圖、(b)矽基板與 矽次波長結構之反射率光譜圖

緊接著在西元2000年德國的K.Hadobas等人,也發表了利用光學 全像微影技術的奈米結構陣列[21],奈米結構外觀形貌為圓柱狀,週 期約200nm、深度35~190nm,如圖2.4所示。進一步探討不同深度的 奈米結構陣列對不同波長的反射率變化情形,如圖2.5所示。研究結 果顯示,抗反射效果隨著矽基板表面奈米結構深度變深而更趨明顯。

圖2.4 矽基板表面的圓柱狀奈米結構之AFM影像圖

當奈米結構深度在190nm時,光波段在200nm到600nm之間時,反射率效果在3~5%。

2001 年日本東北大學的K.Hane教授又利用具有規律性的陽極 氧化鋁模版 (ordered anodic porous alumina; OAPA) 微影技術[22], 用轉印的方式來定義矽基板表面上的圖形結構,取代原先的電子束微 影的昂貴製程,再用迅速的原子束 (SF₆ fast atom beam) 來蝕刻出次 波長的結構,如圖2.6所示。

左右,在可見光的波段(400 nm < λ < 800 nm)內反射率可以從40% 降低到1.6%左右,並且利用嚴格耦合波理論(rigorous coupled-wave analysis; RCWA)去模擬計算次波長結構的抗反射特性,如圖2.7所 示。

圖2.7 (a)週期性的陽極氧化鋁模版、(b)矽次波長結構之SEM影像圖 (c)次波長結構反射率光譜圖

西元2003年美國普林斯頓大學的Stephen Y. Chou教授,首度嘗試 以新穎的奈米轉印技術[23],成功的在矽基板上製成了大面積的之矽 奈米柱陣列結構,此二維的次波長抗反射結構外觀為錐狀,深度約為 520 nm、週期200 nm,如圖2.8所示。在可見光的波段內的平均反射 率可降低到< 5 %,尤其在波長630nm左右具有最低的反射率值為0.3 %,如圖2.9所示。

圖2.8 (a) 奈米轉印蝕刻大面積的矽奈米柱陣列之製造流程、

圖2.9 次波長抗反射結構之反射率光譜圖

2003年德國Fraunhofer研究中心的V. Boerner 等利用全像曝光 (holographic exposure)的方式來製作抗反射膜,則為實現大面積製 作抗反射膜相關研究中最受注目的研究。其方法為正型光阻經全像曝 光、顯影,得到表面浮雕結構(surface-relief structure),再鍍上一層 金屬後,以電鑄(electroforming)方式將表面浮雕結構複製到金屬模 具表面,作為母版(stamper),再以母版作大量複製生產,整個流 程如圖2.10所示[24]。

圖2.10 以全像曝光技術製作母模版流程

圖 2.11 是以此法製作抗反射膜的 SEM 圖。圖 2.12 則是以此法在 PMMA 基材表面兩面製作抗反射膜結構所得反射率光譜圖,總反射 率可控制在 1~2%左右(單面反射率在 0.5% 以下)。

圖 2.11 全像曝光技術的 AR 結構之 SEM 影像圖[3]

圖 2.12 在 PMMA 基材表面兩面製作抗反射膜結構所得反射率光譜圖

而在2006年日本 Toyota 公司提出利用陽極處理方式得到的氧化 鋁模板(AAO Template)當做光罩,然後再通入 SF6 氣體對矽基板 蝕刻,其製備次波長結構的流程如圖 2.13 所示。這個製作流程成功 地得到矽奈米孔洞柱狀次波長結構,深度約為 300-400 nm、週期寬度 為 100 nm,如圖 2.14 所示。針對具有矽奈米孔洞柱狀次波長結構, 所量得的反射率從圖 2.15 可以看出,在可見光波段所量得的反射率 為 0.8 %, 而當光波段在 1000nm 以上時, 反射率呈現上升的趨勢, 從 0.8 %上升到 27 %。

圖 2.13 陽極處理與 SF6 氣體對矽基板蝕刻方式

(a) (b) 圖 2.14 矽奈米孔洞柱狀次波長結構 (a)上視圖 (b)橫截面影像

圖 2.15 在矽基材表面製作抗反射孔洞柱狀結構所得反射率光譜圖

2.2 抗反射之光學理論概述

2.2.1 等效介質理論 (EMT)

西元1993年Raguin等人利用等效介質理論(effective medium theory;EMT)分析抗反射的表面結構[25],分別從1-D與2-D的結構 進行理論推導與設計分析,顯示出表面結構由上而下可以分割成許多 層如同多層膜的方式,折射率則隨著層數不同而呈現由空氣介質等效 變化至基板介質的折射率,如圖2.16(a)所示。那麼如果是連續的表面 結構變化,就像是漸變或是梯度的折射率變化,藉由等效膜層的梯度 折射率,呈現出有效的趨勢變化,便可以達到更佳的抗反射效果,如 圖2.16(b)所示。

圖2.16 等效介質理論之表面結構分割示意圖 (a)多層膜堆的折射率 形式、(b)連續的梯度折射率模式

2.2.2 嚴格耦合波理論 (RCWA)

關於蛾眼結構或是表面浮雕(surface-relief)結構的理論部分, 一般來說大都是以嚴格耦合波理論(rigorous coupled-wave analysis; RCWA),或是等效介質理論(EMT)來加以分析解釋,RCWA的計 算方法被廣泛運用在繞射結構的分析和設計。這種方法是計算麥斯威 爾方程式(Maxwell's equations)在光栅結構中的完整解。西元1981 年Moharam以及Gaylord大師,首次以RCWA理論去分析平面光栅的 繞射情形[26],以及利用耦合波分析反射光栅之狀況;緊接著又在 1982年就針對表面浮雕光柵 (surface-relief grating) 進行繞射理論分 析[27],奠定了表面光栅分析的理論基礎。然後在1983年Enger等人是 頭一個成功在石英基板上蝕刻出1-D的光柵 (grating) [28], 然後1986 411111 年 Moharam 大 師 又 以 RCWA 理 論 對 高 空 間 頻 率 (high spatial-frequency)長方形溝槽(rectangular-groove)結構表面浮雕光 柵 (surface-relief grating)進行分析[29],發現此光柵有能力顯現出零 反射率 (zero reflectivity) 的重要性,以上的文獻都是在討論屬於1-D的表面結構之特性。

直到1991年Southwell才進行2-D結構的探討[30],以蛾眼效應的原 理設計出週期性的表面浮雕抗反射陣列的折射率,不同體積的結構也 具有不同的折射率;隔年,便以矽基板為例製作出表面具有微米尺度 的圓柱狀週期性陣列。並以二元光學(binary optics)技術對此結構 進行分析,其中將RCWA的理論加以推導。

到了 1994 年 Moharam 大 師 分 別 針 對 二 維 次 波 長 (2-D subwavelength)的二元光柵 (binary grating)結構,分別以RCWA和 EMT兩種理論進行比較[31]。分析在不同入射條件下 (θ = 0°, 30°, 45°),兩種理論所分析出來隨著傾斜角度的差異,其反射率的變化 情形,結果發現兩種理論所得到的反射率曲線相同,奠定了RCWA與 EMT都能分析二維的光柵結構的理論基礎,如圖2.17所示。

圖2.17 RCWA與EMT兩種理論對二維結構不同入射角度

之反射率分析圖

2.2.3 有限時域差分法 (FDTD)

有限時域差分法(finite difference time domain; FDTD)是由Yee 在1966年所提出,利用數值方法配合馬克斯威爾方程與中央差分法, 再加上空間的電磁場做網格切割配置來計算有限空間上時域的電磁 場分佈與頻域的電磁場數值分析[32]。圖2.18是Yee描述的向量電磁波 二維計算面積晶格。在時間網格上電場如下所示:

圖2.18 二維Yee 晶格只考慮E場極化

i,j 是空間坐標,t 是時間。對於三維而言,Yee 的計算晶格體如圖
 2.19所示:

圖2.19 三維Yee 晶格[20]

電場的下一時刻值能藉著磁場的時間間隔得到,然後磁場能由所得到 的電場求出,所以電磁波的傳播能被模擬計算出來。對有限時域差分 法的計算而言,最初狀態的介電質和磁導率分佈必須是已知,並且空 間的切割大小(Δx,Δy)和時間的切割大小(Δt)是必需要被考慮的。 理論上電磁波的傳播速度不能超過光速,這將由所切割的空間和時間 所限制。

$$\Delta t < \frac{1}{\nu} \sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}} \quad , \quad \text{ff} \quad \nu = \frac{C}{\sqrt{\varepsilon_r}} \tag{2.1}$$

2.3 奈米針尖陣列製作技術

接下來介紹以自組裝遮蔽的乾蝕刻 (self-masked dry etching; SMDE)技術製備奈米針尖陣列[33-34]。是以電子迴旋共振微波電漿 化學氣相沈積法(ECR-MPCVD)為主要製程方法,微波電漿製程中, 通入反應氣體:矽甲烷(SiH₄)、甲烷(CH₄)、氫氣(Ar)及氫氣 (H₂),矽甲烷與甲烷氣體在反應腔體中形成碳化矽奈米微粒(SiC nanoclusters)以作為奈米遮蔽物(nanomasks),阻擋氫及氫電漿的 乾蝕刻,進而形成具有高深寬比(aspect ratio)之奈米針尖陣列,而 且可以適用於半導體、導體與絕緣體等材料皆可製備奈米針尖陣列。

2.3.1 自組裝遮蔽物乾蝕刻機制

以自組裝奈米遮蔽乾蝕刻機制來製作奈米針尖陣列,其製作示意 圖如2.20所示。詳細敘述如下:

(1)首先在電漿蝕刻製程中,通入一些反應氣體(CH₄+SiH₄+Ar+H₂)
(2)經由電漿解離後,先在基板的表面成長出奈米級的碳化矽(SiC)

29

晶粒,稱之為自我形成奈米級保護顆粒(nano-clusters),由於這些 奈米保護顆粒硬度比基板硬,化學惰性也較強,所以可以當作奈米級 的遮蔽物(nanomasks)。

(3) 接著再藉由電漿中的氫元素及氫元素來對基板表面分別來做化 學蝕刻及物理蝕刻,此時由於碳化矽晶體具有較為穩定的化學特性及 較高的材料強度先形成在基板上,所以將可保護基板不受到電漿蝕 刻,而其他的沒有受到奈米級碳化矽晶體保護的基板位置將被電漿蝕 刻。

我們將這種利用碳化矽晶體當作奈米級的遮蔽物,進而蝕刻形成 具有高深寬比的奈米結構陣列的方法,稱為自組裝奈米遮蔽物乾蝕刻 機制。

圖2.20 自組裝奈米遮蔽乾蝕刻機制之示意圖:(1)電漿蝕刻的反應氣 體(CH₄+SiH₄+Ar+H₂)、(2) 奈米級保護顆粒的形成、(3) 物理性蝕 刻形成奈米針尖陣列

