# 第四章 實驗方法與設備

4.1 實驗流程



圖4.1實驗流程圖

此實驗流程主要分成四大步驟,如圖4.1所示。其中分為Ⅰ.光學 模擬軟體、Ⅱ.奈米針尖結構之製程技術、Ⅲ.試片檢測分析、Ⅳ.結 果討論四個步驟。第一步驟是藉由光學模擬軟體,分析不同結構與深 寬比大小對光波的特性,;第二步驟是在塑膠基材上製作奈米針尖結 構,此為實驗的核心關鍵;第三與第四步驟為分析所得結果,將在第 五章節說明。

# 4.2 實驗材料

(1) 製備奈米針尖結構基材:單面拋光4吋的矽晶圓(100)。

(2)通入氣體:甲烷( $CH_4$ )、矽烷( $SiH_4$ )、氫氣(Ar)與氫氣( $H_2$ )。

(3)電鑄溶液: 胺基磺酸鎳 ( $Ni(NH_2SO_3)_2$ •(4H<sub>2</sub>O)) 氯化鎳 ( $NiC\ell_2$ )

硼酸(H<sub>3</sub>BO<sub>3</sub>)。

(4)熱壓基材:光學級 PMMA 塑膠膜片

4.3 實驗設備

### 4.3.1 電子迴旋共振微波電漿化學氣相沈積系統

(Electron Cyclotron Resonance Microwave Plasma Chemical Vapor Deposition ; ECR-MPCVD )

此實驗設備為林麗瓊教授在台大凝態研究中心-尖端材料實驗室 所屬。其電漿輔助CVD蝕刻法乃是以電子迴旋共振微波電漿化學氣相 沈積法(ECR-MPCVD)為主要製程方法,其主要設備示意如圖4.2 所示,我們使用由AsTex 所生產AX 4400的套裝設備,其中微波源是 由型號AX 2115最大微波能量為1500 W的微波產生器所提供,搭配上 能產生875 Gauss磁場大小的電磁鐵來控制微波所產生的電漿環境。

本系統 AX 4400 ECR 是一種高效能電子迴旋共振電漿源,主要 設計用於次微米特徵寬度的半導體蝕刻,並且適用於高純度、低溫以 及等向性蝕刻等方面之應用。AX 4400 主要組成有下列:

(1) 2.45 GHz 的微波輻射來源。

(2)產生所欲微波場圖案的耦合器。

(3)透過真空窗能將微波導入製程腔體內。

(4) 製程氣體來源。

(5)可以在所欲電漿體積內產生至少875高斯的磁性系統。



圖4.2 電子迴旋共振微波電漿化學氣相沈積系統 (a) 系統結構示意圖 (b) 實體圖(台大凝態研究中心-尖端材料實驗室)

AX 4400 ECR 激發出均勻分佈且具有很高離子含量的電漿,此 電漿是藉著在高真空腔體裡以2.45 GHz微波的能量激發而得到。同時 在此處發生了電子迴旋共振,從而得到了莫約875高斯的磁場。而為 了達到高效能的重要關鍵則有:產生及分佈此製程氣體的微波耦合器 及真空窗的形狀,調節控制磁場及微波場兩方面。這兩點同時也是 AX 4400設計的主要特色。

電漿中的電子因為受到磁場的影響,部份會被侷限於磁場的方 向。然而電漿中電子的平均生命期,比移動中相對慢的離子來的較 短,便產生了net positive space potential。而net positive space potential 在ECR來源中的稠密電漿中最高,在靠近基板的地區則降低。在離子 撞擊到基板表面以前,這種potential gradient 加速了離子以10~20 eV 的動能離開ECR 腔體。因為ECR的原理,AX 4400可以在相對低壓及 低溫下達到高產量,因而可以減少基板的傷害及污染,而AX 4400可 以廣泛的和惰性及活性高的製程氣體相容。

# 4.3.2 精密微電鑄系統

電鑄是利用電化學原理所產生的技術,將原形母模(被鍍物)放 在陰極;將各類金屬或合金(如:鎳-鈷合金)放在陽極。當陽極的 鎳金屬失去電子,氧化成陽離子而溶入電鑄液中,而陰極則有電化還 原的作用,使陽離子獲得電子而沉積在母模上,待累積到相當厚度後

43

再與母模脫離,即可產生電鑄工件。此電鑄實驗設備為工研院機械所 自行開發,實體圖如圖4.3所示。其實驗的外部控制包含電鑄槽溶液 的溫度監控與電源供應器,如圖4.4所示。其溶液槽溫度必須維持在 50℃~55℃之間,太高會影響鍍膜的品質。而電源提供方式是以定電 流模式,調整不同的電流大小值後,以固定的電流值和產生的電壓值 達到沉積的效果。



圖4.3 精密電鑄設備





(b)

圖4.4 精密電鑄設備外部控制部分 (a)定電流模式之電源供應器

(b)電鑄槽溶液的溫度控制

電鑄槽最大容量在20L,內部裝有攪拌器,目的讓反應沉積過程中能 夠均勻,形式如圖4.5所示。電鑄液成份包含以下:

(1)胺基磺酸鎳(Ni(NH<sub>2</sub>SO<sub>3</sub>)<sub>2</sub>•(4H<sub>2</sub>O))有較低的內應力來可提供鎳離 子,所以常被用在鍍鎳功能上。

(2)氯化鎳(NiCl<sub>2</sub>)可提供鎳離子和氯離子。氯離子可以防止陽極鈍 化,而且氯化物可幫助陽極溶解與增加導電率功用。



(3)硼酸(H<sub>3</sub>BO<sub>3</sub>)可當Ph值緩衝液,使PH值維持在4.0~4.7。

圖4.5 電鑄槽內部裝置

### 4.3.3 奈米轉印-微熱壓成形機

本文中微熱壓成形設備(型號:MIRL-30A)為工研院機械所自 行開發,實體如圖4.6、4.7所示。硬體部份具有可分開獨立控制的上 下加熱模具,其上下模具的溫度控制係藉由軟體控制程式與熱電耦加 熱器訊號傳送,如此反覆回饋補償之機制以達到恆溫控制之要求。模 具內部有獨特設計的密閉彈性膜與包覆之流體均壓單元,使得轉印平 行度和均壓性佳。另外熱壓的力量控制透過伺服馬達輸出扭矩並驅動 皮帶輪,經由滾珠導螺桿之傳遞轉為下壓力,而下壓力經由負荷計之 量測而傳回電腦軟體做補償,並且把力量數值顯示在操作界面上。此 設備附有人性化軟體操作界面,可選擇手動與自動的製程模式,軟體 部分由圖控式軟體LabView架構之程式撰寫,使得力量與溫度達到監 控效果,因此可減少實驗誤差與不安定因素,如圖4.8所示。在熱壓 成型完成後可啟動模溫機冷卻系統,使其降低溫度讓熱壓結構固化。 此奈米轉印設備主要規格如表4.1。



(a)

圖4.6 微熱壓成形機



圖4.7 模溫機

| IN DESCRIPTION STATES                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ald a      |
|------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ·奈米轉印                                                | 設備                                     | 12-21-2005 1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 129 返回系統 |
| 手動操控支面                                               |                                        | - CRATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 状態攝手運      |
| 电不计制制的系列器                                            | 6000 MGHT                              | 5.2 教教的原教書                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 200 martine                                          | 5000 B                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| No.                                                  | 1000 1000 1000 1000 1000 1000 1000 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| a ino più nio cio sia con ron con ron.<br>Refigierat | · ale sis s                            | the sus sus sus run and and<br>Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| REAL STRAL STRAL                                     | 1                                      | (DEREWH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barnapar.  |
| RASHDE ARES HE'S                                     | 1.64ELLE.E.K.                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          |
| REAR AND                                             | 18400                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                      | MIDIN                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| TPACE                                                |                                        | antipera (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/04010    |
| WILLIE MALE                                          | REPARKS                                | 74 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148        |
| PERSONAL PRIM                                        | POTPHISMED.                            | 核外现 储子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 資料       |
| THE CLEARE FRAME                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anne 1     |
|                                                      |                                        | A CONTRACTOR OF A CONTRACTOR A CONTRACT |            |

圖4.8 LabView圖控式操作介面

|      | 規格項目                                       | 數值            | 單位                              |
|------|--------------------------------------------|---------------|---------------------------------|
| 壓印單元 | 最大轉印力                                      | 5000          | kgw                             |
|      | 最大轉印(壓)力                                   | 60            | kgw/ cm <sup>2</sup>            |
|      | 最大轉印(壓)力偏差                                 | ±1            | %                               |
|      | 最大轉印尺寸                                     | 100(4")       | mm                              |
|      | 增壓速率 [1]                                   | 10            | $(\text{kgw/ cm}^2)/\text{sec}$ |
|      | 最高溫度                                       | 300           | °C                              |
| 溫控單元 | 最大溫度變異量 1896                               | ±1            | %                               |
|      | 加熱速率 2000000000000000000000000000000000000 | <b>60-100</b> | °C/min                          |
|      | 冷卻速率                                       | 60-100        | °C/min                          |
| 定位單元 | 定位行程                                       | 300           | mm                              |

表4.1 奈米轉印設備細項規格

# 4.4 分析儀器設備

# 4.4.1 場發射掃描式電子顯微鏡

(Filed Emission Scanning Electron Microscope; FESEM)

主要的原理是利用電子槍產生電子束,並由約0.5~30 KeV的加速電壓。再經由電磁透鏡所組成的電子光學系統,使電子束聚集成一微小的電子束而照射至試片表面。而在電子束與試片相互作用,激發出二次電子與反射電子,這些電子被偵測器偵測到後,經過訊號處理

放大後以形成影像再傳送到螢光幕中,如圖4.9所示。最高的解析度 達1.5nm (15 kV),主要可用來觀察試片破斷面分析與結構形貌大 小。本實驗的場發射掃描式電子顯微鏡型號為Hitachi S-4200。



圖4.9 場發射掃描式電子顯微鏡

4.4.2 紫外光/可見光/紅外光分光光譜儀 (UV / VIS / NIR Spectrometer)

用來量測穿透率與反射率的儀器,常用於分析材料試片的光學性質。本論文中使用光譜儀為日本 JASCO INTERNATIONAL CO. LTD 公司之MODELV-570,儀器架構如圖4.10所示。光源採用氙氣燈(190~350 nm)/鎢絲燈(330~2500nm),光波段量測範圍可從190~2500 nm,其規格如表4.2所示。



圖4.10 紫外光/可見光/紅外光分光光譜儀 (a) MODELV-570 (b)量測穿透率模組 (c) 量測反射率模組

| 系統規格        | 規格說明                                            |
|-------------|-------------------------------------------------|
| 量測波長範圍      | 190~2500nm                                      |
| 圖譜頻寬        | 0.1, 0.2, 0.5, 1, 2, 5 and 10nm                 |
| 波長準確度       | $\pm 0.3$ nm                                    |
| 檢知器         | R928 光電倍增管及 PbS photocell                       |
| <b>择烘油座</b> | 10, 20, 40, 100, 200, 400, 1000, 2000, and 4000 |
| 师佃处反        | nm/min                                          |
| 额长座         | 0.1nm in UV/VIS 範圍                              |
| 牌 / 及       | 0.5nm in NIR 範圍                                 |
| 測量模式        | Abs, %T, %R, SAM, REF                           |
| 光源          | 氙氣燈(190~350 nm)/鎢絲燈(330~2500nm)                 |

表4.2 紫外光/可見光/紅外光分光光譜儀Model V-570規格

# 4.4.3 接觸角量測儀

(Contact angle instrument)

主要功能為量測液滴滴落在基材表面上形成的接觸角,並利用 CCD可動態擷取影像來觀察定量液滴滴定的過程,最後可透過接觸量 測軟體計算出接觸角、表面張力與表面自由能。此設備為汎達科技型 號FTA125,如圖4.11所示。量測樣品的尺寸範圍最大寬度在135mm 而高度為25mm,樣品定位在Z軸可手動上昇下降(行程25mm),Y 軸也採手動式移動定位(行程100mm)。 其規格與詳細功能如表4.3 所示。



(a)



(b)



(c)

# 圖4.11 接觸角量測儀系統 (a) FTA125設備 (b)軟體操作介面 (c)分析量測角度

| 系統規格        | 功能與規格說明                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 定量滴定        | 容量: 2.0mL<br>最小刻度: 0.002mL                                                                                                             |
| 量测功能        | <ol> <li>1.接觸角(Contact Angle)</li> <li>2.液體表面張力(Surface Tension)</li> <li>3.固體表面能(Surface Energy)</li> <li>以上功能可調成手動/自動模式</li> </ol>   |
| 接觸角量測範圍     | 量測範圍0-180°; 精度範圍±0.1°                                                                                                                  |
| 模擬運算模式      | 可選擇球型/非球型模擬同時顯示左邊接<br>觸角、右邊接觸角、平均接觸角(Mean)<br>及滴液之直徑(Base Width)、體積(Drop<br>Volume)。                                                   |
| 表面張力量測範圍    | 量測範圍:0-2000mN/m<br>精度:±0.5%,<br>解析度:0.1%                                                                                               |
| 電腦控制 CCD 相機 | <ol> <li>1.取像速度至少達60 像/秒</li> <li>2.可將實驗結果轉換為影像檔,可儲存圖<br/>檔格式JPG、BMP、AVI。</li> <li>3.對比、亮度可依樣品感光程度自動調整。</li> <li>4.即時動態體積量測</li> </ol> |

表4.3 接觸角量測儀FTA125細目功能與規格

# 4.5 實驗步驟

## 4.5.1 自組裝之乾蝕刻技術製備奈米針尖陣列

- (1) 首先在電漿蝕刻製程中,通入一些反應氣體 $(CH_4+SiH_4+Ar+H_2)$
- (2)經由電漿解離後,先在基板的表面成長出奈米級的碳化矽(SiC) 晶粒,稱之為自我形成奈米級保護顆粒(nano-clusters),由於這 些奈米保護顆粒硬度比基板硬,化學惰性也較強,所以可以當作 奈米級的遮蔽物(nanomasks)。
- (3) 接著再藉由電浆中的氫元素及氫元素來對基板表面分別來做化 學蝕刻及物理蝕刻,此時由於碳化矽晶體具有較為穩定的化學特 性及較高的材料強度先形成在基板上,所以將可保護基板不受到 電浆蝕刻,而其他的沒有受奈米級保護顆粒保護的基板位置將被 電浆蝕刻。

# 製備奈米針尖陣列之參數

利用上述之自組裝奈米遮蔽乾蝕刻,在電子迴旋共振微波電漿製 程中製作矽奈米針尖(Sinanotips)的製程條件,如表4.4所示。製程 中通入的反應氣體共有:甲烷(CH<sub>4</sub>)、矽烷(SiH<sub>4</sub>)、氫氣(Ar) 與氫氣(H<sub>2</sub>);混合氣體流量分別為2:0.2:3:8 單位為sccm;微 波功率為1200瓦;工作壓力5.8 mTorr左右;基板溫度約攝氏250度; 再經過不同的蝕刻的時間,大約為6 ~ 36小時之間的電漿蝕刻反應

| 反應氣體(Source gas)                                                              | CH <sub>4</sub> +SiH <sub>4</sub> +Ar+H <sub>2</sub> |
|-------------------------------------------------------------------------------|------------------------------------------------------|
| 混合氣體流量(Gas flow rate)<br>CH <sub>4</sub> :SiH <sub>4</sub> :Ar:H <sub>2</sub> | 2:0.2:3:8                                            |
| 微波功率(Microwave power)                                                         | 1200W                                                |
| ECR current                                                                   | 180A                                                 |
| 工作壓力(Totoal pressure)                                                         | 5.8 mTorr                                            |
| 矽基板溫度(Substrate temperature)                                                  | 120~250°C                                            |
| 成長時間 (Growth time)                                                            | $6 \sim 8 \mathrm{hr}$                               |

表4.4製作矽奈米針尖之製程參數

4.5.2 精密微電鑄奈米針尖陣列模具

電鑄奈米針尖陣列模具步驟如下: (1)先浸溼矽奈米針尖基板,以防止表面有氣泡。 (2)接上陽極與陰極導電線,並且將陽極擺放鎳板,陰極擺放矽奈米 針尖基板。注意電鑄槽液面要比基板的邊緣高,將基板覆蓋在溶液 裡面。

(3)開始電鑄時調整電流強度,第一階段電流密度為 0.1ASD (Anodic Spark Deposition 單位為 A/dm<sup>2</sup>),時間為 30min;第二階段電流 密度為 0.2ASD,時間為 30min;第三階段電流密度為 0.5ASD,時 間為 9hr。溫度控制在 50-55°C,並且調整攪拌頻率,使其沉積反 應均匀。詳細的電鑄浴組成成分與操作條件參數如表 4.5 所示。 ※註1:通常電鍍的膜厚在上、下方均會較厚,因為上方的電子較多,

而下方由於重力的關係電子也較多,故增進膜厚均勻性必需

注意。

※註2:電鑄時蓋上保鮮膜可以避免髒東西掉入,以及也可以減少電

鑄槽溶液的揮發。

(4)完成電鑄後,浸泡清水洗去殘留電鍍液,用氮氣槍吹乾後,去除 膠帶,並用丙酮擦拭掉導電膠。

| 操作參數  | 型心, 數值                          |
|-------|---------------------------------|
| 氨基磺酸镍 | 400-450 g/L                     |
| 氨基磺酸鈷 | <b>6~</b> 7 wt%                 |
| 硼酸 1  | 40 g/L                          |
| 溼潤劑   | 10 ml/L                         |
| 應力降低劑 | 4 g/L                           |
| 電流密度  | 0.1-0.5 A/dm <sup>2</sup> (ASD) |
| 溫度    | <b>50-55°</b> ℃                 |
| 溶液pH  | 3.5-4.0                         |

表4.5 鎳-鈷電鑄浴組成與操作條件

# 4.5.3 奈米針尖結構熱壓成形於塑膠基材

熱壓成形之過程主要是由力量、溫度與時間的控制軟體執行,有 關啟動程式與進行熱壓實驗步驟如下所述:

(1)首先利用氮氣清潔模仁表面、基材與工作載台,。

(2) 開啟奈米轉印設備之控制程式,將壓印過程設定為手動操控模式。

(3)將模具與塑膠基板放置於壓印設備的載台上,並將防護門關上。

(4)設定實驗參數包含:熱壓溫度與工作壓力,並且開始加溫。

(5)啟動線性馬達,將載台移至壓印單元下方。

(6)啟動伺服馬達,當溫度達到工作溫度時開始進行熱壓成型。

(7)伺服馬達持續對模具施加壓力,當施加壓力達到工作壓力時,開始計時。

(8)保壓1分鐘後開始進行冷卻步驟,當冷卻至室溫後,啟動伺服馬達將上模復歸進行開模,然後再取出模仁與基板。

本文中在熱壓成形過程中可以規劃成4個階段,而這些過程與參 數的設定對於往後壓出成形品的好壞極為重要,而有關本論文熱壓成 形實驗各項變數如表4.6所示。而熱壓成形過程各階段的目的與細部 內容在此也做一個簡單說明:

#### 4000

a.初始階段(Initial):材料開始加熱時初始力量接觸。在此階段中, 先固定模仁於上模具後,再放置塑膠薄材於上下模具之間使其本身能 均勻受熱。當材料加熱至預定溫度,程式啟動轉印單元的伺服馬達以 些許力量接觸材料表面,其接觸力量為2bar,目的用來防止因受熱後 開始產生之形變。而加熱溫度到達設定溫度後會持溫數秒,使塑膠薄 材的受熱溫度能夠平均分佈,然後再進行熱壓階段。

b.熱壓階段(Hot embossing):以設定固定力量參數在塑膠薄材與模 仁上進行壓印,此過程是持壓持溫之狀態,力量與溫度皆由軟體程式 做監控,以確定此階段之壓力、溫度與初使設定值相同。

c.保壓階段(Holding):當進入冷卻保壓階段時,必需切斷加熱電源,並同時以手動方式開啟模溫機進行冷卻。此階段成形品會因冷卻而開始發生收縮與翹曲,這時我們必須在模板與塑膠薄材之間保持一定壓力,使其冷卻到室溫,以減少過度的收縮與翹曲現象。

d.開模階段(Mold open):當保壓冷卻到室溫後,可以進行開模並 取出熱壓完成的塑膠試片做日後檢測用。

# 熱壓成形之參數

最直接影響熱壓成形條件分別為熱壓之溫度、壓力、時間與冷卻 保壓時間等四項,如圖4.12所示為溫度、力量與時間的變化關係。此 變化關係圖是本文中的實驗模式,藉由不同的參數設定找出最佳成形 條件。

| 武片<br>成形條件              | 試片1      | 試片2      | 試片3      |
|-------------------------|----------|----------|----------|
| 熱壓溫度 (℃) T <sub>1</sub> | 110      | 135      | 160      |
| 熱壓與保壓壓力<br>(bar)        | 60       | 60       | 60       |
| 熱壓時間(sec)               | 60       | 60       | 60       |
| 保壓時間 (T <sub>2</sub> )  | 冷卻到室溫25℃ | 冷卻到室溫25℃ | 冷卻到室溫25℃ |

表4.6 熱壓成形之實驗參數

