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Time-Optimal Control of T-S Fuzzy Models

Student :  Pao-Tsun Lin Advisors :  Dr. Chi-Hsu Wang

Dr. Tsu-Tian Lee

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

This dissertation investigates: geometric..property of time-optimal problem in
Takagi-Sugeno (T-S) fuzzy modelivia Lie algebra. We will focus on the existence of
time-optimal solution, singularity. of ‘switching function and number of switching.
These inherent problems are considered because of their rich geometric properties.
The necessary condition for the existence of time-optimal solution reveals the
controllability of T-S fuzzy model which can be found by the generalized rank
condition. The time-optimal controller can be found as the bang-bang type by
applying maximum principle. In the study of singularity problem, we will focus on
switching function whatever vanished on a finite time interval. The bounded number
of switching can be found if the T-S model (also a nonlinear system) is solvable. This
feature can be applied to solve the time-optimal problem by numerical approach. Fast
response is always a considered property in this dissertation. A notion directly relate
to the convergence rate of the state trajectories. A controller design of T-S fuzzy

model on maximal convergence rate is introduced by the level set function. The result



of maximizing the convergence rate is characterized from the maximal invariant
ellipsoid. The controller is also bang-bang within both the initial states and target

states belong to level set.
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Chapter 1
Introduction

This dissertation deals with the time-optimal control and maximal convergence
rate for constrained T-S fuzzy system. In recent years, fuzzy logic control with human
knowledge of the plant has witnessed an effective approach to the design of nonlinear
control systems. Indeed, there have been many successful applications which are
based on fuzzy control [1-8]. In [9], Takagi and Sugeno proposed an approach to
model the nonlinear process. This type of madels is the so-called T-S model with later
further development in [10]. The:T-S fuzzy model blends the dynamics of each fuzzy
implication by a linear consequence part [11-13]. In this type of fuzzy model, lots of
important issues are addressed”such as stability [2, 8, 11], H,/ H_ performance
[13-15] and robustness [16-18],..., etc."In [19], a fuzzy approach is used in the design

of time-suboptimal feedback controllers.

1.1 Time-optimal Control

The maximum principle has been extensively applied in many time-optimal
control problems [20-35]. A series of results have been published on the applications
of maximum principle in time-optimal control of finite dimensional linear systems
and certain low-order nonlinear systems [21-23]. It is well-known that Lie brackets
play an essential role in the study of time-optimal control [31-35]. In general, the
maximum principle can reduce the optimal control problem by Hamiltonian. However,

the Hamiltonian formulation contains no information about the existence of
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time-optimal solution. It is better to convert the existence of time-optimal solution to
the study of reachable sets [25, 26, 28]. While the existence of time-optimal solution
IS addressed as the compactness of researchable set, we still have to generalize the
analytical process and this will lead us to the discussion of Lie algebra. An accessible
Lie algebra spans a family of analytical vector fields which will imply the
controllability of T-S fuzzy model. Time-optimal control for T-S fuzzy model is a new
control problem with its rich geometric properties via Lie algebra.

Using the maximum principle, time-optimal trajectory combined with the
corresponding control, is called an extremal. The bounded input is determined by the
signs of the associated switching functions. The singularity of the system is a
well-known problem in time-optimal control which is explored in [27, 31]. An
optimal trajectory may be singular, i.e., switching functions may vanish along the
trajectory. The characterization of such trajectories will be investigated in this
dissertation. The existence of extremal will-imply that the time-optimal controller of
the T-S fuzzy model to have finite"number.of switching, which can be found by Lie

algebra in this dissertation.

1.2 Controllability Revisit

Recently, the controllability of systems has also attracted many explorers, such as
switched system [41-43], hybrid system [44, 45]. However, the controllability of T-S
fuzzy model has not been found in the literature. The controllability of the fuzzy
model is a pre-requisite of the proceeding controller design. The effort in this
dissertation to design a time-optimal controller via controllable T-S fuzzy model is a
new contribution. Since the control-affine system can be represented by a family of

vector fields, this will have direct applications to control systems. Consider a T-S

2



fuzzy model with a compact set of control input U , the Lie bracket taken at a point
of an analytic family of vector fields form a complete set of its invariants. By
formulating the T-S fuzzy model as a relaxed version, we can perform some algebraic
operations on it, such as taking linear combinations and taking a product called Lie

bracket.

1.3 On Maximal Convergence Rate

Fast response is always a considered property in this dissertation. A notion
directly relate to fast response is the convergence rate of the state trajectories. For a
linear system, the convergence rate is determined by the real part of the pole which is
closest to the imaginary axis. We will'give a controller design of T-S fuzzy model on
maximal convergence rate by:the introduced. level set function. The result of
maximizing the convergence crate Is .characterized from the maximal invariant
ellipsoid. The controller is also ‘bang-bang within" both the initial states and target

states are belong to level set.

1.4 Dissertation Overview

This dissertation is organized as follows. In section 2, we will formulate the
time-optimal problem in T-S fuzzy model. In this section, the T-S fuzzy model is
described as polytopic linear differential inclusion and Lie algebra is adopted to find
the controllability of T-S fuzzy model. It can also be shown that if the T-S fuzzy
model is controllable then the time-optimal does exist. Assuming the existence of
time-optimal solution, we will investigate the singular structure in fuzzy model in

section 3. The optimal trajectory is solved by the numerical illustrations are provided.



By introduced level set, the maximal convergence rate control discuss in section 4.

Finally, conclusions are included in section 5.




Chapter 2

Controllability of T-S Fuzzy Models

Controllability properties of a control system are properties related to the
following questions. Can the system be steered form a given initial state to a given
final states? Can this be done for any pair of initial and final states? How large is the
set of points to which the system can be steered from a given initial state? Which
trajectories of the system are realizable and how. do we find controls realizing them?
Such questions can be motivated by practical problems and they are basic for any

qualitative study of control systems.

Consider a nonlinear control system x= f(x, u), where xe X <cR" and u is

control in set U . This system can be viewed as collection of dynamical systems

parameterized by control input. In study of controllability properties of systems, the

set of available velocities F(x)={f(x, u):ueU} by its convex hull, the

trajectories of the convexified system can be approximated by the trajectories of the

original system. In particular, if Oeint co F(x) for all xe X, then the system is

completely controllable.

2.1 Takagi-Sugeno (T-S) Fuzzy Models

Consider a nonlinear control-affine system



x=f(x)+g(x)u (1)
where xe X < R" issystem state and u is control input is an arbitrary set U . The
state space X is a smooth differential manifold of dimension n and U the
control set. The vector fields f and g are assumed to be analytic.

In many situations, fuzzy model with the human knowledge can provide a
linguistic description of the nonlinear system in terms of IF-THEN rules. The i-th

rule of the T-S fuzzy model is described by the following form:
Rule i: IF z(t) is M;---and z,(t) is M;;, THEN
t=Azx+ Bu
where X is system states, taking values in an open subset X of R", ueR" isa

measurable bounded function on Ui~ is the-humber of IF-THEN rules, z(t) are

some fuzzy input variables, M; yare fuzzy-smembership functions in the i-thrule,

and %= Ax+Bu is the outputfrom the .i=th-IF-THEN rule. The entire fuzzy model

is formulated as follows:

k=4 (2(1))(Ax+Bu) @

i=1

where r is the total number of rules, ,ui(z(t)) is the normalized membership

function and yi(z(t)):ozi/Zoci and ¢; is the firing strength of i-th rule and

i=1

The T-S fuzzy model has strong connection with the polytopic linear differential
inclusion (PLDI) [36, 37] which will lead to the relaxed version of T-S fuzzy model
defined in this dissertation. The equivalence between the fuzzy model and the

differential inclusion is revealed by the well-known Filippov’s Selection Lemma [36,



37]. From Filippov’s Selection Lemma, the set of solutions of T-S fuzzy model
coincides with the set of solutions of the differential inclusion.

The relaxed version of T-S fuzzy model is described by
xeCo{[Ax+Bu]li=1...,r} 3)

where Co denotes as convex hull [36]. If the T-S fuzzy model is continuous and
control input U is compact, the set of solutions of (2) coincides with the set of

solutions of (3) [36, 37], i.e.,

Co{[Ax+Bu]li=1....,r} 2 Z/,ll( t))(Ax+Bu).

Therefore we represent the T-S fuzzy model by (3) as
X = Z 4 (t)(Ax+Bu) (4)

where 4 (t)€[0, 1] and z,u, =1.__To simplify the notion, we adopt

> A= Zy, )A, D B = Z,u, t)B, and the j-th column vector of > B are

denoted as > b, => u(t)B, 7 j=1...m and are assumed to be linearly

independent. Throughout the rest of this dissertation, the T-S fuzzy model is denoted

as
x=> Ax+Y Bu. (5)
In general, the variable z(t) in (2) sometimes is chosen as the state variables x(t),

thus de-fuzzification g (z(t)) causes (2) to become a class of nonlinear systems.

This lead to difficultly perform differential algebra on (2). To avoid this problem, such

T-S fuzzy model (5) is introduced to allow us to perform differential algebraic on it.



2.2 Lie Algebras

The nonlinear control-affine system (1) can be viewed as a collection of
dynamical system with control input. It is typical to expect that basic properties of
such a system depend on interconnections between the different dynamical systems
corresponding to different controls. The Lie bracket of two vector fields is another
vector field which measures noncommutativeness of the flows of the vector fields.

Let f and g be vector fields on X, the corresponding Lie bracket of two

smooth vector fields is denoted by [ f, g], and

[£.8)0)=2-9(x)- 2 £(x),

where of /ox and 6g/ox denote the'Jacabi.matrices of their vector fields. The

iterated Lie bracket of f and g is defined as
ad (1)*0) ()= F. ad (1) g](x) ©)
where ad ( f )0 (9)=g and k=>1.TheLiealgebra generated by the vector fields

can be expressed as
L={f,0 00}
:span{[gil,---,[gi“, gik]--]k >1, 0<i,...,i, < m}
where g, = f.
To study the coordinate change, consider a global diffeomorphism ®:X — X as
tangent vectors are transformed through the Jacobian map. Consider a

diffeomorphism is defined as

ad, (1)(p)=T®(a)(p), a=2"(p),
where Td denotes the tangent map of @ . Note that the coordinate change
p=®(q) transforms the differential equation p=f(q) where f=ad,(f). If

8



the tangent map of @ is a global diffeomorphism of X, then the operation ad,, is
a linear operator on the vector fields X . For example, the additive of
diffeomorphism is
ad, (o f,+a,f,)=aad, (f,)+a,ad, (f,).
The global diffeomorphism of composition ®-® is
ad, o (f)=ad, (f)ady(f).
From the definition of Lie bracket that [f,g] transforms with coordinate changes

like a vector field which is via the Jacobian map. If the tangent map of @ is a
diffeomorphism of X , the basic property of equivariance of Lie bracket with

coordinate changes are as following:

[ad,, (). ad,(g)]-ad, [f. g].

2.3 Classical Controllability Results Revisited

In analyzing controllability properties of systems, the follow theorems are introduced.
In the following, we will introduce notions and results which play a basic role in
analyzing the structure of nonlinear control systems. They are directly related to
controllability properties of nonlinear system. In the following, we denote X asa n
dimensional C* manifold.

Definition 1. Let T X be a subspace of the tangent space at any point xe X . A

distribution A on X isamap which is

xeX >A(X)cT,X .

The distribution A is a smooth subspace of R" to each point x. The dimension of

A, in general, is not a constant. If the dimension is constant in a neighborhood of x,



then x issaid to be a regular point of the distribution.

Definition 2. A distribution A(x) is called involutive if for any two vector fields

f, g e A(x), their Lie bracket [f, g]e A(x).

The involutive plays the basic role in following is well-know Forbenius theorem.
Theorem 1. (Frobenius’ theorem) [35].

If distribution A is involutive distribution of class C” and of dimension k on
X then, locally around any points in X , there exists a smooth change of

coordinates with transforms the distribution A to the following constant distribution
span(e,,....& ),

where e,,...,e,_ are the constant vector with 1 atthe i-th place.

In order to introduce a global-version-of-Frobenius’ theorem, we have following
definitions.

Definition 3. A subset S < X is called regular submanifold of X with dimension
k if for any xc S there exists a neighborhood U of x and a diffeomorphism

®:U -V cR" onto an open subset V such that

O(UNV)={x=(%,....X,) €V ¥, =0,...,x, =0}.

n

If any point of the distribution is regular with dimension k, the distribution is said to
be regular and the dimension of the distribution is k. In other words, a regular
submanifolds of dimension k is a subset which locally looks like a piece of
subspace of dimension k with changing of coordinates. A weaker version of a
submanifold is introduced in the following definition.

Definition 4. Asubset S < X is called an immersed submanifold of X of

10



dimension k if
s=Us,, where S,cS,--cS
i=1

and S, are regular submanifolds of X of dimension k.

In fact, if subset S itself is regular submanifold, then S, =S and S is also an

immersed submanifold. From geometric view, if two vectors field f and g are

tangent to an immersed submanifold S then also their Lie bracket [f ,g] is

tangent to this submanifold.

Remark 1. This is geometric definition of Lie bracket. If vectors field f is tangent

to submanifold S, the fact that it is flow transforms points of S into points for any

time t sufficiently small. With respectto t,the [f ,g] is gives a tangent vector to

S.

Definition 5. Afoliation {S;} _, of X efdimension k isa partition

X=UsS,

ieA
of X into arc-wise connected (immersed) submanifolds S, . In here, S_ is called

leaves.

Let g is a vector field of tangent to a foliation {S;} . that is, it is tangent to its

leaves. The Lie bracket [f ,g] is tangent to this foliation, if the flow of f locally
preserves this foliation. For any point xeS,, the f locally preserves the foliation
{S;}._, mean that there is a neighborhood U of x such that the image of a piece

of a leaf is contained in a neighborhood of leaf of the foliation, for any time t

sufficiently small.

11



Definition 6. Consider a set of vector fields 7={f,} . the orbit of a point x e X

is the set of points of X which and be reached by piecewisely by trajectories of

vector fields,

Or‘b(x):{y::k o;/::ffo---oytll’l k>1 u,...,u, €U,t,....t, e]R*},

where y,' is denoted the flow of the vector field f, .

Theorem 2. For all xe X , the orbit S=0rb(x) of a set of vector fields

]-"z{fu}u is an immersed submanifold. Further, the tangent space of this

eU

submanifold is given by the distribution T,S =A(x).

Corollary 1. If the vector fields f, are:analytic, then the tangent space of the orbit

can be obtained as
TS ={g(x)|g e L{f],., |

where L{f,}  denotessmallest set of vector fields which contains the set F and

is closed under taking linear combinations and Lie bracket.

Denote X be anopensubseton R" or a differentiable manifold of dimension n.

We have the following definition.

For convenience, the following Theorems 2 ~ 4 are listed here which are adapted from

[35-37].

Theorem 3. (Chow’s Theorem) [35]

12



Let F be a set of C” vector fields on X and L={4,4,....4} , be the Lie

algebra generated by 7. If dim(£(x))=n forall xe X, then any pointof X is
reachable by trajectory of the vector fields F . Thus
X1 :et}LL O...oetjl(xo)

forsome L>1, {4, A4,...A4}eF and t,...t (0, =).

The following well-known theorem of Frobenius is characterized the integrable
distribution [38].
Theorem 4. (Generalized Frobenius’ theorem) [38]

If X is a C” (regular) manifold, .of .dimension n and A is an involutive
distribution then around any point x e Xy there exists a largest integral manifold of

A passing through x.

Remark 2. Adistribution A is said to'be integrable if there exists a submanifold S

on X suchthatforany xe X
A(Xx)=T,S

X

where S is passing through x.

Remark 3. Any analytic involutive distribution A is integrable [39].

Theorem 5.[39]

Let F be a set of C” vector fields on X and L={4,4,....4, be the Lie

algebra generated by F . For all xe X, there exists a largest integral manifold of

F passing through x.

13



The proof of Theorem 5 can be found by using the Campbell-Baker-Hausdorff

formula and Theorem 4.

2.4 Lie Algebras of T-S Fuzzy Models
Since the control-affine system can be represented by a family of vector fields, this
will have direct applications to control systems. Consider a T-S fuzzy model with a

compact set of control input U , the Lie bracket taken at a point of an analytic family
of vector fields form a complete set of its invariants. In particular, E( po) denotes
the space of tangent vectors at p, defined by the Lie algebra. Due to the fact that
f=g,=> Ax, g,=>b,....9,=>_b,, and that Lie bracket of constant vector
fields is zero, the iterated Lie bracket:can-befound as

ad (Y Ax)' b, & | XAx ad (¥ Ax) " Tb, | U
ALie algebra £ is recursively-defined by

B[z, £), £ [ OB L [ 0, 4.

is called solvable if £ =0 forlarge k,i.e., £ > 2“Y. Furthermore, Lie algebra

L s called nilpotent if the sequence of £ is always decreasing with respect to
L=L L=[L L)...L=[L 7.,

and £<=0.Any nilpotent Lie algebra is solvable. More details can be found in [38].

2.5 Controllability of T-S Fuzzy Model

We begin with the formal definition of reachability and controllability. In this section,
T-S fuzzy model (5) associated with Lie algebra is derived to show the controllability

condition and imply the existence of optimal control.

14



Definition 7. The reachable set R (x) of T-S fuzzy model (5) for time t >0, subject

to the initial condition x e X is the set

Ry (x)={x(t.u):xe X andu:[0, T]—~U }.

Definition 8. The T-S fuzzy model (5) is accessible if its reachable set R;(x),

X e X have non-empty interior. Similarly, We will call this T-S fuzzy model strongly

accessible if the reachable set R; (x) has nonempty interior for any T >0.

Definition 9. The T-S fuzzy model (5) is controllable if Vx, and Vx, in the

manifold of X , there exists a finite .time T and admissible control function

u:[0, T] suchthat x(T;X,,u)=X

Definition 10. For T-S fuzzy model (5), the accessibility Lie algebra is defined as
Lo={2 A% X b|vi=L...,m} . (8)
The £, is a finite-dimensional Lie algebra of vector fields which contains the family

{ZAX, ij}. In fact, this accessibility Lie algebra plays basic role in the

controllability of a T-S fuzzy model.

Theorem 6. If the accessibility Lie algebra of the T-S fuzzy model in (5) is full rank

at x, thatis
rank (£, (x))=n, VxeR" 9)

then the reachable set up to any time T >0 has the nonempty interior and so the

fuzzy model is strongly accessible.
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Proof:

According to Chow’s theorem [35], the reachable set R(x) is the largest integral

manifold of £, for VvxeR". From (9), it contains an open neighborhood Q of
X. This implies that for any x,, its reachable set is an open set. We shall prove the

theorem by contradiction. We claim that R(X,) is closed and is denoted as
cl(R(x)). Therefore, there exists a x ecl(R(x))\R(X,) . Hence R(x,)
contains an open neighborhood Q of x , then QNR(x)=¢ Let
¢ eQNR(xX,) then xeR(x).By symmetry, x eR(<), and {eR(x,) then
x e R(X,). Therefore Q = R(Xx,), which is contradiction. We can conclude that the

reachable set R(x) is arc-wise:connected and:span.into R" space. Q.E.D.

Remark 4. Since T-S fuzzy model (5) is analytic, using Chow’s theorem [35] and
Frobenius’ theorem [38], the manifold X is maximal connected reachable manifolds.

Each reachable manifold is the maximal integral manifold of £, .

Remark 5. By using Chow’s theorem [35], the controllable manifolds can be

spanned from {Z AX, > b;|Vj =1,...,m} .

Remark 6. The £, implies that The T-S fuzzy model (5) is accessible form x, if

the same collection of vectors together with > Ax, + > Bu span the whole space.

This condition means that no vector z B.u belongs to a proper invariant subspace

of > Ax,.
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Theorem 7. If T-S fuzzy model is strongly accessible, then it’s also controllable.
Proof:

Using Remark 4, for a T-S fuzzy model the degree of largest integral manifold is

related to rank of accessibility Lie algebra £, . Due to the fuzzy model is strongly
accessible, there exists the n-th degree largest integral manifold. For a given point

x € R", the fuzzy model is controllable. Q.E.D.

In the following, the generalized rank condition of accessible Lie algebra is
derived to show the controllability of T-S fuzzy model.
Corollary 1. The T-S fuzzy model (5) is controllable if and only if the following

matrix

(Woy Wereoos W)= by L AR Bz (EA) Ty}, G=L.m (20)

isofrank n forany t>0
Proof:

Firstly, we give the proof of sufficient part. Consider the T-S fuzzy model (5), let

f=g,=> Ax and g,=> b, to be a vector filed. Then we have the following
iterated Lie brackets,

(XA 2b ==X AXb, [ X AX [Z A% Xb [|=X A b,

From (7), the iterated Lie brackets are rewrote as

ad (ZAX)I 2.b :((‘1)ZA)I 2.b;

Therefore, the accessibility Lie algebra £, consists of constant vector fields only,
| .
£,=span{(3A) (Xb,)[ 120, j=1...m}. (11)
If (10) is satisfied, we can conclude that dim(L£,) is of full rank n forany t>0

17



then the fuzzy model is controllable.

From the Frobenius’ theorem [38] and Remark 4, it follows that the T-S fuzzy
model (5) is controllable, there exits the n-th degree largest integral manifold for
xe X . If (10) is satisfied, from Theorem 5 and Remark 2, there exists a largest
integral submanifold S which is unique and contained in the largest integral

manifold. Q.E.D.

Remark 7. In analyzing controllability properties of the fuzzy model (5) we can
replace the set of G(x)={Ax+Bu:ueU,i=1...,r} by its convex hull, the
trajectories of convexified system can be approximated by the trajectories of the

original fuzzy model (2). In particulanif: .0 € int Co{G(x)} for all xe X, then

the fuzzy model is controllable.

Remark 8. Obviously, for singlé-rule T-S fuzzy model, Corollary 1 degenerates to

the Kalman controllability matrix of linear system.

Remark 9. If all the subsystems are controllable, whereas the overall system can not
concluded controllable, then the overall system can be called local controllable.

The membership functions obviously play the critical roles in the controllability of
system. In the following examples, the local controllability and controllability of T-S
fuzzy model will be illustrated. The nonlinear system will be modeled with the

distinct membership functions.
2.6 Existence of Optimal Control

In the following, we shall show that the existence of optimal solution of Problem 1
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can be reduced to determine the accessibility of reachable set. The qualitative
properties of the reachable sets can be established. One of the basic properties can be
shown in the following context. The following theorem discusses the existence of the

optimal solution for Problem 1.

Corollary 2. If T-S fuzzy model in (5) is controllable, then there exists an optimal
control for any bounded input.
Proof:

Consider the T-S fuzzy model with bounded input «(¢) e U CR™. It is more

convenient to consider the T-S fuzzy model in the form
X= AX+V, VeV,
where V is the image of U under the map Zb:Rm — R".Thus, the Lie brackets
IS
[ A= AiveV.
Let the set W = {v' —v"‘v',v" eV}. The Lie algebra of the T-S fuzzy model contains
the vector fields
Y AXHV = (T AX+V )=V -V eW.

Consider all constant vector fields f =w, weW.Thus, it contains the Lie brackets
[w, " Ax+v]=>" Aw. Since the fuzzy model is controllable, the accessibility Lie
algebra L, consists of constant vector fields if

La:dimspan{(ZA)'w‘Osisn—l,WEW =n (12)

for 1=0,...,n=1, Vt>0. This condition means that if the bounded input U is

nonempty, then the controllability rank condition implies that the system can be
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spanned the whole space. Q.E.D.

The condition of Corollary 2 means that there exists no vector v=v —v eU, j=k

such that, no image of U belongs to a invariant subspace of matrix ZA . In the

next section, we shall design the time-optimal controller for T-S fuzzy model with

maximum principle.

2.7 Illustrative Examples

Example 1. Consider a nonlinear system:

x=tan(u)
y =10sin(x) cos(x).

Assume that x(t) € [—7z/2, 7r/2]. Then thes T-S fuzzy model of the nonlinear system

can be formulated as:

Rule i: IF x(t) isabout "Positive" and-"Negative”; THEN
X (t) ="AX(t)+Bu, i=12 (13)

where X (t)=[x(t) y(t)],

Al:{ 13/3 g} Bl:m
Az{—féﬁ 8} Bz:m

and S = cos(88°). The membership functions are shown in Fig. 1.
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Rule 2 Rule 1

-2 0 rl2
Negative Positive
J X(t)

Fig. 1 The membership functions in Example 1.

According to Corollary 1, the corresponding rank of controllability matrix of the

fuzzy model is,

Rank (b, > A D)

where
1
WO = zbl :|:O}

W =2 A2b, :(”{0.249 S}MW 2{—0249 8}{3}[0-349(#&0—%)“

The fuzzy model is controllable if Rank([W,, W,])=2. We can check the

controllability by the following determinant:

=0.349( 14— 11,) .

o oG-
0 0.349(14—u,)
Unfortunately, the rank of [W,, W,] for s =, =05 is 1. From the membership
functions, we can observe that the fuzzy model is uncontrollable if x(t)=0.
Although x(t)=0 is one of equilibrium points however the fuzzy model is

concluded to be uncontrollable when x(t)=0 and y(t)=0.
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In following example, we redesign the nonlinear system with different membership

functions.

Example 2. Consider the nonlinear system in Example 1. If the membership
functions are chosen as Fig. 2. Then the consequence parts of fuzzy model can be

formulated as:

Rule 2 Rule Rule 2
—l2 ) 0 .7r_/2
Negative X ( t) Positive

Fig. 2 The membership functions of Example 2.

By Corollary 1, the controllability matrix contains the vector fields
1
-z
0 O 0 0f)1 0
W, = b. = + = :
1 ZAiZ j ['ul[lo O} He {0.349 OD[O} LO(,ul+0.0349,uz)}

If the fuzzy model is controllable then the following condition is satisfied:

—10( 24, +0.034944,) % 0.

1 0
0 10(4+0.0349,,)

Since the firing strengths 4 €[0, 1] and 4+, =1, then 10(z4+0.03494,)+0
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for Vt. Then we can conclude that the overall T-S fuzzy model is controllable. Since

the Example 2 is controllable, the reachable set for t = [O 2] is plotted in Fig. 3.

Fig. 3 Reachable tube in Example 2.

Example 3. Choose the closed-loop eigenvalues [-1 —1] for Example 1 and 2.

The stabilizable controller is designed by Parallel Distributed Compensation (PDC)
[2]. Fig. 4 shows the response of the controllable and uncontrollable system. The
dotted lines show the responses of locally controllable case (Example 1). The solid
lines indicate the responses of controllable case (Example 2). The controllable case is

no surprising to stable the system. From Example 1, we know that the system is not

controllable in x(t) =0. The dotted lines show that the system can not converge to

zero. This is due to the controllability of system is disappeared.
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Fig. 4 Trajectories of controllable and uncontrollable case.

Remark 10. An important and natural._question arises in the design of feedback

controller using local controllability. The controllability of a physical system is a
24

pre-requisite of the proceeding controller design.



Chapter 3

Time-optimal Control Design

Now, we give the Time-optimal control via Pontryagin’s Minimum Principle. The
controller is derived as bang-bang and the number of switching will be shown as

below section.

3.1 Problem Formulation
We will make the following-assumptton on the control input.

Assumption 1. The control input is givenby

u :{UER”‘]aj <u; <bj j=1,...,m}.
For a given control u(t)cU on a time interval [O, tl] and any initial point
X(t,)=%, € X, let x(.,x,,u) denote the solution of the nonlinear control-affine (5)
with an measurable control u defined on a interval of [0, tl]. For performing

optimality on a segment [O, tl] , We introduce a cost functional

4

J(u)=] o(x(t),u(t))dt (14)
Let x,€ X be an initial point and x, € X be a final point. We propose the

following optimal control problem in terms of the cost functional J .

Problem 1. Find a control u(t)eU that minimizes (14) along the solution of (5)
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and satisfies the boundary condition

X(t, %o, U) =X, (15)

We note that this problem is well posed, i.e., an optimal control does exist. The
intuitive interpretation of Problem 1 is clear: find a control that will push the initial

state to a given final condition in a given amount of time.

3.2 Introduction of Pontryagin’s Minimum Principle

The system (1) under bounded controls ‘u(t)‘su can be formulated by using the

Pontryagin’s Minimum Principle. The minimization problem for (1) becomes

H[X"@®), A" (t), ul{t)]=min H{x"(t), A" (1), u(t)] (16)

u(t)eu

for te[0 t],or, equivalently,

HX (), AT (t)u(t) | < Hxw), A7 (1), u(t)] (17)
where H is called Hamiltonian, x’(t) is optimal trajectories and A" is a vector of

costates. The superscript (*) denotes the optimal results. The Hamiltonian for system

(1) can be written as
H [x(t), AT (1), u(t)]:lJr/1T X
:1+</1T (1), f (x)+g(x)u> (18)
:1+</1T (), f(x)>+</1T (t),g(x)u(t)>

Suppose that u’(t) is a time-optimal control and X (t) is the resultant of

time-optimal trajectory in minimum time, t". Substituting the equation (18) into the

inequality (17), we can obtain
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1+</1T, f(x*)>+<;tT, g(x*)u*>
<1427 (1), f (X)) + {27 (1), g(x)u).

Since the first two terms are the same on both side of the inequality, therefore the

(19)

above inequality equation can be simplified as follows
u (1) AT (1) g(x7)<u(t) A" (1) g(x). (20)
By defining v, :[0, t,] >R, w,(t)=4" g(x*), we can conclude that

u (t)y; <u(t)y;. (21)

From Assumption 1, ‘u(t)‘ <U, therefore, time-optimal controller can be
generalized as

u” (1) ==8GNw; {U]. (22)

In (14), it is obvious that if time-optimal control; u*(t), exists then there is a unique

bang-band control. After applying [Pontryagin’s Minimum Principle, we have the
following necessary conditions,

Optimal state trajectory:

OH[X'(t), A(t), u"(1)]

X= oA(t) (23)
Costate equation:
. OH | x(t), A(t), u(t
, and stationary condition
H[x(t), (t), u(t)]=0 (25)

for k=1,2,...,n.
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3.2.1 Shooting Method

The shooting method [40] is used to solve this problem. The shooting method can be
used to determine the time-optimal control problem as described in what follows. In

T-S fuzzy model, equations (5), (35), (38) and (40) can be rewritten as

X =F[X(t), u(t)] (26)

X (t) =%, po] (27)
e[X(p.1).1,]-0 @9
u(t)=-SGN {y f U] (29)

where X =[x, p]T is a vector of 2n variables, which are the states, x, and
costates, p. F[X, u] is combined with a vector-of fuzzy system states and costates.

P = P(t,) is an n -dimensional vector ‘of unknown initial costates, X (t,) is
2n -dimensional vector of initial “states and-‘unknown initial costates, p, .
e[x(po, t, ) tf] is an |-dimensional vector, where |>n, representing the error at
the target point. This vector includes the final conditions of states, and the extra
condition for Hamiltonian (25) to be met at the target point. q(X) IS a switch
function. In order to reduce e[x(po, tf), tf} to zero, the values p“, t¥ inthe kth

iteration have to be corrected in the next iteration using the following formula

pk+l pk Apk
= , 30
EREIRR >

The correction terms Ap* and At{ can be computed by minimizing a norm of

e given by
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Obtaining an analytical expression may not always be possible. However, the
stationary condition (25) offers the gradient along which the decision variables can be

corrected. In [40], Newton’s method is adopted. The vector corrections is defined as
Apk 5 pk
=— 32
Lt? } % { Stk (32)

where Sp* and St¥ can be calculated using following expression:

ol Al )

op ot, ot

The scalar ¢, is chosen in the range 0<eq, <1. The initial gauss of the set of the
values [po,tﬂ are required. Due to-the fact that the costates don’t have a physical

meaning, initial gauss are difficult 1o obtain. For more complex problems,
forward-backward method (FBM)-was proposed in'[25], which offered a good guess
of the initial costates.

Determination of optimal control sequence of (29) is related to the trajectory of
costates. This introduces other problems in that the initial costates and finial time are
unknown. This kind of problem is called Two-Point Boundary Value Problems
(TPBVP). The shooting method [40], however, has been used to solve this problem.
The optimal solution can be obtain by solving equations (5), (35), (38) and (40)
simultaneously. For TPBVP, no practical method has been developed yet for
computing the time-optimal feedback control. The main reason is that it is generally

impossible to characterize the switching surface. Suppose that in the time interval

[0, t,] there exists one nontrivial (or more) subinterval, [t,, t,]<[0, t,], such that
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s (t) is identically zero, then the shooting method is fail. We will give more details

for this case in following section.

3.3 Time-Optimal Controller of T-S Fuzzy Model

In this section, we will study the properties of time-optimal control using the
maximum principle [20], [27]. The Time-optimal controller is designed via a
controllable T-S fuzzy model. In general, Problem 1 can be formulated as a
Hamiltonian by maximum principle. The Hamiltonian for Problem 1 can be described

as
H(x,2,u)=A"> Ax+1"> Bu (34)

where A: [O, tl] is a costate satisfying the adjoint equation associated with (5):

e

= ATy A (35)

By using the maximum principlé-{20}, the'Problem 1 becomes

H(x,A,u)=maxH (x,4,v). (36)

veU

Definition 11. Trajectories of (5), (34) and (35) that satisfy the maximum principle

is called extremal (x,4,u):[0, t,]> R"xR"\{0}xU . When the constant A, is

zero, the extremal is said to be abnormal [31].

Definition 12. For j=1,...,m , the switching functions w,(-) , along an
extremal (x,4,u) are defined by

v, [0, 4] >R, v, (t)=2"Db, . (37)

They are absolutely continuous functions [31].
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The necessary condition for optimality provided by the maximum principle states

that u:[0, t,] must pointwise maximize H(x(t),A(t), - ) for the costate 2

associated with the optimal trajectory. Moreover, the Hamiltonian is constant along

the solutions of (34) and must satisfy
H(x,A,u)=2,, 4 >0. (38)
The maximum condition (36) is equivalent to the following:
u; (t)y, (t):TSB(Vj (t)w,(t), j=1...m. (39)
Obviously, the functions y, (t) play a crucial role in the study of time-optimal

trajectories. Under Assumption 1, the time-optimal control must satisfy the following

conditions almost everywhere,

U =b. - Tif s (t)>0
i =Dy it () (@0)

uj=a; ify;(t)<0

for j=1...,m. In case, switching: functions having zeros have to be carefully

analyzed.

Suppose that in the time interval [0, tl] there exists one nontrivial (or more)
subinterval, [t,, t,]<[0, t,] , such that w,(t) is identically zero, then the
corresponding extremal is called singular. If (t);tO for almost all te[O, tl] , the

maximum principle implies that the control u; corresponds to piecewise constant

controls taking values in the set of m vertices of U, is called bang-bang. An

extremal is said to be normal if control u; is bang-bang with at most a finite number

of switching.
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If T-S fuzzy model is smooth and (x,ﬂ,u) is an extremal, then the time

derivative of the absolutely continuous function (t) is given by

v (t)=2" [_ZAX(")’ ij]ﬂf [Zbk' ij]uj(t)
=AT[-2 Ax(t), Dby

Since » b, j=1...,m and j=k are constant terms, therefore [Zbk, ij]:O.

(41)

It is obvious that the derivatives of the switching functions (t) are themselves

absolutely continuous function, and therefore we can perform further derivatives of it.
In the next theorem, Lie brackets will be crucial in establishing a bound on the

number of switches for bang-bang controls will be derived.

Theorem 8. If the T-S fuzzy model is controllable, then the extremal is normal.

Proof:

Let (x,}t,u) be extremal in te[O, tl]. Weshall.prove the theorem by contradiction.

Suppose there exists a sequence of infinite distinct singular set

where s is the i-th time interval [t,, t,] such that y,(t)=0, Vtelt, t,],
J=1...,m.Assume t; es;. Then we have the following relation:
v, (t)=2"(t,) D.b;=0, j=1...m (42)

From (42), we have the first derivation of v, (t):

vy (1) =2 (t,)[ 2 Ax(t), Xb; |=0. (43)

Indeed, |-th derivative of w,(t) can be expressed as:

wi(t)=4" (t,)ad (3 Ax(t)) (3b,)=0, 1=1...,n-1. (44)
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By Corollary 2, we have
span{ad(ZAx(t))'(ij)}eR“, l=1...,n-1.
Hence, we have 4(t,)=0, which contradicts to the necessary condition of
maximum principle. So we can conclude that the set S is finite. Outside the set S,

the switching function A’ (t)ij attains the maximum on U at one vertex, thus

the optimal control u(t) isbang-bangon [0, t,]\t,. Q.E.D.

If the T-S fuzzy model is extremal, then the system will also simultaneously establish
a bounded number of switching for bang-bang optimal controls. Further, consider the

trajectories for which m control vectors are simultaneously singular. From the proof

of Corollary 2, we also know the set of;all vector fields {[z AX, ij]} are linear

independent, so we have the following resulit.

Theorem 9. If an extremal of the T-S fuzzy model in (5) is normal, then the switching

function w,(t), j=1...,m will not be vanished for any t.

Proof:

Assume that k is a fixed element of {1,...,m} and (x,4,u) is extremal with a

common accumulation point of zeros at t=t,. From (42) and (43) we have

wi(t)=47(t) 2 b; =0
and its first derivative is

v (1)=2" () X Ax(), 2b; =0

for all j=1...,m, j=k. If w, and y, vanish at t=t;, Since The vector
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field > b, , [Z AX, ij} for j=1...,m, are linear independent. This yields a

contradiction with the non-vanishing condition for costate in the maximum principle.
Q.E.D.

The solvable Lie algebra is defined for the T-S fuzzy model (5) as following.

Definition 13. For T-S fuzzy model (5), the solvable Lie algebra is defined as

LY ={3 Ax, Y by|vi=1..., m}LA. (45)
if derived series £ is vanished for larger k. Then the T-S fuzzy model is called

solvable.
In the next theorem, solvable Lie algebra will be crucial in establishing a bound

on the number of switching for bang-hang control will be derived.

Theorem 10. If the controllable T-Sfuzzy model (5) is solvable, then the total number
of switching is bounded.

Proof:

The controllable T-S fuzzy model (5) will imply
L =span{ad (ZAx)k ij} ,for k=1...,n-1.
If £ is solvable lie algebra, .ie., £ =ad(} Ax)k Db, =0 for k>p=n-1.
Form (44), we have
v (t)=2" (t,)ad (3 Ax) (Ib,), for k= p, (46)
is identically zero due to the T-S fuzzy model is solvable. In (46), v/ (t) is vanished

for k> p, then the polynomial degree of switching function () do not exceed

p. Q.E.D.
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Remark 11. For ij #0, the solvable condition (46) can be generalized as

£Y :ad(ZAx)k =0.

For the single input case, Theorem 10 provides the condition that the number of
switching is at most p. Similarly, For multiple m vertices of U, the number of

switching will not exceed m-p.

3.4 lllustrative Examples

To utilize the time-optimal design techniques, two systems with single input and
two inputs respectively will be illustrated.
Example 4.

Consider an articulated vehicle [1]-in.Fig.-5. The kinematic model of the vehicle

is the starting point to model the dynamics of the lateral and orientation motions.

4 x4

_ Desired path |

x4(0) 0

Fig. 5 Articulated vehicle model [1].

The dynamics of articulated vehicle can be formulated as
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X, :¥tan(u(t))

=X —%,

i =4 %, =tan (u(t)) - sin(x, (1))
i = 7sin(x (1))

i, =veos (x, (1)) -sin(x (1)

n=ww% 1))-cos(x, (1))

where

X, (t) angle of truck;

x, (t) angle difference between truck and trailer;
X, (t) angle of trailer;

X, (t) vertical position of rearend of trailer;

x, (t) horizontal position of rear end of trailer;

u(t) steering angle,

| is the length of truck, L is the length of trailer, and v is the constant speed. In
this example, let 1=1m, L=2.5m, v=-5m/s. The control purpose is to find the

steering angle with constant backward speed so that the articulated vehicle will reach

the straight line x, =0, i.e.,
¥ (t) >0, x,(t) >0, x,(t) > 0.
If the angle difference between the truck and trailer expands to 90", i.e. |x|=90",

this phenomenon is called “jackknife”. When a jackknife phenomenon happens, an
articulated vehicle becomes uncontrollable and the backward motion can not continue
any more. To avoid this problem, the analysis of researchable set will be discussed in

the following.
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For constructing the T-S fuzzy model, assuming that u(t), x,(t) aresmall and

x(t)e(-—7/2, 7/2). Let X(t)=[x(t) %(t) %(t)] . The dynamics of
articulated vehicle can be formulated as:
Rule i: IF x (t) is "Positive" and "Negative", THEN

X(t)=AX(t)+BU(t), i=12 (47)

where the membership functions are given in Fig. 6 and the consequent parts are

chosen as
-v/iL 0 O] v/l
A=lv/iL 0 0|, B=|0
0 v 0] 0
[-v/L 01110 v/
A=|vlik 0.0} B, =0
| 20 [ B-v 0] 0
and f =cos(88").
1
Rule 2 Rule 1 Rule 2
0 ‘
—zl2 ) 0 _7[_/2
Negative X, (t) Positive

Fig. 6 The membership functions of Example 4.

From Corollary 1, we have
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The matrix > A>'b; is

-v/iL 0 Ofjv/l -v/L 0 Ofv/l
Wo=|g| viL 0 Of O |[+4|Vv/iIL 0 0} O
v 0 0 pv 0f O
_V/ T iy
= V/ :ul""/uz]

The matrix > A*> b, is

—V3/(|L2)(,ul+,uz)
W, = V3/(| 2)(,ul+,uz)
VI (IL) (2 + Brs,)

The controllability of the fuzzy model can be reformulated by finding the determinant
of [W,, W, W,]:

il ALY =) (g + 1y )
0 /(L) Ve ) (a4 +11,) |- (48)
0 0 —V° L) 14 + Bus,)

The determinant of (48) can be found as (v/1)-[~v*/(IL)]-{~v* /[ (IL) (24 + Bw,) ]} .
Since the determinant of (48) can not be zero for V[0, 1] with > s =

(i=12), therefore we may conclude that the fuzzy model is controllable and
time-optimal solution does exist. To realize time-optimal control, we consider a
control as U =d+u” where control input 0=-kx can be designed by the pole

assignment and time-optimal control u”~ (steering angle) is constrained in

[5°, —5°]. Choose the closed-loop eigenvalues as [O 0 O] and we have

k :[-0.4 0 0]. By closed-loop feedback, the consequent parts of the fuzzy model

(47) can be reformulated as
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0o 0 o0 5

A=|-2 0 0|, B=|0
0 -5 0 0
[0 0 0 -5

A=-2 0 0| B=[0]|
0 01745 O 0

Due to Z B.#0 for Vt>0, by using Remark 11, we have

0O 0 O 0 0 0
L9y A+mA=m|-2 0 Ol+m,|-2 0 0
0 50 0 -0.1745 O
0 0O 0 00
L= AN+ AP =10 0 O+l O 0 0]
10 0 O 03490 0 O
0 0O
L% = i AAA+1ANA =10 0 0
0 0O

o
(@]
o

29 = A9 = iEhew070 .

o
o
o

For Vi [0, 1] with > =1 (i=12), and k=2, £Y s identically zero

therefore the fuzzy model is concluded to be solvable and the number of switching is

at most 2. Let u=5, the bang-bang control does exist and the possible control

sequence can be concluded as:

{u}, {-u}, {u, —u}, {~u, u},{u, —u, u}, {-u, u, —u}.
The switching curves V are shown in Figures 7 and 8. The dotted line is the set V~

which is the trajectory by control input {—u} and the solid line shows the set V~*

which is the trajectory by control input {u} Let V, denote the set of states which
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can be forced to the origin by the control sequence {u, —u} or {-u, u}. The
transition from the control input u to —u must occur on the set V™. If the control
sequence from —u to u, the transition must occur on the set V*. The set V, are
shown in Figures 9 and 10. The dotted line is the set V,” which is forced by the
control sequence {-u, u} and the solid line shows the set V," which is forced by
the control sequence {u, —u}. The set V, is the trajectory which can be forced to
the origin by the control sequence {u, —u, u} or {-u, u, —u}. To prevent the
jackknife phenomenon, the state x, should be constrained to be less than 90°. In

Figures 11 and 12, the ellipses show the:reachable set for |x1| <90° where the solid

ellipses are the set V, and the dotted ellipses are the:set V,. Infact, V <V, cV,.The

maximal reasonable range of initial positions will be restricted on the reachable set

V,.

Case |
For the initial position, x, =240", x, =200", x,=40", x,=20m and x,=0m, the
time-optimal trajectory of x, vs. X, is depicted in Fig. 13. The corresponding

time-optimal control u*(t) is shown in Fig. 14. The shortest time from initial

position to the origin is 2.4115 (sec.).

Case Il
For the initial position, x, =320", x =20", x,=300", x,=20m and x,=0m, the

time-optimal trajectory of x, vs. X, is depicted in Fig. 15. The corresponding
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time-optimal control u”(t) is shown in Fig. 16. The shortest time from initial

position to the origin is 13.6715 (sec.).

Case 111

In this case, the control purpose is to realize the forward movement the articulated
vehicle along the straight line. For forward speed v=5m/s, the consequence parts of

the system are

0 0 0 5
A=[2 0 0|, B=|0
0 5 0 0
0 0 0 5
A=l2 0 o0f B,=|0|
0 01745 0 0

The set V is depicted in Fig. 17 and Fig. 18, the solid line is the set of V™ and the

dotted line is the set of V*. The set"V, are shown in Fig. 19 and Fig. 20. The solid
line is the set of V,”. The dotted line is the set of V,". For the initial position,
X, =-160", x =-20", x,=-140", x,=35m and x,=0m, the time-optimal

trajectories are depict in Fig. 21. The corresponding time-optimal control u*(t) are

shown in Fig. 22.
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X

Fig. 7 The projection of the set- 'V onthe x —x, plane.

300

Fig. 8 The projection of the set V onthe x,—x, plane.
42



\\\\\\\\\\\\\\\\\\\\

500 -

X

Fig. 9 The projection of the set- 'V, .onthe x —x, plane.
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Fig. 10 The projection of the set V, onthe x,—X, plane.
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Fig. 12 The reachable setof V, and V, onthe x,—x, plane.
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Fig. 13 Time-optimal trajectory in phase plane (Casel)
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Fig. 14 The corresponded time-optimal control input (Case I).
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Fig. 15 Time-optimal trajectory in.phase plane (Case II).
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Fig. 16 The corresponded time-optimal control input (Case I1).
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Fig. 19 The projection of the set V.. on the x, —x, plane.
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Fig. 20 The projection of the set V, onthe x,—X, plane.

48



Fig. 21 Time-optimal trajectory.in phase plane (Case Ill).
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Fig. 22 The correspond time-optimal control input (Case IlI).
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Example 5.
The multiple inputs system is considered here. Consider the following T-S fuzzy

model:

Rule i: IF x (t) is "Positive” and "Negative", THEN
X (t)=AX(t)+BU(t), i=12 (49)

where X (t)=[x(t) %(t)], U®)=[u(t) u,()], |u®)<1, |u,(t)<1, and

the consequent parts are chosen as
A - 0 O B — 4 05
1018 o' * |05 -4
A - 0 O B - 4 05
102 o' % |05 -4

The membership functions of the fuzzy model-are given in Fig. 23.

1

Rule 2 Rule Rule 2
% 100 0 100
Negative X, (t) Positive

Fig. 23 The membership functions for Example 5.

The fuzzy model is found to be controllable by Corollary 1. The switching number is
at most 2 which is obtained by using Remark 11. Therefore the time-optimal

sequences are
L1, (-1 -1, { -1, {-1 1.
Follow the same analysis in Example 4, the switching curves are explained in the
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followings. There are two possible switching curves in this example. Let the set of
states V be forced by input {1, 1} or {-1, -1} and V, be forced by input
{1, -1} or {-1, 1} to the origin. The switching curve V is depicted as solid line in
Fig. 24 , the dotted line depicts switching curve V, and the time-optimal control
inputs are also shown in Fig. 24. Assume R(T) and R, (T) are reachable sets for

V and V, respectively that can reach the origin at time T . Fig. 25 depicts reachable

set which is sampled from T =5 to T =20 in every 5 seconds. The dotted line is

the reachable set R, (T) and the solid line is the reachable set R(T).

Case |

For the initial state X, :[40, —50], the time-optimal trajectory is shown in Fig. 26.

The corresponding time-optimal-controf u*(t) is shown in Fig. 27. The shortest time

from initial state to the origin is 9.350 (sec).

Case Il

For the initial state X, = [40, 100] , the time-optimal trajectory is depicted in Fig. 28.

The corresponding time-optimal control u*(t) is shown in Fig. 29. The shortest time

from initial state to the origin is 25.249 (sec).
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-100

Fig. 24 The switching.curve and time-optimal control input.

100

Fig. 25 The reachable sets of Example 5.
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Fig. 27 The corresponded time-optimal control input (Case I).
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Fig. 29 The corresponded time-optimal control input (Case I1).
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Chapter 4
The Maximal Convergence Rate of T-S
Fuzzy Control

The time-optimal control problem of T-S fuzzy model was discussed in
previously section. The time-optimal control is a bang—bang control and implemented
successfully by reachable set. If the system is not accessible, the number of switching
can not be found and the computation cost is too much under this situation. Fast
response is always a considered property in this dissertation. A notion directly relates
to fast response is the convergence.rate of the state trajectories. For a linear system,
the convergence rate is determined by thereal-part of the pole which is closest to the
imaginary axis. In this section, we will-give.a.controller design of T-S fuzzy model on
maximal convergence rate by the introduced level set function. The result of
maximizing the convergence rate is characterized from the maximal invariant
ellipsoid. The controller is also bang-bang within both the initial states and target

states are belong to level set.

4.1 Problem Formulation

Consider a nonlinear system (1) with zero input. The ellipsoid Q is invariant for the
system if all the trajectories starting from it will stay inside of it. It is contractive
invariant if

V (x)=2x"Pf (x)<0.
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The objective is to find a control law with constrained input such that convergence

rate is maximal. To obtain a control law, problem is turn out that —\/(x) [

maximized at each x. Then the overall convergence rate of the system on Q(x, p)

-3

Note that V (x) over a fixed time interval do not to be maximal. The most important

can be defined as

consequence of the maximal convergence control is that it produces the maximal

invariant ellipsoid of a given shape. It is easy to see that an ellipsoid can be made
invariant if and only if the maximal V (x) on the boundary of the ellipsoid under the
maximal convergence control is negative:

In conventional, T-S fuzzy controller design employs the parallel distributed

compensation (PDC) via the Lyapunov technique:- [36]. The PDC is designed by

locally feedback gain F. as
Controller Rule i: IF z(t) is M, ---and z,(t) is M;;, THEN

uw=—Fz

The entire PDC can be formulated as follows:

u(t):gui (t)Fx(t). (50)

The entire feedback type of system (4) via PDC are given as following:
= 2 (X (0 () Ax-BF,)x(0) 1)
In general, this type controller is difficult to solve since the coupling relation of

(Ax—B;F;). For simplifying the design process, in here, we consider the system (4)
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with single controller input and make the following assumptions. For i=1,...,r,
B, = B and the state feedback controller is given as

U =-Fx (52)
where F is denoted as the state feedback gain, therefore the feedback T-S fuzzy

model can be rewritten as
X = zu. (A-BF) (53)

forany xeR"\{0}.

4.2 On Maximum the Convergence Rate

Consider the feedback fuzzy model (53).under the constraint that U <1, we have

following definitions.
Definition 14. A function V (x) is-a Lyapunov function, the level set of T-S fuzzy
model (53) is given as

Q(x,a)z{XG]R”

V(x)=X"Px<al (54)
where P is a positive-definite matrix and « is a positive number.

Definition 15. The convergence rate of level set Q can be given as

1 V(x)
}/.—Elnf {—m

In here, we give the controller design for maximizing the convergence rate.

xeQ(x, a)\{O}} (55)

The following lemma will illustrate the level set ©Q found by Linear Matrix

Inequalities (LMIs) [36].
Lemma 1. Consider a T-S fuzzy model (53) with zero inputif P>0, «>0 and
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0, i=1...,r, (56)

A'P+PA +aP PB -
B'P —al |

then the ellipsoid Q is level set of the form x'Px<«.

Theorem 11. Consider V = x"Px to be a Lyapunov function for fuzzy model (53), if
there existsa P >0, a >0 such that (56) is satisfied. Then there exists a feedback
control U =—-SGN(B'Px) such that the closed-loop system is asymptotically stable
on maximizing the convergence rate.

Proof:

Let V(x)=x"Px and P >0. For a positive number « , the level set associated
with Vv (x) is ellipsoid,
Q(X,a)={X€]Rn’V(X)=XTPXS0{}

Along the trajectory of the system (53),

V (x)=x" (A"P#PA)X+2x"PB-U <0, (57)
Vx e Q(x,a)\{0} . From Definition 15, the controller is minimizing (57), we have

U =-SGN(B'Px)

where SGN(-) is sign function. It is clear that the maximal convergence control
produces the maximal invariant ellipsoid of a given ellipsoid Q(x,a). Q.E.D.

Remark 12. The system will have no solution if x=0. This is due to the switching

plane B"Px=0. When the system state close to the switching plane, it is easy to

have the chattering.

Remark 13. It becomes obvious that the maximal convergence control is also a

bang-bang control.
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4.3 lllustrative Examples

In this section, we demonstrate the application of the proposed maximal

convergence rate for T-S fuzzy model.

Example 6.
Consider a nonlinear mass-spring-damper mechanical system that can be

formulated as
MX+g(x, X)+ f (x)=¢(X)u (58)
where M is the mass and u is the control force. f(x) is the nonlinear or

uncertain term of the spring system; g (x, x) i5:the nonlinear or uncertain term with

respect to the damper, and ¢(x) is the nonlinear-term with respect to the input term.

We use the following mass-spring-damper-and-fuzzy model formulated in [15]:

X =-0.1x*20.02x=0.67x> +u

where the control input is constrained in 1, xe[-1.5 15],and xe[-1.5 15]. Let

X (t):[x(t) x(t)]T . The system can be described as the following T-S type fuzzy
model [15]:
Rule i: IF x(t) isM,, and x(t) is M;, THEN

X(t)=AX(t)+Bu(t), i=1....4
where membership functions are chosen as M, =M, =1-x° (t)/2.25 :
My, =M, =x*(t)/2.25, M,, =M,, =1-%°(t)/2.25, M,, =M, =x*(t)/2.25, and

the consequent parts are chosen as
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[0 -0.02 5 |10
b o e

A - [-0.225 -0.02 5 _ (1.0
1 o | 10|
~ [0 -1.5275 B _ [1.0]
A= 1 o [ 1o
[-0.225 -1.5275 5 _ (1.0
A= 1 o |' * o]

In this example, the system is not solvable therefore there are no information about
the number of switching. In this situation, the numerical reachable set is difficult
obtained and computation cost is high. We design the controller by purposed
controller on maximal convergency rate. With all the ellipsoids satisfying the set

invariance condition in Lemma 1, we have

_[:000252~0:0131
1-0.0131 0.0179 |

and « =2. The ellipsoids as the largest level set are depicted in Fig 30.

Case |
In the case, the saturation control in [46] is introduced to compare our results. The
initial point is x =[1, -0.5]" . In Fig. 31, the states are converged by saturation control

over 35 (sec.). The saturation control input is depicted in Fig. 32.

Case Il

Let the initial point as Case |, the maximal convergency rate control is considered in
this Case. The states converge at 1.2 (sec.) and depicted in Fig. 33. The
corresponded control input is depicted in Fig. 34. The convergence rate of states is
expected faster then Case I. We can conclude that the system has faster response by
the maximal convergency rate control. Obviously, the sign function is sensitivity

when the states approach the original. This phenomenon is called chartering. Since
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that the sign function is sensitivity when the states approach the original (switching
plane). To overcome this phenomenon, we combine two approach in Case I and Il and

demonstrated in the following.

Case 111

In this case, the mixed control is applied for overcoming the chartering phenomenon.
At first, the he maximal convergency rate control is adopted for fast response and then
the saturation control is applied when the states approach the switching plane. In this
case, we consider the following control strategy:

~SAT (B"PX ), |x|<0.01

V(9= ~SGN (B'PX ), other.

The trajectory is depicted in Fig. 35 and control-input is depicted in Fig. 36. We can

conclude that the system has fast property by the maximal convergence rate control

and smooth when approach the switching-plane.
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Fig. 30- The level set of Example 6.

35

25

t (sec.)

Fig. 31 The trajectory in phase plane (Case ).
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35

25

t (Sec.)

Fig. 32 Corresponded control input (Case I).

3.5 4.5

2.5
t (Sec.)

Fig. 33 The trajectory in phase plane (Case II).
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t (Sec.)

Fig. 34 Corresponded control input (Case I1).

3.5 4.5

2.5
t (Sec)

Fig. 35 The trajectory in phase plane (Case IlI).
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0.8

206"\

04— N\r oo .

0.2

t(Sec.)

Fig. 36  Corresponded control.input (Case I11).

Chapter 5
Conclusion

This dissertation presents a new design of time-optimal controller for
controllable Takagi-Sugeno (T-S) fuzzy model in which the maximum principle is
applied. In particular, the subsystems of T-S fuzzy model are blended by a set of firing
strengths, which leads it to a class of nonlinear system. First, we proposed the proof of
the existence of optimal control in T-S fuzzy model, which can be addressed as the
compactness of reachable set. The generalized rank condition of accessible Lie

algebra is also applied for the proof of the existence of optimal controller for T-S
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fuzzy model. This also results in the controllability of the T-S fuzzy model. According
to the maximum principle, the time-optimal control of T-S fuzzy model is bang-bang
which is determined by switching function. By investigating the singular structure of
the switching functions of the controllable T-S fuzzy model, we can yield the
conditions for the existence, i.e., if the extremal is normal then there exists the
time-optimal controller for the T-S fuzzy model. In other words, the time-optimal
control of controllable T-S fuzzy model is bang-bang with finite number of switching
over all trajectories for all t. The bounded number of switching is related to the
polynomial degree of switching function which is obtained by introducing solvable
Lie algebra. Several examples are fully illustrated to show the conditions for the
existence of time-optimal controller with their optimal trajectories found by numerical
simulation. Further, the feedback.controller design of T-S fuzzy model on maximal
convergence rate is introduced-by.level set function. The result of maximizing the
convergence rate is characterized from the.maximal invariant ellipsoid. The controller
is also bang-bang with a simple ‘switching strategy. To handle the chartering
phenomenon, a two stages control of saturation and maximizing the convergence rate
is also demonstrated. Numerical simulations show the system response is fast and

control input is smooth.
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