
國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

兩個關於晶圓製造及測試程序的產能與良率

之問題及解決方法

Two Related Issues on the Throughput and Yield of Wafer

Fabrication and Testing Processes

研 究 生 ： 洪 士 程

指 導 教 授 ： 林 心 宇 教 授

中華民國九十五年九月

兩個關於晶圓製造及測試程序的產能與良率之問題及解決方法

Two Related Issues on the Throughput and Yield of Wafer Fabrication and Testing Processes

研 究 生 ： 洪 士 程 Student： Shih-Cheng Horng

指 導 教 授 ： 林 心 宇 Advisor： Shin-Yeu Lin

國 立 交 通 大 學

電 機 與 控 制 工 程 學 系

博 士 論 文

A Dissertation

Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical and Control Engineering

Septemper 2006

Hsinchu, Taiwan, Republic of China.

中華民國九十五年九月

i

兩個關於晶圓製造及測試程序的產能與良率

之問題及解決方法

研究生：洪士程 指導教授：林心宇 博士

國立交通大學電機與控制工程學系

摘要

在本論文中，我們提出兩個關於晶圓製造及測試程序的產能與良率之問題及解決方

法。第一個問題為離子植入機的錯誤偵測與隔離，第二個問題為如何在可容忍的重測範

圍內降低晶圓誤宰。要偵測一個複雜系統中的錯誤，由於缺少適當的模型，所以是一個

困難的任務；正因如此，這也是讓資料採礦技術具有吸引力的地方。對於離子植入機，

我們提出了一個以分類為基礎的錯誤偵測與隔離方法。所提出的方法包含了兩部分：分

類部分以及錯誤偵測與隔離部分。在分類部分，我們提出具有學習能力的混合型分類

樹，針對離子植入機裡正在運作晶圓的配方進行分類，所得到的 k-交疊相互驗證錯誤率

則用來作為分類結果的準確性。在錯誤偵測與隔離部分，則提出一個基於分類結果準確

性，決定是否產生警報信號的標準，而錯誤隔離的機制則是依據混合型分類樹來隔離離

子植入機的真正錯誤。我們將所提出的分類器與現有的分類軟體以實例進行比較，並測
試所提出的錯誤偵測與分離方法的正確性，皆獲得很成功的結果。

降低晶圓測試程序中的誤宰與重測可以形成一個具有巨大決定變數空間的隨機
模擬最佳化問題，針對此問題我們提出一個以序的最佳化方法為基礎的兩層次演算法，
來求解一個足夠好的解。在第一層次，對於所考慮的問題透過類神經網路建立一個粗略
但有效率的模型。這個粗略的模型被用來在基因演算法中當做適應函數的計算工具，用
以有效的從中挑選出 N 個表現較佳的解。在第二層次，從挑選出來的 N 個表現較佳
的解，繼續以現有之序的最佳化搜尋方法來找出一個足夠好的解。並且利用模擬的方式
來證明所得到解的優質性。我們將所提出的方法應用在降低晶圓測試程序中的誤宰與重
測問題，這是一個由測試程序中門限值向量所組成，含有巨大決定變數空間的隨機模擬
最佳化問題。經由提出的演法算所得到足夠好的門限值向量，在解的優質性與計算效率
上都非常成功。

ii

Two Related Issues on the Throughput and Yield of Wafer
Fabrication and Testing Processes

Student: Shih-Cheng Horng Advisor: Dr. Shin-Yeu Lin

Department of Electrical and Control Engineering
National Chaio Tung University

Abstract

In this dissertation, we present two related issues on the throughput and yield of wafer
fabrication and testing processes. The first issue is a fault detection and isolation problem of
the ion implanter, and the second is a reducing overkills under a tolerable retest level problem
in wafer testing process. To detect the fault of a complex manufacturing system is a difficult
task because of the lack of proper model; indeed, this is the key that makes the data mining
technique attractive. We propose a classification based fault detection and isolation scheme
for the ion implanter. The proposed scheme consists of two parts: the classification part and
the fault detection and isolation part. In the classification part, we propose a Hybrid
Classification Tree (HCT) with learning capability to classify the recipe of a working wafer in
the ion implanter, and a k-fold cross validation error is treated as the accuracy of the
classification result. In the fault detection and isolation part, we propose a warning signal
generation criteria based on the classification accuracy to detect and fault isolation scheme
based on the HCT to isolate the actual fault of an ion implanter. We have compared the
proposed classifier with the existing classification software and tested the validity of the
proposed fault detection and isolation scheme for real cases and obtain successful results.

Reducing the overkills and retests in a wafer testing process can be formulated as a
stochastic simulation optimization problem with huge decision-variable space . For this
problem, we have proposed an ordinal optimization theory based two-level algorithm to solve
for a good enough solution. In the first-level, we construct a crude but efficient model for the
considered problem based on an artificial neural network. This crude model will then be used
as a fitness function evaluation tool in a genetic algorithm to efficiently select N roughly
good solutions from . In the second-level, starting from the selected N roughly good
solutions we proceed with the existing ordinal optimization searching procedures to search a
good enough solution of the considered problem. We have justified the quality of the obtained
solution using simulations. We applied the proposed algorithm to the reduction of overkills
and retests in a wafer testing problem, which is formulated as a stochastic simulation
optimization problem that consists of a huge decision-variable space formed by the vector of
threshold values in the wafer testing process. The vector of good enough threshold values
obtained by the proposed algorithm is very successful in the aspects of solution quality and
computational efficiency.

iii

誌 謝

首先要感謝我的指導教授林心宇博士在研究上所給予的指導及鼓勵，且提供一個良
好的研究環境，使我能順利的完成博士學位。林心宇教授的學士淵博，對知識探求的積
極態度及待人誠懇且幽默風趣的特質，更是我努力追求的典範。對於本論文的完成，除
了林教授的指導之外，也非常感謝諸位口試委員寶貴的意見，使得本論文更加完備。

其次，要感謝我的學長林啟新博士與林謝興博士，實驗室的學弟們黃榮壽、蔡佶興、
粱傑愷、林志遠、張文賢、張紹興、林成梓，以及卓建文學弟。多年來，因為有你們的
參與，使得我在交通大學的求學過程中更加多采多姿。

同時也要感謝我的服務單位，親民技術學院的長官與同事們多年來的支持及熱心協
助，得以使我順利完成本論文。

最後，感謝作者的父母、兄長，在求學期間所給予的支持與鼓勵，讓我得全心全力
的專注於研究上。僅以本論文獻給我的家人與關心我的師長與朋友們。

iv

Contents

Abstract (Chinese)

Abstract (English)

Acknowledgements (Chinese)

Contents

List of Tables

List of Figures

i

ii

iii

iv

vi

vii

1 Introduction ..1

1.1 Motivation ...1

1.2 Throughput and Yield Enhancement of Ion Implanter2

1.3 Throughput and Yield Improvement of Wafer Testing..............................2

1.4 Dissertation Outline...3

2 Fault Detection and Isolation for the Ion Implanter ...5

2.1 Introduction ...5

2.2 The Hybrid Classification Tree (HCT)..10

2.2.1 The Separation Matrices Based Clustering Algorithm11

2.2.1.1 Chebyshev Inequality Based Separation Matrices..........12

2.2.1.2 Splitting Cluster Using Separation Matrices...................13

2.2.1.3 The Choice of Attributes for Cluster Splitting and the

Construction of the Clustering Tree14

2.2.1.4 The Clustering Algorithm... 17

2.2.2 The CART for Terminal Cluster (TC)...20

2.2.3 Classification of a New Data Pattern ..21

2.2.4 Learning Capability ..22

2.2.4.1 Learning of the Clustering Algorithm.............................22

2.2.4.2 Learning of CART ..23

2.3 Warning Signal Generation and Fault Isolation24

2.3.1 Warning Signal Generation...24

2.3.2 Fault Isolation ...26

2.4 Test Results of HCT, Warning Signal Generation and Fault Isolation28

2.4.1 Test Results of HCT..28

2.4.2 Test Results of the Learning Capability of HCT...........................33

v

2.4.3 Test Results of the Warning Signal Generation and Fault

Isolation ...34

2.5 Concluding Remarks ...37

3 Reducing Overkills and Retests in Wafer Testing Process 38

3.1 Introduction ...38

3.2 Problem Statements and Mathematical Formulation40

3.2.1 Testing Procedures ..40

3.2.2 Computer Simulation of the Testing Procedures43

3.2.3 Problem Formulation ..44

3.3 The OO Theory Based Two-Level Algorithm and Performance

Evaluation...46

3.3.1 The OO Theory Based Searching Procedures...............................46

3.3.2 Finding N Roughly Good Vectors from Decision Variables

Space..48

3.3.2.1 The Artificial Neural Network (ANN) Based Model......48

3.3.2.2 The Genetic Algorithm (GA) ..48

3.3.3 Searching the Good Enough Solution Among the N50

3.3.4 The OO Theory Based Two-Level Algorithm50

3.3.5 Performance Evaluation..52

3.3.5.1 Performance Evaluation of the First-level Approach......52

3.3.5.2 Performance Evaluation of the Two-level Algorithm54

3.4 Application of the OO Theory Based Two-Level Algorithm54

3.4.1 Constructing a Metamodel for (3.2) ...55

3.4.2 Using GA to Select N Roughly Good Vectors of Decision

Variables from X̂ ..56

3.4.3 Using an Approximate Model for Selecting the Estimated

Good Enough Subset ...58

3.4.4 Using the Exact Model to Determine the Good Enough

Solution..58

3.5 Test Results and Comparisons...59

3.6 Concluding Remarks ...65

4 Conclusions and Perspectives ..66

References ...67

List of Publication ..71

Vita ..72

vi

List of Tables

Table 2.1 The units and related subsystems of the 12 attributes30

Table 2.2 The 10-fold cross validation classification error rate of the 42-recipe

case ..31
Table 2.3 The misclassification rate  of the 42-recipe case.................................33

Table 2.4 The training time, classification time and 10-fold cross validation for
the sum of classification error rates for different values of p̂33

Table 2.5 The updating time of HCT when separation matrices change for
different p̂ ..34

Table 2.6 The misclassified abnormal wafers caused by electrical spikes37

Table 3.1 The good enough vector of threshold values and the average overkill
percentage of product A for three different Tr ’s.....................................60

Table 3.2 The good enough vector of threshold values and the average overkill
percentage of product B for three different Tr ’s....................................64

vii

List of Figures

Figure 2.1 The structure of an ion implanter ..6

Figure 2.2 The proposed fault detection and isolation scheme for the ion

implanter..8

Figure 2.3(a) Separable recipes ..11

Figure 2.3(b) Non-separable recipes ..11
Figure 2.4 Illustration of the separation between iC and jC based on jp13

Figure 2.5(a) A separation matrix example]),([
1kji CCD ..14

Figure 2.5(b) A separation graph example resulted from the separation matrix in

Figure 2.5(a) ...14
Figure 2.6(a) The separation matrix]),([

2kji CCD ...14

Figure 2.6(b) Submatrix of]),([
2kji CCD corresponding to cluster A in Figure

2.5(b) ..14

Figure 2.6(c) Clusters split from cluster A using the submatrix shown in Figure

2.6(b) ..14
Figure 2.7(a) The separation matrix]),([

1kji CCD ..15

Figure 2.7(b) The separation matrix]),([
2kji CCD ..15

Figure 2.8 An example of using Algorithm I to build the clustering tree.............17

Figure 2.9 Using clustering tree to find the faulty attribute28

Figure 2.10 The clustering tree of the 42-recipe case...30

Figure 2.11 Classification tree of CART for TC4 ...36

Figure 3.1 Flow chart of the real and simulated wafer testing procedures...........42

Figure 3.2 The structure of the OO theory based two-level algorithm.................51

Figure 3.3 Five types of standardized OPCs ..52
Figure 3.4 The resulted (][VE ,][RE) pairs of the 521 test wafers based on

the vector of threshold values determined by two-level algorithm,

random generator, three-sigma limit, six-sigma limit, GA and SA

algorithm..60
Figure 3.5 The resulted (][VE ,][RE) pairs of the 590 test wafers based on

the vector of threshold values determined by two-level algorithm,

random generator, three-sigma limit, six-sigma limit, GA and SA

algorithm..64

1

Chapter 1

Introduction

1.1 Motivation

Semiconductor manufacturing is a complex process that involves monitoring a great number

of parameters from the early stages of the production to the packaging of an end product. The

two most significant factors that determine the manufacturing performance are throughput and

yield. The throughput and yield are the most important indexes for measuring the quality of

semiconductor manufacturing process. Throughput is defined as the achieved unit output rate

of a particular type of equipment asset. Yield is defined as the fraction of total input

transformed into shippable output. The process of IC manufacturing often requires hundreds

of sequential steps, each one of which could lead to yield loss. Consequently, maintaining

product quality in an IC manufacturing facility often requires the strict control of hundreds or

even thousands of process variables. Traditional statistical methods are no longer feasible nor

efficient, if possible, in analyzing the vast amounts of data in a modern semiconductor

manufacturing process. Traditional approaches have limits in extracting the full benefits of the

data. Therefore, the manufacturing data is poorly exploited even in the most sophisticated

processes. Small improvements on throughput and yield for tenths of a percent can save

hundreds of millions of dollars annually in lost products, product rework, energy consumption,

and the reduction of waste streams. Considering the big set of parameters and large volume of

data in semiconductor manufacturing process, improving throughput and yield is indeed an

extremely difficult.

Thereofre, we narrow our focus of throughput and yield improvements on two issues: the

fault detection and isolation of an ion implanter and reducing overkills and retests in wafer

testing process.

2

1.2 Throughput and Yield Enhancement of Ion Implanter

The semiconductor manufacturing process can be divided into four basic phases: wafer

fabrication, wafer probe, assembly or packaging and final testing. Wafer fabrication is the

most technologically-complex and capital-intensive phase among the four. In the wafer

fabrication phase, ion implanter is a bottleneck machine in the semiconductor

manufacturing process because of its expensiveness; thus, ion implantation is a critical

operation to the throughput. The damaged wafer due to the malfunction of the ion implanter

is not re-workable hence significantly affects the yield. Thus, the real-time fault detection

and isolation for minimizing the possible down time of the ion implanter is a crucial issue in

semiconductor manufacturing process.

1.3 Throughput and Yield Improvement of Wafer Testing

Semiconductor testing of ICs or chips is required at various stages during the fabrication

process. Each IC must be individually tested in wafer and in packaged form to ensure that it

functions as intended. Demand for testing products is driven by two considerations: new

chip designs and higher unit volumes. As chips become increasingly powerful and complex,

the need for high-speed and accurate testing becomes more important than ever. The

process of testing individual chips in wafer form is referred to as wafer probing. Wafer

probing establishes a temporary electrical contact between the chip and the automatic test

equipment. This is the critical test for design and performance of the IC, and for sorting ICs

before separation and costly packaging. A probing system, which transmits electrical

signals to the wafer and analyzes the signals upon their return, has four principal

components: the prober, the probe card, the probe station, and automatic test equipment.

Although there exist techniques such as the Statistical Process Control (SPC) for monitoring

the operations of the wafer probes, the probing errors may still occur in many aspects and

cause some good dies being over killed, which will degrade the yield. Thus, reducing the

number of overkills is always one of the main objectives in wafer testing process. The key

3

tool to identify or save overkills is retest, which is an additional wafer probing. However,

retest is a major factor for decreasing the throughput. Thus, the overkill and the retest

possess inherent conflicting factors, because reducing the former can gain more profit,

however, at the expense of increasing the latter, which will degrade the throughput and

increase the cost. Consequently, to save more overkills using less retests is a goal of the

wafer testing process.

1.4 Dissertation Outline

This dissertation introduces two related issues on the throughput and yield of wafer

fabrication and testing processes. The first issue is a fault detection and isolation problem of

the ion implanter, and the second one is a reducing overkills under a tolerable retest level

problem in wafer testing process.

In Chapter 2, we propose a classification based fault detection and isolation scheme for

the ion implanter. The proposed scheme consists of two parts: the classification part and the

fault detection and isolation part. In the classification part, we propose a Hybrid

Classification Tree (HCT) with learning capability to classify the recipe of a working wafer

in the ion implanter, and a k-fold cross validation error is treated as the accuracy of the

classification result. In the fault detection and isolation part, we propose a warning signal

generation criteria based on the classification accuracy to detect and fault isolation scheme

based on the HCT to isolate the actual fault of an ion implanter. We have compared the

proposed classifier with the existing classification software and tested the validity of the

proposed fault detection and isolation scheme for real cases and obtain successful results.

In Chapter 3, we have formulated a stochastic optimization problem to find the optimal

threshold values to reduce the overkills of dies under a tolerable retest level in wafer testing

process. We have proposed an ordinal optimization (OO) theory based two-level algorithm

to solve for a vector of good enough threshold values of the stochastic simulation

optimization problem. In the first-level, we construct a crude but efficient model for the

4

considered problem based on an artificial neural network. This crude model will then be

used as a fitness function evaluation tool in a genetic algorithm to efficiently select N

roughly good solutions from decision-variable space. In the second-level, starting from the

selected N roughly good solutions we proceed with the existing ordinal optimization

searching procedures to search a good enough solution of the considered problem. We have

justified the quality of the obtained solution using simulations. We applied the proposed

algorithm to the reduction of overkills and retests in a wafer testing process, which is

formulated as a stochastic simulation optimization problem that consists of a huge

decision-variable space formed by the vector of threshold values in the wafer testing

process. The vector of good enough threshold values obtained by the proposed algorithm is

very successful in the aspects of solution quality and computational efficiency.

Finally, some conclusions for the dissertation are drawn in Chapter 4. We also suggest

some possible future research issues concerning the methods developed in this dissertation.

5

Chapter 2

Fault Detection and Isolation for the Ion Implanter

2.1 Introduction

Ion implanter [1] is a bottleneck machine in the semiconductor manufacturing process

because of its expensiveness; thus, ion implantation is a critical operation to the throughput.

The damaged wafer due to the malfunction of the ion implanter is not re-workable hence

significantly affects the yield. Therefore, a real-time fault detection to prevent more wafer

damage and a fault isolation to reduce the down time of the ion implanter are crucial issues to

the yield and throughput of the semiconductor manufacturing process. There are two

categories of fault detection methods, the model based methods and model free methods. The

model based methods, which utilize the mathematical model of the plant, originated from

chemical process control, aerospace related research, and other areas have been developed

in last three decades [2]-[4]. Model free methods, which do not use the mathematical model

of the plant, range from physical redundancy, limit value checking [5] and spectrum

analysis [6]. Among them, limit value checking method is widely used in practice. There are

also two types of fault isolation methods [7], the classification methods and inference

methods. If a-priori knowledge is not available for the relationships between the measured

data patterns and faults, classification methods are used. For example, a neural network,

trained using a large set of abnormal data pattern and known fault pairs, can be used to

classify the corresponding fault of an abnormal data pattern. If there is a priori-knowledge

for the relationships between faults and measured data patterns, a rule-based expert system

can be used to inference the corresponding fault of an abnormal data pattern.

Regarding fault detection, since there does not exist any proper models for the ion

implanter, the model based fault detection methods cannot apply. Thus, the limit value

checking method is currently employed in some semiconductor manufacturing companies.

6

The structure of an ion implanter is shown in Figure 2.1 [1]. In general, the equipment

supplier provides a digital equipment to monitor the proper operation of the scanning

subsystem of the machine. The well-trained engineers employ the limit value checking

method to investigate the SPC charts [8] of the measured parameters for other major

subsystems, the ion source (filament), extraction electrode, mass analysis, and acceleration

subsystems to monitor their operations.

The measured parameters can be, for examples, filament voltage, filament current,

discharge voltage,…, etc.. However, there are several tens to hundreds of recipes1 for wafer

fabrication in a semiconductor foundry each day. Although the setting of scanning

subsystem is independent of the recipes, the other four subsystems’parameters may vary

widely due to various recipes. This induces the first drawback of the limit value checking

method, that is the difficulty of defining a threshold to distinguish one recipe from the others.

Since each recipe involves a combined setting of the four subsystems, this induces the

second drawback of the limit value checking method that it cannot provide combination

Ion Source

Extractor

Analysis
Magnet

Mass Anylysis
Slit

Accelerator
Scan System

Wafer

Output
Cassette

Input
Cassette

Lens

Figure 2.1. The structure of an ion implanter.

1 A recipe controls how vectors are initialized or changed during a process step. Examples include

recipe numbers which index tables of set points in furnaces, or written instructions to operators. A

recipe is usually considered constant during any one process step. In this chapter, a recipe is

corresponding to a specific product of integrated circuit.

7

information of the measured parameters of the four subsystems. In addition, the occurrence

of electrical spikes in the ion implanter will make the measured parameters exceed the

threshold and indicate a fault situation, however the electrical spikes are not actual machine

faults. This is the third drawback of the limit value checking method. Regarding fault

isolation, both classification methods and inference methods require a fairly large set of the

abnormal data patterns with known faults to train a classifier and construct a rule-based

expert system, respectively. Collecting a large set of abnormal data patterns with known

faults in an ion implanter is very difficult, because there are several hundreds of steps in

fabricating a chip and the chip failure is most probably known when it is under test. To find

out which step in the complete manufacturing process causes the failure is already difficult

not even mention the collection of a large set of abnormal data patterns with known faults

due to ion implantation. Thus, the purpose of this chapter is to propose an automatic (i.e. no

need of well-trained engineers) and effective tool to monitor the above mentioned four

subsystems as a whole and generate a warning signal once a machine fault occurs and

isolate that fault.

To overcome the first two drawbacks of the limit value checking method, we should be

able to identify the recipe of the working wafer from the measured parameters of all the four

subsystems. This makes the data mining technique [9] attractive. To overcome the third

drawback of the limit value checking method, we need to distinguish electrical spikes from

the actual machine faults. Motivated by the above considerations, we propose a classification

based fault detection and isolation scheme for the ion implanter. Viewing a recipe as a class, we

can classify the recipe of the working wafer based on the corresponding measured

parameters of the four subsystems. Thus, the overall structure of the proposed fault

detection and isolation scheme can be shown in Figure 2.2. Our scheme starts from

classifying the recipe of the working wafer based on the measured parameters. If the

classified recipe of the working wafer matches its destined one, we assume there is no fault

and proceed with next wafer. This no fault assumption may cause only few damaged wafers in

the worst case. A detailed analysis of this claim will be addressed in Section 2.4. On the

8

other hand, if the classified recipe does not match its destined one, a double check of the

recipe command should be carried out. If the command is wrong, the operator will be

informed; otherwise, the warning signal generation criteria will be tested. If the criteria is

satisfied, we conclude that there is a machine fault and a warning signal will be generated;

otherwise, we will proceed with next wafer. Once a warning signal is generated, we will

perform the fault isolation scheme to isolate the fault. In short, the proposed fault detection

and isolation scheme consists of three major problems. The first one is a classification problem,

which is to classify the recipe of a working wafer. The second one is a fault detection problem,

which is to determine whether there is a machine fault and generate a warning signal if there

is one. The third one is a fault isolation problem to determine which subsystem has a fault. In

this chapter, we propose a Hybrid Classification Tree (HCT) with good learning capability to deal

with the classification problem. The HCT combines a proposed clustering algorithm with the

Continue
for next
wafer

In fo r m o p e r a to r

W a rn in g s ign a l
g e n e ra t io n

cr i t e r ia s a t is fi e d ?

No

No

No

Yes Yes

Yes

M easured signals
corresponding to the

working wafer

Classification

Generate the
warning signal

Does classified
recipe match?

Is recip e
com m a n d
corr ect?

Isolate the
fault

Figure 2.2. The proposed fault detection and isolation scheme for the ion implanter.

9

Classification and Regression Tree (CART) [10] to take the advantages of the specific setting of a

recipe during a process step. Its good learning capability will enable it to work on line.

Since the operator should interrupt wafer processing immediately when a fault is detected, a

high standard in the accuracy of fault detection is required so as not to unnecessarily

degrade the throughput. Thus, to account for the possible inaccuracy caused by the HCT, we

propose a warning signal generation criteria to deal with the fault detection problem. This

criteria aims to minimize the probability of false alarm when there is no fault as well as the

probability of no alarm while fault exists; the former tries to eliminate the indicated fault

situations due to electrical spikes and classification errors, while the latter tries to find out

the hidden machine faults when classified recipe matches the destined one; however, we

need not worry about the latter one by the no fault assumption mentioned above. To cope

with the fault isolation problem, we propose an HCT based fault isolation scheme. The

basic idea of this scheme is to find the parameter (or parameters) that causes the

classification errors. Dislike the existing methods, which need to collect a fairly large set of

measured data patterns with known faults as indicated earlier, the proposed fault isolation

scheme almost spend no extra effort as will be seen in Section 2.3.2. From here on, we will

use the terminologies attribute and data pattern in classification techniques to represent the

parameter and data of the measured parameters of the four subsystems of the ion implanter,

respectively.

We organize chapter 2 in the following manner. In Section 2.2, we will present the HCT

and its learning capability. In Section 2.3, we will analyze the probability of no alarm while

machine fault exists to verify the no fault assumption and present the criteria for generating

the warning signal. We will also present the fault isolation scheme in this section. In Section

2.4, we will apply the HCT to real data sets to obtain the k-fold cross validation classification

errors, based on which, we will demonstrate the validity of the proposed warning signal

generation criteria and the fault isolation scheme. In the meantime, we will also investigate

the learning capability of HCT by reporting the computation time needed to update the

classification rules of HCT. In Section 2.5, we will make a conclusion.

10

2.2 The Hybrid Classification Tree (HCT)

There exist numerous classification techniques for classification problems of continuous

attributes such as the neural network approach [11], maximum-likelihood approach [12], fuzzy set

theory based approach [13], decision tree [14], CART [10], kernel based learning algorithms [15],

and recent methods like random forests [16], multiple additive regression trees (MART) [17]

and the boosting flexible learning ensembles with dynamic feature selection technique [18], etc..

Among them, the neural network approach is superior in the aspects of free data distribution and

free data importance, however they are computationally expensive and produce variable results

due to the random initial weights. The maximum-likelihood approach was the most widely used

method in classifying remotely measurement data, however its performance was degraded when

the target classes could not be adequately described by the statistical model. The fuzzy set theory

based approach had been successfully applied to the pattern classification problem, however the

computational complexity is raised when the number of classes as well as the number of attributes

are large. Decision tree is mainly designed for classification of discrete variables. However,

CART can handle continuous attributes. Compared with random forest, MART and boosting

flexible learning ensembles with dynamic feature selection technique, disadvantage of CART is

inaccuracy due to its nature of piecewise constant approximation. However, the biggest advantage

of CART is its interpretability whereas the above mentioned three methods and the kernel based

learning algorithms are thought to lack this feature. The interpretability is the key feature of our

HCT based fault isolation scheme, however, at the expense of some classification accuracy.

Fortunately, the decrease in accuracy will be remedied by the warning signal generation criteria as

for applying to the fault detection of the ion implanter, which will be presented in Section 2.3.1.

The tree sizes of CART are closely related to the interpretability and accuracy. Small tree can be

easily interpreted, while the interpretability of a large tree is questionable. On the other hand,

larger tree is more accurate than the smaller one. Thus, to retain the interpretability of a small tree

while keeping the accuracy of a large tree, we intend to propose a preprocessing step to reduce the

tree size of CART so as to improve the interpretability while keeping its classification accuracy. In

11

general, a recipe may contain various steps, and a recipe step remains constant during the

processing of one wafer, however different attributes (parameters) may be ramped during the

entire processing step. Nonetheless some (not all, as can be observed from the experimental results

shown in Figure 2.10) attributes’mean of each individual recipe step are still a key to distinguish

the recipes. Thus, we can exploit this property to fulfill the above mentioned objective of

preprocessing. To do this, we propose a separation matrix based clustering algorithm as a preprocessing

step for CART. This clustering algorithm will classify the whole data set into a clustering tree and

the classes in the leaf clusters will be classified by the CART. Because both the size and the

number of classes of the leaf cluster are much smaller than the original data set, the computational

complexity of CART can be improved.

2.2.1 The Separation Matrices Based Clustering Algorithm

Due to the above mentioned property of a recipe during a processing step, we can

investigate the separability between two recipes through the degree of overlapping of the

attribute-values. For example, suppose the probability density function of an attribute for

the two recipes A and B are as shown in Figure 2.3(a), then these two recipes are separable

based on that attribute; while in the case of Figure 2.3(b), the two recipes are not.

Throughout this section, we will use the terminology class in classification techniques to

represent recipe.

x

A B

)(xp

(value of an
attribute)

(probability
density)

Figure 2.3(a). Separable recipes.

x

A B
)(xp

(probability
density)

(value of an
attribute)

Figure 2.3(b). Non-separable recipes.

12

2.2.1.1 Chebyshev Inequality Based Separation Matrices

We let kji CCD),(denote the separation index between classes iC and jC based on

attribute k and define






otherwise.,1

,attributeonbasedseparableareandif,0
),(

kCC
CCD ji

kji (2.1)

Clearly, 1),(kii CCD and kijkji CCDCCD),(),( for any attribute k . The value of

kji CCD),(is computed using Chebyshev inequality [19] as described below. We let the

random variable k
iX denote the k th attribute of class iC , and let k

i and k
i denote

the mean and standard deviation of k
iX , respectively. Let k

ia be a positive real number

such that  ][k
i

k
i

k
i aXP , where)][(P denotes the probability of the event)(, and

 is a small real number representing low probability, which is usually set to be 0.05. The

value of k
ia corresponding to a given  can be calculated from setting    

2k
i

k
i a using

Chebyshev inequality. Without loss of generality, we can assume k
j

k
i   . We let

 )),max(,1min(
2k

i
k
i

k
j

k
jj ap   , where k

ia is defined above and  is a very small

positive real number to avoid the denominator of the square term being 0 or negative. jp is

an upper bound of)],max(|[| k
i

k
i

k
j

k
j

k
j aXP   based on Chebyshev inequality. If

k
j is sufficiently larger than k

i
k
i a , jp will be very small, which implies the

overlapping of the classes iC and jC on attribute k will be very small; consequently the

classes jC and iC are more likely to be separable as illustrated in Figure 2.4. Therefore,

we can define a threshold value p̂ , such that the separation index for classes iC and jC

can be calculated by the following:



 


.,1
,̂,0

),(
otherwise

ppif
CCD j

kji
(2.2)

Now we can define]),([kji CCD as the separation matrix for all classes based on attribute k ,

whose (ji,) th entry is kji CCD),(.

13

k
i

k
ia k

j

)(kxp

(probability
density)

(value of the k th
attribute)

kx

Figure 2.4. Illustration of the separation between iC and jC based on jp .

2.2.1.2 Splitting Cluster Using Separation Matrices

We let 0Cr denote the root cluster, which represents the whole data set. Treating each

class in 0Cr as a node, we can view]),([
1kji CCD as an incidence matrix for all nodes in

0Cr based on attribute 1k . That means nodes iC and jC will be connected by an arc if

1),(
1
kji CCD . The graph constructed based on a separation matrix is called a separation graph,

which may contain separate connecting sub-graphs. Each connecting sub-graph represents a

cluster of non-separable classes based on attribute 1k , and the number of disjoint sub-graphs

represent the number of disjoint clusters that can be split from 0Cr using attribute 1k . For

example, the separation graph constructed from the separation matrix]),([
1kji CCD given in

Figure 2.5(a) is shown in Figure 2.5(b), which consists of two disjoint clusters, or two separate

connecting sub-graphs, A and B. The resulted clusters can be further split by other attributes.

For example, cluster A in Figure 2.5(b) can be further split by attribute 2k , whose

]),([
2kji CCD is shown in Figure 2.6(a), in the following manner. Collecting the rows and

columns of]),([
2kji CCD corresponding to the classes in cluster A to form the submatrix

shown in Figure 2.6(b). Repeating the same process of splitting 0Cr using]),([
1kji CCD ,

cluster A can be split into two clusters C and D as shown in Figure 2.6(c) by using the

submatrix shown in Figure 2.6(b).

14

C1 C2 C3 C4 C5 C6

C1 1 1 0 0 0 0
C2 1 1 1 0 0 0
C3 0 1 1 0 0 0
C4 0 0 0 1 1 0
C5 0 0 0 1 1 1
C6 0 0 0 0 1 1

Figure 2.5(a). A separation matrix example]),([
1kji CCD .

A :

B :

C1 C2 C3

C4 C5 C6

Figure 2.5(b). A separation graph example resulted from the separation matrix
in Figure 2.5(a).

C1 C2 C3 C4 C5 C6

C1 1 0 0 0 0 0
C2 0 1 1 0 0 0
C3 0 1 1 1 0 0
C4 0 0 1 1 1 0
C5 0 0 0 1 1 1
C6 0 0 0 0 1 1

Figure 2.6(a). The separation matrix]),([
2kji CCD .

C1 C2 C3

C1 1 0 0
C2 0 1 1
C3 0 1 1

Figure 2.6(b). Submatrix of]),([
2kji CCD corresponding to cluster A in Figure 2.5(b).

C :

D :

C1

C2 C3

Figure 2.6(c). Clusters split from cluster A using the submatrix shown in Figure 2.6(b).

2.2.1.3 The Choice of Attributes for Cluster Splitting and the Construction of the
Clustering Tree

Because the separation matrix has already indicated certain distribution of the attribute

values of all classes, we can employ a coarser partition like fuzzy intervals to classify the

disjoint clusters instead of treating each continuous value as a discrete one like CART. In

15

general, for a given range of attribute values, more finer fuzzy partition is needed to classify

a cluster with larger number of classes. In other words, for a given fuzzy partition and the

range of attribute values, the classification will be more accurate for a cluster with smaller

number of classes. Considering that any inaccurate cluster splitting will influence the

accuracy of the subsequent cluster splitting along the tree path, we set the criteria for

choosing the attribute to split a cluster as minimizing the multiplication of the average number

of classes and the variation of the number of classes in the resulted child clusters. This criteria implies

that the attribute which results in more child clusters and smaller variation in the number of

classes in the child clusters is preferred. For example, for the separation matrices of two

attributes shown in Figure 2.7(a) and 2.7(b), suppose that we use the attribute 1k to split the

cluster first, we obtain three child clusters. One consists of 1 class, and the other two consist of

three and four classes. While if we use attribute 2k first, we will obtain four child clusters, and

each child cluster contains two classes. Based on the criteria indicated above, we would choose

2k to split the cluster. To put this criteria into a mathematical form, we let kL and)(
, jlk

Crn

denote the number of child clusters and the number of classes in the l th child cluster resulted

C1 C2 C3 C4 C5 C6 C7 C8

C1 1 0 0 0 0 0 0 0
C2 0 1 1 0 0 0 0 0
C3 0 1 1 1 0 0 0 0
C4 0 0 1 1 0 0 0 0
C5 0 0 0 0 1 1 0 0
C6 0 0 0 0 1 1 1 0
C7 0 0 0 0 0 1 1 0
C8 0 0 0 0 0 0 1 1

Figure 2.7(a). The separation matrix]),([
1kji CCD .

C1 C2 C3 C4 C5 C6 C7 C8

C1 1 1 0 0 0 0 0 0
C2 1 1 0 0 0 0 0 0
C3 0 0 1 1 0 0 0 0
C4 0 0 1 1 0 0 0 0
C5 0 0 0 0 1 1 0 0
C6 0 0 0 0 1 1 0 0
C7 0 0 0 0 0 0 1 1
C8 0 0 0 0 0 0 1 1

Figure 2.7(b). The separation matrix]),([
2kji CCD .

16

from using attribute k to split the cluster jCr , respectively. Then, the criteria for choosing the

attribute for splitting jCr is

    
























 


k

L

l
jlkjlkk

L

l
jlkk

LCrnCrnLCrn
kk

1

2

,,
1

,
)(min (2.3)

where the first term inside the big bracket represents the average number of classes in the

resulted child clusters and the second term denotes the variance of the number of classes in

the resulted child clusters, where     k

L

l
jlkjlk

LCrnCrn
k





1

,,
.

Now, our algorithm for choosing the splitting attribute to build the clustering tree can be stated

as follows.

Algorithm I: Choose the splitting attributes and build the clustering tree.

Step 0: Given the original data set 0Cr and the separation matrices of all attributes. Set

0Cr as the root cluster and define the set of Yet Split Clusters (YSC)={ 0Cr }.

Step 1: For each cluster in YSC, obtain the corresponding splitting attribute k based on the

criteria (2.3). Using the obtained attribute to split the cluster, and put the resulting

child clusters into YSC. Discard the clusters that had been split and the clusters that

cannot be split using any attribute.

Step 2: If YSC , stop; otherwise return to Step 1.

Figure 2.8 shows a clustering tree built by using the separation matrices of two attributes

shown in Figure 2.5(a) and 2.6(a) to split the root cluster 0Cr ={C1,C2,C3,C4,C5,C6}. Algorithm

I uses three iterations to build the tree. The splitting attribute for each cluster and the progression

of YSC are also shown in this figure.

We define the leaf cluster in the clustering tree as the Terminal Cluster (TC) . Each TC may

contain one class only or several classes, which cannot be split further using any attribute.

For the purpose of classifying a new data pattern into a TC, we need to use the splitting

17

attributes to construct the cluster splitting rules for each cluster in the clustering tree based on

the fuzzy rules [20] for single attribute as presented in the following section. It should be noted

that the fuzzy rules employed here are for single attribute, thus we can circumvent the

computational complexity of the fuzzy set theory based approach indicated in Section 2.2.

},,,,,{ 6543210 CCCCCCCr 

},,{ 6542 CCCCr 

},,{ 3211 CCCCr 
},{ 324 CCCr 

}{ 13 CCr 

k1
k2

}{ 0CrYSC  },{ 21 CrCrYSC  },{ 43 CrCrYSC  YSC

Clustering Tree :

Progression of YSC :

Figure 2.8. An example of using Algorithm I to build the clustering tree.

2.2.1.4 The Clustering Algorithm

The separation matrix based clustering algorithm consists of two parts: the training part

and the classification part. The training part, which is prepared for the classification part,

consists of three steps: (i) construction of the separation matrices for all attributes, (ii)

determine the cluster splitting attribute and build the clustering tree, and (iii) throughout the

clustering tree, generate the fuzzy if-then rules needed to classify a data pattern into proper

child cluster based on a given set of training data patterns with known TCs. In the above

three steps, (i) and (ii) had been presented in previous subsections. The details of (iii) as

well as the classification part are described below.

1. The Fuzzy-Rule Generation Procedures of the Clustering Algorithm

The fuzzy rules for splitting a non-TC cluster using the corresponding splitting attribute in

our clustering algorithm are of the same type. Thus, for the sake of explanation, we will

focus on generating the fuzzy rules for one cluster in the clustering tree. We let jCr denote

a non-TC cluster and k denote the corresponding splitting attribute. We let s
kx , gs ,...,1 ,

denote the k th attribute of g data patterns, sx , gs ,...,1 , from jM known child clusters,

18

jjMj CCrCCr ,...,1 . These g data patterns form the training data set for splitting jCr . The fuzzy

rules for splitting cluster jCr are of the following type.

For Ki ,...,1 , where K denotes the number of fuzzy partitioned intervals on the range

of the k th attribute values,

Rule)(ji CrR : If s
kx is K

iA , then the sx belongs to jiCCr with K
iCF , where K

iA is

the i th partitioned fuzzy interval, jiCCr is the consequent, i.e. one of the jM child

clusters, and K
iCF is the grade of certainty of rule)(ji CrR (2.4)

What need be determined in the above rule are jiCCr and K
iCF , and the procedures for

determining them are called fuzzy rules generation procedures for splitting one cluster as

described below.

Let K
iA be characterized by the nonnegative fuzzy membership function)(K

if . The

membership function)(K
if can be triangular, Gaussian, or any other shape. In this chapter,

we consider the triangular membership function. Then,)(s
k

K
i xf can be considered as the grade

of compatibility of s
kx with respect to K

iA . We define





jl

s
jl

CCrx

s
k

K
ijiCCr xfCrR)())(( (2.5)

as the sum of grade of compatibility of child cluster jlCCr with respect to K
iA . Then the

algorithm for generating fuzzy rules for splitting cluster jCr can be stated as follows:

Algorithm II: Generation of the K fuzzy rules for splitting cluster jCr .

Step 0: Given g training data patterns sx , gs ,...,1 , with known child clusters jlCCr ,

jMl ,...,1 of the to-be-split cluster jCr and the corresponding splitting attribute k .

Set 1i .

Step 1: Calculate the sum of grade of compatibility of child cluster jlCCr , jMl ,...,1 , with

respect to K
iA by (2.5).

19

Step 2: Find the child cluster jxCCr such that

))}((,)),((max{))((
1 jiCCrjiCCrjiCCr CrRCrRCrR

jjMjjx
  (2.6)

then jxCCr is the consequent jiCCr in rule)(ji CrR .

Step 3: Determine K
iCF , the grade of certainty of rule)(ji CrR , by

 



M

l
jiCCrjijiCCr

K
i CrRCrRCrRCF

jljx
1

))(())(())(( (2.7)

where 



jxjl

jl
CCrCCr

jjiCCrji MCrRCrR)1())(())(( denotes the average of the sum

of grade of compatibility of the rest of child clusters with respect to K
iA .

Step 4: If Ki  , stop; else, set 1ii , and return to Step 1.

2. Training Part of the Clustering Algorithm

Combining the construction of separation matrices, determination of the splitting

attributes, building of the clustering tree and the above fuzzy rule generation procedures, we

are ready to summarize the training procedures of the clustering algorithm using the training

data set.

Algorithm III: Training procedures of the clustering algorithm.

Step 0: Given a set of training data patterns with known classes; compute k
i and k

i of

each class iC and each attribute k ; compute the separation matrices

]),([kji CCD based on (2.2) for each attribute k .

Step 1: Apply Algorithm I to obtain the splitting attributes and build the clustering tree.

Step 2: Use Algorithm II to generate the fuzzy rules for each cluster in the clustering tree.

3. Classification Part of the Clustering Algorithm

Once the fuzzy rules for splitting the clusters in the clustering tree are generated, we can

determine the child cluster to which the new data pattern belongs at each cluster based on a

20

fuzzy reasoning method.

Let the new data pattern be xand let kxbe the k th attribute of xcorresponding to the

splitting attribute k at cluster jCr . We define
jlCCr , the weighting grade of certainty of kx

with respect to the child cluster jlCCr , as the sum of the multiplication of the grade of

compatibility of kxwith respect to K
iA and the grade of certainty of rule)(ji CrR over all

K trained rules whose consequent are jlCCr . We can express
jlCCr mathematically as

K
i

CCrCCrCrR
k

K
iCCr CFxf

jljiji

jl
 

),(

)( . Then the classification procedures for the new data can be

stated below.

Classification Procedures: The child cluster jyCCr , with respect to which the weighting grade

of certainty of kx is maximum, is the concluded cluster of x, that is,

}),,arg(max{
1 jjMj CCrCCrjyCCr   .

Now, the classification procedures for classifying a new data pattern xinto a TC can be

stated in the following.

Algorithm IV: Classification procedures of the clustering algorithm.

Step 0: Given a new data pattern),...,(1 nxxx  , where n denotes the total number of

attributes; set Present Cluster (PCr)= 0Cr .

Step 1: Use kx, where k corresponds to the attribute used for splitting the PCr, and the

classification procedures stated above to classify xinto a child cluster of PCr, we

denote this child cluster by CPCr. If the CPCr is not a TC, set PCr=CPCr and

repeat this step; otherwise, stop.

2.2.2 The CART for Terminal Cluster (TC)

The TCs resulted from the training part of the separation matrix based clustering

algorithm may consist of one or more classes. Since the number of classes and the size of

the corresponding data set in each TC should be much smaller than 0Cr , it will be

21

computationally much easier to apply CART to classify the TCs and the resulting tree size

of each TC will be much smaller. Therefore, our clustering algorithm help reduce the

computational complexity and the tree size of CART when applies to 0Cr alone.

The CART is a well-developed classification tool. The details of this classification

technique can be found everywhere [10]. Similar to the proposed clustering algorithm,

CART also consists of training and classification parts. The training part of CART is to

build a classification tree and the splitting rules in each node. In brief, the construction of a

CART classification tree and splitting rules centers on three major elements: (a) the splitting

rule, (b) the goodness-of-split criteria, and (c) the criteria for choosing an optimal or final

tree for analysis. Regarding (a), there are three major splitting rules in CART. The one we

employed here is the Gini’s criteria [10]. This criteria starts the tree-building process by

partitioning the TC into binary nodes based upon a very simple question of the form: is

?bk  where k is an attribute and b is a real number. Regarding (b), the CART uses a

computation-intensive algorithm that searches for the best split at all possible split points

for each attribute that decrease the Gini’s impurity measure most. CART will recursively

apply this splitting rule to split non-terminal child nodes at each successive stage. In order

to reduce the complexity of the built tree which is measured by the number of its terminal

nodes, CART uses a pruning process to find an optimal tree as pointed out in (c). The

computational complexity of the training part of CART mainly lies in the exhaustive search

for the best split required in (b). Once the classification tree and the splitting rules are

obtained, the classification procedure of CART is simply asking whether ?bk  to

determine which of the binary child nodes the new data pattern belongs to throughout the

classification tree.

2.2.3 Classification of a New Data Pattern

Once the training part of the HCT, which combines the training parts of the clustering

algorithm and CART, is completed, we are ready to use the classification procedures of both

22

clustering algorithm and CART to classify a new data pattern as required in the first two

blocks in Figure 2.2.

2.2.4 Learning Capability

The learning capability of a classifier is very important in current application, because for

every fourteen minutes, 24 wafers (or a lot) of the same recipe will be ion implanted. Thus,

new data patterns arrive with a high frequency. For the sake of explanation, we can assume

the recipe of the working wafer is one of the recipes under work, because only slight

modification is needed for the case of new recipe. The learning of HCT after the new data

pattern joins in consists of two parts. The first part is for the clustering algorithm and the

second part is for CART. Learning of the clustering algorithm consists of three updating

steps: (i) updating the separation matrices, (ii) updating the attributes used to split clusters

as well as the clustering tree, and (iii) updating the fuzzy rules for splitting clusters.

Learning of CART is just to update the best split for each node in the classification tree.

2.2.4.1 Learning of the Clustering Algorithm

Since the new lot of wafers is of the same recipe, the new data patterns will be used to

update the mean and variance of each attribute of the corresponding class. Denoting the

class index of the new data pattern by m , then we will update k
m and k

m for all k ,

which will be used to update the separation indices kjm CCD),(for all j , all k . Suppose

the updated kjm CCD),(do not change for all j and all k , then the separation matrices

remain the same; consequently, the splitting attributes for clusters and the clustering tree

also remain the same as can be observed from Algorithm I. This implies that if the

separation matrices are unchanged after the new data pattern joins in, the updating step (ii)

can be skipped. In fact, k
m and k

m will only slightly deteriorate when the new data

pattern join in because of the large amount of training data set. This implies that the updated

separation matrices may change only when the amount of accumulated new data patterns

23

are large enough. On the other hand, suppose kjm CCD),(changes for any j and k , and

cause the corresponding separation matrices changed in updating step (i), we need to

proceed with updating step (ii) by performing Algorithm I (i.e. Step 1 of Algorithm III) to

update the splitting attributes and the clustering tree.

To update the fuzzy rules indicated in the updating step (iii), we also consider two cases.

In the case of unchanged separation matrices, which implies the clustering tree and splitting

attributes remain the same, we only need to update the fuzzy rules for the clusters in the tree

path of the clustering tree, along which the new data pattern belongs to. To do so, we let

jCr be a non-TC cluster in this tree path, and let jzCCr be the child cluster of jCr in this

tree path. To update the rules)(ji CrR in (2.4) is to update the consequent and grade of

certainty after the new data pattern join in. To update the consequent, we need to update

))((jiCCr CrR
jz

 first. To do so, we need to add an extra term of the nonnegative

membership function of the new data pattern on the right hand side of (2.5). The updated

))((jiCCr CrR
jz

 will be larger than the original one. Thus according to Step 2 of Algorithm

II, the consequent will not be changed. Subsequently, we can use the updated

))((jiCCr CrR
jz

 to update the corresponding K
iCF by (2.7). Thus, in this case, updating

fuzzy rules is an easy task because the length of a tree path in the clustering tree is usually

short. In the case if the clustering tree or any splitting attributes changes due to the changed

separation matrices, we need to perform Step 2 of Algorithm III, which is Algorithm II, to

update the fuzzy rules. Of course, this is more complicated than previous case. However, no

matter what case, it will not affect HCT to work real-time and on-line as will be

demonstrated in Section 2.4.

2.2.4.2 Learning of CART

Following from previous discussions, there are also two cases for updating the splitting

rules of CART. The first case is a subsequent situation of the unchanged separation matrices

such that the TCs of the clustering tree do not change. Since the number of training data

24

patterns are very large, the best split point of each attribute in each node of the CART will

alter at most slightly when new data pattern join in. Therefore, we need not exhaustively

search for the split point of each attribute. Instead, we can search for the split point only

within a window of the original best split point of each attribute. The window is set to be w

discrete points at the best split point of each attribute. This will of course save a lot of

computation time. In addition, we need only update the splitting rules for just one TC, to

which the new data pattern belongs. The other case is when the separation matrices change

and cause the clustering tree changes. In this case, we will rerun the CART for all TCs. As

indicated at the end of previous subsection, this will not affect HCT to work real-time and

on-line.

2.3 Warning Signal Generation and Fault Isolation

2.3.1 Warning Signal Generation

In general, the ion implanter will be stopped whenever there is a warning signal so as not

to damage the subsequent wafers. However, this reaction will be justified only when the

warning signal is absolutely correct; otherwise, the throughput will be degraded. Thus, to

minimize the probability of false alarms should be one of the objectives. On the other hand,

thousands of wafers may be damaged if any fault is not detected. Thus, to minimize the

probability of overlooking a fault is another objective. In general, a matched classification

result implies (i) the machine is in normal condition, or (ii) the actual implantation has been

wrong due to a machine fault but a misclassification makes the classified recipe match the

destined one. Case (ii) indicates a fault situation that cannot be observed from the matched

result. We let i denote the misclassification rate of recipe i , which can be calculated by

the following





ij

i jimj)|()( (2.8)

25

where)(j denotes the prior probability of recipe j and)|(jim denotes the

misclassification rate of classifying recipe j to be recipe i . If case (ii) occurs to recipe i ,

then the probability of a series of n such events occur is n
i . This indicates the

probability of an undetected machine fault will be extremely small provided that i is

small, and n is large. This also implies that the matched recipe will eventually mismatch

provided that the matched result is due to a misclassification. Real values of i for all i

based on HCT will be given through the tests presented in Section 2.4. This addresses the

comment cited in Section 2.1 that we need not check the existence of a machine fault when

the classified recipe matches the destined one, and the cost of such a reaction is at most n

damaged wafers, where n is a positive integer that makes n
i extremely small. This also

indicates when the classified recipe matches the destined one, we can continue for next

wafer as shown in Figure 2.2. Thus, using the classification accuracy of the HCT as the

basis of generating a warning signal, our objective can be simplified to minimizing the

probability of false alarm.

There are two causes of false alarms. One is the electrical spike and the other is the

classification error. Both cases will cause the classified recipe mismatch the destined one

and require the checking of warning signal generation criteria as indicated in Figure 2.2. To

minimize the probability of false alarm due to an electrical spike, we should distinguish an

electrical spike from a machine fault. The electrical spike is only temporary, which may

affect one or two wafers only, while the machine fault will last until it is fixed. Thus, an

easier way to distinguish them is checking whether a series of classification errors occur. In

other words, if there are more than, say, four consecutive classification errors, the causes of

the errors should not be the electrical spikes. Similar reasons apply to the classification

errors. We let iq denote the classification error rate, which is defined as (number of

misclassified wafers/number of test wafers)*100%, of recipe i obtained using k-fold cross

validation. Then the probability of the occurrence of n consecutive classification errors is
n

iq)(, which decreases sharply when n increases. Thus, an easier way to distinguish the

classification error from the machine fault is also checking whether a series of classification

26

errors occur. To achieve this, we can predetermine a very small positive real number , a

probability indication of an event that is almost not possible to occur. Then if n
iq)(, we

can conclude that the cause of mismatched recipe is not classification errors. Thus we can

state our warning signal generation criteria as follows.

Let the classification error rate of recipe i obtained using k-fold cross validation be

denoted by iq , and let n denote the number of consecutive working wafers, then the

proposed criteria for generating a warning signal is:

Assume the classified recipe of the)1(l th wafer matches the destined one, while

the l th,)1(l th,…,)(nl  th wafers do not, the warning signal will be

generated at the)(nl  th wafer provided that the following two conditions hold:




)()1()(
1

nlqlqlq
nlll iii (2.9)

and

,1nn  (2.10)

where li denotes the destined recipe of the l th wafer,)(lqi denotes the iq of

the l th wafer,  is a very small positive real number, and 1n denotes the

maximum number of consecutive wafers that can be affected by the electrical

spikes.

If condition (2.9) holds, we can exclude the possibility of false alarm due to classification

errors. If condition (2.10) holds, we can exclude the possibility of false alarm due to the

electrical spikes.

2.3.2 Fault Isolation

To eliminate the machine fault, we need to isolate the fault first. In general, when there is

27

a fault in a subsystem, the attribute (or attributes) corresponding to that subsystem may

become abnormal. Thus, the basic idea of our fault isolation scheme is to find the attribute(s)

that causes the classification errors, and this can be easily done in a single-tree classifier like

CART and HCT, which is their biggest advantage, the interpretability. In fact, the

tree-structure of HCT is much simpler than CART, because it largely reduces the tree size of

CART by using the clustering tree to separate the whole data set into several TCs. Thus, if

the misclassified recipe and the destined recipe belong to different TCs, we can use the

clustering tree to find the faulty attribute. While if they belong to the same TC, we will use

the corresponding CART to find the faulty attribute. Considering that the machine fault may

occur abruptly or develop gradually, and there may be single or multiple faulty attributes,

we will find the faulty attribute(s) for each misclassified wafer by the aid of its tree path and

the tree paths of several latest correctly classified wafers of the same destined recipe. Thus,

once a warning signal is generated, our fault isolation scheme will proceed as follows.

Step 1: Collect the 1m consecutive misclassified wafers that cause the warning signal, i.e.

),max(11 nnm  such that conditions (2.9) and (2.10) hold.

Step 2: Collect the latest 2m correctly classified wafers, which have the same destined

recipes as the 1m wafers in Step 1.

Step 3: For each of the 1m wafers in Step 1 and each of the 2m wafers in Step 2, we will

find the faulty attribute(s) that causes the misclassification as follows.

3.1 Suppose the two wafers belong to different TCs, say iTC and kTC , we will use

the clustering tree to find the faulty attribute by tracing the tree paths backward

from the corresponding TCs. These two paths will meet at a node whose splitting

attribute will be the faulty attribute. As illustrated in Figure 2.9, the faulty

attribute is 1k .

3.2 Suppose the two wafers belong to the same TC, and they lie in two different

terminal nodes of the corresponding CART, we can find the faulty attribute in a

similar manner as in Step 3.1 using the classification tree of CART.

28

Step 4: List all the different faulty attributes found from the 21 mm  searches in Step3 and

calculate the corresponding probability, based on the frequency of occurrences.

Indicate the corresponding subsystem of the faulty attributes and calculate the

corresponding probability by adding the probabilities of the faulty attributes in this

subsystem.

TCi TCk

k1

k2 k3

.

Figure 2.9. Using clustering tree to find the faulty attribute.

2.4 Test Results of HCT, Warning Signal Generation and Fault

Isolation

2.4.1 Test Results of HCT

In general, there are quite a few attributes that can be measured from the ion implanter;

however, not all attributes are helpful in classification. According to the domain knowledge,

the following 12 attributes, k1,…,k11 and k12, are recommended: filament voltage, filament

current, discharge voltage, discharge current, extraction electrode voltage, extraction

electrode current, acceleration/deceleration voltage, magnetic field strength, high voltage

power supply current, beam current, beam-line pressure, and chamber pressure, respectively.

These 12 attributes cover the four subsystems of the ion implanter. Table 2.1 shows the units

and related subsystems of the above 12 attributes. We have made all the tests on a 26-recipe

case and a 42-recipe case. Due to the page limitation, we will present the complicated

29

42-recipe case only. It should be noted that all the test results shown in this section are

simulated in a Pentium IV PC using Matlab.

A data set of 42-recipe case, and each recipe consists of a thousand to 10,000 wafers are

supported from a local world-renowned foundry. We use them to test the classification

accuracy of the proposed classifier HCT and to demonstrate the validity of the warning

signal generation criteria and fault isolation scheme. It takes one second to measure a

12-attribute data pattern. The ion implantation time for a wafer is around 10 seconds. Thus,

ten data patterns are taken while a wafer is under work. The wafer changeover time is 26

seconds on average. Each lot contains 24 wafers, and the setup time for a new lot is 13

minutes. For all the measured data patterns in this case, we randomly divide them in wafer

base into ten parts. We take 9 parts as training data set and 1 part as test data set. We set

075.0̂p in (2.2), the number of fuzzy partitioned intervals 12K and a triangle

nonnegative membership function for)(K
if in Algorithm II. Applying Algorithm III to the

training data set, the resulting clustering tree and the splitting attributes are shown in Figure

2.10, where each cluster is denoted by a block, and the recipes contained in a cluster are

shown inside the parenthesis in each block. The attribute used for splitting each cluster is

indicated at the outgoing branch in the clustering tree. The corresponding fuzzy rules for

each splitting attribute are also obtained. There are five TCs, and each TC consists of more

than one recipe except for the one consisting of recipe 23 only. Subsequently, we apply

CART to the four TCs and build the classification tree and splitting rules for each TC. We

then use the part of test data to test the trained HCT using Algorithm IV of the clustering

algorithm and the classification tree and splitting rules of CART. Since each wafer

corresponds to 10 measured data patterns, and each test data pattern will be classified to a

recipe, thus a majority voting scheme is used to conclude the classified recipe of the wafer

corresponding to the 10 test data patterns. Repeating this process for ten times by

circulating the training data set and test data set, Table 2.2 shows the resulting 10-fold cross

validation classification error rate of all recipes in this test. We also indicate the 10-fold

cross validation classification error rate using the software See5 [21] and CART [10] in this

30

table. From this table, we can calculate the sum of classification error rates of the proposed

HCT with p̂ =0.075 is around 0.2955%; while the sum of classification error rates using

See5 and CART are 0.53% and 0.6427%, which are 80% and 117% more than that of HCT,

respectively. Thus HCT obtains a very successful classification result.

Table 2.1. The units and related subsystems of the 12 attributes.

Attribute Unit Subsystem
k1 filament voltage Volts ion source
k2 filament current Amps ion source
k3 discharge voltage Volts ion source
k4 discharge current Amps ion source
k5 extraction electrode voltage KV extractor
k6 extraction electrode current mA extractor
k7 acceleration/deceleration voltage KV extractor
k8 magnetic field strength KGauss mass analysis
k9 high voltage power supply current A mass analysis
k10 beam current mA mass analysis
k11 beam-line pressure Torr/e6 accelerator
k12 chamber pressure Torr/e6 accelerator

Cr0
(1~42)

Cr2
(1,5,6,7,12,

13,17,22,36,42)

Cr1
(8,14,15,16,

23,24,25,26,27,
28,29,30,31,32,

33,34,35)

TC1
(2,3,4,9,10,

11,18,19,20,21,
37,38,39,40,41)

TC4
(1,6,7,12,13)

TC5
(5,17,22,36,

42)

TC3
(8,14,15,16,

24,25,26,27,28
,29,30,31,32,3

3,34,35)

TC2 (23)

k8

k8

k8

k9

k9

k10

k10

Figure 2.10. The clustering tree of the 42-recipe case.

31

Table 2.2. The 10-fold cross validation classification error rate of the 42-recipe case.

Classification error
rate(%)

Classification error rate
(%)

Classification error rate
(%)Recipe

HCT
p̂ =0.075 CART See5

Recipe
HCT

p̂ =0.075 CART See5

Recipe
HCT

p̂ =0.075 CART See5
1 0 0 0 15 0 0 0 29 0 0 0
2 0 0 0 16 0 0 0 30 0 0 0
3 0 0 0 17 0 0 0 31 0 0 0
4 0 0 0 18 0 0 0 32 0 0 0
5 0 0 0 19 0 0 0 33 0 0 0
6 0.05 0.05 0.05 20 0.2 0.125 0.2 34 0 0 0
7 0 0 0 21 0 0 0 35 0 0 0
8 0 0 0 22 0 0 0 36 0 0 0
9 0 0 0 23 0 0 0 37 0 0 0

10 0 0.05 0 24 0 0 0 38 0 0 0
11 0 0 0 25 0 0 0 39 0.0455 0 0
12 0 0 0 26 0 0 0 40 0 0 0
13 0 0 0 27 0 0 0 41 0 0 0
14 0 0.4167 0.28 28 0 0 0 42 0 0 0

Remark 1: From the test results shown in Table 2.2, we see that the superiority of HCT

over CART and See5 is mostly due to the zero classification errors of recipe 14. What

causes the classification errors of recipe 14 in CART or See5 is the overlapping of the

attribute data between recipes 14 and 20. Thus, some test data patterns of recipe 14 may be

classified to be recipe 20 in CART or See5. Fortunately, in HCT, recipe 14 and 20 have been

classified into different TCs as can be observed from Figure 2.10. This drastically reduces

the possibility of classifying recipe 14 to be 20. However, in HCT, recipe 20 may still be

classified into recipe 14, which can also be observed from Table 2.3 for misclassification

rate. Excluding recipe 14 from the data set, we repeat the complete training and test process,

and the results show that the sum of classification error rates of HCT, CART, and See5 are

0.173, 0.248 and 0.182, respectively. Indeed the three sums of classification errors are closer,

however, HCT is still the best among them. Furthermore, we also apply the three classifiers

to the 26-recipe case that we mentioned at the beginning of this subsection, and the sum of

classification error rates of HCT, CART and See5 are 0.225, 0.577 and 0.405, respectively.

32

For this 42-recipe case, we also obtain the misclassification rate defined in (2.8) for the

three classifiers as shown in Table 2.3. The largest misclassification rate of HCT,

ii
 maxmax  , is 0.0043% and the sum of misclassification rates 



42

1i
i is around 0.00737%.

Taking n=4, 15
max 10n . This demonstrates the analysis stated in Section 2.3 for the

validity of no fault assumption, which states that if a machine fault exists, the classified

recipe will eventually mismatch the destined one. Compared with CART and See5, the sum

of misclassification rates of HCT is better, and this is consistent with the results of

classification error rate shown in Table 2.2. To investigate the training efficiency and the

capability of real-time classification of HCT as well as the effects of different values of p̂ ,

we have applied HCT to the 42-recipe case with three other value of p̂ . The resulting

10-fold cross validation for the sum of classification error rates, the corresponding average

training times, and the classification time for classifying the recipe of a new data pattern are

shown in Table 2.4. From the fourth row of this table, we can observe that when 075.0̂p ,

the 10-fold cross validation for the sum of classification error rates of HCT is better than

that of See5 and CART. From the second row of the table, we see that when 075.0̂p , the

training time required by HCT is much shorter than that required by CART and See5. The

classification time needed for classifying a new data pattern is much shorter than that of

See5 and CART for all the indicated values of p̂ ; in addition, it is also much shorter than

the data measurement time, which takes one second, thus HCT can work real-time. This

shows that HCT not only performs better than See5 and CART in the aspect of 10-fold cross

validation for the sum of classification error rates but also consumes less training time and

classification time when p̂ is properly chosen. In the meantime, we found that as p̂

increases, the HCT becomes less accurate and less computational time consuming as

expected. This also demonstrates why the clustering algorithm helps reduce the

computational complexity of CART.

33

Table 2.3. The misclassification rate  of the 42-recipe case.

Misclassification rate (%) Misclassification rate (%) Misclassification rate (%)
Recipe HCT

p̂ =0.075 CART See5
Recipe HCT

p̂ =0.075 CART See5
Recipe HCT

p̂ =0.075 CART See5
1 0 0 0 15 0 0 0 29 0 0 0
2 0 0 0 16 0 0 0 30 0 0 0
3 0 0 0 17 0 0 0 31 0 0 0
4 0 0 0 18 0 0 0 32 0 0 0
5 0 0 0 19 0.0006 0.0049 0.0021 33 0.00124 0 0
6 0 0 0 20 0 0.0062 0.0053 34 0 0 0
7 0.00123 0.00123 0.00123 21 0 0 0 35 0 0 0
8 0 0 0 22 0 0 0 36 0 0 0
9 0 0 0 23 0 0 0 37 0 0 0

10 0 0 0 24 0 0 0 38 0 0 0
11 0 0 0 25 0 0 0 39 0 0 0
12 0 0 0 26 0 0 0 40 0 0 0
13 0 0 0 27 0 0 0 41 0 0 0
14 0.0043 0.0025 0.0037 28 0 0 0 42 0 0 0

Table 2.4. The training time, classification time and 10-fold cross validation for
the sum of classification error rates for different values of p̂ .

HCT
Classifier p̂ =0.05 p̂ =0.075 p̂ =0.08 p̂ =0.13 CART See5

Training time (sec) 28.105 24.295 22.853 19.246 38.765 26.71
Classification time (sec) 0.052 0.047 0.041 0.037 0.098 0.093
10-fold cross validation for the
sum of classification error rates (%) 0.2500 0.2955 0.8455 2.9100 0.6427 0.5300

2.4.2 Test Results of the Learning Capability of HCT

We also test the learning capability of the proposed HCT by adding the new data patterns

to the training data set. We found that when the accumulated amount of new data patterns is

less than 7%, on average, of the amount of training data of the same recipe, the updated

separation matrices remain the same. The length of the window in updating the splitting

rules of CART, w, is set to be 5. In the case of unchanged separation matrices, the

computation time for checking whether there is any change in separation matrices, updating

the fuzzy rules of the clustering algorithm and the splitting rules for CART take only 0.1637

seconds for each new data pattern when p̂ =0.075. This updating time is shorter than

measuring a new data pattern, thus we can perform the online update. In the case when

34

separation matrices change, updating the separation matrices and rerunning Steps 1 and 2 of

Algorithm III and the training part of CART for the resulting TCs take only 21.741 seconds,

which is even shorter than the wafer changeover time, which takes 26 seconds. For different

values of p̂ , the updating times of HCT when separation matrices change are shown in

Table 2.5. From the above results, we see that we can update the training part of HCT

during the wafer changeover period. This indicates that the learning capability of HCT

enables it to update real-time and on-line. It should be noted that the HCT’s updating time

being shorter than the training time is because updating the separation matrices is much

easier than constructing from nothing.

Table 2.5. The updating time of HCT when separation matrices change for different p̂ .

p̂ 0.05 0.075 0.08 0.13
Updating time of HCT(sec) 24.619 21.741 18.295 16.831

2.4.3 Test Results of the Warning Signal Generation and Fault Isolation

To test the validity of the proposed warning signal generation criteria and fault isolation

scheme, we use six small sets of measured data patterns, which are also collected from the

42-recipe case but not included in the above data set for constructing the HCT. Among them,

the first two sets consist of abnormal wafers caused by machine faults, and the other four

sets consist of abnormal wafers caused by electrical spikes. There are 50 wafers with

destined recipe 39 in the first set and the 10 abnormal wafers are locating from the 21st to

the 30th wafers caused by attribute k8. The second set consists of 40 wafers with destined

recipe 6 and the 10 abnormal wafers are locating from the 31st to the 40th wafers. The first

abnormal wafer is caused by attribute k9, and the rest 9 wafers are caused by both k9 and k10.

The third set consists of 20 wafers, and the 2 abnormal wafers are locating at the 16th and

17th wafers caused by the attribute k4, whose values are affected by electrical spikes. The

abnormal wafers caused by electrical spikes also occur to the fourth, the fifth and the sixth

set of wafers; these three sets consist of 30 wafers each, and the two abnormal wafers are

35

locating at the 19th and 20th, 23rd and 24th, and 27th and 28th wafers caused by attributes k6,

k9 and k10, respectively. We randomly pick 6 out of 10 existing HCT test data sets and insert

the above 6 small sets of data patterns into the 6 test data sets, one for each.

Setting 1510 , 41 n , and iq of each recipe i as the result shown in Table 2.2, we

apply the HCT associated with the majority voting scheme to classify the above six test data

sets. In the first test data set, the warning signal generation criteria, i.e. conditions (2.9) and

(2.10), are satisfied at the 5th abnormal wafer of the first small data set, because

%0455.039 q according to Table 2.2, thus 155
39 10q , and 541 n . This

demonstrates that our warning signal generation criteria has successfully detected the fault.

Now we have 51 m according to Step 1 of the fault isolation scheme. We also set 52 m ,

which are the 16th to the 20th wafers in the first small set of test data. The 5 misclassified

wafers are all classified to recipe 24 while the previous 5 wafers are correctly classified to

recipe 39. Since recipes 24 and 39 belong to different TCs, we apply Step 3.1 of the fault

isolation scheme and find that there are only two traced back tree paths, which are

TC3-Cr1-Cr0 and TC1-Cr0, respectively, as can be observed from Figure 2.10. Thus, the

faulty attribute causing the classification errors is k8 with probability 1.0, and the

corresponding subsystem is the mass analysis, which is also with probability 1.0. In the

second test data set, the warning signal generation criteria are satisfied at the 5th abnormal

wafer, because %05.06 q , thus 155
6 10q , and 45 1 n . Thus, we have 51 m , and

we also set 52 m . The 5 misclassified wafers are all classified to recipe 7, while the

previous 5 wafers are all correctly classified to recipe 6. Since recipes 6 and 7 belong to the

same TC, TC4, as can be observed from Figure 2.10, we need to apply Step 3.2 to perform

fault isolation. The CART for this TC is shown in Figure 2.11. The latest 5 correctly

classified wafers lie in the same terminal node for recipe 6 as indicated by  in Figure 2.11.

However, there are two different terminal nodes for the 5 misclassified wafers as indicated

by in Figure 2.11. This is because the first abnormal wafer consists of one faulty attribute

k9 only, while the rest four consist of two faulty attributes, k9 and k10. Note that the number

inside the parenthesis beside denotes the number of misclassified wafers lying in this

36

node. Applying Step 3.2 of the fault isolation scheme, the traced back tree paths for recipe 6

indicated by  is shown by the solid line and for recipe 7 indicated by are shown by

dashed lines in Figure 2.11. The faulty attributes, which are the splitting attribute of the

nodes where the traced back paths meet, are k9 with probability 0.2 and k10 with probability

0.8. The corresponding subsystem of both k9 and k10 is the mass analysis, which is thus with

probability 1.0. For the third set to the sixth set of test data, the details of the misclassified

abnormal wafers are tabulated in Table 2.6. From this table and Table 2.2, we can easily find

that conditions (2.9) and (2.10) can not hold simultaneously. Thus, no warning signal is

generated in any of these four cases.

6 7

1

66

6

6

6

6

6

6

6

666

6

7

77

7

77

7

7

77

7

k9<0.25

k8<7.89

k10<11.12

k2<41.78 k8<7.14

k2<46.48

k6<0.38

k1<2.08

k5<18.24

k1<1.98

k9<0.27

k1<2.49

k9<0.26

k2<42.42

k6<0.36

k6<0.37

k1<2.38
k11<0.98

k10<10.72

k9<0.29

k1<2.69

k2<26.30

k3<56.38

k9<0.29

k1<2.12

k4<0.12

k1<2.08

k2<27.35

k4<0.11
7

12 13

(1) (4)

Figure 2.11. Classification tree of CART for TC4.

37

Table 2.6. The misclassified abnormal wafers caused by electrical spikes.

Data set No. of abnormal
wafers

Faulty
attribute

Destined
recipe

Classified
recipe

3rd 2 k4 6 7
4th 2 k6 14 24
5th 2 k9 20 41
6th 2 k10 39 40

2.5 Concluding Remarks

The proposed classification based fault detection and isolation scheme is a general

methodology. Modifying the warning signal generation criteria to meet individual

machine’s needs, this fault detection scheme is not limited to the ion implanter. The

simplicity of the HCT based fault isolation scheme made HCT worthwhile especially when

its accuracy can be remedied by the warning signal generation criteria when applying to the

ion implanter. Due to the efficient learning capability of HCT and the 0.05 seconds

classification time for classifying the recipe of a working wafer, the proposed fault detection

and isolation scheme can work on line and real-time.

38

Chapter 3

Reducing Overkills and Retests in Wafer Testing Process

3.1 Introduction

The wafer fabrication process is a sequence of hundreds of different process steps, which

results in an unavoidable variability accumulated from the small variations of each process

step. Chips are tested multiple times throughout the design and manufacturing process to

ensure the integrity of the chip design and the quality of the manufacturing process.

Semiconductor testing of chips is required at various stages during the fabrication process.

Wafer probing, or testing chips while they are still in semiconductor wafer form is critical

to both engineering and production test. A typical wafer is 8 inches or 200 mm in diameter

and usually contains 600 to 15,000 chips. Wafer probing establishes a temporary electrical

contact between test equipment, such as an Agilent analyzer, and each individual die (or

chip) on a wafer to determine whether each chip meets design and performance

specifications. The test transmits electrical signals to the chip and analyzes the signals that

return. Wafer probing ensures that the chip manufacturer avoids incurring the significant

expense of assembling and packaging chips that do not meet specification by identifying

flaws early in the manufacturing process.

Although there exist techniques such as the Statistical Process Control (SPC) [22] for

monitoring the operations of the wafer probes, the probing errors may still occur in many

aspects and cause some good dies being over killed; consequently, the profit is diminished.

Thus, reducing the number of overkills is always one of the main objectives in wafer testing

process. The key tool to identify or save overkills is retest, which is an additional wafer

probing. However, retest is a major factor for decreasing the throughput. Thus, the overkill

and the retest possess inherent conflicting factors, because reducing the former can gain

more profit, however, at the expense of increasing the latter, which will degrade the

39

throughput and increase the cost.

There may be different testing procedures in different chip manufacturers. But, no matter

what testing procedures are used, the decision for carrying out the retest should be based on

whether the number of good dies and the number of bins2 in a wafer exceed the

corresponding threshold values. Deciding whether to go for a retest is a decision problem. In

current wafer testing process, this decision is made based on whether the number of good

dies and the number of bins in a wafer exceed the corresponding threshold values. Manually

adaptive adjustments of the threshold values based on engineering judgment, three-sigma

limit [23] or a looser six-sigma limit are currently used in some semiconductor

manufacturing companies. Consequently, determining these threshold values so as to

minimize the overkills under a tolerable level of retests is the main theme of the stochastic

optimization problem considered here. What implies is that drawing a fine line for deciding

whether to go for a retest to save possible overkills is an important research issue in this

stochastic optimization problem of the wafer testing process.

Various techniques such as the weighting objective method, hierarchical optimization

method, trade-off method, global criterion method, and method of distance functions and

min-max method described in [24] can be used to solve stochastic optimization problems.

Considering the economic situation regarding throughput requirement, it would be most

beneficial for us to use the trade-off method [25] to solve the current problem. That is to

minimize the overkills subject to a tolerable level of retests provided by the decision maker.

The purpose of this chapter is using a systematic approach to determine these threshold

values. We first formulate a stochastic optimization problem on the threshold values. Since

the formulated stochastic optimization problem consists of a huge decision-variable space,

this makes the problem becomes a hard optimization problem. Thus, to cope with the

2 A bin denotes a type of circuitry-defect in a die. There are various types of bins, and a die of any

type of bin is considered to be a bad die.

40

enormous computational complexity, we propose an ordinal optimization theory based

two-level algorithm to solve the formulated problem for a good enough solution. This

computationally intractable problem is most suitable for the application of our OO theory

based two-level algorithm to seek for good enough threshold values.

We organize this chapter in the following manner. In Section 3.2, we formulate a

stochastic optimization problem on the simulated wafer testing procedures. In Section 3.3,

we will present the proposed OO theory based two-level algorithm and justify its

performance using simulations. In Section 3.4, we will present the application of the OO

theory based two-level algorithm to reduce overkills and retests in semiconductor wafer

testing process. In Section 3.5, we will show the test results of applying the proposed

algorithm on two real cases and demonstrate the solution quality by comparing with a vast

number of randomly generated solutions and competing methods. Finally, we will make a

conclusion in Section 3.6.

3.2 Problem Statements and Mathematical Formulation

3.2.1 Testing Procedures

Wafer probing establishes a temporary electrical contact between test equipment and each

individual die (or chip) on a wafer to determine the goodness of a die. We employ typical

testing procedures used in a local world-renowned wafer foundry. Figure 3.1 shows the flow

chart of the real and simulated testing procedures. All the solid blocks represent the real

testing procedures, while the dashed blocks are added for the purpose of computer

simulation. The operation of the real testing procedures is briefly described in the following.

For every wafer, the wafer probing is performed twice as shown in the solid square

marked by I in Figure 3.1. The second probing applies only to those dies failed in the first

one. A die is considered to be good if it is good in either probing. If a die is detected to have

bins in both tests, the bin detected in the second probing is taken as the bin of that die. We

41

let jg (jg) denote the number of good (bad) dies in wafer j , and let jkb denote the

number of dies of bin k in wafer j . Assume there are K types of bins in a wafer, then





K

k
jkj bg

1

and jjj gTDg  as shown in the square marked by II in Figure 3.1, where

jTD denotes the total number of dies in wafer j . Following the two times of wafer

probing and the calculation of jg and jg , a two-stage checking on the number of good

dies is performed to determine the necessity of carrying out a retest, i.e. an additional wafer

probing. The mechanism of the two-stage checking described in the part of the testing

procedures enclosed in the dotted contour can be summarized below. We let minWg denote

the threshold value for the lower bound of the number of good dies in a wafer to determine

whether to pass or hold the wafer; we let maxkn , Kk ,...,1 , denote the threshold value for

the upper bound of the number of dies of bin k in the hold wafer to determine whether to

perform a retest. If minWj gg  , we pass wafer j as shown in the diamond-shape block

marked by III.a and the square marked by III.c; otherwise, we will hold this wafer and

check its bins. For the hold wafer j , if maxkjk nb  for all k , then wafer j will be

passed, as shown in the diamond-shape block marked by III.b and the square marked by

III.c. However, if the hold wafer j consists of any bin k with maxkjk nb  , retests will be

performed for all dies of bin k in wafer j to check for possible probing errors as shown

in the diamond-shape block and square marked by IV.b and IV.d. Then, the overkills will be

saved when there are probing errors as shown in the square marked by V. For bin k in the

hold wafer j with maxkjk nb  , we pass it as shown in the diamond-shape block and

square marked by IV.b and IV.c. This threshold value checking process will continue until

all bins are checked as indicated in the diamond-shape blocks and squares marked by IV.e,

IV.f, IV.g, and IV.h.

42

Current wafer j

I

Calculate 



K

k
jkj bg

1

and
jjj gTDg 

Next wafer
j=j+1

II

Is
?minWgg

j


III.a

Are all
?,...,1,max Kknb kjk 

k=1

Is
?maxkjk nb 

Is
?Kk 

I

III.b

III.c

VIII

IV.a

IV.b IV.c

Pass
bin k

IV.hIV.f

IV.d

V

IV.e

VII

V

IV.g

VI

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Perform retests on
all dies of bin k

Overkills are saved if
there are probing errors

Next bin
k=k+1

Next bin
k=k+1

Pass
wafer j

Two times of wafer probing
Randomly generate the values of

kB and 
kV ,say jkb and 

jkv ,

respectively, for all K types of bins





K

k
jkj vV

1



0jR


jkjk vv 

0jkr

0jkv

jkjk br 





K

k
jkj vV

1





K

k
jkj rR

1

Is
?Kk 

Figure 3.1: Flow chart of the real and simulated wafer testing procedures.

43

3.2.2 Computer Simulation of the Testing Procedures

1. Simulation Model for the Two-times Wafer Probing

Since we cannot perform the real wafer probing in computer, for the purpose of

simulation, we need to build up a simulation model for the two times wafer probing. We let

kB denote the discrete random variable for the number of dies of bin k in a wafer. Since

)(nBP k  can be provided by the real data, we can randomly generate the value of kB

for a wafer based on the discrete probability mass function)(nBP k  .

Each die of bin k can be either an actual bin caused by manufacturing errors or an

overkill caused by testing errors. Thus we can treat the overkills in kB as a binomial

random variable with probability kp , which represents the probability of overkills in dies

of bin k and can be provided by real data. We let o
kV denote the random variable for the

number of overkills in kB . Then, once the value of kB is randomly generated, we can

randomly generate the value of o
kV based on a binomial probability distribution with

probability kp .

2. Simulation of the Testing Procedures

We let jkb and o
jkv denote the values generated from the random variables kB and

o
kV for wafer j , respectively. The two times wafer probing in Figure 3.1 will be replaced

by the random generator of kB and o
kV shown in the dashed square marked also by I in

Figure 3.1. The dashed squares in Figure 3.1 except for the one mentioned above are for

calculating the number of overkills and retests resulted from the simulated testing

procedures. In contrast to o
jkv , we let jkv denote the number of overkills for bin k of

wafer j after completing the testing procedures and let jkr denote the corresponding

number of retests. In the testing procedures, although we may pass the wafer when the

threshold value test is a success, there may be overkills. We let jV and jR denote the

total number of overkills and retests in wafer j , respectively. Thus for the passed wafer j ,

44





K

k

o
jkj vV

1

and jR =0 as shown in the dashed square marked by VIII in Figure 3.1. The

same logic applies to the passed bin k of the hold wafer j that jkv = o
jkv and jkr =0 as

shown in the dashed square marked by VI in Figure 3.1. However, for any retested bin, the

probability of any unidentified overkill is extremely small, because the dies had been

probed three times, which include two times wafer probing before any retest. Thus, for any

retested bin k , jkr = jkb and we assume jkv =0, because the overkills are saved, as shown

in the dashed square marked also by V in Figure 3.1; the solid square marked by V will be

replaced by this dashed square in the simulated testing procedures. Once all the threshold

value tests for all bins of the hold wafer j are completed, we can compute jV and jR

as shown in the dashed square marked by VII in Figure 3.1. The resulting values of jV and

jR of wafer j will be used to calculate 



L

j
jV

L
VE

1

1
][and 




L

j
jR

L
RE

1

1
][, which

represent the average overkills and retests per wafer, respectively, and L denotes the total

number of tested wafers.

3.2.3 Problem Formulation

From Figure 3.1, we see that if we increase minWg while decreasing maxkn , that is setting

more stringent threshold values, there will be more retests and less overkills. This shows a

conflicting nature between the overkills and retests. Thus, to reduce overkills under a

tolerable level of retests, we will set minimizing the average number of overkills per wafer,

][VE , as our objective function while keeping the average number of retests per wafer,

][RE , under a satisfactory level. Thus, our problem for determining the threshold values

can be formulated as the following constrained stochastic optimization problem:

][min VE
Xx

subject to {simulated wafer testing procedures in Figure 3.1},

TrRE ][, (3.1)

45

where],...,1,,[maxmin Kkngx kW  denotes the vector of threshold values, that is the

vector of decision variables; X denotes the decision variable space; Tr denotes the

tolerable average-number of retests per wafer.

Remark 2: a) The value of Tr can be determined by the decision maker based on the

economic situation. When the chip demand is weak, the throughput, in general, is not

critical in the manufacturing process; therefore, we can allow a larger Tr so as to save

more overkills to gain more profit. On the other hand, if the chip demand is strong, then the

throughput is more important, and we should set the value of Tr smaller. Taking the chip

demand into account is a distinguished feature of the proposed formulation. b) It is possible to

pursue the relationships between the number of retests and the throughput. Then if we can

derive the profit in terms of the throughput and the overkill, we can formulate an

unconstrained optimization problem to maximize the profit. However, the relationships

between the profit and throughput are very complicated due to the status of chip demand.

For instances, when the chip demand is strong, larger throughput implies higher profit; on

the other hand, if the chip demand is weak, larger throughput will cause inventory problem,

which will hurt the profit. Therefore, the current formulation is simple and direct for a

decision maker.

Since the constraint on][RE shown in (3.1) is a soft-constraint in a sense, we can use a

penalty function to relax that constraint and transform (3.1) into the following

unconstrained stochastic optimization problem:




)][()][(][min TTXx

rRErREPVE

subject to {simulated wafer testing procedures in Figure 3.1}, (3.2)

where)][(TrREP  denotes a continuous penalty function for the constraint TrRE ][,

and)0,max()(xx  .

46

3.3 The OO Theory Based Two-Level Algorithm and Performance

Evaluation

3.3.1 The OO Theory Based Searching Procedures

The considered stochastic simulation optimization problem is stated in the following

)(min  J (3.3)

where  is a huge decision-variable space, and)(J is the objective function, which may

be an expected output or a function of expected outputs of the simulated system. To cope

with the computational complexity of this problem, we will employ the Ordinal

Optimization (OO) theory based searching procedure [26]-[27], which efficiently seeks a

good enough solution with high probability instead of searching the best for sure based on

the observation that the performance order of the decision-variable vectors is likely

preserved even evaluated by a crude model. From here on, we will use the word vector to

represent the vector of decision variables.

The existing searching procedure of OO can be summarized in the following [27]: (i)

Uniformly or randomly select N , say 1000, vectors of decision variables from X . (ii)

Evaluate and order the N vectors using an approximate model, then pick the top s , say

35, vectors to form the estimated good enough subset. (iii) Evaluate and order all the s

vectors obtained from (ii) using the exact model, then pick the top k (1) vectors. The

basic idea of the OO theory is based on the following observation: the performance order of

the decision variables is likely preserved even evaluated using a crude model. Thus, the OO

approach can reduce the searching space using cheaper evaluation to save computational

time as indicated in (ii), and the best vector of decision variables obtained in (iii) is proved

in [27] to be a good enough, top 5%, solution among N (=1000) with probability 0.95.

However, the good enough solution of problem (3.3) that we are searching for should be a

47

good enough vector in  instead of the N vectors unless  is as small as N

[28]-[29]. As indicated in a recent paper by Lin and Ho [30], under a moderate modeling

noise, the top 3.5% of the uniformly selected N vectors will be among the top 5% vectors

of a huge  with a very high probability (0.99), and the best case can be among the top

3.5% vectors of  provided that there is no modeling error. However, for  with size of
3010 , a top 3.5% vector is a vector among the top 3. 28105 ones. This certainly not seems

to be a good enough solution in the sense of practical optimization; however, it is acceptable

only when  consists of lots of good vectors so that even if the performance order of the

selected vector is not practically good enough, the corresponding objective value acceptable

only when  consists of lots of good vectors so that even if the performance is. As a

matter of fact, most of the practical stochastic simulation optimization problems do not have

lots of good vectors; otherwise, finding a good enough solution won’t be difficult. Therefore

to apply the existing ordinal optimization searching procedures, we need to develop a new

scheme to select N excellent vectors from  to replace (i) so as to ensure the final

selected-vector is a good enough solution of (3.3) from the practical viewpoint.

Heuristic methods for obtaining N excellent vectors may depend on how well one’s

knowledge about the considered system. For instance in the optimal power flow problems

with discrete control variables, Lin et al. proposed an algorithm based on the OO theory and

engineering intuition to select N excellent discrete control vectors [31]. However, the

engineering intuition may work only for specific systems. Thus, in this section, we will

propose an OO theory based systematic approach to select N excellent vectors from 

and combine with the existing ordinal optimization searching procedures to find a good

enough solution of (3.3). The systematic method we propose here for finding N excellent

vectors is a combination of an Artificial Neural Network (ANN) and the Genetic Algorithm

(GA). We use the ANN to construct a crude model required to evaluate the objective values

of the vectors. Using this efficient evaluation for the fitness value of a vector, GA can

efficiently find N excellent vectors from .

48

3.3.2 Finding N Roughly Good Vectors from Decision Variables Space

As indicated in the OO theory [26]-[27], performance “order” of the vectors is likely

preserved even evaluated using a crude model. Thus, to select N roughly good vectors

from  without consuming much computation time, we need to construct a crude but

effective and efficient model to evaluate the objective value of (3.3) for a given vector ,

and use an efficient scheme to select N roughly good vectors. Our crude model is

constructed based on an ANN [32], and our selection scheme is GA [33].

3.3.2.1 The Artificial Neural Network (ANN) Based Model

Considering the inputs and outputs as the vectors  and the corresponding objective

values)(J , respectively, we can use an ANN to implement the mapping from the inputs

to the outputs [32]. First of all, we will select a representative subset of  by uniformly

picking M , say 1000, vectors from . Then we will evaluate the objective values of these

M vectors using an exact model, which can be a stochastic simulation with moderate

number of test samples as indicated in [28]. These collected M input-output pairs of

(,)(J) will be used to train the ANN to adjust its arc weights. Once this ANN is trained,

we can input any vector  to obtain an estimation of the corresponding)(J from the

output of the ANN; in this manner, we can avoid an accurate but lengthy stochastic

simulation to evaluate)(J for a given . This forms our crude but efficient model to

roughly estimate the objective value of (3.3) for a given vector . Effectiveness of this

crude model is justified by the OO theory as mentioned above, because what we care here

are the relative order of ’s, not the value of)(J ’s.

3.3.2.2 The Genetic Algorithm (GA)

By the aid of the above effective and efficient objective value (or the so-called fitness

value in GA terminology) evaluation model, we can efficiently select N roughly good

vectors from  using GA, which is briefly described as follows. Assuming an initial

49

random population produced and evaluated, genetic evolution takes place by means of three

basic genetic operators: (a) parent selection; (b) crossover; (c) mutation. The population in

GA terminology represents a vector  in our problem, and each population is encoded by

a string of 0s and 1s. The string is called a chromosome. Parent selection is a simple

procedure whereby two chromosomes are selected from the parent population based on their

fitness values. Solutions with high fitness values have a high probability of contributing

new offspring to the next generation. The selection rule we used in our approach is a simple

roulette-wheel selection [33]. Crossover is an extremely important operator for the GA. It is

responsible for the structure recombination (information exchange between mating

chromosomes) and the convergence speed of the GA and is usually applied with relatively

high probability, say 0.7. The chromosomes of the two parents selected are combined to

form new chromosomes that inherit segments of information stored in parent chromosomes.

There are many crossover scheme, we employ the single-point crossover [33] in our

approach. While crossover is the main genetic operator exploring the information included

in the current generation, it does not produce new information. Mutation is the operator

responsible for the injection of new information. With a small probability, random bits of

the offspring chromosomes flip from 0 to 1 and vice versa and give new characteristics that

do not exist in the parent population. In our approach, the mutation operator is applied with

a relatively small probability 0.02 to every bit of the chromosome.

There are two criteria for the convergence of GA. One is when the fitness value of the best

population does not improve from the previous generation, and the other is when evolving

enough generations.

The initial populations of the GA employed in our first-level approach are I , say 5000,

randomly selected vectors from . After the applied GA converges, we rank the final

generation of these I populations based on their fitness values and pick the top N

populations, which form the N roughly good vectors that we look for.

50

3.3.3 Searching the Good Enough Solution Among the N

Starting from the selected N roughly good vectors, in the second-level, we will proceed

directly with step (ii) of the existing ordinal optimization searching procedures described in

Section 3.3.1. In this step, we will evaluate the objective value of each vector using a more

refined model3 than the crude one employed in the first-level. We will order the N vectors

based on the estimated objective values and choose the top s vectors to form the Selected

Subset (SS). Then, we will evaluate each of the s vectors using the exact model, which is

a stochastic simulation with sufficiently large number of test samples that makes the value

estimation of)(J for a given  sufficiently stable, of the considered problem as

indicated in step (iii) of the existing ordinal optimization searching procedures. The vector

associated with the smallest objective value of (3.3) among s is the good enough solution

that we seek.

3.3.4 The OO Theory Based Two-level Algorithm

Now, our OO theory based two-level algorithm can be stated as follows.

Step 1: Uniformly select M ’s from  and use an exact model to compute the

corresponding)(J ’s. Train an ANN (or ANNs) by adjusting its (or their) arc weights

using the mapping between the given M input-output pairs, that are the M (,)(J)’s.

Step 2: Randomly select I vectors from  as the initial populations. Apply GA to

these populations using the efficient and effective fitness-value evaluation model based on

the ANN trained in Step 1. After the algorithm converges, we rank all the final I

populations based on their fitness values and select the top N populations.

Steps 1 and 2 constitute the first-level approach.

3 This more refined model can be, for example, a stochastic simulation with small number of test

samples [28] to evaluate the objective value of a given vector in the considered problem.

51

Step 3: Use a more refined model than the ANN to estimate the objective values of the

N vectors obtained in Step 2. Rank the N vectors based on their estimated objective

values and select the top s vectors.

Step 4: Use the exact model of the considered problem to compute the objective values

of the s vectors. The vector with the smallest objective value of (3.3) is the good enough

solution.

Steps 3 and 4 represent the procedures of the second-level approach. Thus, the overall

structure of the proposed OO theory based two-level algorithm can be shown in Figure 3.2.

Pick best N (=1000) solutions

Randomly select I (=5000) solutions
as initial population

GA

The best solution is the good enough solution

ANN to roughly evaluate)]([JE

Run shorter stochastic simulation for each of the
N solutions and compute the approximate

Run lengthy stochastic simulation for each of
the s designs and compute the exact

Pick the best s (=35) solutions

)]([JE

)]([JE

Figure 3.2. The structure of the OO theory based two-level algorithm.

52

3.3.5 Performance Evaluation

3.3.5.1 Performance Evaluation of the First-level Approach

Since the performance of the second-level approach had been thoroughly investigated in

[27], what we need to address here is how excellent the N selected vectors are among the

various types of decision-variable space  so as to demonstrate the validity of our

first-level approach. This evaluation is carried out in the following, while the performance

of the two-level algorithm will be presented afterwards.

As indicated in [27], the Order Performance Curve (OPC) of all the ordered vectors

||21 ,...,,  in  is determined by the spread of the order performance |][|]2[]1[,...,, JJJ ,

where][iJ denotes)(iJ  . Without loss of generality,][iJ ’s can be normalized into the

range [0,1], i.e., for |,|,...,2,1 i)/()(]1[|][|]1[][JJJJy ii   . Meanwhile, the ordered

|| vectors, spaced equally, are also mapped into the range [0,1] such that for

|,|,...,2,1 i)1|/(|)1()(][ izz ii . There are five broad categories of OPC

models: (i) lots of good vectors, (ii) lots of intermediate but few good and bad vectors, (iii)

equally distributed good, bad and intermediate vectors, (iv) lots of good and lots of bad but

few intermediate vectors, and (v) lots of bad vectors. Figure 3.3 shows a graphical

expression of these five types of OPCs. More precisely, a standardized OPC can be

determined by a two-parameter smooth curve),,|(1 zF  =)
1

,
1

|(


zF , where),|(zF

is the Incomplete Beta function of the two parameters),( . In general, <1, >1

Figure 3.3: Five types of standardized OPCs.

53

corresponds to the OPC of type (i); >1, >1 corresponds to the OPC of type (ii); =1,

=1 corresponds to the OPC of type (iii); <1, <1 corresponds to the OPC of type (iv);

>1, <1 corresponds to the OPC of type (v). As indicated in Section 3.1, we need not

consider the types of  consisting of lots of good vectors in this evaluation, thus we take

only the three OPC types (ii), (iii) and (v) into account. For the purpose of evaluation, we

assume the size of the decision-variable space  to be 3010 .4

The roughness of the ANN model can be described by adding a uniform noise to the

normalized performances iy ’s [26]-[27]. That means, the model of ANN can be described

by the noisy model iy +, where the random noise  is generated from the uniform

distribution random variable U=[-0.01,0.01]5; note that this range of noise seem

conservative however it can switch the order of 28102 vectors for a type (iii) OPC.

We studied a total of 28 OPCs distributed uniformly among the three broadly generic

types, (ii), (iii) and (v), formed from the following parameters: =1.0, 2.0, 4.0, 5.0 and

=0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 5.0. In all of our Monte-Carlo calculations, we simulate

10000 realizations of noisy OPCs. We found that the top 5% of the top ranked N (=1000)

populations obtained after GA converges are lying in the top 610 % of the || (= 3010)

populations with probability 0.99. This result is extremely better than the uniformly selected

N vectors whose top 3.5% vectors can at best (i.e. no modeling error) be the top 3.5%

vectors of  as indicated in [30]. This shows that the N vectors obtained by our

first-level approach are really excellent.

4 Since what we care here is the ranking percentage of the selected N vectors among , we can,

without loss of generality, assume ||= 3010 for a typical huge decision-variable space.

5 The magnitude of noise for describing the roughness of a crude model is determined either based

on an engineering judgment or an empirical experiment; in our case, it is estimated from an

experiment of this crude model for the application problem of this chapter.

54

Remark 3: Though we do not investigate the actual order of the N vectors for the OPC

types (i) and (iv), our first-level approach can still be applied for problems with  of these

two types of OPCs. This is because even if the order of the obtained N vectors of the two

types of OPC may not be as good as those of the other three OPC types due to the sharp

sensitivity of the noise to the performance in these two types, however their actual objective

values will still be good enough due to the existence of lots of good vectors. That means in

both OPC types (i) and (iv), there can be a big difference in the order of good vectors but

the difference in objective values are very small. Thus, no matter what types of OPC we are

facing, our first-level approach processes the same.

3.3.5.2 Performance Evaluation of the Two-level Algorithm

As indicated in Section 3.3.1, for N =1000, s =35, the top vector we obtain in Step 4 of

the two-level algorithm must be among the top 5% of the N vectors with probability 0.95.

Then, combining the performance evaluation for the first-level approach, we can conclude

the following: the good enough solution obtained by the OO theory based two-level

algorithm is among the top 610 % of  with probability 0.950.99.

3.4 Application of the OO Theory Based Two-Level Algorithm

The size of the decision variable space X in (3.2) is huge; for example, for an 8-inch

wafer, which consists of, say 2500 dies, the possible ranges of the integer values minWg

and maxkn are [1, 2500] and [1, 2500], respectively. Consequently for the number of bin

types 12K , the size of X will be more than 3010 . The evaluation of the performance of

each vector of decision variables requires a lengthy stochastic simulation of the testing

procedures. Therefore, any global searching techniques for solving the simulation

optimization type problem (3.2) will be very computationally expensive. To cope with the

computational complexity of this problem, we propose an Ordinal Optimization (OO)

theory based two-level algorithm to solve for a good enough solution with high probability

55

instead of searching the best for sure.

As indicated in Section 3.3.1, we see that the quality of the good enough solution heavily

depends on the quality of the randomly selected N vectors of decision variables. Thus to

improve the existing OO searching procedures, we can apply the OO theory to select N

roughly good vectors of decision variables from X , to ensure the top 5% solutions among

N to be the good enough solutions of X . This is what we called the first-level OO

approach for replacing the existing searching procedure (i). Combining first level approach

with the existing searching procedures (ii) and (iii) forms a two-level OO algorithm.

3.4.1 Constructing a Metamodel for (3.2)

The very first step for choosing N roughly good vectors from X should be

constructing a metamodel or surrogate model for the considered stochastic simulation

optimization type problem. There are various techniques to approximate the relationships

between the inputs and outputs of a system such as the linear regression, response

transformation regression, projection-pursuit regression and artificial neural network (ANN)

[34], etc…. Among them, ANN is considered to be a universal function approximator [35]

due to its genetic, accurate and convenient property to model complicated nonlinear

input-output relationships. ANN not only approximate the continuous functions well

[36]-[37], but also being used to construct metamodels for discrete event simulated systems

in [38] and [39]. Since what we care here is the performance order of the solution rather than

the performance value as considered in [38] and [39], we can trade off the accuracy of the

ANN based metamodel with the training time by using simple ANN with reasonable size of

training data set. Two simple feed forward two-layer ANNs are employed here. One is to

approximate the relationships between Xx and the corresponding][VE , and the other

is for Xx and][RE . In these two ANNs, there are 16 neurons with hyperbolic tangent

sigmoid function in the first layer, and 1 neuron with linear function in the second layer. We

obtain the set of training data for the two ANNs by the following two steps. (a) Narrow

56

down the decision-variable space X by excluding the irrational threshold values and

denote the reduced decision variable space by X̂ 6. (b) Uniformly select M vectors from

X̂ and compute the corresponding outputs][VE and][RE using a stochastic simulation of

the testing procedures shown in Figure 3.1. As indicated above, M need not be a very

large value. The objective value of (3.2) can be computed based on the values of][VE and

][RE . Thus, we can obtain M pairs of decision variables and the corresponding objective

values for (3.2). To speed up the convergence of the back propagation training, we

employed the Levenberg-Marquardt algorithm [40] and the scaled conjugate gradient

algorithm [41] to train the ANNs for][VE and][RE , respectively. Stopping criteria of the

above two training algorithms are when any of the following two conditions occurs: (i) the

sum of the mean squared errors is smaller than 10-5, and (ii) the number of epochs exceeds

500. Once these two ANNs are trained, we can input any vector x to the two ANNs to

estimate the corresponding][VE and][RE , which will be used to compute the objective

value of (3.2). This forms our metamodel to estimate the objective value of (3.2) for a given

vector of decision variables x .

3.4.2 Using GA to Select N Roughly Good Vectors of Decision Variables

from X̂

By the aid of the above ANN model, we can search N roughly good vectors of decision

variables from X̂ using heuristic global searching techniques.

Since the searching techniques of Genetic Algorithm (GA), Evolution Strategies (ES) and

Evolutionary Programming (EP) [42] improve a pool of populations from iteration to

iteration, they should best fit our needs. For the sake of explanation and easier

implementation, we employ the GA [43, Chapter 14] as our searching tool.

6 The threshold values, minWg and maxkn , should lie in a reasonable range determined by the

corresponding average values of jg and jkb collected from a wafer foundry.

57

The coding scheme of the GA we employed to represent all the vectors in X̂ is rather

straightforward, because each component of the vector x is an integer. We start from I ,

say 5000, randomly selected vectors from X̂ as our initial populations. The fitness of each

vector is set to be the reciprocal of the corresponding objective value of (3.2) computed

based on the outputs of the two ANNs. The members in the mating pool are selected from

the pool of populations using roulette wheel selection scheme. 70% of the members in the

mating pool are randomly selected to serve as parents for crossover. We use a single point

crossover scheme and assume the mutation probability to be 0.02. We stop the GA when the

iteration number exceeds 30. After the applied GA converges, we rank the final I

populations based on their fitness and pick the top N populations, which are the N

roughly good vectors of decision variables.

Remark 4: Although there exists in-depth analysis of the approximation errors for ANN to

approximate continuous functions [36]-[37], the accuracy of approximating the input and

output relationships of a discrete event simulated system is usually addressed using

empirical results [38]-[39]. Thus, it is not surprising that we do not get any analytical result

for the quality of the N vectors selected above. However, similar to the study in [27], we

assume various magnitudes of modeling noise of uniform distribution to represent the

approximation errors caused by the proposed ANN based metamodel and make the

following simple experiments to compare the quality of the N vectors selected by GA

based on the ANN model with those selected in random from the solution space. We let

U [-0.1,0.1] denote the uniform distribution of a random noise ranging from -0.1 to 0.1 to

be added to the normalized performance, i.e. the normalized objective value, of the exact

model. The normalized performance for all solutions in a solution space is equally-spaced

ranging from 0 to 1 with 0 as the top performance. In [27], a normalized Ordinal

Performance Curve (OPC) is used to describe the performance structure of all the solutions

in a solution space. Assume 3010X , 1000N , we carried out a Monte Carlo study for

58

vast number of OPCs similar to that in [27] for an assumed noise distribution and pick the

top N vectors using GA. We found the following results. For the modeling noise

distribution, U [-0.01,0.01], U [-0.1,0.1] and U [-0.5,0.5], the top 5% solutions in N ,

which are selected by GA, is at least a top 610 %, top 310 %, and top 210 % solution in

X with probability 0.95, respectively. However, the top 5% solutions in N , which are

selected in random, is at best, i.e. assuming no modeling noise, a top 5% solution in X

only. Therefore, we have greatly improved the quality of the N vectors by replacing the

existing searching procedure (i).

3.4.3 Using an Approximate Model for Selecting the Estimated Good Enough

Subset

Starting from the N vectors of decision variables obtained in Section 3.4.2, we will

proceed with (ii) of the OO searching procedure to compute the objective value of (3.2) for

each vector using an approximate model. As indicated in [28], this approximate model can

be a stochastic simulation with moderate number of test wafers, that is to carry out the

testing procedures shown in Figure 3.1 for sL , say 300, wafers. We will then order the N

vectors of decision variables based on the obtained estimated objective values of (3.2) and

choose the top s vectors which form the estimated good enough subset.

3.4.4 Using the Exact Model to Determine the Good Enough Solution

We will compute the objective value of (3.2) for each of the s vectors in the estimated

good enough subset using the exact model that is a stochastic simulation with sufficiently

large number of test wafers that makes the estimated objective value sufficiently stable. This

exact model is similar to the approximate model mentioned above however replacing sL

by eL (>> sL) wafers. Then the vector associated with the smallest objective value of (3.2)

among s is the good enough solution that we seek.

59

3.5 Test Results and Comparisons

Our simulations are based on the following data collected from two products, say product

A and product B, of a renowned wafer foundry in Taiwan. Both products are made in 6-inch

wafers7. Each wafer of product A and product B consists of 203 dies and 206 dies,

respectively. In the following, we will focus our description on product A, while the test

results of product B will also be presented. It should be noted that all the test results shown

in this section are simulated in a Pentium IV PC using Borland C++.

There are 12 bins in the wafers of product A. The probability mass function)(nBP k  ,

k=1,…,12, and the probability of the number of overkills in bin k , kp , k=1,…,12, are

given. The yield rate of product A is 68%. The decision-variable space

}.12,...,1],203,1[],203,1[|]),...,1,,[({ maxminmaxmin  kngKkngxX kWkW We used the

sigmoid-type function as our penalty function P in (3.2), i.e.,)][(1
1

TrREe
P 
 , where

(0.1594) is a normalized coefficient such that
][max

][max

},...,1{

},...,1{

iMi

iMi

RE

VE



 .

We set }12,...,1],6,1[],203,50[|]),...,1,,[({ˆ
maxminmaxmin  kngKkngxX kkWkW  ,

where k is the mean of the number of dies of bin k . The parameters in the proposed

two-level algorithm are set as follows: 300sL , 000,10eL , M =1000, I =5000,

N =1000, and s =35. We have simulated 3 cases of different Tr ’s, which are 10, 30 and 50.

The good enough vector of threshold values and the average overkill percentage for the

three cases of Tr we obtained from the two-level algorithm are shown in Table 3.1. The

CPU time consumed in each case plus the training time is approximately 6.05 minutes.

From Table 3.1, we can observe that when Tr increases, the values of minWg increase as

shown in row 2, and the values of leading maxkn , k 5 and 6, which account for most of

the retests, decrease as shown in rows 7 and 8, respectively. This indicates that if we allow

7 The reason we use 6-inch wafer products is for easier identification of the bins and overkills in

experiments. In fact, our results can apply to any size of wafer.

60

Figure 3.4: The resulted (][VE ,][RE) pairs of the 521 test wafers based on the
vector of threshold values determined by two-level algorithm, random
generator, three-sigma limit, six-sigma limit, GA and SA algorithm.

Tr
Good enough
vector of threshold values

10 30 50

minWg 146 163 176
max1n 7 3 8
max2n 3 8 5
max3n 6 6 6
max4n 5 6 5
max5n 51 43 34
max6n 32 23 16
max7n 7 7 3
max8n 7 3 6
max9n 4 3 4
max10n 4 3 2
max11n 3 3 2
max12n 2 9 5

* %100
][


ATD
VE

1.86% 1.07% 0.27%

* TDA : the total number of dies in a wafer of product A.

Table 3.1: The good enough vector of threshold values and the average overkill
percentage of product A for three different Tr ’s.

61

more retests (that is increasing Tr), we can set more stringent threshold values (that are

increasing minWg and decreasing the leading maxkn s), so as to save more overkills (that is

the decreased average overkill percentage), as indicated in the last row of Table 3.1.

To demonstrate the real world performance of the vector of threshold values obtained by

the two-level algorithm for the three cases shown in Table 3.1, we use 521 real test wafers,

whose number of dies of all bins, jkb , 521,...,1j , 12,...,1k , and overkills before retest,

o
jkv , 521,...,1j , 12,...,1k , are known. The corresponding results of the pair of the

average overkills per wafer, 



521

1

)
521
1

]([
j

jVVE , and the average retests per wafer,

)
521
1

]([
521

1




j

jRRE , for these 521 test wafers are shown in Figure 3.4 as the points marked by

“”, “”, “” with the corresponding Tr shown on the top right corner of the figure. We

also use 2000 randomly selected vectors of threshold values to test the same 521 wafers; the

resulted pairs of][VE and][RE are shown as the points marked by “”in Figure 3.4.

We see that for 10][RE , the][VE resulted by the good enough vector of threshold

values obtained by the two-level algorithm is almost the minimum compared with those

resulted by the randomly selected vectors of threshold values. Similar conclusions can be

drawn for the cases of Tr =30 and 50. Since reducing overkills and retests have conflicting

nature, the considered unconstrained stochastic optimization problem (3.2) possesses pareto

optimal solutions. From Figure 3.4, we can see that the results we obtained for the cases of

Tr =10, 30 and 50 are almost on the boundary of the region resulted from the randomly

generated vectors of threshold values; this implicit boundary represents the (][VE ,][RE)

pairs resulted by the pareto optimal vectors of threshold values.

We also use the three-sigma limit and six-sigma limit to determine the threshold values

such that ggWg  33
min  , kkkn  33

max  , 12,...,1k , and ggWg  66
min  ,

kkkn  66
max  , 12,...,1k , where g and g , the mean and standard derivation of the

number of good dies in a wafer, and k and k , the mean and standard derivation of the

number of dies of bin k , are obtained from the data set of 521 test wafers. Using these

threshold values to test the same set of 521 test wafers, the resulted (][VE ,][RE) pairs

62

from three-sigma limit and six-sigma limit are also shown in Figure 3.4 marked by““and

“”, respectively. For 10][RE , we can see that our method will save 22% and 24%

more overkills than the three-sigma limit and six-sigma limit, respectively. Considering the

vast number of dies manufactured per month, the increased profit due to saving overkills

will be too large to neglect. Furthermore, both three-sigma limit and six-sigma limit do not

generate the pareto optimal solution for (3.2), and they cannot control the level of retests

like ours.

We have also used typical GA and Simulated Annealing (SA) [42] algorithm to solve (3.2)

for the case of Tr =10. As indicated at the beginning of Section 3.4, the global searching

techniques are computationally expensive in solving (3.2). We stop the GA and SA when

they consumed 50 times of the CPU time consumed by the two-level algorithm, and the

objective values of (3.2) they obtained are still 5.4% and 8.1% more than the final objective

value obtained by the two-level algorithm, respectively. Using the threshold values they

obtained to test the 521 wafers, the resulted (][VE ,][RE) pairs from GA and SA are

marked by“+“and“”in Figure 3.4. We found that using two-level algorithm, we can save

6.2% and 8.6% more overkills than using the GA and SA for 10][RE , respectively. In

addition, both GA and SA do not generate the pareto optimal solution, because the best so

far solution they obtained for 5 hours of CPU time are still far away from the optimal

solution of (3.2).

There are 10 bins in the wafers of product B. The probability mass function)(nBP k  ,

k=1,…,10, and the probability of the number of overkills in bin k , kp , k=1,…,10, are

given. The yield rate of product B is 46.6%. We employed the same sigmoid-type function

as that used in product A, however the normalized coefficient  is 0.1207. Specific data in

the two-level algorithm applying to product B are similar to the case of product A. We have

also simulated 3 cases of different Tr ’s, which are 20, 40 and 80. The CPU time consumed

in each case plus the training time is approximately 5.2 minutes. More retests are requested

here due to the lower yield of product B than A. The good enough vectors of threshold

values and the average overkill percentage for the three cases of different Tr ’s obtained by

63

our algorithm are shown in Table 3.2. The values of Tr versus the threshold values and the

average overkill percentage have the same trend as in product A. From Table 3.2, we can

observe that when Tr increases, the values of minWg increase as shown in row 2, and the

values of leading maxkn , k 8 and 9, which account for most of the retests, decrease as

shown in rows 10 and 11, respectively.

We use 590 real wafers of product B to test the performance of the vector of threshold

values shown in Table 3.2. The resulted pairs of 



590

1

)
590

1
]([

j
jVVE and)

590
1

]([
590

1




j

jRRE

are shown in Figure 3.5 as the points marked by “”,“”, “” with the corresponding Tr

shownon the top right corner of the figure. The “” points in Figure 3.5 denote the resulted

pairs of][VE and][RE of the 2000 randomly generated vectors of threshold values

applied to the same set of 590 wafers. From this figure, we can see that the results we

obtained for the cases of Tr =20, 40 and 80 are almost on the boundary of the region

resulted from the randomly generated vectors of threshold values; this implicit boundary

represents the (][VE ,][RE) pairs resulted by the pareto optimal vectors of threshold values.

We also use the three-sigma limit and six-sigma limit to determine the threshold values,

the resulted (][VE ,][RE) pairs from three-sigma limit and six-sigma limit are also shown

in Figure 3.5 marked by ““and “”, respectively. For 20][RE , we can see that our

method will save 21% and 24% more overkills than the three-sigma limit and six-sigma

limit, respectively. We have also used typical GA and SA algorithm to solve (3.2) for the

case of Tr =20. We stop the GA and SA when they consumed 50 times of the CPU time

consumed by the two-level algorithm, and the objective values of (3.2) they obtained are

still 5.3% and 6.9% more than the final objective value obtained by the two-level algorithm,

respectively. Using the threshold values they obtained to test the 590 wafers, the resulted

(][VE ,][RE) pairs from GA and SA are marked by “+“and “”in Figure 3.5. We found

that using two-level algorithm, we can save 6.6% and 4.2% more overkills than using the

GA and SA for 20][RE , respectively.

64

Figure 3.5: The resulted (][VE ,][RE) pairs of the 590 test wafers based on the
vector of threshold values determined by two-level algorithm, random
generator, three-sigma limit, six-sigma limit, GA and SA algorithm.

Tr
Good enough
vector of threshold values

20 40 80

minWg 118 131 146
max1n 6 2 3
max2n 4 4 1
max3n 3 4 5
max4n 6 3 3
max5n 5 1 4
max6n 10 5 5
max7n 7 4 2
max8n 65 54 38
max9n 76 63 45
max10n 18 13 9

* %100
][


BTD
VE

2.36% 1.71% 0.56%

* TDB : the total number of dies in a wafer of product B.

Table 3.2: The good enough vector of threshold values and the average overkill
percentage of product B for three different Tr ’s.

65

3.6 Concluding Remarks

To cope with the computationally intractable stochastic simulation optimization problems,

we have proposed an ordinal optimization theory based two-level algorithm to solve for a

good enough solution using reasonable computational time. We have justified the

performance of the proposed algorithm based on the simulations.

To demonstrate the applicability of the proposed algorithm, we have used it to solve for a

vector of good enough threshold values to reduce overkills and retests in a wafer testing

process of a wafer foundry. We have tested the performance of the solution we obtained

using the real data and found that the resulting average number of overkills and retests per

wafer lie almost on the boundary resulted from the pareto optimal vector of threshold values

of the considered stochastic optimization problem. This indicates that the proposed

algorithm will not only control the tolerable level of retests by taking the various chip

demand into account but also provide a near pareto optimal vector of threshold values. The

vector of good enough threshold values obtained by the proposed algorithm is very

successful in the aspects of solution quality and computational efficiency.

The proposed formulation for reducing overkills and retests is not limited to the testing

process of a foundry, it can easily adapt to any general testing procedures. The proposed

ordinal optimization theory based two-level algorithm is not limited to the problem

considered in this chapter. In fact, it can be used to solve any hard optimization problem that

requires lengthy computational time to evaluate the performance of a decision variable.

66

Chapter 4

Conclusions and Perspectives

Two related issues on the throughput and yield of wafer fabrication and testing processes

have been discussed. In the first issue, we have presented a classification based fault

detection and isolation scheme for the ion implanter, and in the second issue, we have

presented an ordinal optimization approach to find the optimal threshold values to reduce

the overkills of dies under a tolerable retest level in wafer testing process.

In the first issue, the proposed classification based fault detection and isolation scheme is

a general methodology. Modifying the warning signal generation criteria to meet individual

machine’s needs, this fault detection scheme is not limited to the ion implanter. The

simplicity of the HCT based fault isolation scheme made HCT worthwhile especially when

its accuracy can be remedied by the warning signal generation criteria when applying to the

ion implanter. Due to the efficient learning capability of HCT and the 0.05 seconds

classification time for classifying the recipe of a working wafer, the proposed fault detection

and isolation scheme can work on line and real-time.

In the second issue, the proposed ordinal optimization theory based two-level algorithm is

not limited to the problem considered in this dissertation. In fact, it can be used to solve any

hard optimization problem that requires lengthy computational time to evaluate the

performance of a decision variable. Although the proposed approach presented in this

dissertation was illustrated using a wafer testing problem, it is well suited to different

application areas.

67

Reference

[1] C. M. McKenna, “A personal historical perspective of ion implantation equipment for

semiconductor applications,” 2000 International Conference on Ion Implantation

Technology, Alpbach, Austria, pp. 1-19, Sep. 2000.

[2] P. M. Frank,”Fault diagnosis in dynamic systems using analytical and knowledge-based

redundancy,” Automatica, vol. 26, no. 3, pp. 459-474, May 1990.

[3] R. Isermann, “Fault diagnosis of machines via parameterestimation and knowledge

processing,” Automatica, vol. 29, no. 4, pp. 815-835, July 1993.

[4] J. Gertler, Fault Detection and Diagnosis in Engineering Systems, New York: Marcel

Dekker, May 1998.

[5] M. Basseville and A. Benveniste, (eds), “Detection of abrupt changes in signals and

dynamical systems,” Lecture Notes in Control and Information Sciences, vol. 77,

Springer-Verlag: Berlin, Dec. 1985.

[6] H. H. Yue, S. J. Qin, R. J. Markle, C. Nauert and M. Gatto, “Fault detection of plasma

etchers using optical emission spectra,” IEEE Transactions on Semiconductor

Manufacturing, vol. 13, no. 3, pp. 374-385, Aug. 2000.

[7] R. Isermann, “Model-based fault detection and diagnosis - status and applications,” 16th

Symposium on Automatic Control in Aerospace, St. Petersburg, Russland, June 2004.

[8] G. M. Smith, Statistical Process Control and Quality Improvement, 5th ed., Upper Saddle

River, NJ: Prentice Hall, July 2003.

[9] M. H. Dunham, Data Mining: Introductory and Advanced Topics, Englewood Cliffs, NJ:

Prentice Hall, Aug. 2002.

[10] L. Breiman, J. H. Friedman, J. A. Olshen and C. J. Stone, Classification and

Regression Trees, London: Chapman & Hall, Jan. 1984.

[11] G. P. Zhang, “Neural networks for classification:a survey,”IEEE Transactions on

Systems, Man and Cybernetics, Part C, vol. 30, no. 4, pp. 451-462, Nov. 2000.

68

[12] L. Bruzzone and D. F. Prieto, “Unsupervised retraining of a maximum likelihood

classifier for the analysis of multitemporal remote sensing images,”IEEE Transactions

on Geoscience and Remote Sensing, vol. 39, no. 2, pp. 456-460, Feb. 2001.

[13] X. Chang and J. H. Lilly, “Evolutionary design of a fuzzy classifier from data,”IEEE

Transactions on Systems, Man and Cybernetics, Part B, vol. 34, no. 2, pp. 1031-1044,

April 2004.

[14] J. R. Quinlan, C4.5: Programs for Machine Learning, San Mateo, Calif.: Morgan

Kaufmann, Jan. 1993.

[15] K. R. Müller, S. Mika, G. Rätsch, K. Tsuda and B. Schölkopf, “An introduction to

kernel-based learning algorithms,”IEEE Transactions on Neural Networks, vol. 12, no.

2, pp. 181-202, March 2001.

[16] L. Breiman,“Random forests,”Machine Learning, vol. 45, no. 1, pp. 5-32, Oct. 2001.

[17] J. H. Friedman, “Stochastic gradient boosting,”Computational Statistics & Data

Analysis, vol. 34, no. 4, pp. 367-378, Feb. 2002.

[18] A. Borisov, V. Eruhimov and E. Tuv, “Boosting flexible learning ensembles with

dynamic feature selection”, NIPS 2003 workshop on feature extraction, British

Columbia, CA, Dec. 2003.

[19] G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed., Oxford

University Press, Oxford, May 2001.

[20] H. Ishibuchi and T. Nakashima, “Effect of rule weights in fuzzy rule-based

classification systems,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp.

506-515, Aug. 2001.

[21] J. R. Quinlan, (2003) Data Mining Tools See5 and C5.0, version 1.20. [Online].

Available: http://www.rulequest.com/see5-info.html

[22] S. Muriel, P. Garcia, O. Marie-Richard, M. Monleon and M. Recio, “Statistical bin

analysis on wafer probe,”2001 IEEE/SEMI Advanced Semiconductor Manufacturing

Conference and Workshop, Munich, Germany, pp. 187-192, April 2001.

[23] D. C. Montgomery, Introduction to Statistical Quality Control, 5th ed., New York: John

69

Wiley and Sons, July 2004.

[24] J. Andersson, A Survey of Multiobjective Optimization in Engineering Design,

Technical Report No. LiTH-IKP-R-1097, Department of Mechanical Engineering,

Linköpings University, Sweden, 2000.

[25] K. M. Miettinen, Nonlinear Multiobjective Optimization, Boston: Kluwer Academic

Publishers, Oct. 1999.

[26] Y.C. Ho, “An explanation of ordinal optimization: Soft computing for hard problems,”

Information Sciences, vol. 113, no. 3-4, pp. 169-192, Feb. 1999.

[27] T.W.E. Lau and Y.C. Ho, “Universal alignment probability and subset selection for

ordinal optimization,”Journal of Optimization Theory and Applications, vol. 39, no. 3,

pp. 455-489, June 1997.

[28] C.-H. Chen, S.D. Wu and L. Dai, “Ordinal comparison of heuristic algorithms using

stochastic optimization,” IEEE Transactions on Robotics and Automation, vol. 15, no.

1, pp. 44-56, Nov. 1999.

[29] B.-W. Hsieh, C.-H. Chen and S.-C. Chang, “Scheduling semiconductor wafer

fabrication by using ordinal optimization-based simulation,” IEEE Transactions on

Robotics and Automation, vol. 17, no. 5, pp. 599-608, Oct. 2001.

[30] S.-Y. Lin and Y.C. Ho, “Universal alignment probability revisited,”Journal of

Optimization Theory and Applications, vol. 113, no. 2, pp. 399-407, May 2002.

[31] S.-Y. Lin, Y.C. Ho and C.-H. Lin, “An ordinal optimization theory based algorithm for

solving the optimal power flow problem with discrete control variables,”IEEE

Transactions on Power Systems, vol. 19, no. 1, pp. 276-286, Feb. 2004.

[32] M. Bosque, Understanding 99% of Artificial Neural Networks: Introduction & Tricks,

San Jose: Writers Club Press, March 2002.

[33] C. R. Reeves and J. E. Rowe, Genetic Algorithms: Principles and Perspectives: A

Guide to GA Theory, Boston: Kluwer Academic Publishers, Dec. 2002.

[34] George A. F. Seber and C. J. Wild, Nonlinear Regression, New York: John Wiley and

Sons, Sep. 2003.

70

[35] K. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward networks are

universal approximators,”Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.

[36] T. Chen, H. Chen and R. W. Liu, “Approximation capability in C(R¯n) by multilayer

feedforward networks and related problems,” IEEE Transactions on Neural Networks,

vol. 6, no. 1, pp. 25-30, Jan. 1995.

[37] J. G. Attali and G. Pagès, “Approximation of functions by a multilayer perceptron: a

new approach,”Neural Networks, vol. 10, no. 6, pp. 1069-1081, Aug. 1997.

[38] C. G. Panayiotou, C. G. Cassandras and W. B. Gong, “Model abstraction for discrete

event systems using neural networks and sensitivity information,”Proceedings of the

2000 Winter Simulation Conference, Orlando, FL, USA, vol. 1, pp. 335-341, Dec.

2000.

[39] R. A. Kilmer, A. E. Smith and L. J. Shuman, “Computing confidence intervals for

stochastic simulation using neural network metamodels,”Computers and Industrial

Engineering, vol. 36, no. 2, pp. 391-407, April 1999.

[40] G. Lera and M. Pinzolas, “Neighborhood based Levenberg-Marquardt algorithm for

neural network training,” IEEE Transactions on Neural Networks, vol. 13, no. 5, pp.

1200-1203, Sep. 2002.

[41] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised learning,”

Neural Networks, vol. 6, no. 4, pp. 525-533, 1993.

[42] S. M. Sait and H. Youssef, Iterative Computer Algorithms with Applications in

Engineering: Solving Combinatorial Optimization Problems, Los Alamitos: IEEE

Computer Society, Aug. 1999.

[43] E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 2nd ed., New York:

John Wiley and Sons, July 2001.

71

List of Publication

著作目錄

姓名: 洪士程 (Shih-Cheng Horng)

期刊論文著作:

1. Shin-Yeu Lin and Shih-Cheng Horng, “A Classification Based Fault Detection and

Isolation Scheme for the Ion Implanter”, accepted to appear in IEEE Transactions on

Semiconductor Manufacturing. (EI, SCI)

2. Shin-Yeu Lin and Shih-Cheng Horng, “Application of an Ordinal Optimization

Algorithm to the Wafer Testing Process”, accepted to appear in IEEE Transactions on

Systems, Man and Cybernetics, Part A. (EI, SCI)

研討會論文著作:

1. Shin-Yeu Lin, Shih-Cheng Horng, “Ordinal Optimization Approach to Stochastic

Simulation Optimization Problems and Applications”, Proceedings of the 15th IASTED

International Conference on Applied Simulation and Modelling, pp. 274-279, Rhodes,

Greece, June 26~28, 2006.

2. Shih-Cheng Horng, Shin-Yeu Lin, “A Hybrid Classification Tree for Products of

Complicated Machines in Flexible Manufacturing Systems”, Proceedings of IEEE SMC

2005 - International Conference on Systems, Man and Cybernetics, pp. 3775-3780,

Hawaii, USA, Oct. 10~12, 2005.

3. Shin-Yeu Lin, Shih-Cheng Horng, Chi-Hsing Tsai,“Fault Detection of the Ion Implanter

Using Classification Approach”,Proceedings of the 5th Asian Control Conference, pp.

808-813, Melbourne, Australia, July 20-23, 2004.

4. Chi-Hsing Tsai, Shin-Yeu Lin, Mu-Huo Cheng, Shih-Cheng Horng, Chun-Hung Liu,

Wen-Yo Lee, Chia-Hung Tsai, “An Effective and Efficient Hierarchical Fuzzy Rule

Based Classifier”,Proceedings of IEEE International Conference on Machine Learning

and Cybernetics 2003, vol.4, pp. 2173-2178, Xi-An, China, Nov. 2-5, 2003.

5. S. C. Horng, S. Y. Lin, M. H. Cheng, F. Y. Yang, C. H. Lin, W. H. Lee, C. H. Tsai,

“Reducing the Overkills and Retests in Wafer Testing Process”, Proceedings of the 14th

Annual IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop,

pp. 286-291, Munich, Germany, March 31- April 1, 2003.

72

博士候選人學經歷資料

姓名:洪士程

性別:男

生日:中華民國 60 年 4 月 11 日

籍貫:台灣省南投縣

論文題目: 中文:兩個關於晶圓製造及測試程序的產能與良率之問題及解決方法

英文: Two Related Issues on the Throughput and Yield of Wafer Fabrication

and Testing Processes

學歷:

1. 國立交通大學電機與控制工程學系學士，民國 78 年 9 月~82 年 6 月

2. 國立交通大學電機與控制工程學系碩士，民國 82 年 9 月~84 年 6 月

3. 國立交通大學電機與控制工程學系博士班，民國 90 年 9 月~ 95 年 8 月

經歷:

1. 私立親民工商專科學校電子工程科專任講師，民國 86 年~93 年

2. 私立親民技術學院電子工程系專任講師，民國 93 年~95 年

Vita
Shih-Cheng Horng was born in Taiwan, R.O.C.. He received the B.S. and M.S. degrees

in electrical and control engineering from National Chiao Tung University, Hsinchu, Taiwan,

in 1993 and 1995, respectively. He has been studying for his Ph. D. degree in the same

department since September 2001.

Currently, he also works as a lecturer in the Department of Electronic Engineering,

Chinmin Institute of Technology, Miaoli, Taiwan. His major research interests are

optimization theory with applications to large semiconductor fab related problems, data

mining, and modeling of large complex systems.

