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Student: Shih-Cheng Horng Advisor: Dr. Shin-Yeu Lin

Department of Electrical and Control Engineering
National Chaio Tung University

Abstract

In this dissertation, we present two related issues on the throughput and yield of wafer
fabrication and testing processes. The first issue is afault detection and isolation problem of
the ion implanter, and the second is a reducing overkills under atolerable retest level problem
in wafer testing process. To detect the fault of a complex manufacturing system is a difficult
task because of the lack of proper model; indeed, this is the key that makes the data mining
technique attractive. We propose a classification based fault detection and isolation scheme
for the ion implanter. The proposed scheme consists of two parts: the classification part and
the fault detection and isolation part. In the classification part, we propose a Hybrid
Classification Tree (HCT) with learning-eapability to:classify the recipe of aworking wafer in
the ion implanter, and a k-fold cross validation- error is treated as the accuracy of the
classification result. In the fault detection and. isolation part, we propose a warning signal
generation criteria based on the ‘classification‘accuracy to detect and fault isolation scheme
based on the HCT to isolate the actual fault-of -an ion implanter. We have compared the
proposed classifier with the existing classification software and tested the validity of the
proposed fault detection and isolation scheme for real cases and obtain successful results.

Reducing the overkills and retests in a wafer testing process can be formulated as a
stochastic simulation optimization problem with huge decision-variable space ®. For this
problem, we have proposed an ordinal optimization theory based two-level algorithm to solve
for a good enough solution. In the first-level, we construct a crude but efficient model for the
considered problem based on an artificial neural network. This crude model will then be used
as a fitness function evaluation tool in a genetic algorithm to efficiently select N roughly
good solutions from ©. In the second-level, starting from the selected N roughly good
solutions we proceed with the existing ordinal optimization searching procedures to search a
good enough solution of the considered problem. We have justified the quality of the obtained
solution using simulations. We applied the proposed algorithm to the reduction of overkills
and retests in a wafer testing problem, which is formulated as a stochastic simulation
optimization problem that consists of a huge decision-variable space formed by the vector of
threshold values in the wafer testing process. The vector of good enough threshold values
obtained by the proposed algorithm is very successful in the aspects of solution quality and
computational efficiency.
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Chapter 1

I ntroduction

1.1 Motivation

Semiconductor manufacturing is a complex process that involves monitoring a great number
of parameters from the early stages of the production to the packaging of an end product. The
two most significant factors that determine the manufacturing performance are throughput and
yield. The throughput and yield are the most important indexes for measuring the quality of
semiconductor manufacturing process. Throughput is defined as the achieved unit output rate
of a particular type of equipment asset. Yield is defined as the fraction of total input
transformed into shippable output. The process of IC manufacturing often requires hundreds
of sequentia steps, each one of which could.dead to yield loss. Consequently, maintaining
product quality in an IC manufacturing facility often requires the strict control of hundreds or
even thousands of process variables. Traditionalstatistical methods are no longer feasible nor
efficient, if possible, in analyzing the vast.amounts of data in a modern semiconductor
manufacturing process. Traditional approaches have limitsin extracting the full benefits of the
data. Therefore, the manufacturing data is poorly exploited even in the most sophisticated
processes. Small improvements on throughput and yield for tenths of a percent can save
hundreds of millions of dollars annually in lost products, product rework, energy consumption,
and the reduction of waste streams. Considering the big set of parameters and large volume of
data in semiconductor manufacturing process, improving throughput and yield is indeed an
extremely difficult.

Thereofre, we narrow our focus of throughput and yield improvements on two issues: the
fault detection and isolation of an ion implanter and reducing overkills and retests in wafer

testing process.



1.2 Throughput and Yield Enhancement of |on Implanter

The semiconductor manufacturing process can be divided into four basic phases. wafer
fabrication, wafer probe, assembly or packaging and final testing. Wafer fabrication is the
most technologically-complex and capital-intensive phase among the four. In the wafer
fabrication phase, ion implanter is a bottleneck machine in the semiconductor
manufacturing process because of its expensiveness, thus, ion implantation is a critica
operation to the throughput. The damaged wafer due to the malfunction of the ion implanter
is not re-workable hence significantly affects the yield. Thus, the real-time fault detection
and isolation for minimizing the possible down time of the ion implanter isacrucial issuein

semiconductor manufacturing process.

1.3 Throughput and Yield Improvement of Wafer Testing

Semiconductor testing of ICs or chips is required at various stages during the fabrication
process. Each IC must be individually tested in wafer and in packaged form to ensure that it
functions as intended. Demand for testing products is driven by two considerations:. new
chip designs and higher unit volumes. As chips become increasingly powerful and complex,
the need for high-speed and accurate testing becomes more important than ever. The
process of testing individual chips in wafer form is referred to as wafer probing. Wafer
probing establishes a temporary electrical contact between the chip and the automatic test
equipment. Thisisthe critical test for design and performance of the IC, and for sorting ICs
before separation and costly packaging. A probing system, which transmits electrical
signals to the wafer and analyzes the signals upon their return, has four principa
components. the prober, the probe card, the probe station, and automatic test equipment.
Although there exist techniques such as the Statistical Process Control (SPC) for monitoring
the operations of the wafer probes, the probing errors may still occur in many aspects and
cause some good dies being over killed, which will degrade the yield. Thus, reducing the

number of overkillsis always one of the main objectives in wafer testing process. The key



tool to identify or save overkills is retest, which is an additional wafer probing. However,
retest is a major factor for decreasing the throughput. Thus, the overkill and the retest
possess inherent conflicting factors, because reducing the former can gain more profit,
however, at the expense of increasing the latter, which will degrade the throughput and
increase the cost. Consequently, to save more overkills using less retests is a goa of the

wafer testing process.

1.4 Dissertation Outline

This dissertation introduces two related issues on the throughput and yield of wafer
fabrication and testing processes. The first issue is afault detection and isolation problem of
the ion implanter, and the second one is a reducing overkills under a tolerable retest level
problem in wafer testing process.

In Chapter 2, we propose a classification based fault detection and isolation scheme for
the ion implanter. The proposed:scheme consists of two parts: the classification part and the
fault detection and isolation part. -In' the classification part, we propose a Hybrid
Classification Tree (HCT) with learning capability to classify the recipe of aworking wafer
in the ion implanter, and a k-fold cross validation error is treated as the accuracy of the
classification result. In the fault detection and isolation part, we propose a warning signal
generation criteria based on the classification accuracy to detect and fault isolation scheme
based on the HCT to isolate the actual fault of an ion implanter. We have compared the
proposed classifier with the existing classification software and tested the validity of the
proposed fault detection and isolation scheme for real cases and obtain successful results.

In Chapter 3, we have formulated a stochastic optimization problem to find the optimal
threshold values to reduce the overkills of dies under atolerable retest level in wafer testing
process. We have proposed an ordinal optimization (OO) theory based two-level agorithm
to solve for a vector of good enough threshold values of the stochastic simulation

optimization problem. In the first-level, we construct a crude but efficient model for the



considered problem based on an artificial neural network. This crude model will then be
used as a fitness function evaluation tool in a genetic algorithm to efficiently select N
roughly good solutions from decision-variable space. In the second-level, starting from the
selected N roughly good solutions we proceed with the existing ordinal optimization
searching procedures to search a good enough solution of the considered problem. We have
justified the quality of the obtained solution using ssimulations. We applied the proposed
algorithm to the reduction of overkills and retests in a wafer testing process, which is
formulated as a stochastic simulation optimization problem that consists of a huge
decision-variable space formed by the vector of threshold values in the wafer testing
process. The vector of good enough threshold values obtained by the proposed agorithm is
very successful in the aspects of solution quality and computational efficiency.

Finally, some conclusions for the dissertation are drawn in Chapter 4. We also suggest

some possible future research i ssues concerning:the methods devel oped in this dissertation.



Chapter 2

Fault Detection and Isolation for the lon Implanter

2.1 Introduction

lon implanter [1] is a bottleneck machine in the semiconductor manufacturing process
because of its expensiveness; thus, ion implantation is a critical operation to the throughput.
The damaged wafer due to the malfunction of the ion implanter is not re-workable hence
significantly affects the yield. Therefore, a real-time fault detection to prevent more wafer
damage and a fault isolation to reduce the down time of the ion implanter are crucial issuesto
the yield and throughput of the semiconductor manufacturing process. There are two
categories of fault detection methods, the, model based methods and model free methods. The
model based methods, which utilize the mathematical model of the plant, originated from
chemical process control, aerospace related research, and other areas have been developed
in last three decades [2]-[4]. Modéel free-methods; which do not use the mathematical model
of the plant, range from physical ‘redundancy, limit value checking [5] and spectrum
analysis[6]. Among them, limit value checking method iswidely used in practice. There are
also two types of fault isolation methods [7], the classification methods and inference
methods. If a-priori knowledge is not available for the relationships between the measured
data patterns and faults, classification methods are used. For example, a neural network,
trained using a large set of abnormal data pattern and known fault pairs, can be used to
classify the corresponding fault of an abnormal data pattern. If there is a priori-knowledge
for the relationships between faults and measured data patterns, a rule-based expert system
can be used to inference the corresponding fault of an abnormal data pattern.

Regarding fault detection, since there does not exist any proper models for the ion
implanter, the model based fault detection methods cannot apply. Thus, the limit value

checking method is currently employed in some semiconductor manufacturing companies.



The structure of an ion implanter is shown in Figure 2.1 [1]. In genera, the equipment
supplier provides a digital equipment to monitor the proper operation of the scanning
subsystem of the machine. The well-trained engineers employ the limit value checking
method to investigate the SPC charts [8] of the measured parameters for other major
subsystems, the ion source (filament), extraction electrode, mass analysis, and acceleration
subsystems to monitor their operations.

The measured parameters can be, for examples, filament voltage, filament current,
discharge voltage,.. ., etc.. However, there are several tens to hundreds of recipes* for wafer
fabrication in a semiconductor foundry each day. Although the setting of scanning
subsystem is independent of the recipes, the other four subsystems’ parameters may vary
widely due to various recipes. This induces the first drawback of the limit value checking
method, that is the difficulty of defining a threshold to distinguish one recipe from the others.
Since each recipe involves a combined setting of -the four subsystems, this induces the

second drawback of the limit value checking method that it cannot provide combination

Analysis Mass Anylysis
Magnet Slit

L LT

Accelerator

Scan System

—— |\[—— Extractor

lon Source

Figure2.1. The structure of an ion implanter.

! A recipe controls how vectors are initialized or changed during a process step. Examples include
recipe numbers which index tables of set points in furnaces, or written instructions to operators. A
recipe is usually considered constant during any one process step. In this chapter, a recipe is

corresponding to a specific product of integrated circuit.



information of the measured parameters of the four subsystems. In addition, the occurrence
of electrical spikes in the ion implanter will make the measured parameters exceed the
threshold and indicate a fault situation, however the electrical spikes are not actual machine
faults. This is the third drawback of the limit value checking method. Regarding fault
isolation, both classification methods and inference methods require afairly large set of the
abnormal data patterns with known faults to train a classifier and construct a rule-based
expert system, respectively. Collecting a large set of abnorma data patterns with known
faults in an ion implanter is very difficult, because there are several hundreds of steps in
fabricating a chip and the chip failure is most probably known when it is under test. To find
out which step in the complete manufacturing process causes the failure is aready difficult
not even mention the collection of a large set of abnormal data patterns with known faults
due to ion implantation. Thus, the purpose of this chapter is to propose an automatic (i.e. no
need of well-trained engineers) and effective-tool-to monitor the above mentioned four
subsystems as a whole and generate a warning signal once a machine fault occurs and
isolate that fault.

To overcome the first two drawbacks.of the limit value checking method, we should be
ableto identify the recipe of the working wafer from the measured parameters of al the four
subsystems. This makes the data mining technique [9] attractive. To overcome the third
drawback of the limit value checking method, we need to distinguish electrical spikes from
the actual machine faults. Motivated by the above considerations, we propose a classification
based fault detection and isolation scheme foOr the ion implanter. Viewing a recipe as a class, we
can classify the recipe of the working wafer based on the corresponding measured
parameters of the four subsystems. Thus, the overall structure of the proposed fault
detection and isolation scheme can be shown in Figure 2.2. Our scheme starts from
classifying the recipe of the working wafer based on the measured parameters. If the
classified recipe of the working wafer matches its destined one, we assume there is no fault
and proceed with next wafer. This no fault assumption may cause only few damaged wafersin

the worst case. A detailed analysis of this claim will be addressed in Section 2.4. On the
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other hand, if the classified recipe does not match its destined one, a double check of the
recipe command should be carried out. If the command is wrong, the operator will be
informed; otherwise, the warning signal generation criteria Will be tested. If the criteria is
satisfied, we conclude that there is a machine fault and a warning signal will be generated;
otherwise, we will proceed with next wafer. Once a warning signal is generated, we will
perform the fault isolation scheme to isolate the fault. In short, the proposed fault detection
and isolation scheme consists of three major problems. The first oneis a classification problem,
which isto classify the recipe of aworking wafer. The second one is a fault detection problem,
which isto determine whether there is a machine fault and generate awarning signal if there
is one. The third one is a fault isolation problem to determine which subsystem has a fault. In
this chapter, we propose a #Hybrid Classification Tree (HCT) With good learning capability to deal

with the classification problem. The HCT combines a proposed clustering algorithm with the

M easured signals
corresponding to the
working wafer

. . Inform operator
Classification

Is recipe
command
correct?

Does classified
recipe match?

Continue
for next
wafer

Warning signal
generation
criteria satisfied?

Generate the Isolate the
warning signal fault

Figure2.2. The proposed fault detection and isolation scheme for the ion implanter.



Classification and Regression Tree (CART)[10] to take the advantages of the specific setting of a
recipe during a process step. Its good learning capability will enable it to work on line.
Since the operator should interrupt wafer processing immediately when a fault is detected, a
high standard in the accuracy of fault detection is required so as not to unnecessarily
degrade the throughput. Thus, to account for the possible inaccuracy caused by the HCT, we
propose a warning signal generation criteria t0 deal with the fault detection problem. This
criteria ams to minimize the probability of false alarm when there is no fault as well as the
probability of no alarm while fault exists; the former tries to eliminate the indicated fault
situations due to electrical spikes and classification errors, while the latter tries to find out
the hidden machine faults when classified recipe matches the destined one; however, we
need not worry about the latter one by the no fault assumption mentioned above. To cope
with the fault isolation problem, we propose an HCT based fault isolation scheme. The
basic idea of this scheme is to find the,parameter (or parameters) that causes the
classification errors. Dislike the existing methods, which need to collect afairly large set of
measured data patterns with known faults-as-indicated earlier, the proposed fault isolation
scheme amost spend no extra effort @swill be seen in Section 2.3.2. From here on, we will
use the terminologies attribute and data pattern in classification techniques to represent the
parameter and data of the measured parameters Of the four subsystems of the ion implanter,
respectively.

We organize chapter 2 in the following manner. In Section 2.2, we will present the HCT
and its learning capability. In Section 2.3, we will analyze the probability of no alarm while
machine fault exists to verify the no fault assumption and present the criteria for generating
the warning signal. We will aso present the fault isolation scheme in this section. In Section
2.4, we will apply the HCT to real data sets to obtain the k-fold cross validation classification
errors, based on which, we will demonstrate the validity of the proposed warning signa
generation criteria and the fault isolation scheme. In the meantime, we will also investigate
the learning capability of HCT by reporting the computation time needed to update the

classification rules of HCT. In Section 2.5, we will make a conclusion.
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2.2 The Hybrid Classification Tree (HCT)

There exist numerous classfication techniques for classfication problems of continuous
attributes such asthe neura network approach [11], maximum-likelihood approach [12], fuzzy set
theory based approach [13], decision tree[14], CART [10], kernel based learning algorithms[15],
and recent methods like random forests [16], multiple additive regression trees (MART) [17]
and the boosting flexible learning ensembles with dynamic feature selection technique [18], etc..
Among them, the neural network approach is superior in the aspects of free data distribution and
free data importance, however they are computationally expensive and produce variable results
due to the random initial weights. The maximum-likelihood approach was the most widely used
method in classifying remotely measurement data, however its performance was degraded when
the target classes could not be adequately described by the statistical modd. The fuzzy set theory
based approach had been successfully, applied to the pattern classification problem, however the
computationa complexity is raised-when the number of classes as well as the number of attributes
are large. Decision tree is mainly designed-for classfication of discrete variables. However,
CART can handle continuous attributes." Compared with random forest, MART and boosting
flexible learning ensembles with dynamic feature selection technique, disadvantage of CART is
inaccuracy dueto its nature of piecewise constant gpproximation. However, the biggest advantage
of CART isits interpretability whereas the above mentioned three methods and the kernd based
learning agorithms are thought to lack this feature. The interpretability is the key feature of our
HCT based fault isolation scheme, however, a the expense of some classification accuracy.
Fortunately, the decrease in accuracy will be remedied by the warning signal generation criteriaas
for applying to the fault detection of the ion implanter, which will be presented in Section 2.3.1.

Thetree szes of CART are closely related to the interpretability and accuracy. Small tree can be
eadly interpreted, while the interpretability of a large tree is questionable. On the other hand,
larger tree is more accurate than the smaller one. Thus, to retain the interpretability of asmall tree
while keeping the accuracy of alarge tree, we intend to propose a preprocessing step to reduce the

tree size of CART s0 asto improve the interpretability while keeping its classification accuracy. In
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genera, a recipe may contain various steps, and a recipe step remans constant during the
processing of one wafer, however different attributes (parameters) may be ramped during the
entire processing step. Nonethel ess some (ot all, as can be observed from the experimental results
shown in Figure 2.10) attributes’ mean of each individua recipe step are still akey to distinguish
the recipes. Thus, we can exploit this property to fulfill the above mentioned objective of
preprocessing. To do this, we propose a separation matrix based clustering algorithm &s a preprocessing
step for CART. This clustering agorithm will classfy the whole data set into a clustering tree and
the classes in the leaf clusters will be classified by the CART. Because both the size and the
number of classes of the leaf cluster are much smaller than the origina data set, the computational

complexity of CART can beimproved.

2.2.1 The Separation Matrices Based Clustering Algorithm

Due to the above mentioned property ‘of -@.recipe during a processing step, we can
investigate the separability between two recipes through the degree of overlapping of the
attribute-values. For example, suppose the probability density function of an attribute for
the two recipes A and B are as shown'in Figure 2.3(a), then these two recipes are separable
based on that attribute; while in the case of Figure 2.3(b), the two recipes are not.
Throughout this section, we will use the terminology class in classification techniques to

represent recipe.
P(¥)

(probability A B
(vaueof an
atribute)

¢

Figure 2.3(a). Separable recipes.
p(x)

oy | 8
density) (vuedf an
atribute)

> X
Figure 2.3(b). Non-separable recipes.
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2.2.1.1 Chebyshev Inequality Based Separation Matrices

We let D(C;,C,), denote the separation index between classes C; and C; based on

atribute k and define

0, if G and C, ae separable based on attribute K,

2.1
1, otherwise. 21)

D(G.C)), ={
Clearly, D(C;,C), =1 and D(C;,C,), =D(C,;,C;), for any attribute k. The value of
D(C;,C,), is computed using Chebyshev inequality [19] as described below. We let the
random variable X/ denote the kth attribute of class C,, and let 1 and o* denote
the mean and standard deviation of X/, respectively. Let a be a positive real number
such that P[‘Xi" - ,uik‘ >a“]<a,where F()] denotes the probability of the event (*), and
a isasmall real number representing fow probability, which is usually set to be 0.05. The
value of a* corresponding to a given e can be calcul ated from setting (aik /@k)2=a using
Chebyshev inequality. Without-loss of -generality, we can assume <y’ . We let
P =min(],[orjk/max(&yjk —uf —qk)]z), where a isdefined above and § is a very small
positive real number to avoid the denominator of the square term being O or negative. p, is
an upper bound of P[| X} — u! > max(S, u} — p —a)] based on Chebyshev inequality. If
i is sufficiently larger than u+a, p, will be very smal, which implies the
overlapping of the classes C; and C,; on attribute k will be very small; consequently the
classes C; and C; are more likely to be separable as illustrated in Figure 2.4. Therefore,

A

we can define a threshold value p, such that the separation index for classes C;, and C,

can be calculated by the following:

o, if p,<ph,
DG.C :{ 1 otheri/vise 22

Now we can define [D(C,,C,), ] asthe separation matrix  for al classes based on atribute k,

whose (i, j ) thentryis D(C,,C)),.
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Figure2.4. Illustration of the separation between C; and C; basedon p,.

2.2.1.2 Splitting Cluster Using Separation Matrices

We let Cr, denote the root cluster, which represents the whole data set. Treating each
classin Cr, asanode, we can view [D(C;,C;), ] asan incidence matrix for al nodes in
Cr, based on attribute k. That means nodes C; and C; will be connected by an arc if
D(C;,C,),, =1. Thegraph constructed based on a separation matrix is caled a separation graph,
which may contain separate connecting sub-graphs.”Each connecting sub-graph represents a
cluster of non-separable classes based on éttribute k; ,-and the number of digoint sub-graphs
represent the number of digoint clusters'that can be split from Cr, using attribute k. For
example, the separation graph constructed from the separation matrix [D(C;,C;), ] givenin
Figure 2.5(a) is shown in Figure 2.5(b), which consists of two digoint clusters, or two separate
connecting sub-graphs, =4 and 8. The resulted clusters can be further split by other attributes.

For example, cluster o4 in Figure 2.5(b) can be further split by attribute k,, whose

[D(C;,C)),,] isshown in Figure 2.6(a), in the following manner. Collecting the rows and
columns of [D(C;,C,), ] corresponding to the classes in cluster =4 to form the submatrix
shown in Figure 2.6(b). Repeating the same process of splitting Cr, using [D(C,C;), ],
cluster =4 can be split into two clusters © and > as shown in Figure 2.6(c) by using the

submatrix shown in Figure 2.6(b).
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C,C,C;C, Cs G
C/[110000
Cj111000
C{011000
C/000110
Cl000111
C{000011

Figure2.5(a). A separation matrix example [D(C,,C;),].
C C C
A :'1 .2 .3
B : C4 CS C6
o ° ®

Figure 2.5(b). A separation graph example resulted from the separation matrix
in Figure 2.5(a).
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Figure 2.6(a).- Theseparationmatrix [D(C;,C,), ].

GGG
cl100
Cj0 11
G0 171

Figure 2.6(b). Submatrix of [D(C;,C;), ] corresponding to cluster =% in Figure 2.5(b).

C1

C: o
5. & G
B S

Figure 2.6(c). Clusters split from cluster =4 using the submatrix shown in Figure 2.6(b).

2.2.1.3 The Choice of Attributes for Cluster Splitting and the Construction of the

Clustering Tree

Because the separation matrix has aready indicated certain distribution of the attribute

values of al classes, we can employ a coarser partition like fuzzy intervas to classify the

digoint clusters instead of treating each continuous value as a discrete one like CART. In
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general, for a given range of attribute values, more finer fuzzy partition is needed to classify
a cluster with larger number of classes. In other words, for a given fuzzy partition and the
range of attribute values, the classification will be more accurate for a cluster with smaller
number of classes. Considering that any inaccurate cluster splitting will influence the
accuracy of the subsequent cluster splitting along the tree path, we set the criteria for
choosing the attribute to split a cluster as minimizing the multiplication of the average number
of classes and the variation of the number of classes in the resulted child clusters. This criteriaimplies
that the attribute which results in more child clusters and smaller variation in the number of
classes in the child clusters is preferred. For example, for the separation matrices of two

attributes shown in Figure 2.7(a) and 2.7(b), suppose that we use the attribute k; to split the

cluster first, we obtain three child clusters. One consists of 1 class, and the other two consist of

three and four classes. While if we use attribute k, first, wewill obtain four child clusters, and

each child cluster contains two classes. Based-on-the criteria indicated above, we would choose
k, to split the cluster. To put this criteriainto a mathematical form, welet L, and n_ (Cr))

denote the number of child clusters and thé number-of classesin the | th child cluster resulted
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Figure2.7(a). The separation matrix [D(C;,C,),]-
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Figure 2.7(b). The separation matrix [D(C..C)),]-
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from using attribute k to split the cluster Cr, , respectively. Then, the criteria for choosing the

atribute for splitting Cr; is
mkln{(i N, (cr, )/ij : [i(nk' (Cr)-n,_, (cr, ))2/Lk J} (2.3)

where the first term inside the big bracket represents the average number of classes in the

resulted child clusters and the second term denotes the variance of the number of classesin
. Ly
the resulted child clusters, where | (er )E ;nk‘ | (er ) / L, -

Now, our agorithm for choosing the splitting attribute to build the clustering tree can be stated

asfollows.

Algorithm I: Choose the splitting attributes and build the clustering tree.
Step 0: Given the origina data set Cr, .and the separation matrices of all attributes. Set

Cr, astheroot cluster and definethe set of Yet Split Clusters (YSC)={ Cr, }.

Step 1: For each cluster in YSC, obtain theccorresponding splitting attribute k based on the
criteria (2.3). Using the obtained attribute to split the cluster, and put the resulting
child clusters into YSC. Discard the clusters that had been split and the clusters that

cannot be split using any attribute.

Step 2: If YSC = ¢, stop; otherwise return to Step 1.

Figure 2.8 shows a clustering tree built by using the separation matrices of two attributes
shown in Figure 2.5(a) and 2.6(a) to split the root cluster Cr, ={ C4,C5,C5,C4,C5,Cé} . Algorithm
| usesthreeiterationsto build the tree. The splitting attribute for each cluster and the progression
of YSC aredso shown in thisfigure.

We define the leaf cluster in the clustering tree as the Terminal Cluster (1C) . Each TC may
contain one class only or several classes, which cannot be split further using any attribute.

For the purpose of classifying a new data pattern into a TC, we need to use the splitting

16



attributes to construct the cluster splitting rules for each cluster in the clustering tree based on
the fuzzy rules [20] for single attribute as presented in the following section. It should be noted
that the fuzzy rules employed here are for single attribute, thus we can circumvent the

computational complexity of the fuzzy set theory based approach indicated in Section 2.2.

Cr, ={C,.G;,Cg}

, k
Clustering Tree: Cr, ={C,,C,,C,,C,,C;,C,} cr, ={C,,.C}}
={C,.C, 03}4<
Cr, ={C}
Progression of YSC:: YSC ={Cr.} YSC ={Cr,,Cr,} EY$={Cr3,CI’4} YSC=¢

Figure2.8. An example of using Algorithm | to build the clustering tree.

2.2.1.4The Clustering Algorithm

The separation matrix based clustering algorithm consists of two parts. the training part
and the classification part. The training part, which is prepared for the classification part,
consists of three steps: (i) construction of the separation matrices for all attributes, (ii)
determine the cluster splitting attribute and build the clustering tree, and (iii) throughout the
clustering tree, generate the fuzzy if-then rules needed to classify a data pattern into proper
child cluster based on a given set of training data patterns with known TCs. In the above
three steps, (i) and (ii) had been presented in previous subsections. The details of (iii) as

well as the classification part are described below.

1. TheFuzzy-Rule Generation Procedures of the Clustering Algorithm
The fuzzy rules for splitting a non-TC cluster using the corresponding splitting attribute in

our clustering algorithm are of the same type. Thus, for the sake of explanation, we will

focus on generating the fuzzy rules for one cluster in the clustering tree. Welet Cr; denote

anon-TC cluster and k denote the corresponding splitting attribute. We let x:, s=1,..,g,

denote the kth attribute of g data patterns, x°, s=1,...,g, from M; known child clusters,
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CCry, . These g data patterns form the training data set for splitting Cr; . The fuzzy

rulesfor splitting cluster Cr; are of the following type.

For i=1,...,K,where K denotesthe number of fuzzy partitioned intervas on the range

of the k th attribute values,

Rule R(Cr,): If x; is A" thenthe x° belongsto CCr; with CR", where A" is
the i th partitioned fuzzy interval, CCr; is the consequent, i.e. one of the M, child
dusters,and CF* isthegrade of certainty of rule R(Cr)) (249

What need be determined in the above rule are CCr; and CF*, and the procedures for

determining them are caled fuzzy rules generation procedures for splitting one cluster as

described below.
Let A be characterized by the nenhegative fuzzy membership function (). The

membership function fiK(-) can be triangular, Gaussian, or any other shape. In this chapter,
we consider the triangular membership function. Then, f.“(x) can be considered as the grade
of compatibility of x° with respectto. A% Wedefine
ﬁccn-l (R(Cr))) = z fi “ (%) (2.9)
x°eCCr;,
as the sum of grade of compatibility of child duster CCr;, with respect to A“. Then the

agorithm for generating fuzzy rulesfor splitting cluster Cr; can be stated asfollows:

Algorithm I1: Generation of the K fuzzy rulesfor splitting cluster Cr; .

Step 0: Given g traning data paterns x°, s=1..,g, with known child clusters CCr;,
| =1,..,M; of the to-be-split cluster Cr; and the corresponding splitting attribute k.
Set i=1.

Sep 1. Cdculate the sum of grade of compatibility of child duster CCr;, 1 =1,..,M,, with
respectto A by (2.5).
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Step 2: Findthe child cluster CCr;, such that
Bear, (R(Cry)) = max{ fec, (R(CT))),. Becr, (R(Cr;))} (2.6)

then CCr,, istheconsequent CCr; inrule R(Cr).

Step 3: Determine CF.*, the grade of certainty of rule R (Cr;), by

CF = (Bee,, (R(CH) - BR(Cr)))/ 2. fec, (R(Cr)) @0

where B(R(Cr;)) = Zﬂw“ (Ri(Cr].))/(M ; —1) denotes the average of the sum

CCr #CCrjy
of grade of compatibility of the rest of child clusterswith respectto A

Sep 4 If i =K, sop; dse, set 1 =i +1, andreturnto Step 1.

2. Training Part of the Clustering Algorithm

Combining the construction: of separation matrices, determination of the splitting
attributes, building of the clustering tree:and the above fuzzy rule generation procedures, we
are ready to summarize the training procedures of the clustering dgorithm using the training

data set.

Algorithm [11: Training procedures of the clustering agorithm.

Step 0: Given a set of training data patterns with known classes; compute u* and o of
each class C and each attribute k ; compute the separation matrices

[D(C;,C;),] based on (2.2) for each attribute k.

Step 1: Apply Algorithm | to obtain the splitting attributes and build the clustering tree.

Step 2: Use Algorithm 11 to generate the fuzzy rules for each cluster in the clustering tree.

3. Classification Part of the Clustering Algorithm
Once the fuzzy rules for splitting the clusters in the clugtering tree are generated, we can

determine the child cluster to which the new data pattern belongs at each cluster based on a
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fuzzy reasoning method.

Let the new datapatternbe x' andlet x, bethe kthattributeof X' corresponding to the
splitting atribute k at cluster Cr;. We define y, , the weighting grade of certainty of x

with respect to the child cluster CCr, , as the sum of the multiplication of the grade of

it
compatibility of x with respect to A® and the grade of certainty of rule R(Cr;) over dl
K trained rules whose consequent are CCr; . We can express ., Mmathematicaly as

Yoo, = > (%) -CFRX. Then the classification procedures for the new data can be

R (Cr;),CCr;; =CCr;,

stated below.

Classification Procedures; The child cluster CCr,,,

with respect to which the weighting grade

of certainty of x, is maximum, is the concluded cluster of x' , tha is

CCry, = arg(max{7(:(:rj1 eV ey, H-

Now, the classification procedures for classifying anew data pattern x’ into a TC can be

stated in the following.

Algorithm IV: Classification procedures of the clustering agorithm.

Step 0: Given a new data pattern X' =(x,...,X,), where n denotes the total number of
attributes; set Present Cluster (PCr)=Cr, .

Step 1: Use x,, where k corresponds to the attribute used for splitting the PCr, and the

classification procedures stated above to classify x’' into achild cluster of PCr, we

denote this child cluster by CPCr. If the CPCr is not a TC, set PCr=CPCr and

repeat this step; otherwise, stop.

2.2.2 The CART for Terminal Cluster (TC)

The TCs resulted from the training part of the separation matrix based clustering

algorithm may consist of one or more classes. Since the number of classes and the size of

the corresponding data set in each TC should be much smaller than Cr,, it will be
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computationally much easier to apply CART to classify the TCs and the resulting tree size
of each TC will be much smaller. Therefore, our clustering agorithm help reduce the
computational complexity and the tree size of CART when appliesto Cr, aone.

The CART is a well-developed classification tool. The details of this classification
technique can be found everywhere [10]. Similar to the proposed clustering algorithm,
CART dso consists of training and classification parts. The training part of CART is to
build a classification tree and the splitting rules in each node. In brief, the construction of a
CART classification tree and splitting rules centers on three major elements: (a) the splitting
rule, (b) the goodness-of-split criteria, and (c) the criteria for choosing an optimal or final
tree for analysis. Regarding (), there are three major splitting rules in CART. The one we
employed here is the Gini’s criteria [10]. This criteria starts the tree-building process by
partitioning the TC into binary nodes based, upon a very simple question of the form: is
k<b? where k isan attribute and b isarea number. Regarding (b), the CART uses a
computation-intensive algorithm-that searches for the best split at all possible split points
for each attribute that decrease the Gini’s-impurity’ measure most. CART will recursively
apply this splitting rule to split non-terminalchild nodes at each successive stage. In order
to reduce the complexity of the built tree which is measured by the number of its terminal
nodes, CART uses a pruning process to find an optimal tree as pointed out in (c). The
computational complexity of the training part of CART mainly lies in the exhaustive search
for the best split required in (b). Once the classification tree and the splitting rules are
obtained, the classification procedure of CART is simply asking whether k <b? to
determine which of the binary child nodes the new data pattern belongs to throughout the

classification tree.

2.2.3 Classification of a New Data Pattern

Once the training part of the HCT, which combines the training parts of the clustering

algorithm and CART, is completed, we are ready to use the classification procedures of both
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clustering algorithm and CART to classify a new data pattern as required in the first two

blocksin Figure 2.2.

2.2.4 Learning Capability

The learning capability of a classifier is very important in current application, because for
every fourteen minutes, 24 wafers (or alot) of the same recipe will be ion implanted. Thus,
new data patterns arrive with a high frequency. For the sake of explanation, we can assume
the recipe of the working wafer is one of the recipes under work, because only slight
modification is needed for the case of new recipe. The learning of HCT after the new data
pattern joins in consists of two parts. The first part is for the clustering algorithm and the
second part is for CART. Learning of the clustering algorithm consists of three updating
steps: (i) updating the separation matrices;(ii), updating the attributes used to split clusters
as well as the clustering tree, and (iii)! Updating the fuzzy rules for splitting clusters.

Learning of CART isjust to update the best split for each node in the classification tree.

2.2.4.1 Learning of the ClusteringAlgorithm

Since the new lot of wafers is of the same recipe, the new data patterns will be used to

update the mean and variance of each attribute of the corresponding class. Denoting the

class index of the new data pattern by m, then we will update u and o for al k,
which will be used to update the separation indices D(C,,,C,), foral j,al k. Suppose

the updated D(C,,C;), do not change for all j and al k, then the separation matrices

remain the same; consequently, the splitting attributes for clusters and the clustering tree
also remain the same as can be observed from Algorithm 1. This implies that if the
separation matrices are unchanged after the new data pattern joins in, the updating step (ii)
can be skipped. In fact, u¥ and o¥ will only slightly deteriorate when the new data
pattern join in because of the large amount of training data set. Thisimplies that the updated

separation matrices may change only when the amount of accumulated new data patterns
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are large enough. On the other hand, suppose D(C,,,C,), changesforany j and k,and

cause the corresponding separation matrices changed in updating step (i), we need to
proceed with updating step (ii) by performing Algorithm | (i.e. Step 1 of Algorithm 111) to
update the splitting attributes and the clustering tree.

To update the fuzzy rules indicated in the updating step (iii), we also consider two cases.
In the case of unchanged separation matrices, which implies the clustering tree and splitting
attributes remain the same, we only need to update the fuzzy rules for the clustersin the tree
path of the clustering tree, along which the new data pattern belongs to. To do so, we let

Cr; beanon-TC cluster in this tree path, and let CCr;, bethe child cluster of Cr; in this

tree path. To update the rules R (Cr;) in (2.4) is to update the consequent and grade of

certainty after the new data pattern join in. To update the consequent, we need to update
Peer, (R(Cr))) first. To do so, we need to add an extra term of the nonnegative

membership function of the new data pattern on the right hand side of (2.5). The updated
ﬂCC,jZ (R(Cr;)) will be larger than the original-one. Thus according to Step 2 of Algorithm

[, the consequent will not ‘be changed-—Subsequently, we can use the updated
ﬂccriz(R(er )) to update the corresponding CE"" by (2.7). Thus, in this case, updating
fuzzy rules is an easy task because the length of atree path in the clustering tree is usually
short. In the case if the clustering tree or any splitting attributes changes due to the changed
separation matrices, we need to perform Step 2 of Algorithm 111, which is Algorithm I, to
update the fuzzy rules. Of course, thisis more complicated than previous case. However, no
matter what case, it will not affect HCT to work real-time and on-line as will be

demonstrated in Section 2.4.

2.2.4.2 Learning of CART

Following from previous discussions, there are also two cases for updating the splitting
rules of CART. Thefirst case is a subsequent situation of the unchanged separation matrices

such that the TCs of the clustering tree do not change. Since the number of training data
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patterns are very large, the best split point of each attribute in each node of the CART will
alter at most dlightly when new data pattern join in. Therefore, we need not exhaustively
search for the split point of each attribute. Instead, we can search for the split point only
within awindow of the original best split point of each attribute. The window is set to be +w
discrete points at the best split point of each attribute. This will of course save a lot of
computation time. In addition, we need only update the splitting rules for just one TC, to
which the new data pattern belongs. The other case is when the separation matrices change
and cause the clustering tree changes. In this case, we will rerun the CART for all TCs. As
indicated at the end of previous subsection, this will not affect HCT to work real-time and

on-line.

2.3 Warning Signal Generation and Fault Isolation

2.3.1 Warning Signal Generation

In general, the ion implanter will be stopped‘whenever there is awarning signal so as not
to damage the subsequent wafers. However, ithis reaction will be justified only when the
warning signal is absolutely correct; otherwise, the throughput will be degraded. Thus, to
minimize the probability of false aarms should be one of the objectives. On the other hand,
thousands of wafers may be damaged if any fault is not detected. Thus, to minimize the
probability of overlooking a fault is another objective. In general, a matched classification
result implies (i) the machine isin normal condition, or (ii) the actual implantation has been
wrong due to a machine fault but a misclassification makes the classified recipe match the
destined one. Case (ii) indicates a fault situation that cannot be observed from the matched

result. We let n, denote the misclassification rate of recipe i, which can be calculated by

the following

o= x(j)m(i | ) (2.8)

j
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where 7(]j) denotes the prior probability of recipe | and m(i|j) denotes the
misclassification rate of classifying recipe | toberecipe i. If case(ii) occursto recipe i,
then the probability of a series of n such events occur is 7" . This indicates the
probability of an undetected machine fault will be extremely small provided that 7, is
small, and n islarge. This aso implies that the matched recipe will eventually mismatch
provided that the matched result is due to a misclassification. Real values of 7, for all i
based on HCT will be given through the tests presented in Section 2.4. This addresses the
comment cited in Section 2.1 that we need not check the existence of a machine fault when
the classified recipe matches the destined one, and the cost of such areaction isat most n
damaged wafers, where n is a positive integer that makes n" extremely small. This aso
indicates when the classified recipe matches the destined one, we can continue for next
wafer as shown in Figure 2.2. Thus, using.the classification accuracy of the HCT as the
basis of generating a warning signal, our;ebjective can be ssimplified to minimizing the
probability of false alarm.

There are two causes of false darms—One-is the electrical spike and the other is the
classification error. Both cases will" cause the classified recipe mismatch the destined one
and require the checking of warning signal generation criteriaas indicated in Figure 2.2. To
minimize the probability of false alarm due to an electrical spike, we should distinguish an
electrical spike from a machine fault. The electrical spike is only temporary, which may
affect one or two wafers only, while the machine fault will last until it is fixed. Thus, an
easier way to distinguish them is checking whether a series of classification errors occur. In
other words, if there are more than, say, four consecutive classification errors, the causes of
the errors should not be the electrical spikes. Similar reasons apply to the classification
errors. We let g denote the classification error rate, which is defined as (number of
misclassified wafers/number of test wafers)* 100%, of recipe i obtained using k-fold cross
validation. Then the probability of the occurrence of n consecutive classification errorsis
(q)", which decreases sharply when n increases. Thus, an easier way to distinguish the

classification error from the machine fault is aso checking whether a series of classification
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errors occur. To achieve this, we can predetermine a very small positive rea number ¢, a

probability indication of an event that is almost not possible to occur. Thenif (g)" <&, we

can conclude that the cause of mismatched recipe is not classification errors. Thus we can
state our warning signal generation criteria as follows.

Let the classification error rate of recipe i obtained using k-fold cross validation be

denoted by ¢, and let n denote the number of consecutive working wafers, then the

proposed criteriafor generating awarning signal is:

Assume the classified recipe of the (I —1) th wafer matches the destined one, while
the | th, (1+21) t4,..., (I+n)th wafers do not, the warning signal will be

generated at the (I + n) th wafer provided that the following two conditions hold:

g, (1)xq_(hdxizxg (+n)<e (2.9)

and
n>ny (2.10)

where i, denotes the destined recipe of the | th wafer, g (l) denotes the g of

the | th wafer, ¢ is a very small positive real number, and n, denotes the

maximum number of consecutive wafers that can be affected by the electrical

spikes.

If condition (2.9) holds, we can exclude the possibility of false alarm due to classification
errors. If condition (2.10) holds, we can exclude the possibility of fase aarm due to the

electrical spikes.

2.3.2 Fault Isolation

To eliminate the machine fault, we need to isolate the fault first. In general, when there is
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a fault in a subsystem, the attribute (or attributes) corresponding to that subsystem may
become abnormal. Thus, the basic idea of our fault isolation scheme isto find the attribute(s)
that causes the classification errors, and this can be easily done in asingle-tree classifier like
CART and HCT, which is their biggest advantage, the interpretability. In fact, the
tree-structure of HCT is much simpler than CART, because it largely reduces the tree size of
CART by using the clustering tree to separate the whole data set into several TCs. Thus, if
the misclassified recipe and the destined recipe belong to different TCs, we can use the
clustering tree to find the faulty attribute. While if they belong to the same TC, we will use
the corresponding CART to find the faulty attribute. Considering that the machine fault may
occur abruptly or develop gradually, and there may be single or multiple faulty attributes,
we will find the faulty attribute(s) for each misclassified wafer by the aid of its tree path and
the tree paths of severa latest correctly classified wafers of the same destined recipe. Thus,

once awarning signal is generated;.our fault isolation scheme will proceed as follows.

Step 1: Collect the m, consecutive misclassified wafers that cause the warning signal, i.e.
m, = max(n,n,) such that conditions (2:9)-and (2.10) hold.

Step 2: Collect the latest m, correctly classified wafers, which have the same destined
recipesasthe m, wafersin Step 1.

Step 3: For each of the m, wafersin Step 1 and each of the m, wafersin Step 2, we will

find the faulty attribute(s) that causes the misclassification as follows.

3.1 Suppose the two wafers belong to different TCs, say TC, and TC,, wewill use
the clustering tree to find the faulty attribute by tracing the tree paths backward
from the corresponding TCs. These two paths will meet at a node whose splitting
attribute will be the faulty attribute. As illustrated in Figure 2.9, the faulty
atributeis k;.

3.2 Suppose the two wafers belong to the same TC, and they lie in two different
terminal nodes of the corresponding CART, we can find the faulty attribute in a

similar manner asin Step 3.1 using the classification tree of CART.
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Step 4: List al the different faulty attributes found from the m, xm, searchesin Step3 and

calculate the corresponding probability, based on the frequency of occurrences.
Indicate the corresponding subsystem of the faulty attributes and calculate the

corresponding probability by adding the probabilities of the faulty attributes in this
subsystem.

Figure2.9. Using clustering treeto find the faulty attribute.

2.4 Test Results of HCT,Warning Signal-Generation and Fault

| solation

2.4.1 Test Results of HCT

In general, there are quite a few attributes that can be measured from the ion implanter;
however, not al attributes are helpful in classification. According to the domain knowledge,
the following 12 attributes, ki, ..., ki1 and ki,, are recommended: filament voltage, filament
current, discharge voltage, discharge current, extraction electrode voltage, extraction
electrode current, acceleration/deceleration voltage, magnetic field strength, high voltage
power supply current, beam current, beam-line pressure, and chamber pressure, respectively.
These 12 attributes cover the four subsystems of the ion implanter. Table 2.1 shows the units
and related subsystems of the above 12 attributes. We have made all the tests on a 26-recipe

case and a 42-recipe case. Due to the page limitation, we will present the complicated
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42-recipe case only. It should be noted that al the test results shown in this section are
simulated in a Pentium IV PC using Matlab.

A data set of 42-recipe case, and each recipe consists of a thousand to 10,000 wafers are
supported from a local world-renowned foundry. We use them to test the classification
accuracy of the proposed classifier HCT and to demonstrate the validity of the warning
signa generation criteria and fault isolation scheme. It takes one second to measure a
12-attribute data pattern. The ion implantation time for a wafer is around 10 seconds. Thus,
ten data patterns are taken while a wafer is under work. The wafer changeover time is 26
seconds on average. Each lot contains 24 wafers, and the setup time for a new lot is 13
minutes. For all the measured data patterns in this case, we randomly divide them in wafer

base into ten parts. We take 9 parts as training data set and 1 part as test data set. We set
p=0.075 in (2.2), the number of fuzzy partitioned intervals K =12 and a triangle

nonnegative membership function for " () _in Algorithm II. Applying Algorithm 111 to the

training data set, the resulting clustering tree and the splitting attributes are shown in Figure
2.10, where each cluster is denoted by a-black;sand the recipes contained in a cluster are
shown inside the parenthesis in each block. The attribute used for splitting each cluster is
indicated at the outgoing branch in the clustering tree. The corresponding fuzzy rules for
each gplitting attribute are also obtained. There are five TCs, and each TC consists of more
than one recipe except for the one consisting of recipe 23 only. Subsequently, we apply
CART to the four TCs and build the classification tree and splitting rules for each TC. We
then use the part of test data to test the trained HCT using Algorithm 1V of the clustering
algorithm and the classification tree and splitting rules of CART. Since each wafer
corresponds to 10 measured data patterns, and each test data pattern will be classified to a
recipe, thus a majority voting scheme is used to conclude the classified recipe of the wafer
corresponding to the 10 test data patterns. Repeating this process for ten times by
circulating the training data set and test data set, Table 2.2 shows the resulting 10-fold cross
validation classification error rate of al recipes in this test. We also indicate the 10-fold

cross validation classification error rate using the software See5 [21] and CART [10] in this
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table. From this table, we can calculate the sum of classification error rates of the proposed

HCT with p=0.075 is around 0.2955%; while the sum of classification error rates using

See5 and CART are 0.53% and 0.6427%, which are 80% and 117% more than that of HCT,

respectively. Thus HCT obtains a very successful classification result.

Table 2.1. The units and related subsystems of the 12 attributes.

Attribute Unit | Subsystem
k, [filament voltage Volts | ion source
ko |filament current Amps | ion source
ks |discharge voltage Volts | ion source
k4 |discharge current Amps | ion source
ks (extraction electrode voltage KV extractor
ke |extraction electrode current mA extractor
k7 |acceleration/deceleration voltage | KV extractor
ks |magnetic field strength KGaussmass analysis
Ko |high voltage power supply current| pA  |mass analysis
k10{beam current MA |massanalysis
k11/beam-line pressuré Torr/e6| accelerator
k1o/chamber pressure Torr/e6| accelerator
TC,
ksl (234910,
71 11,18,19,20,21,
37,38,39,40,41)
Ky
— TC, (23
C:rl
o k, | (8141516 TC,
(1~ sz) »| 23,24,2526,27, K | (641516
2829303132 | "o, |04 55960728
33,34,35) 293031,323
3,34,35)
‘ TC,
| T, | (1,6,7,12,13)
K Cr,
(1,56,7,12,
1317,22,36,42) TC,
klO 5
10 | (517,22,36,
42)

Figure 2.10. The clustering tree of the 42-recipe case.
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Table 2.2. The 10-fold cross validation classification error rate of the 42-recipe case.

Classification error Classification error rate Classification error rate
Recipe rate(%) Recipe (%) Recipe (%)
HCT HCT HCT
p=0.075 | CART | Seeb p=0.075 | CART | See5 p=0.075 | CART | Seeb
1 0 0 0 15 0 0 0 29 0 0 0
2 0 0 0 16 0 0 0 30 0 0 0
3 0 0 0 17 0 0 0 31 0 0 0
4 0 0 0 18 0 0 0 32 0 0 0
5 0 0 0 19 0 0 0 33 0 0 0
6 0.05 0.05 | 0.05| 20 0.2 0125 | 0.2 | 34 0 0 0
7 0 0 0 21 0 0 0 35 0 0 0
8 0 0 0 22 0 0 0 36 0 0 0
9 0 0 0 23 0 0 0 37 0 0 0
10 0 0.05 0 24 0 0 0 38 0 0 0
11 0 0 0 25 0 0 0 39 0.0455 0 0
12 0 0 0 26 0 0 0 40 0 0 0
13 0 0 0 27 0 0 0 41 0 0 0
14 0 0.4167|0.28| 28 0 0 0 42 0 0 0

Remark 1: From the test results shown in Table 2.2, we see that the superiority of HCT
over CART and Seeb is mostly- due to the zero classification errors of recipe 14. What
causes the classification errors of recipe 14 in CART or See5 is the overlapping of the
attribute data between recipes 14 and 20. Thus,.some test data patterns of recipe 14 may be
classified to be recipe 20 in CART or Seeb. Fortunately, in HCT, recipe 14 and 20 have been
classified into different TCs as can be observed from Figure 2.10. This drastically reduces
the possibility of classifying recipe 14 to be 20. However, in HCT, recipe 20 may still be
classified into recipe 14, which can aso be observed from Table 2.3 for misclassification
rate. Excluding recipe 14 from the data set, we repeat the complete training and test process,
and the results show that the sum of classification error rates of HCT, CART, and See5 are
0.173, 0.248 and 0.182, respectively. Indeed the three sums of classification errors are closer,
however, HCT is still the best among them. Furthermore, we aso apply the three classifiers
to the 26-recipe case that we mentioned at the beginning of this subsection, and the sum of

classification error rates of HCT, CART and Seeb are 0.225, 0.577 and 0.405, respectively.
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For this 42-recipe case, we also obtain the misclassification rate defined in (2.8) for the

three classifiers as shown in Table 2.3. The largest misclassification rate of HCT,
Nmax = Max 1, , 18 0.0043% and the sum of misclassification rates ini is around 0.00737%.

=
Taking n=4, n" <10, This demonstrates the analysis stated in Section 2.3 for the
validity of no fault assumption, which states that if a machine fault exists, the classified
recipe will eventually mismatch the destined one. Compared with CART and Seeb, the sum
of misclassification rates of HCT is better, and this is consistent with the results of

classification error rate shown in Table 2.2. To investigate the training efficiency and the

capability of real-time classification of HCT as well as the effects of different valuesof p,

A

we have applied HCT to the 42-recipe case with three other value of p. The resulting

10-fold cross validation for the sum of, classification error rates, the corresponding average
training times, and the classification time for classifying the recipe of a new data pattern are

shown in Table 2.4. From the fourth row of thistable, we can observe that when p <0.075,

the 10-fold cross validation for the sum of classification error rates of HCT is better than
that of See5 and CART. From the second row of the table, we see that when p>0.075, the
training time required by HCT is much shorter than that required by CART and See5. The
classification time needed for classifying a new data pattern is much shorter than that of
See5 and CART for al the indicated values of p; in addition, it is also much shorter than
the data measurement time, which takes one second, thus HCT can work real-time. This
shows that HCT not only performs better than See5 and CART in the aspect of 10-fold cross
validation for the sum of classification error rates but also consumes less training time and
classification time when p is properly chosen. In the meantime, we found that as p
increases, the HCT becomes less accurate and less computational time consuming as
expected. This aso demonstrates why the clustering agorithm helps reduce the

computational complexity of CART.
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Table 2.3. The misclassification rate n of the 42-recipe case.

Misclassification rate (%) Misclassification rate (%) Misclassification rate (%)
Recipe HCT Recipe HCT Recipe HCT

p=0.075| CART | Seeb p=0.075| CART | Seeb p=0.075 | CART | Seeb
1 0 0 0 15 0 0 0 29 0 0 0
2 0 0 0 16 0 0 0 30 0 0 0
3 0 0 0 17 0 0 0 31 0 0 0
4 0 0 0 18 0 0 0 32 0 0 0
5 0 0 0 19 | 0.0006 [0.0049/0.0021| 33 | 0.00124 0 0
6 0 0 0 20 0 0.0062|0.0053| 34 0 0 0
7 10.00123|0.00123|0.00123] 21 0 0 0 35 0 0 0
8 0 0 0 22 0 0 0 36 0 0 0
9 0 0 0 23 0 0 0 37 0 0 0
10 0 0 0 24 0 0 0 38 0 0 0
11 0 0 0 25 0 0 0 39 0 0 0
12 0 0 0 26 0 0 0 40 0 0 0
13 0 0 0 27 0 0 0 41 0 0 0
14 | 0.0043 | 0.0025| 0.0037 | 28 0 0 0 42 0 0 0

Table 2.4. The training time, classification time and 10-fold cross validation for
the sum of classificationerror ratesfor different valuesof p.

HCT

Classifier p=0.05] p=0.075| p=0.08 p=0.13 “ART| See5

Training time (sec) 28105 | 24.295 | 22.853 | 19.246 (38.765| 26.71

Classification time (sec) 0.052 | 0:047 | 0.041 | 0.037 |0.098 | 0.093
10-fold cross validation for the

sum of classification error rates (%)| 0-2500 | 0.2955 | 0.8455 | 2.9100 (0.6427|0.5300

2.4.2 Test Results of the Learning Capability of HCT

We also test the learning capability of the proposed HCT by adding the new data patterns
to the training data set. We found that when the accumulated amount of new data patternsis
less than 7%, on average, of the amount of training data of the same recipe, the updated
separation matrices remain the same. The length of the window in updating the splitting
rules of CART, w, is set to be 5. In the case of unchanged separation matrices, the
computation time for checking whether there is any change in separation matrices, updating
the fuzzy rules of the clustering algorithm and the splitting rules for CART take only 0.1637

seconds for each new data pattern when p=0.075. This updating time is shorter than

measuring a new data pattern, thus we can perform the online update. In the case when
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separation matrices change, updating the separation matrices and rerunning Steps 1 and 2 of
Algorithm I11 and the training part of CART for the resulting TCs take only 21.741 seconds,
which is even shorter than the wafer changeover time, which takes 26 seconds. For different
values of p, the updating times of HCT when separation matrices change are shown in
Table 2.5. From the above results, we see that we can update the training part of HCT
during the wafer changeover period. This indicates that the learning capability of HCT
enables it to update real-time and on-line. It should be noted that the HCT’s updating time
being shorter than the training time is because updating the separation matrices is much

easier than constructing from nothing.

Table 2.5. The updating time of HCT when separation matrices change for different p.

p 0.05 [0.075] 0.08 | 0.13
Updating time of HCT(sec) [24.619|21.741|18.295/16.831

2.4.3 Test Results of the Warning Signal Generation and Fault 1solation

To test the validity of the proposed warning signa generation criteria and fault isolation
scheme, we use six small sets of measured data patterns, which are also collected from the
42-recipe case but not included in the above data set for constructing the HCT. Among them,
the first two sets consist of abnormal wafers caused by machine faults, and the other four
sets consist of abnormal wafers caused by electrical spikes. There are 50 wafers with
destined recipe 39 in the first set and the 10 abnormal wafers are locating from the 21% to
the 30™ wafers caused by attribute ks. The second set consists of 40 wafers with destined
recipe 6 and the 10 abnormal wafers are locating from the 31% to the 40" wafers. The first
abnormal wafer is caused by attribute ko, and the rest 9 wafers are caused by both kg and k.
The third set consists of 20 wafers, and the 2 abnormal wafers are locating at the 16™ and
17" wafers caused by the attribute ks, whose values are affected by electrical spikes. The
abnormal wafers caused by electrical spikes also occur to the fourth, the fifth and the sixth

set of wafers; these three sets consist of 30 wafers each, and the two abnormal wafers are



locating at the 19" and 20™, 23 and 24™, and 27" and 28" wafers caused by attributes ke,
ko and k1o, respectively. We randomly pick 6 out of 10 existing HCT test data sets and insert
the above 6 small sets of data patternsinto the 6 test data sets, one for each.

Setting £=10", n,=4, and g of each recipe i as the result shown in Table 2.2, we
apply the HCT associated with the majority voting scheme to classify the above six test data
sets. In the first test data set, the warning signal generation criteria, i.e. conditions (2.9) and
(2.10), are satisfied at the 5" abnormal wafer of the first small data set, because

O = 0.0455% according to Table 2.2, thus g, <e=10", and n,=4<5. This

demonstrates that our warning signal generation criteria has successfully detected the fault.
Now we have m =5 according to Step 1 of the fault isolation scheme. We also set m, =5,
which are the 16" to the 20" wafers in the first small set of test data. The 5 misclassified
wafers are al classified to recipe 24 while the previous 5 wafers are correctly classified to
recipe 39. Since recipes 24 and 39 belongite.different TCs, we apply Step 3.1 of the fault
isolation scheme and find that- there are only two- traced back tree paths, which are
TC3-Cr;-Crp and TC4-Cry, respectively,-as-ean-be observed from Figure 2.10. Thus, the
faulty attribute causing the classification errors is kg with probability 1.0, and the
corresponding subsystem is the mass analysis, which is also with probability 1.0. In the

second test data set, the warning signal generation criteria are satisfied at the 5 abnormal

wafer, because ¢, =0.05%, thus g <&=10",and 5>n =4. Thus, wehave m =5, and
we also set m,=5. The 5 misclassified wafers are al classified to recipe 7, while the

previous 5 wafers are all correctly classified to recipe 6. Since recipes 6 and 7 belong to the
same TC, TC,, as can be observed from Figure 2.10, we need to apply Step 3.2 to perform
fault isolation. The CART for this TC is shown in Figure 2.11. The latest 5 correctly
classified wafers lie in the same termina node for recipe 6 asindicated by [1in Figure 2.11.
However, there are two different termina nodes for the 5 misclassified wafers as indicated
by V in Figure 2.11. This is because the first abnormal wafer consists of one faulty attribute
kg only, while the rest four consist of two faulty attributes, kg andkio. Note that the number

inside the parenthesis beside V denotes the number of misclassified wafers lying in this
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node. Applying Step 3.2 of the fault isolation scheme, the traced back tree paths for recipe 6
indicated by [1 is shown by the solid line and for recipe 7 indicated by V are shown by
dashed lines in Figure 2.11. The faulty attributes, which are the splitting attribute of the
nodes where the traced back paths meet, are kg with probability 0.2 and kip with probability
0.8. The corresponding subsystem of both kg and ki is the mass analysis, which is thus with
probability 1.0. For the third set to the sixth set of test data, the details of the misclassified
abnormal wafers are tabulated in Table 2.6. From this table and Table 2.2, we can easily find
that conditions (2.9) and (2.10) can not hold simultaneously. Thus, no warning signal is

generated in any of these four cases.
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Figure 2.11. Classification tree of CART for TC,.
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Table 2.6. The misclassified abnormal wafers caused by electrical spikes.

Data set|No. of abnormal| Faulty |Destined|Classified
wafers attribute| recipe | recipe
3¢ 2 Ks 6 7
4" 2 Ke 14 24
5" 2 ko 20 41
6" 2 K1o 39 40

2.5 Concluding Remarks

The proposed classification based fault detection and isolation scheme is a general
methodology. Modifying the warning signal generation criteria to meet individual
machine’s needs, this fault detection scheme is not limited to the ion implanter. The
simplicity of the HCT based fault isolation scheme made HCT worthwhile especially when
its accuracy can be remedied by the warning signal generation criteria when applying to the
ion implanter. Due to the efficient tearning capability of HCT and the 0.05 seconds
classification time for classifying the recipe of aworking wafer, the proposed fault detection

and isolation scheme can work on line and-real-time.
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Chapter 3

Reducing Overkills and Retests in Wafer Testing Process

3.1 Introduction

The wafer fabrication process is a sequence of hundreds of different process steps, which
results in an unavoidable variability accumulated from the small variations of each process
step. Chips are tested multiple times throughout the design and manufacturing process to
ensure the integrity of the chip design and the quality of the manufacturing process.
Semiconductor testing of chipsisrequired at various stages during the fabrication process.

Wafer probing, or testing chips while they are still in semiconductor wafer form is critical
to both engineering and production test. A typical wafer is 8 inches or 200 mm in diameter
and usually contains 600 to 15,000 chipszWafer prebing establishes a temporary electrical
contact between test equipment; such as an Agilent analyzer, and each individua die (or
chip) on a wafer to determine. whethereach chip meets design and performance
specifications. The test transmits electrical _signals to the chip and analyzes the signals that
return. Wafer probing ensures that the chip manufacturer avoids incurring the significant
expense of assembling and packaging chips that do not meet specification by identifying
flaws early in the manufacturing process.

Although there exist techniques such as the Statistica Process Control (SPC) [22] for
monitoring the operations of the wafer probes, the probing errors may still occur in many
aspects and cause some good dies being over killed; consequently, the profit is diminished.
Thus, reducing the number of overkills is aways one of the main objectives in wafer testing
process. The key tool to identify or save overkills is retest, which is an additional wafer
probing. However, retest is a major factor for decreasing the throughput. Thus, the overkill
and the retest possess inherent conflicting factors, because reducing the former can gain

more profit, however, at the expense of increasing the latter, which will degrade the
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throughput and increase the cost.

There may be different testing procedures in different chip manufacturers. But, no matter
what testing procedures are used, the decision for carrying out the retest should be based on
whether the number of good dies and the number of 6ind® in a wafer exceed the
corresponding threshold values. Deciding whether to go for aretest is a decision problem. In
current wafer testing process, this decision is made based on whether the number of good
dies and the number of 6ins in a wafer exceed the corresponding threshold values. Manually
adaptive adjustments of the threshold values based on engineering judgment, three-sigma
limit [23] or a looser six-sigma limit are currently used in some semiconductor
manufacturing companies. Consequently, determining these threshold values so as to
minimize the overkills under a tolerable level of retests iS the main theme of the stochastic
optimization problem considered here. What. implies is that drawing a fine line for deciding
whether to go for a retest to save possibleeverkills is an important research issue in this
stochastic optimization problem Of the wafer testing process.

Various techniques such as the weighting-ebjective method, hierarchical optimization
method, trade-off method, global criterion method, and method of distance functions and
min-max method described in [24] can be used to solve stochastic optimization problems.
Considering the economic situation regarding throughput requirement, it would be most
beneficial for us to use the trade-off method [25] to solve the current problem. That is to
minimize the overkills subject to atolerable level of retests provided by the decision maker.

The purpose of this chapter is using a systematic approach to determine these threshold
values. We first formulate a stochastic optimization problem on the threshold values. Since
the formulated stochastic optimization problem consists of a huge decision-variable space,

this makes the problem becomes a hard optimization problem. Thus, to cope with the

A 6in denotes a type of circuitry-defect in a die. There are various types of bins, and a die of any

type of binis considered to be abad die.
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enormous computational complexity, we propose an ordinal optimization theory based
two-level agorithm to solve the formulated problem for a good enough solution. This
computationally intractable problem is most suitable for the application of our OO theory
based two-level algorithm to seek for good enough threshold values.

We organize this chapter in the following manner. In Section 3.2, we formulate a
stochastic optimization problem on the simulated wafer testing procedures. In Section 3.3,
we will present the proposed OO theory based two-level algorithm and justify its
performance using simulations. In Section 3.4, we will present the application of the OO
theory based two-level algorithm to reduce overkills and retests in semiconductor wafer
testing process. In Section 3.5, we will show the test results of applying the proposed
algorithm on two real cases and demonstrate the solution quality by comparing with a vast
number of randomly generated solutions and competing methods. Finaly, we will make a

conclusion in Section 3.6.

3.2 Problem Statements and Mathematical Formulation

3.2.1 Testing Procedures

Wafer probing establishes a temporary electrical contact between test equipment and each
individual die (or chip) on a wafer to determine the goodness of a die. We employ typical
testing procedures used in aloca world-renowned wafer foundry. Figure 3.1 shows the flow
chart of the real and simulated testing procedures. All the solid blocks represent the real
testing procedures, while the dashed blocks are added for the purpose of computer
simulation. The operation of the real testing procedures is briefly described in the following.

For every wafer, the wafer probing is performed twice as shown in the solid square
marked by | in Figure 3.1. The second probing applies only to those dies failed in the first
one. A dieis considered to be good if it is good in either probing. If adieis detected to have

bins in both tests, the bin detected in the second probing is taken as the bin of that die. We
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let g; (g;) denote the number of good (bad) dies in wafer j, and let b, denote the

number of dies of bin k inwafer j.Assume there are K types of binsin awafer, then

K
g, =Y. b, and g, =TD, -7, asshown in the square marked by Il in Figure 3.1, where
k=1

TD; denotes the total number of dies in wafer j. Following the two times of wafer

probing and the calculation of g; and @;, atwo-stage checking on the number of good

diesis performed to determine the necessity of carrying out a retest, i.e. an additional wafer
probing. The mechanism of the two-stage checking described in the part of the testing

procedures enclosed in the dotted contour can be summarized below. We let g,,,;, denote

the threshold value for the fower bound of the number of good dies in a wafer to determine

whether to pass or hold the wafer; welet n,,. ., k=1...,K, denote the threshold value for

the upper bound of the number of dies of bin k in the hold wafer to determine whether to

perform a retest. If g; > gy, ,,, We passiwafer_ j as shown in the diamond-shape block

marked by Ill.a and the square marked by -1ll.¢; otherwise, we will hold this wafer and
check its bins. For the hold wafer |, if by <n, . for al k, then wafer j will be

passed, as shown in the diamond-shape block-marked by I11.b and the square marked by

Ill.c. However, if the hold wafer j consistsof any bin k with b, >n, ., retestswill be
performed for al diesof bin k inwafer | to check for possible probing errors as shown

in the diamond-shape block and square marked by 1V.b and 1V.d. Then, the overkills will be
saved when there are probing errors as shown in the square marked by V. For bin k inthe
hold wafer j with b, <n, ., we pass it as shown in the diamond-shape block and
square marked by 1V.b and IV.c. This threshold value checking process will continue until
all bins are checked as indicated in the diamond-shape blocks and squares marked by 1V.e,
IV.f, IV.g, and IV.h.
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Figure 3.1: Flow chart of the real and simulated wafer testing procedures.
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3.2.2 Computer Simulation of the Testing Procedures

1. Smulation Model for the Two-times Wafer Probing

Since we cannot perform the real wafer probing in computer, for the purpose of

simulation, we need to build up a simulation model for the two times wafer probing. We let

B, denote the discrete random variable for the number of dies of bin k in awafer. Since
P(B, =n) can be provided by the real data, we can randomly generate the value of B,
for awafer based on the discrete probability mass function P(B, =n).

Each die of bin k can be either an actual bin caused by manufacturing errors or an
overkill caused by testing errors. Thus we can treat the overkills in B, as a binomial
random variable with probability p, , which represents the probability of overkills in dies
of bin k and can be provided by real'data. Welet V,” denote the random variable for the
number of overkills in B, . Then, once the value of B, is randomly generated, we can
randomly generate the value of V,° based on a binomia probability distribution with

probability p, .

2. Smulation of the Testing Procedures

We let b, and v} denote the values generated from the random variables B, and
V. for wafer |, respectively. The two times wafer probing in Figure 3.1 will be replaced
by the random generator of B, and V,” shown in the dashed square marked aso by | in

Figure 3.1. The dashed squares in Figure 3.1 except for the one mentioned above are for

caculating the number of overkills and retests resulted from the simulated testing

procedures. In contrast to vj , we let v, denote the number of overkills for bin k of

wafer | after completing the testing procedures and let r, denote the corresponding

number of retests. In the testing procedures, athough we may pass the wafer when the

threshold value test is a success, there may be overkills. We let V; and R; denote the

total number of overkills and retestsin wafer |, respectively. Thus for the passed wafer |,
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V= Zvj’k and R, =0 as shown in the dashed square marked by VIII in Figure 3.1. The
k=1

same logic applies to the passed bin k of the hold wafer j that v, =V} and r, =0 as

shown in the dashed square marked by V1 in Figure 3.1. However, for any retested bin, the
probability of any unidentified overkill is extremely small, because the dies had been
probed three times, which include two times wafer probing before any retest. Thus, for any
retested bin k, r, =b, andweassume v, =0, because the overkills are saved, as shown
in the dashed square marked also by V in Figure 3.1; the solid square marked by V will be
replaced by this dashed square in the simulated testing procedures. Once all the threshold

value tests for al bins of the hold wafer | are completed, we can compute V; and R,

as shown in the dashed square marked by VII in Figure 3.1. The resulting valuesof V; and

L L
R, of wafer | will be used to calouate EIV]=< >V, and E[R|=< )R, which
j=1 j=1

represent the average overkills and.retests per water, respectively, and L denotes the total

number of tested wafers.

3.2.3 Problem Formulation

From Figure 3.1, we see that if weincrease g9,,,,, Whiledecreasing n,,., ,that is setting

more stringent threshold values, there will be more retests and less overkills. This shows a
conflicting nature between the overkills and retests. Thus, to reduce overkills under a

tolerable level of retests, we will set minimizing the average number of overkills per wafer,

E[V], as our objective function while keeping the average number of retests per wafer,

E[R], under a satisfactory level. Thus, our problem for determining the threshold values

can be formulated as the following constrained stochastic optimization problem:

mixn E[V]

subject to { simulated wafer testing proceduresin Figure 3.1},

E[R]<T,, (3.1)



where X =[Gy min»Nemax ' K = 1., K] denotes the vector of threshold values, that is the
vector of decision variables; X denotes the decision variable space; r; denotes the

tolerable average-number of retests per wafer.

Remark 2: @ The value of r; can be determined by the decision maker based on the

economic situation. When the chip demand is weak, the throughput, in genera, is not

critical in the manufacturing process; therefore, we can alow a larger r, so as to save

more overkills to gain more profit. On the other hand, if the chip demand is strong, then the

throughput is more important, and we should set the value of r, smaller. Taking the chip
demand into account is a distinguished feature Of the proposed formulation. b) It is possible to
pursue the relationships between the number of retests and the throughput. Then if we can
derive the profit in terms of the throughput and the overkill, we can formulate an
unconstrained optimization problem to maximize the profit. However, the relationships
between the profit and throughput ‘are very complicated due to the status of chip demand.
For instances, when the chip demand is streng;-targer throughput implies higher profit; on
the other hand, if the chip demand is'wesak, larger throughput will cause inventory problem,
which will hurt the profit. Therefore, the current formulation is ssmple and direct for a

decision maker.

Since the constraint on  E[R] shown in (3.1) is a soft-constraint in a sense, we can use a

penalty function to relax that constraint and transform (3.1) into the following

unconstrained stochastic optimization problem:
mixn EV]+P(E[R]-r;)x(E[R] -1, )"
subject to { simulated wafer testing proceduresin Figure 3.1}, (3.2

where P(E[R]-r;) denotes a continuous penalty function for the constraint E[R] <r,,

and (xX)" = max(x,0).
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3.3 The OO Theory Based Two-Level Algorithm and Performance

Evaluation

3.3.1 The OO Theory Based Searching Procedures

The considered stochastic simulation optimization problem is stated in the following

min,_, J(0) (3.3

where © isahuge decision-variable space, and J(-) isthe objective function, which may

be an expected output or a function of expected outputs of the ssimulated system. To cope
with the computational complexity of this problem, we will employ the Ordina
Optimization (OO) theory based searching procedure [26]-[27], which efficiently seeks a
good enough solution with high probability tnstead of searching the best for sure based on
the observation that the performance order of the decision-variable vectors is likely
preserved even evaluated by a crude model. From here on, we will use the word vector to
represent the vector of decision variables.

The existing searching procedure of OO can be summarized in the following [27]: (i)
Uniformly or randomly select N, say 1000, vectors of decision variables from X . (ii)
Evaluate and order the N vectors using an approximate model, then pick thetop S, say
35, vectors to form the estimated good enough subset. (iii) Evaluate and order al the S
vectors obtained from (ii) using the exact model, then pick the top k (>1) vectors. The
basic idea of the OO theory is based on the following observation: the performance order of
the decision variablesis likely preserved even evaluated using a crude model. Thus, the OO
approach can reduce the searching space using cheaper evaluation to save computational
time as indicated in (ii), and the best vector of decision variables obtained in (iii) is proved
in [27] to be agood enough, top 5%, solution among N (=1000) with probability 0.95.

However, the good enough solution of problem (3.3) that we are searching for should be a
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good enough vector in © instead of the N vectors unless ® is as smal as N
[28]-[29]. As indicated in a recent paper by Lin and Ho [30], under a moderate modeling
noise, the top 3.5% of the uniformly selected N vectorswill be among the top 5% vectors
of ahuge ® with avery high probability (>0.99), and the best case can be among the top
3.5% vectors of ® provided that there is no modeling error. However, for ® with size of
10% | atop 3.5% vector is a vector among the top 3.5x10% ones. This certainly not seems
to be a good enough solution in the sense of practical optimization; however, it is acceptable
only when ® consists of lots of good vectors so that even if the performance order of the
selected vector is not practically good enough, the corresponding objective value acceptable
only when ® consists of lots of good vectors so that even if the performance is. As a
matter of fact, most of the practical stochastic simulation optimization problems do not have
lots of good vectors; otherwise, finding a good enough solution won’t be difficult. Therefore
to apply the existing ordinal optimizati on.searching:procedures, we need to develop a new
scheme to select N excellent vectors from~@® to replace (i) so as to ensure the find
selected-vector is a good enough sol ution-of-(3:3)- from the practical viewpoint.

Heuristic methods for obtaining “N'-excellent vectors may depend on how well one’s
knowledge about the considered system. For instance in the optimal power flow problems
with discrete control variables, Lin et a. proposed an agorithm based on the OO theory and
engineering intuition to select N excellent discrete control vectors [31]. However, the
engineering intuition may work only for specific systems. Thus, in this section, we will
propose an OO theory based systematic approach to select N excellent vectors from ©
and combine with the existing ordinal optimization searching procedures to find a good
enough solution of (3.3). The systematic method we propose here for finding N excellent
vectors is a combination of an Artificial Neural Network (ANN) and the Genetic Algorithm
(GA). We use the ANN to construct a crude model required to evaluate the objective values
of the vectors. Using this efficient evaluation for the fithess value of a vector, GA can

efficiently find N excellent vectorsfrom ©.
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3.3.2 Finding N Roughly Good Vectors from Decision Variables Space

As indicated in the OO theory [26]-[27], performance “order” of the vectors is likely
preserved even evaluated using a crude model. Thus, to select N roughly good vectors
from ® without consuming much computation time, we need to construct a crude but
effective and efficient model to evaluate the objective value of (3.3) for a given vector 6,
and use an efficient scheme to select N roughly good vectors. Our crude mode is

constructed based on an ANN [32], and our selection schemeis GA [33].

3.3.2.1 TheArtificial Neural Network (ANN) Based M odel

Considering the inputs and outputs as the vectors 6 € ® and the corresponding objective
values J(0), respectively, we can use an ANN to implement the mapping from the inputs
to the outputs [32]. First of al, wewill select a representative subset of ® by uniformly
picking M , say 1000, vectors from ©-. Then wewill evaluate the objective values of these
M vectors using an exact model, which“can be a stochastic ssmulation with moderate

number of test samples as indicated in [28]. These collected M input-output pairs of
(6,J(0)) will be used to train the ANN to ‘adjust its arc weights. Once this ANN is trained,

we can input any vector 6 to obtain an estimation of the corresponding J(6) from the

output of the ANN; in this manner, we can avoid an accurate but lengthy stochastic

simulation to evaluate J(6) for agiven 6. This forms our crude but efficient model to

roughly estimate the objective value of (3.3) for a given vector 6 . Effectiveness of this

crude model is justified by the OO theory as mentioned above, because what we care here
aretherelative order of 0 ’s, not thevalueof J(0) ’s.

3.3.2.2 The Genetic Algorithm (GA)

By the aid of the above effective and efficient objective value (or the so-called fitness
value in GA terminology) evaluation model, we can efficiently select N roughly good

vectors from ® using GA, which is briefly described as follows. Assuming an initial
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random population produced and evaluated, genetic evolution takes place by means of three
basic genetic operators. (a) parent selection; (b) crossover; (¢) mutation. The population in
GA terminology represents avector 6 in our problem, and each population is encoded by
a string of Os and 1s. The string is called a chromosome. Parent selection is a ssimple
procedure whereby two chromosomes are selected from the parent population based on their
fitness values. Solutions with high fitness values have a high probability of contributing
new offspring to the next generation. The selection rule we used in our approach isasimple
roulette-wheel selection [33]. Crossover is an extremely important operator for the GA. Itis
responsible for the structure recombination (information exchange between mating
chromosomes) and the convergence speed of the GA and is usually applied with relatively
high probability, say 0.7. The chromosomes of the two parents selected are combined to
form new chromosomes that inherit segments of information stored in parent chromosomes.
There are many crossover scheme, wegemploy the single-point crossover [33] in our
approach. While crossover is the main genetic operator exploring the information included
in the current generation, it does not.produce-new information. Mutation is the operator
responsible for the injection of new-infermation. With a small probability, random bits of
the offspring chromosomes flip from 0 to 1 and vice versa and give new characteristics that
do not exist in the parent population. In our approach, the mutation operator is applied with
arelatively small probability 0.02 to every bit of the chromosome.

There are two criteriafor the convergence of GA. One is when the fitness value of the best
population does not improve from the previous generation, and the other is when evolving
enough generations.

The initia populations of the GA employed in our first-level approach are |, say 5000,
randomly selected vectors from ©. After the applied GA converges, we rank the fina
generation of these | populations based on their fitness values and pick the top N

populations, which formthe N roughly good vectors that we look for.

49



3.3.3 Searching the Good Enough Solution Among the N

Starting from the selected N roughly good vectors, in the second-level, we will proceed
directly with step (ii) of the existing ordinal optimization searching procedures described in
Section 3.3.1. In this step, we will evaluate the objective value of each vector using a more
refined model® than the crude one employed in the first-level. We will order the N vectors
based on the estimated objective values and choose thetop S vectors to form the Selected
Subset (SS). Then, we will evaluate each of the S vectors using the exact model, which is
a stochastic ssmulation with sufficiently large number of test samples that makes the value
estimation of J(0) for a given 6 sufficiently stable, of the considered problem as
indicated in step (iii) of the existing ordinal optimization searching procedures. The vector
associated with the smallest objective value of (3.3) among € isthe good enough solution

that we seek.

3.3.4 The OO Theory Based Two-level Algorithm

Now, our OO theory based two-level algorithm can'be stated as follows.

Sep 1: Uniformly select M 6 ’s from ® and use an exact model to compute the
corresponding J(@)’s. Train an ANN (or ANNs) by adjusting its (or their) arc weights
using the mapping between the given M  input-output pairs, that arethe M (6 ,J(0) )’s.

Sep 2: Randomly select | vectors from © as the initial populations. Apply GA to
these populations using the efficient and effective fitness-value evaluation model based on
the ANN trained in Step 1. After the agorithm converges, we rank all the final |
populations based on their fitness values and select thetop N populations.

Steps 1 and 2 constitute the first-level approach.

% This more refined model can be, for example, a stochastic simulation with small number of test

samples [28] to evaluate the objective value of a given vector in the considered problem.
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Sep 3: Use amore refined model than the ANN to estimate the objective values of the
N vectors obtained in Step 2. Rank the N vectors based on their estimated objective
values and select thetop S vectors.

Sep 4: Use the exact model of the considered problem to compute the objective values
of the S vectors. The vector with the smallest objective value of (3.3) is the good enough
solution.

Steps 3 and 4 represent the procedures of the second-level approach. Thus, the overal

structure of the proposed OO theory based two-level algorithm can be shown in Figure 3.2.

Randomly select I (=5000) solutions
as initial population

i

GA —— ANN to roughly evaluate E[J(0)]

l PickibestiV (=1000) solutions

Run shorter stochastic simulation for each of the
N solutions and compute the approximate E[J(0)]

'

Pick the best s (=35) solutions

'

Run lengthy stochastic simulation for each of
the s designs and compute the exact E[J(0)]

i

The best solution is the good enough solution

Figure 3.2. The structure of the OO theory based two-level algorithm.
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3.3.5 Performance Evaluation
3.3.5.1 Performance Evaluation of the First-level Approach

Since the performance of the second-level approach had been thoroughly investigated in
[27], what we need to address here is how excellent the N selected vectors are among the
various types of decision-variable space ® so as to demonstrate the validity of our
first-level approach. This evaluation is carried out in the following, while the performance
of the two-level agorithm will be presented afterwards.

As indicated in [27], the Order Performance Curve (OPC) of al the ordered vectors
0,,0,,...05 In © isdetermined by the spread of the order performance J,;, 355+ Jyep

where J;;; denotes J(6,) . Without loss of generality, J;,’s can be normalized into the
range [0,1], i.e, for i=12,...,10|,y; = (I — Iy) /(Iye; — Jpy) - Meanwhile, the ordered
|®| vectors, spaced equally, are also mapped into the range [0,1] such that for
1=12..,]10|, 20)=z,=(><1/(|©]|=-1)"' There are five broad categories of OPC
models: (i) lots of good vectors, (ii) lotsof intermediate but few good and bad vectors, (iii)
equally distributed good, bad and intermediate vectors, (iv) lots of good and lots of bad but
few intermediate vectors, and (v) lots of bad vectors. Figure 3.3 shows a graphical

expression of these five types of OPCs. More precisely, a standardized OPC can be

determined by a two-parameter smooth curve F(z|a,,8) =F(z |i,%) , where F(z]-,)
a

is the Incomplete Beta function of the two parameters (-,). Ingenerd, a <1, g>1

¥ {i} ¥ (i) ¥ (iii} ¥ (iv) ¥ (v)

Figure 3.3: Five types of standardized OPCs.
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corresponds to the OPC of type (i); a >1, B >1 corresponds to the OPC of type (ii); a =1,
8 =1 corresponds to the OPC of type (iii); « <1, B <1 corresponds to the OPC of type (iv);
a>1, (<1 corresponds to the OPC of type (v). As indicated in Section 3.1, we need not

consider the types of ® consisting of lots of good vectors in this evaluation, thus we take
only the three OPC types (ii), (iii) and (v) into account. For the purpose of evaluation, we
assume the size of the decision-variable space ® tobe 10%.*

The roughness of the ANN model can be described by adding a uniform noise to the
normalized performances vy, ’s [26]-[27]. That means, the model of ANN can be described

by the noisy model vy, +®, where the random noise @ is generated from the uniform

distribution random variable U=[-0.01,0.01]>; note that this range of noise seem
conservative however it can switch the order of 2x10® vectors for atype (iii) OPC.

We studied a total of 28 OPCs distributed uniformly among the three broadly generic
types, (ii), (iii) and (v), formed from the.fellowing parameters. o =1.0, 2.0, 4.0, 5.0 and
£=0.2, 0.4, 0.8, 1.0, 2.0, 4.0, 5.0:-In al of~our-Monte-Carlo caculations, we simulate
10000 realizations of noisy OPCs. We found-that thetop 5% of the top ranked N (=1000)
populations obtained after GA converges arelying in the top 10°% of the |®| (=10%)
popul ations with probability 0.99. This result is extremely better than the uniformly selected
N vectors whose top 3.5% vectors can at best (i.e. no modeling error) be the top 3.5%
vectors of ® as indicated in [30]. This shows that the N vectors obtained by our

first-level approach arereally excellent.

* Since what we care here is the ranki ng percentage of the selected N vectorsamong ®, we can,
without loss of generality, assume |® |=10% for atypica huge decision-variable space.

® The magnitude of noise for describing the roughness of a crude model is determined either based
on an engineering judgment or an empirical experiment; in our case, it is estimated from an

experiment of this crude model for the application problem of this chapter.
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Remark 3: Though we do not investigate the actual order of the N vectors for the OPC
types (i) and (iv), our first-level approach can still be applied for problemswith ® of these
two types of OPCs. Thisis because even if the order of the obtained N vectors of the two
types of OPC may not be as good as those of the other three OPC types due to the sharp
sensitivity of the noise to the performance in these two types, however their actual objective
values will still be good enough due to the existence of lots of good vectors. That meansin
both OPC types (i) and (iv), there can be a big difference in the order of good vectors but
the difference in objective values are very small. Thus, no matter what types of OPC we are

facing, our first-level approach processes the same.

3.3.5.2 Performance Evaluation of the Two-level Algorithm

Asindicated in Section 3.3.1, for N,=1000; . S =35, the top vector we obtain in Step 4 of
the two-level agorithm must be among thetop 5% of the N vectors with probability 0.95.
Then, combining the performance’ evaluation for the first-level approach, we can conclude
the following: the good enough solution obtained: by the OO theory based two-level
agorithm is among thetop 107° % of * @ ~with probability 0.95x 0.99.

3.4 Application of the OO Theory Based Two-Level Algorithm

The size of the decision variable space X in (3.2) is huge; for example, for an 8-inch

wafer, which consists of, say 2500 dies, the possible ranges of the integer values g, .

and n, are[1, 2500] and [1, 2500], respectively. Consequently for the number of bin

types K =12, thesizeof X will be morethan 10*. The evauation of the performance of
each vector of decision variables requires a lengthy stochastic ssimulation of the testing
procedures. Therefore, any global searching techniques for solving the simulation
optimization type problem (3.2) will be very computationally expensive. To cope with the
computational complexity of this problem, we propose an Ordinal Optimization (OO)

theory based two-level algorithm to solve for a good enough solution with high probability



instead of searching the best for sure.

Asindicated in Section 3.3.1, we see that the quality of the good enough solution heavily
depends on the quality of the randomly selected N vectors of decision variables. Thus to
improve the existing OO searching procedures, we can apply the OO theory to select N
roughly good vectors of decision variables from X, to ensure the top 5% solutions among
N to be the good enough solutions of X . This is what we called the first-level OO
approach for replacing the existing searching procedure (i). Combining first level approach

with the existing searching procedures (ii) and (iii) forms atwo-level OO algorithm.

3.4.1 Constructing a Metamodel for (3.2)

The very first step for choosing N roughly good vectors from X should be
constructing a metamodel OF surrogate,model, for the considered stochastic simulation
optimization type problem. There are various techniques to approximate the relationships
between the inputs and outputs of a system such: as the linear regression, response
transformation regression, projection-pursuit regression and artificial neural network (ANN)
[34], etc.... Among them, ANN is considered to'be a universal function approximator [35]
due to its genetic, accurate and convenient property to model complicated nonlinear
input-output relationships. ANN not only approximate the continuous functions well
[36]-[37], but aso being used to construct metamodels for discrete event simulated systems
in [38] and [39]. Since what we care here is the performance order of the solution rather than
the performance value as considered in [38] and [39], we can trade off the accuracy of the
ANN based metamodel with the training time by using simple ANN with reasonabl e size of

training data set. Two simple feed forward two-layer ANNs are employed here. One is to
approximate the relationships between x e X and the corresponding E[V], and the other

isfor xe X and E[R]. Inthese two ANNS, there are 16 neurons with hyperbolic tangent

sigmoid function in the first layer, and 1 neuron with linear function in the second layer. We

obtain the set of training data for the two ANNSs by the following two steps. (a) Narrow
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down the decision-variable space X by excluding the irrationa threshold values and
denote the reduced decision variable space by X °. (b) Uniformly sdect M vectors from
X and compute the corresponding outputs E[V] and E[R] using astochastic simulation of
the testing procedures shown in Figure 3.1. As indicated above, M need not be a very
large value. The objective value of (3.2) can be computed based on the valuesof E[V] and

E[R]. Thus, we can obtain M pairs of decision variables and the corresponding objective

values for (3.2). To speed up the convergence of the back propagation training, we
employed the Levenberg-Marquardt algorithm [40] and the scaled conjugate gradient
algorithm [41] to trainthe ANNsfor E[V] and E[R], respectively. Stopping criteria of the
above two training algorithms are when any of the following two conditions occurs: (i) the
sum of the mean squared errors is smaller than 10, and (ii) the number of epochs exceeds
500. Once these two ANNS are trained, we can input any vector x to the two ANNSs to
estimate the corresponding E[V] .and E[R], which will be used to compute the objective
value of (3.2). Thisforms our metamodel to estimate the objective value of (3.2) for agiven

vector of decision variables x.

3.4.2 Using GA to Select N Roughly Good Vectors of Decision Variables
from X

By the aid of the above ANN model, we can search N roughly good vectors of decision
variablesfrom X using heuristic global searching techniques.

Since the searching techniques of Genetic Algorithm (GA), Evolution Strategies (ES) and
Evolutionary Programming (EP) [42] improve a pool of populations from iteration to
iteration, they should best fit our needs. For the sake of explanation and easier

implementation, we employ the GA [43, Chapter 14] as our searching tool.

®The threshold values, gy, ad N, . should lie in a reasonable range determined by the

corresponding average valuesof g; and bjk collected from awafer foundry.
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The coding scheme of the GA we employed to represent all the vectorsin X is rather
straightforward, because each component of the vector x is an integer. We start from |,
say 5000, randomly selected vectors from X asour initial populations. The fitness of each
vector is set to be the reciprocal of the corresponding objective value of (3.2) computed
based on the outputs of the two ANNSs. The members in the mating pool are selected from
the pool of populations using roulette wheel selection scheme. 70% of the members in the
mating pool are randomly selected to serve as parents for crossover. We use a single point
crossover scheme and assume the mutation probability to be 0.02. We stop the GA when the
iteration number exceeds 30. After the applied GA converges, we rank the fina |
populations based on their fitness and pick the top N populations, which are the N

roughly good vectors of decision variables.

Remark 4: Although there exists.in-depthranalysis of the approximation errors for ANN to
approximate continuous functions [36]-[37], the accuracy of approximating the input and
output relationships of a discrete event 'Simulated system is usualy addressed using
empirical results [38]-[39]. Thus, it Isnot surprising that we do not get any analytical result
for the quality of the N vectors selected above. However, similar to the study in [27], we
assume various magnitudes of modeling noise of uniform distribution to represent the
approximation errors caused by the proposed ANN based metamodel and make the
following simple experiments to compare the quality of the N vectors selected by GA
based on the ANN model with those selected in random from the solution space. We let
U [-0.1,0.1] denote the uniform distribution of a random noise ranging from -0.1 to 0.1 to
be added to the normalized performance, i.e. the normalized objective value, of the exact
model. The normalized performance for all solutions in a solution space is equally-spaced
ranging from O to 1 with O as the top performance. In [27], a normalized Ordina

Performance Curve (OPC) is used to describe the performance structure of all the solutions

in a solution space. Assume |X| =10%, N =1000, we carried out a Monte Carlo study for
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vast number of OPCs similar to that in [27] for an assumed noise distribution and pick the
top N vectors using GA. We found the following results. For the modeling noise
distribution, U [-0.01,0.01], U [-0.1,0.1] and U [-0.5,0.5], the top 5% solutions in N,
which are selected by GA, is at least atop 107°%, top 107°%, and top 107>% solution in
X with probability 0.95, respectively. However, the top 5% solutions in N, which are
selected in random, is at best, i.e. assuming no modeling noise, a top 5% solution in X
only. Therefore, we have greatly improved the quality of the N vectors by replacing the

existing searching procedure (i).

3.4.3 Using an Approximate Model for Selecting the Estimated Good Enough
Subset

Starting from the N vectors of .decision variables obtained in Section 3.4.2, we will
proceed with (ii) of the OO searching procedure to compute the objective value of (3.2) for
each vector using an approximate model.-As indicated in [28], this approximate model can
be a stochastic simulation with maderate number -of test wafers, that is to carry out the
testing procedures shown in Figure 3.1 for " L, say 300, wafers. We will then order the N
vectors of decision variables based on the obtained estimated objective values of (3.2) and

choosethetop S vectorswhich form the estimated good enough subset.

3.4.4 Using the Exact Model to Determine the Good Enough Solution

We will compute the objective value of (3.2) for each of the S vectors in the estimated
good enough subset using the exact model that is a stochastic simulation with sufficiently

large number of test wafers that makes the estimated objective value sufficiently stable. This

exact model is similar to the approximate model mentioned above however replacing L,

by L.(>>L,) wafers. Then the vector associated with the smallest objective value of (3.2)

among S isthe good enough solution that we seek.
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3.5 Test Results and Comparisons

Our simulations are based on the following data collected from two products, say product
A and product B, of arenowned wafer foundry in Taiwan. Both products are made in 6-inch
wafers’. Each wafer of product A and product B consists of 203 dies and 206 dies,
respectively. In the following, we will focus our description on product A, while the test
results of product B will also be presented. It should be noted that all the test results shown

in this section are simulated in a Pentium 1V PC using Borland C++.

There are 12 bins in the wafers of product A. The probability mass function P(B, =n),

k=1,...,12, and the probability of the number of overkillsin bin k, p,, k=1,...,12, are

given. The vyield rate of product A is 68%. The decision-variable space
X :{X(:[ngin’nkmax’k Z:L’K]) | ngin e[:Lzoainkmax e[lzoa’k =:L,12} We Used the

sigmoid-type function as our penalty function' P. in (3.2),i.e, P= 771“% , Where
+e T
. . ¥ . E[V]
17 (= 0.1594) is anormalized coefficient such that ., =<1 .
max E[R]

We set X :{X(: [gW min + Mic max 3 k=1 K]) lgW min € [50!203]7 Nymax € [1’6:uk]’ k= 1!!12} )
where p, isthe mean of the number of-dies of bin k. The parameters in the proposed
two-level algorithm are set as follows: L, =300, L, =10,000, M =1000, | =5000,

N =1000, and s=35. We have simulated 3 cases of different r; ’s, which are 10, 30 and 50.

The good enough vector of threshold values and the average overkill percentage for the

three cases of r, we obtained from the two-level agorithm are shown in Table 3.1. The

CPU time consumed in each case plus the training time is approximately 6.05 minutes.

From Table 3.1, we can observe that when r; increases, the values of g,,.,, increase as

shown in row 2, and the values of leading n,,, ., k=5 and 6, which account for most of

the retests, decrease as shown in rows 7 and 8, respectively. Thisindicates that if we allow

"The reason we use 6-inch wafer products is for easier identification of the bins and overkillsin

experiments. In fact, our results can apply to any size of wafer.
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Table 3.1: The good enough vector of threshold values and the average overkill
percentage of product A for three different r; ’s.

fr 10 | 30 | 50

Good enough

vector of threshold values
Gw min 146 163 176
M 7 3 8
M max 3 8 5
N3 max 6 6 6
N4 mex 5 6 5
N 51 43 34
Mo max 32 23 16
N7 max 7 7 3
N max 7 3 6
Nopmax 4 3 4
10 max 4 3 2
M 11 max 3 3 2
M43 e 2 9 5

g §VDJX100% 1.86% | 1.07% | 0.27%

*  TDa : thetota number of diesin awafer of product A.
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Figure 3.4: The resulted (E[V], E[R]) pairs of the 521 test wafers based on the

vector of threshold values determined by two-level agorithm, random
generator, three-sigma limit, six-sigmalimit, GA and SA agorithm.
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more retests (that is increasing r; ), we can set more stringent threshold values (that are

increasing 0,,,,, and decreasing the leading n,,., S), SO as to save more overkills (that is

the decreased average overkill percentage), as indicated in the last row of Table 3.1.
To demonstrate the real world performance of the vector of threshold values obtained by

the two-level algorithm for the three cases shown in Table 3.1, we use 521 real test wafers,
whose number of dies of dl bins, b, , j=1..521, k=1...12, and overkills before retest,
Vi, i=1..521, k=1..12, are known. The corresponding results of the pair of the

521

average overkills per wafer, E _ 1 V), and the average retests per wafer,
VI( 51 i)
j=1

1 % R): for these 521 test wafers are shown in Figure 3.4 as the points marked by
j=1

ERI(= o )

“Ye”, “x”, “o” with the corresponding r. shown on the top right corner of the figure. We
also use 2000 randomly selected vectors of threshold values to test the same 521 wafers; the
resulted pairs of E[V] and E[R] aré shown as the points marked by “¢” in Figure 3.4.

We see that for E[R] <10, the=E[V] resulted by the good enough vector of threshold

values obtained by the two-level agorithm is amast the minimum compared with those
resulted by the randomly selected vectors of threshold values. Similar conclusions can be
drawn for the cases of r; =30 and 50. Since reducing overkills and retests have conflicting
nature, the considered unconstrained stochastic optimization problem (3.2) possesses pareto

optimal solutions. From Figure 3.4, we can see that the results we obtained for the cases of

r, =10, 30 and 50 are almost on the boundary of the region resulted from the randomly

generated vectors of threshold values; this implicit boundary represents the (E[V], E[R])

pairs resulted by the pareto optimal vectors of threshold values.

We aso use the three-sigma limit and six-sigma limit to determine the threshold values

60

such that g, =My =30, Neme =iy 30, k=1..12, and gy, =i, —60, ,
Nrex = My +60,, k=1,..12, where p, and o, themean and standard derivation of the

number of good diesin awafer, and p, and o, , the mean and standard derivation of the

number of dies of bin k, are obtained from the data set of 521 test wafers. Using these
threshold values to test the same set of 521 test wafers, the resulted (E[V],E[R]) pairs
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from three-sigma limit and six-sigma limit are also shown in Figure 3.4 marked by “[1* and
«“O”, respectively. For E[R] <10, we can see that our method will save 22% and 24%
more overkills than the three-sigma limit and six-sigma limit, respectively. Considering the
vast number of dies manufactured per month, the increased profit due to saving overkills
will be too large to neglect. Furthermore, both three-sigma limit and six-sigma limit do not
generate the pareto optimal solution for (3.2), and they cannot control the level of retests
like ours.

We have aso used typical GA and Simulated Annealing (SA) [42] algorithm to solve (3.2)
for the case of r,=10. As indicated at the beginning of Section 3.4, the global searching
techniques are computationaly expensive in solving (3.2). We stop the GA and SA when
they consumed 50 times of the CPU time consumed by the two-level algorithm, and the
objective values of (3.2) they obtained are still 5.4% and 8.1% more than the final objective
value obtained by the two-level agorithmrespectively. Using the threshold values they
obtained to test the 521 wafers, the resulted (E[V ], E[R]) pairs from GA and SA are

marked by “+“ and “A” in Figure 3.4. We feund-that using two-level algorithm, we can save
6.2% and 8.6% more overkills than.using the.GA"and SA for E[R] <10, respectively. In
addition, both GA and SA do not generate the pareto optimal solution, because the best so
far solution they obtained for 5 hours of CPU time are still far away from the optimal

solution of (3.2).
There are 10 bins in the wafers of product B. The probability mass function P(B, =n),

k=1,...,10, and the probability of the number of overkillsin bin k, p,, k=1,...,10, are
given. The yield rate of product B is 46.6%. We employed the same sigmoid-type function

as that used in product A, however the normalized coefficient n is0.1207. Specific datain

the two-level agorithm applying to product B are similar to the case of product A. We have

also smulated 3 cases of different r; ’s, which are 20, 40 and 80. The CPU time consumed

in each case plus the training time is approximately 5.2 minutes. More retests are requested

here due to the lower yield of product B than A. The good enough vectors of threshold

values and the average overkill percentage for the three cases of different r; ’s obtained by
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our algorithm are shown in Table 3.2. Thevalues of r; versus the threshold values and the

average overkill percentage have the same trend as in product A. From Table 3.2, we can

observe that when r; increases, the values of g, increase as shown in row 2, and the

values of leading n,,,, k=8 and 9, which account for most of the retests, decrease as

shown in rows 10 and 11, respectively.

We use 590 real wafers of product B to test the performance of the vector of threshold
590

. ) 1 590 1
values shown in Table 3.2. The resulted pairs of E[V](=—S'Vv.) and E[RlI(z——S'R.
p VI( 590; ) [RI( 59(); )

are shown in Figure 3.5 as the points marked by “J”, “x”, “o” with the corresponding I

shown on the top right corner of the figure. The “»” points in Figure 3.5 denote the resulted

pairs of E[V] and E[R] of the 2000 randomly generated vectors of threshold values

applied to the same set of 590 wafers. From this figure, we can see that the results we

obtained for the cases of r; =20, 40 .and1 80, are almost on the boundary of the region

resulted from the randomly generated vectars of threshold values; this implicit boundary
representsthe (E[V], E[R] ) pairsresulted by the pareto optimal vectors of threshold values.

We also use the three-sigma limit and 'six=sigmalimit to determine the threshold values,
the resulted (E[V], E[R]) pairs from'three-sigma limit and six-sigma limit are a'so shown
in Figure 3.5 marked by “[0“ and “<”, respectively. For E[R] <20, we can see that our
method will save 21% and 24% more overkills than the three-sigma limit and six-sigma
limit, respectively. We have also used typical GA and SA algorithm to solve (3.2) for the
case of r, =20. We stop the GA and SA when they consumed 50 times of the CPU time
consumed by the two-level algorithm, and the objective values of (3.2) they obtained are
still 5.3% and 6.9% more than the final objective value obtained by the two-level algorithm,
respectively. Using the threshold values they obtained to test the 590 wafers, the resulted
(E[V],E[R]) pairs from GA and SA are marked by “+“ and “A” in Figure 3.5. We found

that using two-level agorithm, we can save 6.6% and 4.2% more overkills than using the

GA and SA for E[R] < 20, respectively.
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Table 3.2: The good enough vector of threshold values and the average overkill
percentage of product B for three different r, ’s.

fr 20 | 40 | 80
Good enough
vector of threshold values
Ow min 118 131 146
M e 6 2 3
N3 max 4 4 1
N3 max 3 4 5
N 6 3 3
Ns max 5 1 4
Mo max 10 5 5
N7 max 7 4 2
Ng e 65 54 38
Mg 76 63 45
N10 max 18 13 9
* %[Vl <100% 2.36%| 1.71%| 0.56%

* TDg : the total number of diesin awafer of product B.
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Figure 3.5: The resulted (E[V], E[R]) pairs of the 590 test wafers based on the
vector of threshold values determined by two-level algorithm, random
generator, three-sigma limit, six-sigmalimit, GA and SA agorithm.



3.6 Concluding Remarks

To cope with the computationally intractable stochastic simulation optimization problems,
we have proposed an ordinal optimization theory based two-level algorithm to solve for a
good enough solution using reasonable computational time. We have justified the
performance of the proposed algorithm based on the simulations.

To demonstrate the applicability of the proposed algorithm, we have used it to solve for a
vector of good enough threshold values to reduce overkills and retests in a wafer testing
process of a wafer foundry. We have tested the performance of the solution we obtained
using the real data and found that the resulting average number of overkills and retests per
wafer lie amost on the boundary resulted from the pareto optimal vector of threshold values
of the considered stochastic optimization problem. This indicates that the proposed
algorithm will not only control the,tolerable level of retests by taking the various chip
demand into account but also provide a near-pareto optimal vector of threshold values. The
vector of good enough threshold values obtained -by the proposed algorithm is very
successful in the aspects of solution quality and computational efficiency.

The proposed formulation for reducing overkills and retests is not limited to the testing
process of a foundry, it can easily adapt to any general testing procedures. The proposed
ordinal optimization theory based two-level algorithm is not limited to the problem
considered in this chapter. In fact, it can be used to solve any hard optimization problem that

reguires lengthy computational time to evaluate the performance of adecision variable.
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Chapter 4

Conclusions and Perspectives

Two related issues on the throughput and yield of wafer fabrication and testing processes
have been discussed. In the first issue, we have presented a classification based fault
detection and isolation scheme for the ion implanter, and in the second issue, we have
presented an ordina optimization approach to find the optimal threshold values to reduce
the overkills of diesunder atolerable retest level in wafer testing process.

In the first issue, the proposed classification based fault detection and isolation scheme is
a general methodology. Modifying the warning signal generation criteria to meet individual
machine’s needs, this fault detection scheme is not limited to the ion implanter. The
simplicity of the HCT based fault isolation scheme made HCT worthwhile especially when
its accuracy can be remedied by the warning signal-generation criteria when applying to the
ion implanter. Due to the efficient' learning capabtlity of HCT and the 0.05 seconds
classification time for classifyingthe recipe.of aworking wafer, the proposed fault detection
and isolation scheme can work on line:and real -time.

In the second issue, the proposed ordinal optimization theory based two-level agorithmis
not limited to the problem considered in this dissertation. In fact, it can be used to solve any
hard optimization problem that requires lengthy computational time to evaluate the
performance of a decision variable. Although the proposed approach presented in this
dissertation was illustrated using a wafer testing problem, it is well suited to different

application aress.
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