第四章 實驗結果與討論

4.1 結構之觸媒前處理觀察

利用物理氣相沈積法,沈積緩衝層氮化鈦(TiN)200Å 與觸媒鎮 (Ni)70Å後,使用化學氣相沈積法成長介電層二氧化矽(SiO₂)0.5µm, 經微影、蝕刻製程孔徑為 0.4µm 孔徑之導線孔,分別在溫度 350、450 ℃之下,以氫氣流量 200sccm、電漿功率 800W(瓦特)之氫電漿進行 前處理 10 分鐘後所產生的現象,觀察結果如下所述。

4.1.1 掃描式電子顯微鏡(SEM)觀察

- (1)圖 4.1(a)、(b)為經 350℃ 氫電漿前處理後介質孔在不同倍率下之俯 視圖,由於電漿解離氫氣對於鎳觸媒薄膜會有蝕刻之效應,加上熱 能關係使其凝聚顆粒化,其觀察得知,在導線孔內觸媒經過氫電漿 前處理後可看出有少許觸媒顆粒化,但由於 SEM 之解析度無法充 分清楚辨別,將藉 AFM 的分析來輔助說明。
- (2)圖 4.2(a)、(b)為經 450℃ 氫電漿前處理後導線孔在不同倍率下之俯視圖,相較於 350℃之結果,其導線孔內觸媒經過氫電漿前處理後清楚的可看出此許觸媒顆粒化,但由於 SEM 之解析度無法充分清 楚辨別,將藉 AFM 的分析來輔助說明。

4.1.2 原子力顯微鏡(AFM)觀察

- (1)圖 4.3 為未經電漿前處理之表面形貌,可以看到其到其表面最高高 度為 10nm,由 Rms 值也可看出去平均高度差為 0.415nm,其皆表 示試片表面形貌為相當平坦之薄膜,此為比較試片。
- (2)圖 4.4 為經 350℃ 氫電漿前處理後導線孔之表面形貌,其表面最高高度為 400nm、平均高度差 Rms 值為 7.608nm,掃描尺寸面積為1µm²,與未經處理之試片比較,並由 3D 的 AFM 觀察得到試片表面因電漿前處理,使試片表面凝聚顆粒化,並且表面起伏較未前處理之試片大,證明在前處理後試片觸媒層凝結成為島狀顆粒。
- (2)圖 4.5 為經 450℃氫電漿前處理後導線孔之表面形貌,其表面最高高度亦為 400nm、平均高度差 Rms 值為 9.687nm,掃描尺寸面積為1µm²,由 3D 的 AFM 觀察得到試片表面,同樣的可以看到鎳觸媒層經過氫電漿前處理後亦呈現島狀,但相較於 330℃顆粒,其高度起伏較為清楚,並且觸媒顆粒較大、明顯。

4.1.3 結構之觸媒前處理討論

適當之前處理參數會使孕核過程較佳,本實驗中可讓結構中之觸 媒由原本平坦狀變為顆粒狀,在介質孔尺寸較小氣體較難以擴散的情 況下使觸媒達到適當的前處理,此種觸媒層島狀化現象對於接下來合 成奈米碳管佔有相當重要的地位,由實驗結果觀察得知當前處理溫度 較高時,有利於觸媒層凝結成為島狀顆粒,推測其因溫度提高時顆粒 與顆粒之間相互凝聚進而產生平均粒徑(RMS)提升的現象,此外在低 溫下的350℃、450℃皆對介質孔中之觸媒有前處理效果。

4.2 結構中合成奈米碳管

利用物理氣相沈積法,沈積緩衝層氮化釱(TiN)200Å 與觸媒鎳 (Ni)70Å後,使用化學氣相沈積法成長介電層二氧化矽(SiO₂)0.5µm, 經微影、蝕刻製程孔徑分別為0.35、0.4、0.5、0.55、0.6、0.7、1µm (Hole),整體結構如圖4.6,以微波電漿化學氣相沈積法(MPCVD)來 合成碳管,表4.1為奈米碳管合成於結構中之參數表,以不同參數探 討奈米碳管合成於結構中,其觀察結果如下所述。

4.2.1 掃描式電子顯微鏡(SEM)觀察

- 4.2.1.1 以參數 a 於結構中合成奈米碳管
- (1)圖 4.7(a)、(b)為介質孔孔徑 1µm 內合成奈米碳管之表面觀察,由 圖得知,對於合成之奈米碳管在此孔徑大小內,可有效的填滿奈米 碳管,碳管長度也超出介質孔,可証明碳源此時能有效擴散至介質 孔內與觸媒反應。並由 SEM 觀察到碳管上有非晶質碳存在。
- (2)圖 4.8(a)、(b)為介質孔孔徑 0.7μm 內合成奈米碳管之表面觀察,由 於孔徑較 1μm 小,雖可有效的填滿奈米碳管,但密度卻較為稀疏, 碳管長度較為之短並超出介質孔,此時可証明碳源因孔徑變小而較

少碳源擴散至孔內與觸媒表面作用。並由 SEM 觀察到碳管上有非 晶質碳存在。

- (3)圖 4.9(a)、(b)為介質孔孔徑 0.6µm 內合成奈米碳管之表面觀察,由 低倍率之 SEM 圖可觀察到只有極少數碳管有到達介質孔表面,由 高倍率之 SEM 圖得知,當同樣參數下,所合成之奈米碳管其明顯 長度變短與密度稀疏,此証明了碳管在此參數下已剩少量碳源能擴 散至介質孔內。
- (4)圖 4.10(a)、(b)為介質孔孔徑 0.55μm 內合成奈米碳管之表面觀察, 可得知與碳管合成於介質孔孔徑 0.6μm 之 SEM 圖相似,只有極少 數碳管高度有到達介質孔表面,長度短且密度稀疏。
- (5)圖 4.11(a)、(b)為介質孔孔徑 0.5μm 內合成奈米碳管之表面觀察, 由低倍率之 SEM 圖得知,此時可觀察到已剩微量碳源能達到介質 孔內之觸媒表面,高倍率之 SEM 圖得知此時合成之奈米碳管已相 當少。

4.2.1.2 以參數 b 於結構中合成奈米碳管

(1)圖 4.12(a)、(b)在不同倍率下合成碳管於介質孔孔徑 1μm 內之 SEM 圖,我們觀察到奈米碳管合成於介質內觀察起來相當緻密,但在高 倍率之顯微鏡下可看到其底部合成之碳管較稀疏。所合成之碳管高 度約 3.8μm,高出介質孔平面許多,其參數 b 與參數 a 合成碳管於 介質孔之 SEM (圖 4.7(a), (b)) 對照,發現當溫度由 550 提高到 650 ℃時,其推測當提高製程溫度時,是有助於碳管的合成。

(2)圖 4.13(a)、(b)為不同倍率下合成碳管於介質孔孔徑 0.5µm 內之 SEM 圖,我們觀察到奈米碳管合成於介質孔內相當緻密並且雜 亂,碳管高度很均一的皆達到介質孔表面,參數b與參數a合成碳 管於介質孔之 SEM (4.11(a), (b))對照,在提高製程溫度時,除奈 米碳管長度的提升,並且增加其合成於介質孔中之密度,我們推測 在合成奈米碳管時提升溫度,提供觸媒顆粒化及甲烷裂解之能量, 而促使碳源的增加,進而有助於在較小介質孔中合成碳管。

4.2.1.3 以參數 c 於結構中合成奈米碳管

(1)圖 4.14(a)、(b)為以參數 c 合成奈米碳管於介質孔孔徑 1µm 內之 SEM 圖,此參數 c 與參數 a 合成碳管於介質孔之 SEM(4.7(a),(b))對 照,發現當溫度由 550 降致 450℃時,觀察到當合成奈米碳管在低 溫製程時,圖 4.14(a)我們觀察到,以參數 c 合成之奈米碳管其具均 一性的合成於介質孔內,碳管長度較為短,且密度較為稀疏,推測 其因降低溫後,對觸媒前處理形成顆粒化之影響、減少提供甲烷裂 解之能量,而造成此現象。

4.2.1.4 以參數 d 於結構中合成奈米碳管

(1)圖 4.15 為以參數 d 合成奈米碳管於介質孔孔徑 1µm 內之 SEM 圖, 此參數 d 與參數 c 合成碳管於介質孔之 SEM(4.14(a),(b)) 對照,觀察 到碳管其具均一性的合成於介質孔內,長度皆達到介質孔之表面,參 數 d 較參數 c 所合成之碳管密度較為高,我們觀察到當提高甲烷與氫 氣之流量比率時,有效的提高了合成碳管之密度於介質孔中,推測其 因增加碳源、提升碳源擴散至介質孔內與觸媒反應之機率,而使合成 之奈米碳管密度提高。

4.2.2 拉曼光譜儀(Raman Spectrum)

- (1)圖 4.16 為經參數 a (550℃)合成奈米碳管於介質孔(1µm)之拉曼光
 譜圖,其 D-band 與 G-band 的強度皆相當的明顯,碳管品質指標為
 1.42。
- (2)圖 4.17 為經參數 b (650℃)合成奈米碳管於介質孔(1µm)之拉曼光 譜圖,其 D-band 與 G-band 的強度與參數 a 相比較未那麼明顯,碳 管品質指標為 0.66,推測其因表面有非晶質碳。
- (3)圖 4.18 為經參數 c (450℃)合成奈米碳管於介質孔(1µm)之拉曼光
 譜圖,其 D-band 與 G-band 的強度皆相當的明顯,碳管品質指標為
 1.77。

4..2.3 結構中合成奈米碳管討論

本實驗中由 SEM 的分析可得知當介質孔孔徑為 1µm,其合成之 奈米碳管長度超出介質孔且較密,0.7µm 之導線孔徑與之相比,長度 雖高出介質孔,但可觀察到此時之奈米碳管較稀疏,而合成奈米碳管 在小於 0.7µm 之介質孔時,其所合成之碳管長度會大幅減短,推測是 由於當孔徑變小時,其製程反應碳源較不易擴散至孔徑較小之介質孔 內與觸媒反應,說明了結構之幾何形狀會影響碳管的合成,並在幾何 限制下有合成的極限,而較難以合成奈米碳管,圖 4.19 為整理出之 導線孔徑與奈米碳管長度變化對照圖。

以參數 b 合成碳管,由實驗觀察得到,當提升製程溫度時,有助 於碳管在介質孔內合成,並且也成功的合成於小孔徑 0.5µm 之介質孔 內,但由於為高溫製程並且其所合成碳管較為雜亂,未來較不適合導 入內線之應用。參數 c 為在低溫合成碳管於介質孔內,以利未來引入 金屬內連線之應用。我們發現降低溫度時,其碳管長度相對的減短, 圖 4.20 整理出碳管在 1µm 的介質孔內,經不同製程溫度碳管長度變 化之關係圖。在降低製程溫度時其密度較低,並較難合成於直徑較小 之介質孔內,但在以參數 d 合成碳管時,觀察到在提高甲烷比例後, 有效提高合成碳管之密度。另外由拉曼光譜分析,觀察到在結中構以 參數 a、b、c 合成之碳管其品質(I_d/I_g),以參數 b 所合成之奈米碳管品 質為最好,因合成碳管時,顯示溫度較高可合成出品質較好的碳管,

55

故品質有隨著溫度提升的趨勢,其製程溫度與碳管品質對照圖如圖 4.21 所示,表2為拉曼光譜位置與強度比值。

4.3 奈米碳管溅鍍金屬銅之介面觀察

利用物理氣相沈積法,沈積緩衝層氮化鈦(TiN)200Å 與觸媒鎮 (Ni)70Å,試片整體結構如圖 4.22。使用微波電漿化學氣相沈積法 (MPCVD)合成奈米碳管,在溫度 550℃、氫氣 200 sccm 對媒觸前處 理,以甲烷與氫氣流量 1:4 合成奈米碳管,並以多功能真空濺鍍系統 (Sputter)將金屬銅濺鍍於碳管(0.3μm),並藉由分析儀分析碳管與金屬 銅介面,其觀察結果如下所述。

4.3.1 掃描式電子顯微鏡(SEM)觀察

- (1)圖 4.23(a)、(b)為碳管濺鍍金屬銅前後之對照圖,我們可由圖 4.23(a) 觀察得知,所合成之奈米碳管長度約為 8µm,其碳管準直、長度長 並在頂部可看到些許顆粒及不純物。在圖 4.23(b)觀察到,由於碳 管長度長以致於金屬銅只披覆於碳管頂部。
- (2)圖 4.24(a)、(b)、(c)為濺鍍金屬銅後碳管頂部之不同倍率、角度之 掃描式電子顯微鏡圖,圖 4.24(a)我們看到頂部碳管在高倍率顯微鏡 的觀察下,發現碳管頂部完全被銅包覆,由圖 4.24(b)更高倍率、 不同角度得知,在濺鍍 0.3μm 銅後碳管頂部部分區域產生薄膜並且

因而使碳管彼此靠在一起被銅包覆,產生連續的膜。在部份區域, 觀察到單根碳管僅披覆銅並未與其它碳管相靠、產生非連續之薄 膜。由圖 4.24(c)為碳管之側面圖,可發現碳管側面有纖維狀 (fiber-like)之結構在其表面。

4.3.2 原子力顯微鏡(AFM)觀察

- (1)圖 4.25 以原子力顯微鏡以較大面積掃描 5×5µm,觀察得到粒徑 (RMS)為 118.2nm,由圖觀察推測在碳管頂部表面並不是非常之平 坦,其因碳管本身高度的均一性之外,也顯示金屬銅披覆於碳管, 未形成一定厚度的薄膜。
- (2)圖 4.26 以原子力顯微鏡掃描區域為 2×2μm,觀察得到粒徑(RMS) 為 31.2nm,由所掃出之 3D 圖觀察得知,受到碳管高度的均一性形 響,部分區域有產生連續、非連續之薄膜,其與 SEM 相互對照佐 證。
- (3)圖 4.27 以原子力顯微鏡掃描較小區域 1×1µm,觀察得到粒徑(RMS) 為 12.8nm,由掃出之 3D 圖觀察得知,在小區域掃描其受碳管本身 高度均一性的影響,此時較圖 4.26 更明顯的觀察到碳管頂部濺鍍 上銅後之表面之形貌,並也再次証實碳管表面披履一層非常薄之銅 薄膜。

4.3.3 穿透式電子顯微鏡(TEM)

圖 4.28 是以穿透式電子顯微鏡對奈米碳管濺鍍銅後之介面觀 察,由圖 4.28 之側面圖觀察,我們可以明顯的看到外部碳管披覆銅, 並銅與碳管之間親合力良好。圖 4.29 為碳管頂部並藉由電子繞射圖 來分析碳管晶格變化,也找到銅之晶格,其証實銅成功披覆於碳管, 並配合圖 4.30 的能量散佈光儀(EDS)圖分析,我們有發現有碳、氧、 銅等元素,元素氧推測由於碳管表面與大氣中氧產生鍵結而成而內部 之碳管並未發現氧的存在。

4.3.4 拉曼光譜儀(Raman Spectrum)

圖 4.31 為利用拉曼光譜儀對濺鍍金屬銅後之奈米碳管的分析, 在拉曼光譜儀分析下,通常在未濺鍍銅時,在光譜上會有兩個尖峰 D-band 以及 G-band,D-band,其波數為 1350cm⁻¹ 附近,代表奈米碳 管結構缺陷存在,即石墨結構為短程有續或無續(disorder)之結構,或 在碳管表面有不純物、顆粒吸附皆會造成 D-band 之強度變化;G-band 則通常出現在波數為 1580cm⁻¹ 附近,代表碳管本身其具結晶性或有 續長程結構(crystalline or order)之石墨結構,但由於經銅之包覆過 後,我們觀察到圖 4.31 在 D-band 以及 G-band 並無尖峰,此非碳管 之石墨結構,推測銅完全的披覆於碳管頂部,此分析與 SEM、AFM、 TEM 彼此相互佐證。

4.3.5 XPS (X-ray Photoelectron Spectroscopy)

在合成奈米碳管與濺鍍銅的過程中,可能會因為製程過程引入氣 體的雜質原子,對奈米碳管本身的結構與表面鍵結皆有影響,因此在 濺鍍金屬後需藉由 XPS 對其表面鍵結觀察。

圖 4.32 為其 XPS 之全面分析圖,我們可以現在上面出現許多波 峰,本實驗欲探討在濺鍍金屬銅後對於碳管之影響,所以對於碳、銅、 鎮元素分析。由圖 4.33 為元素碳之分析圖,經觀察得知碳的 1s 信號 位於 284.9ev,經比對為石墨化碳,表示碳管由於直徑較大呈現纖維 化。圖 4.34 為元素銅之分析圖,銅的 Cu2p1/2、Cu2p3/2 信號分別位 於 933.9、953.6 ev,經比對為氧化銅(CuO),推測在濺鍍銅後其介面 與附著於碳管之氧產生反應,或表面銅與大氣中的氧接觸產生化學反 應而成氧化銅。圖 4.34 為元素鎳之分析圖,其位於 857.2ev,經比對 為氧化鎳(NiO),推測觸媒鎳在合成碳管時,因頂端成長後與與大氣 中的氧產生鍵結,但由於波峰並不是很強,所以其不足為相當有力的 證據。經分析計算後其元素碳、銅、鎳站其分別站百分比為,百分之 96.247、3.623、0.13。

4.3.6 奈米碳管溅鍍金屬銅之介面討論

在此實驗中,碳管在濺鍍銅厚度為 0.3μm,由於碳管長度較長之 緣故,使銅僅披覆於碳管頂部,無法將披覆於整根碳管,並推測長度 的均一性方面影響了表面形貌。碳管在濺鍍銅之前其並無法使用原子 力顯微鏡掃描,由於碳管會因掃描時探針移動而造成晃動,但經由濺 鍍產生薄膜,使碳管彼此黏結,碳管較不易晃動後即可使用原子力顯 微鏡進行其表面形貌之量測分析。碳管與銅之介面經 TEM 觀察,得 知銅濺鍍於碳管後其介面之間的親合力良好,並在經繞射分析找到銅 晶格的存在,証實碳管表面披覆著銅,且由元素分析得到碳管與銅之 介面有發現氧化合物存在。在經由金屬濺鍍銅後,証實碳管可藉由濺 鍍方式成功披履於碳管,其與金屬接觸之狀況對於未來導入內連線之 研究有很重大的影響。

4.4 金屬鈦與奈米碳管之接觸電阻

利用物理氣相沈積法,沈積緩衝層氮化釱(TiN)200Å、觸媒鎳 (Ni)70Å、金屬鈦(Ti)2µm 於矽基板上後,經微影、蝕刻製程,其結構 如圖 4.36 所示,並使用金屬鈦為電極。合成奈米碳管使用熱化學氣 相沈積法(Thermal CVD),在溫度 750℃、以氫氣為前處理氣體 500 sccm,前處理時間為 10 分鐘,在合成碳管製程其甲烷與氫氣比例為 1:4,合成時間為 5 分鐘,其合成碳管之示意圖如圖 4.37,所合成之 奈米碳管其與電極接觸形成通路,並依其接觸形式不同分成試片A~ D,其整理至表 4.3 所示。此實驗藉由橫向合成奈米碳管,以探討經 700℃退火後奈米碳管與金屬鈦之接觸電阻變化,其觀察結果如下所 述。

4.4.1 掃描式電子顯微鏡(SEM)觀察

- (1)圖 4.38 為試片 A 之接觸型式,由圖觀察到碳管橫跨兩個電極,但 可看到其似乎並未接觸到電極,而由此觀測不能清楚、嚴謹判斷其 是否為通路,將會利用半導體元件參數量測系統(IV),來証實其是 否有接觸到電極。
- (2)圖 4.39 為試片 B 之接觸型式,其圖片中觀察到合成之單根橫向奈 米碳管跨兩個電極並且也接觸到電極。
- (3)圖 4.40、4.41 為試片 C1、C2 之接觸型式,觀察得知其共同特徵 為兩根不同奈米碳管互相接觸而形成通路,由於無法由 SEM 充分 的判斷其兩根碳管彼此接觸之情形,所以以半導體元件參數量測系 統(IV),來與其佐證對照。
- (4)圖 4.42 為試片 D 之接觸型式,觀察得知兩根奈米碳管同時橫跨兩個電極並接觸到電極形成通路。

4.4.2 半導體元件參數量測系統(IV)量測

- (1)圖 4.43 為試片 A 之 IV 曲線圖,由圖可觀察得知其表示元件電阻 約為數千 GΩ,阻值相當高,再與 SEM 對照,推測碳管未與電極 接觸而使其未導通。
- (2)圖 4.44 為試片 B 之 IV 曲線圖,由圖可觀察到,在未經退火處理時 其電阻阻為數千 GΩ,經退火後其電阻值降至數十 GΩ,表示退火 可有效降低其接觸電阻,但其所顯示之效果並不是非常理想,推測 碳管與電極有接觸,但因碳管本身性質與金屬鈦之接觸狀況並不是 太好所造成。
- (3)圖 4.45、4.46為試片 C1、C2 之 IV 曲線圖。由圖 4.45 可觀察到試 片 C1,在未經退火處理時其電阻值為數千 MΩ,經退火後其電阻 值降至數百 MΩ,其未有太大的改善,推測碳管之間之接觸並不是 相當的良好而造成此現象。圖 4.46 觀察到試片 C2 在未經退火其電 阻值為數百 GΩ,並在經退火後電阻值變為數十 MΩ,其變化約為 10000 倍,電阻值變化相當大,除証實碳管與電極有接觸外也表示 碳管之間接觸較為良好,並且在經由退火後有效的改善碳管與鈦之 接觸電阻。
- (4)圖 4.46 為試片 D 之 IV 曲線圖,由圖可觀察到,在未經退火處理時其電阻值為數百 GΩ,經退火後其電阻值降至幾 MΩ,約為 100000

倍,其電阻降低原因,推測其除碳管與金屬有較良好之接觸、經退 火處理外,由於試片 D 為兩根碳管跨過電極,為並聯之形式,所 以電阻較低,若兩根碳管其長度與直徑皆相等的話,其單根碳管之 電阻值約為原先之兩倍。

4.4.3 金屬鈦與奈米碳管之接觸電阻討論

根據文獻指出,當金屬鈦經高溫 600℃ 退火後,其與碳管之介面 可合成化合物 TiC,可有效產生較低電阻,在未經退火處理前,碳管 若吸附氧,由於金屬鈦易與氧產生金屬氧化物 Ti-O,其會使其接觸阻 抗大幅提升,但經高溫退火其使金屬鈦、碳管交互擴散而形成 TiC, 而使阻抗下降。在此實驗中,碳管除本身性質影響電阻外,在碳管與 電極之接觸介面有相當大之關係,包括有無接觸到電極、其接觸介面 之變化、以及形成通路之形式皆為其影響之重大因素,並由實驗得 知,在經由高溫退火後其可有效降低鈦與碳管之間的接觸電阻,其與 文獻相符,在未來的研究,必需能成功的大量橫向合成碳管且與電極 有良好的接觸,並對於橫向合成碳管的機制做更深入的探討。

(b)

圖 4.1(a)、(b) 介質孔孔徑 0.4µm 經 350℃ 氫氣前處理在不同倍率下之 掃描式電子顯微鏡圖

(a)

(b)

圖 4.2(a)、(b) 介質孔孔徑 0.4µm 經 450℃氫氣前處理在不同倍率下之

掃描式電子顯微鏡圖

Roughness Analysis

圖 4.3 介質孔徑 0.4μm 未經氫氣前處理之原子力顯微鏡圖

圖 4.4 介質孔孔徑 0.4µm 經 350℃ 氫氣前處理之原子力顯微鏡圖

圖 4.5 介質孔孔徑 0.4µm 經 450℃ 氫氣前處理之原子力顯微鏡圖

圖 4.6 栓塞介質孔結構示意圖

(b)

圖 4.7(a)、(b) 介質孔孔徑 1µm 內以參數 a 合成奈米碳管不同倍率下 之掃描式電子顯微鏡圖

(a)

(b)

圖 4.8(a)、(b) 介質孔孔徑 0.7μm 內以參數 a 合成奈米碳管不同倍率

下之掃描式電子顯微鏡圖

(a)

(b)

圖 4.9(a)、(b) 介質孔孔徑 0.6μm 內以參數 a 合成奈米碳管不同倍率

下之掃描式電子顯微鏡圖

(a) 0.550 um 0.704 um 0.343 um

(b)

圖 4.10(a)、(b) 介質孔孔徑 0.55µm 內以參數 a 合成奈米碳管不同倍

率下之掃描式電子顯微鏡圖

(a) 0.493 um 0.713 u 70.0kx 500m

(b)

圖 4.11(a)、(b) 介質孔孔徑 0.5µm 內以參數 a 合成奈米碳管不同倍率

下之掃描式電子顯微鏡圖

(b)

圖 4.12(a)、(b) 介質孔孔徑 1µm 內以參數 b 合成奈米碳管不同倍率下

之掃描式電子顯微鏡圖

(b)

圖 4.13(a)、(b) 介質孔孔徑 0.5µm 內以參數 b 合成奈米碳管不同倍率

下之掃描式電子顯微鏡圖

 30.0kx
 1um

(b)

圖 4.14(a)、(b) 介質孔孔徑 1µm 內以參數 c 合成奈米碳管不同倍率下

之掃描式電子顯微鏡圖

圖 4.15 介質孔孔徑 1µm 內以參數 d 合成奈米碳管不同倍率下之掃描 式電子顯微鏡圖

圖 4.16 使用參數 a 在介質孔孔徑 1µm (550°C)內合成奈米碳管之拉曼 光譜圖

圖 4.17 使用參數 b 在介質孔孔徑 1µm (650℃)內合成奈米碳管之拉曼

光譜圖

圖 4.18 使用參數 c 在介質孔孔徑 1µm (450°C)內合成奈米碳管之拉曼 光譜圖

圖 4.19 介質孔孔徑與奈米碳管長度變化對照圖

圖 4.20 介質孔孔徑 1µm 內合成奈米碳管長度與製程溫度變化之關係

圖

圖 4.21 介質孔孔徑 1µm 內合成奈米碳管品質與製程溫度變化之關係 圖

圖 4.22 垂直合成奈米碳管試片之結構示意圖

(a)

(b)

圖 4.23 奈米碳管在濺鍍金屬(a)前(b)後之掃描式電子顯微鏡圖

(c)

圖 4.24 在濺鍍金屬銅後碳管頂部不同倍率、角度之掃描式電子顯微 鏡圖

圖 4.25 奈米碳管在濺鍍金屬銅後之原子力顯微鏡圖(掃描範圍為 5×5μm)

圖 4.26 奈米碳管在濺鍍金屬銅後之原子力顯微鏡圖(掃描範圍為 2×2μm)

圖 4.27 奈米碳管在濺鍍金屬銅後之原子力顯微鏡圖(掃描範圍為 1×1μm)

圖 4.28 奈米碳管在濺鍍金屬銅後其斷面之穿透式電子顯微鏡圖

圖 4.29 奈米碳管在濺鍍金屬銅後其項部之穿透式電子顯微鏡、電子

繞射圖

圖 4.30 奈米碳管在濺鍍金屬銅後其穿透式電子顯微鏡、能量散佈光

圖 4.31 奈米碳管在濺鍍金屬銅後其拉曼光譜圖

圖 4.33 奈米碳管濺鍍金屬銅後其元素碳之 XPS 分析圖

圖 4.34 奈米碳管濺鍍金屬銅後其元素 Cu 之 XPS 分析圖 (0Y) (0Y)

圖 4.35 奈米碳管濺鍍金屬銅後其元素 Ni 之 XPS 分析圖

圖 4.36 横向合成奈米碳管試片之結構示意圖

圖 4.37 横向合成奈米碳管之示意圖

圖 4.39 試片 B 横向合成奈米碳管

(b)

圖 4.41 試片 C2 横向合成奈米碳管

圖 4.42 試片 D 横向合成奈米碳管

圖 4.43 試片 A 之 IV 量測圖

圖 4.45 試片 C1 經退火前後之 IV 量測圖

圖 4.47 試片 d 經退火前後之 IV 量測圖

參數編號	a	b	С	d
電漿功率(W)	800	800	800	800
製程溫度(℃)	550	650	450	450
製程壓力(torr)	20	20	20	20
前處理氫氣(sccm)	200	200	200	200
甲烷與氫氣比例	1:4	1:4	1:4	2:3

表 4.1 結構中合成奈米碳管之參數表

表 4.2 合成奈米碳管於介質孔(1µm)之拉曼光譜位置與強度比值

參數	D-band(cm ⁻¹)	G-band(cm ⁻¹)	ID	I _G	I _D /I _G
a	1365.3	1595.6	534830	376860	1.42
b	1370.3	1594.9	11233	16916	0.66
c	1382.1	1606.7	109450	61712	1.77

表 4.3 横向合成奈米碳管之試片編號表

試片編號	A	В	C1,C2	D
	碳管有跨	單根奈米	碳管與碳	雨根奈米
接觸狀況	過但未接	碳管與電	管接觸形	碳管跨過
	觸到電極	極接觸	成通路	產生並連