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Multiple-output Wireless Communication Channels

Student: Yi-Sheng Chen Advisor: Ching-An Lin

Department of Electrical and Control Engineering

National Chiao-Tung University

Abstract

We propose three blind identification algorithms for multiple-input multiple-output
(MIMO) frequency selective fading wireless communication channels based on different
precoding. The algorithms compute the channel product matrices from the estimated
covariance matrix of the received data and ‘theﬁ"detgrmine the channel impulse response
matrix via an eigen-decomposition. Tﬁfée prtﬁq‘oldi‘i‘llg‘ a&%e_considered: (i) periodic precoding,
(ii) periodic precoding plus zero padding, ancll ‘(inli'i)"z‘ero‘pjadding alone. As a result, for each
of the three cases, the computation ﬁ_ej‘quir‘e:(.i;it‘;‘&r_ekgjﬁerr]qirleJi the channel product matrices are
also different. The computations reqlirire{d“ gxre respecti\?ély (i) to solve a decoupled group of
overdetermined linear systems of equationé, (ii)‘.to solve a lower triangular linear system,
and (iil) to carry out a number of simple subtractions. For the first two algorithms, we also
discuss the optimal design of the precoding sequences to minimize the effects of additive

channel noise and numerical error, so as to increase the accuracy of channel estimation.

The algorithms are simple, in terms of the amount of computations required, as com-
pared with subspace methods; they allow a more relaxed identifiability condition and are
applicable to MIMO channels with more transmitters or more receivers. Simulation results

show that they are reasonably robust with respect to channel order overestimation.
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Chapter 1

Introduction

1.1 Research Objective

Multiple-input multiple-output (MIMO) c‘ommumcatlon systems employing multiple
transmit and receive antennas have recelved much attenhon due to the potential improve-
ment in data transmission rate and link rehabﬂlty the‘y can offer. However, to exploit
the potential advantage of MIMO Sys‘tems accurate channel state information is required.
Channel can be identified or estimated using training signal which requires additional band-
width. As a means to eschewing the need of training signal and the associated bandwidth
requirement, blind identification of MIMO channels has been the focus of much research.

Many blind identification algorithms have been proposed in recent years (see [1, 2| for a

detailed review).

Existing algorithms for blind identification of MIMO finite impulse response (FIR)
channels can be classified into second-order statistics methods [8]-[12],[20]-[22], higher-
order statistics methods [3]-[5], and deterministic methods [6, 7]. Among these three types
of methods, blind identification based on second-order statistics has been widely studied
because it requires fewer data samples than the high-order statistics approach and it avoids
poor estimation accuracy under low SNR, a common shortcoming of deterministic methods.

Existing second-order statistics methods for MIMO systems, e.g., the subspace methods



8, 9], [27], [29]-[30], the linear prediction methods [10]-[12], and the matrix outer product
decomposition methods [20]-[22], either impose restrictive assumptions on the channel to
be identified or require large amount of computations, that may not be realistic in practical

applications.

The goal of this research is to develop blind identification algorithms for MIMO channels,
that are simple in computation and less restrictive in assumptions. It is hoped that the

algorithms developed are thus more practical from an application point of view.

1.2 Literature Survey

It is well-known that cyclostationarity of the received data is the key to all blind iden-
tification based on second-order statistics [1, 2]. Cycloststionarity can be induced either
at the receiver, by oversampling or muliple ‘@iilennas, or at the transmitter, by various
coding methods. An advantage of traﬁéfﬁittér%ind’ﬂce& cyclostationarity is that the result-
ing identification methods require less restrléflx};% aésumptlon on the channel, for example,
channels with nonminimum phase zeros canﬁbe_handled One effective way to induce cy-
clostationarity at the transmitter is by perlodlc precédmg Blind identification methods
for general MIMO FIR channels using periodic precoding are found in [17, 18]. In [17],
Chevreuil and Loubaton proposes a scheme that multiplies the input sequence by a constant
modulus complex exponential precoding sequence to induce conjugate cyclostationarity at
the transmitter. The scheme reduces the MIMO channel identification problem to several
SIMO ones, which are then solved by the subspace method [24]. Each SIMO channel is
required to be free from common zeros. However, the method in [17] allows only real input
symbols and the identifiability condition is irreducible and column reduced. Bolcskei et.
al. [18] proposes a method for identifying each of the scalar channels individually up to a
phase ambiguity using non-constant modulus periodic precoding sequences. The method
imposes no restriction on channel zeros and is insensitivity to channel order overestimation.
However, no systematic procedure for the design of the precoding sequences is given. In
this dissertation, we propose an identification method based on periodic precoding, which

allows complex input symbols and gives an optimal design of the precoding sequence.



Single carrier zero padding (SC-ZP) block transmission systems, another communication
systems, are used to remove interblock interference (IBI) [13, 14, 25, 27]. In the literature,
to the best of our knowledge, there is only one paper, by Zeng and Ng [27], that proposes
a subspace method for blind identification of MIMO SC-ZP block transmission systems.
The method can be used to identify the channel impulse response matrix up to a matrix
ambiguity when the channel is irreducible and the channel noise is uncorrelated and white.
In this dissertation, we first propose an identification method for MIMO SC-ZP systems
based on periodic precoding, which can further relax the identifiability condition and reduce
the computational load, compared with the method in [27]. In addition, we also propose
another simplified identification method for such systems without periodic precoding. This
simplified method can also apply to MIMO zero padding orthogonal frequency division
multiplexing (ZP-OFDM) systems.

1.3 Organization of the Dlssertatlon

H: i IS

The dissertation is organized as follows In Chapter 25 we propose a blind identification
method for general MIMO FIR charrnels based on peI'IOdlC precoding. We also discuss the
optimal design of the precoding sequence‘_whlch. ntakes into account the effect of additive
channel noise and numerical error. We also propose a blind identification method for
MIMO FIR channels in SC-ZP block transmission systems based on periodic precoding
and discuss the optimal design of the precoding sequence in Chapter 3. In Chapter 4, we
first propose a blind identification for SC-ZP block transmission systems without periodic

precoding. Extension of this method to ZP-OFDM systems is given subsequently. Chapter

5 concludes this dissertation and discusses the related future research.

Notations used in this dissertation are quite standard: Bold uppercase is used for matri-
ces, and bold lowercase is used for vectors. A7 and A* denote the transpose and conjugate
transpose of A, respectively. 0,4 denotes the zero matrix of dimension M x N, and I,
denotes the identity matrix of dimension M x M. A ® B is the Kronecker product of A
and B. 0j/«n is the zero matrix of dimension M x N. The symbols R and C stand for the

set of real numbers and the set of complex numbers, respectively. In addition, we define



the following operations that will be used in the derivation of the main result. First, for
any m X m matrix A = [ay]o<ki<m-1, define T;(A) = [ag; @111 ~** Gm-1-jm-1) for
0<j<m-—1,1ie,TI;(A) is the vector formed from the jth super-diagonal of A. Second,
for any Jn x Jn matrix B = [ByJo<k1<n—1, Where By is a block matrix of dimension J x J,

define T;(B) = [B{; B, --- B}

r o jm) for 0 <j <n—1, ie, T;(B) is the matrix

formed from the jth block super-diagonal of B.




Chapter 2

Blind Identification for MIMO FIR

Channels

In this chapter, we propose a blind idénfiﬁcatigﬁ'mgthod for MIMO FIR channels based
on periodic precoding. It is shown“.that, byi pro:perlir'"‘choosing the precoding sequence,
the MIMO FIR channels, with K _ﬁ%ansmitte‘rs:' ;md J ;:eceivers, can be identified up to
a unitary matrix ambiguity. The n’aéin s§lﬁfh@7m)focedure contains two steps: (1) solve
the channel product matrices from a s-ei"iés of ling@r eq{iations obtained from the covariance
matrix of the received data, and (2) take eigen-decomposition of a Hermitian matrix formed
from those channel product matrices to estimate the channel. The channel identifiability
condition needs not be irreducible or column reduced [21], and there can be more receivers
(J > K) or more transmitters (J < K'). The performance of the algorithm, and indeed the
identifiability, depends on the choice of the precoding sequence. We propose a method for
optimal selection of the precoding sequence which takes into account the effects of additive
channel noise and numerical error in covariance matrix estimation. Simulation results show

that the algorithm are reasonably robust with respect to channel order overestimation.
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Figure 2.1. An MIMO channel model
2.1 System Model and Formulation

We consider the linear MIMO baseband model of a communication channel with K
transmitters and J receivers shown in Figure 2.1, where each source symbol sequence is

multiplied by a P-periodic sequence, p(n), before transmission. The transmitted signal is
ug(n) =pn)sg(n), k=1,2,--- K, (2.1)

where p(n + P) = p(n), ¥ n. The discrete time mhédel describing the relation between the

transmitted signal ug(n) and the recéived &ggnlal_:):](n) :has the form of an MIMO FIR filter

with additive noise: ;

wi(n) =Y > hp (Dl = 1) + wi@), j=1,2,---,J, (2.2)
k=1 1=0 TN o
where hj(l), 1 =1,2,---, L, is the impulse response of the channel between the kth trans-

mitter and the jth receiver, and w;(n) is the channel noise seen at the input of the jth
receiver. If we define u(n) = [ui(n) us(n) -+ ug(n)]?, s(n) = [s1(n) sa(n) -+ sx(n)]?,
x(n) = [z1(n) x2(n) - z;(n)]7, and w(n) = [wi(n) we(n) --- ws(n)]?, then the equa-
tions (2.1) and (2.2) can be written more compactly as

L

u(n) = p(n)s(n),  x(n) =) H(u(n—1) +w(n), (2.3)

1=0
where H(l) € C7*K is the channel coefficient matrix whose jkth element is hj(l), and
L = max;,{Lj;} is the order of the MIMO channel. We assume that H(L) # 0,«x-.
Group the sequence of x(n) as X(n) = [x(Pn)",x(Pn+1)T, .- . x(Pn+P—-1)T]T € C’/7,

and let w(n),@(n),8(n) be similarly defined, we have

X(n) = Hotu(n) + Hit(n — 1) + w(n), (2.4)



where Hg is an JP x K P block lower-triangular Toeplitz matrix with [H(0)" H(1)T ...
H(L)T 0% 5 -+ 0% ;]" € C/P*K as its first block column (i.e., the first K columns),
and H; is an JP x K P block upper-triangular Toeplitz matrix with [0y -+ 055 H(L)
H(L —1) --- H(1)] € C/*EP as its first block row (i.e., the first J rows). Since p(n)
is periodic, u(n) = GS(n) for all n, where G = diag[p(0)Ix, p()Ik, - ,p(P — 1)Ik] €

REFPXEP ig o diagonal matrix. Then (2.4) can be written as

X(n) =HoGs(n) + H1G8(n — 1) + w(n), (2.5)

We assume that the receivers are synchronized with the transmitters. In addition, the

following assumptions are made throughout this chapter.

(A1) s(n) and w(n) are white zero-mean vector sequences, and s(n) and w(n) are tempo-
rally and spatially uncorrelated. More precisely, E[s(k)s(j)*] = 6(k — j)Ix € REXK
Elw(k)w(j)*] = 0(k — j)o21; € REABSE)w (1)) = Ok, ¥ k, j, where 0(-) is the

Kronecker delta function. S ] JW‘ :
|

(A2) An upper bound L of the Chaﬁnel Q\rvdgai"‘ L is known and the period P > L + 1.

(A3) The channel impulse response matrlx H = [H(0)" H(D)T - H(L)")T is full col-

umn rank, i.e., rank(H)=K.

In the next section, we will derive an algorithm for blind identification of the MIMO

channel impulse response matrix H using second-order statistics of the received data.

2.2 Blind Channel Identification

In this section, we derive the proposed method for the case under assumptions (A1),
(A2), (A3) and noiseless case. We show that by appropriately selecting the periodic
precoding sequence, any MIMO channel satisfying (A3) is identifiable up to an K x K
unitary matrix ambiguity. The effect of noise and optimal design of the precoding sequence

are discussed in Section 2.3.



2.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known
with P > L + 1, there are more receivers, i.e., J > K, and the noise is absent. We discuss
the cases of channel order overestimation and more transmitters than receivers (i.e., K > J)

in Section 2.2.2 and 2.2.3, respectively.

From (2.5) and assumption (A1), the covariance matrix of X(n) can be written as

(noiseless case)
Rx = E[x(n)x(n)*] = HoG*H}, + H; G*H;. (2.6)

Let J € RP*F be the matrix whose first sub-diagonal are all one and all remaining entries

are zero, i.e.,

0 0 0 0
1 0 10 O
J=10 A - € RP*F,
‘ .'!‘ J : .‘;
0 g S, E

Then the block Toeplitz structures of Ho and H, allow us to write Ho = Zé:o JF @ H(k)

and Hy = S5 (JT)P~*@H(k), respectively. In addition, we define G, = diag[p(0), p(1), - - -

1)] € RP*P. Hence HoG?Hj, can be written as

HoG™Hy = Yr  JFoHE) (G2ely) S, (VM eoH(D)
= Yo Lito (@ H(R)) (GF 1) (IT)' @ H()")
= Yoo Xito (FGRUIT)) ® (HRHQ)).
where we have used the identies (A®B)* = A*®B* and (A®B)(C®D) = (AC)®(BD)
(36, p.190]. Similarly, HyG*H? can be written as

(2.7)

H, G H; =) > ((IM)P*GLI7) @ (H(k)H(1)").

k=0 1=0

(2.8)

The following proposition shows that the matrices J*G2(J*)" and (J*)F"*G2J”~! have

special structures that allow decomposition of (2.6) into a group of decoupled equations.



Roughly speaking, the jth block super-diagonal part of (2.6) involves only the unknown
“channel product matrices”, H(k)H(k+j)*, k =0,1,--- , L—j. For example, the equations
corresponding to the diagonal blocks (j = 0) involve only H(k)H(k)*, k =0,1,--- , L. In
the proposed identification algorithm, these “channel product matrices” are computed first
by solving linear equations, and then the channel impulse response matrix H is computed
via eigenvalue-eigenvector decomposition.

Proposition 2.1: Let 0 < k,] < L be two non-negative integers. Then

(a) For | = k+j, where 0 < j < L —k, both J*GZ(J")" and (J7)P~*G2I"~! are upper
triangular matrices with only the respective jth upper diagonals nonzero, and
Ly (IPGRIT)) =10 0 p(0)* p(1)* -~ p(P—1—k—j)*", (29)

N—— ~

k entries

~
P—k—j entries

Ly (DGR ) = [p(P = k)* p(P—k+1)* -~ p(P—1)° 0 --- 0 ]". (2.10)

P—k—j entries

k entries

(b) For I < k, both T'; (J*G2(JT) ‘andl?_ji ((J‘T)P.'*"?G%JP*Z) are lower triangular with
Ela o

zero diagonal matrices. ‘ ‘ -
Proof : See [16]. - : ]

It follows from (2.9) and (2.10) that "

L (JFGLIT)) + 15 (317 FGRI7 )

p(P—k)? - p(P—=1)* p(0)* -~ p(P=1—k—7j))|" if j=1-k>0

. J/ J/

- k entries P—k—j entries
0(p—j)x1 it g#I—k
(2.11)

Since
T; (J*GZIN) @ H(KH()*) =T; (J*GL(IM)") @ H(k)H()* (2.12)
and

Y (3P FGRIP Y @ H(k)H(D)®) = T; (NP FGI7 ) @ H(k)H(D)", (2.13)



it follows from (2.6)-(2.8) and (2.11)-(2.13) that T; (Rg) can be derived as follows.

T; (Rg)

=7T; (HoG*H + H;G*Hj)

=20 2o Ty (FFGEAITY) @ (H(KH©)Y)) + T, (3T FGIT) @ (H(k)H(D)))

= Yo ol Dy (FFGR(IM)) + 15 (3P +GRI" )} © H(k)H(1)*

=Y S p(P = k)2 - p(P=1)2 p(0)* -+ p(P—=1—k—j)" @ H(k)H(k + j)*

= 3P = k)L, - p(P = 1), p(0)*L; -+ p(P —1—k—j)L,/"H(k)H(k + j)*
(2.14)

The right hand side of (2.14) is a linear combination of block columns with the channel

product matrices, H(k)H(k + j)*, as coefficients. If we define, for 0 < j < L,
F; = [(HO)H()")" HMLHG+ 19" - (H(L - )H(©L))T)" e /%7 (2.15)

then (2.14) can be written in a more compact form as

T; (Rx) = MG, mpma ¥ 0.<j<L. (2.16)
where M; € RY(P=i)xJ(L=j+1) ig deﬁnrilied as ' ]:
P02 (PP p(P 28 o p(P-Ltj)?
p(1)? p0?  PPT? o p(P L)
p(2)°? p(1)? p(0)° o p(P—L+j+2)?

M, = : : : : : D1,
p(P=3-34) p(P—4—34)? p(P-5-3)% -+ p(P—L-3)?
p(P—=2—34)* p(P=3—3j)? p(P—4—j)* -+ p(P—L~-2)?

| p(P—1—j)? p(P—2-j)* p(P=3-j)* -+ p(P-L-1)
(2.17)

We note that M, 1 < j < L, is obtained from M by deleting its last jJ rows and last jJ

columns.

Since P > L+ 1, the (L + 1) equations in (2.16) are overdetermined and for the noise
free case, these equations are consistent. We note that the matrix M;, j =0,1,--- L, is

completely determined by the precoding sequence. By appropriately selecting the precoding

10



sequence, we can make each M; full column rank. Then the solution F; can be obtained

as
F; = (M/M,;)""M/T; (Rg). (2.18)

If F;, 0 < j < L, are computed from (2.18), then we have the channel product matrices
H(E)H(l)* for 0 < k <[ < L. We now consider the computation required to determine

the channel impulse response matrix H from F;.

Let Q be the Hermitian matrix defined by Y;(Q) = F; for j =0,1,--- , L, and we know
the channel impulse response matrix H = [H(0)" H(1)" --- H(L)"]*. Clearly we have

Q = HH". (2.19)

Since rank(H) = K by assumption (A3), Q has rank K. Since Q is Hermitian and positive

semidefinite, Q has K positive eigenvalues say, )\1, -+, Ag. We can expand Q as

Q= Z \/Tﬁb) ) : (2.20)
_j:l Efo "

where d; is a unit norm eigenvector Qf Q Easeomated Wlt}"l Aj > 0. We can thus choose the

channel impulse response matrix to hex =™ ===

= [Vdi Vedz -V Agdg] € CIEFDXE, (2.21)

We note H can only be identified up to a unitary matrix ambiguity U € CE*K [20, 21],
ie., H= HU, since HH* = HH* = Q. The ambiguity matrix U is intrinsic to methods
for blind identification of multiple input systems using only second-order statistics [20, 21].

This ambiguity U can be solved using a short training sequence.

2.2.2 Channel Order Overestimation

So far we have assumed that the channel order L is known. If only an upper bound
L > L is available with P > L + 1, then following the same process given in Section 2.2.1,
the corresponding J(L + 1) x J(L 4 1) matrix Q can be similarly constructed as in (2.19).
The last (L — L) block columns (i.e., (L—L).J columns) of Q are zero, so are its last (L — L)
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block rows. Hence again, Q is of rank K and has K positive eigenvalues with the associated
eigenvectors all of the form d = dr o --- 07 e C7E+Y where d € C7E+D | Thus, we can
determine the channel impulse response matrix, up to a unitary matrix ambiguity, from
the K eigenvectors associated with the K positive eigenvalues of Q. In the noise free case,

we can, in theory, also determine the actual channel order.

2.2.3 More Transmitters Than Receivers

In the above discussions, we assume that there are more receivers than transmitters,
ie, J > K. If there are more transmitters, i.e., K > J, then either J(L + 1) > K or
K > J(L+1). If J(L+1) > K, then H is a tall matrix and assumption (A3) is generically
satisfied [34]. Hence the proposed method still applies. If K > J(L+1), then rank(H) < K
and assumption (A3) does not hold. Hence the proposed method is applicable to the more
transmitters case, provided the additionalycondition J (L+1) > K is satisfied. We note
that if the channel has more transmit?cé”rs t:lligl‘ntr(‘éﬂ(l;e“i\.}ér.s, channel equalization and source
separation may be difficult even if aqcuraterlcﬁé_;lr“lél Leétil‘nate is available. In addition, we
note that in the proposed method, t‘he Cheﬂnhéli@pulsg riésponse matrix H is only assumed
to be full column rank (A3). Hence tiien channel nﬂueed_s‘.n‘ot be irreducible or column reduced

[21].

2.3 Optimal Design of the Precoding Sequence

In Section 2.2, we see that in order to identify the channel, the precoding sequence
must be selected so that the resulting matrix M; is full column rank such that F; can
be exactly solved as (2.18). However, when noise is present, the covariance matrix Rg
contains the contribution of noise and numerical error is present in the estimation of Rx
in practice. This implies that (2.16) usually has no solution and (2.18) becomes a least
squares approximate solution. The choice of M; will affect error in the computation of F;
since different M]TM]- in (2.18) usually have different condition numbers. In this section,

we discuss the optimal design of the precoding sequence, which takes into account the effect
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of noise and numerical error in estimating Rg, so as to increase the accuracy of F; and

thus reduce the channel estimation error.

2.3.1 Optimality Criterion

Now we consider the general case that noise is present and discuss the design of the
precoding sequence p(n). From (2.4) and assumption (A1), the covariance matrix of the

received signal is
Rx = HoG*H; + H,G*H} +021; @ Ip. (2.22)

From (2.22) and (2.6), we see that noise has only contribution to the diagonal entries of Rx.
Therefore the (L + 1) decoupled groups of equations in (2.16) remain unchanged, except

for the j = 0 group, which becomes

Yo (Rx) = To (HoG*H; + H1G2H*) +o T"‘ (1J ®1p) = MgFo+ Y, (2.23)
. J |
where Y = o2[I; 1; -+ I;]" RJPXJ Thus from (2 18) Fo, the least squares approxi-

J

mation of Fy, can be written by % " 896 |

Fo = (MIMy) "M (MoF, + Y) S Fg5 (M M,) 'M!'Y = F, + Z, (2.24)
W

which is Fy plus a perturbation term due to noise. The perturbation term Z is the least
squares solution of the equation MyZ =Y. We note that if every column of Y is orthogonal
to every column of My, then Z = 0, which implies ﬁ‘o = F,. But that is impossible since
the entries of My are positive and those of Y are nonnegative. Therefore, we seek to
appropriately choose the precoding sequence p(n) such that every column of Y is as close
to being orthogonal to that of My as possible. To this end, we first define qz; and y; shown

below as the columns of My and Y, respectively:

M, = o1 (102v' - qos i1 Q12V' Qg 0 4 qLQV' 2 ’ (2.25)
Mo (:,1:J) Mo (:,J+1:2J) Mo (:,LJ+1:(L+1)J)
Y:O'i][]:(] IJ IJ]T:[y1 Y2 - yJ] (226)
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Then, due to the special structure of the block matrix My and Y, it is easy to check that
gy is orthogonal to y;, i.e., ql,y; = 0 for j # 1, e.g.,
allys = [p(0)20 -0 - p(P=1)%0--- 00620 ---0--- 0020 ---0T =0,

NV VvV VvV VvV
J entries J entries J entries J entries

and each qf,y; assumes the same value, wzn 0 p( )2, fork=0,1,---,Li=1,2---J,

e.g.,
P—1
ally, = [?(0)20 0 P(p_1)20 q][gfvo 0 9121;0 ...Q]T:gvap(n)z_
J e:ztrm'es J e;;"ies J e;;"ies J e:ztrm'es n=0

Thus we only need to consider the relation between columns of qg; and y; (the case of
k =0 and i = 1). Define the correlation coefficient

T

— ol (2.27)
g0t [|2lly1]l2

Since v is nonnegative and by Cauchy—Schwarz 1nequahty, 0 < v < 1. In order to make the

perturbation term Z small, we choose qm 5Q that the correlation coefficient ~ is as small

as possible. Based on this point of view, Weifdrmulate the optimal selection problem as

minimizing v subject to - | | | )

7 D 229

Ip(n)|* > 7 >0, Yo<n<P-1. (2.29)

Roughly, constraint (2.28) normalizes the power gain of the precoding sequence of each

transmitter to 1; constraint (2.29) requires that at each instant, the power gain is no less

than 7. Note that the problem of selecting the precoding sequence is identical to the SISO

case considered in [16]. Thus the optimal precoding sequence p(n) is a two-level sequence

with a single peak in one period [16]. More specifically, for each m, 0 <m < P — 1,
Pl—71)4+717, n=m

p(n) = (2.30)
JT n#m, 0<n<P-—1

is an optimal precoding sequence. Because the precoding sequence is periodic with period

P, the single peak can be placed at any one of the P positions which yield the same v =
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1
VP(A-7)2+7(2—7)
the estimation of covariance matrix R is minimized and thus identification performance

. Note that v decreases as 7 decreases, which implies that the noise effect in

improves. However the peak location m does significantly affect the numerical condition of

the linear equation (2.16). We discuss the selection of m next.

2.3.2 On Selection of m

We now consider the selection of m. We know that different choices of m result in dif-
ferent matrix M; and affect the numerical computation of F;,j =1,2,---, L, in (2.18) and
F, in (2.24), since different MJTM]- may have different condition number. If the condition
number is large, then the matrix M] M; is ill-conditioned and the computations in (2.18)
and (2.24) are sensitive to data error. Let

[ = max li(M M ) (2.31)

0<J<L i

where x(A) is the condition number: of A Q.l]lr goal 1s to choose m so as to minimize the
largest condition number of the correspondmg matrlces MTM ,7=0,1,--- L. Since the
peak appears at one of the P possﬂale posﬁwn%the perlodlc precoding sequence, there
are P precoding sequences which may result in P dlﬁ‘eren’C p. The following result shows
that some choices of m are to be avoided since they result in some M, being rank deficient
and thus p = oo.

Proposition 2.2 : At least one M;, 0 < j < L, is not full column rank if and only if
P—-L+1<m<P-2.

Proof : See Appendix A.

Hence if we choose, either 0 < m < P — L or m = P — 1, then each M; is full column
rank and the channel is identifiable. The following result shows that we can classify the
remaining choices into 2 groups that are relevant to the optimal choice of m.
Proposition 2.3 :

(a) Each of the (P — L) choices, m =0, m=1,---, m =P — L — 1, results in the same
denoted by ;.
(b) The two choices m = P — L and m = P — 1 result in the same p denoted by ps. Also
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fo = [i1.
Proof : See Appendix A.

From Proposition 2.3, we know if uy > uq, then we choose case (a); if po = pq, we
proceed to compare the second largest condition numbers of the set of matrices {M;‘FM] }JLZO
for these two cases and choose the case whose value is smaller. If they are again equal,
the same procedure can be done by comparing the third largest condition numbers and so
on. Moreover, for 0 <m < P — L — 1 (case (a)), since the condition numbers of MTM;
are the same for each fixed j, j = 0,1,---, L, (see Appendix A), we can use m = 0 to
represent case (a). Similarly, m = P — 1 can be used to represent case (b). Hence the
optimal selection of m reduces to one of two cases: m = 0 or m = P — 1. In other words,

the optimal precoding sequence has a peak either at the beginning or at the end.

2.4 Identification Algorithm.,
So far, we have proposed a metheod for blind i

d‘ér“lt‘,iﬁ.“cé)‘tion of MIMO FIR channels using
periodic precoding sequence. It is SHQWH tﬁ@t‘,{b&gmp@rlgf choosing the precoding sequence,
the MIMO FIR channels, with K tr;a':nsﬂ‘rgj‘l:lﬁgteré énd_J-‘ receivers, can be identified up to a
unitary matrix ambiguity. The proposed élgori%hm requires solving linear equations and
computing the nonzero eigenvalues and eigenvectors of a Hermitian positive semidefinite
matrix. Since the cyclostationarity is induced at the transmitter, the identifiability condi-
tion imposed on the channel is minimum: it only requires that channel impulse response
matrix H is full column rank. The channel identifiability condition needs not be irreducible
or column reduced. The channel can have more receivers or more transmitters. The per-
formance of the algorithm depends on the precoding sequence which is optimally designed
to reduce the effects of noise and numerical error in estimating the covariance matrix of
the received data. We summarize the proposed method as the following algorithm.
Algorithm :

1) Use the precoding sequence p(n) in (2.30) with optimal selection of m =0 orm = P —1
to form the matrix M; in (2.17), 7 =0,1,---, L.

Zf:l x(1)x(i)*, where

U=

2) Estimate the covariance matrix Rz via the time average f{,—( =
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S is the number of data block (i.e., SP is the number of samples for each transmitter).
3) Compute F;, formed by the channel product matrices, for j =0,1,---, L, using (2.18).
4) Form the matrix Q as in (2.19), and obtain the channel impulse response matrix (2.21)

by computing the K largest eigenvalues and the associated eigenvectors of Q.

2.5 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed

method. The channel normalized root-mean-square error (NRMSE) is defined as

NRMSE — [HO - H2, (2.32)
|H||F ZZ r

where || - || denotes the Frobenius norm. H® = [H®(0)” H®(1)7 ... HO(L)T]T is the
estimate of channel impulse response matrlx H after removmg the unitary matrix ambiguity
by the least squares method [20, 21]zand I & BQO is, the number of Monte Carlo runs. The
input source symbols are 1ndependent and 1dentlcally dlstrlbuted (ii.d.) QPSK signals.

The channel noise is temporally and Spatlaﬂy white : Gaussmn The signal-to-noise ratio

(SNR) at the output is defined as SNR 2 L Zg[uiﬁl)lﬁ(?)” 2 where t(n) = [ti(n) -+ t;(n)]"

is the signal component of the received signal (see Figure 2.1).

1) Simulation 1 — optimal selection of precoding sequences

In this simulation, we use the following model

1.34 — 0.55¢ 1.67 4+ 0.12:¢ —1.45+0.212 —1.35+0.21¢ )
H(z) = + z”
—0.69 + 0.252 —0.51 —0.33¢ 0.62 —0.317 —0.76 + 0.43:
H(0) H(1)
—0.31 +0.15¢ —0.41 — 0.16¢ 72
+ z (2.33)
—0.29 +0.212 —0.25—-0.14:
H(2)

to demonstrate the effect of different precoding sequences on the performance of the pro-

posed method. In experiment 1, the first sequence is chosen as {0.767 1.07 1.07 1.07},
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which satisfies (2.28) and (2.29). The second and third sequences are chosen based on
(2.30) for P =4 and 7 = 0.5878 with the two possible peak positions: m = 0 and m = 3.
By computation, the corresponding p for the three cases are 40.0, 4.66 and 22.1, respec-
tively. Thus m = 0 is the optimal selection. Figure 2.2 shows that for SNR=10 dB, there
are about 5~7 dB and 5~9 dB difference in NRMSE between the optimal one and two

others.

In experiment 2, we use the precoding sequences that satisfy (2.30) with m = 0, but
with different 7 to test the effect of 7 on the identification performance. Figure 2.3 shows
that for each sequence, when the number of samples (for each transmitter) is fixed at 1000,
the NRMSE decreases as SNR increases and is roughly constant for SNR > 20 dB. Figure
2.3 also shows that the identification performs better for smaller 7, which is consistent with

the conclusion at the end of Section 2.3.1.
2) Simulation 2 — channel order overestimation

In this simulation, we use the foll‘owing c]ra%mn'éll" mk)del
i L

0.4851 0.3200 | |- —0A85L°0:9387 [= | 0.7276 —0.1280 | _,
H(z) = S W i—— 2
~0.3676 0.2182 “0.8823 “-0:8729 0.2041 —0.4364
H(0) P H()

(2.34)

given in [19]. For each upper bound L, 0 < (L — L) < 6, we choose P = L + 2, SNR=10
dB, and 1000 samples (for each transmitter) for simulation. The precoding sequences are
chosen as (2.30) with m = 0 and 7 = 0.2, 0.4, 0.6, and 0.8. Figure 2.4 shows the NRMSE
increases with increasing channel order overestimation. We see the proposed method is
quite robust to channel order overestimation when 7 is small. For example, with 7 = 0.4,
when (L — L) increases from 0 to 3, the NRMSE increases from -25.5dB to -21dB, which

is still a low value.

3) Simulation 3 — a 3-input 2-output channel
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In this simulation, we use the 3-input 2-output model

e 1.6 0.88 0.66 . —0.44 035 0.14 4, 0.13 0.01 0.08 | _,
zZ) = zZ zZ
0.8 044 0.33 —0.14 0.37 0.23 0.26 0.02 0.16
H(0) H(1) H(2)

(2.35)

to illustrate the performance of the proposed method for channel with more transmitters
than receivers. Note that H is full column rank, but the channel is not irreducible [21]
because H(0) is not full rank, and it is not column reduced [21] either because H(2) is not
full rank. In experiment 1, the precoding sequences (P = 4,7 = 0.5878) are given as in
(2.30) with m = 0 and m = 3, respectively. Figure 2.5 shows that the NRMSE decreases
as the number of data samples increases for SNR=10 dB. As expected, m = 0 case (the

optimal selection) is better than m = 3 case.

In experiment 2, we use the precodmg Sequences that satisfy (2.30) with m = 0, but
with different 7 to test the effect of 7 on the 1dent1ﬁcat10n performance. Figure 2.6 shows
that for each sequence, when the number of éaﬁnples for each transmitter) is fixed at 1000,
the NRMSE decreases as SNR i 1ncreases and 1s Toughly oonstant for SNR > 25 dB. Figure

2.6 also shows the identification perfo_rms .better Hor sialler 7.
4) Simulation 4 — channel equalization berfoflr"nance

In this simulation, we use the channel model given in (2.34) to demonstrate the perfor-
mance of the proposed method for channel equalization. We use the precoding sequences
that satisfy (2.30) with m = 0, but with different 7 to test the effect of 7 on the equalization
performance. For simplicity, we use the minimum mean square error (MMSE) equalizer.
The equalizer is a 17-tap Wiener filter with 12-tap reconstruction delay whose jth output
u;(k) is an estimate of w;(k) for j = 1,2,---, K. Since the precoding scheme is applied
at the transmitter, we need to multiply 4;(k) by the corresponding p(k)~! to obtain an
estimate of s;(k) for j =1,2,---, K. The number of samples is 1200. We first identify the

channel using the first 400 samples and then do equalization.

Figure 2.7 shows that under low SNR, the proposed method performs better when 7 is
large; however, under high SNR, the proposed method performs better when 7 is low. A
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possible explanation is as follows.

Channel estimates become more accurate as 7 becomes smaller, but the gains p(k)~! =

\/—, k=1,2---,P—1Dbecome larger and result in larger noise amplification at the receiver.
Both channel estimation error and channel noise contribute to the (maximum likelihood)
detection performance, i.e., the symbol error rate. In the low SNR region, the detrimental
effect of noise amplification outweighs the benefit of small estimation error; whereas in the
high SNR region, accurate channel estimation weighs more than the noise amplification

effect. Hence we choose a small 7 when SNR is high and a large 7 when SNR is low.
5) Simulation 5 — Comparisons with other methods

In this simulation, we generate 100 2-input 4-output random channels with order L = 2;
each element in the channel impulse response matrix is a complex circular Gaussian random
variable with unit variance. We compare the proposed method with a generalized space
time block codes (GSTBC)[23] based method Both methods require periodic precoding
sequences. For the proposed metth the Weodlng sequence is chosen as {1.500 0.767
0.767 0.767}; whereas the entries ' the preeadlﬁg sequence for the GSTBC method is
chosen as random entries with mod_tﬁﬂus‘i for—ead‘r r@ndom channel simulation [23]. The
performance of the proposed method "i_fs_“e,lso Compared with a linear prediction (LP)[2,
chap. 6] based method, and an outer prod{lct deeemposition algorithm (OPDA)[20]. Both
methods do not require a periodic precoder. MMSE equalizers are used for the proposed
method, LP method, and OPDA method. For the GSTBC method, we use the customized
equalizer proposed in [23]. Figure 2.8(a) shows that when the number of samples is 1200
(for each transmitter), the identification performance of the proposed method is better
than those of the other three methods excepting the GSTBC method for SNR > 13 dB.
However, Figure 2.8(b) shows the equalization performance of the proposed method is only
better than those of the LP and OPDA methods and worse than the GSTBC method.
The inconsistency of the channel estimation and equalization performance of the proposed
method and the GSTBC method for SNR < 13 dB may be due to the different precoding
sequences and equalizers used. Figure 2.9 shows that when the number of samples is 200
(for each transmitter), the identification and equalization performance of the proposed

method is better than that of the GSTBC method for SNR < 15 dB. Figure 2.9 shows that

20



when the number of samples is small, the proposed method has better performance than

the GSTBC method under low SNR.

2.6 Summary

In this chapter, we have proposed a blind identification method for general MIMO FIR
channels using periodic precoding. We optimally design the precoding sequence against
the effects of channel noise and numerical error, so as to increase the accuracy of channel
estimation. The channel identifiability only requires that channel impulse response matrix
H is full column rank, which is more relaxed than irreducible or column reduced. In
addition, the channel can have more receivers or more transmitters. This algorithm can be
used in the case of channel order overestimation. Simulation results are used to demonstrate

the performance of the proposed method.
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Chapter 3

Blind Channel Identification for
MIMO Single Carrier Zero Padding

Block Transmission Systems

Elg

In this chapter, we propose a blind identiﬁc‘afion me%chod based on periodic precoding
for another transmission systems, siigle (;arfier‘"z”erb padding (SC-ZP) block transmission
systems. The method uses periodic precoding on fhé source signal before transmission.
The estimation of the channel impulse response matrix consists of two steps: (1) obtain
the channel product matrices by solving a lower-triangular linear system and (2) obtain the
channel impulse response matrix by computing the positive eigenvalues and eigenvectors of
a Hermitian matrix formed from the channel product matrices. The method can be used
in the case of channel order overestimation and is applicable to MIMO channels with more
transmitters or more receivers. A sufficient condition for identifiability is simply that the
channel impulse response matrix is full column rank. The design of the precoding sequence
which minimizes the noise effect in covariance matrix estimation is proposed and the effect

of the optimal precoding sequence on channel equalization is discussed. Simulations are

used to demonstrate the performance of the method.
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3.1 System Model and Formulation

p(ln) o o wll(n)
M s1(n) S/P _sl_—)(z) = uy (1) P/S u1(n) t1(n) @xl(n)
1: M N:1 MIMO
: : : FIR
p(ln) . B . ) 7. ) . Channel w‘i(n)
1)}(_(712 si(n S/P _SK—(Z’ = ug(i) P/S ug(n) ty(n) @xJ(n)
1: M N:1

Figure 3.1. An MIMO SC-ZP block transmission baseband model with periodic precoding

Consider the K-input J-output discrete time SC-ZP block transmission baseband model
shown in Figure 3.1. At the transmitter, the kth input signal vy(n) is first multiplied by a
positive P-periodic sequence, p(n) € R, toobtdiiisg(n) = p(n)vi(n), where p(n+P) = p(n),

vV n. Then si(n) is passed through a“-s%:‘rial—toi‘.—_Pgraﬂllel'block whose output is
== % | .“
5,(i) = [s1(iM) Sy(MFD = si(@ + M — 1)) (3.1)

M+P)xM

Then S (1) is passed through a zero pdﬁding prefilter ¥, = L 0%, )T € R whose

output is

(1) = Fi5,(1) = [ 5:()" 001" = [weiN) - (N + M~ 1) 0---0]",  (3.2)

~~

M entries P entries

M entriesP entries

where N = M + P. Finally, G(7) is converted to ux(n) via a parallel-to-serial block and
transmitted through the MIMO FIR channel. At the receiver, the jth received signal is
z;(n) =t;(n) + w;(n), where t;(n) is the signal component at the output and w;(n) is the
channel noise seen at the jth receiver. If we define x(n) = [z1(n) x2(n) -+ z;(n)]T € C/,

then x(n) can be written as

x(n) = Z H(D)u(n —1) + w(n) = t(n) + w(n), (3.3)
where u(n) = [ui(n) us(n) -+ ur(n))?, wn) = [wi(n) we(n) - wyn)]?, t(n) =
[ti(n) ta(n) --- ty(n)]", and H(I) € C/*¥ is the channel coefficient matrix whose jkth
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element hj(l), I =0,1,---, L, is the impulse response from the kth transmitter to the
Jth receiver, and L = max;{L;;} is the order of the MIMO channel. We assume that
H(L) # 0. Group the sequence of x(n) as (i) = [x(iN)" x(iN +1)T---x(iN + N —

DT)T € C7¥, and define 6(i) € C*Y and w(i) € C7¥ similarly as X(i), we have
X(1) = Hou(i) + Hyu(i — 1) + w(i), (3.4)

where Hg is a JN x KN block lower-triangular Toeplitz matrix with the first block column
being [H(0)" H(1)" ---H(L)T 0% ;-0 |7 € C/V*K and Hy is a JN x KN block
upper-triangular Toeplitz matrix with the first block row being [0y -+ 05 x H(L) H(L—
1)---H(1)] € C/*FYN We assume that the receivers are synchronized with the transmit-

ters. In addition, the following assumptions are made throughout this chapter.

(B1) The source signal v(n) = [v1(n) va(n) -+ vg(n)]T € CK is a zero mean white se-
quence with E[v(m)v(n)*] = 6(m — n)lg, & R*** where §(-) is the Kronecker delta
function. The noise is white zerg Iﬁeanwith.E[W.(m)w(n)*] =d(m—n)o2l, € R/

P ] JT'}\ ol N ok
In addition, the source signal isuncorrelated with the noise w(n), i.e., E[v(m)w(n)*] =

OKXJ,Vm,n. = | -

(B2) An upper bound L of the Chahnél order s "Ehown, P=1+ 1, and M > Pis a
multiple of P. ‘ |

(B3) The channel impulse response matrix H = [H(0)? H(1)T ---H(L)T]" is full column
rank, ie., rank(H) = K.

In the next section, we derive an algorithm for blind identification of the MIMO channel

impulse response matrix H using second-order statistics of the received data.

3.2 Blind Channel Identification

In this section, we derive the proposed method under assumptions (B1), (B2), and

(B3). We discuss an optimal design of the precoding sequence, which takes into account
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the noise effect in the estimation of covariance matrix of the received data, so as to increase
the accuracy in the computation of the Hermitian matrix HH* and thus reduce the channel
estimation error. With the proposed optimal precoding sequence, the computation of HH*
becomes particularly simple. Taking eigen-decomposition of HH*, we obtain the channel

impulse response matrix H up to a unitary matrix ambiguity.

3.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known
with P = L 4 1, there are more receivers, i.e., J > K, and the noise is absent. The cases
of channel order overestimation and more transmitters than receivers (i.e., K > J) are
given in Section 3.2.2 and 3.2.3, respectively. The effects of noise and optimal design of the

precoding sequence are discussed in Section 3.2.4.

From (3.4), we know that only the Iast L bloqlg éolumns of Hy are non-zero and zeros

are padded in the last P = L + 1 Block roﬁﬁéjo’f ﬁ(z Al) and (i) (see (3.2)). Hence the

product Hy@(i — 1) equals the zerosvector, which can bé seen from (3.5) below.

Hy . Siin— - aGio1)
0 ---0 H(L) --- H(l) Lakde a((i — 1)N) i
0O ---0 0 :
0 - 0 H(L)
~0 (3.5)
0.0 0 0 a((i — )N +M — 1)
0 -0 : 0
0---0 :.-- 0 0 o
L L l;;cks 4 -
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Hence (3.4) can be expressed in a simple form (noiseless case):

0 o w0
L xi@N) | [ HO 17 weivy ]
x(iN + L) H(L)--- H(0) u(iN + L)
: - : = Heg(i)a
X(iN + M — 1) H(L)--- H(0) u(iN + M — 1)
: 0
 x(iN+N-1) || H(L)--- H(0) | | 0 |
(3.6)

where H, is the sub-matrix formed from the first M block columns of Hy and s(i) =
[u(iN)T u(iN + 1)T -+~ u(iN + M — 1)T]7 is the first M block entries of u(i). Because
u(iN) = [u1(iN) uz(iN) -+ ug(iN)]T (see the line below (3.3)) and ug(iN) = s3,(iM)
for k = 1,2,--+ K (see (3.2)), u(iN) =si(iMsy(iM) - sg(iM)]" = s(iM). Simi-

larly, u(iN + m) = s(iM + m) for m = o PR 7 % 1. Hence s(i) = [sGM)T s(iM +
ik J b 1
nT os(iM + M —1)1T. s b=

1
J

Let x;(i) = [x(iN)T x(iN + 1)T2'".~ : x(zN—}-L)T]T be the first J(L + 1) rows of X(i).
Then h d

x7(i) = Hysy (i), (3.7)

where Hy € C/(EFDXKEL+D) g the sub-matrix formed from the first (L + 1) block columns
and block rows of He, and s (i) = [s(iM)T s(iM +1)T -+ s(iM + L)T]T. Also we know
for k = 1,2,--- | K, sp(iM) = p(iM)vi(iM) = p(0)vg(iM) from (3.1) and assumption
(B2). Hence s(iM) = [p(0)vy(iM) p(0)vy(iM) -+ p(0)vg(iM)]T = p(0)v(iM), where
v(iM) = [vi(iM) vo(iM) -+ vg(iM)]*. Similarly, s(iM + n) = p(n)v(iM + n) for
n=1,2,--- L. Therefore (3.7) can be written as

30



x(iN) H(0) p(0)v(iM)
x(iN +1) _ H(1) H(0) p(1)v(iM + 1)
] x(iN + L) | I H(L) H(L-1) H(0) 11 p(L)v(iM + L) |
H, vy(d)
| p(0)H(0) 1 van
_ | P(OE(1) p(LH)H() v(iM +1)
| pOH(L) p(UH(L 1) p(L)H(©) | | viM+1)

(3.8)

Define S € R/EADXJ(I4D) 35 the matrix whose first block sub-diagonal entries are all I,

ie., ] 5
0 0 %0 0
I, O 0 g 3 e
S=| o0 L= A e REEHDIELA),
0 0 igTn
Rewrite (3.8) as
1(i) = PO)H p(1SH - p(L)S"H]v, (i) = Hyv, (i) (39)

Taking expectation of x(i)x(7)*, we get the covariance matrix
Ry = E[xs(i)xs()"] = H,H . (3.10)

From (3.9), since H, = [p(0)H p(1)SH --- p(L)S“H], (3.10) can be written as

L
Ry = p(0)?HH" + p(1)*SHH'S” + - 4 p(L)*SHH'(S)" = 3 p(k)*S*HH' (S7)".
k=0
(3.11)
From [38, p.414], we know that the general matrix equation Z?Zl A,;XB; = C can be equiv-

alently expressed as a matrix-vector equation form, [ ' Bl ® A]} vec(X) = vec(C),
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where vec(-) is the vec-function which stacks up columns of a matrix. Hence the matrix

equation (3.11) can be written in the following vector form:

vec(Ry) = vec (Zp( )2SFHH*(S7) ) (Zp k)*S*F @ Sk> vec(HH) = G - vec(HH").

: (3.12)

Here G is a block Toeplitz lower-triangular matrix shown as follows:

L 29 2
1)2S 0)21 0 -
G=> pk)stest= o .) o ). - _ c RF>F 1 (3.13)
k=0
p(L)2SE p(L —1)2SE1 oo p(0)21,p

where F = J(L + 1) and S € R7F*JF is a block diagonal matrix with S on the diagonal

blocks. Since G is square, the solution to (3.12) is

Vec(HH*) G~ 1Vec(Rf) (3.14)

provided p(0) # 0. We use the sol'utﬂion ob%i&ned‘ in "‘(3.14) to form a Hermitian matrix
Q = HH". Since rank(H) = K by assumptlon (B3), rank(Q) = K. Since Q is Hermitian

and positive semidefinite, Q has K p081t1ve elgeﬁvalues, say, A1, -+, Ax . We can expand

Q as ‘
K

Q=> (VA fd
J=1

where d; is a unit norm eigenvector of Q associated with A\; > 0. We can thus choose the

channel impulse response matrix to be

= [Vadi Vedy -+ VAgdg] € CIEFDXE

We note that H can only be identified up to a unitary matrix ambiguity U € CK*X|
ie., H = HU, since HH* = HH* = Q. The ambiguity matrix U is intrinsic to blind
identification of multiple input systems using only second-order statistics technique [20, 21].
The ambiguity can be resolved using a short pilot block sequence [27].

Remark: In this section, we only use x;(7), the first L 4+ 1 block rows of X(7), to identify
the channel product matrix Q, since the lower-triangular structure of the sparse matrix G

makes it easy to compute vec(HH"), which can be seen in Section 3.2.5. If we use more
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than L + 1 block rows of x(7) for computing a larger covariance matrix and identify Q, the
accuracy of estimation improves while the computations required roughly increases with

the square of number of rows of x(1).

3.2.2 Channel Order Overestimation

So far we have assumed that the channel order L is known. If only an upper bound
L > L is available, then following the same process given in Section 3.2.1, we obtain

—

vee(HoyH,) = [Sor_, Sk ® S 'vec(Ry) where Hoy, = [HT 0 --- 0] € CIELDxK,
AIA,—L blocks
Then we can also obtain Q = Ho H},. Note that the last (L — L) block columns and

block rows of Q are zero. Hence again, rank(Q) = K and Q has K positive eigenvalues.
Each of the associated cigenvectors has the form d = [d7 0 --- 07 € C/E+D where
d € C/U+D | Thus, we can identify the channel impulse response matrix, up to a unitary

matrix ambiguity, from the K eigenvg:ctbfs assoéié{t"ed with the K positive eigenvalues of

]

Q. In the noise free case, we can, in".theory;,aqsn déterxﬁine the actual channel order.

3.2.3 More Transmitters.‘:_fI‘h;‘;{{in’*Regeivefs

In the above discussions, we assume that there are more receivers than transmitters,
ie, J > K. If there are more transmitters, i.e., K > J, then either J(L + 1) > K or
K > J(L+1). If J(L+1) > K, then H is a tall matrix and assumption (B3) is generically
satisfied. Hence the proposed method still applies. If K > J(L + 1), then rank(H) < K
and assumption (B3) does not hold. Hence the proposed method is applicable to the more
transmitters case, provided the additional condition J(L + 1) > K is satisfied. In addition,
we note that in the proposed method, the channel condition is assumption (B3), i.e., the
channel impulse response matrix H is full column rank. Hence the channel needs not be

irreducible or column reduced.
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3.2.4 Optimal Design of the Precoding Sequence
When the noise is present, the covariance matrix Ry contains the contribution of noise.
Thus (3.10) becomes
Ry = Elx;(i)x;(i)"] = H,H + 0215, (3.15)
In this case, (3.12) becomes
vec(Ry) = G - vec(HH*) + o2 vec(Ip). (3.16)
From (3.14), the approximate solution of vec(HH) is
VGJI‘E‘I*) = G 'vec(Ry). (3.17)

It follows from (3.17) and (3.16) that

Veﬁ*) = vec(HH") + 02 G~ - vec(Iy) = vec(HH") + 02 2. (3.18)
The vector z = [z1 20 -+ zp2]T in (3:18) fis thne]t $pllitioll;"of Gz = vec(Ip). Since the matrix

G is completely determined by the p-r.ecoding ‘s‘e"(:ilience pln), we seek to choose p(n) so that
||z||2 is minimized. To this end, we ‘"n“("eedgpﬁogf';inalyzé the relations between z and p(n). By

expanding the matrix equation Gz = V"éo(Ip), werfind that

p(0)*z; =1 i=14+k(F+1), k=0,1,---,J—1
zop(n)22i+(1—n)J(F+1) =1 =1+ k(F + 1), k=0,1,---,J—1
_oP(N)*zis@—nysp41) = 1 i=1+k(F+1), k=0,1,---,J—1 (3.19)

Zizop(n)QZH(L—n)J(F-f-U =1 i=14+k(F+1), k=0,1,---,J—1

\

and z; = 0 for all other indices j. We write (3.19) as the following matrix equation.

90 0 - 0 mo 1
) m 1
oo Y= (3.20)
ar gr—-1 -+ 9o mr, 1
\- ar -J\- -/ \- -/
s m Yy
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where Gy is a lower-triangular Toeplitz matrix, g, = p(n)? for n = 0,1,---, L, and m; =
Zipjopgny for g =0,1,--- L i =1+k(F+1),k=0,1,--- ,J—1. Hence Gz = vec(Ip), the
relations between z and p(n), is reduced to (3.20), and minimization of ||z||3 is equivalent
to minimization of |ml|3, which is a nonlinear function of go, g1, - - -, gr. Then the problem
is to minimize ||m||3 by choosing go, g1, - - , g1, subject to suitable constraints. Specifically,

we formulate the problem as

Minimize,, 4,... 4, [|m[[3  subject to

Gn>T>0, Y0<n<lL (3.21)
1 L
Y > gn=1 . (3.22)
n=0

Roughly, constraint (3.21) requires that at each instant, the power gain (g, = p(n)?) is no
less than 7 with 0 < 7 < 1; constraint (3.22) normalizes the power gain of the precoding

sequence of each transmitter to 1.

It is easy to show that for L =1, the‘problem has a unique global minimizer given by
go =2—71 and g; = 7 (see Appendix: C) For géneral L > 2 case, the standard Kuhn-Tucker
conditions [39] of the nonlinear mlmmlzatlan &blgm do not seem to yield easily a unique
analytical solution. However, the problem can be ea,slly solved numerically (for fixed L
and 7), say using the Matlab Optzmzzatzon- Toolbor. Extensive numerically solutions, with

different L, 7, and initial guess, have indicated that a global minimizer exists and is given

by

Ggo=L+1—-L7, i=g2=---=gr=T1. (3.23)

In the following, we show that the solution (3.23) is also the global minimizer of an
upper bound of [jml|3. We know [lml[|3 = [GSTy[3 < G - [Iyl3 = (L + DIGS3,
where |G ||z is the 2-induced norm of G . Since Gy is triangular and Toeplitz, it follows

from [33] that for any fixed integer L > 1,

IG5 < (0 + 1)+ 2(L + 1) (a0 +2) = 1] £ f(a, B), (3.24)

1
(a +2)267
%] and 8 = [go|. Hence we know ||m||2 (L+1)f(a, B). Since for

where o = max;—12... 1

any a > 0 and 3 > 0, ( B~ 0 (see Appendix D) and 248 — —%f(oz,ﬁ) < 0, we know

35



for any fixed 5 > 0, f(a, ) is an increasing function of «, and for any fixed a > 0, f(«, 3)
is a decreasing function of . Hence to minimize f(«,3), we should choose a as small as

possible and choose 3 as large as possible subject to 5 < L+ 1— L7 and o > It

TH-L+
follows that (3.23) is a global minimizer of the upper bound (L + 1) f(«, ).

Since g, = p(n)? and p(n) > 0, the optimal precoding sequence is

VL¥1=L7r, n=0
pln) = (3.25)
VT, 1<n<L

We consider next the effect of 7 on channel identification. From (3.20) and [31, 32], we
know m = Gy, where G_! is a lower-triangular Toeplitz matrix with [go g1 --- gr]* €

R+ as its first column, and

(3.26)

%

g = . Zi:l 9i-iGi; L= 1727 71_1“7 for [ = 1727' o 7L

Then

=g I‘ II. g ‘
Iml3 = g8+ (o g,)F Ak (GofE g + -+~ +g1)” (3.27)

For the optimal solution in (3.23), the ,‘c-orrespond_in'“g”; gn in (3.26) can be expressed as

follows:

9i = _(L+1T—LT)2 (1- L+1T—LT>Z'71 <0, i=1,2,---,L

The following proposition shows that ||m||3 is a continuous and strictly increasing function
of 7 on (0,1). In other words, for 0 < 7 < 1, ||m]|3 decreases as 7 decreases, and thus as
7 decreases, the noise effect in the estimation of the covariance matrix Ry is reduced and

hence identification performance improves.
1-(1— o )2

Proposition 3.1: With g, given in (3.28), ||m]|2 = T

and -L||ml|3 > 0 for
0<7<1L

Proof: See Appendix E.
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3.2.5 Computation of G,*

With the precoding sequence p(n) chosen as (3.25), the matrix G in (3.13) becomes

aIJF 0 0
S al;r - O

Go=| S (3.29)
bSE BSET . gl

where a = L+1—L7, and b = 7. The inverse of G can be obtained by forward substitutions

as
kol O 0
Gyl = klg kOI'JF o1 (3.30)
| kLSY kST kelye

P

where kg = % and k; = —%(1 — g)z_l formi :1,2, , L. The solution vec(HH*) =

EIS R
Gy 'vec(Ry) in (3.17) is thus quite Basy to co\h;-puteronc‘:e the optimal precoding sequence

is given. - N

3.2.6 Identification Algorithm

So far, we have proposed a new method to identify the MIMO channels for the SC-
ZP block transmission system using optimal designed periodic precoding which minimize
the noise effect in the estimation of the covariance matrix R;. With zero padding, the
computation of the Hermitian matrix HH* becomes particularly simple, since it amounts
to solving a lower-triangular linear system. The channel impulse response matrix H is
then computed, up to a unitary matrix ambiguity, from the Hermitian matrix HH* via an
eigen-decomposition. We summarize the proposed method as the following algorithm:
Algorithm :

1) Select the optimal precoding sequence p(n) given by (3.25), and form G, as in (3.30).
2) Collect the received data as X(7) and pick up the first (L + 1) block entries of X(i) as
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xy(7). Then estimate the covariance matrix Ry via the time average

Ry = < D xeli)xs () (3:31)

where S is the number of data block.
3) Compute Veﬁ*) — G 'vec(Ry) to obtain the elements of HH*.
4) Form the matrix Q = HH™ and obtain the channel impulse response matrix by comput-

ing the K largest eigenvalues and the associated eigenvectors of Q.

3.3 Channel Equalization

Once the received data X(i) = HeS(7)+Ww(¢) is available and the channel is identified, the
minimum mean square error (MMSE) or zero forcing (ZF) equalization methods [13, 14] can
be used to recover the modulated sources sk-( JuFor example with an MMSE equalizer, G,
we estimate §(i) by 5(i) = G.X(4). Smce ‘the precodlng Scheme is applied at the transmitter,
we need to multiply the estimated s( ) by P~ 13 to obtaln an estimate of v(i), where v(i) =
v(EN)T viN +1)T ... (ZN+M+ 1) ]T and P= I]M ® (diag[p(0), -+, p(L)] @ Ik).
In other words, the estimated v (i) caii be obtamed by

v(i) = P‘lGei(z’). (3.32)

From (3.32), we know the equalization performance is related to P! and G.. Because
G, is formed from the estimated channel coefficients, we expect good channel identification
to bring an accurate G, and thus improves the equalization performance. Also we know
using the optimal precoding sequence in (3.25), the identification performance improves as 7
decreases. Hence using a small 7 brings good channel estimation and improves the accuracy
of G, which is expected to improves the equalization performance. However, using a small
7 would make the diagonal gain p(k)~! = \/— in P!, k=1,2,---, L, becomes large, which
results in large noise amplification at the receiver and hence is more likely to cause decision
error. Therefore using a small 7 would amplify the noise and the equalization performance

deteriorates as 7 decreases.
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In summary, although decreasing 7 improves the accuracy of G, it would cause an
increased amplification of noise, and vice versa. Hence there is a trade-off on the selection
of 7 when channel equalization is performed. In the work of [15, 16, 28], this trade-off is
also observed. We will give a simulation example to demonstrate this trade-off in the next

section.

3.4 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed
method. The channel NRMSE, SNR, and the number of Monte Carlo runs are the same as
those given in Section 2.5. The source symbols are i.i.d. QPSK signals. The channel noise

is zero mean, temporally and spatially white Gaussian.

1) Simulation 1 — optimal selection of pifecoding sequences

In this simulation, we use the “rjm')del (j“$39 ‘.j.ﬁo"de"r'nonstrate the performance of the

proposed method. The length of 3ﬂsymbql"]916.(‘.:ks is M]: = 27, which is zero padded to

blocks of length M + P = 30. It ﬁigaps Pl 3= L—|— 1) and transmission efficiency is
90%. In experiment 1, we use 5 precod‘iﬁg‘.sequencéé-”Which all satisfy (3.21) and (3.22) to
illustrate the effect of the precoding sequences on the identification performance. The first
sequence Sy are chosen based on (3.25) for 7 = 0.6, i.e., Sy is chosen as {v/1.8 v/0.6 v/0.6}.
The sequences S;, Sy, Sa, and Sp are chosen as {v/0.6 /1.8 0.6}, {+/0.6 0.6 1.8},
{v/0.6 v/1.0+/1.4}, and {111} (i.e., no precoding), respectively. Figure 3.2 shows that for
SNR=10 dB, the NRMSE decreases as the number of symbol blocks increases for every
precoding sequence. As expected, the optimal precoding sequence Sy yields the smallest

NRMSE.

In experiment 2, we use the precoding sequences that satisfy (3.25), but with different
T to test the effect of 7 on the identification performance. Figure 3.3 shows that when the
number of symbol blocks = 100, the NRMSE decreases as SNR increases and is roughly
constant for SNR > 20 dB for different 7. Figures 3.3 also shows that the identification

performs better for smaller 7.
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2) Simulation 2 — channel order overestimation

In this simulation, we use the channel model (2.33) with SNR = 10 dB, fix the number
of symbol blocks at 300, and use the precoding sequence that satisfies (3.25) with 7 = 0.6.
For each upper bound L, 0 < (L—L) < 6, we choose P = L+1 and M = 9P for simulation
such that the transmission efficiency is maintained at 90%. Figure 3.4 shows the NRMSE
increases with increasing channel order overestimation for each 7. We see that periodic
precoding improves robustness to channel order overestimation. For example, without
precoding (7 = 1), the NRMSE increases about 6 dB for (L — L) = 3. With precoding,
(7 = 0.4), the corresponding increase in NRMSE is about 1.5 dB.

3) Simulation 3 — a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model (2.35) to illustrate the perfor-
mance of the proposed method for channel with more transmitters than receivers. We use
M =27 and P = 3. In experiment 1, we:u"sé the ‘same precoding sequences So, S, and Sy
which are used in simulation 1. Figu;"é.?)f)r ?ﬁo,yv’é;th&t‘,for SNR=10 dB, the NRMSE de-
creases as the number of symbol bloeks incref;ges" fbi“ eacﬁ; precoding sequence. The optimal
precoding sequence Sy yields the sﬁiéllest LNRMS—E% . ]

In experiment 2, we use the precoding Vsequem:es“ fhat satisfy (3.25), but with different 7
to test the effect of 7 on the identification performance. Figure 3.6 shows that the channel
NRMSE decreases as SNR increases for each 7 and that the identification method performs

better for smaller 7.
4) Simulation 4 — trade-off in selecting 7

In this simulation, we discuss the trade-off in selecting 7 when channel equalization
is performed. We use the MMSE equalizer [13, 14]. We generate 150 2-input 2-output
complex random channels based on the IEEE 802.11a standard [37, p. 336]. The sampling
frequency is 20 MHZ and the the delay spread is 35 nsec (for home environment). Thus
the orders of the channels are L = 7. We use M=56 and P = L + 1 = 8 such that
N = M + P = 64. The number of symbol blocks is 250. We use the optimal precoding

sequences which satisfy (3.25) with various 7.
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Figure 3.7 shows that the identification performs better for smaller 7. Figure 3.8(a)
shows that for 7 € [0.1,0.8], the bit error rate (BER) performance deteriorates as 7 de-
creases and the BER for 7 = 0.7 and 7 = 0.8 are very close. Figure 3.8(b) shows that
for large 7, 7 > 0.8, the BER performance improves as 7 decreases. Figure 3.8 shows
that there is a trade-off between identification accuracy and noise amplification: a small 7
means large noise amplification and an accurate channel estimate, and vice versa. For this

example, it seems a 7 between 0.7 and 0.8 is a good choice for BER performance.
5) Simulation 5 — comparison with the subspace method

In this simulation, we again generate 300 2-input 2-output channels based on IEEE
802.11a standard. We use the precoding sequences that satisfy (3.25) with 7 = 0.8. We
use Gray-coded QPSK and 16-QAM input symbols for simulation. We compare the iden-
tification and MMSE equalization performances of the proposed method with those of the
subspace method [27] for MIMO SC-ZP systems.

Figure 3.9(a) shows that when th(;humﬁqﬂr .Of :.syr;iblol blocks is 200, the identification
performance of the proposed method s bet’;‘eir-lﬂtﬁa;n‘, théit of the subspace method except
SNR > 16 dB. The proposed metho:c_lﬁllyields;éim@ﬁih@ same identification performance for
QPSK and 16-QAM input symbols. Flgure 3.9(b) ShOWS that the equalization performance
of the proposed method is better than that of“lnthe subspace method except SNR > 16
dB. Figure 3.9 shows that the identification and equalization performance of the proposed
method is better than those of the subspace method for low to medium SNR. The subspace
method gives smaller BER than the proposed method for SNR> 16 dB.

6) Simulation 6 — identification using different sizes of covariance matrices

In this simulation, we use the channel model (2.33) to compare the channel NRMSE
when we use the first 3, 15, and 30 block rows of x(i) to form the covariance matrices
for identification. We use the precoding sequences that satisfy (3.25) with 7 = 0.6 and
fix the number of symbol blocks at 100. Figure 3.10 shows that when we use the more
information of the received signal x(i), the identification performance improves. However,

as we indicate at the end in Section 3.2.1, the computational load of solving vec(HH)
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increases as the used information increases. If we define a “flop” to be a single complex
multiplication or addition [35], then due to the sparse and lower-triangular structure of
G™!, there requires about 4.3 x 10% flops to solve vec(HH*) for the first 3 block rows of
X(7) (see (3.14)); while for the first 15 and 30 block rows of x(i), the solution of vec(HH") is
obtained via the least square approach, which is solved by the QR factorization [35, p.240],
and the flop counts are roughly 8.4 x 10° and 3.44 x 10° flops, respectively .

3.5 Summary

In this chapter, we propose a blind identification method for MIMO FIR channels in the
SC-ZP block transmission systems using periodic precoding. The identifiability condition
requires that the channel impulse response matrix is full column rank. The channel can have
more transmitters or more receivers. The performance of identification algorithm depends
on the choice of the precoding sequence:’ We propose a two- level optimal precoding scheme
that minimizes the noise effect in the estlmdtion of the covanance matrix Ry. The effect

of the optimal precoding sequence én channel ‘equahzatwn is also discussed.
= | |

Compared with the subspace metﬁocj [27], thé prop-bsed method is shown to have better
performance from low to medium SNR. Besides, the computations involved in the algorithm
are relatively simple: only covariance matrix estimation, a multiplication of vec(Ry) by a
lower triangular matrix to obtain Veﬁ-IT-I*), and an eigen-decomposition of a J(L 4 1) X
J(L + 1) matrix, the main computational load; whereas, the computations of the subspace
method requires a covariance matrix estimation, and two main computational loads: an
eigen-decomposition of a J(L+ M) x J(L+ M) matrix and a singular value decomposition
ofa (JN — KM)N x J(L+ 1) matrix. Since N = M + P and M > L, hence the subspace

method requires substantially more computations than the proposed method.
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Chapter 4

Blind Channel Identification for
MIMO Zero Padding Block

Transmission Systems

Elg

In this chapter, we propose a sifplified idéﬁtiﬁcatior; method for MIMO SC-ZP block
transmission systems without perio’djc pliecé)din"g: ‘Th‘e proposed method can also apply
to MIMO ZP-OFDM systems. With zero‘—padd‘ing;‘ fhe relation between the covariance
matrix of the received data and the channel product matrices becomes highly structured.
The structure makes it easy to estimate the channel product matrices and the noise covari-
ance matrices. Eigen-decomposition of a Hermitian matrix formed by the channel product
matrices yields the channel impulse response up to a unitary matrix ambiguity. The pro-
posed method can be used in the case of channel order overestimation. The channel noise
may be temporally and spatially colored, the channel needs not be irreducible or column

reduced, and there can be more transmitters or more receivers. Simulation results are used

to demonstrate the performance of the proposed method.
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Figure 4.1. An MIMO SC-ZP block transmission baseband model

4.1 System Model and Formulation

Consider the K-input J-output discrete time SC-ZP block transmission baseband model
shown in Figure 4.1. At the transmitter, for £ = 1,2,--- | K, each input signal si(n) is
first passed through the serial—to—paral\lel"bllbék wWhose output is §;(i) = [s,(iM) s,(iM +
1) -s,0M + M — 1)]F € CM. Tﬁeﬁ §k(lp)1 li_s“"‘;‘)asls“;éd through a zero padding matrix

F, = [Iy; 05, ,,]7 € RM+EPIXM whase ‘output is” P =

J

(i) = F15:()) = [ 5.()T 0---0 ]T‘i“"[g;,;(Tf\'r) ._;'}uk(m +M—-1) 00

P entries M entries P entries

M entries

where N = M + P. Finally, G (7) is converted to yield ug(n) via a parallel-to-serial block
and transmitted through the MIMO FIR channel. At the receiver, the jth received signal

is z;(n) =tj(n) +w;(n) for j =1,2,---,J, where ¢;(n) is the signal component and w;(n)
is the channel noise seen at the jth receiver. If we define x(n) = [z1(n) x2(n) --- z;(n)]7?,
u(n) = [u1(n) uz(n) - ug(n)]?, and w(n) = [wi(n) we(n) --- wy(n)]?, then x(n) can

be written as

x(n) =Y _H(m)u(n —m)+ w(n),

m=0

where H(m) € C7*¥ is the channel coefficient matrix whose jkth element hji(m), m =
0,1,---, Ljg, is the impulse response from the kth transmitter to the jth receiver, and
L = max;i{L;jx} is the order of the MIMO channel. Thus H(L) # 0,«xx. Group the
sequence of x(n) as X(i) = [x(iN)T x(iN + 1) ---x(iN + N — 1)T]7 € C’'¥, and define
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(i) € CEYN and w(i) € C/V similarly as X(i), we have
X(1) = Hou(i) + Hyu(i — 1) + w(i), (4.1)

where Hy is a JN x KN block lower-triangular Toeplitz matrix with the first block
column being [H(0)” H(1)”---H(L)" 0% ,---0% 4], and Hy is a JN x KN block
—_———

N—(L+1) blocks
upper-triangular Toeplitz matrix with the first block row being [0y - - - 07 x H(L) H(L—
—— ——

(N—L) blocks
1)---H(1)].
In the next section, we will propose an algorithm for blind identification of the MIMO
channel impulse response matrix H = [H(0)" H(1)" ---H(L)”]" using second-order statis-

tics of the received data based on the following assumptions.

(C1) The source signal s(n) = [si(n) sa(n) -+ sx(n)]’ € CK is a zero mean white
sequence with E[s(m)s(n)"] = 0(ms n)IK 5 REXE where §(+) is the Kronecker delta

function. The noise is zero medn, Widefskznsé,‘stafionary, and may be temporally and
=2 -
spatially colored with E[w(mjw(m + d)*}'= K., (d) € C”*’. In addition, the source

signal is uncorrelated with thé_ﬂﬁoisgk W(W),Te, Bls(m)w(n)*] = 0k, Vm,n.
(C2) An upper bound L of the channel ord@ [iis known, P = L + 1, and M > P.

(C3) The channel impulse response matrix H = [H(0)” H(1)” ---H(L)T]" is full column
rank, i.e., rank(H)=K.

4.2 Blind Channel Identification

In this section, we derive the proposed method under assumptions (C1), (C2), and
(C3). Application of the proposed method to MIMO ZP-OFDM systems is given in Section
4.2.3.
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4.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known
with P = L 4+ 1, and there are more receivers, i.e., J > K. The cases of channel order
overestimation and more transmitters than receivers (i.e., K > J) are given at the end of

this sub-section.

Due to assumption (C2) and the effect of zero padding, we know Hy@(i — 1) equals the
zero vector (see (3.5)), and (4.1) can be expressed in a simple form X(i) = Hou(i) + w(7)

shown as follows:

X0 _ BN - i)
[ xv || HO iy
x(iN + L) H(L)--- H() u(iN + L)
X(iN + M — 1) SR f.{(o-) u(iN + M —1)
x(iN + N — 1) w 0
- - | (L+1) blocks 1 - -
(4.2)

Let x¢(i) = [x(iN)" -+ x(iN + L)T]" be the first (L + 1) block rows of X(i). Then

Xf(i) = Uf(’i)—FWf(’i), (43)

where H; € C/LADXK(L+Y g the sub-matrix formed by the first (L + 1) block columns
and block rows of Ho, and us(¢), wy () are similarly defined as x;(¢). Taking expectation

of x¢(7)xy(2)*, we get

Ry = Elx;(i)x;(i)"] = H/H} + Ky, (4.4)
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where Ky is a Hermitian and block Toeplitz matrix and each block on the jth block super-

diagonal is equal to Ky(j) for j = 0,1,---,L. Since Hy is block lower triangular, we
have
([ To(Ry) = HOHO) + Ky (0) YLHOHD) +Ky(0) - Y HOHD) + Ky (0)
Ti(Ry) = [HOH1)" + Ku(1) S BOH@+ 1"+ Ky(1) - 35 HOH+ 1) + K (1)
T2(Ry) = HOH)" + Ku(2) Y gHOH(+2)" +Ku(2) - Y5  HOH( +2)" + Ku(2)]

T 1(Ry) = [HOH(L - 1)* + Kw(L - 1) Y, HOH(I+L—1)* + Ky (L —1)]
Tr(Ry) = [H(0)H(L)" + Kw(L)].

(4.5)

Then for each T,;(Ry), j = 0,1,---, L, keep the first block matrix and subtract the mth
block matrix from the (m 4+ 1)th block matrix of Y;(Ry), m =1,2,---,L —j > 1. In this

way, we obtain the following matrices.

;

Ey = [H(0)H(0)" + Kw(0) H(LH(1)" H(2)H(2)" H(L)H(L)’]
B, = [H(O0)H(1) + K, (1) H(YH()" HOHEE) - HL - DH(L)]
E, = [H(0)H(2)" + K,,(2) H{)HE): HAHE@) HL-2HOT o
By 1 = [HO)H(L — 1) + Kol NORER(L)
| B = [HOH(L) + Ko (D)
From (4.6), we can obtain the channel product matrices H(m)H(n)* for m,n =1,2,--- | L.

If we can further obtain H(0)H(j)* for j = 0,1,---, L, then we can get a Hermitian matrix
Q = HH" formed by these channel product matrices. Similarly, under the assumption
(C3), we can obtain the channel impulse response matrix, up to a unitary matrix ambiguity,
by choosing the K largest eigenvalues and the associated eigenvectors of Q, like the way

given at the end of Section 3.2.1

Now, to obtain H(0)H(j)* for j = 0,1, --- , L, we need to eliminate the noise covariance
matrix imposing on H(0)H(j)* + K (j). We will take advantage of the special structure
of the last P block entries of X(i), i.e., x;(i) = [x(iN + M) --- x(iN + N — 1)T]T to
eliminate Ky (j) for j =0,1,---, L.
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From (4.2), we know x;(7) can be written as

§ - ﬁﬁ)
Xt ~ % '\,- 1
- % - u(iN)
N+ ) 0---0 H(L) --- H(1) H(0)
N A1) H(L) H(1) H(0)
' _ u(z’N + M — 1) —|—W1(Z),

X(iN + N = 1) gl ;

L t | i M erocks P(:L+\3 blocks | 0
(4.7)

where wy (i) is similarly defined as x,;(i). Because the last P block rows in @(7) are zero and

P =L +1, x(i) can be written as

To .o omw - 5o [ wivy
(i) = N ) I B IRST) RY
| oA -y

where H,., the first M block columns of Hy, is a“J‘ P x K M block Toeplitz matrix with the

first block row being [0 xk - - - 055 “H(L)2H({L=1) ++-- H(1)] and the first block column
\ — ‘
(M—L) blocks . ®
being zero, as seen from (4.8). Let R; = E[x(#N"+ M)x;(i)]. Then from (4.8), we have

R, = [E[x(iN+ M)x(iN+ M)*] Ex(iN + M)x(iN + M +1)*] --- Ex(GN + M)x(iN + N —1)*]]
L L-1
= D_HOHO +Kw(0) > HOH(+1)"+Ku(1) -+ Ku(L):
=1 =1 g
1(L)
R;(0) Ry (1)
(4.9)
From (4.5), the last block column (in reverse order) of R gives the matrix R,,;:
L L-1
R, = (S HOHD + Ka(0) S HOHI+ 1)+ Ky(1) - HOH(L) +Ky(L),
=0 L =0 g _ Ron(L)
R (0) Rm(l)
(4.10)

where Ry(i) and R,,(i) € C’*/ for i = 0,1,---, L. Then subtracting (4.9) from (4.10),
we can obtain the channel product matrices H(0)H(0)*, H(0)H(1)*, -- -, H(0)H(L)*. The
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noise covariance matrix Ky(j) for 7 =0,1,--- | L can also be obtained. Hence we can form
the Hermitian matrix Q = HH" and estimate the channel impulse response matrix H by
taking eigen-decomposition of Q.

Remark 1: If we choose P = L instead of P = L+ 1, Hyu(i — 1) = 0 in (4.1) still holds
and we can also obtain (4.6). However, we can not eliminate the noise covariance matrix
imposing on H(0)H(L)* + K (L). More precisely, when P = L, then (4.9) and (4.10) will
become Ry(1: J;1:J x L) =[Ry(0) Ry(1) -+ Ry(L—1)] and R,,,(1 : J;1: J x L) =
[R,,(0) R,,(1) -+ R, (L — 1)], respectively. The difference of these two matrices gives
H(0)H(0)*,H(0)H(1)*,--- ,H(0)H(L — 1)*. The remaining unknown is H(0)H(L)*. Thus
we need to use P = L + 1 when K (L) # 0. However, if Ky (L) = 0, e.g., temporally
white noise case (K (j) =0 for j =1,2,--- L), we choose P = L because we can directly
obtain H(0)H(L)* from E in (4.6).

Remark 2: So far we have assumed that the channel order L is known. If only an

upper bound L > L is available, then fqllow_ing the same process given in this sub-

section, we observe that (4.6) become's‘“"]/j:ljr = [EJ 0jxy -+ 0jyyy| for 5 = 0,1,--- L
- ” S0 i1 blocks
and E; = [Ky(j) 077 -+ O] fori=L+1;E+2 = L. Then after noise covariance
(E-3) blocks A (JAss B

matrices elimination, we can also obzt"ainn QWlththe ]éyst (L — L) block columns and block
rows being zero. Then similar to the discussion i Section 3.2.2, we can also identify the
channel impulse response matrix.

Remark 3: The proposed method can apply to the case of more transmitters than re-

ceivers. Please see Section 3.2.3.

4.2.2 Identification Algorithm

So far, we have proposed a blind identification method for MIMO SC-ZP block trans-
mission systems based on eigen-decomposition approach. With zero-padding, the relation
between the covariance matrix of the received data and the channel product matrices be-
comes highly structured. The structure makes it easy to estimate the channel product

matrices and the noise covariance matrices. Eigen-decomposition of a Hermitian matrix
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formed by the channel product matrices yields the channel impulse response up to a uni-
tary matrix ambiguity. The channel noise may be temporally and spatially colored. We
summarize the proposed method as the following algorithm.
Algorithm :

1) Collect the received data as X(i), pick up the first (L + 1) block entries of X(i) as xy(7)
and the last P block entries of X(i) as x;(1).

2) Estimate the covariance matrices Ry and R; via the following time average

R
s =g 2 XX, (4.11)

S
gz x(iN + M)x(i)", (4.12)

where S is the number of data block, and x(iN 4+ M) is the (M + 1)th block entry of X(i).
3) Form T,(R;) as in (4.5) and then obtain H(m)H(n)* for m,n =1,2,--- , L.

4) Form (4.10) from T'(Rf) J = 0, L asaliiy "and form (4.9) from R;. Then obtain
H(0)H(y)* for j =0,1,---,L by subtractm% $4 9) from (4.10).

5) Form the matrix Q = HH" using the channel produc’ﬁ matrices, and obtain the channel
impulse response matrix H by Comm_putlng'fth,efflié_ larngeét eigenvalues and the associated

eigenvectors of Q.

4.2.3 Extension to MIMO Zero-Padding OFDM Systems

The proposed method can be extended to the MIMO ZP-OFDM systems. In this case, at
the transmitter, each 8, (4) is multiplied by the IFFT matrix F~! = F* before entering the
zero padding block, F; [27] (see Figure 4.2). Here F € CM* is an FFT matix. Thus we
know the input to F; is F*§; (i) for OFDM case. Since F is a unitary matix [26], 8;(i) and

F*s,(i) are both zero mean and have the same second-order statistics. Hence
E[F*sg(m)] =0, E[(F*sg(m))(F*sk(n))"] =0(m —n)Iy.

Hence the first and second-order statistics of u(n) for OFDM case are the same as those
for single carrier case. Therefore, following the same method given in Section 4.2.1, we can

identify the channel impulse response matrix for ZP-OFDM systems.
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Figure 4.2. An MIMO ZP-OFDM baseband model

4.3 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed
method. The channel NRMSE and the number of Monte Carlo runs are the same as those
given in Section 2.5. The input source symBols-atés.i.d. QPSK signals. The signal-to-noise

- - S N B3] _ T
ratio (SNR) at the output is defined=as SNB}- JT_-E“'T”)I%]’ where t(n) = [ty(n) -+ t;(n)]
is the signal component of the received signal (sée Figure 4.1 and 4.2). Except Simulation

1, the channel noise is zero mean, tgrﬁporéllffﬁﬁgkspapiaily white Gaussian.
1) Simulation 1 — color noise case

In this simulation, we use the channel model (2.33) to demonstrate the performance of
the proposed method when the channel noise is colored. The length of symbol blocks is
M = 27, which is zero padded to blocks of length M + P = 30. It means P = 3(= L+1) and
transmission efficiency is 90%. The additive color noise w(n) is generated by passing a zero
mean, unit variance, temporally and spatially white Gaussian vector sequence wy(n) € R?
through an FIR filter C(z) = C(0)+C(1)2'+C(2)z2 whose output is w(n) = C(z)wy(n),
where

c(0) 0.283 +0.181z 0.1854 0.1152 c() 0.185+0.126¢  0.165 4 0.235:
—0.13540.1927 0.136 4 0.235:¢ 7 —0.154 4 0.1022 0.108 4 0.338:

0.089 4 0.1817 0.089 + 0.235:¢
0.089 +0.126: 0.108 4 0.159:
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In this case, Ky (0), Ky (1), and K(2) defined in assumption (C1) are shown as follows:

0.397 0.208 — 0.159i 0.242 — 0.067i 0.121 — 0.120i
K, (0) = , Kw(l) =
0.208 + 0.159i 0.350 0.171 + 0.101%  0.199 + 0.011i

0.101 — 0.068z 0.086 — 0.0372
0.090 4- 0.031z 0.064 + 0.038:

KW(Q) =

Figure 4.3(a) shows the NRMSE decreases as the number of symbol blocks increases. Figure
4.3(b) shows that the noise NRMSE also decreases as the number of symbol blocks increases,
where the noise NRMSE is similarly defined as in (2.32) except H is replaced by K =
Ky (0)7 Ky (1) Ky (2)7])7 and HO is replaced by KO = [K¥(0)T K& (1)T K (2)7]7.

2) Simulation 2 — random channels case

In this simulation, we generate 500 2-input 2-output random channels with order L = 2
to demonstrate the performance of the propesed, method Each element in the channel
impulse response matrix is complex Gaussum dﬁlstrlbutlon with zero mean and unit variance.
We use M = 18 and P = 2(= L) (transmlssion‘efﬁmency is 90%). Figure 4.4 shows for
different number of symbol blocks, the NRMSE_dﬁcreases as SNR increases and is roughly
constant for SNR > 20 dB. ' '

3) Simulation 3 — a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model (2.35) to illustrate the perfor-
mance of the proposed method for channel with more transmitters than receivers. We use
M = 18 and P = 2. Figure 4.5 shows for different number of symbol blocks, the NRMSE

decreases as SNR increases and is roughly constant for SNR > 20 dB.

4) Simulation 4 — channel order overestimation

In this simulation, we use the channel model (2.34) to demonstrate the performance of
the proposed method by comparing with the subspace method [27], which is also for MIMO
zero padding block transmission systems. For each upper bound L, 0< (ﬁ — L) <6,

we choose P = L and M = 9P for simulation such that the transmission efficiency is
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maintained at 90%. Figure 4.6 shows when the number of symbol blocks is fixed at 500,
the NRMSE increases with increasing channel order overestimation for different SNR. When
SNR=0 and 5 dB, the proposed method performs better than the subspace method. When
SNR=10 dB, the subspace method performs better than the proposed method. Figures 4.6
shows that the proposed method is more robust to channel order overestimation than the

subspace method when SNR is low.

5) Simulation 5 — channel estimation and equalization of a 2-input 2-output ZP-OFDM

system

In this simulation, we use a ZP-OFDM system with the same channel model (2.34), and
M = 18, P = 2. We compare the performance of the proposed method with that of the
subspace method [27]. Figure 4.7(a) shows when SNR = 0 and 5 dB, the performance of
the proposed method is better than that of the subspace method. However, when SNR =
10 dB, the performance of the subspace method is better than that of the proposed method.
Figure 4.7(b) shows when the number of blocks is 100 (300) the proposed method performs
better than the subspace method When SNR below about 8 dB (6 dB). Figures 4.7(a) and
4.7(b) show that the proposed metho_d has "‘b_‘etter perfor]mance than the subspace method
under low SNR. A D :

Figure 4.8 shows the simulation results for thuén zero forcing equalization of the proposed
method and the subspace method. The number of symbol blocks is 500 (where the number
of symbols = 18 x 2 x 500 = 18000). We first identify the channel using the first 25, 50,
250, and 500 symbol blocks, respectively, and then do equalization. In each sub-figure of
Figure 4.8, we see the proposed method performs better than the subspace method under
low SNR, whereas the subspace method performs better under high SNR. Besides, from
Figure 4.8, we can also observe the tendency that when the number of symbol blocks used
for identification increases, the equalization performance of the proposed method and the
subspace method would tend to be identical. Simulation result in Figure 4.9 shows when
the number of symbol blocks for identification and equalization is 5000, the performance

of these two methods are almost identical.
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4.4 Summary

In this chapter, we have proposed a blind identification method for the MIMO FIR
channels in zero padding block transmission systems without using the periodic precoding.
The method exploits the structure provided by zero padding. The channel noise may be
temporally and spatially colored, the channel identifiability condition requires the channel
impulse response matrix is full column rank, and the channel can have more transmitters

Oor more receivers.

Compared with the subspace method [27], the proposed method is shown to have better
performance under low SNR. Besides, the computations involved in the algorithm are
relatively simple: only covariance matrix estimation, matrix subtractions, and an eigen-
decomposition of a J(L + 1) x J(L + 1) matrix, the main computational load; whereas,
the computations of the subspace method requires covariance matrix estimation, and two
main computational loads: an eigen—decomp"oé.itidn-of aJ(L+ M) x J(L+ M) matrix and
a singular value decomposition of a (JN If M N X J (L + 1) matrix. Since N = M + P
and M > L, hence the subspace method requlres Subst;antlally more computations than

| ""_‘ '1

the proposed method. N ETTTE
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Figure 4.3. Color noise case
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Figure 4.4. Channel NRMSE versus output SNR
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Figure 4.7. An OFDM system case
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Chapter 5

Conclusions

We develop three blind identification algorithms for MIMO frequency selective wire-
less communication channels. Instead of compuiting the channel impulse response matrix
directly from the covariance matrix of the re(J:e‘lved data as in subspace methods, the algo-
rithms compute the channel product:matrices hrst and then determine the channel impulse
response matrix via an eigenvalue- elgenvector_decompos‘ltlon The algorithms are simple,
in terms of the amount of computatlons requlred as compared with subspace methods;
they allow a more relaxed identifiability condition and are applicable to MIMO systems
with more transmitters or more receivers. Simulation results show that they are reason-

ably robust with respect to channel order overestimation and has an NRMSE performance

comparable to subspace methods.

The algorithms differ in precoding complexity. The three precoding considered are:
(i) periodic precoding, (ii) periodic precoding plus zero padding, and (iii) zero padding
alone. As a result, for each of the three cases, the computation required to determine the
channel product matrices are also different. The computations required are respectively (i)
to solve a decoupled group of overdetermined linear systems of equations, (ii) to solve a

lower triangular linear system, and (iii) to carry out a number of simple subtractions.

Future research can be focused on (i) direct blind equalization without identifying the

channel first, and (ii) blind identification for MIMO time varying channels.
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Appendix

A Proof of Proposition 2.2 and 2.3

Preliminary :

For each j, let N; € RO=9)x(L=i+D he similarly defined as (2.17), except that I,
is replaced by 1. It can be easily chgpk-‘t‘hat"theye exists permutation matrices Py, €
R/N-9%IN=3) and P, € RI(L-+D>x 5+ such ‘t‘lhat.' P, M,P,; = diag[N;,N;,--- ,N;] =
D; € R/W=9)>xJ(E=i+1) js a block digonal ml’:xfrl'xwmh gach block of dimension (N — j) x
(L—j+1). Since Py =Py " andPy L =Py 135 p.110], we have M, = P, "D,P,.”.

Hence M, is full column rank if and ‘(')nl‘y“‘ 1f N; ié full'column rank for j =0,1,---, L.

Also, MI'M; = (P,,D!Py)(P,"D,P,,”) = P, D'D,;P,,” = P, diag[N'N;,--- ,N'N,|P,".
Let A(A) denote the spectrum of A [35, p.310], that is, the set of eigenvalues of A. Then

Proof of Proposition 2.2:

Ifat N—L+1<m <N —2,it can be checked that N;, j =2,3,---,L —1 is not of
full column rank since it has two columns both equal to [ 7---7]7 which implies that at

least one M is rank deficient and vice versa.
Proof of Proposition 2.3:

From the Preliminary, since A(Mj M;) = A(NTNj), the condition number of M} M;

is identical to that of NJNj, i.e., £(M] M;) = £(NTN;). Thus we need only compute the
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condition number of NJTNj.

Case (a): Form=0,m=1,---,and m =N — L — 1, we know
NIN;=a-Tpj1+ (2b4¢;)-[L---1]"[1---1], (A1)

where a = N*(1—7)% b= N7(1—7), ¢; = (N — j)7°. Hence the maximum and minimum
eigenvalues are a + (L — j + 1)(2b+ ¢;) and a respectively. Thus the condition number of
MTM; is 1+ [(L — j + 1)(2b + ¢;)/a] which is a decreasing function of j. Therefore the
corresponding p is equal to py = 1+ [(L + 1)(2b+ ¢o)/al.

Case (b): For m = N — L and m = N — 1, we consider the j = 0 case and j # 0 case
for N; separately. For j = 0 with m = N — L or m = N — 1, direct multiplication of N{ N,
gives the same matrix as (A.1), and the condition number of MIMj is y;. For j # 0 with
m = N — L, direct multiplication of N?Nj yields

a+ 2() + Cj 2b + Cj 2b+ er e 2b + Cj b + Cj

2W+c;  a+2b+c “j".z'b = E j TS Wt c;  b+c

NTN; = : . A | ] : € RE—G+)x(Lj+1).
2b + ¢; 20+ ¢; l"f-_2b —|— a]ﬁ S £20+c; bt
b—f-Cj b+Cj b—|—CJ FOEE b‘f‘C] Cj

(A.2)
The eigenvalues of NJTN]- in ascending order, are o, a, 3;, where a has a multiplicity L—j—
1, and 3j = 5{(L—j)(2b+c;)+(atc;)++/[(L = j)(2b+ ¢;) + (a — ;)]* + 4(L — ) (b + ¢;)*},
aj = 3{(L = )20+ ¢;) + (a+¢;) = VUL —5)2b+¢;) + (a— )P +4(L - j)(b+¢;)?}.

All of the eigenvalues are positive and real. (A proof is given in Appendix B). It can be

similarly shown that for j # 0 with m = N — 1, NJTN]- has the same eigenvalues «;, a, ;.

Hence for j =1,2,---, L, A\(MTM;) = {«;, a, 3;} and the condition number is

5 . X§—4(N—L)b2+xj\/><§—4(N—L)b2
R

MIM.) =
AM; M) = o(N — L) ’

(A.3)

where x; = (L — j)(2b+ ¢;) + a + ¢;. Since 3;/a; is also a decreasing function of j, then
the maximum value is ;/a;. Therefore, combining the two cases (j = 0,5 # 0), the

corresponding g is po = max{puy, f1/a1} > p.
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B The Eigenvalues of NJTNj for m=N—-L

Proof :

Let A; = NTN; defined in (A.2), then A; is positive definite since N is full column

rank. It can be checked that the eigenvectors corresponding to (L—j—1) multiple eigenvalue

a are: [1,-1,0,0,---,0]", [1,1,-2,0,---,0]7, ---, [1,1,---,1,—(L — j — 1),0]T. The
remaining eigenvectors are [1,1,--- 1, z]7 € RE7TL. Hence
1 a+ (L—37)2b+c¢;)+ (b+cj)x 1
A, = =\ , (B.1)
1 a+ (L—7)2b+c¢) + (b+¢j)x 1
x (L—7)(b+¢j) +cjx x

which implies the following two equations

o+ (L — h=+ SAEe +'”¢J:)x — A, (B.2)
A (2 Sl e (B.3)

Substitute (B.2) into (B.3), we can get.an second "orde‘ll".w equation of z. Solving this equation
can lead to two solutions of x. Bring theSe¢ twd z into (B.2) and we can obtain the two

eigenvalues (3;, «;. In addition, 3; > a because of (B.4)

Bi = UL =5)@2b+c) +(a+c¢) +VIL—5)2b+¢) +a—c]? +4(L—j)(b+¢)?}
> L =5)2b+¢) +(a+e) +VIL =52 +c) +a—c}
= L =7)@+c)+(a+e) +[(L—5)2b+c;) +a—cl}

= a+(L—7)(2b+¢)
> a

(B.4)

and «; < a because of the interlacing property [35, p.396].
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C Optimal Precoding Sequence for L =1

For L =1, (3.20) becomes

Jo 0 mo - 1
g1 9o my 1
2
_ 1 _ 1 g1 2 _ 9 2 _ 2 g3 21 .
where mg = — and m; = — — L. Hence |m||5 = m my = =% + 2 — 2L Since
0= 5 i [mlf3 otTmy = gzt T
go+g1=L+1=2 |ml3 becomes
2 _ 2 (2— 90) _ 2(2—g0)
[mfg = 24 2om?_ze
— i _ 8 4 4
@ g ' g
A
= h(go)
Hence
d h _ =10 24 _ E
d(go) (90) - 3 + 0 go
S0 @‘ 2_ 8
. g (g 5) - 593 <

which implies h(go)(= ||m]|3) is strlctly decreaémg on (0 2) in go. In other word, increasing
go in (0,2) decreases the value of ||m||2 Hence under fhe constraints (3.21) and (3.22),
to minimize the value of |ml|3, we need to choose gO as large as possible, which implies

go = 2 — 7. In this case, g1 = 7.
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D AProofof%>0

With f(a, §) = SO et fora >0, L2 1,
s %{(a +2)722(L + V(a + 1) 4 2(L+ 1)) = 2(a +2)F[(a + 1)2ETD 4 2(L + 1)(a +2) — 1]}
= ﬁ2<a+2 w2(L+ D(a+ 12 e+ 1+1) +2(L + 1)(a +2) = 2(a+ 1> —4(L +1)(a +2) +2]
= m(aw w5 [2(L + 1)+ 1)2E) 4+ 2(L + 1) (a + 1) = 2(L + 1)(a +2) - 2(a + 1) 4+ 9]
= 52(a+2 s[2L(c + 1)2EFD) 4 2(L + 1) (o + 1)254 — 2(L + 1) (e + 2) + 2]
> ﬁ2<a+z [2L(a+ 1)2EHD 4 2(L 4+ 1)(a+ 1)° —2(L + 1)(a+2) + 2]
= z (a g 2L(a + 17D — 2L - dLa + da + 2La® + 6La” + 20° + 6a”]
= pamp 2Lla + 12D 1]+ dLa + da + 2La® + 6La” + 20° + 6a°}
0.
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E A Proof of Proposition 3.1

Let @ = L+ 1— L7 and b = 7, then according to (3.28), go = 1 > 0 and g, =
_a%(l—g)i_l <0fori=1,2,---,L, and

Go+g+g+-+q = 1-bL-Lba-by—...— (1 b)t
1 b -0
T a a? 1—(1-2)
= t-d-a- by
= l( _ Q)l
Hence
lml3 = g5+ (Go+9)°+---+ @G+ g+ +3)°
= BEFRO- DR+ -
= L+ 1-7+ -+ (1=
_ 1 a-(-23SERNREs
G o8
_ -y me
IENTEEE T 12" %
I > E
= 2ab=b2 | ;
17(17[4;}”’{—[47)‘2([:-'*—'1"‘ Bo6 |
- AL+1-Lg)z 7>
and
i||rn||2 - et N G [ G L+1T*LT)2L+1]'[7%(L+1T—L-r)} . [1*(17L+1T7L-,—)2(L+1)}'(*4L772T)
dr 2 [2(L+1—Lr)r—72]2 R(L+1—Lr)r—722
[(1—=7)7T(2L+1)+7]-[2(L+1)(1— LHQLT)QLHHﬁ] [1-(1— ) D] (4L7+27)
- R+ 1-Lr)yr—72]2 Pl o

Because0<1—T<1and0<(1—ﬁ)<1f0r0<7<1,%Hm|]§>0for0<7<1.
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