

Fig. 4.21 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 0^{\circ} C$ (Ra=0) and Q_j= 4.0slpm(Re_j=541).

A ALLEN

Fig. 4.22 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 5^{\circ}C$ and Q_j=1.0 slpm(Re_j=135).

Fig. 4.23 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 5^{\circ}C$ and Q_j=2.0 slpm(Re_j=270).

Fig. 4.24 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 5^{\circ}C$ and Q_j=3.0 slpm(Re_j=406).

A ALLEN A

Fig. 4.25 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_i at $\Delta T = 10^{\circ}$ C and Q_i=1.0slpm(Re_i=135).

Fig. 4.26 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 10^{\circ}$ C and Q_j=2.0 slpm (Re_j=270).

Fig. 4.27 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 15^{\circ}C$ and Q_j=1.0slpm(Re_j=135).

STULLER,

Fig. 4.28 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 20^{\circ}$ C and Q_j=1.0slpm(Re_j=135).

Milling.

Fig. 4.29 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various HD_j at $\Delta T = 25^{\circ}C$ and Q_j=1.0slpm(Re_j=135).

(d) radial variation in non-dimensional steady air temperature

Fig. 4.30 Radial variation in non-dimensional steady air temperature with $\text{Re}_{j} = 135$ ($Q_{j}=1.0 \text{ slpm}$) and $\Delta T=5.0^{\circ}\text{C}$ at Z = 0.5 on the vertical plane $\theta = 0^{\circ}$ for $\text{HD}_{j} = 4, 5$, and 6.

Fig. 4.31 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=30,065 ($\Delta T=5^{\circ}C$) for H = 40.0 mm.

Fig. 4.32 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=60,130 ($\Delta T=10^{\circ}C$) for H = 40.0 mm.

Fig. 4.33 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=90,195 ($\Delta T=15^{\circ}C$) for H = 40.0 mm.

Fig. 4.34 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=120,260 ($\Delta T=20^{\circ}C$) for H = 40.0 mm.

Fig. 4.35 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=58,721 ($\Delta T=5^{\circ}C$) for H = 50.0 mm.

Fig. 4.36 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=117,442 ($\Delta T=10^{\circ}C$) for H = 50.0 mm.

Fig. 4.37 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=101,470 ($\Delta T=5^{\circ}C$) for H = 60.0 mm.

Fig. 4.38 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various temperature difference at Re_j=135 (Q_j=1.0slpm) and H = 40.0 mm.

Fig. 4.39 Steady side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various temperature difference at Re_j=135 (Q_j=1.0slpm) and H = 50.0 mm.

Fig. 4.40 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=0 ($\Delta T=0^{\circ}C$) and H = 20.0 mm.

Fig. 4.41 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=7,520 ($\Delta T=10^{\circ}C$) and H = 20.0 mm.

Fig. 4.42 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=0 ($\Delta T=0^{\circ}C$) and H = 30.0 mm.

Fig. 4.43 Side view flow photos taken at the cross plane $\theta = 0^{\circ}$ & 180° for various jet Reynolds numbers at Ra=0 ($\Delta T=0^{\circ}C$) and H = 40.0 mm.

Fig. 4.44 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=0 ($\Delta T=0^{\circ}C$) and H = 50.0 mm.

Fig. 4.45 Side view flow photos taken at the cross plane $\theta = 0^{\circ} \& 180^{\circ}$ for various jet Reynolds numbers at Ra=0 ($\Delta T=0^{\circ}C$) fo H = 60.0 mm.