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摘要 

    

空穴流場是很基本的流體力學問題，在過去也有很多人做過相關的研究。但是大多

數人都是討論連續及不可壓縮流的流場，較少數人針對近連續流到稀薄流體區的流場作

研究。因此我們對此做一有系統的探討 

本文描述使用直接模擬蒙地卡羅法來模擬從稀薄流體區到接近連續流體範圍的二

維上板空穴流場。為了確保能在較鄰近的分子發生碰撞，運用 transient sub-cells [Tesng, et 

al., 2007] 的功能，使得同時降低計算負荷及記憶體使用量。比較使用 transient sub-cells

功能和不使用 transient sub-cells功能之模擬結果來驗證正確性。驗證結果顯示出使用

transient sub-cells功能可以使用大約平均自由路徑大小的網格且擁有正確性，並且大量

減少計算負荷，特別是在接近連續流體範圍。流動結構被詳細討論包含上板驅動速度由

馬赫數 1.1 到 4 和 Kn數(與平均自由路徑和 cavity 大小有關)由 10 到 0.0033。 

由結果顯示出速度滑動現象會在 Kn 的影響中表現的較M的影響為明顯。在

Kn=0.01 和 0.0033 的模擬結果, 都有再右下角出現第二渦流；且 Kn=0.0033 在M=4
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的情況下會在左下角也出現第三渦流。固定 Kn=0.01與 0.0033，當馬赫數升高時渦流中

心點會往左下方移動；但是當固定於高 Kn，隨著馬赫數增加渦流中心卻往相反方向移

動。 
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Abstract 
    

The driven cavity flow is one of the fundamental fluid flow problems with simple 

geometry that was often used as the benchmark test problem in computational fluid dynamics. 

Although they have been thoroughly studied in the literature, most of them were focused on 

incompressible or continuum compressible regime. Very few have been done in the rarefied 

and near continuum regimes. It may serve as the benchmarking problem for extending 

numerical scheme into flow in these regimes. Thus, this thesis describes the simulation of a 

two-dimensional supersonic driven cavity flow from free-molecular to near-continuum regime 

by directly solving the Boltzmann equation using the parallel direct simulation Monte Carlo 

method. Transient sub-cells [Tesng, et al., 2007] were implemented on a general unstructured 

grid to meet the nearest-neighbor collision requirement, while keeping minimal computational 

overhead and memory requirement simultaneously. Accuracy of simulation of transient 

sub-cells using larger sampling cell size was verified by comparing the results with that using 

much finer sampling cell size. Results show that transient sub-cells can greatly reduce the 



 

 V

computational cost, which is especially important in the near-continuum regime. Flow 

structures within a driven cavity flow are then discussed in detail by varying the top plate 

speed (Ma=1.1-4) and Knudsen number of cavity (Kn=10-0.0033), in which the 

corresponding Reynolds number is in the range of 0.181- 1997.6. Results show that velocity 

slips and temperature jumps along the solid walls increase with increasing Knudsen number at 

the same Mach number. The additional second vortex occur at the right bottom wall in all 

Kn=0.01 and 0.0033 case. The Kn=0.0033 and M=4 has the third vortex at the left bottom 

corner. Results show that vortex center move toward left and down as Mach number 

increasing at the same Kn=0.01 and 0.0033. But the vortex center move toward the opposite 

way for Kn=10, 1 and 0.1. 
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Nomenclature 

 

λ ：mean free path 

ρ ：density 

σ ：the differential cross section 

ω ：viscosity temperature exponent 

Ω  : space domain 

rotε  ：rotational energy 

vε  ：vibrational energy 

rotζ  ：rotational degree of freedom 

vζ  ：vibrational degree of freedom 

t ：time-step 

σT ：the total cross section 

c ：the total velocity 

c’ ：random velocity 

co ：mean velocity 

cr ：relative speed 

d ：molecular diameter 

D ：the throat diameter of the twin-jet interaction 

dref ：reference diameter 

E ：energy 

k ：the Boltzmann constant 

Kn ：Knudsen number 

QKn  : local Knudsen numbers based on flow property Q 

L ：characteristic length; 

m ：molecule mass 

M∞ ：free-stream mach number 

n ：number density 

Re ：Reynolds number 

To ：stagnation temperature 
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T∞ ：free-stream temperature 

Tref ：reference temperature 

Trot ：rotational temperature 

Ttot ：total temperature 

Ttr ：translational temperature 

Tv ：vibrational temperature 

Tw ：wall temperature 
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Chapter 1  

Introduction 

 

1.1. Motivation and Background 

1.1.1 Importance of Driven Cavity Flows 

The driven cavity flow is one of the fundamental fluid flow problems that was often used 

as the benchmark test problem in computational fluid dynamics. The rationale behind this 

should be attributed to its simple geometry but having singular points at the corners, which 

may cause difficulties in numerical simulations. Although they have been thoroughly studied 

in the literature, most of them were focused on incompressible or continuum compressible 

regime [Karniadakis, 2001].  Very few researches have been done in the rarefied and near 

continuum regimes, where the understanding may become important in micro- and nano-scale 

gas flows that are often encountered in MEMS and NEMS related devices. Further, it may 

serve as the benchmarking problem for extending a numerical scheme into flow in these 

regimes, where standard Navier-Stokes equation fails to describe the flow accurately.  Thus, 

an accurate numerical solution of a driven cavity flow in the rarefied and near-continuum 

regime is strongly required. 

 

1.1.2 Classification of Rarefaction 
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Knudsen number (Kn=λ/L) is a standard parameter that is usually used to indicate the 

degree of rarefaction. Note that the mean free path λ is the average distance traveled by 

molecules before collision and L is the flow characteristic length. In general, flows are 

divided into four regimes as follows traditionally: Kn <0.01 (continuum), 0.01<Kn<0.1 (slip 

flow), 0.1<Kn<3 (Transitional flow) and Kn>3 (Free molecular flow). Fig. 1.1 (KC Tseng’s 

thesis) is a sketch adopted from Bird [Bird’s book, 1994] illustrating the various flow regions 

and their corresponding solution methods in a dilute gas. In this figure, the local Kn number is 

defined with L as the scale length of the macroscopic gradient; that is, 
dxd

L
ρ
ρ

= . Firstly, 

the lower bar indicates the continuum formulation. When the local Kn number approaches 

zero, the flow reaches inviscid limit and can be solved by Euler equation. As local Kn 

increases, molecular nature of the gas becomes dominated. Hence, the Navier-Stoke equation 

based computational fluid dynamics (CFD) techniques are often used until the Kn approach 

0.01. When the Kn larger than 0.01, continuum assumption begins to break down and the 

particle-based method is necessary. Secondly, the top bar in this figure indicates the validity 

of the molecular modeling. It is well known that Boltzmann equation is more appropriate for 

all flow regimes; however it is rarely used to numerically solve the practical problems 

because of two major difficulties. They include higher dimensionality (up to seven) of the 

Boltzmann equation and the difficulties of correctly modeling the integral collision term. As 

the distance between the molecules increases, collisions between the molecules become less 
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and thus neglected, and the flow can be solved by neglecting the collision term of the 

collisionless Boltzmann equation. 

 

1.1.3 Direct Simulation Monto Carlo Method 

An alternative method, known as Direct Simulation Monte Carlo (DSMC), was proposed 

by Bird to solve the Boltzmann equation using direct simulation of particle collision kinetics, 

and the associated monograph was published in 1994 [Bird’s book].  Later on, both Nanbu 

[1986] and Wagner [1992] were able to demonstrate mathematically that the DSMC method is 

equivalent to solving the Boltzmann equation as the simulated number of particles becomes 

large.  The DSMC method is a particle method for the simulation of gas flows.  The gas is 

modeled at the microscopic level using simulated particles, which each represents a large 

number of physical molecules or atoms.  The physics of the gas are modeled through the 

motion of particles and collisions between them. Mass, momentum and energy transports 

between particles are considered at the particle level.  The method is statistical in nature and 

depends heavily upon pseudo-random number sequences for simulation.  Physical events 

such as collisions are handled probabilistically using largely phenomenological models, which 

are designed to reproduce real fluid behavior when examined at the macroscopic level.  This 

method has become a widely used computational tool for the simulation of gas flows in the 

Low Kn flow regime, in which molecular effects become important.   
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The DSMC method becomes very time-consuming as the flow approaches continuum 

regime since the sampling cell size has to be much smaller than the local mean free path for 

the solution to be accurate. Several remedies in speeding up the DSMC computation include: 

1) parallel computing [Robinson, 1996-1998]; 2) variable time-step scheme for steady flows 

[Kannenberg, 2000], and 3) sub-cells within each sampling cell [Bird’s book, 1994].  Details 

of the “parallel computing” and “variable time-step scheme” can be found in those references 

cited in the above and are not described here for brevity. Only “sub-cells” concept is 

described here since it was rarely discussed in detail in the literature.  In Bird’s original 

implementation [see Bird’s book, 1994], number of sub-cells in each sample cell is 

pre-determined and related sub-cell data are stored in the memory throughout the simulation, 

which is very costly.  This strategy, which enables nearest-neighbor collisions to be enforced, 

greatly reduces the computational load by increasing the sampling cell size whilst maintaining 

the same accuracy as compared to that using smaller sampling cell size.  Unfortunately, 

storage of the sub-cell data is memory intensive and inflexible in adjusting the number of 

sub-cells in each sampling cell during runtime, which may become important in reducing the 

merit of collision (ratio of mean collision distance to characteristic cell size). Recently, Bird 

[DS2V code by Bird] has proposed an idea of “transient sub-cells”, which could overcome the 

above-mentioned shortcomings. However, this idea has been only implemented on structured 

grids. No report could be found on unstructured grids. 
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1.2. Literature Survey 

The driven cavity flow is a fluid flow problem that has been very well studied in the 

continuum limit by using different numerical methods. Ghia, et al. [1982] used the 

vorticity-stream function of the 2D incompressible Navier-Stoke equation to study the 

laminar incompressible flow in a square cavity whose top wall moves with a uniform velocity. 

The Reynolds number in their study is varied from Re=100 to Re=10,000.  They presented 

the velocity along vertical and horizontal line through geometry center of cavity and the 

primary vortex position.  Erturk, et al. [2005] also utilized the 2D steady incompressible 

Navier-Stoke equation with a fine grid.  The flow solutions are computed for Re=1000 to 

Re=21000 with a maximum absolute residuals of the governing equations that were less than 

10-10.  Until very recently, Stergios, et al. [2005] solved the flow of a rarefied gas in a 

rectangular enclosure due to the motion of the upper wall over whose range of the Knudsen 

number.  Their numerical method is base on the 2D linearized BGK kinetic equation with 

Maxwell diffuse-specular boundary conditions.  They presented the simulation data over the 

whole range of the Knudsen number and various aspect ratio (height/width).  However, 

simulation results by Stergios, et al. [2005] were only good for low speed rarefied gas flows 

since the linearized BGK Boltzmann equation was used. In addition, no data were validated 

by comparing with experiments or solution from direct Boltzmann equation, such as DSMC 
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method.  

1.3. Specific Objectives of the Thesis 

The objectives of the thesis are briefly summarized as follows: 

1. To verify the implementation of transient sub-cell technique in a parallelized DSMC 

code (PDSC) [Wu, et al]. 

2. To simulate driven cavity flows, including M=1.1-4 of the speed of top driven plate, 

and Kn=10-0.0033, based on the average number density and wall temperature. 

3. To discuss the effects of Knudsen Number and Mach number of the driven plate on the 

flow fields. 

The organization of the thesis is stated as follows. Chapter 1 describes the Introduction, 

Chapter 2 describes the Numerical Method, Chapter 3 describes the verification of 

implementation of transient sub-cells, and followed by the Results and Discussion, and 

finally Chapter 4 describes the conclusion and recommendation of future work.. 
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Chapter 2  

Numerical Method 

 

2.1. The Boltzmann Equation 

The Boltzmann equation is one of the most important transport equations in 

non-equilibrium statistical mechanics, which deals with systems far from thermodynamics 

equilibrium. There are some assumptions made in the derivation of the Boltzmann equation 

which defines limits of applicability. They are summarized as follows: 

1. Molecular chaos is assumed which is valid when the intermolecular forces are 

short range. It allows the representation of the two particles distribution function 

as a product of the two single particle distribution functions. 

2. Distribution functions do not change before particle collision. This implies that the 

encounter is of short time duration in comparison to the mean free collision time. 

3. All collisions are binary collisions. 

4. Particles are uninfluenced by intermolecular potentials external to an interaction. 

According to these assumptions, the Boltzmann equation is derived and shown as Eq. (2.1) 

  
4
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Meaning of particle phase-space distribution function f  is the number of particles with 

center of mass located within a small volume 3d r  near the point r , and velocity within a 
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range 3d u , at time t . iF is an external force per unit mass and t  is the time and iu is the 

molecular velocity. σ is the differential cross section and dΩ  is an element of solid angle.  

The prime denotes the post-collision quantities and the subscript 1 denotes the collision 

partner. Meaning of each term in Eq. (2.1) is described in the following; 

1. The first term on the left hand side of the equation represents the time variation of 

the distribution function of the particles (unsteady term). 

2. The second term gives the spatial variation of the distribution function (flux term). 

3. The third term describes the effect of a force on the particles (force term). 

4. The term at right hand side of the equation is called the collision integral (collision 

term). It is the source of most of the difficulties in obtaining solutions of the 

Boltzmann equation. 

In general, it is very hard to solve the Boltzmann equation directly using numerical 

method because the difficulties of correctly modeling the integral collision term. Instead, the 

DSMC method was used to simulated problems involving rarefied gas dynamics, which is the 

simulation tool used in the current thesis. 

  

2.2. General Description of the Standard DSMC 

According to the expected rarefaction caused by the rarefied gas flows, the direct 

simulation Monte Carlo (DSMC) method, which is a particle-based method developed by 
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Bird during the 1960s, and was widely used as an efficient technique to simulate rarefied gas 

regime [Bird, 1976 and Bird, 1994].  In the DSMC method, a large number of particles are 

generated in the flow field to represent real physical molecules rather than a mathematical 

foundation and it has been proved that the DSMC method is equivalent to solving the 

Boltzmann equation [Nanbu, 1986 and Wagner, 1992].  The assumptions of molecular chaos 

and a dilute gas are shared by both the Boltzmann equation and the DSMC method [Bird, 

1976 and Bird, 1994]. An important feature of DSMC is that the molecular motion and the 

intermolecular collisions are uncoupled over the time intervals that are much smaller than the 

mean collision time.  Both the collision between molecules and the interaction between 

molecules and solid boundaries are computed on a probabilistic basis and, hence, this method 

makes extensive use of random numbers.  In most practical applications, the number of 

simulated molecules is extremely small as compared to the number of real molecules.  The 

general procedures of the DSMC method are described in the next section, and the 

consequences of the computational approximations can be found in Bird [Bird, 1976 and Bird, 

1994]. 

In DSMC, there are three popular molecular collision models for real physical behavior 

and imitate the real particle collision. They include the Hard Sphere (HS), Variable Hard 

Sphere (VHS) and Variable Soft Sphere (VSS) molecular models [Bird, 1994].  No time 

counter (NTC) method is often used to determined the probability of collision within a 
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samping cell based on the acceptance-rejection method. This method can yield the exact 

collision rate in both simple gases and gas mixtures, and under either equilibrium or 

non-equilibrium conditions. 

Fig. 2.2 is a general flowchart of the DSMC method.  Important steps of the DSMC 

method include setting up the initial conditions, moving all the simulated particles, indexing 

(or sorting) all the particles, colliding between particles and sampling the molecules within 

cells to determine the macroscopic quantities.  The details of each step are described in the 

following: 

  Initialization 

The first step to use the DSMC method is to set up the geometry and flow conditions. A 

physical space is discredited into a network of cells and the boundary conditions at domain 

boundaries have to be assigned according to the flow conditions. An important rule of thumb 

of selecting the cell size is it should be much smaller than the local mean free path. At the 

same time the distance of the molecular movement per time step should be smaller than the 

cell dimension, which is similar to the CFL condition in CFD. After the data of geometry and 

flow conditions have been read in the code, the number of simulation particles each cell is 

calculated according to the initial number density and the cell volume. The initial particle 

velocities are normally assigned to each particle based on the Maxwell-Boltzmann 

distribution according to the initial velocities and temperature. The position of each particle is 
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then randomly allocated within the cell.  

 Molecular Movement 

After initialization process, the molecule begins move one by one, and the molecule 

moves in a straight line over the time step.  If the particle collides with a solid surface, then it 

has to reflected back based on the boundary conditions at the surface. If the particle passes 

through a inflow/outflow boundary, then it has to be removed from the simulation 

immediately. After the particle reaches its final destination, the cell with which the particle 

affiliated is recorded. 

 Indexing 

Relation between particles and cells are reordered according to the order of the 

increasing particle number in each cell, which is used for collision step.  

 Gas Phase Collision 

The other most important phase of the DSMC method is the gas phase collision. The 

DSMC method uses the no time counter (NTC) method to determine the correct collision rate 

in the collision cell. Number of collision pairs within a cell of volume Vc over a time interval 

t∆  is calculated by the following equation: 

crTN VtcFNN /)(2
1

max ∆σ          (2.2) 

where N  and N  are fluctuating and average number of simulated particles, respectively.  

NF  is the particle weight, which is the number of real particles that a simulated particle 
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represents.  Tσ  and rc  are the cross section and the relative speed, respectively.  The 

collision probability for each pair of particle chosen can be expressed as 

        max)/()( rTrT cc σσ           (2.3) 

Collision is accepted if the above value for the pair is greater than a random fraction.  Each 

cell is treated independently and the collision partners for interactions are chosen randomly, 

regardless of their positions within the cell.  Collision procedures are summarized as 

follows:  

1. Number of collision pairs is calculated according to the NTC method, Eq. (2.2), in 

each cell. 

2. The first particle is chosen randomly from the list of particles within a collision cell. 

3. The other collision partner is also chosen randomly within the same cell. 

4. The collision is accepted if the computed probability, Eq. (2.3), is greater than a 

random number. 

5. If the collision pair is accepted, then the post-collision velocities are calculated 

using the mechanics of elastic collision. If the collision pair is not to collide, then 

proceed to choose the next collision pair. 

6. If the collision pair is polyatomic gas, the translational and internal energy can be 

redistributed by the Larsen-Borgnakke model [1975], which assumes the state is in 

equilibrium. 
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The collision process will be finished until all the collision pairs are handled for all cells 

and then progress to the next step. 

 Sampling 

After the particle movement and collision process complete, the particle has updated 

positions and velocities.  Macroscopic flow properties in each cell are assumed to be 

constant over the cell volume and are sampled from the microscopic properties of all the 

particles within the cell.  Macroscopic properties, including number density, velocities and 

temperatures, are calculated following the equations as shown below: 

nm=ρ                                       (2.4a) 

'cccc oo +==                               (2.4b) 

)'''(
2
1

2
3 222 wvumkTtr ++=

                             (2.4c) 

)(2
rrotrot k

T ζε=                          (2.4d) 

)(2
vvv k

T ζε=                             (2.4e) 

)3()3( vrotvvrotrottrtot TTTT ζζζζ ++++=                     (2.4f) 

where n, m are the number density and molecule mass, receptively. c, co, and c’ are the total 

velocity, mean velocity, and random velocity, respectively. In addition, Ttr, Trot, Tv and Ttot are 

translational, rotational, vibration and total temperature, respectively. rotε  and vε  are the 

rotational and vibration energy, respectively.  rotζ  and vζ  are the number of degree of 

freedom of rotation and vibration, respectively. If the simulated particle is monatomic gas, the 
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translational temperature is regarded simply as the total temperature. Vibration effect can be 

neglect if the temperature of the flow is low enough. 

The flow will be monitored if steady state is reached.  If the flow is still in the transient 

phase, then sampling of the properties should be reset until the flow reaches steady state. As 

the flow reaches physically steady state, time averaging in each cell is used to obtain 

macroscopic properties in each cell. As a rule of thumb, sampling of particles starts when the 

number of molecules in the calculation domain becomes approximately constant. 

 

2.3. General Description of the PDSC 

In the past few years, we have developed a parallelized direct simulation Monte Carlo 

code, named PDSC, which is portable on distributed memory machines. Important features of 

the PDSC code can be found in the references [Wu et al.’s JCP paper, 2006; JCP paper 

submitted in June 2007; JFM paper under preparation, 2007] and only several of them are 

briefly described in the following.  

1) 2D/2D-axisymmetric/3-D unstructured-grid topology: PDSC can accept either 

2D/2D-axisymmetric (triangular, quadrilateral or hybrid triangular-quadrilateral) or 

3D (tetrahedral, hexahedral or hybrid tetrahedral-hexahedral) mesh [Wu et al.’s JCP 

paper, 2006]. Computational cost of particle tracking for the unstructured mesh is 

generally higher than that for the structured mesh. However, the use of the 

unstructured mesh, which provides excellent flexibility of handling boundary 

conditions with complicated geometry and of parallel computing using dynamic 

domain decomposition based on load balancing, is highly justified. 
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2) Parallel computing using dynamic domain decomposition: Load balancing of PDSC 

is achieved by repeatedly repartitioning the computational domain using a 

multi-level graph-partitioning tool, PMETIS [Wu and Tseng, 2005], by taking 

advantage of the unstructured mesh topology employed in the code. A decision 

policy for repartition with a concept of Stop-At-Rise (SAR) [Wu and Tseng, 2005] or 

constant period of time (fixed number of time steps) can be used to decide when to 

repartition the domain. Capability of repartitioning of the domain at constant or 

variable time interval is also provided in PDSC. Resulting parallel performance is 

excellent if the problem size is comparably large. Details can be found in Wu and 

Tseng [Wu and Tseng, 2005]. 

3) Spatial variable time-step scheme: PDSC employs a spatial variable time-step 

scheme (or equivalently a variable cell-weighting scheme), based on particle flux 

(mass, momentum, energy) conservation when particles pass interface between cells. 

This strategy can greatly reduce both the number of iterations towards the steady 

state, and the required number of simulated particles for an acceptable statistical 

uncertainty. Past experience shows this scheme is very effective when coupled with 

an adaptive mesh refinement technique [Wu et al.’s CPC paper, 2004]. 

4) Unsteady flow simulation: An unsteady sampling routine is implemented in PDSC, 

allowing the simulation of time-dependent flow problems in the near continuum 

range [JCP paper submitted in June 2007].  A post-processing procedure called 

DSMC Rapid Ensemble Averaging Method (DREAM) is developed to improve the 

statistical scatter in the results while minimizing both memory and simulation time. 

In addition, a temporal variable time-step (TVTS) scheme is also developed to speed 

up the unsteady flow simulation using PDSC. More details can be found in [JCP 

paper submitted in June 2007]. 
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5) Transient Sub-cells: Recently, transient sub-cells are implemented in PDSC directly 

on the unstructured grid, in which the nearest-neighbor collision can be enforced, 

whilst maintaining minimal computational overhead [JFM paper under preparation, 

2007].  Details of the idea and implementation are described next. 

2.4. Transient Sub-Cells for PDSC [JFM paper under preparation, 2007] 

 The implementation of sub-cells in DSMC allows the maintenance of good collision 

quality within the simulation, even for grids which are “under-resolved” (that is, if the 

sampling cells are bigger than the recommended setting of 1/3~ 1/2 times the local mean free 

path).  Running simulations with under-resolved sampling cells which employ sub-cells 

results in a reduction in the computational and memory requirements of the simulation, albeit 

at the cost of a reduction in the possible sampling resolution of the macroscopic properties, 

but without sacrificing simulation accuracy. 

In PDSC, unstructured grids are used, requiring an adaptation of the transient sub-cells 

scheme, which was originally promoted by Bird [DS2V code by Bird]. In PDSC, the sampling 

cells are divided into sub-cells during the collision routine. Because the sub-cells only exist in 

one sampling cell at a time, and only during the collision routine, they can be considered 

“transient sub-cells” which will have negligible computer memory overhead. In every case, 

these sub-cells are quadrilateral in 2D or hexahedral in 3D which reduces the complexity of 

sub-dividing the sampling cell and greatly facilitates particle indexing. The size of the 

sub-cells is indirectly controlled by the user, who inputs the desired averaged number of 
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particles per sub-cell, P.  The program then determines the dimensions of the sub-cell array 

based on the number of particles with the cell, Nparts. Briefly, the total number of sub-cells are 

computed by the rule for the 2-D case 

                      
parts partsN N

P P×
                      (2.21)           

Fig. 2.4 shows the way in which both rectangular and triangular sampling cells are 

divided into sub-cells. As can be seen, in the unstructured case, there may be sub-cells which 

are entirely outside the boundary of the sampling cell, however this has no affect on the 

collision routine. In both cases, the concept is easily extended to three-dimensional sampling 

cells. 

During the collision routine, a particle is chosen at random from some point within the 

whole sampling cell. The sub-cell in which the particle lies is then determined and if another 

particle is in the same sub-cell then these particles are chosen for collision.  If the first 

particle is alone within the sub-cell, then adjacent sub-cells are scanned for a collision partner.  

These sub-cell routines ensure nearest neighbor collisions, even within under-resolved 

sampling cells, with minimal computational and memory overhead. 

Bird has also shown that preventing particles from colliding again their last collision 

partner, reduces the error in some variables such as heat transfer and shear stress by up to 5% 

[ref-Bird manual of DS2V code]. The basis of this is that collisions between particles which 

just collided with each other is unphysical, since the particle must be moving away from each 
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other after the first collision. A minor modification was made to PDSC to prevent particles 

colliding with their last collision partner. This involved the creation of an array in which the 

last collision partner for every particle is stored and if the two particles are subsequently 

chosen for collision without having collided with any other particle, the collision is rejected.  
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Chapter 3  

Results and Discussion 

 

3.1 Benchmark of Transient Sub-cell Method 

Although this thesis is concerned with supersonic square driven cavity flows in rarefied 

regime, a subsonic flow case with M=0.5 and Kn=0.01 is used as the benchmark case. The 

rationale is that a subsonic flow represents a more stringent test problem than a supersonic 

flow for the DSMC method in terms of statistical uncertainties.  

 

3.1.1 Problem Description and Test Conditions 

Flow and simulation conditions are summarized in Table I. Fig. 3.1 sketches the 2D 

square driven cavity flow. PDSC simulations are conducted, respectively, using a coarse mesh 

(100×100 cells, 100 particles per cell) with transient sub-cells and a finer mesh (400×400 

cells, 25 particles per cell) without transient sub-cells. Results using the finer mesh are 

considered to be a benchmark solution since the simulation conditions satisfy all requirements 

for a good DSMC computation. Since the overhead of indexing the particles using transient 

sub-cells is minimal (at most 15% as compared to that without using transient sub-cells if less 

than 100 particles per cell), resulting computational time using transient sub-cells is about 

only 1/4 of that without transient sub-cells, considering the similar accuracy of DSMC 
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simulations, which is shown next. If 100 particles per cell is used in the case without transient 

sub-cells, more benefit of computational time can gained by using transient sub-cells. 

 

3.1.2 Simulation Results of Benchmark 

Fig. 3.5 (a)-(d) (a)-(d) present the profiles of various properties ((a) u-velocity, (b) 

v-velocity, (c)number density and (d)temperature) along the central vertical line (x/L=0.5). In 

these figures, up and L represents the top plate speed and length (also width) of the driven 

cavity, respectively. Results show that simulation data with and without transient sub-cells are 

in good agreement considering the inherent statistical uncertainties of the DSMC method. 

Statistical uncertainties with transient sub-cells are even lower than those without transient 

sub-cells, especially for the v velocity, which is generally low as compared to the u velocity 

along the x/L=0.5 line. It clearly demonstrates that with transient sub-cells accuracy of DSMC 

simulation can be well preserved using cell size even close to local mean path. Similar trends 

can be found in Fig. 3.6 (a)-(d), in which the profiles of various properties are presented along 

the central horizontal line (y/L=0.5). In the simulation, desired averaged number of particles 

per sub-cell, P, is set to be 1. Not unexpectedly, the merit of collision (=mean collision 

distance/local mean free path), which represents the quality of collisions in a DSMC 

simulation, is generally much smaller by using transient sub-cells than that without using 

transient sub-cells, as illustrated in Fig. 3.11 and Fig. 3.12. Bird [???] has argued that the 
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merit of collision in the range of 0.1~0.2 represents a good DSMC simulation.  Result show 

that the simulation used coarse mesh with transient sub-cell approximate that used finer mesh 

without transient sub-cell. Therefore, the simulation with transient sub-cell keeping minimal 

computational overhead and memory requirement simultaneously, but still has simulation 

accuracy. 

 

3.2 Simulation Results of Driven Cavity Flows 

According to previous section, we have found the transient sub-cell method can greatly 

reduce the computational cost and still has good quality of solution. In this section, we have 

used this technique in PDSC to simulate steady supersonic square driven cavity flows in a 

systematic way. Thus, we can understand more about the effects of rarefaction and 

compressibility in such conditions. 

 

3.2.1 Problem Description and Test Conditions 

Fig. 3.1 shows the sketch of the 2D square (L/H=1) driven cavity flow with moving top 

plate. Flow and simulation conditions are summarized in Table II and Table III.  Argon is 

used as the working gas, while the initial temperatures inside the cavity and wall temperatures 

are set as 300K.  Mach number and Knudsen number (based on wall temperature and width 

of the cavity) is in the range of 1.1-4 and 10-0.0033. Uniform mesh distribution is used 
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throughout the present study for all cases. 

 

3.2.2 Effects of Knudsen Number 

In this section, we were observed effects of Knudsen number in the same Mach number 

(Ma=1.1-4). We were showed general simulation results include density, velocity in the 

x-direction, velocity in the y-direction, temperature, Mach number, and streamline. We were 

showed property distributions across cavity centroid for x/L = 0.5, y/L = 0 to 1 and y/L = 0.5, 

x/L = 0 to 1. We showed property distributions near the solid walls. Finally, we were 

observed the recirculation center position in different cases.   

 

3.2.2.1 General Simulation Results 

Fig. 3.23 shows that number density contour for Ma=4, and Knudsen number 10, 1, 0.1, 

0.01 and 0.0033 respectively. Driven plate takes particles to the right-hand upper corner. An 

ultra high-density region appears at the very right-hand upper corner due to the high-speed 

moving plate at the top of the cavity. Therefore the particles are larger than initial value. In 

addition, there are low densities at the left-hand upper corner. In the other series, fixed M=1.1 

and M=2 are showed in Fig. 3.13 and Fig. 3.18.  

Fig. 3.24 show that temperature contour for Ma=4, and Knudsen number 10, 1, 0.1, 0.01 

and 0.0033 respectively. We normalize temperature to divide the initial temperature 300K.  
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There are two ultra temperatures region in the cavity. One of them is the right-hand upper 

corner which temperature increased as a result of density increased; the other one is left-hand 

upper corner which temperature increased due to high vertical speed. Finally, the temperature 

increase more seriously as Knudsen number decreased. In the other series, fixed M=1.1 and 

M=2 are showed in Fig. 3.14 and Fig. 3.19.  

Fig. 3.25 show that Mach contour for Ma=4, and Knudsen number 10, 1, 0.1, 0.01 and 

0.0033 respectively. In the other series, fixed M=1.1 and M=2 are showed in Fig. 3.15 and Fig. 

3.20. 

Fig. 3.26 show that u-velocity contour for Ma=4, and Knudsen number 10, 1, 0.1, 0.01 

and 0.0033 respectively. The maximum u-velocity values are 0.3, 0.35, 0.55, 0.8, and 0.9 with 

Knudsen number 10, 1, 0.1, 0.01 and 0.0033, respectively. Because of rarefaction effect 

caused slip phenomenon and the slip velocity along the solid walls increase with Knudsen 

number at the same Mach number. We normalize u-velocity to divide the upper plate velocity. 

The velocity more and more decrease when Knudsen number increase. In the other series, 

fixed M=1.1 and M=2 are showed in Fig. 3.16 and Fig. 3.21. 

Fig. 3.27 show that v-velocity contour for Ma=4, and Knudsen number 10, 1, 0.1, 0.01 

and 0.0033 respectively. We normalize v-velocity to divide the upper plate velocity. An ultra 

high-speed region appears at the left-hand and right-hand upper region. In the other series, 

fixed M=1.1 and M=2 are showed in Fig. 3.17 and Fig. 3.22. 
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As mentioned above, we can be briefly summarized as follows: 

1. The slip velocity more and more decrease when Knudsen number increase. 

2. An ultra high-density region appears at the very right-hand upper corner due to the high-speed 

moving plate at the upper of the cavity 

3. There are two ultra temperatures region in the right and left corner in cavity. 

 

3.2.2.2 Property Distributions Across Cavity Centroid 

Fig. 3.65 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line through geometry center(x/L=0.5) 

for Ma=4, and Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. In the other series, 

fixed M=1.1 and M=2 are showed in Fig. 3.53 and Fig. 3.59.  

Fig. 3.66 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line through geometry center(y/L=0.5) 

for Ma=4, and Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. In the other series, 

fixed M=1.1 and M=2 are showed in Fig. 3.54 and Fig. 3.60. 

 

3.2.2.3 Property Distributions Near Solid Walls 

Usually, the simulation data save in the cell center for DSMC technique. Thus, observation 

cell center data properties are average and correct. The positions are show in Table IV. Fig. 3.67 
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(a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, (c)number 

density and (d)temperature) along horizontal line near top wall(y/L=1) for Ma=4, and 

Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. In the other series, fixed M=1.1 and 

M=2 are showed in Fig. 3.55 and Fig. 3.61. 

Fig. 3.68 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line near bottom wall(y/L=0) for 

Ma=4, and Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. In the other series, fixed 

M=1.1 and M=2 are showed in Fig. 3.56 and Fig. 3.62. 

Fig. 3.69 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line near left wall(x/L=0) for Ma=4, and 

Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. In the other series, fixed M=1.1 and 

M=2 are showed in Fig. 3.57 and Fig. 3.63. 

Fig. 3.70 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line near right wall(x/L=1) for Ma=4, 

and Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. In the other series, fixed M=1.1 

and M=2 are showed in Fig. 3.58 and Fig. 3.64. 

 

3.2.2.4 Recirculation Center Position 

Fig. 3.100 shows the streamline of M=1.1 and Knudsen number 10, 1, 0.1, 0.01 and 
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0.0033 respectively. There are only one vortex for Kn=10, 1 and 0.1, but it has the additional 

second vortex at the right bottom corner for Kn=0.01 and 0.0033. Fig. 3.101 shows the 

streamline of M=2 and Knudsen number 10, 1, 0.1, 0.01 and 0.0033 respectively. Identically, 

it has the additional second vortex at the right bottom corner. Besides, the second vortex 

appear for Kn=10. Fig. 3.102 shows the streamline of M=4 and Knudsen number 10, 1, 0.1, 

0.01 and 0.0033 respectively. It has second vortex in all case besides Kn=0.1. 

Fig. 3.103 shows the relative horizontal distance (x/L) of the vortex center for various 

values of Knudsen number and Mach number. Result show that the vertex center position has 

no obvious regular in x-direction. Fig. 3.103 shows the relative vertical distance (y/L) of the 

vortex center for various values of Knudsen number and Mach number. It shows that the 

vortex center move down as decreasing Knudsen number for M=2 and 4; but it has no regular 

for M=1.1. 

 

3.2.3 Effects of Mach Number of the Driven Plate 

In this section, we were observed effects of Mach number in the same Knudsen number 

(Kn=10-0.0033). We were showed general simulation results include density, velocity in the 

x-direction, velocity in the y-direction, temperature, Mach number, and streamline. We were 

showed property distributions across cavity centroid for x =0.5m, y= 0 to 1m and y=0.5m, 

x=0 to 1m. We showed property distributions near the solid walls. Finally, we were observed 
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the recirculation center position in different cases. 

 

3.2.3.1 General Simulation Results 

3.2.3.1.1 High Kn Regime (Kn=10, 1, 0.1) 

Fig. 3.28 shows that number density contour for Kn=10, and Mach number 1.1, 2 and 4 

respectively. Driven plate takes particles to the right-hand upper corner. An ultra high-density 

region appears at the very right-hand upper corner due to the high-speed moving plate at the 

top of the cavity. In addition, there is low density at the left-hand upper corner. The max 

number density reaches 2.2, 4.2 and 7.5 times the initial value as M = 1.1, 2 and 4 

respectively. In the other series, fixed Kn=1 and Kn=0.1 are showed in Fig. 3.33 and Fig. 

3.38. 

Fig. 3.29 shows that temperature contour for Kn=1, and Mach number 1.1, 2 and 4 

respectively. We normalize temperature to divide the initial temperature 300K. Temperature 

near the top plate increases with increasing driven plate velocity. Besides, the temperature 

increase more seriously as Mach number increased. In the other series, fixed Kn=1 and 

Kn=0.1 are showed in Fig. 3.34 and Fig. 3.39. 

Fig. 3.30 shows that Mach number contour for Kn=0.1, and Mach number 1.1, 2 and 4 

respectively. The velocity near the top plate is lower compared with the top plate velocity; it 

is just about 0.3 times the velocity of driven plate. In the other series, fixed Kn=1 and 
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Kn=0.1are showed in Fig. 3.35 and Fig. 3.40. 

Fig. 3.31 shows that u-velocity contour for Kn=0.01, and Mach number 1.1, 2 and 4 

respectively. We normalize temperature to divide the initial driven plate velocity. The 

maximum u-velocity values are all about 0.3. Because of rarefaction effect caused slip 

phenomenon and the velocity remain the 0.3 times the top plate velocity. In the other series, 

fixed Kn=1 and Kn=0.1 are showed in Fig. 3.36 and Fig. 3.41. 

Fig. 3.32 shows that v-velocity contour for Kn=0.0033, and Mach number 1.1, 2 and 4 

respectively. We normalize v-velocity to divide the upper plate velocity. An ultra high-speed 

region appears at the left-hand and right-hand upper region. In the other series, fixed Kn=1 

and Kn=0.1 are showed in Fig. 3.37 and Fig. 3.42. 

 

3.2.3.1.2 Low Kn Regime (Kn=0.01, 0.0033) 

Fig. 3.42 shows that number density contour for Kn=0.01, and Mach number 1.1, 2 and 4 

respectively. In this regime, the region of influence is about all domain. An ultra high-density 

region appears at the very right-hand upper corner. the number density of sides of the cavity is 

larger than inside of the cavity, besides it near the top plate. The max number density reaches 

3, 7 and 15 times the initial value as M = 1.1, 2 and 4 respectively. When increasing Mach 

number, the phenomenon is acuter. In the other series, fixed Kn=0.0033 is showed in Fig. 

3.48.  
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Fig. 3.43 shows that temperature contour for Kn=0.01, and Mach number 1.1, 2 and 4 

respectively. We normalize temperature to divide the initial temperature 300K. Temperature 

near the top plate increases with increasing driven plate velocity. Besides, the temperature 

increase more seriously as Mach number increased. In the other series, fixed Kn=0.0033 is 

showed in Fig. 3.49.  

Fig. 3.44 shows that Mach number contour for Kn=0.01, and Mach number 1.1, 2 and 4 

respectively. Compare the velocity near the top plate with the top plate is much lower, it is  

0.8 times the velocity of driven plate. In the other series, fixed Kn=0.0033 is showed in Fig. 

3.50.  

Fig. 3.45 shows that u-velocity contour for Kn=0.01, and Mach number 1.1, 2 and 4 

respectively. We normalize temperature to divide the initial driven plate velocity. The 

maximum u-velocity values are all about 0.8. Because of rarefaction effect caused slip 

phenomenon and the velocity reduces 20％ of the top plate velocity. In the other series, fixed 

Kn=0.0033 is showed in Fig. 3.51.  

Fig. 3.46 shows that v-velocity contour for Kn=0.01, and Mach number 1.1, 2 and 4 

respectively. We normalize v-velocity to divide the upper plate velocity. An ultra high-speed 

region appears at the left-hand and right-hand upper region. In the other series, fixed 

Kn=0.0033 is showed in Fig. 3.52.  
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3.2.3.2 Property Distributions Across Cavity Centroid 

3.2.3.2.1 High Kn Regime (Kn=10, 1, 0.1) 

Fig. 3.75 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line through geometry center(x/L=0.5) 

for Kn = 10, and Mach number 1.1, 2 and 4 respectively.  

Fig. 3.76 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line through geometry center(y/L=0.5) 

for Kn = 10, and Mach number 1.1, 2 and 4 respectively.  

 

3.2.3.2.2 Low Kn Regime (Kn=0.01, 0.0033) 

Fig. 3.88 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line through geometry center(x/L=0.5) 

for Kn = 0.01, and Mach number 1.1, 2 and 4 respectively.  

Fig. 3.89 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line through geometry center(y/L=0.5) 

for Kn = 0.01, and Mach number 1.1, 2 and 4 respectively.  
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3.2.3.3 Property Distributions Near Solid Walls  

3.2.3.3.1 High Kn Regime (Kn=10, 1, 0.1) 

Usually, the simulation data save in the cell center for DSMC technique. Thus, observation 

cell center data properties are average and correct. The positions are show in Table IV. Fig. 3.72 

(a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, (c)number 

density and (d)temperature) along horizontal line near top wall (y/L=1) for Kn = 10, and 

Mach number 1.1, 2 and 4 respectively. Fig. 3.76 and Fig. 3.82 change the Mach number as 1 

and 0.1, respectively. 

Fig. 3.73 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line near bottom plate (y/L=0) for Kn 

= 10, and Mach number 1.1, 2 and 4 respectively. Fig. 3.77 and Fig. 3.83 change the Mach 

number as 1.1 and 2, respectively. 

Fig. 3.74 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line near left wall(x/L=0) for Kn = 10, 

and Mach number 1.1, 2 and 4 respectively. Fig. 3.77 and Fig. 3.83 change the Mach number 

as 1.1 and 2, respectively. 

Fig. 3.75 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line near right wall(x/L=1) for Kn = 10, 

and Mach number 1.1, 2 and 4 respectively. Fig. 3.77 and Fig. 3.83 change the Mach number 
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as 1.1 and 2, respectively. 

 

3.2.3.3.2 Low Kn Regime (Kn=0.01, 0.0033) 

Fig. 3.89 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line near top wall (y/L=1) for Kn = 

0.01, and Mach number 1.1, 2 and 4 respectively. Fig. 3.76 and Fig. 3.82 change the Mach 

number as 1 and 0.1, respectively. 

Fig. 3.90 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along horizontal line near bottom wall(y/L=0) for Kn 

= 0.01, and Mach number 1.1, 2 and 4 respectively. Fig. 3.77 and Fig. 3.83 change the Mach 

number as 1.1 and 2, respectively. 

Fig. 3.91 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line near left wall(x/L=0) for Kn = 0.01, 

and Mach number 1.1, 2 and 4 respectively. Fig. 3.77 and Fig. 3.83 change the Mach number 

as 1.1 and 2, respectively. 

Fig. 3.92 (a)-(d) present the profiles of various properties ((a) u-velocity, (b) v-velocity, 

(c)number density and (d)temperature) along vertical line near right wall(x/L=1) for Kn = 

0.01, and Mach number 1.1, 2 and 4 respectively. Fig. 3.77 and Fig. 3.83 change the Mach 

number as 1.1 and 2, respectively. 
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3.2.3.4 Recirculation Center Position 

Fig. 3.105 shows the streamline of Kn=10 and Mach number 1.1, 2 and 4 respectively. 

There are second vortex occur as M=2 and 4. Fig. 3.106 shows the streamline of Kn=1 and 

Mach number 1.1, 2 and 4 respectively. There is second vortex occur as M=4. Fig. 3.107 

shows the streamline of Kn=0. 1 and Mach number 1.1, 2 and 4 respectively. There are no 

additional second vortex. Fig. 3.108 shows the streamline of Kn=0.01 and Mach number 1.1, 

2 and 4 respectively. There are more and more obvious second vortex as Mach number 

increasing. Fig. 3.109 shows the streamline of Kn=0.0033 and Mach number 1.1, 2 and 4 

respectively. The second vortex all occurs in this case. The third vortex appear at the left 

bottom corner for M=4.   

Fig. 3.110 shows the relative horizontal distance (x/L) of vortex center for various value 

of Mach number and Knudsen number. Results show that vortex center move toward left as 

Mach number increasing for Kn=0.01 and 0.0033. But the vortex center move toward the 

opposite way (right) for Kn=10, 1 and 0.1. Fig. 3.110 shows the relative vertical distance (y/L) 

of vortex center for various value of Mach number and Knudsen number. It show that vortex 

center moves down as Mach number increasing for Kn=0.01 and 0.0033. But the vortex 

center move toward the opposite way (toward the top wall) for Kn=10, 1 and 0.1. 
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Chapter 4  

Conclusions and Recommendation of Future Work 

 

4.1. Summary 

The current study carries out the simulations of top driven supersonic (M=1.1-4) cavity 

flow at various Knudsen numbers using a parallelized DSMC code (PDSC) with transient 

sub-cells. Important conclusions are summarized as follows:  

1. Use of transient sub-cells on unstructured grids is very beneficial considering the great 

reduction of both the memory and computational speed without losing the solution 

accuracy. Overhead of employing transient sub-cells is minimal for particles per cell 

less than approximately 100 based on our experience. 

2. Velocity slips and temperature jumps increase at the solid walls with increasing 

rarefaction at the same Mach number. 

3. The additional section vortex occur at the right bottom in Kn=0.01 and 0.0033 with 

various moving wall. The third vortex appears at the left bottom corner for Kn=0.0033 

and M=4.   

4. Results show that vortex center move toward left and down as Mach number increasing 

for Kn=0.01 and 0.0033. But the vortex center move toward the opposite way for 

Kn=10, 1 and 0.1. 
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4.2. Recommendation of Future Work 

Based on this study, future work is suggested as follows: 

1. To simulate the flows in detail by changing the ratio of height to width of the cavity; 

2. To simulate the flows in detail by changing the wall temperatures and to focus on the 

discussion of heat transfer along the solid walls; 

3. To simulate the driven cavity flow in subsonic region; 

4. To simulate the driven cavity flow with oscillatory top moving plate. 

5. To simulate the driven cavity flows with gas mixture and discuss the effects of moving 

plate speed and oscillation to the mixing of different species within the cavity. 
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Tables 

 

 

 

 

Table I The condition of benchmark cases. 

 
 Knudsen 

number 
Mach number Mesh Particle per cell

With sub-cell 0.01 0.5 100 x 100 100 
Without sub-cell 0.01 0.5 400 x 400 25 
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Table II The mesh information 

 
Knudsen 
number 

Mach number Mesh Grid size of the 
each cell 

Particles per cell

10 4 40 x 40 0.025 25 
10 2 40 x 40 0.025 25 
10 1.1 40 x 40 0.025 25 
1 4 40 x 40 0.025 25 
1 2 40 x 40 0.025 25 
1 1.1 40 x 40 0.025 25 

0.1 4 40 x 40 0.025 25 
0.1 2 40 x 40 0.025 25 
0.1 1.1 40 x 40 0.025 25 
0.01 4 100 x 100 0.01 100 
0.01 2 100 x 100 0.01 100 
0.01 1.1 100 x 100 0.01 100 

0.0033 4 300 x 300 3.33e-3 100 
0.0033 2 300 x 300 3.33e-3 100 
0.0033 1.1 300 x 300 3.33e-3 100 
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Table III Simulation condition 

 

Knudsen 
number 

Mach 
number 

Driven plate 
velocity 

Initial wall and 
gas temperature 

Number Density 

10 4 1288 300 1.29438E+17 
10 2 644 300 1.29438E+17 
10 1.1 354.2 300 1.29438E+17 
1 4 1288 300 1.29438E+18 
1 2 644 300 1.29438E+18 
1 1.1 354.2 300 1.29438E+18 

0.1 4 1288 300 1.29438E+19 
0.1 2 644 300 1.29438E+19 
0.1 1.1 354.2 300 1.29438E+19 
0.01 4 1288 300 1.29438E+20 
0.01 2 644 300 1.29438E+20 
0.01 1.1 354.2 300 1.29438E+20 

0.0033 4 1288 300 3.88314E+20 
0.0033 2 644 300 3.88314E+20 
0.0033 1.1 354.2 300 3.88314E+20 
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Table IV Position of properties distribution across 

 
Knudsen 
number 

Near top wall Near bottom 
wall 

Near left wall Near right wall 

10 y/L=0.9875 y/L=0.0125 x/L=0.0125 x/L=0.9875 
1 y/L=0.9875 y/L=0.0125 x/L=0.0125 x/L=0.9875 

0.1 y/L=0.9875 y/L=0.0125 x/L=0.0125 x/L=0.9875 
0.01 y/L=0.995 y/L=0.005 x/L=0.995 x/L=0.995 

0.0033 y/L=0.9967 y/L=0.0033 x/L=0.0033 x/L=0.9967 

 

 

 

 

 

 

 

 

 

 

 

 



 

 42

Figures 

 

 
 

 

 

Fig. 1.1  Classifications of Gas Flows  
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Fig. 2.1 Flow chart of the DSMC method. 
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Fig. 2.2 Simplified flow chart of the parallel DSMC method for np processors. 
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Fig. 2.3 The additional schemes in the parallel DSMC code. 
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Fig. 2.6  Division of structured and unstructured elements into sub-cells 
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Fig. 3.1 The 2D square (L/H) driven cavity flow with moving top plate 
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Fig. 3.2 The mesh for Knudsen number 10, 1, 0.1(40×40) 
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Fig. 3.3 The mesh for Knudsen number 10, 1, 0.1(100×100). 
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Fig. 3.4 The mesh for Knudsen number 0.0033(300×300) 
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                  (a)                                   (c) 

 

                  (b)                                   (d) 

Fig. 3.4 Properties distribution along vertical line through geometry center (x/L=0.5)     

(a) u velocity: (b) v velocity: (c) number density: (d) temperature. 
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                  (a)                                   (c) 

 

                  (b)                                   (d) 

Fig. 3.5 Properties distribution along horizontal line through geometry center (y/L=0.5)  

(a) u velocity: (b) v velocity: (c) number density: (d) temperature. 
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                  (a)                                   (c) 

 

                  (b)                                   (d) 

Fig. 3.6 Properties distribution along horizontal line near top wall(y/L=1)         

(a) u velocity: (b) v velocity: (c) number density: (d) temperature. 
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                  (a)                                   (c) 

 

                  (b)                                   (d) 

Fig. 3.7 Properties distribution along horizontal line near bottom wall(y/L=0)         

(a) u velocity: (b) v velocity: (c) number density: (d) temperature. 
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                  (a)                                   (c) 

 

                  (b)                                   (d) 

Fig. 3.8 Properties distribution along vertical line near left wall(x/L=0)         

(a) u velocity: (b) v velocity: (c) number density: (d) temperature. 
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                  (a)                                   (c) 

 
                  (b)                                   (d) 

Fig. 3.9 Properties distribution along vertical line near right wall(x/L=1)         

(a) u velocity: (b) v velocity: (c) number density: (d) temperature. 
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Fig. 3.10 The merit of collision without sub-cells case 
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Fig. 3.11 The merit of collision with sub-cells case 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.12 Contour of number density for M = 1.1, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1; 

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.13 Contour of temperature for M = 1.1, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1; (d) 

Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.14 Contour of Mach number for M = 1.1, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1; (d) 

Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.15 Contour of u-velocity for M = 1.1, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;     

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.16 Contour of v-velocity for M = 1.1, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;     

(d) Kn = 0.01; (e) Kn = 0.0033. 

 

 



 

 64

 

                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.17 Contour of number density for M = 2, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;  

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.18 Contour of temperature for M = 2, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;     

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.19 Contour of Mach number for M = 2, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;   

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.20 Contour of u-velocity for M = 2, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;      

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.21 Contour of v-velocity for M = 2, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;      

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.22 Contour of number density for M = 4, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;  

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.23 Contour of temperature for M = 4, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;  (d) 

Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.24 Contour of Mach number for M = 4, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;  (d) 

Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.25 Contour of u-velocity for M = 4, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;      

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.26 Contour of v-velocity for M = 4, (a) Kn = 10; (b) Kn = 1; (c) Kn = 0.1;      

(d) Kn = 0.01; (e) Kn = 0.0033. 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.27 Contour of number density for Kn = 10, (a) M = 1.1; (b) M = 2; (c) M = 4       
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.28 Contour of temperature for Kn = 10, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.29 Contour of Mach number for Kn = 10, (a) M = 1.1; (b) M = 2; (c) M = 4               
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.30 Contour of u-velocity for Kn = 10, (a) M = 1.1; (b) M = 2; (c) M = 4 

      

 

 

 

 

 

 



 

 78

 
 
 

 

                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.31 Contour of v-velocity for Kn = 10, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.32 Contour of number density for Kn = 1, (a) M = 1.1; (b) M = 2; (c) M = 4      

 

 

 

 

 

 
 
 



 

 80

 
 
 
 
 

 

                  (a)                                   (b) 

 

                  (c)                                    
 

Fig. 3.33 Contour of temperature for Kn = 1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.34 Contour of Mach number for Kn = 1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.35 Contour of u-velocity for Kn = 1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.36 Contour of v-velocity for Kn = 1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.37 Contour of number density for Kn = 0.1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.38 Contour of temperature for Kn = 0.1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    
 

Fig. 3.39 Contour of Mach number for Kn = 0.1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.40 Contour of u-velocity for Kn = 0.1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.41 Contour of v-velocity for Kn = 0.1, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    
 

Fig. 3.42 Contour of number density for Kn = 0.01, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.43 Contour of temperature for Kn = 0.01, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.44 Contour of Mach number for Kn = 0.01, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.45 Contour of u-velocity for Kn = 0.01, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.46 Contour of v-velocity for Kn = 0.01, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    
 

Fig. 3.47 Contour of number density for Kn = 0.0033, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.48 Contour of temperature for Kn = 0.0033, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.49 Contour of Mach number for Kn = 0.0033, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.50 Contour of u-velocity for Kn = 0.0033, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.51 Contour of v-velocity for Kn = 0.0033, (a) M = 1.1; (b) M = 2; (c) M = 4 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.52 Effect of Kn for M = 1.1 along vertical line through geometry center with    

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.53 Effect of Kn for M = 1.1 along horizontal line through geometry center with  

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.54 Effect of Kn for M = 1.1 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 

 

 

 

 

 



 

 102

 

 
 
 
 

 

                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.55 Effect of Kn for M = 1.1 along horizontal line near bottom wall(y/L=0) with         

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.56 Effect of Kn for M = 1.1 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.57 Effect of Kn for M = 1.1 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.58 Effect of Kn for M = 2 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.59 Effect of Kn for M = 2 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.60 Effect of Kn for M = 2 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.61 Effect of Kn for M = 2 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.62 Effect of Kn for M = 2 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.63 Effect of Kn for M = 2 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 

 

 

 

 

 

 



 

 111

 
 
 
 
 

 

                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.64 Effect of Kn for M = 4 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.65 Effect of Kn for M = 4 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.66 Effect of Kn for M = 4 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.67 Effect of Kn for M = 4 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.68 Effect of Kn for M = 4 along vertical line near left wall(x/L=0) with         

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.69 Effect of Kn for M = 4 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.70 Effect of M for Kn = 10 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.71 Effect of M for Kn = 10 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.72 Effect of M for Kn = 10 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.73 Effect of M for Kn = 10 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.74 Effect of M for Kn = 10 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.75 Effect of M for Kn = 10 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 

 

 

 

 

 



 

 123

 
 
 
 
 

 

                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.76 Effect of M for Kn = 1 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.77 Effect of M for Kn = 1 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.78 Effect of M for Kn = 1 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.79 Effect of M for Kn = 1 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.80 Effect of M for Kn = 1 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.81 Effect of M for Kn = 1 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.82 Effect of M for Kn = 0.1 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.83 Effect of M for Kn = 0.1 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.84 Effect of M for Kn = 0.1 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.85 Effect of M for Kn = 0.1 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.86 Effect of M for Kn = 0.1 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.87 Effect of M for Kn = 0.1 along vertical line near right wall(x/L=1) with         

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.88 Effect of M for Kn = 0.01 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

Fig. 3.89 Effect of M for Kn = 0.01 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.90 Effect of M for Kn = 0.01 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 

 

 

 

 

 



 

 138

 
 
 
 
 

 

                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.91 Effect of M for Kn = 0.01 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.92 Effect of M for Kn = 0.01 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.93 Effect of M for Kn = 0.01 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.94 Effect of M for Kn = 0.0033 along vertical line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.95 Effect of M for Kn = 0.0033 along horizontal line through geometry center with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.96 Effect of M for Kn = 0.0033 along horizontal line near top wall(y/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.97 Effect of M for Kn = 0.0033 along horizontal line near bottom wall(y/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.98 Effect of M for Kn = 0.0033 along vertical line near left wall(x/L=0) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 
 

Fig. 3.99 Effect of M for Kn = 0.0033 along vertical line near right wall(x/L=1) with          

(a) u-velocity; (b) v-velocity; (c) number density (d) temperature 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.100 Streamline for M=1.1 (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) 

Kn=0.0033 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.101 Streamline for M=2 (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) 

Kn=0.0033 
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                  (a)                                   (b) 

 

                  (c)                                   (d) 

 

                  (e) 

Fig. 3.102 Streamline for M=4 (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) 

Kn=0.0033 
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Fig. 3.103 Relative horizontal distance (x/L) of vortex center for various value of Knudsen 

number and Mach number 

 

Fig. 3.104 Relative horizontal distance (y/L) of vortex center for various value of Knudsen 

number and Mach number 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.105 Streamline for Kn=10 (a) M=1.1; (b) M=2; (c) M=4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.106 Streamline for Kn=1 (a) M=1.1; (b) M=2; (c) M=4 

 

 

 

 

 



 

 153

 

 

 

 

 

 

                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.107 Streamline for Kn=0.1 (a) M=1.1; (b) M=2; (c) M=4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.108 Streamline for Kn=0.01 (a) M=1.1; (b) M=2; (c) M=4 
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                  (a)                                   (b) 

 

                  (c)                                    

Fig. 3.109 Streamline for Kn=0.0033 (a) M=1.1; (b) M=2; (c) M=4 
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Fig. 3.110 Relative horizontal distance (x/L) of vortex center for various value of Mach 

number and Knudsen number 

 

Fig. 3.111 Relative horizontal distance (y/L) of vortex center for various value of Mach 

number and Knudsen number 


