Simulation of Square Driven Cavity Flows from
Free-Molecular to Near-Continnum Regime Using Model

Boltzmann Equation

Pii i p¥ar
pRERFEIILIEE L

PERREL LA ES



B AR WA RN R D A F DTN B A% RS

Simulation of Square Driven Cavity Flows from Free-Molecular to
Near-Continnum Regime Using Model Boltzmann Equation

oA g Student: Chin-Chuan Hung

hExp iz #4 Advisor: Dr. Jong-Shinn Wu

DEREEY
Ay
L oo

A Thesis
Submitted to Institute of Mechanical Engineering
College of Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master of Science
in
Mechanical Engineering
July 2007

Hsinchu, Taiwan

PEA R4 L g



R R = =

mXPREBETERE

o8

AB_ B W I 2 PhRALH B V23

FARHX(PX) pRESEEAFEAERA & \%,,.L@Jﬁxg%,ﬁmmﬂ,w, H

(3£ x ) Simulation of Square Driven Cavity Flows from Free-Molecular to

Near-Continnum Regime Using Model Boltzmann Equation

AMALEHAL FEALREHERT -

ORER : /é 42\ %X
A
% L

R TS S % j%

A OE




e

FERERES 2 Xl RS R AL FrOR R o AT R WER S

'
r_r.Y

B0 S EF i i A B SR GOE Rl M BT AR T 0 T TR BT o b ok R D
AR i b ayd (LA RR R BT RA AT PR R 2
CHRP A AT AR TR B A L R @AY @ (R o ¥ R
BB E BN BRI RN L3 F 2 A R AR e kR ES
WY TR AL R BB e BT R o e - B
FERMOAF AL S0 > I EH B FRT MTE R FR ME %

L Eag L ’*?\'”ﬁ APPL?.‘%}E&?&& RN %%;‘%&E?J‘ﬁk#\%‘;:F’L?‘@.‘EK%'”“

P FHEHRR IR EE L PR F s E R B R R #

¢

i’]‘}fl%"}#f\iié\fﬂ—bd.\%&% FE B EPE Y B RBnE - X B A p sy =

EEGGYR O P L B AU R AL KR TR IEPRE B ke

& W hF F Hadley M. Cave #h3at 4 el @54 a & @ Behzbif L g 4 -
FURHE MBS A F s A FEEREN Pl L ALY R

7

£ &

E-D

o B EE LT M AR MG 0 B ot BB IR A o R S R
%%ﬁ@oﬁﬁﬁﬁ%@{ﬁﬁ%wﬁ%,xﬂﬁﬁﬁﬁﬁoi%i%kgwéﬁiﬁ’%
ORI B D E ek o

R AR

Jook 2 [ R



B A WE A ANEEp Y AF TR e B

AL
E R e

%
|
%.L
"3
2%

REFE L ae #4

I FBmRERE O RS AR F Y —BRAENR I F S
TEFHEOSPREL Y A A 5 AR ERADH BB ARHHR
FoREF R v kHEI P oMeE PR B ALiEd nF Y RFE N
bR o BRI RS BT RS Ry B R AR Rt o T A
s i L AR Z R AR R B -

repoE A a2 ﬁ 3 *TZL 4 ;2 (finite-difference scheme),i & 7 A
Bt & = &% (discrete ordinate method) =g %< & 73] = #2:8 (MBE) % #i¢
Bt EpmPid e 2R EA 4 A FnFlTagiiang e A2

® i¢ * BGK model# Shakov model® & H-3] KT i ff 4 38 o & 7 SRR %
§ $04] = 4238 (MBE) ehl FidE, 2 ot o F 25 8+ B fikeis (DSMO) 22 i
B3 > 4258 (MBE) 2 4-8% R 7iKn=0.0033 =¥ Ma=2.0n%% o A2 ¢ 5 Rjn3
mﬁfﬁﬁﬁ ¢ 7z 71 Kn=10~0.0033 = Ma=0.5~2f"; 34 o

BB R % ¢ MR, 40 I diMlach number®E ¥ F R OfFE 1, @ R B

II



PR R IRG € { 4P A o & fgMach number T (M=0.5,0.9, 1.1,2),
"LEKne ), Fo Y g F B, w EF N=0.5Kn=0.0033 &
M=2, Kn=0. 0033Fifa it ¥ = g ee g4 =7 > FH & o gt *h FKn | 300, 01F%, &
ARG Rl ARG AL DR o F Knt 0. 018F, *‘,f 1 M=2, Kn=10i&

BT AT EFAL - BARFR BB DERA €A L TFIR

III



Simulation of Square Driven Cavity Flows from Free-Molecular to
Near-Continnum Regime Using Model Boltzmann Equation

Student: C. C. Lu Advisor: Dr. J. S. Wu

Department of Mechanical Engineering
National Chiao-Tung University

Abstract

The driven cavity flow is one of the benchmark problems often used in
computational fluid dynamics due to its simple geometry but highly singular points at
the corners. It is often used to verify different numerical methods for fluid-flow
simulation. However, past studiés in this regard focused on flows in thc continuum
regime. Very few researches-have 'béen done systematically in the rarefied or
near-contiuum regime. Several applications require consideration of rarefaction,
which motivates the present thesis to focus on simulation of driven cavity flows in
this region.

This thesis reports the simulation of a two-dimensional top driven square cavity
flows from free-molecular to near-continuum regime using a model Boltzmann
equation (MBE) solver. The MBE was discretized using finite-difference scheme and
discrete ordinate method for the configuration and velocity space, respectively. The
collision integral was approximated by either the BGK or Shakov model. The MBE

solver was first verified by comparing the results to those obtained using direct

v



simulation Monte Carlo method for a driven cavity flow at Kn=0.0033 and Ma=2.0.

Simulation conditions include Knudsen number and speed of the top driven plate in

the range of Kn=10-0.0033 and Ma=0.5-2, respectively.

Results show that the velocity slips and temperature jumps increase at the solid

walls with increasing rarefaction at the same Mach number. The vortex center move

toward left and down as Knudsen number (Kn=10, 1, 0.1, 0.01) decreasing for M=0.5,

0.9, 1.1, and 2, when Kn=0.0033 is opposite. But the vortex center move toward the

opposite way for M=0.5, Kn=0.0033 and M=2, Kn=0.0033. For Kn=0.01, and 0.0033,

under the main vortex secondary eddies have been created at the two bottom corners.

Only in this special example foriM=2, Kn=10, unnder the main vortex secondary

eddie have been created at the right bottom corners.
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Chapter 1. Introduction

1.1 Motivation and Background

The driven cavity flow is one of the benchmark problems often used in
computational fluid dynamics due to its simple geometry but highly singular points at
the corners. It is often used to verify different numerical methods for fluid-flow
simulation. However, past studies in this regard focused on flows in thc continuum
regime. Very few researches have been done systematically in the rarefied or
near-contiuum regime. Several applications require consideration of rarefaction on
the flow fields, which motivates the present thesis to focus on the simulations of
driven cavity flows in this region.

It is well known that continuum ‘Navier-Stokes equations fails in treating these
non-equilibrium effects in the transitional regime and beyond, as shown in Fig. 1.1.
Even Navier-Stokes equation was often used with slip boundary conditions at walls
for slightly rarefied flows, it is still uncertain how accurate they are and how far into
the rarfied regime they can be applied. Thus, the Boltzmann equation based on the
kinetic theory of gases needs to be used in these regimes. Due to the complexity of
the nonlinear integral-differential nature of the equation, analytical solutions of the
Boltzmann equation are rarely seen, hence numerical solutions is necessary.

For the simulation of gas flows in rarefied or transitional regimes, there mainly



exist two classes of methods. The first one is a probabilistic approach, such as the

direct simulation Monte Carlo method (DSMC) [Bird’s book, 1994], which has been

proved mathematically that it solves Boltzmann equation as the number simulated

particles becomes large [Wagner, 1992; Nanbu, 1986]. It is the most commonly

used numerical method for solving the Boltzmann equation. DSMC was found to be

very efficient and accurate in high-speed gas flows.. However, high statistical

uncertainties arise for low-speed gas flows, near-continuum flows, and unsteady flow,

to name a few. To obtain acceptable solution with low noise, tremendous computing

power is required for the DSMC: simulation, which is unpractical. The second

approach is a deterministic approach, such as'numerically solving Boltzmann equation.

This class includes the model Boltzmann equation, which is the main theme of the

present thesis or the direct Boltzmann equation solver, which is still in its infant stage

and beyond the scope of the present thesis.

The difficulties encountered in the solution of the Boltzmann equation are largely

associated with the nonlinear integral nature of the collision term. To circumvent

this difficulty, statistical or relaxation models were often proposed as substitutions.

The kinetic model equation proposed by Krook et al. (BGK) [1954] and Welander

[1954] provides a more tractable way to solve comparatively complex rarefied gas

problems routinely. Several model equations for the nonlinear Boltzmann equation



have been proposed such as the ellipsoidal model by Holway [1963], by Cercignani

and Tironi [1967] and high order generalization of the BGK model by Shakhov

[1968]. A hierarchy kinetic model equation similar to that of Shakhov was also

proposed by Abe and Oguchi [1976]. Among the main features of these high order

generalizations of BGK model are that they give the correct Prandtl number and it is

generally believed that they should give a solution much closer to the solution with

the Boltzmann equation than the BGK model does. All these model equations bear a

resemblance to the original Boltzmann equation concerning the various order of

moments. Thus, instead of solving the full Boltzmann equation one solves the

kinetic model equation and hopes to produce a more economic and efficient way of

computing rarefied gasdynamic flows:"Recent numerical studies of rarefied gas flow

problems based on the BGK type model Boltzmann equations can be found in

Sugimoto and Sone [1992] and Prendergast and Xu [1993]. We consider an accurate

numerical method for solving the kinetic model Boltzmann equation. The approach

taken here is to apply the discrete ordinate method Huang and Giddens [1967];

Shizgal [1981] to the distribution function to replace its continuous dependency on the

velocity space by a set of distribution functions which are continuous function in

physical space and time but point function in velocity space. The resulting set of

partial differential equations are of hyperbolic type and can be cast into hyperbolic



conservation laws from with nonlinear source terms. Once this is done, modern

upwind high resolution shock capturing methods can be applied to solve them. Here,

we extend our previous high-order nonoscillatory method [Yang, 1991; Yang and Hsu,

1992] for hyperbolic conservation laws to include the nonlinear source term. [Yang

and Huang, 1995] was to present a high resolution numerical method for the

computation of rarefied gas flow over obstacles of arbitrary shapes covering the full

spectrum of flow regimes using kinetic model Boltzmann equation. They method

provided an efficient tool for accurate simulations of steady and unsteady rarefied gas

flows covering the full spectrum of flow regimes and can contribute to the database

by providing the results of simulations based upon the kinetic model Boltzmann

equations.

1.2 Literature Reviews in Driven Cavity Flows

Ghia [1982] used Navier-Stokes equations to simulate the driven cavity flow

with high Reynolds number. Solutions are obtained for configurations with Reynolds

number as high as 10000 and meshes consisting of as many as 257x257 point.

Detailed accurate results have been presented for this problem and the results agree

well with published fine-grid solutions but are about four times as efficient.

Erturk et al. [2005] used Navier-Stokes equations to simulate the 2-D steady

incompressible driven cavity flow. Solution are obtained for configurations with



Reynolds number < 21,000 and using a fine uniform grid mesh of 601x601 cells. A

new quaternary vortex at the bottom left corner and a new tertiary vortex at the top

corner of the cavity are observed in the flow field as the Reynolds number increases.

Naris and Valougeorgis [2005] wused the two—dimensional linearized

Bhatnagar-Gross-Krook (BGK) kinetic equation with Maxwell diffuse-specular

boundary conditions to simulate the flow of a rarefied gas in a rectangular enclosure

due to the motion of the upper wall is solved over the whole range of the Knudsen

number. The integro-differential equations are solved numerically implementing the

discrete velocity method. The discontinuity at the boundaries between stationary and

moving walls is treated accordingly. A detailed investigation of the rarefaction effects

on the flow pattern and quantitiés is presented over the whole range of the Knudsen

number and various aspect (height/width) ratios. As the depth of the cavity is

increased, these eddies grow and merge into additional vortices under the top one. As

Knudsen number decreased, the center of the top vortex is move slightly toward the

moving wall.



1.3 Specific Objectives of the Thesis

Based on previous reviews, the current objectives of the thesis are summarized as

follows:

1. To benchmark the solution obtained by the previously developed 2D MBE solver

with that obtained by the DMSC method;

2. To utilize the above validated 2D MBE solver to study the driven cavity flows in

detail with Mach number and Knudsen number in the range of 0.5-2 and

10-0.0033, respectively.

3. To discuss the results considering the effects of rarefaction and compressibility.

The organization of the- thesis would be stated as follows. First is this

introduction, and next is the numerical method. Then simulation results of Model

Boltzmann equation are presented. Finally, conclusion and recommendation of future

work are presented.



Chapter 2. Numerical Method

The degree of rarefaction of a gas is generally expressed through the Knudsen
number (Kn) which is the ratio of the mean free path A to the characteristic dimension
L;ie.

(Kn)=%4/ 2.1)

Traditionally, flows are divided into four regimes as follows: Kn<0.01
(continuum), 0.01<Kn<0.1 (slip flow), 0.1<Kn<3 (transitional flow) and Kn>3 (free
molecular flow). As the Kn increases, the rarefaction becomes important and even
dominates the flow behavior. Hencej the traditional requirement for the Navier-Stokes

equations to be valid is that Knudsen number should be less than 0.1. (Figure 2.1)

2.1 Boltzmann equation
The Boltzmann equation is one of the most important transport equations in
non-equilibrium statistical mechanics, which deals with systems far from
thermodynamics equilibrium. There are some assumptions made in the derivation of
the Boltzmann equation which defines limits of applicability. They are summarized as
follows:
1. Molecular chaos is assumed which is valid when the intermolecular forces
are short range. It allows the representation of the two particles distribution

function as a product of the two single particle distribution functions.



2. Distribution functions do not change before particle collision. This implies

that the encounter is of short time duration in comparison to the mean free

collision time.

3. All collisions are binary collisions.
4. Particles are uninfluenced by intermolecular potentials external to an
interaction.

According to these assumptions, the Boltzmann equation is derived and shown as

Eq. (2.1)
onf)  o(nf) _o(nf) of e '

u F ——1| = | [ n*Cf. f, — ff)godQdU 2.1

a e e axi|° u @1 - fhgo @D

Meaning of particle phase-space distribution function f is the number of
particles with center of mass located withinia small volume d’r near the pointr, and
velocity within a range d’u, at time t. F is an external force per unit mass and t
is the time and u;is the molecular velocity. o is the differential cross section and
dQ is an element of solid angle. The prime denotes the post-collision quantities
and the subscript 1 denotes the collision partner. Meaning of each term in Eq. (2.1) is
described in the following;

1. The first term on the left hand side of the equation represents the time
variation of the distribution function of the particles (unsteady term).

2. The second term gives the spatial variation of the distribution function (flux



term).

3. The third term describes the effect of a force on the particles (force term).

4. The term at right hand side of the equation is called the collision integral

(collision term). It is the source of most of the difficulties in obtaining

solutions of the Boltzmann equation.

In general, it is very hard to solve the Boltzmann equation directly using

numerical method because the difficulties of correctly modeling the integral collision

term. Instead, the DSMC method was used to simulated problems involving rarefied

gas dynamics, which is the simulation‘tool used in.the current thesis.

2.2 Model Boltzmann equation

Because of the complex nonlinear structure of the collision integral, the

Boltzmann equation is very difficult to solve and to analyze, which is a nonlinear

integral-differential equation. Since the Boltzmann equation is difficult to handle, and

its numerical solution is time expensive, some alternative, simpler expressions have

been proposed to replace the Boltzmann collision term. These are known as collision

models, and any Boltzmann-like equation where the Boltzmann collision integral is

replaced by a collision model is called a model equation or a kinetic model.



2.2.1 BGK model
The most widely known collision model is usually called the Bhatnagar, Gross
and Krook (BGK) model. We approximate the collision term in the Boltzmann

equation become:

[%]wu. (1) (2.2)

Where " is the Maxwellian distribution function, and v is the proportion
coefficient of the BGK equation, which is also named as the collision frequency. The
power law temperature dependence of the coefficient of viscosity can be obtained [,]
from the Chapman—Enskog theory;swhich is appropriate for the inverse power law

intermolecular force model and-the VHS (Variable Hard Sphere) molecular model,

T .,
H=Hir (T_) (2.3)

ref

Where y is the temperature exponent of the coefficient of viscosity that can

$+3
2(¢-1)

is the inverse power coefficient related to the power force and the distance between

also be denoted as y = for the Chapman—Enskog gas of inverse power law,

centers of molecules,

16 y7,
A=——— (2.4)
5 mny27RT
Where m is the molecular mass, R is the gas constant, A is the mean free path.

The nominal collision frequency (inverse relaxation time) can be taken in the

form

10



yo 27 (2.5)
Where n is the number density, k is Boltzmann’s constant (k=R -m), and x is
the coefficient of the viscosity.
The BGK collision model equation [] was proposed by replacing the collision

integral term of the Boltzmann equation with simple collision model:

of _ of _ of

4y ve— =vifM-f 2.6
ot ot v V(e o) 26)

where f(T, v, t) is the velocity distribution function which depends on space, T,
molecular velocity, V,and time,t; v is the collision frequency and f is the local

Maxwellian equilibrium distribution:function given by

o (v )

(@, 0,0 = 3 e
oY (27RT(F, t))é 2RTi(T51)

] (2.7)

The idea behind this replacement is that a large amount of detail of the two-body

interaction (which is contained in the collision term) is not likely to influence

significantly the values of many experimentally measured quantities. That is, unless

very refined experiments are devised, it is expected that the fine structure of the

collision operator can be replace by a blurred image, based upon a simpler operator

which retains only the qualitative and average properties of the true collision operator.

The numerical method uses the BGK equation as the starting point for the

computation, the molecular velocity distribution function is chosen as the dependent

variable, the single velocity distribution function equation can be transformed into the

11



hyperbolic conservation equations to be numerically solved with the finite difference
method in computational fluid dynamics by the aid of the discrete velocity ordinate
method in gas kinetic theory, and then the macroscopic flow variables at each point in
the physical space can be evaluated from the moments of the distribution function

over the velocity space.

2.2.2 Ellipsoidal model

Although that, the most widely known collision model is usually called the BGK
model. But the BGK model gives, the value Ps=1 for the Prandtl number, a value
which is not in agreement with both the true Boltzmann equation and the experimental
data for a monatomic gas (whichiagree'in giving . P~ A ). Therefore, Holway (1966)
and Cercignani (1967) had created a new model about model Boltzmann equation is
called ellipsoidal statistical (ES) model equation.

c
P. is the Prandtl number with P, = —

, C,1s the specific heat at constant

pressure, u is the coefficient of the viscosity, k is the heat conduction coefficient.
In order to have a correct value for the Prandtl number, the Maxwellian

distribution function f™ in the BGK equation can be replaced by Three-dimensional

Anisotropic Gaussian Distribution in the Ellipsoidal model.

v Lra (e -x)

—+
ot Y e 28)
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3 3
£ (9,7,t)= pr 2(det A)% exp{- ZAijcicJ} (2.9a)

-
<
[

—_

2(1-P_)P.
SO ES Ty o
P, (o) |
Where &; is the Kronecker delta such that
L .
5ij ={ 0, 11;&]] (2.9¢)

Ellipsoidal model had be proof better than BGK model in solve some shock
structure problems. However, A disadvantage of this model is that it has not been

possible to prove (or disprove) the H theory.

2.2.3 Shakov model

In order to have a correct walue for theTPrandtl number, higher-order equation,
namely, the Shakhov equation, as well as the complete Boltzmann equation, is usually
used in the numerical solution. Neglect external force after the function, the

Boltzmann equation become;

of of _of

L N L T R 2.10

8t af [8t ]coll. ( ) ( )

v=[fv,0dv, (2.10a)

pr=d (2.10b)
14

£ =[ffv,dQdv, (2.10c)

If the molecule model considering colliding in the section o in inverse

13



proportion to relative velocity among the molecules v_, namely collide frequency is

not the function of the molecule velocity, the model Shakhov equation can be write

this type;
of of
v = =plfS-f 2.11
ot or ( ) @11

Where f° is the local Maxwellian equilibrium distribution function given by

2

£3(F,,t) = M (F, v, O[ 1+ (1-Pr)c- q(%—S)/(SpRT)] (2.12)

If moment equation for Eq. (2.11) is same as moment equation for Eq. (2.10),

which model equation (2.11) is similar equation for Boltzmann equation (2.10).

s _ of _
[ -0y dv= [ v &¥ (2.13)
ot
Where W=V =1 Vi, ViV, ViV V) e, (2.14a)
Alternatively one canuse v =/ (V)=1¢,€,c;, CCCy 5eennnne. (2.14b)

We assume that
5 =tM{a® +alc, +ali(j2)cij +afj3k)cijk F oo } (2.15)
We consider Eq. (2.15) reduced

The Shakhov model kinetic equation is a generalization of the Krook model
equation in that the approximation condition is satisfied not only for 1,v,, v’ s ViV
but also for v,v>. This ensures the correct relaxation of both the heat flux and stresses,
leading thus to the correct continuum limit in the case of small Knudsen numbers. In
particular, the model gives the correct Prandtle number. Comparisons of different
monatomic model equations with experimental data and the finite-difference solution

of the Boltzmann equation with the exact collision integral shows the Shakhov model

14



to be more accurate than the BGK model and Ellipsoidal models.

2.3 Discrete Ordinate Method

We consider accurate numerical methods for solving the kinetic model
Boltzmann equations. The approach taken here is to apply the discrete ordinate
method to the distribution function to replace its continuous dependency on the
velocity space by a set of distribution functions which are continuous function in
physical space and time but point function in velocity space. The resulting set of
partial differential equations are of hyperbolic type and can be cast into hyperbolic
conservation laws from with nonlinear source terms.

Its main idea is to replace thé @Xact integration with respect to molecular
velocity v over all velocity space by an approximate numerical integration over a
finite domain using a discrete set of points. Let 5 be an index of the three-
dimensional molecular velocity mesh, v s be a node in this mesh,f 5 =f(t,f,vﬁ).

Then the model kinetic equation is replaced by a system of equations for f,.

2.4 Finite-difference Discretization of the Two-Dimensional MBE

We consider a class of model Boltzmann equations of the form

of _ of
+ .

SV —v(fN-f) (2.16)
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where (T, v, t) is the velocity distribution function which depends on space, T,
molecular velocity, Vv, and time, t; v is the collision frequency and f" is an
appropriate distribution function depending on the model selected. The number
density, macroscopic flow velocity, and temperature of the gas are the first three

moments of the distribution function

n(F, t) =jf(f, v,t) d’v (2.17)

nu, (f, t) = j vAE v, )dy, i=1,2,3 (2.18)
- 2

%@0 :I%f(f, v, 1) d°v (2.19)

Here, R is the gas constant, ¢=%-u(T, tyis the peculiar velocity of the molecule.
The gas pressure p and the stress tensor z;; are defined by
p(t, t) =n(T, )KT(T, t) (2.20)
75 (5,0 = [cic f(F, 9,0 d’v-pd, (2.21)
where k is the Boltzmann constant and ¢, is the Kronecker delta. The heat flux
vector q is
q(F, )= %cif(f, v, dv (2.22)
The elastic collision frequency is of the form
v=nkT/u (2.23)

where 4 is the viscosity and is assumed to have a temperature dependence

plu, = (T/T,) (2.24)

16



Here y is a constant for a given gas. If we assume the dependence of the viscosity

on the temperature as for the Chapmann-Enskog gas of inverse ¢ power law, we

g+3
2(¢-1)

frequency is independent of temperature. The viscosity coefficient x, is related to

have y = . For Maxwell molecules, ¢ =5 then y=1.; thus the collision

the freestream mean free path A4_ by the relation

. M (2.25)

In this study we consider two kinetic models for f"; one is the BGK model and the
other is the Shakov model. For the BGK model, we have f" equal to the Maxwellian
distribution f:

N =fM(F, v, t) = n(T 9 exp[-(v_u(f’t))z] (2.26)

(2RT(T, t))% 2RT(1, t)

For the Shakov model, we have

c2
N =f3F, v, ) =tV (%, v, )[1+(1-Pr)c- q(ﬁ -5)/(5pRT)] (2.27)
Here, Pr is the prandtl number and is equal to % for a monatomic gas.

We note that the derivation of the continuum Navier-Stokes equations from the
BGK model or the Shakov model can be obtained using a Chapmann-Enskog
procedure.

To illustrate the numerical approach, we describe in detail the relevant equations

for two-dimensional problem, for the purpose of reduction in computer storage

requirements, the following reduced distribution functions (Chu 1965) are introduced:
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g(v,, vy, %y, 0= [ f¥,%,y,0)dv,

h(v,,v,,x,y,t)= J‘Vi f(v,x,y,t) dv,

Define the reference velocity and time as  C_ =./2RT, t,=L/C,

Where L is the reference length, T, is the reference temperature. Then, the

non-dimensional variables can be defined as follows:

(2.28a)

(2.28b)

(2.29)

After the process of nen-dimensionalizationr and integrating out the v,

dependence in Eq. (2.16) using Eq."(2.28), the"single model Boltzmann equation in

three space dimensions reduces to the following two simultaneous equations in two

space dimensions and then we neglect the signal "A"

og og ., .98

=3 -3 2 (G-
a am TG v(G-g)
a—h—i-v 8_h+V @:V(H-h)
ot ox 7 oy

If G=G",H=H", we can get the BGK model reduced fuctions

M _ L _l 2 2
-—H(#T)GXP{ T,KVX u) +(vy-uy) ]y

HY =Ly
2

If G=G®,H=H?®, we can get the Shakov model reduced fuctions
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(2.30a)

(2.30b)

(2.31a)

(2.31b)



G* =M1+ (1-Pne g, 5 -4y pm

HS =HM[1+(I-Pr)ciqi(%-z)«%pn]

(2.32a)

(2.32b)

Without causing any confusion we shall drop the hat in the equations in the following.

The macroscopic moments are found as follows:

n=|| gdv, dv,

§ =38
8 —8

nuX:TT v, gdv dv,,
r1uy=]2]9 v,gdv, dv,,

%nT = I}I}h dv, dv, + _zz[(vx ~u )+ (Vg ) Tgdv, dv,
p=nT

qy = TTVX [h+(v: +V§)g] dv, dv, -2u0] TTVi gdv, dv,

-2u, IIVXVY gdv, dv, +nu, (u; +u§)—%nTuX

q, = TTVY [h+(v: +V§)g] dv, dv, -2u, T TVXVY gdv, dv,

-2u, ‘Hvi gdv, dv, +nuy(ui +u§)—§nTuX

Txx = J. J‘VXVyg de dVy —nuxuy _%p’

-00-00

00 00
ty =I[vv,gdv, dv, -nuu,

00-00

00 00 1
T, =_j_jvxvyg dv, dv, -nu; "5P

(2.332)

(2.33b)

(2.33¢)

(2.33d)

(2.33¢)

(2.33f)

(2.33g)

(2.33h)

(2.33i)

(2.33)

It is noted that the set of partial differential equations (2.30) can be cast into the
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strong conservation law from with stiff source terms as follows:

x y
QO F g (2.34)
ot ox oy
Where
X, y,t,V .V v M
Q= BTN o (Vi) oy [VE) g [VG-8) 2.39)
h(x,y,t,v,.v,) v.h v, h v(H"Y -h)

To treat general geometry we consider the conservation equation of the

two-dimensional rarefied gasdynamics in general coordinates (&,7)

é n
QK g (2.36)
ot o8& ony
Where
1,8 . Ug Ve

=J'C), F*=J" , Fr =74 2.37
Q (h) (Uh) (Vh) (2.37)
With U=¢&v, -& vy, V=nv =n v,

The metric Jacobian and the metric terms are given by

Jzéxny _éynx
S=ly,.n.=-Jy; (2.38)
Sgy =-Ix,.n,=Jx,

The Jacobian coefficient matrices A° :GF%Q and B” :8F%Q of the transformed
equations have real eigenvalues

A=4=U, U=1=V. (2.39)
It is noted that both A and B” are diagonal matrices

A® = A =diag{A’}, B" = A" =diag{1"} (2.40)

Each of the reduced distribution functions is still a function of five independent
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variables (for two-dimensional case). To remove the functional dependency on the
velocity space of the equations, the discrete ordinate method [10] is applied. This
method, which consists of replacing the integration over velocity space of the
distribution function by an appropriate quadrature, requires the values of the
distribution function only at certain discrete velocities. The choice of the discrete
values of velocity point is dictated by the consideration that our final interest is not in
the distribution functions themselves but in the moments. Hence, the macroscopic
moments given by integrals over molecular velocity space can be evaluated by the

same quadrature. The discrete ordinate method is then applied the set of Eq. (2.36) for

the (v,,v,) velocity space. =That is the  value of g(&,7,t,v,,v,) become

g,s(&n =g, n,t,v,,v,)and Eq.(2.36) n phase space is reduced to a set of

hyperbolic partial differential equations with source terms in the physical space

Q,, O, OFl
ot o on

=S, (2.41)

where
Q _l ga,&(é:’n’t) F§ _l UU,&QO‘,&
i J hcr,5 (é:’ n’t) , i ‘J Uo‘,é'ha,é'
Y v(G!, -
F;_]’g _ l( o,0 go‘,5 J’ So_’é, _ ( 0';5 go‘,ﬁ) (242)
‘] Vo‘,6h0',5 U(Ha,é' - go‘,é')

Here, g,;,h,;,G,sandH, ; represent values of g, h, G, and H evaluated at the
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discrete velocity point (v_,vs) respectively, where o =-N,...,-1,1, ..., N, ,and
0=-N,,...,-1,1,,N, . Also to apply the discrete ordinate method, the integrals
appeared in Eq. (2.33) are expressed as finite sums according to the quadrature define

as
Texp(—ﬂvz)f (v)dv = iwﬁ f(v,) (2.43)

Where v_(o =1,...,N)are the positive roots of Hermite polynomial of degree N and

W_s are the corresponding weights of the Gauss-Hermite quadrature. Both full-range

and half-range Gauss-Hermite quadrature are needed. It can be shown that above

quadrature formula is equivalent to japproximate the Maxwellian distribution by the

discrete distribution

2 N —
e =YW, 5u-u) (2.44)
o=l

Where & is the Dirac delta function. This can be considered as the optimum discrete

approximation in the sense that the first 2N moments of the Maxwellian can be

exactly duplicated

o o

jo eu'du = jo YW Su-u)u'dy, 1=0,1,2,..,2N~1. (2.45)
i=1

Performing the integrations gives

v wy = Lt
D Wy, _Zr( : ) (2.46)

i=l

Where I' represents the usual Gamma function. The discrete velocity points and the

corresponding weights can be obtained using the algorithms described by Huang &
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Giddens (1968) and by Shizgal (1981).

Once the discrete distribution functions g, ; and h_ ; are solved, one can obtain

all the moment integrals as

Nl 2

n= Jj[g(vx,vy,x, y,t)evieV§ ]e'Vie'Vi dv,dv, = Z ZW W (g, se" e') (2.472)

o=-N, 6=-N,

1 N N,

- Z Zwawé‘(vaga,§eV§evg)

N ;N s=N,

:—Z S W, W, (v, et e)

o=-N, 6=-N,

%nT Z ZWW[h05+(V +V2)ggsle’ "' -n(v: +v7)
o=-N, 6=-N,

p=nT

0= SWWlh,, +02+)e e 20 3 YW W(e, e e)

o=No=N, o=N =N,
N, N,
“2u, D Y W W(vag, et e%)+nu (V +v )-—nTu
alea N,
N; N 1
T, = z ZWW(VUgMe e“) nul -—p
o=-N; 6=-N, 2
Nl 2
Ty = z ZW W, (V, V8, 5€" 0" - nu.u,
o=-N; 6=-N,

N
Tw= 2, > TW, W, (vie, e e)md - Lp

=N, 6=N, 2

(2.47b)

(2.47¢)

(2.47d)

(2.47¢)

(2.47f)

(2.47¢)

(2.47h)

(2.471)

inviscid Euler equations. In this work, we not only need to solve the discrete

distribution functions (not in equilibrium) but also to use them to evaluate the
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macroscopic moment by numerical quadratures. The selection of the discrete velocity

point and the range of velocity space in the Newton-Cotes formulas are somewhat

2.5 Numerical Algorithm in solving the MBE

In this section we describe the numerical algorithm for solving the set of Eq.
(2.41). Both the time-accurate explicit method using operator splitting for unsteady
flow problems and implicit method using lower-upper (LU) factorization for
steady-state calculations are considered. We follow and extend our previous high
resolution non-oscillatory scheme for hyperbolic system of conservation laws to

include a source term. Some general remarks can be given here. When explicit
methods are used to integrate the equations for ‘g, ; and h_ ;, one can decouple the
equations and solve them separately. When implicit methods are employed, the
equations in general are coupled through-thejacobian of the source terms since the
source terms are functionals of g iiandh_ ;. In the following we still keep the
equations in vector-matrix form and with the understanding that they can be coupled
into scalar form and solved in scalar manner.

Define a uniform computational mesh system (&;,7,) with mesh sizes

Aé,An=1land let Qj,,; denote the value of Q at time level n At, position

(g A&,k An) and discrete velocity point (v_,vs). Define the difference of the

characteristic variables in the local &-direction and n-direction respectively as

a.é 1 = (Qj+1,k,a,§ - Qj,k,a,,s) I (2.48a)
J+E,k,0',5 _|+E,k

a® | =(Ques - Quos) (2.48b)
J,k+5,0~5 J,k+5
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where J " =+ 750072

Jz,

Explicit Method

To integrate the set of Eq. (2.41), we use time splitting as follow:

0 aF s
Qs =0 (2.49a)
ot ag

0 aF T
Qs =0 (2.49b)
ot 877

Q.
at_jé =S, , (2.49¢)

The time-splitting method described above closely patterns the procedure first
proposed by Bird and used in particles:s¢hemes, in which free molecular motion and
the intermolecular collisions are two independent stages of the algorithm that update
the particle position and velocity.

In terms of operator form we have the time integration schemes as
Q,s(t+2A0) =L (AYL, (At)L, (AYL, (AL (AL (ADQ,, 5(V) (2.50)

Where the time step At is chosen to be less than the local mean collision time, .
The time integration of the governing equations is carried out on each pair of discrete
velocity point(v,,v,) with finite difference approximations. Without causing any
ambiguity, we omit the subscripts (o,0) in the time integration operators

L,,L.,andL, described below.

The integration of the source term is done using a multistage Runge-Kutta
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method

Q;, =Ls(ADQ7, =Qi, +AtS], (2.51a)
n+ 1 n .

QJ'J<1 =Qjx +5At(LSQj,k +LQ;, ) (2.51b)

The one-dimensional space operator is defined by

Q}y' =L, (ADQ}, =Qf, -At(F™, -FY ) (2.52)
J+E,k _]-E,k
with
1
FY . :E[Fj,k +F +@, k/JA I k] (2.53)
J+E; J+E, _|+5,

. .1
Where all the metric terms such as (§,) , (§,) , and J+§,k are evaluated
=k =k
2 2

using simple averages. The component§-of ‘®";  are given by
Tk
2

1 al 1 1 ~ 1l 1 1
¢, =0l , )(ej’k +ej+ljk)+a)0'(/1_ : )(djjk +dj+1’k)
J+E’k J*;k J+E7k

sy, + B, +of | Ya (2.54)
J+5,k J+E,k _]+5,k j+=.k

D:

1 1 1 1
e, =ml[a —Sm(A_aA L LA ),
j+=k j+=k k

a', +9mA ', Ad' )] (2.55)
—k - _]—E,k _]—E,k
m(A a', A ), ifla, |<la',
i 2 p R I B
d;, = (2.56)
mA @' | ,Aa' ), ifld, [>|a,
-y ok =k

oA, e, -e' Va', , ifa', %0
e S T ok (2.57)
, otherwise

! ik (2.58)

~, Al 1 1 1 : 1
~ ol | )(dj+l,k _dj,k)/a. s ifa #£0
'31 — _]+E,k jH=k
ko, ,  otherwise

1
] 2
where
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o(z)= %[l//(z) - Atz?] (2.59)

L - 3ade + A2, it o', |<la!
- 6 ok ok
5= : : (2.60)
3 .
g(At2|Z| -|Z), if a;_;k >0{j'+;,k
(2)= Z, if|z|25 5 61
VOZ 2 1 eyne, ifld<s (260

Here & is a small value and is taken to be 0.01 in all the calculations reported

later. The mand m functions are given by

_|smin(y}, |z)), if sgny=sgnz=s
RN D2 if v}
m(y,Z) - {Z’ lf |y| > |Z| (2.63)

Similar expressions for the ‘L, (At)" operator.can be defined.

The class of schemes covered by Eq. (2.54) includes the total variation
diminishing (TVD) and essentially nonoscillatory (ENO) scheme. For =0 and
3 =0 one has a second-order TVD scheme and is denoted as TVD2; for « =0 and
l9=%, one has a second-order ENO scheme, denoted as ENO2; for w=1 and
3=0, one has a third-order ENO scheme, denoted as ENO3. a first-order upwind

scheme, denoted as UW1, can be deduced from Eq. (2.54) by setting all the elements

e;k and dlk equal to zero. The accuracy and Fourier stability of schemes defined by

Eq. (2.54) can be analyzed by looking at different possible combinations of the
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arguments in the m and m limiter functions.

Implicit Method

Using the Euler implicit time-differencing formula, Eq. (2.41) can be written as
[I+ At(é‘gA‘f +0,A" +C) ]AQ}‘;1 =RHS;, (2.64)
where

4 n
RHS?, =- AL+ T
b o0& 0

S)i (2.65)

Equation () can be approximately factored in several different ways. Here we adopt

the lower-upper method and Eq. () become

[1+At(L+U+C)]AQ} =RHS?, (2.66a)
where

L=8)A" +80A" ,U=6IA" +55A"

RHS], =-At[(F", -F\ k)+(Fij 1 _Fij_l)]JrAt St (2.66b)
’ T2

J+E,k j B s +5
In Eq. (2.66) denote the backward and forward difference operators, respectively.

The split jacobian matrices are A*=diag{l"}, where A" =(1 i‘ﬂl‘)& . The

numerical fluxes F}le and FNk . are defined analogously by Eq. (2.53). for
J+E’ Js 15

steady-state calculation, the use of Eq. (2.58) and (2.59) can lead to the undesirable

results that the steady state depends on the time step At and causes slow

convergence. We use the following approximation which still maintains the spatial

accuracy:

()= v@)
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|Z|/3, if o', |<la',
- .k j+—k
o(z)= : (2.67)
-|Z|/6, if ', [>la',
j—k j+—k
2 2
An approximate L factorization for Eq. (2.66) can be given as
[D + AtL]D"'[D + AtUJAQ}}' =RHS], (2.68a)
D=I1+AtC (2.68b)
and it is implemented in the sequence:
[D+AtL]AQ;, =RHS}, (2.692)
[D+AtUJAQ}Y =DAQ;, (2.69b)
Q' =Qfy +4Qj, (2.69¢)
The approximation factorization error of Eq: (2:68) is
E,, =At’LD'UAQ"™" (2.70)

which can be show to produce the least amount of error among several possible
factorizations, particularly when the norms of the source terms are large. The collision

source term, S, of the model equation in general is a functional of the reduced

distribution functions g_ s and h_ ;. The excat evaluation of the jacobian matrix of

the source term, C, is difficult. In this work, we approximate the jacobian of the

source term by

‘10
Cav| | |=A (2.71)

With this simplified approximation the equations become diagonal and
completely decoupled and the solution procedure becomes rather simple and can be
solved scalarly. The numerical experience indicates that such an approximation works

well.
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Boundary Conditions
To specify the interaction of the molecules with the solid surface, it is assumed

that molecules which strike the surface are subsequently emitted with a Maxwellian

velocity distribution characterized by the surface temperature T, and zero net
tanfential velocity. The two-stream concept is also applied here by defining the

half-range distribution functions

g (& mv,,v,)=0, forv, <0

g (& mv,,v,)=0, forv, >0

where v, =v-n, and n is the outward unit normal to the solid surface. On the solid

wall, the wall distribution function isgiven by

+

g. = D exp[—TL(V—uW)z], if v.n>0,

xT, w
ht :%ng;. 2.72)

The density of the molecules diffusing from the surface, n_, is not known a

w 2

priori and may be found by applying the condition of zero mass flux normal to the

surface at the wall. One has

n, :-2(Tl)%'[:f0v;g'(x, Y>t,v,,v,)dv dv, (2.73)

where v, =(v -|v, )2

The farfield boundary condition at the freestream is given by the Maxwellian

distribution
g, == exp - [(v, - U,cosa)® +(v, -U,sina)’]} 2.74)
7l T,

where U_ is the freestream velocity and « is the angle of attack.

The inflow and outflow boundary conditions are treated using characteristics-
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based boundary conditions which are in accord with the upwind nature of the interior
point scheme. For problems with symmetry, only half plane is computed and the

symmetry condition is assigned to the distribution function for

g&,-ntv,v)=¢g&,ntv,,-v,) (2.75)
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Chapter 3. Preliminary Results and Discussion
3.1 Comparison of MBE Results with DSMC Numerical Method

The computed results using MBE are found to compare well with those using the
DSMC(direct simulation Monte Carlo) in the Near-continuum regime flows .

We using DSMC to simulated for M=2, and Kn=0.0033. In Fig. 3.114, we show
the simulated results include, number density, temperature, Mach number, u-velocity,
v-velocity, and velocity streamlines.

To compare with MBE simulated results. In Fig. 3.114 (a), an ultra high-density
region appears at the very right-hand upper corner due to the moving plate at the top
of the cavity, but smaller than-MBE simulated results. In Fig. 3.114 (b), there is a
temperature increased region in the"cavity, the- right-hand upper corner which
temperature increased obvious as a result of density increased, but smaller than MBE
simulated results. In Fig. 3.114 (c), (d), (e), and (f), The MBE simulated results about
u-direction and v-direction negative speed also are all bigger slightly than the DSMC
simulated results. Therefore, we may discover that smaller secondary eddies have
been created at the two bottom corners and the center of the top vortex is moved

slightly to right-side and toward the moving plane.
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3.2 Driven Cavity Flows

3.2.1 Problem Description and Test Conditions

Fig. 3.1 sketch of the 2D square (L/H=1) driven cavity flow with moving top

plate. Initially, we use argon gas at rest inside the cavity and at the same uniform

temperature 300K. At time t=0 the upper plate begins moving instantaneously at

speed Ma=0.5-2 and Kn=10-0.0033 based on the mean free path of wall temperature

and size of the cavity. Table I-II shows the all cases which we simulates with

different parameters .

3.2.2 Grid Convergence Tests

In order to must test the'different grid to the result influence. We have used

four kind of different grids (Fig. 3.2-5 to show) in the case (M=0.9, Kn=0.01). In

Fig. 3.6, we found that the convergence is better while grid size becomes smaller

towards the diffuse wall. However, when grid size nearby the diffuse wall is the

same, the large number of mesh doesn't result in better convergence. In Fig. 3.7,

we compare BGK and the Shakov these two kind of different models. Although in

each kind of parameter result comparison all almost, but the Shakov MODEL

convergence speed is faster.
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3.2.3 Effects of Knudsen Number
In this section, we were observed effects of Mach number in different Knudsen
numbers (Kn=10-0.0033). First, we were showed general simulation results include
density, temperature, Mach number, u-direction, v-direction and streamline. Second,
we were showed property distributions across cavity geometric center for x =0.5m, y=
0 to -Im and y=-0.5m, x=0 to 1m. Third, we showed property distributions near the
solid walls. Finally, we were observed the recirculation center position in different

cascs.

3.2.3.1 General Simulation Results
3.2.3.1.1 Subsonic Moving Plate (M=0.5, 0.9)

Fig. 3.7 shows that number density contour for Ma=0.5 and Knudsen number 10,
1, 0.1, 0.01, and 0.0033 respectively. Driven plate takes particles to the right-hand
upper corner. An ultra high-density region appears at the very right-hand upper corner
due to the moving plate at the top of the cavity. Therefore the particles are larger than
initial value. In addition, there are low densities at the left-hand upper corner. In the
other series, fixed M=0.9 Fig. 3.12.

Fig. 3.8 show that temperature contour for Ma=0.5, and Knudsen number 10, 1,

0.1, 0.01, and 0.0033 respectively. We normalize temperature to divide the initial
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temperature 300K. When the Knudsen number is decrease, there are two ultra

temperatures region in the cavity. One of them is the right-hand upper corner which

temperature increased as a result of density increased; the other one is left-hand upper

corner which temperature increased due to high vertical speed. Therefore, the

temperature increase more seriously as Knudsen number decreased. In the other series,

fixed M=0.9 is showed in Fig. 3.13.

Fig. 3.9 show that Mach contour for Ma=0.5, and Knudsen number 10, 1, 0.1,

0.01, and 0.0033 respectively. In the other series, fixed M=0.9 is showed in Fig. 3.14.

Fig. 3.10 show that u-velocity‘contour for Ma=0.5, and Knudsen number 10, 1,

0.1, 0.01, and 0.0033 respectively! The maximum u-velocity values are 0.35, 0.4, 0.6,

0.9, and 0.9 with Knudsen number 10,71, 0.1, 0.01,-and 0.0033, respectively. Because

of rarefaction effect caused slip phenomenon and the slip velocity along the solid

walls increase with Knudsen number at the same Mach number. We normalize

u-velocity to divide the upper plate velocity. The velocity is more and more decrease

when Knudsen number increase. In the other series, fixed M=0.9 is showed in Fig.

3.15.

Fig. 3.11 show that v-velocity contour for Ma=0.5, and Knudsen number 10, 1,

0.1, 0.01, and 0.0033 respectively. We normalize v-velocity to divide the upper plate

velocity. An ultra high-speed region appears at the left-hand and right-hand upper
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region. The velocity of right-hand upper region is increase when Knudsen number
decrease. In the other series, fixed M=0.9 is showed in Fig. 3.16.
As mentioned above, we can be briefly summarized as follows:
1. The slip velocity 1s more and more decrease when Knudsen number increase.
2. An ultra high-density region appears at the very right-hand upper corner due to the
moving plate at the upper of the cavity
3. There are two ultra temperatures region in the right and left upper corner in

cavity.

3.2.3.1.2 Supersaonic Moving Plate-(M=1.1, 2)

Fig. 3.17 shows that number density contout for Ma=1.1 and Knudsen number
10, 1, 0.1, 0.01, and 0.0033 respectively. Driven plate takes particles to the right-hand
upper corner. An ultra high-density region appears at the very right-hand upper corner
due to the high-speed moving plate at the top of the cavity. Therefore the particles are
larger than initial value. In addition, there are low densities at the left-hand upper
corner. In the other series, fixed M=2 Fig. 3.22.

Fig. 3.18 show that temperature contour for Ma=1.1, and Knudsen number 10, 1,
0.1, 0.01, and 0.0033 respectively. We normalize temperature to divide the initial

temperature 300K. When the Knudsen number is decrease, there are two ultra
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temperatures region in the cavity. One of them is the right-hand upper corner which

temperature increased as a result of density increased; the other one is left-hand upper

corner which temperature increased due to high vertical speed. Therefore, the

temperature increase more seriously as Knudsen number decreased. In the other series,

fixed M=2 is showed in Fig. 3.23.

Fig. 3.19 show that Mach contour for Ma=1.1, and Knudsen number 10, 1, 0.1,

0.01, and 0.0033 respectively. In the other series, fixed M=2 is showed in Fig. 3.24.

Fig. 3.20 show that u-velocity contour for Ma=1.1, and Knudsen number 10, 1,

0.1, 0.01, and 0.0033 respectively. . The maximum. u-velocity values are 0.35, 0.4, 0.6,

0.9, and 0.9 with Knudsen numbet 10, 1, 0.1;°0.01, and 0.0033, respectively. Because

of rarefaction effect caused slip-phenomenon and- the slip velocity along the solid

walls increase with Knudsen number at the same Mach number. We normalize

u-velocity to divide the upper plate velocity. The velocity is more and more decrease

when Knudsen number increase. In the other series, fixed M=2 is showed in Fig. 3.25.

Fig. 3.21 show that v-velocity contour for Ma=1.1, and Knudsen number 10, 1,

0.1, 0.01, and 0.0033 respectively. We normalize v-velocity to divide the upper plate

velocity. An ultra high-speed region appears at the left-hand and right-hand upper

region. The velocity of right-hand upper region is increase when Knudsen number

decrease. In the other series, fixed M=2 is showed in Fig. 3.26.
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As mentioned above, we can be briefly summarized as follows:

1. The slip velocity 1s more and more decrease when Knudsen number increase.

2. An ultra high-density region appears at the very right-hand upper corner due to the

high-speed moving plate at the upper of the cavity

3. There are two ultra temperatures region in the right and left upper corner in

cavity.

3.2.3.2 Property Distributions Across Cavity Centroid

Fig. 3.27 present the profiles.of the number. density along vertical line through

geometry center(x/L=0.5) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and

0.0033 respectively. In the other series, the mumber density have replaced by

temperature, u-velocity and velocity is showed in Fig. 3.28-30.

Fig. 3.31 present the profiles of the number density along vertical line through

geometry center(y/L=-0.5) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and

0.0033 respectively. In the other series, the number density have replaced by

temperature, u-velocity and velocity is showed in Fig. 3.32-34.

3.2.3.3 Property Distributions Near Solid Walls

Fig. 3.35 present the profiles of the number density along vertical line through
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geometry center(x/L=0) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and

0.0033 respectively. In the other series, the number density have replaced by

temperature, u-velocity and velocity is showed in Fig. 3.36-38.

Fig. 3.39 present the profiles of the number density along vertical line through

geometry center(x/L=1) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and

0.0033 respectively. In the other series, the number density have replaced by

temperature, u-velocity and velocity is showed in Fig. 3.40-43.

Fig. 3.44 present the profiles of the number density along vertical line through

geometry center(y/L=-1) for Ma=0:5-2, and Knudsen number 10, 1, 0.1, 0.01, and

0.0033 respectively. In the other series, the number density have replaced by

temperature, u-velocity and velocity 1s'showed in Fig. 3.45-Fig. 3.47.

Fig. 3.48 present the profiles of the number density along vertical line through

geometry center(y/L=-0) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and

0.0033, respectively. In the other series, the number density have replaced by

temperature, u-velocity and velocity is showed in Fig. 3.49-Fig. 3.51.

3.2.3.4 Recirculation Center Position

Fig. 3. 51-54 show plots of the velocity streamlines for M=0.5, 0.9, 1.1, and 2,

respectively, and in each figure results are provided for various values of Knudsen
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number. The corresponding velocity streamlines for M=0.5, 0.9, and 1.1, are given in

Fig. 3.51-53. It is seen that while for Kn=10, 1, and 0.1 there is only one vortex, for

Kn=0.01, and 0.0033, under the main vortex secondary eddies have been created at

the two bottom corners. In Fig. 3.54 , it is seen that while for Kn=1, and 0.1 there is

only one vortex, for Kn=10 one additional vortex, for Kn=0.01, and 0.0033 two

additional vortices, under the first one, have been developed. As the Knudsen number

is increased further, these secondary eddies grow under the first one.

In Fig. 3.55, we show the relative vertical distance (x/L) of the center of the top

vortex of the cavity in term of M=0:9; 1.1, and 2rof Kn=10, 1, 0.1, and 0.01. It is seen

that in these cases, as Kn is decreased, the center of-the top vortex is moved slightly

toward the right wall, when Kn=0.0033"1s opposite.-However, M=0.5 of Kn=10, 1, 0.1,

0.01, and 0.0033. It is seen that in these cases, as Kn is decreased, the center of the top

vortex is moved slightly toward the right wall.

In Fig. 3.56, we show the relative vertical distance (y/L) of the center of the top

vortex of the cavity in term of M=0.5, 0.9, and 1.1 of Kn=10, 1, 0.1, and 0.01. It is

seen that in these cases, as Kn is increased, the center of the top vortex is moved

slightly reversely the moving wall, when Kn=0.0033 is opposite. However, M=2 of

Kn=10, 1, 0.1, 0.01, and 0.0033. It is seen that in these cases, as Kn is increased, the

center of the top vortex is moved slightly toward the moving wall.
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3.2.4 Effect of Mach Number of the Driven Plate

In this section, we were observed effects of Knudsen number in different Mach

numbers (Ma=0.5-2). First, we were showed general simulation results include density,

temperature, Mach number, u-direction, v-direction and streamline. Second, we were

showed property distributions across cavity geometric center for x =0.5m, y=0 to -1m

and y=-0.5m, x=0 to 1m. Third, we showed property distributions near the solid walls.

Finally, we were observed the recirculation center position in different cases.

3.2.4.1 General Simulation Results

3.2.4.1.1 Free-Molecular Regime (Kn=10)

Fig. 3.57 shows that numbér density contour for Kn=10 and Mach number 0.5,

0.9, 1.1, and 2, respectively. Driven plate takes particles to the right-hand upper

corner. An ultra high-density region appears at the very right-hand upper corner due

to the moving plate at the top of the cavity. Therefore the particles are larger than

initial value. In addition, there are low densities at the left-hand upper corner.

Fig. 3.58 show that temperature contour for Kn=10 and Mach number 0.5, 0.9,

1.1, and 2, respectively. We normalize temperature to divide the initial temperature

300K. When the Mach number is increase, there is a ultra temperatures region in the

cavity. It is the upper moving plane which temperature increased due to high speed.
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Therefore, the temperature increase as Mach number is increased.

Fig. 3.59 show that Mach contour for Kn=10 and Mach number 0.5, 0.9, 1.1, and
2, respectively.

Fig. 3.60 show that u-velocity contour for Kn=10 and Mach number 0.5, 0.9, 1.1,
and 2, respectively. The maximum u-velocity values are all equal 0.35 with various
values Mach number. When Kn=10, the various values Mach number about the slip
phenomenon without influence.

Fig. 3.61 show that v-velocity contour for Kn=10 and Mach number 0.5, 0.9, 1.1,
and 2, respectively. We normalize yv=velocity to divide the upper plate velocity. When
Kn=10, the various values Mach number about the v-velocity with slightly effect.

As mentioned above, we can be brietly summarized as follows:

1.  The slip phenomenon without influence when Mach number increase.
2. An ultra high-density region appears at the very right-hand upper corner due to the
moving plate at the upper of the cavity

3. There is high temperatures region in the upper moving plane in cavity.

3.2.4.1.2 Transitional Regime (Kn=1, 0.1, 0.01)
Fig. 3.62 shows that number density contour for Kn=1 and Mach number 0.5, 0.9,

1.1, and 2, respectively. Driven plate takes particles to the right-hand upper corner.
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An ultra high-density region appears at the very right-hand upper corner due to the

moving plate at the top of the cavity. Therefore the particles are larger than initial

value. In addition, there are low densities at the left-hand upper corner. In the other

series, fixed Kn=0.1, and 0.01 are showed in Fig. 3.67 and Fig. 3.72.

Fig. 3.63 show that temperature contour for Kn=1 and Mach number 0.5, 0.9, 1.1,

and 2, respectively. We normalize temperature to divide the initial temperature 300K.

When the Mach number is increase, there are two ultra temperatures region in the

cavity. One of them is the right-hand upper corner which temperature increased as a

result of density increased; the othet one is left=hand upper corner which temperature

increased due to high vertical speed. Thetefore, the temperature increase more

seriously as Mach number decreased. In the other series, fixed Kn=0.1, and 0.01 are

showed in Fig. 3.68 and Fig. 3.73.

Fig. 3.64 show that Mach contour for Kn=1 and Mach number 0.5, 0.9, 1.1, and

2, respectively. In the other series, fixed Kn=0.1, and 0.01 are showed in Fig. 3.69 and

Fig. 3.74.

Fig. 3.65 show that u-velocity contour for Kn=1 and Mach number 0.5, 0.9, 1.1,

and 2, respectively. The maximum u-velocity values are all equal 0.4 with various

values Mach number. When Kn=1, the various values Mach number about the slip

phenomenon without influence. In the other series, fixed Kn=0.1, and 0.01 are
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showed in Fig. 3.70 and Fig. 3.75.

Fig. 3.66 show that v-velocity contour for Kn=1 and Mach number 0.5, 0.9, 1.1,

and 2, respectively. We normalize v-velocity to divide the upper plate velocity. When

Kn=1, the various values Mach number about the v-velocity with slightly effect. In

the other series, fixed Kn=0.1, and 0.01 are showed in Fig. 3.71 and Fig. 3.76.

1.  The slip phenomenon without influence when Mach number increase.

2. An ultra high-density region appears at the very right-hand upper corner due to the

moving plate at the upper of the cavity

3.  There are two ultra temperatures region in, the right and left upper corner in

cavity.

3.2.4.1.3 Near-continuum Regime (Kn=0.0033)

Fig. 3.77 shows that number density contour for Kn=0.0033 and Mach number

0.5, 0.9, 1.1, and 2, respectively. Driven plate takes particles to the right-hand upper

corner. An ultra high-density region appears at the very right-hand upper corner due

to the moving plate at the top of the cavity. Therefore the particles are larger than

initial value. In addition, there are low densities at the left-hand upper corner.

Fig. 3.78 show that temperature contour for Kn=0.0033 and Mach number 0.5,

0.9, 1.1, and 2, respectively. We normalize temperature to divide the initial

44



temperature 300K. When the Mach number is increase, there are two ultra

temperatures region in the cavity. One of them is the right-hand upper corner which

temperature increased as a result of density increased; the other one is left-hand upper

corner which temperature increased due to high vertical speed. Therefore, the

temperature increase more seriously as Mach number decreased.

Fig. 3.79 show that Mach contour for Kn=0.0033 and Mach number 0.5, 0.9, 1.1,

and 2, respectively.

Fig. 3.80 show that u-velocity contour for Kn=1 and Mach number 0.5, 0.9, 1.1,

and 2, respectively. The maximumiu-velocity values are all equal 0.4 with various

values Mach number. When Kn=1, the various values Mach number about the slip

phenomenon without influence.

Fig. 3.81 show that v-velocity contour for Kn=0.0033 and Mach number 0.5, 0.9,

1.1, and 2, respectively. We normalize v-velocity to divide the upper plate velocity.

An ultra high-speed region appears at the left-hand and right-hand upper region. The

velocity of right-hand upper region is increase when Mach number increased.

1.  The slip phenomenon without influence when Mach number increase.

2. An ultra high-density region appears at the very right-hand upper corner due to the

moving plate at the upper of the cavity

3. There are two ultra temperatures region in the right and left upper corner in
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cavity.

3.2.4.2 Property Distributions Across Cavity Centroid

Fig. 3.82 present the profiles of the number density along vertical line through

geometry center(x/L=0.5) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,

respectively. In the other series, the number density have replaced by temperature,

u-velocity and velocity is showed in Fig. 3.83-85.

Fig. 3.86 present the profiles of the number density along vertical line through

geometry center(y/L=-0.5) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,

respectively. In the other series, the number density have replaced by temperature,

u-velocity and velocity is showed:in Fig. 3.87-89.

3.2.4.3 Property Distributions Near Solid Walls

Fig. 3.90 present the profiles of the number density along vertical line through

geometry center(x/L=0) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,

respectively. In the other series, the number density have replaced by temperature,

u-velocity and velocity is showed in Fig. 3.91-93.

Fig. 3.94 present the profiles of the number density along vertical line through

geometry center(x/L=1) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,
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respectively. In the other series, the number density have replaced by temperature,
u-velocity and velocity is showed in Fig. 3.95-97.

Fig. 3.98 present the profiles of the number density along vertical line through
geometry center(y/L=-1) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,
respectively. In the other series, the number density have replaced by temperature,
u-velocity and velocity is showed in Fig. 3.99-Fig. 3.101.

Fig. 3.102 present the profiles of the number density along vertical line through
geometry center(y/L=-0) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,
respectively. In the other series, the number density have replaced by temperature,

u-velocity and velocity is showed in Fig. 3.103-Fig. 3:105.

3.2.4.4 Recirculation Center Position
Fig. 3. 106-110 show plots of the velocity streamlines for Kn=10, 1, 0.1, 0.01,
and 0.0033, respectively, and in each figure results are provided for various values of
Mach number number. The corresponding velocity streamlines for Kn=0.01, and
0.0033, are given in Fig. 3.108-110. It is seen that under the main vortex secondary
eddies have been created at the two bottom corners. In Fig. 3.107, it is seen that while
for Kn=1, there is only one vortex, for M=2 one additional vortex, under the first one,

have been developed. As the Mach number is increased further, these secondary
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eddies grow under the first one.

In Fig. 3.111, we show the relative vertical distance (x/L) of the center of the top

vortex of the cavity in term of Kn=10, 1, and 0.1 of M=0.5, 0.9, 1.1, and 2. It is seen

that in these cases, as M is increased, the center of the top vortex is moved slightly

toward the right wall, when Kn=0.0033 is opposite. However, Kn=0.01 of M=0.5, 0.9,

and 1.1. It is seen that in these cases, as M is increased, the center of the top vortex is

moved slightly toward the right wall, when M=2 is opposite

In Fig. 3.112, we show the relative vertical distance (y/L) of the center of the top

vortex of the cavity in term of Kn=10, 1, and 0.1.of M=0.5, 0.9, 1.1, and 2. It is seen

that in these cases, as M is incteased, the center of the top vortex is moved slightly

toward the moving wall. However, Kn=0.01, and 0.0033 of M=0.5, 0.9, 1.1, and 2. It

is seen that in these cases, as M is increased, the center of the top vortex is moved

slightly reversely the moving wall.
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Chapter 4. Conclusions and Recommendation of Future

Work

4.1 Conclusion

Work progress in this period can be briefly summarized as follows:

l.

In the work, accurate numerical methods, which combine features of the modern
high resolution upwind method in computational fluid dynamics and the discrete
ordinate method in kinetic theory, have been proposed for the computations of
rarefied gas flows using the nonlinear model Boltzmann equations. Two kinetic

model are employed. One is the BGK'model-and the other is the Shakov model.

We found that the convergence is better while grid size becomes smaller towards

the diffuse wall. However, when grid size neatby the diffuse wall is the same, the

large number of mesh doesn't result in better convergence.

Velocity slips and temperature jumps increase at the solid walls with increasing

rarefaction at the same Mach number.

Results show that vortex center move toward left and down as Knudsen number

(Kn=10, 1, 0.1, 0.01) decreasing for M=0.5, 0.9, 1.1, and 2, when Kn=0.0033 is

opposite. But the vortex center move toward the opposite way for M=0.5,

Kn=0.0033 and M=2, Kn=0.0033..

For Kn=0.01, and 0.0033, under the main vortex secondary eddies have been
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created at the two bottom corners. Only in this special example for M=2, Kn=10,

unnder the main vortex secondary eddie have been created at the right bottom

corners.

6. To compare our computations with DSMC calculations and Navier-Stokes

equation calculations.

4.2 Recommendation of Future Work
Based on this study, future work is suggested as follows:

1. To simulate the flows in detail by ichanging the ratio of height to width of the

cavity;

2. To simulate the flows in detail by'changing the wall temperatures and to focus

on the discussion of heat transfer along the solid walls;

3. To simulate the driven cavity flow with oscillatory top moving plate.

4. To simulate the driven cavity flows with gas mixture and discuss the effects of

moving plate speed and oscillation to the mixing of different species within the

cavity.
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Table. |

All the Simulation cases.

M\ Kn Kn=0.0033 Kn=0.01 Kn=0.1 Kn=1 Kn=10
M=0.5 Case A Case B Case C Case D Case E
M=0.9 Case F Case G Case H Case 1 Case J
M=1.1 Case K Case L Case M Case N Case O
M=2.0 Case P Case Q Case R Case S Case T
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Table. 11

Mesh information

Knudsen Mach number Mesh Grid size of the model
number smallest cell

10 2 101 x 101 0.01 BGK / Shakov
10 1.1 101 x 101 0.01 BGK / Shakov
10 0.9 101 x 101 0.01 BGK / Shakov
10 0.5 101 x 101 0.01 BGK / Shakov

1 2 101 x 101 0.01 BGK / Shakov

1 1.1 101 x 101 0.01 BGK / Shakov

1 0.9 101 x 101 0.01 BGK / Shakov

1 0.5 101 x 101 0.01 BGK / Shakov
0.1 2 101 x 101 0.01 BGK / Shakov
0.1 1.1 101 x 101 0.01 BGK / Shakov
0.1 0.9 101 x 101 0.01 BGK / Shakov
0.1 0.5 101 x 101 0.01 BGK / Shakov
0.01 2 101x101 0.001 BGK / Shakov
0.01 1.1 101 x 101 0.001 BGK / Shakov
0.01 0.9 101 x 101 0.001 BGK / Shakov
0.01 0.5 101 x 101 0.001 BGK / Shakov
0.0033 2 101 x 101 0.001 BGK / Shakov
0.0033 1.1 101 x 101 0.001 BGK / Shakov
0.0033 0.9 101 x 101 0.001 BGK / Shakov
0.0033 0.5 101 x 101 0.001 BGK / Shakov
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Table. 111

Simulation condition

Knudsen Mach Re Driven plate | Initial wall
number number nimber velocity and gas
temperature

10 2 0.33 644 300
10 1.1 0.18 354.2 300
10 0.9 0.15 289.8 300
10 0.5 0.08 161 300

1 2 33 644 300

1 1.1 1.8 354.2 300

1 0.9 1.5 289.8 300

1 0.5 0.8 161 300
0.1 2 33 644 300
0.1 1.1 18 354.2 300
0.1 0.9 15 289.8 300
0.1 0.5 8 161 300
0.01 2 330 644 300
0.01 1.1 180 354.2 300
0.01 0.9 150 289.8 300
0.01 0.5 80 161 300
0.0033 2 999 644 300
0.0033 1.1 550 354.2 300
0.0033 0.9 450 289.8 300
0.0033 0.5 250 161 300
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Table. IV Location of the center of the top vortex for various values of Ma and Kn.

M\Kn

10

1

0.1

0.01

0.0033

0.5

(0.5267, -0.3075)

(0.5274, -0.3001)

(0.5305, -0.2691)

(0.5823, -0.2442)

(0.6323, -0.2826)

0.9

(0.5448, -0.2878)

(0.5457, -0.2840)

(0.5513, -0.2679)

(0.6156, -0.2549)

(0.6008, -0.3488)

1.1

(0.5530, -0.2752)

(0.5540, -0.2735)

(0.5602, -0.2664)

(0.6225, -0.2611)

(0.5850, -0.3697)

2

(0.5810, -0.2216)

(0.5831, -0.2247)

(0.5934, -0.2497)

(0.6213, -0.2879)

(0.5414, -0.4203)
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Fig. 3.1 The 2D square (L/H=1) driven cavity flow with moving top plate
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Fig. 3.2 Grid. 1 is grid mesh of 101 by 101 and smallest grid size is 5x107.
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Fig. 3.3 Grid. 2 is grid mesh of 101 by 101 and smallest grid size is 1x107
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Fig. 3.4 id. 3 is gri
Grid. 3 is grid mesh of 201 by 201 and smallest grid size is 5%10”
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Fig. 3.5 Grid. 4 is grid mesh of 101 by 101 and smallest grid size is 1x10°
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Fig. 3.51 Velocity streamlines for M=0.5, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1;
(d) Kn=0.01; (¢) Kn=0.0033
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Fig. 3.52 Velocity streamlines for M=0.9, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1;
(d) Kn=0.01; (¢) Kn=0.0033

109



Fig. 3.53 Velocity streamlines for M=1.1, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1;
(d) Kn=0.01; (¢) Kn=0.0033
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Fig. 3.54 Velocity streamlines for M=2, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d)
Kn=0.01; (e) Kn=0.0033
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(d) M=2.0
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Profile of the number Density on a vertical plane x=0 for (a) Kn=10; (b)
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Fig. 3.106  Velocity streamlines for Kn=10, and (a) M=0.5; (b) M=0.9; (c) M=1.1;
(d) M=2.0
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Fig. 3.107  Velocity streamlines for Kn=1, and (a) M=0.5; (b) M=0.9; (c) M=1.1; (d)
M=2.0
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Fig. 3.108  Velocity streamlines for Kn=0.1, and (a) M=0.5; (b) M=0.9; (c¢) M=1.1;
(d) M=2.0
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Fig. 3.109  Velocity streamlines for Kn=0.01, and (a) M=0.5; (b) M=0.9; (¢c) M=1.1;
(d) M=2.0
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Fig. 3.110  Velocity streamlines for Kn=0.0033, and (a) M=0.5; (b) M=0.9; (c)
M=1.1; (d) M=2.0
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