
 

國 立 交 通 大 學 

 
機械工程學系 

碩士論文 

 

 

使用波茲曼模型方程式模擬自由分子流到近連續流的正方

形空穴流場 

 

 

Simulation of Square Driven Cavity Flows from 

Free‐Molecular to Near‐Continnum Regime Using Model 

Boltzmann Equation 

 

研究生：盧勁全 

指導教授：吳宗信 博士 

中華民國九十六年七月 



 2

 

使用波茲曼模型方程式模擬自由分子流到近連續流的正方形空穴流場 

 

Simulation of Square Driven Cavity Flows from Free-Molecular to 
Near-Continnum Regime Using Model Boltzmann Equation 

研 究 生：盧勁全                          Student: Chin-Chuan Hung 

指導教授：吳宗信 博士                     Advisor: Dr. Jong-Shinn Wu 

 

國立交通大學 

機械工程學系 

碩 士 論 文 

A Thesis 

Submitted to Institute of Mechanical Engineering 

College of Engineering 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of 

Master of Science 

in 

Mechanical Engineering 

July 2007 

Hsinchu, Taiwan 

中華民國九十六年七月





致謝  

誠蒙指導教授吳宗信老師的指導與督促，使得本文得以順利完成。在研究及做學問方

面，經老師的提攜與指點，讓我能順利的踏入研究的領域並且不斷地茁壯。此外老師對於台

灣本土精神及文化上的努力更是令我印象深刻。同時也感謝口試委員黃俊誠老師、郭添全博

士、陳明志老師在口試過程中所提供的珍貴意見，使得本文得以更加完善。另外特別感謝黃

俊誠老師長期發展關於此篇論文中所用到的程式之辛勞，且不吝於付出時間與心力來教導我

於研究中所遭遇的問題，以及粲哥、凱文在研究上的啟發教導與協助，在此一併致謝。 

需要感謝的人實在太多了，邵雲龍、曾坤璋、許國賢、陳育進、梁偉豪、陳百彥等已

畢業的學長，還有 APPL實驗室的成員，李允民、周欣芸、李富利、洪捷粲、許哲維、鄭凱

文、胡孟樺、邱沅明、江明鴻學長姊們指導受益良多，洪維呈、謝昇汎、林宗漢、陳又寧、

王柏勝、林武伸、邱文山、黃昌彥同學，與你們共同努力挑燈夜戰的每一天是我日後最甘苦

與美好的回憶，正勤、士傑、志良、玟琪、丞志、政霖、育宗等學弟妹們協助，還有來自紐

西蘭的學者 Hadley M. Cave 外語能力的訓練，使我兩年中過的非常充實且溫馨。 

特別感謝爸爸、媽媽、兩位弟弟，在生活與精神上的支持，令我得以專心研究並且無

憂無慮。最後謝謝老婆思穎的關懷與體諒，給我無比的鼓勵，順利完成本文。僅將這份成果

獻給你們。歡樂的時光總是過的特別的快，又到時間講掰掰。畢業之後同學們各奔東西，盼

望大家都能闖出美好的將來。 

盧勁全 謹誌 

九六年七月于風城 



 II

使用波茲曼模型方程式模擬自由分子流到近連續流的正方

形空穴流場 

學生:盧勁全                            指導教授:吳宗信 博士 

國立交通大學機械工程學系 

 

摘 要 

 

    上板瞬間抽動的空穴流場在計算流體力學上是ㄧ個很基準的問題，因為

它具有簡單的幾何結構並且在其角落上有差異性很大的奇異點。在流場模擬

上,時常使用它來驗證不同的數值方法。然而,過去的學習都著重在連續流場

上的研究。關於稀薄流場與近連續流流場的研究則是相當的稀少。因此本文

的動機是模擬空穴流場在稀薄區域上的應用。 

    本文內容是利用建構在有限差分法(finite-difference scheme),速度空間上

應用分立座標法(discrete ordinate method)的波茲曼模型方程式(MBE)來模

擬二維的上板瞬間啟動之四方形穴流從自由分子流到近連續流的流場。本文

中使用BGK model與Shakov model兩種模型來近似碰撞積分項。為了驗證波茲

曼模型方程式(MBE)的正確性,我們比較直接蒙地卡羅模擬法(DSMC)與波茲曼

模型方程式(MBE)在模擬穴流Kn=0.0033 與 Ma=2.0的結果。本文中空穴流場

的模擬範圍包含了Kn=10~0.0033 與 Ma=0.5~2的流場。 

    在模擬的結果中顯示,相同的Mach number隨著氣體的稀薄化,速度滑動現
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象與溫度跳動現象會更加明顯。在各種的Mach number下 (M=0.5, 0.9, 1.1, 2), 

隨著Kn的變小,渦流中心會朝著右上方移動,但是當M=0.5,Kn=0.0033與

M=2,Kn=0.0033時渦流中心會改變成朝左下方移動。此外當Kn小於0.01時,在

主要渦流的兩側角落都會產生出次渦流。當Kn大於0.01時,除了M=2,Kn=10這

個情況下會在右下角落產生一個次渦流以外,其他的情況則不會產生次渦流。 
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Abstract 
   

   The driven cavity flow is one of the benchmark problems often used in 

computational fluid dynamics due to its simple geometry but highly singular points at 

the corners. It is often used to verify different numerical methods for fluid-flow 

simulation. However, past studies in this regard focused on flows in thc continuum 

regime. Very few researches have been done systematically in the rarefied or 

near-contiuum regime. Several applications require consideration of rarefaction, 

which motivates the present thesis to focus on simulation of driven cavity flows in 

this region.  

    This thesis reports the simulation of a two-dimensional top driven square cavity 

flows from free-molecular to near-continuum regime using a model Boltzmann 

equation (MBE) solver. The MBE was discretized using finite-difference scheme and 

discrete ordinate method for the configuration and velocity space, respectively. The 

collision integral was approximated by either the BGK or Shakov model. The MBE 

solver was first verified by comparing the results to those obtained using direct 
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simulation Monte Carlo method for a driven cavity flow at Kn=0.0033 and Ma=2.0. 

Simulation conditions include Knudsen number and speed of the top driven plate in 

the range of Kn=10-0.0033 and Ma=0.5-2, respectively.  

    Results show that the velocity slips and temperature jumps increase at the solid 

walls with increasing rarefaction at the same Mach number. The vortex center move 

toward left and down as Knudsen number (Kn=10, 1, 0.1, 0.01) decreasing for M=0.5, 

0.9, 1.1, and 2, when Kn=0.0033 is opposite. But the vortex center move toward the 

opposite way for M=0.5, Kn=0.0033 and M=2, Kn=0.0033. For Kn=0.01, and 0.0033, 

under the main vortex secondary eddies have been created at the two bottom corners. 

Only in this special example for M=2, Kn=10, unnder the main vortex secondary 

eddie have been created at the right bottom corners. 
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Chapter 1. Introduction 

1.1 Motivation and Background 

   The driven cavity flow is one of the benchmark problems often used in 

computational fluid dynamics due to its simple geometry but highly singular points at 

the corners.  It is often used to verify different numerical methods for fluid-flow 

simulation.  However, past studies in this regard focused on flows in thc continuum 

regime.  Very few researches have been done systematically in the rarefied or 

near-contiuum regime.  Several applications require consideration of rarefaction on 

the flow fields, which motivates the present thesis to focus on the simulations of 

driven cavity flows in this region.  

    It is well known that continuum Navier-Stokes equations fails in treating these 

non-equilibrium effects in the transitional regime and beyond, as shown in Fig. 1.1. 

Even Navier-Stokes equation was often used with slip boundary conditions at walls 

for slightly rarefied flows, it is still uncertain how accurate they are and how far into 

the rarfied regime they can be applied.  Thus, the Boltzmann equation based on the 

kinetic theory of gases needs to be used in these regimes.  Due to the complexity of 

the nonlinear integral-differential nature of the equation, analytical solutions of the 

Boltzmann equation are rarely seen, hence numerical solutions is necessary.  

    For the simulation of gas flows in rarefied or transitional regimes, there mainly 
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exist two classes of methods.  The first one is a probabilistic approach, such as the 

direct simulation Monte Carlo method (DSMC) [Bird’s book, 1994], which has been 

proved mathematically that it solves Boltzmann equation as the number simulated 

particles becomes large [Wagner, 1992; Nanbu, 1986].  It is the most commonly 

used numerical method for solving the Boltzmann equation. DSMC was found to be 

very efficient and accurate in high-speed gas flows.. However, high statistical 

uncertainties arise for low-speed gas flows, near-continuum flows, and unsteady flow, 

to name a few.  To obtain acceptable solution with low noise, tremendous computing 

power is required for the DSMC simulation, which is unpractical. The second 

approach is a deterministic approach, such as numerically solving Boltzmann equation. 

This class includes the model Boltzmann equation, which is the main theme of the 

present thesis or the direct Boltzmann equation solver, which is still in its infant stage 

and beyond the scope of the present thesis.  

The difficulties encountered in the solution of the Boltzmann equation are largely 

associated with the nonlinear integral nature of the collision term.  To circumvent 

this difficulty, statistical or relaxation models were often proposed as substitutions. 

The kinetic model equation proposed by Krook et al. (BGK) [1954] and Welander 

[1954] provides a more tractable way to solve comparatively complex rarefied gas 

problems routinely. Several model equations for the nonlinear Boltzmann equation 
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have been proposed such as the ellipsoidal model by Holway [1963], by Cercignani 

and Tironi [1967] and high order generalization of the BGK model by Shakhov 

[1968].  A hierarchy kinetic model equation similar to that of Shakhov was also 

proposed by Abe and Oguchi [1976].  Among the main features of these high order 

generalizations of BGK model are that they give the correct Prandtl number and it is 

generally believed that they should give a solution much closer to the solution with 

the Boltzmann equation than the BGK model does.  All these model equations bear a 

resemblance to the original Boltzmann equation concerning the various order of 

moments.  Thus, instead of solving the full Boltzmann equation one solves the 

kinetic model equation and hopes to produce a more economic and efficient way of 

computing rarefied gasdynamic flows. Recent numerical studies of rarefied gas flow 

problems based on the BGK type model Boltzmann equations can be found in 

Sugimoto and Sone [1992] and Prendergast and Xu [1993].  We consider an accurate 

numerical method for solving the kinetic model Boltzmann equation.  The approach 

taken here is to apply the discrete ordinate method Huang and Giddens [1967]; 

Shizgal [1981] to the distribution function to replace its continuous dependency on the 

velocity space by a set of distribution functions which are continuous function in 

physical space and time but point function in velocity space.  The resulting set of 

partial differential equations are of hyperbolic type and can be cast into hyperbolic 
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conservation laws from with nonlinear source terms.  Once this is done, modern 

upwind high resolution shock capturing methods can be applied to solve them.  Here, 

we extend our previous high-order nonoscillatory method [Yang, 1991; Yang and Hsu,  

1992] for hyperbolic conservation laws to include the nonlinear source term. [Yang 

and Huang, 1995] was to present a high resolution numerical method for the 

computation of rarefied gas flow over obstacles of arbitrary shapes covering the full 

spectrum of flow regimes using kinetic model Boltzmann equation. They method 

provided an efficient tool for accurate simulations of steady and unsteady rarefied gas 

flows covering the full spectrum of flow regimes and can contribute to the database 

by providing the results of simulations based upon the kinetic model Boltzmann 

equations. 

1.2 Literature Reviews in Driven Cavity Flows 

    Ghia [1982] used Navier-Stokes equations to simulate the driven cavity flow 

with high Reynolds number. Solutions are obtained for configurations with Reynolds 

number as high as 10000 and meshes consisting of as many as 257×257 point. 

Detailed accurate results have been presented for this problem and the results agree 

well with published fine-grid solutions but are about four times as efficient. 

Erturk et al. [2005] used Navier-Stokes equations to simulate the 2-D steady 

incompressible driven cavity flow. Solution are obtained for configurations with 
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Reynolds number ≤  21,000 and using a fine uniform grid mesh of 601×601 cells. A 

new quaternary vortex at the bottom left corner and a new tertiary vortex at the top 

corner of the cavity are observed in the flow field as the Reynolds number increases. 

    Naris and Valougeorgis [2005] used the two–dimensional linearized 

Bhatnagar-Gross-Krook (BGK) kinetic equation with Maxwell diffuse-specular 

boundary conditions to simulate the flow of a rarefied gas in a rectangular enclosure 

due to the motion of the upper wall is solved over the whole range of the Knudsen 

number. The integro-differential equations are solved numerically implementing the 

discrete velocity method. The discontinuity at the boundaries between stationary and 

moving walls is treated accordingly. A detailed investigation of the rarefaction effects 

on the flow pattern and quantities is presented over the whole range of the Knudsen 

number and various aspect (height/width) ratios. As the depth of the cavity is 

increased, these eddies grow and merge into additional vortices under the top one. As 

Knudsen number decreased, the center of the top vortex is move slightly toward the 

moving wall. 
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1.3 Specific Objectives of the Thesis 

    Based on previous reviews, the current objectives of the thesis are summarized as 
follows: 

1. To benchmark the solution obtained by the previously developed 2D MBE solver 

with that obtained by the DMSC method; 

2. To utilize the above validated 2D MBE solver to study the driven cavity flows in 

detail with Mach number and Knudsen number in the range of 0.5-2 and 

10-0.0033, respectively.  

3. To discuss the results considering the effects of rarefaction and compressibility. 

 

    The organization of the thesis would be stated as follows. First is this 

introduction, and next is the numerical method. Then simulation results of Model 

Boltzmann equation are presented. Finally, conclusion and recommendation of future 

work are presented.  
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Chapter 2. Numerical Method 

    The degree of rarefaction of a gas is generally expressed through the Knudsen 

number (Kn) which is the ratio of the mean free path λ to the characteristic dimension 

L ; i.e. 

                     ( ) L  Kn λ=                                    (2.1) 

     Traditionally, flows are divided into four regimes as follows: Kn<0.01 

(continuum), 0.01<Kn<0.1 (slip flow), 0.1<Kn<3 (transitional flow) and Kn>3 (free 

molecular flow). As the Kn increases, the rarefaction becomes important and even 

dominates the flow behavior. Hence, the traditional requirement for the Navier-Stokes 

equations to be valid is that Knudsen number should be less than 0.1. (Figure 2.1) 

  

2.1 Boltzmann equation 

The Boltzmann equation is one of the most important transport equations in 

non-equilibrium statistical mechanics, which deals with systems far from 

thermodynamics equilibrium. There are some assumptions made in the derivation of 

the Boltzmann equation which defines limits of applicability. They are summarized as 

follows: 

1. Molecular chaos is assumed which is valid when the intermolecular forces 

are short range. It allows the representation of the two particles distribution 

function as a product of the two single particle distribution functions. 
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2. Distribution functions do not change before particle collision. This implies 

that the encounter is of short time duration in comparison to the mean free 

collision time. 

3. All collisions are binary collisions. 

4. Particles are uninfluenced by intermolecular potentials external to an 

interaction. 

According to these assumptions, the Boltzmann equation is derived and shown as 

Eq. (2.1) 

  
4

2 ' '
1 1

0

( ) ( ) ( ) ( )i i c
i i i

nf nf nf fu F n f f ff g d dU
t x u x

π

σ
∞

−∞

∂ ∂ ∂ ∂
+ + = = − Ω

∂ ∂ ∂ ∂ ∫ ∫          (2.1) 

    Meaning of particle phase-space distribution function f  is the number of 

particles with center of mass located within a small volume 3d r  near the point r , and 

velocity within a range 3d u , at time t . iF is an external force per unit mass and t  

is the time and iu is the molecular velocity. σ is the differential cross section and 

dΩ  is an element of solid angle.  The prime denotes the post-collision quantities 

and the subscript 1 denotes the collision partner. Meaning of each term in Eq. (2.1) is 

described in the following; 

1. The first term on the left hand side of the equation represents the time 

variation of the distribution function of the particles (unsteady term). 

2. The second term gives the spatial variation of the distribution function (flux 
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term). 

3. The third term describes the effect of a force on the particles (force term). 

4. The term at right hand side of the equation is called the collision integral 

(collision term). It is the source of most of the difficulties in obtaining 

solutions of the Boltzmann equation. 

In general, it is very hard to solve the Boltzmann equation directly using 

numerical method because the difficulties of correctly modeling the integral collision 

term. Instead, the DSMC method was used to simulated problems involving rarefied 

gas dynamics, which is the simulation tool used in the current thesis. 

 

2.2 Model Boltzmann equation 

    Because of the complex nonlinear structure of the collision integral, the 

Boltzmann equation is very difficult to solve and to analyze, which is a nonlinear 

integral-differential equation. Since the Boltzmann equation is difficult to handle, and 

its numerical solution is time expensive, some alternative, simpler expressions have 

been proposed to replace the Boltzmann collision term. These are known as collision 

models, and any Boltzmann-like equation where the Boltzmann collision integral is 

replaced by a collision model is called a model equation or a kinetic model. 
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2.2.1 BGK model 

    The most widely known collision model is usually called the Bhatnagar, Gross 

and Krook (BGK) model. We approximate the collision term in the Boltzmann 

equation become: 

f)-(f  ]
t
f[ M

coll. ν=
∂
∂

                                                  (2.2) 

    Where Mf  is the Maxwellian distribution function, and ν  is the proportion 

coefficient of the BGK equation, which is also named as the collision frequency. The 

power law temperature dependence of the coefficient of viscosity can be obtained [,] 

from the Chapman–Enskog theory, which is appropriate for the inverse power law 

intermolecular force model and the VHS (Variable Hard Sphere) molecular model, 

 χµµ )
T
T(   
ref

ref=                                                    (2.3) 

    Where χ  is the temperature exponent of the coefficient of viscosity that can 

also be denoted as ( )1-2
3  

ζ
ζχ +

=  for the Chapman–Enskog gas of inverse power law, f 

is the inverse power coefficient related to the power force and the distance between 

centers of molecules, 

 
RT2mn

 
5

16  
π

µλ =                                                  (2.4) 

    Where m is the molecular mass, R is the gas constant, λ  is the mean free path. 

    The nominal collision frequency (inverse relaxation time) can be taken in the 

form 
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µ
ν nkT  =                                                      (2.5) 

    Where n is the number density, k is Boltzmann’s constant ( mRk ⋅= ), and µ  is 

the coefficient of the viscosity. 

    The BGK collision model equation [] was proposed by replacing the collision 

integral term of the Boltzmann equation with simple collision model: 

( )f - f  
v
fa  

r
fv  

t
f Mν=

∂
∂
⋅+

∂
∂
⋅+

∂
∂

v
v

v
v

                                   (2.6) 

    where  t),v ,rf( vv is the velocity distribution function which depends on space, rv , 

molecular velocity, vv , and time, t; ν  is the collision frequency and Mf  is the local 

Maxwellian equilibrium distribution function given by 

]
 t),r2RT(

 t)),ru(-v(exp[-
 t)),rRT((2

 t),rn( t),v ,r(f
2

2
3

M
v

vv

v

v
vv

π
=                             (2.7) 

    The idea behind this replacement is that a large amount of detail of the two-body 

interaction (which is contained in the collision term) is not likely to influence 

significantly the values of many experimentally measured quantities. That is, unless 

very refined experiments are devised, it is expected that the fine structure of the 

collision operator can be replace by a blurred image, based upon a simpler operator 

which retains only the qualitative and average properties of the true collision operator. 

    The numerical method uses the BGK equation as the starting point for the 

computation, the molecular velocity distribution function is chosen as the dependent 

variable, the single velocity distribution function equation can be transformed into the 
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hyperbolic conservation equations to be numerically solved with the finite difference 

method in computational fluid dynamics by the aid of the discrete velocity ordinate 

method in gas kinetic theory, and then the macroscopic flow variables at each point in 

the physical space can be evaluated from the moments of the distribution function 

over the velocity space. 

 

2.2.2 Ellipsoidal model 

    Although that, the most widely known collision model is usually called the BGK 

model. But the BGK model gives the value 1  Pr =  for the Prandtl number, a value 

which is not in agreement with both the true Boltzmann equation and the experimental 

data for a monatomic gas (which agree in giving 3
2Pr ≈ ). Therefore, Holway (1966) 

and Cercignani (1967) had created a new model about model Boltzmann equation is 

called ellipsoidal statistical (ES) model equation. 

    rP  is the Prandtl number with
k

c
  P p

r

µ
= , pC is the specific heat at constant 

pressure, µ  is the coefficient of the viscosity, k is the heat conduction coefficient. 

    In order to have a correct value for the Prandtl number, the Maxwellian 

distribution function Mf in the BGK equation can be replaced by Three-dimensional 

Anisotropic Gaussian Distribution in the Ellipsoidal model.  

( )f - f  
v
fa  

r
fv  

t
f Eν=

∂
∂
⋅+

∂
∂
⋅+

∂
∂

v
v

v
v

                                (2.8) 
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⎡
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    Where ijδ  is the Kronecker delta such that 

ji                       , 1 
ji                      , 0 ij {  =

≠=δ                                     (2.9c) 

    Ellipsoidal model had be proof better than BGK model in solve some shock 

structure problems. However, A disadvantage of this model is that it has not been 

possible to prove (or disprove) the H theory.  

 

2.2.3 Shakov model 

    In order to have a correct value for the Prandtl number, higher-order equation, 

namely, the Shakhov equation, as well as the complete Boltzmann equation, is usually 

used in the numerical solution. Neglect external force after the function, the 

Boltzmann equation become; 

 

( )f - f]
t
f[   

r
fv  

t
f

coll.
+=

∂
∂

=
∂
∂

⋅+
∂
∂ νv

v
                           (2.10) 

∫= 1r1 vd vf  vσν                                                (2.10a) 

ν

+
+ =

J  f                                                     (2.10b) 

 dv dvff  f 1r
*

1
* Ω= ∫+                                           (2.10c) 

If the molecule model considering colliding in the section σ  in inverse 
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proportion to relative velocity among the molecules rv , namely collide frequency is 

not the function of the molecule velocity, the model Shakhov equation can be write 

this type; 

( )f - f   
r
fv  

t
f Sν=

∂
∂
⋅+

∂
∂

v
v

                                       (2.11) 

    Where Sf  is the local Maxwellian equilibrium distribution function given by 

5)/(5pRT)]-
RT
cq(Pr)c-(1 t)[1,v ,r(f t),v ,r(f

2
MS ⋅+= vvvv                      (2.12) 

If moment equation for Eq. (2.11) is same as moment equation for Eq. (2.10), 

which model equation (2.11) is similar equation for Boltzmann equation (2.10). 

∫∫ ∂
∂

= vd  ]
t
f[  vd  f)-(f coll.

s vv ψψν                                    (2.13) 

Where                 ...,.........vv v,v v, v1,  )v(  kjijii== vψψ            (2.14a) 

Alternatively one can use   .,.........ccc ,cc ,c 1,  )v(  kjijii== vψψ             (2.14b) 

    We assume that 

........}cacaca{af f ijk
(3)
ijkij

(2)
iji

(1)
i

(0)MS ++++=                             (2.15) 

    We consider Eq. (2.15) reduced  

    The Shakhov model kinetic equation is a generalization of the Krook model 

equation in that the approximation condition is satisfied not only for ji
2

i vv, v, v1,  

but also for 2
ivv . This ensures the correct relaxation of both the heat flux and stresses, 

leading thus to the correct continuum limit in the case of small Knudsen numbers. In 

particular, the model gives the correct Prandtle number. Comparisons of different 

monatomic model equations with experimental data and the finite-difference solution 

of the Boltzmann equation with the exact collision integral shows the Shakhov model 
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to be more accurate than the BGK model and Ellipsoidal models. 

 

2.3 Discrete Ordinate Method 

    We consider accurate numerical methods for solving the kinetic model 

Boltzmann equations. The approach taken here is to apply the discrete ordinate 

method to the distribution function to replace its continuous dependency on the 

velocity space by a set of distribution functions which are continuous function in 

physical space and time but point function in velocity space. The resulting set of 

partial differential equations are of hyperbolic type and can be cast into hyperbolic 

conservation laws from with nonlinear source terms.    

     Its main idea is to replace the exact integration with respect to molecular 

velocity v over all velocity space by an approximate numerical integration over a 

finite domain using a discrete set of points. Let β be an index of the three- 

dimensional molecular velocity mesh, βv  be a node in this mesh, )v,rf(t,  f ββ
v= . 

Then the model kinetic equation is replaced by a system of equations for βf . 

 

2.4 Finite-difference Discretization of the Two-Dimensional MBE 

    We consider a class of model Boltzmann equations of the form 

( )f - f     
r
fv  

t
f Nν=

∂
∂
⋅+

∂
∂

v
v

                                          (2.16) 
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where  t),v ,rf( vv is the velocity distribution function which depends on space, rv , 

molecular velocity, vv , and time, t; ν  is the collision frequency and Nf  is an 

appropriate distribution function depending on the model selected. The number 

density, macroscopic flow velocity, and temperature of the gas are the first three 

moments of the distribution function 

∫= vd  t),v ,rf(   t),rn( 3vvv                                               (2.17) 

 3 2, 1,i        ,vd  t),v ,rf(v   t),r(nu 3
ii == ∫

vvv                                (2.18) 

∫= vd  t),v ,rf(
2
c 

2
 t),r3nRT( 3

2 vv
v

                                       (2.19) 

    Here, R is the gas constant,  t),ru( - v  c vv= is the peculiar velocity of the molecule. 

The gas pressure p and the stress tensor ijτ  are defined by 

 t),r t)kT(,rn(   t),rp( vvv =                                     (2.20) 

∫= ij
3

jiij p-vd  t),v ,rf(cc   t),r( δτ vvv  (2.21) 

where k is the Boltzmann constant and ijδ  is the Kronecker delta. The heat flux 

vector q is  

∫= vd  t),v ,rf(c
2
c   t),r(q 3

i

2

i
vvv  (2.22) 

The elastic collision frequency is of the form 

µν nkT  =  (2.23) 

where µ  is the viscosity and is assumed to have a temperature dependence 

χµµ )TT(  ∞∞ =  (2.24) 
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Here χ  is a constant for a given gas. If we assume the dependence of the viscosity 

on the temperature as for the Chapmann-Enskog gas of inverse  ζ power law, we 

have ( )1-2
3  

ζ
ζχ +

= . For Maxwell molecules, 5=ζ  then 1=χ .; thus the collision 

frequency is independent of temperature. The viscosity coefficient ∞µ  is related to 

the freestream mean free path ∞λ  by the relation 

∞∞

∞
∞ = RT2mn

 
5

16  
π

λµ   (2.25) 

In this study we consider two kinetic models for Nf ; one is the BGK model and the 

other is the Shakov model. For the BGK model, we have Nf equal to the Maxwellian 

distribution Mf : 

]
 t),r2RT(

 t)),ru(-v(exp[-
 t)),rRT((2

 t),rn( t),v ,r(f  f
2

2
3

MN
v

vv

v

v
vv

π
==  (2.26) 

For the Shakov model, we have 

5)/(5pRT)]-
RT
cq(Pr)c-(1 t)[1,v ,r(f t),v ,r(f  f

2
MSN ⋅+== vvvv  (2.27) 

Here, Pr is the prandtl number and is equal to 
3
2  for a monatomic gas. 

    We note that the derivation of the continuum Navier-Stokes equations from the 

BGK model or the Shakov model can be obtained using a Chapmann-Enskog 

procedure. 

    To illustrate the numerical approach, we describe in detail the relevant equations 

for two-dimensional problem, for the purpose of reduction in computer storage 

requirements, the following reduced distribution functions (Chu 1965) are introduced: 
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z
-

yx dv t)y,x,,vf(  t)y,x,,v,g(v ∫
∞

∞

= v  (2.28a) 

z
-

2
zyx dv t)y,x,,vf( v  t)y,x,,v,h(v ∫

∞

∞

= v  (2.28b) 

Define the reference velocity and time as  ∞∞∞∞ == CL         t2RT  C  

Where L is the reference length, ∞T  is the reference temperature. Then, the 

non-dimensional variables can be defined as follows: 

 Ly ŷ       ,  Lx  x̂      , )C(mn ˆ

  , )Cmn
2
1(q  q̂       , )Cmn

2
1(P  P̂        , TT  T̂

nn  n̂           ,Cv  v̂        , Cu  û        , Cu  û     ,   tt  t̂

2
ijij

3
x

2

iiyyxx

===

===

=====

∞∞

∞∞∞∞∞

∞∞∞∞∞

ττ

 

∞
∞

∞
∞

∞

∞ ==== nH  Ĥ      , )
C
n(G  Ĝ       , nh  ĥ       , )

C
n(g  ĝ 22  (2.29) 

    After the process of non-dimensionalization and integrating out the zv  

dependence in Eq. (2.16) using Eq. (2.28), the single model Boltzmann equation in 

three space dimensions reduces to the following two simultaneous equations in two 

space dimensions and then we neglect the signal ""∧ . 

( )g -G     
y 
gv 

x 
g v 

t 
g

yx ν=
∂
∂

⋅+
∂
∂

⋅+
∂
∂  (2.30a) 

( )h - H    
y 
hv 

x 
h v 

t 
h

yx ν=
∂
∂
⋅+

∂
∂

⋅+
∂
∂  (2.30b) 

If M M H  H ,GG == , we can get the BGK model reduced fuctions 

]})u - (v  )u- [(v
T
1{- exp )

T
1n(  G 2

yy
2

xx
M +=

π
 (2.31a) 

MM TG 
2
1  H =  (2.31b) 

If S S H  H ,GG == , we can get the Shakov model reduced fuctions 
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pT)]
2
54)/(-

T
2c(qPr)c-(1[1G  G

2

ii
MS +=  (2.32a) 

pT)]
2
52)/(-

T
2c(qPr)c-(1[1H  H

2

ii
MS +=  (2.32b) 

Without causing any confusion we shall drop the hat in the equations in the following. 

The macroscopic moments are found as follows: 

y
- -

x dv dv g  n ∫ ∫
∞

∞

∞

∞

=                                  (2.33a) 

, dv dv g  v  nu y
- -

xxx ∫ ∫
∞

∞

∞

∞

=                                    (2.33b) 

, dv dv g  v  nu y
- -

xyy ∫ ∫
∞

∞

∞

∞

=                                             (2.33c) 

∫ ∫∫ ∫
∞

∞

∞

∞

∞

∞

∞

∞

++=
- -

yx
2

yy
2

xx
- -

yx   dv dv g ])u-(v)u-[(v  dv dvh   nT
2
3     (2.33d) 

nT  p  =  (2.33e) 

∫ ∫

∫ ∫∫ ∫
∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

++

++=

-
x

2
y

2
xx

-
yxyxy

- -
yx

2
x

-
x

-
yx

2
y

2
xxx

nTu 
2
3- )u(unu  dv dv g vv 2u -      

  dv dv g v2u - dv dv g] )v(v [h  v  q
 (2.33f) 

∫ ∫

∫ ∫∫ ∫
∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

++

++=

-
x

2
y

2
xy

-
yx

2
yy

- -
yxyx

-
x

-
yx

2
y

2
xyy

nTu 
2
3- )u(unu  dv dv g v 2u -      

  dv dv g vv2u - dv dv g] )v(v [h  v  q
 (2.33g) 

, p
2
1 - unu - dv dv gvv  yxyxy

- -
xxx ∫ ∫=

∞

∞

∞

∞
τ  (2.33h) 

yxyxy
- -

xxy unu - dv dv gvv  ∫ ∫=
∞

∞

∞

∞
τ  (2.33i) 

p
2
1 - nu - dv dv gvv  2

yyxy
- -

xyy ∫ ∫=
∞

∞

∞

∞
τ  (2.33j) 

    It is noted that the set of partial differential equations (2.30) can be cast into the 
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strong conservation law from with stiff source terms as follows: 

S  
y

F  
x

F  
t
Q yx

=
∂
∂

+
∂
∂

+
∂
∂  (2.34) 

Where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

h) - (H
g) - (G

  S   ,  
hv
gv

  F ,  
hv
gv

  F ,  
).vvt,y,h(x,
).vvt,y,g(x,

   Q M

M

y

yy

x

xx

yx

yx

ν
ν

  (2.35) 

To treat general geometry we consider the conservation equation of the 

two-dimensional rarefied gasdynamics in general coordinates ),( ηξ  

S  F  F  
t
Q

=
∂
∂

+
∂
∂

+
∂
∂

ηξ

ηξ

  (2.36) 

Where  

)
Vh
Vg

(J  F  , )
Uh
Ug

(J  F  , )
h
g

(J  Q 1-1-1- === ηξ   (2.37) 

With          yyxxyyxx v - v  V   , v - v  U ηηξξ ==  

The metric Jacobian and the metric terms are given by  

ξη

ξη

ηξ

ηξ

ηξηξ

Jx   , Jx-  
Jy-   , Jy  

 -   J

yy

xx

xyyx

==

==

=

  (2.38) 

The Jacobian coefficient matrices Q
F  B and Q

F  A ∂
∂=∂

∂=
ηηξξ of the transformed 

equations have real eigenvalues 

 V.        ,  U   2121 ==== ηηξξ λλλλ                                           (2.39) 

It is noted that both  B and A ηξ are diagonal matrices 

}diag{    B  , }diag{    A 11
ηηηξξξ λλ =Λ==Λ=                                 (2.40) 

    Each of the reduced distribution functions is still a function of five independent 
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variables (for two-dimensional case). To remove the functional dependency on the 

velocity space of the equations, the discrete ordinate method [10] is applied. This 

method, which consists of replacing the integration over velocity space of the 

distribution function by an appropriate quadrature, requires the values of the 

distribution function only at certain discrete velocities. The choice of the discrete 

values of velocity point is dictated by the consideration that our final interest is not in 

the distribution functions themselves but in the moments. Hence, the macroscopic 

moments given by integrals over molecular velocity space can be evaluated by the 

same quadrature. The discrete ordinate method is then applied the set of Eq. (2.36) for 

the )v,(v yx velocity space. That is the value of )v,vt,,,g( yxηξ  become 

)v,vt,,,g(  t),,(g , δσδσ ηξηξ = and Eq. (2.36) in phase space is reduced to a set of 

hyperbolic partial differential equations with source terms in the physical space 

, , ,
,

Q F F
S

t

ξ η
σ δ σ δ σ δ

σ δξ η
∂ ∂ ∂

+ + =
∂ ∂ ∂

  (2.41) 

1 1 2 2,..., 1,1,..., , ,..., 1,1,...,N N N Nσ δ= − − = − −  

where 

( )
( )

, , ,
, ,

, ,,

, ,1 1,    F
, ,

g t U g
Q

U hJ Jh t
σ δ σ δ σ δξ

σ δ σ δ
σ δ σ δσ δ

ξ η

ξ η

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

, , , ,
, ,

, , , ,

( )1F ;       S
( )

V g G g
V hJ H g
σ δ σ δ σ δ σ δη

σ δ σ δ
σ δ σ δ σ δ σ δ

υ

υ

+

+

⎛ ⎞−⎛ ⎞
= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

  (2.42) 

Here, δσδσδσδσ ,, ,, H and G,h, g  represent values of g, h, G, and H evaluated at the 
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discrete velocity point )v,(v δσ  respectively, where  N...,,...,-1,1,N-  11=σ , and 

22 N...,,...,-1,1,N-   =δ  . Also to apply the discrete ordinate method, the integrals 

appeared in Eq. (2.33) are expressed as finite sums according to the quadrature define 

as 

2

10

exp( ) ( ) ( )
N

v f v dv W f vσ σ
σ

β
∞

=

− =∑∫                                      (2.43) 

Where N)1,...,(v =σσ are the positive roots of Hermite polynomial of degree N and 

sWσ  are the corresponding weights of the Gauss-Hermite quadrature. Both full-range 

and half-range Gauss-Hermite quadrature are needed. It can be shown that above 

quadrature formula is equivalent to approximate the Maxwellian distribution by the 

discrete distribution 

2

1
( )

N
u

ie W u uσ
σ

δ−

=

≅ −∑                                                (2.44) 

Where δ  is the Dirac delta function. This can be considered as the optimum discrete 

approximation in the sense that the first 2N moments of the Maxwellian can be 

exactly duplicated 

2

0 0
1

( ) ,     0,1, 2,..., 2 1.
N

u l l
i i

i
e u du W u u u du l Nδ

∞ ∞−

=

= − = −∑∫ ∫                   (2.45) 

Performing the integrations gives 

1

1 1( )
2 2

N
l

i i
i

lW v
=

+
= Γ∑                                                  (2.46) 

Where Γ  represents the usual Gamma function. The discrete velocity points and the 

corresponding weights can be obtained using the algorithms described by Huang ＆ 
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Giddens (1968) and by Shizgal (1981). 

    Once the discrete distribution functions  ,, h  and  g δσδσ are solved, one can obtain 

all the moment integrals as 

)ee(gWW dvdv ee]et)ey,x,,v,[g(v n 
221

1

2

2

2
y

2
x

2
y

2
x vv

,

N
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-N
yx

v-v-

- -

vv
yx

δσ
δσ

σ
δ

δ
σ∑ ∑∫ ∫

= =

∞

∞

∞

∞

==  (2.47a) 

)eeg(vWW
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221

1

2

2

vv
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N
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x
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δσσ

σ
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)eeg(vWW
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221
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N
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δσδ
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2
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221
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δσσσδσ
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nTp =  (2.47e) 
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δσσ

σ
δ

δ
στ ∑ ∑

= =

=                            (2.47g) 
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N
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xy unu-)eegv(vWW  
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= =
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2
1-nu-)eeg(vWW  2
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vv

,
2

N

-N

N

-N
yy

221
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δσδ

σ
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δ
στ ∑ ∑

= =
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inviscid Euler equations. In this work, we not only need to solve the discrete 

distribution functions (not in equilibrium) but also to use them to evaluate the 
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macroscopic moment by numerical quadratures. The selection of the discrete velocity 

point and the range of velocity space in the Newton-Cotes formulas are somewhat   

 

2.5 Numerical Algorithm in solving the MBE   

    In this section we describe the numerical algorithm for solving the set of Eq. 

(2.41). Both the time-accurate explicit method using operator splitting for unsteady 

flow problems and implicit method using lower-upper (LU) factorization for 

steady-state calculations are considered. We follow and extend our previous high 

resolution non-oscillatory scheme for hyperbolic system of conservation laws to 

include a source term. Some general remarks can be given here. When explicit 

methods are used to integrate the equations for δσ ,g  and δσ ,h , one can decouple the 

equations and solve them separately. When implicit methods are employed, the 

equations in general are coupled through the jacobian of the source terms since the 

source terms are functionals of δσ ,g  and δσ ,h . In the following we still keep the 

equations in vector-matrix form and with the understanding that they can be coupled 

into scalar form and solved in scalar manner. 

    Define a uniform computational mesh system ),( kj ηξ  with mesh sizes 

1  , =∆∆ ηξ and let n
,k,j,Q δσ  denote the value of Q at time level tn  ∆ , position 

)k  ,  (j ηξ ∆∆  and discrete velocity point )v,(v δσ . Define the difference of the 

characteristic variables in the local ξ-direction and η-direction respectively as 

k,
2
1j,k,j,,k,1,j,k,,

2
1j

J )Q - (Q  
+

+
+

= δσδσ
ξ

δσ
α  (2.48a) 

2
1kj,,k,j,,1,kj,,,

2
1kj,

J )Q - (Q  
+

+
+

= δσδσ
ξ

δσ
α  (2.48b) 
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where 2 / )J(J  J k1,jkj,k,
2
1j +

+
+=  

 

Explicit Method 

    To integrate the set of Eq. (2.41), we use time splitting as follow: 

, , 0
Q F

t

ξ
σ δ σ δ

ξ
∂ ∂

+ =
∂ ∂

                                                 (2.49a) 

, , 0
Q F

t

η
σ δ σ δ

η
∂ ∂

+ =
∂ ∂

                                                 (2.49b) 

δσ
δσ

,
, S  

t
Q

=
∂

∂
                                                     (2.49c) 

    The time-splitting method described above closely patterns the procedure first 

proposed by Bird and used in particles schemes, in which free molecular motion and 

the intermolecular collisions are two independent stages of the algorithm that update 

the particle position and velocity. 

    In terms of operator form we have the time integration schemes as  

(t)t)Q(t)L(t)L(t)L(t)L(t)L(Lt)2 (t Q ,ss, δσξηηξδσ ∆∆∆∆∆∆=∆+   (2.50) 

    Where the time step ∆t is chosen to be less than the local mean collision time, τ. 

The time integration of the governing equations is carried out on each pair of discrete 

velocity point )v,(v δσ with finite difference approximations. Without causing any 

ambiguity, we omit the subscripts ) ,( δσ  in the time integration operators 

ηξ L and ,L ,Ls  described below. 

    The integration of the source term is done using a multistage Runge-Kutta 
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method 

 tS  Q  t)Q(L  Q n
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kj,

n
kj,S
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kj, ∆+=∆=   (2.51a) 

) QL Qt(L
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1n

kj, +∆+=+   (2.51b) 

    The one-dimensional space operator is defined by  
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Where all the metric terms such as k,
2
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2
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using simple averages. The components of N
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2
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    Here ε  is a small value and is taken to be 0.01 in all the calculations reported 

later. The m and m  functions are given by  

⎩
⎨
⎧

>
==

=
zy if                                          z,

s zsgn  y sgn   if                                         ),z ,ymin( s
  z)m(y,  (2.62) 

⎩
⎨
⎧

>
≤

=
zy  if                                    z,
zy  if                                    y,

  z)(y,m  (2.63) 

    Similar expressions for the t)(L ∆η  operator can be defined. 

    The class of schemes covered by Eq. (2.54) includes the total variation 

diminishing (TVD) and essentially nonoscillatory (ENO) scheme. For 0=ω  and 

0=ϑ  one has a second-order TVD scheme and is denoted as TVD2; for 0=ω  and 

2
1

=ϑ , one has a second-order ENO scheme, denoted as ENO2; for 1=ω  and 

0=ϑ , one has a third-order ENO scheme, denoted as ENO3. a first-order upwind 

scheme, denoted as UW1, can be deduced from Eq. (2.54) by setting all the elements 

l
kj,e  and l

kj,d  equal to zero. The accuracy and Fourier stability of schemes defined by 

Eq. (2.54) can be analyzed by looking at different possible combinations of the 
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arguments in the m and m  limiter functions. 

     

Implicit Method 

    Using the Euler implicit time-differencing formula, Eq. (2.41) can be written as  

n
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Equation () can be approximately factored in several different ways. Here we adopt 

the lower-upper method and Eq. () become 
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    In Eq. (2.66) denote the backward and forward difference operators, respectively. 

The split jacobian matrices are }diag{  l±± =Λ λ , where )/2   (  lll λλλ ±=± . The 

numerical fluxes N

k,
2
1j

F
+

 and N

2
1kj,

F
±

 are defined analogously by Eq. (2.53). for 

steady-state calculation, the use of Eq. (2.58) and (2.59) can lead to the undesirable 

results that the steady state depends on the time step t∆  and causes slow 

convergence. We use the following approximation which still maintains the spatial 

accuracy: 

(z)
2
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    An approximate L factorization for Eq. (2.66) can be given as  
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and it is implemented in the sequence: 
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    The approximation factorization error of Eq. (2.68) is  

1n-12
LU QULDt  E +∆∆=             (2.70) 

which can be show to produce the least amount of error among several possible 

factorizations, particularly when the norms of the source terms are large. The collision 

source term, S, of the model equation in general is a functional of the reduced 

distribution functions δσ ,g  and δσ ,h . The excat evaluation of the jacobian matrix of 

the source term, C, is difficult. In this work, we approximate the jacobian of the 

source term by 

S  
1-0
01-

   C Λ=⎟⎟
⎠
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≈ν             (2.71) 

    With this simplified approximation the equations become diagonal and 

completely decoupled and the solution procedure becomes rather simple and can be 

solved scalarly. The numerical experience indicates that such an approximation works 

well. 
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Boundary Conditions 

    To specify the interaction of the molecules with the solid surface, it is assumed 

that molecules which strike the surface are subsequently emitted with a Maxwellian 

velocity distribution characterized by the surface temperature wT  and zero net 

tanfential velocity. The two-stream concept is also applied here by defining the 

half-range distribution functions 

0 for v    0,  ) v, v;,(g nyx <=+ ηξ  

0 for v    0,  ) v, v;,(g nyx
- >=ηξ  

where nvvn ⋅= , and n is the outward unit normal to the solid surface. On the solid 

wall, the wall distribution function is given by 
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    The density of the molecules diffusing from the surface, wn , is not known a 

priori and may be found by applying the condition of zero mass flux normal to the 

surface at the wall. One has 
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    The farfield boundary condition at the freestream is given by the Maxwellian 

distribution 
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where ∞U  is the freestream velocity and α  is the angle of attack. 

    The inflow and outflow boundary conditions are treated using characteristics- 
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based boundary conditions which are in accord with the upwind nature of the interior 

point scheme. For problems with symmetry, only half plane is computed and the 

symmetry condition is assigned to the distribution function for  

)v- , v t,, ,g(  ) v, v t,,- ,g( yxyx ηξηξ =          (2.75) 
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Chapter 3. Preliminary Results and Discussion   

3.1 Comparison of MBE Results with DSMC Numerical Method 

    The computed results using MBE are found to compare well with those using the 

DSMC(direct simulation Monte Carlo) in the Near-continuum regime flows . 

    We using DSMC to simulated for M=2, and Kn=0.0033. In Fig. 3.114, we show 

the simulated results include, number density, temperature, Mach number, u-velocity, 

v-velocity, and velocity streamlines. 

    To compare with MBE simulated results. In Fig. 3.114 (a), an ultra high-density 

region appears at the very right-hand upper corner due to the moving plate at the top 

of the cavity, but smaller than MBE simulated results. In Fig. 3.114 (b), there is a 

temperature increased region in the cavity, the right-hand upper corner which 

temperature increased obvious as a result of density increased, but smaller than MBE 

simulated results. In Fig. 3.114 (c), (d), (e), and (f), The MBE simulated results about 

u-direction and v-direction negative speed also are all bigger slightly than the DSMC 

simulated results. Therefore, we may discover that smaller secondary eddies have 

been created at the two bottom corners and the center of the top vortex is moved 

slightly to right-side and toward the moving plane. 
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3.2 Driven Cavity Flows 

   3.2.1 Problem Description and Test Conditions 

Fig. 3.1 sketch of the 2D square (L/H=1) driven cavity flow with moving top 

plate. Initially, we use argon gas at rest inside the cavity and at the same uniform 

temperature 300K. At time t=0 the upper plate begins moving instantaneously at 

speed Ma=0.5-2 and Kn=10-0.0033 based on the mean free path of wall temperature 

and size of the cavity. Table Ⅰ-Ⅲ shows the all cases which we simulates with 

different parameters .  

 

   3.2.2 Grid Convergence Tests 

    In order to must test the different grid to the result influence. We have used 

four kind of different grids (Fig. 3.2-5 to show) in the case (M=0.9, Kn=0.01). In 

Fig. 3.6, we found that the convergence is better while grid size becomes smaller 

towards the diffuse wall. However, when grid size nearby the diffuse wall is the 

same, the large number of mesh doesn't result in better convergence. In Fig. 3.7, 

we compare BGK and the Shakov these two kind of different models. Although in 

each kind of parameter result comparison all almost, but the Shakov MODEL 

convergence speed is faster. 
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  3.2.3 Effects of Knudsen Number 

    In this section, we were observed effects of Mach number in different Knudsen 

numbers (Kn=10-0.0033). First, we were showed general simulation results include 

density, temperature, Mach number, u-direction, v-direction and streamline. Second, 

we were showed property distributions across cavity geometric center for x =0.5m, y= 

0 to -1m and y=-0.5m, x=0 to 1m. Third, we showed property distributions near the 

solid walls. Finally, we were observed the recirculation center position in different 

cases. 

 

        3.2.3.1 General Simulation Results 

              3.2.3.1.1 Subsonic Moving Plate (M=0.5, 0.9) 

Fig. 3.7 shows that number density contour for Ma=0.5 and Knudsen number 10, 

1, 0.1, 0.01, and 0.0033 respectively. Driven plate takes particles to the right-hand 

upper corner. An ultra high-density region appears at the very right-hand upper corner 

due to the moving plate at the top of the cavity. Therefore the particles are larger than 

initial value. In addition, there are low densities at the left-hand upper corner. In the 

other series, fixed M=0.9 Fig. 3.12.  

Fig. 3.8 show that temperature contour for Ma=0.5, and Knudsen number 10, 1, 

0.1, 0.01, and 0.0033 respectively. We normalize temperature to divide the initial 
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temperature 300K. When the Knudsen number is decrease, there are two ultra 

temperatures region in the cavity. One of them is the right-hand upper corner which 

temperature increased as a result of density increased; the other one is left-hand upper 

corner which temperature increased due to high vertical speed. Therefore, the 

temperature increase more seriously as Knudsen number decreased. In the other series, 

fixed M=0.9 is showed in Fig. 3.13.  

Fig. 3.9 show that Mach contour for Ma=0.5, and Knudsen number 10, 1, 0.1, 

0.01, and 0.0033 respectively. In the other series, fixed M=0.9 is showed in Fig. 3.14. 

Fig. 3.10 show that u-velocity contour for Ma=0.5, and Knudsen number 10, 1, 

0.1, 0.01, and 0.0033 respectively. The maximum u-velocity values are 0.35, 0.4, 0.6, 

0.9, and 0.9 with Knudsen number 10, 1, 0.1, 0.01, and 0.0033, respectively. Because 

of rarefaction effect caused slip phenomenon and the slip velocity along the solid 

walls increase with Knudsen number at the same Mach number. We normalize 

u-velocity to divide the upper plate velocity. The velocity is more and more decrease 

when Knudsen number increase. In the other series, fixed M=0.9 is showed in Fig. 

3.15. 

Fig. 3.11 show that v-velocity contour for Ma=0.5, and Knudsen number 10, 1, 

0.1, 0.01, and 0.0033 respectively. We normalize v-velocity to divide the upper plate 

velocity. An ultra high-speed region appears at the left-hand and right-hand upper 
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region. The velocity of right-hand upper region is increase when Knudsen number 

decrease. In the other series, fixed M=0.9 is showed in Fig. 3.16. 

As mentioned above, we can be briefly summarized as follows: 

1. The slip velocity is more and more decrease when Knudsen number increase. 

2. An ultra high-density region appears at the very right-hand upper corner due to the 

moving plate at the upper of the cavity 

3. There are two ultra temperatures region in the right and left upper corner in 

cavity. 

 

              3.2.3.1.2 Supersonic Moving Plate (M=1.1, 2) 

Fig. 3.17 shows that number density contour for Ma=1.1 and Knudsen number 

10, 1, 0.1, 0.01, and 0.0033 respectively. Driven plate takes particles to the right-hand 

upper corner. An ultra high-density region appears at the very right-hand upper corner 

due to the high-speed moving plate at the top of the cavity. Therefore the particles are 

larger than initial value. In addition, there are low densities at the left-hand upper 

corner. In the other series, fixed M=2 Fig. 3.22.  

Fig. 3.18 show that temperature contour for Ma=1.1, and Knudsen number 10, 1, 

0.1, 0.01, and 0.0033 respectively. We normalize temperature to divide the initial 

temperature 300K. When the Knudsen number is decrease, there are two ultra 



 37

temperatures region in the cavity. One of them is the right-hand upper corner which 

temperature increased as a result of density increased; the other one is left-hand upper 

corner which temperature increased due to high vertical speed. Therefore, the 

temperature increase more seriously as Knudsen number decreased. In the other series, 

fixed M=2 is showed in Fig. 3.23.  

Fig. 3.19 show that Mach contour for Ma=1.1, and Knudsen number 10, 1, 0.1, 

0.01, and 0.0033 respectively. In the other series, fixed M=2 is showed in Fig. 3.24. 

Fig. 3.20 show that u-velocity contour for Ma=1.1, and Knudsen number 10, 1, 

0.1, 0.01, and 0.0033 respectively. The maximum u-velocity values are 0.35, 0.4, 0.6, 

0.9, and 0.9 with Knudsen number 10, 1, 0.1, 0.01, and 0.0033, respectively. Because 

of rarefaction effect caused slip phenomenon and the slip velocity along the solid 

walls increase with Knudsen number at the same Mach number. We normalize 

u-velocity to divide the upper plate velocity. The velocity is more and more decrease 

when Knudsen number increase. In the other series, fixed M=2 is showed in Fig. 3.25. 

Fig. 3.21 show that v-velocity contour for Ma=1.1, and Knudsen number 10, 1, 

0.1, 0.01, and 0.0033 respectively. We normalize v-velocity to divide the upper plate 

velocity. An ultra high-speed region appears at the left-hand and right-hand upper 

region. The velocity of right-hand upper region is increase when Knudsen number 

decrease. In the other series, fixed M=2 is showed in Fig. 3.26. 
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As mentioned above, we can be briefly summarized as follows: 

1. The slip velocity is more and more decrease when Knudsen number increase. 

2. An ultra high-density region appears at the very right-hand upper corner due to the 

high-speed moving plate at the upper of the cavity 

3. There are two ultra temperatures region in the right and left upper corner in 

cavity. 

 

        3.2.3.2 Property Distributions Across Cavity Centroid 

Fig. 3.27 present the profiles of the number density along vertical line through 

geometry center(x/L=0.5) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and 

0.0033 respectively. In the other series, the number density have replaced by 

temperature, u-velocity and velocity is showed in Fig. 3.28-30.  

Fig. 3.31 present the profiles of the number density along vertical line through 

geometry center(y/L=-0.5) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and 

0.0033 respectively. In the other series, the number density have replaced by 

temperature, u-velocity and velocity is showed in Fig. 3.32-34. 

 

        3.2.3.3 Property Distributions Near Solid Walls 

Fig. 3.35 present the profiles of the number density along vertical line through 
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geometry center(x/L=0) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and 

0.0033 respectively. In the other series, the number density have replaced by 

temperature, u-velocity and velocity is showed in Fig. 3.36-38. 

Fig. 3.39 present the profiles of the number density along vertical line through 

geometry center(x/L=1) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and 

0.0033 respectively. In the other series, the number density have replaced by 

temperature, u-velocity and velocity is showed in Fig. 3.40-43. 

Fig. 3.44 present the profiles of the number density along vertical line through 

geometry center(y/L=-1) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and 

0.0033 respectively. In the other series, the number density have replaced by 

temperature, u-velocity and velocity is showed in Fig. 3.45-Fig. 3.47. 

Fig. 3.48 present the profiles of the number density along vertical line through 

geometry center(y/L=-0) for Ma=0.5-2, and Knudsen number 10, 1, 0.1, 0.01, and 

0.0033, respectively. In the other series, the number density have replaced by 

temperature, u-velocity and velocity is showed in Fig. 3.49-Fig. 3.51. 

 

        3.2.3.4 Recirculation Center Position 

    Fig. 3. 51-54 show plots of the velocity streamlines for M=0.5, 0.9, 1.1, and 2, 

respectively, and in each figure results are provided for various values of Knudsen 
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number. The corresponding velocity streamlines for M=0.5, 0.9, and 1.1, are given in 

Fig. 3.51-53. It is seen that while for Kn=10, 1, and 0.1 there is only one vortex, for 

Kn=0.01, and 0.0033, under the main vortex secondary eddies have been created at 

the two bottom corners. In Fig. 3.54 , it is seen that while for Kn=1, and 0.1 there is 

only one vortex, for Kn=10 one additional vortex, for Kn=0.01, and 0.0033 two 

additional vortices, under the first one, have been developed. As the Knudsen number 

is increased further, these secondary eddies grow under the first one. 

    In Fig. 3.55, we show the relative vertical distance (x/L) of the center of the top 

vortex of the cavity in term of M=0.9, 1.1, and 2 of Kn=10, 1, 0.1, and 0.01. It is seen 

that in these cases, as Kn is decreased, the center of the top vortex is moved slightly 

toward the right wall, when Kn=0.0033 is opposite. However, M=0.5 of Kn=10, 1, 0.1, 

0.01, and 0.0033. It is seen that in these cases, as Kn is decreased, the center of the top 

vortex is moved slightly toward the right wall. 

    In Fig. 3.56, we show the relative vertical distance (y/L) of the center of the top 

vortex of the cavity in term of M=0.5, 0.9, and 1.1 of Kn=10, 1, 0.1, and 0.01. It is 

seen that in these cases, as Kn is increased, the center of the top vortex is moved 

slightly reversely the moving wall, when Kn=0.0033 is opposite. However, M=2 of 

Kn=10, 1, 0.1, 0.01, and 0.0033. It is seen that in these cases, as Kn is increased, the 

center of the top vortex is moved slightly toward the moving wall. 
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   3.2.4 Effect of Mach Number of the Driven Plate 

    In this section, we were observed effects of Knudsen number in different Mach 

numbers (Ma=0.5-2). First, we were showed general simulation results include density, 

temperature, Mach number, u-direction, v-direction and streamline. Second, we were 

showed property distributions across cavity geometric center for x =0.5m, y= 0 to -1m 

and y=-0.5m, x=0 to 1m. Third, we showed property distributions near the solid walls. 

Finally, we were observed the recirculation center position in different cases. 

 

        3.2.4.1 General Simulation Results 

              3.2.4.1.1 Free Molecular Regime (Kn=10) 

Fig. 3.57 shows that number density contour for Kn=10 and Mach number 0.5, 

0.9, 1.1, and 2, respectively. Driven plate takes particles to the right-hand upper 

corner. An ultra high-density region appears at the very right-hand upper corner due 

to the moving plate at the top of the cavity. Therefore the particles are larger than 

initial value. In addition, there are low densities at the left-hand upper corner.  

Fig. 3.58 show that temperature contour for Kn=10 and Mach number 0.5, 0.9, 

1.1, and 2, respectively. We normalize temperature to divide the initial temperature 

300K. When the Mach number is increase, there is a ultra temperatures region in the 

cavity. It is the upper moving plane which temperature increased due to high speed. 
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Therefore, the temperature increase as Mach number is increased.  

Fig. 3.59 show that Mach contour for Kn=10 and Mach number 0.5, 0.9, 1.1, and 

2, respectively.  

Fig. 3.60 show that u-velocity contour for Kn=10 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively. The maximum u-velocity values are all equal 0.35 with various 

values Mach number. When Kn=10, the various values Mach number about the slip 

phenomenon without influence. 

Fig. 3.61 show that v-velocity contour for Kn=10 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively. We normalize v-velocity to divide the upper plate velocity. When 

Kn=10, the various values Mach number about the v-velocity with slightly effect. 

As mentioned above, we can be briefly summarized as follows: 

1. The slip phenomenon without influence when Mach number increase. 

2. An ultra high-density region appears at the very right-hand upper corner due to the 

moving plate at the upper of the cavity 

3. There is high temperatures region in the upper moving plane in cavity. 

 

              3.2.4.1.2 Transitional Regime (Kn=1, 0.1, 0.01) 

Fig. 3.62 shows that number density contour for Kn=1 and Mach number 0.5, 0.9, 

1.1, and 2, respectively. Driven plate takes particles to the right-hand upper corner. 
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An ultra high-density region appears at the very right-hand upper corner due to the 

moving plate at the top of the cavity. Therefore the particles are larger than initial 

value. In addition, there are low densities at the left-hand upper corner. In the other 

series, fixed Kn=0.1, and 0.01 are showed in Fig. 3.67 and Fig. 3.72.  

Fig. 3.63 show that temperature contour for Kn=1 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively. We normalize temperature to divide the initial temperature 300K. 

When the Mach number is increase, there are two ultra temperatures region in the 

cavity. One of them is the right-hand upper corner which temperature increased as a 

result of density increased; the other one is left-hand upper corner which temperature 

increased due to high vertical speed. Therefore, the temperature increase more 

seriously as Mach number decreased. In the other series, fixed Kn=0.1, and 0.01 are 

showed in Fig. 3.68 and Fig. 3.73.  

 Fig. 3.64 show that Mach contour for Kn=1 and Mach number 0.5, 0.9, 1.1, and 

2, respectively. In the other series, fixed Kn=0.1, and 0.01 are showed in Fig. 3.69 and 

Fig. 3.74. 

Fig. 3.65 show that u-velocity contour for Kn=1 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively. The maximum u-velocity values are all equal 0.4 with various 

values Mach number. When Kn=1, the various values Mach number about the slip 

phenomenon without influence. In the other series, fixed Kn=0.1, and 0.01 are 
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showed in Fig. 3.70 and Fig. 3.75. 

Fig. 3.66 show that v-velocity contour for Kn=1 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively. We normalize v-velocity to divide the upper plate velocity. When 

Kn=1, the various values Mach number about the v-velocity with slightly effect. In 

the other series, fixed Kn=0.1, and 0.01 are showed in Fig. 3.71 and Fig. 3.76. 

1. The slip phenomenon without influence when Mach number increase. 

2. An ultra high-density region appears at the very right-hand upper corner due to the 

moving plate at the upper of the cavity 

3. There are two ultra temperatures region in the right and left upper corner in 

cavity. 

 

              3.2.4.1.3 Near-continuum Regime (Kn=0.0033) 

Fig. 3.77 shows that number density contour for Kn=0.0033 and Mach number 

0.5, 0.9, 1.1, and 2, respectively. Driven plate takes particles to the right-hand upper 

corner. An ultra high-density region appears at the very right-hand upper corner due 

to the moving plate at the top of the cavity. Therefore the particles are larger than 

initial value. In addition, there are low densities at the left-hand upper corner.  

Fig. 3.78 show that temperature contour for Kn=0.0033 and Mach number 0.5, 

0.9, 1.1, and 2, respectively. We normalize temperature to divide the initial 
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temperature 300K. When the Mach number is increase, there are two ultra 

temperatures region in the cavity. One of them is the right-hand upper corner which 

temperature increased as a result of density increased; the other one is left-hand upper 

corner which temperature increased due to high vertical speed. Therefore, the 

temperature increase more seriously as Mach number decreased.  

Fig. 3.79 show that Mach contour for Kn=0.0033 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively.  

Fig. 3.80 show that u-velocity contour for Kn=1 and Mach number 0.5, 0.9, 1.1, 

and 2, respectively. The maximum u-velocity values are all equal 0.4 with various 

values Mach number. When Kn=1, the various values Mach number about the slip 

phenomenon without influence.  

Fig. 3.81 show that v-velocity contour for Kn=0.0033 and Mach number 0.5, 0.9, 

1.1, and 2, respectively. We normalize v-velocity to divide the upper plate velocity. 

An ultra high-speed region appears at the left-hand and right-hand upper region. The 

velocity of right-hand upper region is increase when Mach number increased. 

1. The slip phenomenon without influence when Mach number increase. 

2. An ultra high-density region appears at the very right-hand upper corner due to the 

moving plate at the upper of the cavity 

3. There are two ultra temperatures region in the right and left upper corner in 
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cavity. 

 

        3.2.4.2 Property Distributions Across Cavity Centroid 

Fig. 3.82 present the profiles of the number density along vertical line through 

geometry center(x/L=0.5) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,  

respectively. In the other series, the number density have replaced by temperature, 

u-velocity and velocity is showed in Fig. 3.83-85.  

Fig. 3.86 present the profiles of the number density along vertical line through 

geometry center(y/L=-0.5) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,  

respectively. In the other series, the number density have replaced by temperature, 

u-velocity and velocity is showed in Fig. 3.87-89.  

 

        3.2.4.3 Property Distributions Near Solid Walls 

Fig. 3.90 present the profiles of the number density along vertical line through 

geometry center(x/L=0) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,   

respectively. In the other series, the number density have replaced by temperature, 

u-velocity and velocity is showed in Fig. 3.91-93. 

Fig. 3.94 present the profiles of the number density along vertical line through 

geometry center(x/L=1) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,   
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respectively. In the other series, the number density have replaced by temperature, 

u-velocity and velocity is showed in Fig. 3.95-97. 

Fig. 3.98 present the profiles of the number density along vertical line through 

geometry center(y/L=-1) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,   

respectively. In the other series, the number density have replaced by temperature, 

u-velocity and velocity is showed in Fig. 3.99-Fig. 3.101. 

Fig. 3.102 present the profiles of the number density along vertical line through 

geometry center(y/L=-0) for Kn=10-0.0033, and Mach number 0.5, 0.9, 1.1, and 2,   

respectively. In the other series, the number density have replaced by temperature, 

u-velocity and velocity is showed in Fig. 3.103-Fig. 3.105. 

 

        3.2.4.4 Recirculation Center Position 

    Fig. 3. 106-110 show plots of the velocity streamlines for Kn=10, 1, 0.1, 0.01, 

and 0.0033, respectively, and in each figure results are provided for various values of 

Mach number number. The corresponding velocity streamlines for Kn=0.01, and 

0.0033, are given in Fig. 3.108-110. It is seen that under the main vortex secondary 

eddies have been created at the two bottom corners. In Fig. 3.107 , it is seen that while 

for Kn=1, there is only one vortex, for M=2 one additional vortex, under the first one, 

have been developed. As the Mach number is increased further, these secondary 
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eddies grow under the first one. 

    In Fig. 3.111, we show the relative vertical distance (x/L) of the center of the top 

vortex of the cavity in term of Kn=10, 1, and 0.1 of M=0.5, 0.9, 1.1, and 2. It is seen 

that in these cases, as M is increased, the center of the top vortex is moved slightly 

toward the right wall, when Kn=0.0033 is opposite. However, Kn=0.01 of M=0.5, 0.9, 

and 1.1. It is seen that in these cases, as M is increased, the center of the top vortex is 

moved slightly toward the right wall, when M=2 is opposite 

    In Fig. 3.112, we show the relative vertical distance (y/L) of the center of the top 

vortex of the cavity in term of Kn=10, 1, and 0.1 of M=0.5, 0.9, 1.1, and 2. It is seen 

that in these cases, as M is increased, the center of the top vortex is moved slightly 

toward the moving wall. However, Kn=0.01, and 0.0033 of M=0.5, 0.9, 1.1, and 2. It 

is seen that in these cases, as M is increased, the center of the top vortex is moved 

slightly reversely the moving wall. 
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Chapter 4. Conclusions and Recommendation of Future 

Work 

 

4.1 Conclusion 

Work progress in this period can be briefly summarized as follows: 

1. In the work, accurate numerical methods, which combine features of the modern 

high resolution upwind method in computational fluid dynamics and the discrete 

ordinate method in kinetic theory, have been proposed for the computations of 

rarefied gas flows using the nonlinear model Boltzmann equations. Two kinetic 

model are employed. One is the BGK model and the other is the Shakov model. 

2. We found that the convergence is better while grid size becomes smaller towards 

the diffuse wall. However, when grid size nearby the diffuse wall is the same, the 

large number of mesh doesn't result in better convergence. 

3. Velocity slips and temperature jumps increase at the solid walls with increasing 

rarefaction at the same Mach number. 

4. Results show that vortex center move toward left and down as Knudsen number 

(Kn=10, 1, 0.1, 0.01) decreasing for M=0.5, 0.9, 1.1, and 2, when Kn=0.0033 is 

opposite. But the vortex center move toward the opposite way for M=0.5, 

Kn=0.0033 and M=2, Kn=0.0033.. 

5. For Kn=0.01, and 0.0033, under the main vortex secondary eddies have been 
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created at the two bottom corners. Only in this special example for M=2, Kn=10, 

unnder the main vortex secondary eddie have been created at the right bottom 

corners. 

6. To compare our computations with DSMC calculations and Navier-Stokes 

equation calculations. 

 

4.2 Recommendation of Future Work 

    Based on this study, future work is suggested as follows: 

1. To simulate the flows in detail by changing the ratio of height to width of the 

cavity; 

2. To simulate the flows in detail by changing the wall temperatures and to focus 

on the discussion of heat transfer along the solid walls; 

3. To simulate the driven cavity flow with oscillatory top moving plate. 

4. To simulate the driven cavity flows with gas mixture and discuss the effects of 

moving plate speed and oscillation to the mixing of different species within the 

cavity. 
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Table. I All the Simulation cases. 

M \ Kn Kn=0.0033 Kn=0.01 Kn=0.1 Kn=1 Kn=10 
M=0.5 Case A Case B Case C Case D Case E 
M=0.9 Case F Case G Case H Case I Case J 
M=1.1 Case K Case L Case M Case N Case O 
M=2.0 Case P Case Q Case R Case S Case T 
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Table. II Mesh information 

Knudsen 
number 

Mach number Mesh Grid size of the 
smallest cell 

model 

10 2 101 x 101 0.01 BGK / Shakov
10 1.1 101 x 101 0.01 BGK / Shakov
10 0.9 101 x 101 0.01 BGK / Shakov
10 0.5 101 x 101 0.01 BGK / Shakov
1 2 101 x 101 0.01 BGK / Shakov
1 1.1 101 x 101 0.01 BGK / Shakov
1 0.9 101 x 101 0.01 BGK / Shakov
1 0.5 101 x 101 0.01 BGK / Shakov

0.1 2 101 x 101 0.01 BGK / Shakov
0.1 1.1 101 x 101 0.01 BGK / Shakov
0.1 0.9 101 x 101 0.01 BGK / Shakov
0.1 0.5 101 x 101 0.01 BGK / Shakov
0.01 2 101 x 101 0.001 BGK / Shakov
0.01 1.1 101 x 101 0.001 BGK / Shakov
0.01 0.9 101 x 101 0.001 BGK / Shakov
0.01 0.5 101 x 101 0.001 BGK / Shakov

0.0033 2 101 x 101 0.001 BGK / Shakov
0.0033 1.1 101 x 101 0.001 BGK / Shakov
0.0033 0.9 101 x 101 0.001 BGK / Shakov
0.0033 0.5 101 x 101 0.001 BGK / Shakov
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Table. III Simulation condition 

Knudsen 
number 

Mach 
number 

Re 
nimber 

Driven plate 
velocity 

Initial wall 
and gas 

temperature  
10 2 0.33 644 300 

10 1.1 0.18 354.2 300 

10 0.9 0.15 289.8 300 

10 0.5 0.08 161 300 

1 2 3.3 644 300 

1 1.1 1.8 354.2 300 

1 0.9 1.5 289.8 300 

1 0.5 0.8 161 300 

0.1 2 33 644 300 

0.1 1.1 18 354.2 300 

0.1 0.9 15 289.8 300 

0.1 0.5 8 161 300 

0.01 2 330 644 300 

0.01 1.1 180 354.2 300 

0.01 0.9 150 289.8 300 

0.01 0.5 80 161 300 

0.0033 2 999 644 300 

0.0033 1.1 550 354.2 300 

0.0033 0.9 450 289.8 300 

0.0033 0.5 250 161 300 
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Table. IV Location of the center of the top vortex for various values of Ma and Kn. 

M\Kn 10 1 0.1 0.01 0.0033 

0.5 (0.5267, -0.3075) (0.5274, -0.3001) (0.5305, -0.2691) (0.5823, -0.2442) (0.6323, -0.2826) 

0.9 (0.5448, -0.2878) (0.5457, -0.2840) (0.5513, -0.2679) (0.6156, -0.2549) (0.6008, -0.3488) 

1.1 (0.5530, -0.2752) (0.5540, -0.2735) (0.5602, -0.2664) (0.6225, -0.2611) (0.5850, -0.3697) 

2 (0.5810, -0.2216) (0.5831, -0.2247) (0.5934, -0.2497) (0.6213, -0.2879) (0.5414, -0.4203) 
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Fig. 1.1 Flow Regime and solution method 
 
 
 
 
 
 

 
Fig. 2.1 The Knudsen number limits on the mathematical models. 
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Fig. 3.1 The 2D square (L/H=1) driven cavity flow with moving top plate 
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Fig. 3.2 Grid. 1 is grid mesh of 101 by 101 and smallest grid size is -3105× . 
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Fig. 3.3 Grid. 2 is grid mesh of 101 by 101 and smallest grid size is 
-3101×  
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Fig. 3.4 Grid. 3 is grid mesh of 201 by 201 and smallest grid size is 
-3105×  
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Fig. 3.5 Grid. 4 is grid mesh of 101 by 101 and smallest grid size is 
-2101×  
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
Fig. 3.6 The residual functions for different grids (a) Grid. 1, (b) Grid. 2, (c) Grid. 

3, (d)Grid. 4. 
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(a)                             (b) 
 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.7 Contours of number Density for M=0.5, (a) Kn=10; (b) Kn=1; (c) 

Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.8 Contours of Temperature for M=0.5, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.9 Contours of Mach number for M=0.5, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.10 Contours of U-velocity for M=0.5, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.11 Contours of V-velocity for M=0.5, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.12 Contours of number Density for M=0.9, (a) Kn=10; (b) Kn=1; (c) 

Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.13 Contours of Temperature for M=0.9, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.14 Contours of Mach number for M=0.9, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.15 Contours of U-velocity for M=0.9, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.16 Contours of V-velocity for M=0.9, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.17 Contours of number Density for M=1.1, (a) Kn=10; (b) Kn=1; (c) 

Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.18 Contours of Temperature for M=1.1, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.19 Contours of Mach number for M=1.1, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.20 Contours of U-velocity for M=1.1, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.21 Contours of V-velocity for M=1.1, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
 
 
 
 
 



 79

 
(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.22 Contours of number Density for M=2.0, (a) Kn=10; (b) Kn=1; (c) 

Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
 
 
 
 
 



 80

 
(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.23 Contours of Temperature for M=2.0, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.24 Contours of Mach number for M=2.0, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.25 Contours of U-velocity for M=2.0, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 

 
                  (e)  
 
 
Fig. 3.26 Contours of V-velocity for M=2.0, (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.27 Profile of the number Density on a vertical plane x=0.5 for (a) M=0.5; 

(b) M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.28 Profile of the Temperature on a vertical plane x=0.5 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.29 Profile of the U-velocity on a vertical plane x=0.5 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.30 Profile of the V-velocity on a vertical plane x=0.5 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.31 Profile of the number Density on a horizontal plane y=-0.5 for (a) 

M=0.5; (b) M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.32 Profile of the Temperature on a horizontal plane y=-0.5 for (a) M=0.5; 

(b) M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.33 Profile of the U-velocity on a horizontal plane y=-0.5 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.34 Profile of the V-velocity on a horizontal plane y=-0.5 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.35 Profile of the number Density on a vertical plane x=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.36 Profile of the Temperature on a vertical plane x=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.37 Profile of the U-velocity on a vertical plane x=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.38 Profile of the V-velocity on a vertical plane x=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.39 Profile of the number Density on a vertical plane x=1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.40 Profile of the Temperature on a vertical plane x=1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.41 Profile of the U-velocity on a vertical plane x=1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.42 Profile of the V-velocity on a vertical plane x=1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.43 Profile of the number Density on a horizontal plane y=-1 for (a) M=0.5; 

(b) M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.44 Profile of the Temperature on a horizontal plane y=-1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.45 Profile of the U-velocity on a horizontal plane y=-1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.46 Profile of the V-velocity on a horizontal plane y=-1 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.47 Profile of the number Density on a horizontal plane y=0 for (a) M=0.5; 

(b) M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.48 Profile of the Temperature on a horizontal plane y=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.49 Profile of the U-velocity on a horizontal plane y=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.50 Profile of the V-velocity on a horizontal plane y=0 for (a) M=0.5; (b) 

M=0.9; (c) M=1.1; (d) M=2 
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(a)                             (b) 

 

  
                  (c)                            (d) 
 

 
                  (e)  
 
Fig. 3.51 Velocity streamlines for M=0.5, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

  
                  (c)                            (d) 
 

 
                  (e)  
 
Fig. 3.52 Velocity streamlines for M=0.9, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

  
                  (c)                            (d) 
 

 
                  (e)  
 
Fig. 3.53 Velocity streamlines for M=1.1, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1; 

(d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

  
                  (c)                            (d) 
 

 
                  (e)  
 
Fig. 3.54 Velocity streamlines for M=2, and (a) Kn=10; (b) Kn=1; (c) Kn=0.1; (d) 

Kn=0.01; (e) Kn=0.0033 
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Fig. 3.55 Location of the center for x/L of the top vortex for various values of 

Mach number and Knudsen number. 
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Fig. 3.56 Location of the center for y/L of the top vortex for various values of 

Mach number and Knudsen number. 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.57 Contours of number Density for Kn=10, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.58 Contours of Temperature for Kn=10, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.59 Contours of Mach number for Kn=10, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.60 Contours of U-velocity for Kn=10, (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.61 Contours of V-velocity for Kn=10, (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.62 Contours of number Density for Kn=1, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.63 Contours of Temperature for Kn=1, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.64 Contours of Mach number for Kn=1, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.65 Contours of U-velocity for Kn=1, (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.66 Contours of V-velocity for Kn=1, (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.67 Contours of number Density for Kn=0.1, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.68 Contours of Temperature for Kn=0.1, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.69 Contours of Mach number for Kn=0.1, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.70 Contours of U-velocity for Kn=0.1, (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.71 Contours of V-velocity for Kn=0.1, (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.72 Contours of number Density for Kn=0.01, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.73 Contours of Temperature for Kn=0.01, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.74 Contours of Mach number for Kn=0.01, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.75 Contours of U-velocity for Kn=0.01, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.76 Contours of V-velocity for Kn=0.01, (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.77 Contours of number Density for Kn=0.0033, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.78 Contours of Temperature for Kn=0.0033, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.79 Contours of Mach number for Kn=0.0033, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.80 Contours of U-velocity for Kn=0.0033, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 
 
 
Fig. 3.81 Contours of V-velocity for Kn=0.0033, (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.82 Profile of the number Density on a vertical plane x=0.5 for (a) Kn=10; 

(b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.83 Profile of the Temperature on a vertical plane x=0.5 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.84 Profile of the U-velocity on a vertical plane x=0.5 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.85 Profile of the V-velocity on a vertical plane x=0.5 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.86 Profile of the number Density on a horizontal plane y=-0.5 for (a) 

Kn=10; (b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.87 Profile of the Temperature on a horizontal plane y=-0.5 for (a) Kn=10; 

(b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.88 Profile of the U-velocity on a horizontal plane y=-0.5 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.89 Profile of the V-velocity on a horizontal plane y=-0.5 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.90 Profile of the number Density on a vertical plane x=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.91 Profile of the Temperature on a vertical plane x=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.92 Profile of the U-velocity on a vertical plane x=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.93 Profile of the V-velocity on a vertical plane x=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.94 Profile of the number Density on a vertical plane x=1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.95 Profile of the Temperature on a vertical plane x=1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.96 Profile of the U-velocity on a vertical plane x=1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
 
 
 



 154

 
(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.97 Profile of the V-velocity on a vertical plane x=1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.98 Profile of the number Density on a horizontal plane y=-1 for (a) Kn=10; 

(b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.99 Profile of the Temperature on a horizontal plane y=-1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.100 Profile of the U-velocity on a horizontal plane y=-1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.101 Profile of the V-velocity on a horizontal plane y=-1 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.102 Profile of the number Density on a horizontal plane y=0 for (a) Kn=10; 

(b) Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
 
 
 



 160

 
(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.103 Profile of the Temperature on a horizontal plane y=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.104 Profile of the U-velocity on a horizontal plane y=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                             (b) 

 

 
                  (c)                            (d) 

     
                  (e) 
 
 
Fig. 3.105 Profile of the V-velocity on a horizontal plane y=0 for (a) Kn=10; (b) 

Kn=1; (c) Kn=0.1; (d) Kn=0.01; (e) Kn=0.0033 
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(a)                                 (b) 

 

 
(c)                                 (d) 

 
 
Fig. 3.106 Velocity streamlines for Kn=10, and (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                                  (b) 

 

 
(c)                                 (d) 

 
 
Fig. 3.107 Velocity streamlines for Kn=1, and (a) M=0.5; (b) M=0.9; (c) M=1.1; (d) 

M=2.0 
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(a)                                  (b) 

 

 
(c)                                 (d) 

 
 
Fig. 3.108 Velocity streamlines for Kn=0.1, and (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                                  (b) 

 

 
(c)                                  (d) 

 
 
Fig. 3.109 Velocity streamlines for Kn=0.01, and (a) M=0.5; (b) M=0.9; (c) M=1.1; 

(d) M=2.0 
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(a)                                 (b) 

 

 
(c)                                 (d) 

 
 
Fig. 3.110 Velocity streamlines for Kn=0.0033, and (a) M=0.5; (b) M=0.9; (c) 

M=1.1; (d) M=2.0 
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Fig. 3.111 Location of the center for x/L of the top vortex for various values of 

Mach number and Knudsen number. 
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Fig. 3.112 Location of the center for y/L of the top vortex for various values of 

Mach number and Knudsen number. 
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(a)                             (b) 

 

 
                  (c)                            (d) 

  
                  (e)                            (f) 
Fig. 3.113 Properties of M=0.9, Kn=0.0033 using UNIC for (a) number density, (b) 

temperature, (c) Mach number, (d) u-velocity, (e) v-velocity, (f) velocity 
streamlines. 
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(a)                             (b) 

 

 
                  (c)                            (d) 

  
                  (e)                            (f) 
Fig. 3.114 Properties of M=2, Kn=0.0033 using DSMC for (a) number density, (b) 

temperature, (c) Mach number, (d) u-velocity, (e) v-velocity, (f) velocity 
streamlines. 

 




