
Chapter 1 

Introduction 

 
The idea of fractional calculus has been known since the development of the 

regular calculus, with the first reference probably being associated with correspondence 

between Leibniz and L’Hospital in 1695, where the meaning of derivative of order one 

half was discussed [1-4]. Although fractional calculus has a 300-year-old history, its 

applications to physics and engineering are just a recent focus of interest [34-38]. It was 

found that many systems in interdisciplinary fields can be described by the fractional 

differential equations, such as viscoelastic systems, dielectric polarization [5], electrode 

electrolyte polarization [6], and electromagnetic waves [7]. More recently, many 

investigations are devoted to the control [8-12] and dynamics [13-25] of fractional order 

dynamical systems. In [13], it is shown that the fractional order Chua’s circuit of order 

as low as 2.7 can produce a chaotic attractor. In [14], it is shown that nonautonomous 

Duffing systems of order less than 2 can still behave in a chaotic manner. In [15], 

chaotic behaviors of the fractional order “jerk” model is studied, in which chaotic 

attractor can be obtained with the system order as low as 2.1, and in [16] chaos control 

of this fractional order chaotic system is investigated. In [17], the fractional order Wien 

bridge oscillator is studied, where it is shown that limit cycle can be generated for any 

fractional order, with a proper value of the amplifier gain. 

In 1990, the idea of synchronizing two identical chaotic systems with different 

initial conditions was introduced by Pecora and Carroll [38]. Since then, there has been 

particular interest in chaotic synchronization, due to many potential applications in 

secure communication, biological science, chemical reaction, social science, and many 

other fields. The concept of synchronization has been extended to the scope, such as 

complete synchronization (CS), phase synchronization (PS), lag synchronization (LS), 

anticipated synchronization (AS), and generalized synchronization (GS), etc [3-7, 37-55, 

60-66]. However most of synchronizations can only be realized under the condition that 

there exists coupling between two chaotic systems. Sometimes, it is difficult even 
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impossible to couple two chaotic systems such as in physical and electrical systems. In 

comparison with coupled chaotic systems, synchronization between the uncoupled 

chaotic systems has many advantages [45-46, 55-60]. In this thises, synchronization of 

two double Duffing systems whose corresponding parameters are driven by a chaotic 

signal of a third system is analyzed. The chaos synchronizations of two uncoupled 

double Duffing systems are obtained by replacing their corresponding parameters by the 

same function of chaotic state variables of a third chaotic system. It is noted that 

whether CS or AS appears depends on the initial conditions. Besides, CS and AS are 

also characterized by great sensitivity to initial conditions and on the strengths of the 

substituting chaotic variable. It is found that CS or AS alternatively occurs under certain 

conditions [5-7, 14, 19] 

Then we focus on the synchronization and antisynchronization of two identical 

double Duffing systems whose corresponding parameters are replaced by a white noise, 

a Rayleigh noise, a Rician noise or a uniform noise respectively. It is noted that whether 

CS or AS appears depends on the driving strength [3, 6, 19-20, 66-67]. 

In practice, some or all of the system parameters are uncertain. Moreover, these 

parameters change from time to time. Many researchers solve this problem by adaptive 

synchronization [68-73]. In current scheme of adaptive synchronization, traditional 

Lyapunov asymptotical stability theorem and Babalat lemma are used to prove the errors 

of synchronizing states approach zero. But the question that why the estimated 

parameters also approach the uncertain values, has still remained without answer. By the 

pragmatical asymptotical stability theorem [74-75] and an assumption of equal 

probability for ergodic initial conditions, the answer can be given. 

  Among many kinds of synchronizations, the generalized synchronization is 

investigated [76-88]. It means there exists a given functional relationship between the 

states of the master and that of the slave ( )y G x= , where x , y  are the states vector of 

master system and slave system respectively. In this paper, a special kind of generalized 

synchronizations 

                                                (1) )()( tFxxGy +==

is studied, where  is a given vector function of time which may take various forms, 

either regular or chaotic function of time. When 

)(tF

0)( =tF , it reduces to a complete 
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synchronization [89-90]. 

  As a numerical example, two identical double Duffing chaotic systems [91] and 

a double van der Pol chaotic system [92-93] are used as master system, slave system, 

and goal system, respectively. The goal system gives chaotic F(t). Next, the robustness 

of the generalized synchronization is also studied [94-100].  

This thesis is organized as follows. In Chapter 2 the fractional derivative and its 

approximation are introduced. And then gives the dynamic equation of double Duffing 

system. The system under study is described both in its integer and fractional forms. 

Numerical simulation results are presented. In Chapter 3, a brief description of 

synchronization scheme based on the substitution of the strengths of the mutual 

coupling term of two identical chaotic double Duffing systems by the chaotic variable of 

a third double Duffing system are presented. And numerical simulations are given for 

illustration. It is found that one can obtain CS or AS by adjusting the driving strength 

and initial conditions. In Chapter 4, chaos synchronization and antisynchronization are 

obtained by replacing two corresponding parameters of two uncoupled identical double 

Duffing chaotic dynamical systems by a white noise, a Rayleigh noise, a Rician noise or 

a uniform noise respectively. It is found that one can obtain CS or AS by adjusting the 

driving strength. 

In Chapter 5, theoretical analyses of the pragmatical asymptotical stability are 

quoted [74-75]. Adaptive controllers are designed for the pragmatical generalized 

synchronization of two double Duffing chaotic oscillators with a double van der Pol 

chaotic system as a goal system. High robustness of the generalized synchronization is 

also obtained in Chapter 5.  

Finally, conclusions follow sequentially in Chapter 6. 
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Chapter 2 

Chaos in Integral Order and in Fractional Order 

Double Duffing Systems 

 
2.1 Preliminaries 

In this chapter, the fractional derivative and its approximation are introduced. And 

gives the dynamic equation of double Duffing system. The system under study is 

described both in its integer and fractional forms. Numerical simulation results are 

presented. 

 

2.2 Fractional derivative and its approximation 
Two commonly used definitions for the general fractional differintegral are the 

Grunwald definition and the Riemann-Liouville definition . The Riemann-Liouville 

definition of the fractional integral is given here as [26] 

  0,
)(
)(

)(
1)(

0 1 <
−−Γ

= ∫ + qd
t

f
qdt

tfd t

qq

q

τ
τ
τ                            (2.1) 

where q can have noninteger values, and thus the name fractional differintegral. 

Notice that the definition is based on integration and more importantly is a convolution 

integral for q < 0. When q > 0, then the usual integer nth derivative must be taken of the 

fractional (q–n)th integral, and yields the fractional derivative of order q as 

  ,⎥
⎦

⎤
⎢
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= −
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nq

nq

n

n

q

q

dt
fd

dt
d
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fd      q>0 and n an integer>q                    (2.2) 

This appears so vastly different from the usual intuitive definition of derivative and 

integral that the reader must abandon the familiar concepts of slope and area and attempt 

to get some new insight. Fortunately, the basic engineering tool for analyzing linear 

systems, the Laplace transform, is still applicable and works as one would expect; that 

is, 
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where n is an integer such that n - 1 < q < n . If the initial conditions are considered 

to be zero, this formula reduces to the more expected and comforting form 

{ )()( tfLs
dt

tfdL q
q

q

=
⎭
⎬
⎫

⎩
⎨
⎧ }                                           (2.4) 

An efficient method is to approximate fractional operators by using standard 

integer order operators. In [26], an effective algorithm is developed to approximate 

fractional order transfer functions. Basically, the idea is to approximate the system 

behavior in the frequency domain. By utilizing frequency domain techniques based on 

Bode diagrams, one can obtain a linear approximation of fractional order integrator, the 

order of which depends on the desired bandwidth and discrepancy between the actual 

and the approximate magnitude Bode diagrams. In Table 1 of [13], approximations for 

qs
1  with q=0.1~0.9 in steps 0.1 are given, with errors of approximately 2dB. These 

approximations are used in following simulations. 

 

2.3 A fractional order double Duffing system 
The famous Duffing system is 

tdcxbxxax ωcos3 =+++ &&&                                          (2.5) 

where a, b are constant parameters, td ωcos  is an external excitation.  

It can be written as two first order ordinary differential equations : 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−−=

=

tdcxbxay
dt
dy

y
dt
dx

ωcos3
                                     (2.6) 

Consider the following double Duffing system: 
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It consists of two Duffing systems in which two external excitations are replaced 

by two coupling terms. It is an autonomous system with four states where a, b, c, d, e, g, 

h, and k are constant parameters of the system.  

Now, consider a fractional order Duffing system. Here, the conventional 

derivatives in Eq.(2.7) are replaced by the fractional derivatives as follows: 
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                                        (2.8) 

where system parameter d is allowed to be varied, and , , and  are four 

fractional order numbers. Simulations are then performed using (

1q 2q 3q 4q

iq 4~1=i ) varied from 

0.1~0.9. We take 4321 qqqq === . The approximations from Table 1 of [13] are used 

for the simulations of the appropriate th integrals. When < 1, then the 

approximations are used directly. It should further be noted that approximations used in 

the simulations for  

iq iq

iqs
1 , when > 1, are obtained by using 1/s times the 

approximation for 

iq

1
1

−iqs
 from Table 1.
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2.4 Simulation results 

In this Section, all numerical simulations are run by block diagrams in Simulink 

environment, using ODE45 solver algorithm, where the fractional integrators have been 

approximated by linear time invariant transfer functions following the procedure in [13]. 

In so far as the attractor shape is concerned, both procedures gave very similar results. 

In numerical simulations, three parameters 05.0=a , 1=b , 1=c , , 0005.0=e 1=g , 

 and  are fixed and  is varied.  1=h 25=k d

  

Table 1. Relation between orders of derivatives and existences of chaos. 

Cases Orders Existence of chaos 

1 1.0=iq  Yes 

2 2.0=iq  Yes 

3 3.0=iq  Yes 

4 4.0=iq  Yes 

5 5.0=iq  Yes 

6 6.0=iq  Yes 

7 7.0=iq  Yes 

8 8.0=iq  No 

9 9.0=iq  No 

10 1=iq  Yes 

 

 For 1~1.0 == ii qq , chaotic behaviors are found.. The corresponding phase 

portraits, Poincaré maps and the bifurcation diagrams are shown in Fig. 2.1 ~ Fig. 2.8. It 

can be seen that when  is larger, the range of  state is also larger. when is 

larger, the phase portrait move to the positive direction of 

iq d d

x  and y  axis. 
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(a) d = 699.5 

 

 
(b) d = 699 ~ 700 

 

Fig. 1 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 

order double Duffing system, x versus y and d versus =0.1. iq

 

 

 8



 
(a) d = 650.5 

 

 
(b) d = 650 ~ 651 

 

Fig. 2 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 

order double Duffing system, x versus y and d versus =0.2. iq
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 (a) d = 601 

 

  
 (b) d = 600.5 ~ 601.5 

 

Fig. 3 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 

order double Duffing system, x versus y and d versus =0.3. iq
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(a) d = 591.2 

 

 
(b) d = 591 ~ 592 

 

Fig. 4 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 

order double Duffing system, x versus y and d versus =0.4 iq
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(a) d = 655 

 

 
(b) d = 655 

Fig. 5 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 
order double Duffing system, x versus y and d versus =0.5. iq
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 (a) d = 4452.4 

 
 (b) d = 4452 ~ 4452.6 

Fig. 2.6 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 
order double Duffing system, x versus y and d , =0.6. iq
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(a) d = 20000 

 

  
+20000  

4.0 5.00  1.0 2.0  3.0  

 
(b) d = 20000 ~ 20000.5 

 
Fig. 2.7 The phase portraits, Poincaré maps and the bifurcation diagram for the fractional 
order double Duffing system, x versus y and d , =0.7. iq
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(a) d = -1.8 

 

 
(b) d = -2 ~ -0.5 

 

Fig. 2.8 The phase portraits, Poincaré maps and the bifurcation diagram for the 

fractional order double Duffing system, x versus y and d , =1. iq
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Chapter 3 

Chaos Synchronization of Double Duffing 

Systems with Parameters Excited by a Chaotic 

Signal 

 
3.1 Preliminaries  

A brief description of synchronization scheme based on the substitution of the 

strengths of the mutual coupling term of two identical chaotic double Duffing systems 

by a function of chaotic state variables of a third double Duffing system are presented. 

And numerical simulations are given for illustration. It is found that one can obtain CS 

or AS by adjusting the driving strength and initial conditions. 

 

3.2 Synchronization of two double Duffing systems  

It consists of two Duffing systems in which two external excitations are replaced 

by two coupling terms. It is an autonomous system with four states where a, b, c, d, e, g, 

h, and k are constant parameters of the systems. Two identical double Duffing systems 

to be synchronized are 
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where a, b, c, d, e, g, h and k are positive scalars, and =  are the control inputs to 

be designed. The third system is also a double Duffing system : 

1d 2d

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+−−−=

=

+−−−=

=

3
3

333
3

3
3

3
3

333
3

3
3

kxhuguev
dt
dv

v
dt

du

ducxbxay
dt
dy

y
dt
dx

                                   (3.3) 

In order to obtain the chaos synchronization of systems (3.1) and (3.2), two 

corresponding parameters = of them are replaced by a chaotic signal  of 

the third system (3.3), where p, q are constant driving strengths. The error state variables 

are defined :  

1d 2d 33 qypx +

                                                 (3.4) 
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Giving suitable values for p, q and initial conditions, the synchronization or 

anti-synchronization of system (3.1) and (3.2) can be obtained. 
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3.3 Numerical simulations 

Matlab method is used to all of our simulations with time step 0.01. The parameters 

of two systems (3.1) and (3.2) are given as a = 0.5, b = 1, c = 3, d= -2, e = 5, g = 1, h = 

2 , k=2 to ensure the chaotic behavior. To verify CS and AS, it is convenient to introduce 

the following coordinate transformation: E1= (x1 + x2) and e1= (x1 − x2) and the same 

transformation for y, u and v variables. Therefore, the new coordinate systems (E1, E2, 

E3, E4) and (e1, e2, e3, e4) represent the sum and difference motions of the original 

coordinate system, respectively. We can easily see that (e1, e2, e3, e4) subspace represents 

the CS case, and (E1, E2, E3, E4) subspace the AS one. 

How the synchronization phenomena depend on the initial conditions will be 

studied. At the beginning, we choose (x1, y1, u1, v1 ) = (2, 5, 1, 0.3) and (x2, y2, u2, 

v2) = (-8, -9, 0, 5) as the initial conditions of system (3.1) and system (3.2). Let the 

driving strengths be p = 10, q = 8 and p = 10, q = 10. Fig. 3.1 and Fig.3. 2 show the 

time-series of AS and CS phenomena for different driving strengths, respectively. The 

simulation results are shown in Fig. 3.1 for case (a) and in Fig. 3.2 for case (b). These 

simulation results indicate that the final result develops to CS or AS depending 

sensitively on driving strength in spite of the identical initial conditions in both cases. 

For AS case (Fig. 3.1(a) and (b)), the sums of the variables converge to zero, while the 

differences remain chaotic. For CS case (Fig. 3.2(a) and (b)), on the other hand, e1, e2, e3 

and e4 converge to zero, while E1, E2, E3 and E4 remain chaotic.  

In order to know how these phenomena depend upon the initial conditions, 

different initial conditions are given for fixed driving strength. The results are shown in 

Figs. 3.3 and 3.4. Fig. 3.3(b) shows that E1, E2, E3 and E4 tend to zero. As shown in Fig. 

3.3(a), e1, e2, e3 and e4 do not go to zero. Comparing Fig. 3.1 with Fig. 3.3, it is found 

that they have contrary behaviors. The only reason lies in the different initial conditions. 

Similar result also exists by comparing Fig. 3.2 with Fig. 3.4.  
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Besides, we also discover the alternative CS and AS. In Fig. 3.5, the system shows 

alternative switching between these two states where the initial condition (x1, y1, u1, 

v1) = (2, 5, 1, 0.3), (x2, y2, u2, v2) = (-8, -9, 0, 5), and p = 12, q = 12. 
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Fig. 3.1 CS and AS for initial condition (x2, y2, u2, v2) = (-8, -9, 0, 5), and p = 10, q 

= 8. (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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Fig. 3.2 CS and AS for initial condition (x2, y2, u2, v2) = (-8, -9, 0, 5), and p = 10, 

q = 10. (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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Fig. 3.3 CS and AS for initial condition (x2, y2, u2, v2) = (9, 5, -7, 9), and p = 10, q = 

10. (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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Fig. 3.4 CS and AS for initial condition (x2, y2, u2, v2) = (-8, -9, 0, 5), and p = 10,  

q = 13. (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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Fig. 3.5 Alternative CS and AS for initial condition (x1, y1, u1, v1) = (2, 5, 1, 0.3), 

(x2, y2, u2, v2) = (-3, 5, 2, 9), and p = 12, q = 12. (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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Chapter 4 

Uncoupled Chaos Synchronization and Antisynchronization 

of Double Duffing Systems by Noise Excited Parameters 

 

4.1 Preliminaries  

Chaos synchronization and antisynchronization by replacing two corresponding 

parameters of two uncoupled identical double Duffing chaotic dynamical systems by a 

white noise, a Rayleigh noise, a Rician noise or a uniform noise respectively. Numerical 

simulations are given to demonstrate the effectiveness of the proposed scheme. 

 

4.2 Synchronization and antisynchronization of two double Duffing 

systems  

In this Section, consider the following double Duffing system: 
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                                        (4.1) 

It consists of two Duffing systems in which two external excitations are replaced 

by two coupling terms. It is an autonomous system with four states where a, b, c, d, e, g, 

h, and k are constant parameters of the systems.            

 

When 7,3,1,05.0,7,3,1,05.0 −======== khgedcba , the chaotic behavior is 

presented in Fig 1. Two identical double Duffing systems to be synchronized are 
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In order to obtain the chaos synchronization and antisynchronization of systems 

(4.2) and (4.3), the corresponding parameters a, b, c, d, e, g, h, k of two systems are 

replaced respectively by a noise signal , where p is constant driving strength and 

 is the noise signal. 

)(xpf

)(xf

 

The error state variables are defined:  

                                                   (4.4) 
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Giving suitable values for p and initial conditions, the synchronization or 

anti-synchronization of systems (4.2) and (4.3) can be obtained. 

 

4.3 Numerical simulations 

Matlab method for simulations with time step 0.01. The parameters of systems (4.2) 
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and (4.3) are given as 7,3,1,05.0,7,3,1,05.0 −======== khgedcba  to ensure 

the chaotic behavior. The chaotic phase portraits for double Duffing system is shown in 

Fig 4.1. To verify CS and AS, it is convenient to introduce the following coordinate 

transformation: E1= (x1 + x2) and e1= (x1 − x2) and the same transformation for y, u and 

v variables. Therefore, the new coordinate systems (E1, E2, E3, E4) and (e1, e2, e3, e4) 

represent the sum and difference motions of the original coordinate system, respectively. 

We can easily see that (e1, e2, e3, e4) subspace represents the CS case, and (E1, E2, E3, E4) 

subspace the AS one. 

In order to obtain the chaos synchronization or antisynchronization of systems (4.2) 

and (4.3), we replace two corresponding parameters of two identical systems by the 

same noise signal as follows: 

Case1: White noise 

The probability density function of n-dimensional Gaussian noise is 

)2/)()(exp()det)2(()( 12
1

μμπ −−−= −−
xKxKxf Tn                    

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean value 

vector, and the superscript T indicates matrix transpose. The Simulink Communications 

toolbox provides the Gaussian Noise Generator block. The initial seed, the mean value 

and the variance in the simulation must be specified. We take the initial seed 41, the 

mean value 1 and the variance 1 in the simulation. 

With the strength =p 1 or -1, replace two corresponding parameters of the 

systems (4.2) and system (4.3) by a white noise signal. No AS or CS can be found.  

 

Case2: Rayleigh noise 

The Rayleigh probability density function is given by 
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where  is known as the fading envelope of the Rayleigh distribution. The Simulink 

Communications toolbox provides the Rayleigh Noise Generator block. The initial seed 

and the sigma parameter in the simulation must be specified. We specify the initial seed 

47 and the sigma parameter 5 in the simulation. 

2σ

For this case, we replace two corresponding parameters of the systems (4.2) and 

system (4.3) by a Rayleigh noise chaotic signal. We only find AS or CS in replacement 

of the a parameters. In replacement of two b, c, d, e, f, h, k by a Rayleigh noise, neither 

CS nor AS is found. In Fig 4.2, =p 10, two parameters a of systems (4.2) and (4.3) are 

replaced. In Fig 4.2 (a), CS is obtained. In Fig 4.2 (b) no AS is obtained. For =p 22, 

CS and temporary AS are obtained as shown in Fig 4.3 (a), (b). For =p 0.18, no CS is 

obtained, AS is obtained as shown in Fig 4.4 (a), (b). For =p 1, no CS is obtained, AS 

is obtained as shown in Fig 4.5 (a), (b).   

 

Case3: Rician noise 

The Rician probability density function is given by 

 
⎪
⎩

⎪
⎨

⎧
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≥=

+
−

00

0)()(
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2
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x

xemxIx
xf

mx
σ

σσ                                  

where σ is the standard deviation of the Gaussian distribution that underlies the Rician 

distribution noise, , where  and  are the mean values of two 

independent Gaussian components, and  is the modified 0th-order Bessel function of 

the first kind given by   

222
QI mmm += Im Qm

0I
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∫
−

=
π

ππ
dteyI ty cos

0 2
1)(                                             

Note that m and σ  are not the mean value and standard deviation for the Rician 

noise. The Simulink Communications toolbox provides the Rician Noise Generator 

block. The initial seed, Rician K-factor and the sigma parameter must be specified in the 

simulation. We specify the initial seed 59, Rician K-factor 10 and the sigma parameter 5 

in the simulation. 

For this case, we replace two corresponding parameters of the systems (4.2) and 

system (4.3) by using the Rician noise signal. We only find AS in replacement of two a 

parameters, with the strength =p 1, as shown in Fig. 4.6.  

 

Case4: Uniform noise 

The probability density function of uniform noise is given by 

⎪⎩

⎪
⎨
⎧ ≤≤

−=
otherwise

bxaif
abxf

0

1
)(                                      

The mean of this density function is given by 
2

ba +
=μ  and its variance by 

12
)( 2

2 ab −
=σ . 

The Simulink Communications toolbox provides the Uniform Noise Generator 

block. The initial seed, the noise lower bound and the noise upper bound must be 

specified in the simulation. We specify the initial seed 31, the noise lower bound 0 and 

the noise upper bound 5 in the simulation. 

For this case, we replace two corresponding parameters of the systems (4.2) and 

system (4.3) by using the uinform noise signal. We only find AS in replacement of two 

parameters a, with the strength =p 1 as shown in Fig. 4.7. 
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 Fig. 4.1. The double Duffing chaotic behavior is presented with the system   

paraments 7,3,1,05.0,7,3,1,05.0 −======== khgedcba  . 
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(a) 
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4E

(b) 

Fig. 4.2. Two paraments a of systems (4.2) and (4.3) are replaced by a Rayleigh 

noise, with the strength p = 10. (a) e1, e2, e3, e4, CS is obtained. (b) E1, E2, E3, E4, no AS is 

obtained. 
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(b) 

Fig. 4.3. Two paraments a of systems (4.2) and (4.3) are replaced by a Rayleigh 

noise, with the strength p = 22. (a) e1, e2, e3, e4, CS is obtained. (b) E1, E2, E3, E4, 

temporary AS is obtained. 

 32



 

1e

2e

3e

4e

(a) 

 

1E

2E

3E

4E

(b) 

Fig. 4.4. Two paraments a of systems (4.2) and (4.3) are replaced by a Rayleigh          

noise, with the strength p = 0.18. (a) e1, e2, e3, e4, no CS is obtained. (b) E1, E2, E3, E4, 

AS is obtained. 
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Fig. 4.5. Two paraments a of systems (4.2) and (4.3) are replaced by a Rayleigh 

noise, with the strength p = 1. (a) e1, e2, e3, e4, no CS is obtained. (b) E1, E2, E3, E4, AS is 

obtained. 
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Fig. 4.6. Two paraments a of systems (4.2) and (4.3) are replaced by a Rician noise, 

with the strength p = 1. (a) e1, e2, e3, e4, no CS is obtained. (b) E1, E2, E3, E4, AS is 

obtained. 
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Fig. 4.7. Two paraments a of systems (4.2) and (4.3) are replaced by a Uniform 

noise, with the strength p = 1. (a) e1, e2, e3, e4, no CS is obtained. (b) E1, E2, E3, E4, AS is 

obtained. 
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Chapter 5 

Highly Robust Pragmatical Generalized Synchronization of 

Double Duffing Systems with Uncertain Parameters via 

Adaptive Control 

 

5.1 Preliminaries 

A scheme is proposed to achieve generalized synchronization for two chaotic 

systems with uncertain parameters. By the pragmatical asymptotical stability theorem 

using the concept of probability, we can prove strictly that the common null solution of 

error dynamics and of parameter dynamics is actually asymptotically stable.  

 

5.2 Pragmatical Generalized Synchronization Scheme by Adaptive 

Control  

There are two identical nonlinear dynamical systems, and the master system 

controls the slave system. The master system is given by 

),( BxfAxx +=&                                                  (5.1) 

where  denotes a state vector, A is an nT
n Rxxxx ∈= ],,[ 21 L nn×  uncertain constant 

coefficient matrix, f is a nonlinear vector function, and B is a vector of uncertain 

constant coefficients in f. 

The slave system is given by 

)()ˆ,(ˆ tuByfyAy ++=&                                             (5.2) 

where denotes a state vector,  is an  estimated 

coefficient matrix, 

nT
n Ryyyy ∈= ],,[ 21 L Â nn×

B̂  is a vector of estimated coefficients in f, and 
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nT
n Rtutututu ∈= )](),(),([)( 21 L   is a control input vector. 

Our goal is to design a controller u(t) so that the state vector of the slave system 

(5.2) asymptotically approaches the state vector of the master system (5.1) plus a given 

chaotic vector function .  This is a special kind of 

generalized synchronization:  

T
n tFtFtFtF )](),(),([)( 21 L=

)()( tFxxGy +== .                                             (5.3) 

The synchronization is accomplished when ∞→t , the limit of the error vector 

 approaches zero: T
neeete ],,[)( 21 L=

0lim =
∞→

e
t

                                                       (5.4) 

where 

)(tFyxe +−= .                                                 (5.5) 

From Eq. (5.5) we have 

)(tFyxe &&&& +−=                                                  (5.6) 

)()()ˆ,(),(ˆ tutFByfBxfyAAxe −+−+−= && .                          (5.7) 

A Lyapunov function )~,~,( cc BAeV  is chosen as a positive definite function 

c
T

cc
T

c
T

cc BBAAeeBAeV ~~
2
1~~

2
1

2
1)~,~,( ++=                              (5.8) 

where AAA ˆ~
−= , BBB ˆ~ −= , cA~ and cB~ are two column matrices whose elements are 

all the elements of matrix A~  and of matrix B~ , respectively. 

Its derivative along any solution of the differential equation system consisting of 

Eq. (5.7) and update parameter differential equations for cA~ and cB~  is 

cccc
T

cc BBAAtutFyfBxBfyAAxeBAeV &&&& ~~~~)]()()(ˆ)(ˆ[)~,~,( ++−+−+−=∴     (5.9) 

where u(t), cA&~ and cB&~  are chosen so that , C is a diagonal negative definite CeeV T=&
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matrix, and V  is a negative semi-definite function of  and parameter differences & e

cA~ and cB~ . In current scheme of adaptive synchronization [71-73], traditional 

Lyapunov asymptotical stability theorem and Babalat lemma are used to prove the error 

vector approaches zero, as time approaches infinity. But the question, why the estimated 

parameters also approach to the uncertain parameters, remains no answer. By 

pragmatical asymptotical stability theorem, the question can be answered strictly. 

The stability for many problems in real dynamical systems is actual asymptotical 

stability, although may not be mathematical asymptotical stability. The mathematical 

asymptotical stability demands that trajectories from all initial states in the 

neighborhood of zero solution must approach the origin as ∞→t . If there are only a 

small part or even a few of the initial states from which the trajectories do not approach 

the origin as , the zero solution is not mathematically asymptotically stable. 

However, when the probability of occurrence of an event is zero, it means the event 

does not occur actually. If the probability of occurrence of the event that the trajectries 

from the initial states are that they do not approach zero when , is zero, the 

stability of zero solution is actual asymptotical stability though it is not mathematical 

asymptotical stability. In order to analyze the asymptotical stability of the equilibrium 

point of such systems, the pragmatical asymptotical stability theorem is used. 

∞→t

∞→t

Let X and Y be two manifolds of dimensions m and n )( nm < , respectively, and ϕ  

be a differentiable map from X to Y, then )(Xϕ  is a subset of Lebesque measure 0 of 

Y . For an autonomous system 

),,( 21 nxxxf
dt
dx

L=                                              (5.10) 

where  is a state vector, the function is defined 

on 

T
nxxxx ],,[ 21 L= T

nffff ],,[ 21 L=

nRD ⊂  and 0>≤ Hx . Let 0=x  be an equilibrium point for the system (5.10). 
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Then 

0)0( =f                                                       (5.11) 

 

Definition : The equilibrium point for the system (5.11) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on CD − , the corresponding trajectories behave 

as that agree with traditional asymptotical stability. 

Theorem : Let  be positive definite and analytic on 

D, such that the derivative of  through Eq. (5.10), is negative semi-definite. 

+→= RDxxxV T
n :],,[ 21 L

V V&

Let X be the m-manifold consisted of point set for which 0≠∀x ,  and 

D is a n-manifold. If 

0)( =xV&

nm <+1 , then the equilibrium point of the system is 

pragmatically asymptotically stable. 

Proof :Since every point of X can be passed by a trajectory of Eq. (5.10), which is 

one dimensional, the collection of these trajectories, C, is a )1( +m -manifold [74-75]. If 

＜ n , then the collection C is a subset of Lebesque measure 0 of D. By the above 

definition, the equilibrium point of the system is pragmatically asymptotically stable.  

)1( +m

If an initial point is ergodicly chosen in D, the probability of that the initial point 

falls on the collection C is zero. Here, equal probability is assumed for every point 

chosen as an initial point in the neighborhood of the equilibrium point. Hence, the event 

that the initial point is chosen from collection C does not occur actually.             

Therefore, under the equal probability assumption, pragmatical asymptotical stability 

becomes actual asymptotical stability. When the initial point falls on , , 

the corresponding trajectories behave as that agree with traditional asymptotical stability 

because by the existence and uniqueness of the solution of initial-value problem, these 

CD − 0)( <xV&
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trajectories never meet C.  

In Eq. (5.8) V is a positive definite function of n variables, i.e. p error state 

variables and mpn =−  differences between unknown and estimated parameters, 

while  is a negative semi-definite function of n variables. Since the number 

of error state variables is always more than one, , 

CeeV T=&

1>p nm <+ )1(  is always satisfied, 

by pragmatical asymptotical stability theorem we have 

0lim =
∞→

e
t

                                                      (5.12) 

and the estimated parameters approach the uncertain parameters. The pargmatical 

generalized synchronizations is obtained. Therefore, the equilibrium point of the system 

is pragmatically asymptotically stable. Under the equal probability assumption, it is 

actually asymptotically stable for both error state variables and parameter variables. 

 

5.3 Numerical Results of Pragmatical Generalized Chaos Synchronization 

of Two Double Duffing systems by Adaptive Control 

 

5.3.1 Two double Duffing systems with double van der Pol system as goal system 

 The chaotic states of a goal system, a double van der Pol chaotic system, used as 

F(t). For a double Duffing system [91], the following differential equations are used as 

master system: 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+−−−=

=

+−−−=

=

1
3

334
4

4
3

3
3

112
2

2
1

kxhxgxfx
dt

dx

x
dt

dx

dxcxbxax
dt

dx

x
dt
dx

                                  (5.13) 

It consists of two Duffing systems in which two external excitations are replaced 
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by two coupling terms. It is an autonomous system with four states where a, b, c, d, e, g, 

h, and k are constant unknown parameters of the systems. The chaotic phase portraits for 

double Duffing system and double van der Pol system are shown in Fig.5.1 

In numerical simulation, we take 1,0005.0,7,3,1,05.0 ====== gfdcba  

and . The slave system is described by 3, =h 7−=k

⎪
⎪
⎪
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⎩

⎪
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⎨

⎧
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2
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ˆˆˆˆ
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ykyhygyf
dt
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y
dt

dy

ydycybya
dt

dy

y
dt
dy

                                    (5.14) 

where , , , , , , and  are estimated parameters. â b̂ ĉ d̂ f̂ ĝ ĥ k̂

In order to lead  to ),,,( 4321 yyyy ))(),(),(),(( 44332211 tFxtFxtFxtFx ++++ , 

we add u1, u2, u3, and u4 to each equation of Eq. (5.14), respectively: 

 

⎪
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uykyhygyf
dt

dy

uy
dt

dy

uydycybya
dt

dy

uy
dt
dy

                               (5.15) 

Subtracting Eq. (5.15) from Eq. (5.13), we obtain an error dynamics. The initial 

values of the master system and the slave system are taken as  ,2)0(1 =x ,5)0(2 =x  

,1)0(3 =x 9.0)0(,9.4)0(,1.2)0(,3)0( 3214 ==== yyyx and ,1.3)0(4 =y  respectively.  

The goal system for generalized synchronization is a double van der Pol chaotic 

system [93-94]. 
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⎪
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zczzbaz
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zczzbaz
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                                 (5.16) 

where a3=0.2, b3=1, c3= -0.01, a4=-2,b4=1, c4=0.3, z1(0)=3, z2(0)=4, z3(0)=3, and z4(0)=4. 

We have 

0)(limlim =+−=
∞→∞→ iiitit

zyxe       =i 1, 2, 3, 4                       (5.17) 

where zyxe &&&& +−= , and 
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           (5.18) 

where , 1111 zyxe +−= 2222 zyxe +−= , 3333 zyxe +−= , and . 4444 zyxe +−=

Choose a Lyapunov function in the form of a positive definite function: 

)~~~~~~~~(
2
1 222222222

4
2

3
2

2
2

1 khgfdcbaeeeeV +++++++++++=      (5.19) 

where )ˆ(~ aaa −= , )ˆ(~ bbb −= , )ˆ(~ ccc −= , )ˆ(~ ddd −= , ~ )ˆ( fff −= , )ˆ(~ ggg −= , 

)ˆ(~ hhh −= , )ˆ(~ kkk −= and , , , , , , and  are estimates of 

uncertain parameters , , , , , 

â b̂ ĉ d̂ f̂ ĝ ĥ k̂

a b c d f g , and  respectively. Its time derivative 

is 

h k
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                                          (5.22) 

The initial values of estimate for uncertain parameters are 

= = = = = = = = . Substituting Eq. (5.21) and Eq. 

(5.22) into Eq. (5.20), we obtain 

)0(â )0(b̂ )0(ĉ )0(d̂ )0(f̂ )0(ĝ )0(ĥ )0(k̂ 0

02
4

2
3

2
2

2
1 ≤−−−−= eeeeV&                                       (5.23) 

which is negative semi-definite function of khgfdcbaeeee ~,~,~,~,~,~,~,~,,,, 4321 . The 
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Lyapunov asymptotical stability theorem is not satisfied. We cannot obtain that the 

common origin of error dynamics (5.18) and parameter dynamics (5.22) is 

asymptotically stable. Now, D is an 8-manifold, n=8 and the number of error state 

variables p=4. When e1=e2=e3=e4=0 and take arbitrary values, 

, so X is 4-manifold, 

khgfdcba ~,~,~,~,~,~,~,~

0=V& 448 =−=−= pnm . nm <+1  is satisfied. By pragmatical 

asymptotical stability theorem, error vector e  approaches zero and the estimated 

parameters also approach the uncertain parameters. The pragmatical generalized 

synchronization is obtained.  

The equilibrium point 0~~~~~~~~
4321 ============ khgfdcbaeeee  is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. State errors versus time and the estimates of uncertain 

parameters are shown in Fig.5.2. 

 

5.3.2 Robustness of the above generalized synchronization  

For a double Duffing system, the following differential equations are used as 

master system: 
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                                (5.24) 

 

A slave system is described by 
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                            (5.25) 

They are two double Duffing systems with disturbance and 

 respectively.  

),,,(1 zyxtfΔ

),,,(2 zyxtfΔ

In simulation, the parameters of the master system in chosen as 

7,3,1,0005.0,7,3,1,05.0 −======== khgfdcba . The initial values of the 

master system and the slave system are taken as x1(0)=2, x2(0)=5, x3(0)=1, x4(0)=3, 

y1(0)=2.1, y2(0)=4.9, y3(0)=0.9, and y4(0)=3.1, respectively.  

Let 

),()(),,(
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iii
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Γ+−=Δ

α
α

          =i 2, 4                (5.26) 

where  is the Gaussian noise and ),(1 xtΓ ),(2 ytΓ  is the Rayleigh noise, α  is the 

strength constant. Since both disturbances are the products of chaos and noise, they are 

highly perturbative. 

The goal system for generalized synchronization is a double Van der Pol chaotic 
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                                   (5.27) 

We demand 

0)(limlim =+−=
∞→∞→ iiitit

zyxe ,         =i 1, 2, 3, 4 
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then  

zyxe &&&& +−= ,  

and 
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where , 1111 zyxe +−= 2222 zyxe +−= , 3333 zyxe +−= , and 4444 zyxe +−= . 

Choose a Lyapunov function in the form of a positive definite function: 
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1 khgfdcbaeeeeV +++++++++++=      (5.29) 

where )ˆ(~ aaa −= , )ˆ(~ bbb −= , )ˆ(~ ccc −= , )ˆ(~ ddd −= , ~ )ˆ( fff −= , )ˆ(~ ggg −= , 

)ˆ(~ hhh −= , )ˆ(~ kkk −= and , , , , , , and  are estimates of 

uncertain parameters , , , , , 

â b̂ ĉ d̂ f̂ ĝ ĥ k̂

a b c d f g , and  respectively. h k
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The initial values of estimate for uncertain parameters are = = =   

= = = = = 0 .  
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Substituting Eq. (5.31) and Eq. (5.32) into Eq. (5.30), we obtain 

02
4

2
3

2
2

2
1 ≤−−−−= eeeeV&                                       (5.33) 

which is negative semi-definite function of khgfdcbaeeee ~,~,~,~,~,~,~,~,,,, 4321 . The 

Lyapunov asymptotical stability theorem is not satisfied. We cannot obtain that the 

common origin of error dynamics (5.28) and parameter dynamics (5.32) is 

asymptotically stable. Now, D is an 8-manifold, n=8 and the number of error state 

variables p=4. When e1=e2=e3= e4=0 and take arbitrary values, 

, so X is 4-manifold, 

khgfdcba ~,~,~,~,~,~,~,~

0=V& 448 =−=−= pnm . nm <+1  is satisfied. By 

pragmatical asymptotical stability theorem, when 12~0=α , the error vector e  

approaches zero and the estimated parameters also approach the uncertain parameters. 

The pragmatical generalized synchronization is obtained.  

The equilibrium point 0~~~~~~~~
4321 ============ khgfdcbaeeee  is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

 48



actually asymptotically stable. State errors versus time and the estimates of uncertain 

parameters with 11=α are shown in Fig.5.3. From Fig.5.3, the robustness of the 

generalized synchronization is very satisfactory when 11≤α . i.e. when there are strong 

highly perturbative disturbances. The robustness obtained is very high. 
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Fig 5.1 (a) The chaotic phase portrait for the double Duffing system, 
(b) The chaotic phase portrait for the double van der Pol system. 
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11=α  and 7,3,1,0005.0,7,3,1,05.0 −======== khgfdcba . 
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Chapter 6 

 Conclusions 

Chaos synchronization is an important research topic in these years. In this thesis, 

chaos and chaos synchronization of double Duffing system are studied.  

In Chapter 2, we have studied the chaos in the integral order and fractional order 

double Duffing system by phase portraits, Poincaré maps and bifurcation diagrams. The 

total orders of the system for the existence of chaos are 0.1 to 0.7 and 1. 

In Chapter 3, parameter excited chaos synchronizations of two identical double 

Duffing systems are studied by adjusting the strengths of the substituting state variables. 

Numerical simulations are illustrated for CS or AS of which the occurrence depends on 

initial conditions and driving strength. Besides, alternative CS and AS is also discovered 

with same initial conditions and same driving strengths. 

In Chapter 4, synchronization and antisynchronization scheme based on the 

substitution of the corresponding parameters in two identical chaotic double Duffing 

systems by a white noise, a Rayleigh noise, a Rician noise or a uniform noise 

respectively. For the white noise case, neither CS and AS are found. For the Rayleigh 

noise case, CS and AS are obtained for different noise strengths. For the Rician noise 

case and the uniform noise case, only AS is obtained. Numerical simulations show that 

whether CS or AS occurs is sensitive to the noise strength. 

In Chapter 5, A new scheme to achieve the pragmatical generalized 

synchronization of adaptive control via the pragmatical asymptotical stability theorem is 

gavien. By the procedure of the proposed scheme, two double Duffing systems and a 

double van der Pol system are used as master system, slave system, and goal 

system ,respectively. 

The validity of this approach is verified theoretically and numerically. Based on 
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pragmatical asymptotical stability theorem, using this theorem, we can obtain the 

generalized synchronization of chaotic systems and prove that the estimated parameters 

approach the uncertain values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 56



References 
[1] Podlubny I. Fractional differential equations. New York: Academic Press; 1999.  

[2] Yao, K.; Su, W.Y.; Zhou, S.P.,“On the connection between the order of fractional 

calculus and the dimensions of a fractal function”. Chaos, Solitons and Fractals 2005;23: 

621-9. 

[3]Guy, Jumarie, “Fractional master equation: non-standard analysis and 

Liouville–Riemann derivative”. Chaos, Solitons and Fractals 2001;12: 2577-87. 

[4] Elwakil, S. A.; Zahran, M. A., “Fractional Integral Representation of Master 

Equation”. Chaos, Solitons and Fractals 1999;10: 1545-8. 

[5] Sun, H.H., Abdelwahad A.A., Onaral B., IEEE Trans. Autom. Control 1984;29: 441. 

[6] Ichise, M., Nagayanagi ,Y., Kojima, T., Electroanal J., Chem. 1971;33:253. 

[7] Heaviside, O., Electromagnetic Theory, Chelsea, New York, 1971. 

[8] Oustaloup, A., Levron, F., Nanot, F., Mathieu, B., “Frequency band complex non 

integer differentiator: characterization and synthesis”. IEEE Trans CAS-I 

2000;47:25–40. 

[9] Chen, Y.Q., Moore, K., “Discretization schemes for fractional-order differentiators 

and integrators”. IEEE Trans CAS-I2002;49:363–7. 

[10] Hartley, T.T., Lorenzo, C.F.,“Dynamics and control of initialized fractional-order 

systems”. Nonlinear Dyn 2002;29:201–33. 

[11] Hwang, C., Leu, J.F., Tsay, S.Y., “A note on time-domain simulation of feedback 

fractional-order systems”. IEEE Trans Auto Contr 2002;47:625–31. 

[12]Podlubny, I., Petras, I., Vinagre, B.M., O_Leary, P., Dorcak, L., “Analogue 

realizations of fractional-order controllers”. Nonlinear Dyn 2002;29:281–96. 

[13] Hartley, T.T., Lorenzo, C.F., Qammer, H.K., “Chaos in a fractional order Chua’s 

system”. IEEE Trans CAS-I 1995;42:485–90. 

 57



[14] Arena, P., Caponetto, R., Fortuna, L., Porto, D., “Chaos in a fractional order 

Duffing system”. In: Proc ECCTD, Budapest; 1997.p. 1259–62. 

[15] Ahmad, W.M., Sprott, J.C. ,“Chaos in fractional-order autonomous nonlinear 

systems”. Chaos, Solitons and Fractals 2003;16:339–51. 

[16] Ahmad, W.M., Harb, W.M. ,“On nonlinear control design for autonomous chaotic 

systems of integer and fractional orders”. Chaos, Solitons and Fractals 

2003;18:693–701. 

[17] Ahmad, W., El-Khazali, R., El-Wakil, A. ,“Fractional-order Wien-bridge 

oscillator”. Electr Lett 2001;37:1110–2. 

[18] Grigorenko, I., Grigorenko, E. ,“Chaotic dynamics of the fractional Lorenz system”. 

Phys Rev Lett 2003;91:034101. 

[19] Arena, P., Caponetto, R., Fortuna, L., Porto, D. ,“Bifurcation and chaos in 

noninteger order cellular neural networks”. Int J Bifur Chaos 1998;7:1527–39. 

[20] Arena, P., Fortuna, L., Porto, D. ,“Chaotic behavior in noninteger-order cellular 

neural networks”. Phys Rev E 2000;61:776–81. 

[21] Li, C.G., Chen, G. ,“Chaos and hyperchaos in fractional order  equations”. 

Phycica A 2004;341:55–61. 

ssleroR &&

[22] Li, C.G., Chen, G., “Chaos in the fractional order Chen system and its control”. 

Chaos, Solitons and Fractals 2004;22:549–54. 

[23] Li, C.P., Peng, G.J., “Chaos in Chen’s system with a fractional order”. Chaos, 

Solitons and Fractals 2004;22:443–50. 

[24] Zaslavsky, G.M., “Chaos, fractional kinetics, and anomalous transport”. Phys Rep 

2002;371:461–580. 

[25] Lu, J.G. ,“Chaotic dynamics and synchronization of fractional-order Arneodo’s 

systems”. Chaos, Solitons and Fractals 2005, in press. 

[26] Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B. , “Fractal system as represented by 

 58



singularity function”. IEEE Trans Auto Contr 1992; 37:1465–70. 

[27] Zheng-Ming Ge, Chan-Yi Ou "Chaos in a fractional order modified Duffing 

system", Chaos, Solitons and Fractals 2006, in press. 

[28] Zheng-Ming Ge, Chang-Xian Yi " Chaos in a nonlinear damped Mathieu System, 

in a nano Resonator system and in its fractional order systems", Solitons and Fractals 

2006, in press. 

[29] Zheng-Ming Ge, Mao-Yuan Hsu " Chaos in a generalized van der Pol system and 

in its fractional order system", Chaos, Solitons and Fractals 2006, in press. 

[30] Zheng-Ming Ge, An-Ray Zhang "Chaos in a modified van der Pol system and in its 

fractional order systems", Chaos, Solitons and Fractals 2006, in press. 

[31] Ge, Z.M., Hsiao, C.M. and Chen, Y.S., “Non-linear dynamics and chaos control for 

a time delay Duffing system”, Int. J. of Nonlinear Sciences and Numerical Vol. 6; No. 2, 

187-199, 2005. 

[32] Chen, H.K. and Lee, C.I., “Anti-control of chaos in rigid body motion”, Chaos, 

Solitons and Fractals Vol. 21; 957-965, 2004. 

[33] Ge, Z.M. and Leu, W.Y., “Anti-control of chaos of two-degree-of-freedom louder 

speaker system and chaos system of different order system”, Chaos, Solitons and 

Fractals Vol. 20; 503-21, 2004. 

[34] Ge, Z.M. and Lee, S.C., “Parameter used and accuracies obtain in MICM global 

analyses”, Journal of Sound and Vibration Vol. 272; 1079-85, 2004. 

[35] Ge, Z.M., Tzen, P.C. and Lee, S.C., “Parametric analysis and fractal-like basins of 

attraction by modified interpolates cell mapping”, Journal of Sound and Vibration Vol. 

253; No. 3, 2002. 

[36] Chen, H.K. “Synchronization of two different chaotic systems: a new system and 

each of the dynamical systems Lorenz, Chen and Lü ”, Chaos, Solitons and Fractals Vol. 

25; 1049-56, 2005. 

 59

http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779


[37] Chen, H.K., Lin, T.N., “Synchronization of chaotic symmetric gyros by one-way 

coupling conditions”, ImechE Part C: Journal of Mechanical Engineering Science Vol. 

217; 331-40, 2003. 

[38] Pecora, L.M., Carroll, T.L., “Synchronization in chaotic systems”,Phys. Rev. Lett. 

64:821–4;1990. 

[39] Carroll, T.L., Heagy, J.F., Pecora, L.M., “Transforming signals with chaotic 

synchronization”, Phys. Rev. E;54:4676–80;1996. 

[40] Kocarev, L., Parlitz, U., “Generalized synchronization, predictability, and 

equivalence of unidirectionally coupled dynamical systems”, Phys. Rev. 

Lett.;76:1816–9;1996. 

[41] Rosenblum, M.G., Pikovsky, A.S., Kurths J., “Phase synchronization of chaotic 

oscillators”, Phys. Rev. Lett.; 76:1804–7; 1996. 

[42] Yang, S.S., Duan, C.K., “Generalized Synchronization in Chaotic Systems”, Chaos, 

Solitons and Fractals; 9:1703–7; 1998. 

[43] Chen, G., Liu, S.T., “On generalized synchronization of spatial chaos”, Chaos, 

Solitons and Fractals; 15:311–8; 2003. 

[44] Kim, C.M., Rim, S., Kye, W.H., Ryu, J.W., Park, Y.J., “Anti-synchronization of 

chaotic oscillators”, Phys. Lett. A;320:39–46;2003. 

[45] Yang, S.P., Niu, H.Y., Tian, G., et al., “Synchronizing chaos by driving parameter”, 

Acta Phys. Sin.;50:619–23;2001. 

[46] Dai, D., Ma, XK., “Chaos synchronization by using intermittent parametric 

adaptive control method”, Phys. Lett. A ;288:23–8; 2001. 

[47] Chen, H.K., “Chaos and chaos synchronization of a symmetric gyro with 

linear-plus-cubic damping”, Journal of Sound & Vibration, Vol. 255; 719-40, 2002. 

[48] Ge, Z.M., Yu, T.C., and Chen, Y.S., “Chaos synchronization of a horizontal 

platform system”, Journal of Sound and Vibration 731-49, 2003. 

 60



[49] Ge, Z.M., Lin, T.N., “Chaos, chaos control and synchronization of 

electro-mechanical gyrostat system”, Journal of Sound and Vibration Vol. 259; No.3, 

2003. 

[50] Ge, Z.M., Chen, Y.S., “Synchronization of unidirectional coupled chaotic systems 

via partial stability”, Chaos, Solitons and Fractals Vol. 21; 101-11, 2004. 

[51] Ge, Z.M., Chen, C.C., “Phase synchronization of coupled chaotic multiple time 

scales systems”, Chaos, Solitons and Fractals Vol. 20; 639-47, 2004. 

[52] Ge, Z.M., Lin, C.C. and Chen, Y.S., “Chaos, chaos control and synchronization of 

vibromrter system”, Journal of Mechanical Engineering Science Vol. 218; 1001-20, 

2004. 

[53] Chen, H.K., Lin, T.N. and Chen, J.H., “The stability of chaos synchronization of 

the Japanese attractors and its application”, Japanese Journal of Applied Physics Vol. 42; 

No. 12, 7603-10, 2003. 

[54] Ge, Z.M. and Shiue, “Non-linear dynamics and control of chaos for Tachometer”, 

Journal of Sound and Vibration Vol. 253; No4, 2002. 

[55] Ge, Z.M. and Lee, C.I.., “Non-linear dynamics and control of chaos for a rotational 

machine with a hexagonal centrifugal governor with a spring”, Journal of Sound and 

Vibration Vol. 262; 845-64, 2003. 

[56] Ge, Z.M. and Leu, W.Y., “Chaos synchronization and parameter identification for 

loudspeaker system” Chaos, Solitons and Fractals Vol. 21; 1231-47, 2004. 

[57] Ge, Z.M. and Chang, C.M., “Chaos synchronization and parameter identification 

for single time scale brushless DC motor”, Chaos, Solitons and Fractals Vol. 20; 

889-903, 2004. 

[58] Ge, Z.M. and Lee, J.K., “Chaos synchronization and parameter identification for 

gyroscope system”, Applied Mathematics and Computation, Vol. 63; 667-82, 2004. 

[59] Ge, Z.M. and Cheng, J.W., “Chaos synchronization and parameter identification of 

 61

http://sdos.ejournal.ascc.net/cgi-bin/search.pl/GetSearchResults?Any=&Title=&Abstract=&Author=Ge%2C%20Zheng-Ming&JournalTitle=&Past=No+Restriction...&Since=&Start=1&Max=10
http://sdos.ejournal.ascc.net/cgi-bin/search.pl/GetSearchResults?Any=&Title=&Abstract=&Author=Chen%2C%20Yen-Sheng&JournalTitle=&Past=No+Restriction...&Since=&Start=1&Max=10
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779


three time scales brushless DC motor”, Chaos, Solitons and Fractals Vol. 24; 597-616, 

2005. 

[60] Ge, Z.M. and Chen, Y.S., “Adaptive synchronization of unidirectional and mutual 

coupled chaotic systems”, Chaos, Solitons and Fractals Vol. 26; 881-88, 2005. 

[61] Chen, H.K., “Global chaos synchronization of new chaotic systems via nonlinear 

control”, Chaos, Solitons & Fractals 4; 1245-51, 2005. 

[62] Ge, Z.M. and Wu, H.W., “Chaos synchronization and chaos anticontrol of a 

suspended track with moving loads”, Journal of Sound and Vibration Vol. 270; 685-712, 

2004. 

[63] Ge, Z.M. and Yu, C.Y. and Chen, Y.S., “Chaos synchronization and chaos 

anticontrol of a rotational supported simple pendulum”, JSME International Journal, 

Series C,Vol. 47; No. 1, 233-41, 2004. 

[64] Ge, Z.M., Cheng, J.W. and Chen ,Y.S., “Chaos anticontrol and synchronization of 

three time scales brushless DC motor system”, Chaos, Solitons and Fractals Vol. 22; 

1165-82, 2004. 

[65] Ge, Z.M. and Lee, C.I., “Anticontrol and synchronization of chaos for an 

autonomous rotational machine system with a hexagonal centrifugal governor”, Chaos, 

Solitons and Fractals Vol. 282; 635-48, 2005. 

[66] Ge, Z.M. and Lee, C.I., “Control, anticontrol and synchronization of chaos for an 

autonomous rotational machine system with time-delay”, Chaos, Solitons and Fractals 

Vol. 23; 1855-64, 2005. 

[67] Heaviside, O., Electromagnetic Theory, Chelsea, New York, 1971. 

[68]. Chen, M.-Y., Han, Z.-Z. and Shang, Y., “General synchronization of Genesio-Tesi 

system”, International J. of Bifurcation and Chaos, 14(1), pp. 347-354, 2004. 

[69]. Chen S., Zhang Q., Xie J., Wang C., “A stable-manifold-based method for chaos 

control and synchronization”, Chaos, Solitons and Fractals, 20(5), pp. 947-954, 2004. 

 62

http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=0022460x
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779
http://sdos.ejournal.ascc.net/cgi-bin/sciserv.pl?collection=journals&journal=09600779


[70]. Chen S., Lu J., “Synchronization of uncertain unified chaotic system via adaptive 

control”, Chaos, Solitons and Fractals, 14(4), pp. 643-647, 2002. 

[71]. Park Ju H., ‘‘Adaptive Synchronization of Hyperchaotic Chen System with 

Uncertain Parameters’’, Chaos, Solitons and Fractals, 26, pp. 959-964, 2005. 

[72]. Park Ju H., ‘‘Adaptive Synchronization of Rossler System with Uncertain 

Parameters’’, Chaos, Solitons and Fractals, 25, pp. 333-338, 2005. 

[73]. Elabbasy, E. M., Agiza, H. N., and El-Desoky, M. M., ‘‘Adaptive synchronization 

of a hrperchaotic system with uncertain parameter’’, Chaos, Solitons and Fractals, 30, 

pp. 1133-1142, 2006. 

[74]. Ge Z.-M. Yu, J.-K. and Chen, Y.-T. ‘‘Pragmatical Asymptotical Stability Theorem 

with Application to Satellite System’’, Jpn. J. Appl. Phys., 38, pp. 6178-6179, 1999. 

[75]. Ge Z.-M. and Yu, J.-K. ‘‘Pragmatical Asymptotical Stability Theoremon Partial 

Region and for Partial Variable with Applications to Gyroscopic Systems’’, The Chinses 

Journal of Mechanics, 16(4), pp. 179-187, 2000. 

[76]. Ge Z.-M. and Chang, C.-M. ”Chaos Synchronization and Parameters Identification 

of Single Time Scale Brushless DC Motors”, Chaos, Solitons and Fractals 20, pp. 

883-903, 2004. 

[77]. Ge Z.-M. and Chen, C.-C. ”Phase Synchronization of Coupled Chaotic Multiple 

Time Scales Systems”, Chaos, Solitons and Fractals 20, pp. 639-647, 2004. 

[78]. Ge Z.-M. and Leu, W.-Y. “Chaos Synchronization and Parameter Identification for 

Identical System”, Chaos, Solitons and Fractals, 21, pp.1231-1247, 2004. 

[79]. Ge Z.-M. and Leu, W.-Y. “Anti-Control of Chaos of Two-degrees-of- Freedom 

Louderspeaker System and Chaos Synchronization of Different Order Systems”, Chaos, 

Solitons and Fractals 20, pp. 503-521, 2004. 

[80]. Ge Z.-M. and Chen, Y.-S. “Synchronization of Unidirectional Coupled Chaotic 

Systems via Partial Stability”, Chaos, Solitons and Fractals, 21, pp.101-111, 2004. 

 63



[81]. Liu F., Ren Y., Shan X., Qiu Z., “A linear feedback synchronization theorem for a 

class of chaotic systems”, Chaos, Solitons and Fractals, 13(4), pp. 723-730, 2002. 

[82]. Lü J., Zhou T., Zhang S., “Chaos synchronization between linearly coupled chaotic 

systems”, Chaos, Solitons and Fractals, 14(4), pp. 529-541, 2002. 

[83]. Krawiecki A and Sukiennicki A., “Generalizations of the concept of marginal 

synchronization of chaos”, Chaos, Solitons and Fractals, 11(9), pp. 1445–1458, 2000. 

[84]. Lu J. and Xi Y., “Linear generalized synchronization of continuous-time chaotic 

systems”, Chaos, Solitons and Fractals, 17, pp. 825-831, 2003. 

[85]. Xue Y.-J. and Yang S.-Y. , “Synchronization of generalized Henon map by using 

adaptive fuzzy controller”, Chaos, Solitons and Fractals, 17, pp. 717-722, 2003. 

[86]. Yang X.-S. and Chen G. , “Some observer-based criteria for discrete-time 

generalized chaos synchronization”, Chaos, Solitons and Fractals, 13, pp. 1303-1308, 

2002. 

[87].Terry J. R., VanWiggeren G. D. , ‘‘Chaotic communication using generalized 

synchronization”, Chaos, Solitons and Fractals, 12, pp. 145-152, 2001. 

[88]. Yang S. S., Duan C. K., ‘‘Generalized Synchronization in Chaotic Systems”, 

Chaos, Solitons and Fractals, 9, pp. 1703-1707, 1998. 

[89]. Ge Z.-M. and Yang, C.-H., “Synchronization of Complex Chaotic Systems in 

Series Expansion Form,” accepted by Chaos, Solitons, and Fractals, 2006. 

[90]. Ge Z.-M., Yang, C.-H., Chen H.-H., and Lee S.-C., “Non-linear dynamics and 

chaos control of a physical pendulum with vibrating and rotation support” , Journal of 

Sound and Vibration, 242 (2), pp.247-264, 2001. 

[91] Ge Z.-M., Ou, Chan-Yi "Chaos in a fractional order modified Duffing system", 

Chaos, Solitons and Fractals 2006, in press. 

[92] Ge Zheng-Ming., Hsu Mao-Yuan " Chaos in a generalized van der Pol system and 

in its fractional order system", Chaos, Solitons and Fractals 2006, in press. 

 64



[93] Ge Zheng-Ming., Zhang An-Ray "Chaos in a modified van der Pol system and in 

its fractional order systems", Chaos, Solitons and Fractals 2006, in press.  

[94]. Ge Zheng-Ming and Chen Yen-Sheng, “Synchronization of unidirectional coupled 

chaotic systems via partial stability”, Chaos, Solitons & Fractals 21 (2004), pp. 

101–111 

[95]. Ge Zheng-Ming and Chen, Yen-Sheng ,”Adaptive synchronization of 

unidirectional and mutual coupled chaotic systems”, Chaos, Solitons & Fractals 26 

(2005), pp. 881–888. 

[96]. Anishchenko V.S. et al., “Mutual synchronization and desynchronization of 

Lorenz systems”, Tech Phys Lett 24 (1998), pp. 257–259.  

[97]. Otsuka. K, Kawai R., Ko. S.-L, Hwong J.-Y. and Chern J.-L., “Synchronization of 

mutually coupled self-mixing modulated lasers”, Phys Rev Lett 84 (2000), pp. 

3049–3052.  

[98]. Yu Y. and Zhang S., “The synchronization of linearly bidirectional coupled 

chaotic systems”, Chaos, Solitons & Fractals 22 (2004), pp. 189–197. 

[99]. Nekorkin V.I., Kazantsev V.B. and Velarde M.G., “Mutual synchronization of two 

lattices of bistable elements”, Phys Lett A 236 (1997), pp. 505–512. 

[100]. Woafo, P. and Enjieu Kadji H.G., “Synchronized states in a ring of mutually 

coupled self-sustained electrical oscillators”, Phys Rev E 69 (2004), p. 046206. 

 

 

 

 

 

 

 

 65



Appendix 

 

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY  

2 db ERROR FROM  to  rad/sec 210−=ω 210

 

 

 

 

 

 

 

 

 

 
 

                
4 3 2

0.1 5 4 3 2

1 220.4 5004 503 234.5 0.484
359.8 5742 4247 147.7 0.2099

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                

                

4 3 2

0.2 5 4 3 2

1 60.95 816.9 582.8 23.24 0.04934
134 956.5 383.5 8.953 0.01821

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.3 5 4 3 2

1 23.76 224.9 129.1 4.733 0.01052
64.51 252.2 63.61 1.104 0.002267

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                4 3 2

0.4 5 4 3 2

1 2

                

                

                

5 558.5 664.2 44.15 0.1562
125.6 840.6 317.2 7.428 0.02343

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.5 5 4 3 2

1 15.97 593.2 1080 135.4 1
134.3 1072 543.4 20.1 0.1259

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.6 5 4 3 2

1 8.579 255.6 405.3 35.93 0.1696
94.22 472.9 134.8 2.639 0.009882

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.7 5 4 3 2

1 4.406 177.6 209.6 9.179 0.0145
88.12 279.2 33.3 1.927 0.0002276

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                
3 2

0.8 4 3 2

1 5.235 1453 5306 254.9
658.1 5700 658.2 1

s s s
s s s s s

+ + +
≈

+ + + +

                2

0.9 3 2

1 1.766 38.27 4.914
36.15 7.789 0.01

s s
s s s s

+ +
≈

+ + +
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