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Abstract: A robust fuzzy-neural sliding-mode control (RFSC) scheme for unknown nonlinear systems is proposed.
The RFSC system is composed of a computation controller and a robust controller. The computation controller
containing a self-structuring fuzzy-neural network (SFNN) identifier is the principle controller, and the robust
controller is designed to achieve L2 tracking performance. The SFNN identifier uses the structure- and
parameter-learning phases to perform the estimation of the unknown system dynamics. The structure-learning
phase consists of the growing of membership functions, the splitting of fuzzy rules and the pruning of fuzzy
rules, and thus the SFNN identifier can avoid the time-consuming trial-and-error tuning procedure for
determining the network structure of fuzzy neural network. Finally, the proposed RFSC system is applied to
three nonlinear dynamic systems. The simulation results show that the proposed RFSC system can achieve
favourable tracking performance by incorporating SFNN identifier, sliding-mode control and robust control
techniques.
1 Introduction
The fuzzy-neural network (FNN) that incorporates the
advantages of fuzzy inference and neuro-learning has been
an interesting topic. The FNN possesses the merits of
the low-level learning and computational power of neural
network and the high-level human knowledge representation
from fuzzy theory [1, 2]. Recently, the FNNs are increasingly
receiving attention in solving the control problems [3–7].
For the FNN-based adaptive control approaches in [3–7],
the structure of FNN should be determined in advance by
trial-and-error. However, it is difficult to consider the
balance between the rule number and the desired
performance. If the number of fuzzy rules is chosen too
large, the computational load is heavy so that they are not
suitable for practical applications. If the number of fuzzy
rules is chosen too small, the learning performance may not
be good enough to achieve desired performance.

To solve the problem of structure determination in FNN
approaches, much interest has been focussed on the
self-structuring fuzzy-neural network (SFNN) approach
4
The Institution of Engineering and Technology 2008
[8–10]. The self-structuring approach demonstrates the
property of automatically generating rules of FNN without
the preliminary knowledge. In general, the mathematical
descriptions of the existing rules can be expressed as a fuzzy
cluster where each cluster corresponds to a fuzzy IF-THEN
rule [10]. As usually seen in other self-structuring approaches,
a new membership function is generated when a new input
signal is far away from the current clusters, and an existing
rule is cancelled when the fuzzy rule is insignificant.

Recently, the SFNNs also have been widely adopted for the
control of complex dynamic systems owing to its good
generalisation capability, structure adaptation and simple
computation [11–14]. Some of them use the gradient
descent method to derive the parameter learning algorithms
[11, 14]; however, stability analysis has not been performed
yet. Some of them use the Lyapunov function to derive the
parameter-learning algorithms; however, the complex design
procedure is not suitable for practical applications [12, 13].
Lin et al. use a similarity measure method to avoid a newly
generated membership function being similar to the existing
ones; however, the network structure would grow large, as
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the input data has large variations [11, 14]. In [12, 13], an
error reduction ratio with orthogonal-triangular (QR)
decomposition is used to prune rules; however, the
computational load is too heavy. In summary, a comparison
between the proposed robust fuzzy-neutral sliding-mode
control (RFSC) and [10, 14, 15] is made. In [10], an
independent component analysis (ICA)-mixture-model-
based self-constructing FNN is proposed. It is not suitable
for controller design. In [14], a similarity measure method is
used to avoid a newly generated membership function being
similar to the existing ones. However, the computational
load of pruning algorithm is too heavy. In [15], a self-
structuring neural network is proposed; however, the
proposed approach cannot avoid the structure of neural
network growing endlessly. The proposed RFSC can grow
the membership functions, split the fuzzy rules and prune
the fuzzy rules of SFNN automatically. The structure of
neural network can avoid growing endlessly and the
computational load can be reduced.

In this study, a novel SFNN that includes the growing of
membership functions, the splitting of fuzzy rules and the
pruning of fuzzy rules is developed. The idea of these
algorithms is given as follows. The growing method can be
considered when the input values will be far away from the
edge of existing membership functions as shown in [10]. The
split algorithm [15] is performed when the weight updating
rate of certain neuron is larger, since larger weight updating
rate will cause a larger updating of certain weight values, and
the precise approximation is difficult to capture. The pruning
algorithm [16] will eliminate those rules that make a very
small contribution to the neural network output. Because the
error between the real function and the estimation function
gradually converges to a small bound after several iterations,
and some fuzzy rules that are generated in the transient
period may be less or never used. Therefore the structure
learning phase of the proposed SFNN possesses several
techniques, including the growing of membership functions,
the splitting of fuzzy rules and the pruning of fuzzy rules.

For the conventional FNN-based adaptive control
approaches, the structure of FNN should be determined in
advance by trial-and-error. By the proposed SFNN approach,
this paper develops a novel FNN-based adaptive control
approaches, which the structure of FNN can automatically
generate fuzzy rules to avoid the time-consuming trial-and-
error tuning procedure. This paper proposes a RFSC system,
which is composed of a computational controller and a robust
controller. The computation controller containing the SFNN
identifier is the principle controller, and the robust controller
with desired attenuation level is designed to achieve L2

tracking performance. The structure-learning phase of the
SFNN identifier possesses the ability of on-line generation
and elimination of fuzzy rules to achieve optimal network
structure, and the parameter-learning phase adjusts the
parameters of membership functions and fuzzy rules to
achieve favourable approximation performance. By the
proposed structure adaptation, the annoyance will be solved
Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
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where the balance between the rule number and the desired
control performance is difficult to consider. To investigate
the effectiveness of the proposed control scheme, the RFSC
system is applied to three nonlinear dynamic systems.
Simulation results demonstrate that the proposed RFSC
scheme can achieve favourable tracking performance without
unknown system dynamics. The SFNN identifier can
estimate the system dynamics and achieve approximation
performance in the presence of external disturbance in a real-
time environment.

2 Sliding-mode control design
Consider the nth-order nonlinear dynamic system of the
form

x(n)
¼ f (x)þ uþ d

y ¼ x

�
(1)

where x ¼ [x _x � � � x(n�1)]T is the state vector of the system, y
is the output of system, f (x) is the system dynamics, d is the
external disturbance and u is the control effort. Assume that
the system dynamics is well known, (1) can represent the
nominal model of the nonlinear dynamic system

x(n)
¼ fn(x)þ uþ dn

y ¼ x (2)

where fn(x) is a mapping that represents the nominal
behaviour of f (x) and dn is the nominal value of d. If
uncertainties occur, that is, parameters of the system
deviate from the nominal value, the controlled system can
be modified as

x(n)
¼ fn(x)þ uþ dn þ z

y ¼ x (3)

where z is the lumped uncertainty which is defined as
z ¼ Df (x)þ Dd with the assumption jzj � Z in which Z
is a given positive constant, Df (x) denotes the system
uncertainties and Dd denotes the disturbance uncertainties.
The control objective is to find a control law so that the
system output y can track a command trajectory yc. A
tracking error and a sliding surface are defined as

e ¼ yc � y (4)

and

s ¼ e(n�1)
þ kne(n�2)

þ � � � þ k2e þ k1

ðt

0

e dt (5)

where ki, i ¼ 1, 2, . . . , n are the positive constants. The
sliding-mode control law is given as [17]

usc ¼ ueq þ uht (6)
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where the equivalent controller ueq is represented as

ueq ¼ �fn(x)� dn þ x(n)
c þ kT e (7)

in which e ¼ [e _e � � � e(n�1)]T and k ¼ [k1 k2 � � � kn]T , and
the hitting controller uht is designed to guarantee the
system stability as

uht ¼ Zsgn(s) (8)

where sgn(.) is the sign function. Substituting (6)–(8) into
(3) yields

e(n)
þ kne(n�1)

þ � � � þ k2_e þ k1e ¼ �z� Zsgn(s) ¼ _s (9)

An important concept of sliding-mode control is to make the
system satisfy the reaching condition and guarantee sliding
condition. Consider the candidate Lyapunov function in
the following form as

V1 ¼
1

2
s2 (10)

Differentiating (10) with respect to time and using (9), we
obtain

_V 1 ¼ s_s ¼ �zs � Zjsj � jzjjsj � Zjsj

¼ �(Z � jzj)jsj � 0 (11)

In summary, the sliding-mode controller in (6) can guarantee
the stability in the sense of the Lyapunov theorem [17].
Because the system dynamics and the external disturbance
may be unknown or perturbed, the sliding-mode control law
usc cannot be implemented. Moreover, a large control gain Z
is often required in order to minimise the reaching time
from the initial state to the switching surface. The selection
of the control gain Z, which is related to the magnitude of
uncertainties, keeps the trajectory on the sliding surface [17].
Nevertheless, the parameter variations of the system are
difficult to measure for practical applications. A conservative
control law with a large control gain Z is usually considered,
but the unnecessary jumping movement on the switching
surface may yield and cause an outcome of a large amount
of chattering. The chattering phenomena in control efforts
will wear the bearing mechanism and excite unmodelled
dynamics.

3 Robust fuzzy-neural sliding-
mode control design
3.1 Description of SFNN

The structure of the SFNN has four layers of neural network:
the input, the membership function, the rule and the output
layers. Nodes at layer 1 are input nodes (linguistic nodes) that
represent input linguistic vector. Nodes at layer 2 are term
nodes which act as membership functions to represent the
56
The Institution of Engineering and Technology 2008
terms of the respective linguistic vector. Each node at layer
3 is a fuzzy rule. Layer 4 is the output layer, where the
node in this layer is the output of SFNN. The interactions
for those layers are given as follows.

Layer 1 – Input layer: For every node i, in this layer, the net
input and the net output are represented as

1neti ¼
1xi (12)

1yi ¼
1fi

1neti

� �
¼

1neti, i ¼ 1, 2, . . . , L (13)

where 1xi represents the ith input to the node of layer 1 and L
is the total number of input variables. They mean that output
equals input in this layer. This layer of SFNN just executes
the transmission work.

Layer 2 – Membership layer: In this layer, each node
performs a membership function and acts as a unit of
memory. The bell-shaped function is adopted as the
membership function. For the ith input, the corresponding
net input and output of the jth node can be expressed as

2netij ¼ �

2xi �
2mij

� �2

2sij

� �2
(14)

2yij ¼
2fij

2netij

� �
¼ exp 2netij

� �
, j ¼ 1, 2, . . . , M (15)

where 2mij is the mean, 2sij is the standard deviation and M
is the total number of membership functions with respect to
the respective input node. In this study, the input linguistic
variable is the tracking error vector.

Layer 3 – Rule layer: Each node k in this layer is denoted by
P which multiplies the incoming signals and outputs the
result of the product. For the kth rule node, the operation
of the net input and output of this layer is presented as

3netk ¼
Y

3wij
3xij (16)

3yk ¼
3fk

3netk

� �
¼

3netk, k ¼ 1, 2, . . . , N (17)

where 3xij represents the i, jth input to the kth node of layer
3, 3wij between the membership and the rule layers are
assumed as unity and N is the total number of fuzzy rules.

Layer 4 – Output layer: The single node o in this layer is
labelled as S, which computes the overall output as the
summation of all incoming signals. It executes the sum-of-
weighting defuzzification. The description of the net input
and output is expressed as

4neto ¼
X

k

4wk
4xk (18)

4yo ¼
4fo

4neto

� �
¼

4neto (19)
IET Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
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where 4wk is the output action strength of the output associated
with the kth rule, 4xk represents the kth input to the node of
layer 4 and 4yo is the output of SFNN. For the FNN
approaches in [3–7], the structure of the FNN is determined
in advance by trial-and-error, but it is difficult to consider
the balance between the rule number and the desired control
performance. In this paper, the structure-learning algorithm,
which is composed of the growing of membership functions,
the splitting of fuzzy rules and the pruning of fuzzy rules, is
proposed to solve this problem. The descriptions for those
algorithms are given as follows.

For the method of the growing of membership functions,
the concept, which decides whether to add a new node
(membership function) in layer 2 and the associated fuzzy
rule in layer 3, will be introduced. In order to construct
fuzzy rules of the SFNN, a new rule is generated when a
new input signal is far away from the current clusters. A
cluster corresponds to a fuzzy IF-THEN rule. Each cluster
in the product space of the input–output data represents a
rule in the rule base. The firing strength of a rule can be
represented as the degree that the incoming data 1xi

belongs to the cluster. If the value of firing strength is too
small, it represents that the input value is on the edge of
range of the existing membership functions. Under this
situation, the output will cause a bad output performance.
Therefore a new node (membership function) should be
added at this moment. The firing strength obtained from
(17) is used as the degree measure [10]

bk ¼
3yk, k ¼ 1, 2, . . . , N (20)

where N is the number of the existing rules. Define the
maximum degree bmax among bk as

bmax ¼ max
1�k�N

bk (21)

It can be observed that if bmax � Gth where Gth [ (0, 1) is a
pre-given threshold, the incoming data is far away from the
edge of range of the existing membership functions.
Hence, a new membership function should be generated.
The mean and the standard deviation of the new
membership function and the corresponding weight are
selected as follows

mnew
i ¼

1xi (22)

snew
i ¼ si (23)

wnew
¼ 0 (24)

where 1xi is the new incoming data and si is a pre-specified
constant. If the unknown control system dynamics is
complex, more membership functions can be created by
choosing a large Gth.
Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
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Next, the split of the kth fuzzy rule is executed if the
following condition is satisfied [15]

j
4 _̂wkjPN

k¼1

j4 _̂wkj

� Sth, k ¼ 1, 2, . . . , N (25)

where Sth denotes a split threshold value and the tuning law
4 _̂wk will be derived in the next subsection. On the left-hand
side of (25), the denominator implies the total sum of the
positive weight variations and the numerator represents the
positive weight variations connecting to the kth node. The
proposed split algorithm is derived from the observation
that if the updating of the weight values is relatively large,
the precise approximation is difficult to capture. If (25) is
satisfied, a new neuron is duplicated to spread the relatively
large variation of the weights. If the designer wants more
neurons in the SFNN, because the nonlinear plant is
complex, more neurons can be created by choosing a small
Sth, and vice versa. The weight value connecting the k0th
node is considered as

4wk0 ¼ (1� a) � 4wk (26)

where a is a positive constant. The original weight value
connecting the kth node is changed as

4wk ¼ a � 4wk (27)

This method is induced from the fact that the weights
connected to the newly created neuron will share the large
variations of the weights. When the estimated parameters
are all the optimal parameters in the training procedure,
that is, the learning algorithm searches the optimal
solutions, the tuning law 4 _̂wk will be equal to zero for all k.
Note that if the condition satisfies 4 _̂wk ¼ 0 for all k, the
operation of split does not be executed.

To avoid the endless growing of network structure and the
overload computation, the algorithm of the pruning of fuzzy
rules is developed to eliminate inappropriate fuzzy rules.
When the rth firing strength br is smaller than a threshold
value Pth, it means that the relationship becomes weak
between the input and the rth rule. This fuzzy rule may be
less or never used. Then, we will gradually reduce the value
of the rth referring index when the rth firing strength br

satisfies our setting condition continuously. The referring
index is determined as [16]

Ir ¼
I p

r exp (�t), if br , Pth

I p
r , if br � Pth

�
,

r ¼ 1, 2, . . . , N

(28)

where Ir is the referring index of the rth rule and its initial value
is 1, Pth is the pruning threshold value, t is the decayed
constant, and Ir

p denotes the most recent Ir. If Ir � Ith is
satisfied, where Ith is another pre-given threshold the rth
1057
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fuzzy rule is pruned. Moreover, the computational load should
also be decreased. If the computational load is the important
issue for practical implement, we can choose a large Pth so
that more fuzzy rules can be pruned. In summary, the flow
chart of the structure-learning algorithm is shown in Fig. 1.
The major contributions of using these algorithms for
training SFNN structure are: (1) SFNN can be operated
directly without spending much time on pre-determining
membership functions and fuzzy rules; (2) the computational
load can be reduced simultaneously.

3.2 Parameter-learning algorithm

Since the system dynamics f (x) and the external disturbance d
are unknown in practical applications, the equation of the

Figure 1 Flow chart of the proposed structure adaptation
algorithm
8
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nonlinear dynamic system in (1) can be rewritten as

x(n)
¼ F (x)þ u

y ¼ x

�
(29)

where f (x) is called the lumped system dynamics and defined
as f (x) ¼ f (x)þ d. As shown in Fig. 2, the proposed RFSC
system is composed of a computational controller and a
robust controller, that is

ufsc ¼ ucc þ urc (30)

where the computational controller is designed as

ucc ¼ �F (e, Q̂)þ x(n)
c þ kT e

¼ �F̂ þ x(n)
c þ kT e (31)

in which the SFNN identifier F (e, Q̂) ¼ F̂ is used to on-line
estimate the lumped system dynamics F(x) in (29). e and
Q̂ ¼ [4ŵ2

k m̂2
ij ŝij]

T are the input vector and estimated
parameter vector of the SFNN identifier, respectively. In the
sliding-mode control approach, if the sliding condition is
satisfied, the error terms will converge to zero as time
approaches to infinite. Furthermore, bounds on s can be
directly translated to bounds on the tracking error, because
the sliding surface is composed of the error terms. In
particular, once the system is on the surface, the system
trajectories will remain on the surface and the tracking error
tends exponentially to zero. Consequently, the stability of
closed-loop system can be guaranteed [17] and Section 2 has
the proof of stability. This motion is the same as minimising
the error function if the error function is selected as the cost
function. Hence, the sliding condition, which substitutes for
the error function, becomes the cost function. The on-line
learning algorithm is a gradient descent algorithm in the
space of network parameters and aims to minimise s_s for

Figure 2 Block diagram of RFSC system
IET Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
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achieving fast convergence of s. Substituting (30) into (29) and
using (5) yield

e(n)
þ kne(n�1)

þ � � � þ k2_e þ k1e ¼ F̂ � F � urc ¼ _s (32)

Multiply both sides of (32) by s to yield

s_s ¼ (F̂ � F � urc)s (33)

According to the gradient descent method [3], the adaptive
law of weights in the output layer can be derived as

4 _̂wk ¼ �hw

@s_s

@(4ŵk)
¼ �hw

@s_s

@F̂

@F̂

@(4ŵk)
¼ �hw � s �

4xk (34)

where the positive constant hw is a learning rate. In order to
easily derive the update laws of mean and variance, the
parameter j is derived in advance as

j ¼
@s_s

@F̂

@F̂

@(4neto)

@(4neto)

@(3yk)

@(3yk)

@(3netk)

@(3netk)

@(2yij)

@(2yij)

@(2netij)

¼ s � 4wk �
3yk (35)

The update laws of means and variances, 2mij and 2sij , can
be obtained by the gradient search algorithm [3] as

2 _̂mij ¼�hm

@s_s

@(2m̂ij)
¼�hm

@s_s

@F̂

@F̂

@(4neto)

@(4neto)

@(3yk)

@(3yk)

@(3netk)

@(3netk)

@(2yij)

�
@(2yij)

@(2netij)

@(2netij)

@(2m̂ij)
¼�hmj

2 2xi�
2m̂ij

� �
2ŝij

� �2
(36)

and

2 _̂sij ¼�hs

@s_s

@(2ŝij)

¼�hs

@s_s

@F̂

@F̂

@(4neto)

@(4neto)

@(3yk)

@(3yk)

@(3netk)

@(3netk)

@(2yij)

�
@(2yij)

@(2netij)

@(2netij)

@(2ŝij)
¼�hsj

2 2xi�
2m̂ij

� �2

2ŝij

� �3
(37)

where hm and hs are the learning rates with positive
constants.

3.3 Robust controller design

Approximating linear or nonlinear mapping through learning
is one of most useful property of a neural network. The
relationship between F(x) and F (e, Q̂) is described as

F (x)� F (e, Q̂) ¼ 1 (38)
Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
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where 1 denotes the modelling error. Substituting (38) into
(32), (32) can be rewritten as follows

_s ¼ �1� urc (39)

If 1 exists, a robust controller will be considered to satisfy a
specified L2 tracking performance [18–20]

ðT

0

s2(t) dt � s2(0)þ d2

ðT

0

12(t) dt (40)

where d is a prescribed attenuation constant. If the system
starts with an initial condition s(0) ¼ 0, the L2 tracking
performance in (40) can be rewritten as

sup
1[L2[0,T ]

ksk

k1k
� d (41)

where ksk2
¼
Ð T

0 s2(t) dt and k1k2
¼
Ð T

0 12(t) dt. If d ¼ 1,
this is the case of minimum error tracking control without
disturbance attenuation. Define a Lyapunov function as

V2 ¼
1

2
s2 (42)

Differentiating (42) with respect to time and using (39), we
obtain

_V2 ¼ s_s ¼ s(�1� urc) (43)

The robust controller is designed as

urc ¼
d2
þ 1

2d2
s (44)

and thus (43) can be rewritten as

_V 2 ¼ s �1�
d2
þ 1

2d2
s

 !

¼ �s1�
s2

2
�

s2

2d2
¼ �

s2

2
�

1

2
2s1þ

s2

d2

 !

¼ �
s2

2
�

1

2

s2

d2
þ 2s1þ 12d2

 !
þ

1

2
12d2

¼ �
s2

2
�

1

2

s

d
þ 1d

� �2

þ
1

2
12d2
� �

1

2
s2
þ

1

2
12d2 (45)

Assume 1 [ L2[0, T ], 8T [ [0, 1). Integrating the above
equation from t ¼ 0 to t ¼ T yields

V2(T )� V2(0) � �
1

2

ðT

0

s2dt þ
1

2
d2

ðT

0

1
2 dt (46)
1059
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Since V2(t) � 0, we can rearrange (46) as

1

2

ðT

0

s2 dt � V2(0)þ
1

2
d2

ðT

0

12 dt (47)

Using (42), this inequality is equivalent to inequality (40).
Since V2(0) is finite, if the approximation error 1 [ L2,

that is
Ð T

0 1
2(t) dt , 1, it implies that limt!1 jsj ¼ 0.

Then, the RFSC can achieve L2 tracking performance with
attenuation of disturbances including approximation errors
and external disturbances.

4 Simulation results
Chaotic dynamic system is a nonlinear deterministic system
that displays complex, noisy-like and unpredictable behaviour.
It can be observed in many nonlinear circuits and
mechanical systems [21]. For control engineers, control of a
chaotic dynamic system has become a significant research
topic in physics, mathematics and engineering communities
[22–25]. However, some of them cannot achieve
favourable control performance [22–24] and some of them
require overly complex design procedures [25]. In this
section, the proposed RFSC scheme is applied to two
chaotic dynamic systems and a simple nonlinear system to
verify its effectiveness. It should be emphasised that
parameters and network structure of the SFNN can be
tuned on-line by the proposed algorithm. Moreover,
the appropriate network structure will be obtained by the
methods of the growing of membership functions, the
splitting of fuzzy rules and the pruning of fuzzy rules
during the process of training adjustable parameters.

Example 1: Consider a second-order chaotic system such as
the Duffing’s equation describing a special nonlinear circuit or
a pendulum moving in a viscous medium as follows [22]

€x ¼ f (x)þ u (48)

where f (x) ¼ �p_x� p1x� p2x3
þ q cos (vt) is the system

dynamics, t is the time variable, v is the frequency, u is the
control force, and p, p1, p2 and q are real constants.
Depending on the choice of these constants, the system is
known that the solutions of (48) may exhibit periodic, that is
it is almost periodic and chaotic behaviour. In order to
observe the chaotic unpredictable behaviour, the open-loop
system behaviour, that is, u ¼ 0, is simulated with p ¼ 0.4,
p1 ¼ 21.1, p2 ¼ 1.0, q ¼ 1.95 and v ¼ 1.8. The phase
plane plots with an initial condition point (0.5, 0) for
q ¼ 1.95 and q ¼ 7.00 are shown in Figs. 3a and 3b,
respectively. The time responses of the uncontrolled chaotic
system with initial conditions (0.5, 0) and (0.6, 0) are shown
in Figs. 3c and 3d, respectively. It is shown that the
uncontrolled chaotic system has different trajectories for
different q values and different initial points.
0
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The parameters of RFSC are selected as k1 ¼ 2, k2 ¼ 1,
hw ¼ 40, hm ¼ hs ¼ 2, Gth ¼ 0:3, Sth ¼ 0:5, Ith ¼ 0:2,
a ¼ 0:9, Pth ¼ 0:15, t ¼ 0:01 and d ¼ 0:5. All the gains in
the proposed control system are chosen to achieve the best
transient control performance considering the requirement of

Figure 3 Behaviour of uncontrolled chaotic system
IET Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
doi: 10.1049/iet-cta:20070315
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stability and possible operating conditions. The simulation
results of RFSC for q ¼ 1.95 and q ¼ 7.00 are shown in
Figs. 4 and 5, respectively. The tracking responses of state x
are shown in Figs. 4a and 5a; the tracking responses of state
_x are shown in Figs. 4b and 5b; the associated control efforts
are shown in Figs. 4c and 5c; the number of fuzzy rules are
shown in Figs. 4d and 5d; the responses of neural network

Figure 4 Simulation results of RFSC system for q ¼ 1.95
Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
: 10.1049/iet-cta:20070315
are shown in Fig. 4e and 5e, respectively. The numbers of
fuzzy rules for q ¼ 1.95 and q ¼ 7.00 are 5 and 4,
respectively. It shows that the proposed network structure
adaptation can grow membership functions, split fuzzy rules
and prune fuzzy rules automatically for different nonlinear
systems. From the simulation results, not only the perfect
tracking responses can be achieved without any knowledge
of system dynamics, but also the concise SFNN structure

Figure 5 Simulation results of RFSC system for q ¼ 7.00
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can be obtained by applying the proposed self-structuring
mechanism and the on-line learning algorithms.

Example 2: The third-order Chua’s chaotic circuit, shown
in Fig. 6, is a simple electronic system which consists of one
linear resistor (R1), two capacitors (C1, C2), one inductor
(L1), and one nonlinear resistor (l). It owns very rich
nonlinear dynamics such as chaos and bifurcations [23]. l
is defined as a cubic function as

l(vC1
) ¼ avC1

þ cv3
C1

(a , 0, c . 0) (49)

The standard canonical form of Chua’s circuit can be
expressed as [24]

x(3)
¼ f (x)þ uþ d (50)

where f (x) ¼ (14=1805)x� (168=9025)_xþ (1=38)€x�
(2=45)((28=361)xþ (7=95)_xþ €x)3 is the system dynamic
function, and a square-wave disturbance d is added at
10 sec with +2:0 amplitude and period 12 sec. The
parameters of RFSC are selected as k1 ¼ 3, k2 ¼ 3, k3 ¼ 1,
hw ¼ 20, hm ¼ hs ¼ 1, Gth ¼ 0:3, Sth ¼ 0:5, Ith ¼ 0:2,
a ¼ 0:9, Pth ¼ 0:15, t ¼ 0:01 and d ¼ 0:5. The choice of
these parameters is also through some trails. To illustrate
the effectiveness of RFSC design method, a comparison
between the FNN-based adaptive control in [3] and SRFC
systems is made. The parameters of the FNN-based
adaptive control with three membership functions are
selected as k1 ¼ 3, k2 ¼ 3, k3 ¼ 1, hw ¼ 20, hm ¼ hs ¼ 1.
First, the simulation results of the FNN-based adaptive
control with fix-structure neural network are shown
in Fig. 7. The tracking response of state x is shown in
Fig. 7a; the tracking response of state _x is shown in
Fig. 7b; the tracking response of state €x is shown in Fig. 7c;
the associated control effort is shown in Fig. 7d; the
response of neural network is shown in Fig. 7e, respectively.
The simulation results show that the favourable tracking
performance can be achieved. However, the degenerate
tracking responses are caused when the disturbance occurs.
Then, the proposed RFSC with SFNN identifier is applied
to the Chua’s chaotic circuit again. The simulation results
of the RFSC are shown in Fig. 8. The tracking response of
state x is shown in Fig. 8a; the tracking response of state _x
is shown in Fig. 8b; the tracking response of state €x is
shown in Fig. 8 c; the associated control effort is shown in
Fig. 8d; the number of fuzzy rule is shown in Fig. 8e; the

Figure 6 Chua’s chaotic circuit
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response of neural network is shown in Fig. 8f. Comparing
with Fig. 7, Fig. 8 shows that the proposed RFSC
system can achieve better tracking performance even under
disturbance. The number of the constructed fuzzy rules is
5, and the maximum of the constructed fuzzy rules is
7. The system dynamics with the external disturbance can
be estimated well by the SFNN identifier. A concise
network structure can be obtained by the proposed self-
structuring method.

Figure 7 Simulation results of fix-structuring FNN-based
adaptive control system for Chua’s chaotic circuit
IET Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
doi: 10.1049/iet-cta:20070315
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Figure 8 Simulation results of RFSC system for Chua’s
chaotic circuit
Control Theory Appl., 2008, Vol. 2, No. 12, pp. 1054–1065
i: 10.1049/iet-cta:20070315
Example 3: Consider a plant as follows [26]

_x ¼ f (x)þ u (51)

where f (x) ¼ (1� e�x)=(1þ e�x) is the system dynamics,
and u is the control force. The parameters of RFSC are
selected as k1 ¼ 1, hw ¼ 40, hm ¼ hs ¼ 2, Gth ¼ 0:3,
Sth ¼ 0:5, Ith ¼ 0:2, a ¼ 0:9, Pth ¼ 0:15, t ¼ 0:01 and
d ¼ 0:5. The choice of these parameters is also through
some trails. The simulation results of RFSC are shown in
Fig. 9. The tracking response of state x are shown in
Fig. 9a; the associated control effort is shown in Fig. 9b;
the number of fuzzy rules is shown in Fig. 9c ; the response
of neural network is shown in Fig. 9d. The number of the
constructed fuzzy rules is 5. The results illustrate that the
proposed RFSC scheme can achieve satisfied tracking
performance for unknown nonlinear systems, and a concise

Figure 9 Simulation results of RFSC system for nonlinear
dynamic system
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network structure can be obtained by the proposed self-
structuring method.

5 Conclusions
For the FNN-based adaptive control approaches, the structure
of FNN should be determined in advance by trial-and-error.
It is difficult to consider the balance between the rule
number and the desired performance. Therefore this paper
proposes a RFSC system with structure adaptation approach.
The proposed RFSC system is composed of a computational
controller and a robust controller. In the computational
controller design, a SFNN with the structure- and parameter-
learning is utilised to on-line estimate the unknown control
dynamics equation. The robust controller with desired
attenuation level is designed to achieve L2 tracking
performance. The structure-learning phase of SFNN possesses
several techniques, including the growing of membership
functions, the splitting of fuzzy rules and the pruning of fuzzy
rules, to organise FNN automatically. The parameter-learning
phase of SFNN adjusts the parameters of the membership
functions and fuzzy rules based on the Lyapunov function to
achieve favourable approximation performance.

The major contributions of this paper are: (1) the SFNN
with the growing, splitting and pruning algorithm of the
membership functions, and fuzzy rules has been developed
to achieve favourable learning performance of network
structure. (2) the RFSC, in which the gradient descent
method is used to derive the on-line parameter-learning
algorithms, has been derived and developed well.
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[25] LORÍA A., ZAVALA-RÍO A.: ‘Adaptive tracking control of
chaotic systems with applications to synchronization’, IEEE
Trans. Circuits Syst. I, 2007, 54, (9), pp. 2019–2029

[26] WANG L.X.: ‘Adaptive fuzzy systems and control: design
and stability analysis’ (Prentice-Hall, 1994)
1065

& The Institution of Engineering and Technology 2008


