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Abstract

In this dissertation, we focus on two issues concerning protein structure prediction and
analysis. First, we have applied a two-level classification strategy called hierarchical
learning architecture (HLA) using neural networks to differentiate proteins according to
their classes and folding patterns and then use a combinatorial fusion technique to facilitate
feature selection and combination for improving predictive accuracy in protein structure
classification. When applying combinatorial fusion to the protein fold prediction problem
using neural networks with HLA, the resulting classification has an overall prediction
accuracy rate of 87% for four classes and 69.6% for 27 folding categories. These rates are
higher than previous results and it demonstrates that data fusion is a viable method for
feature selection and combination in the prediction and classification of protein structure.
Second, we propose an algorithm named Structural Mountain Clustering Method (SMCM)
to find a library of short 3-D structural motifs (building blocks) for construction of 3-D

structures of proteins/peptides. The algorithm finds the building blocks based on an estimate

il



of local "density" of 3-D fragments computed using a measure of structural similarity that is
obtained after best molecular fit alignment of pairs of fragments. The algorithm is tested on
two well known benchmark datasets and is found to successfully reconstruct the test
peptides in terms of both global-fit Root-Mean-Square (RMS) errors and local-fit RMS
errors. The good local-fit RMS errors achieved by SMCM indicate that these short
structural motifs extracted by our algorithm can model the nearby fragments quite
accurately. We then analyze the computational complexity of the SMCM and propose an
incremental version of SMCM to deal with large training dataset. In addition to using the
global-fit and local-fit RMS errors, we propose and use two alternative ways to compare the
quality of such quantization and reconstruction results between SMCM and Two Stage

Clustering Algorithm (TSCA) to show the superiority of SMCM.
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1. Introduction

1.1 Statements of the Problems

The structure prediction and classification of proteins plays a very important role in
bioinformatics, since three-dimensional (3-D) structure of a protein is essential for
understanding and studying its function. A lot of efforts have been put by researchers to find the
relations between protein sequences and their three-dimensional structures but it’s still a
difficult and unsolved problem. There are several famous classification databases such as
Structure Classification of Protein (SCOP) [1], Class, Architecture, Topology, and Homologous
superfamily (CATH) [2], DIAL-derived domain database (DDBASE) and Pfam [3], which
imbue the structure with context and analysis. However, the number of known 3-D protein
structures is much less than that of the determined protein sequences. Thus, there is still the
need for some effective methods to investigate the protein structure from its primary sequence.
Finding the 3-D structure of a protein using X-ray crystallography or by nuclear magnetic
resonance imaging is not only time consuming but also quite expensive and hence alternative
computational approaches are being tried. Computational structure prediction methods will
provide valuable information for the large fraction of sequences whose structures will not be
determined experimentally. The first class of protein structure prediction methods, including
threading or fold recognition and comparative modeling, rely on detectable similarity spanning
most of the modeled sequence and at least one known structure. The second class of methods,
de novo or ab initio methods, predict the structure from sequence alone, without relying on

similarity at the fold level between the modeled sequence and any of the known structures [4].

Among the former methods, fold recognition methods are widely used and effective
because it is believed that there are a strictly limited number of different protein folds in nature,

mostly as a result of evolution but also due to constraints imposed by the basic physics and



chemistry of polypeptide chains. There is, therefore, a good chance that a protein which has a
similar fold to the target protein has already been studied by X-ray crystallography or NMR
spectroscopy and can be found in the PDB (Protein Data Bank). The basic idea is that the target
sequence (the protein sequence for which the structure is being predicted) is threaded through
the backbone structures of a collection of template proteins. Fold recognition methods can
utilize the profile information derived from properties of amino acid sequences and the
structures in the fold library and even take into account the local secondary structure (e.g.
whether the amino acid is part of an alpha helix) or even evolutionary information (how
conserved the amino acid is) for structure prediction. Previous research [5], [6] have shown that
an accuracy rate of 70-80% has been achieved to classify most of proteins into four classes
according to their amino acid sequence information (i.e., all-alpha (o), all-beta (J3), alpha/beta
(o/PB) and alpha+beta (a+f)) [1]. In summary, these four classes contain 82.5% folding patterns,
84.7% superfamilies and 88.1% families in the SCOP database (SCOP release version 1.65 [7]).
In [8], Ding and Dubchak proposed a taxonmetric approach for protein folding classification
(into 27 folding patterns) beyond four simple classes had the highest overall prediction
accuracy rate at 56.5%. In Huang et al. [9], extra features were defined and improved the
prediction accuracy rate by 9% to reach 65.5%. In this dissertation, we use a combinatorial
fusion technique to facilitate feature selection and combination for improving predictive
accuracy in this problem and obtain better prediction accuracy rate of 87% for four classes and

69.6% for 27 folding categories.

For the ab initio structure prediction, to predict three-dimensional protein structures from
amino-acid sequences alone is a long-standing challenge in computational molecular biology.
Since the search space is enormous even for proteins with moderate sequence lengths, the
modeling of a protein structure de novo without using templates is quite difficult. To allow

rapid and efficient searching of conformational space, often only a subset of the atoms in the



protein chain is represented explicitly. Recently, methods based on assembly of short fragments
have shown a great promise [10]. Among these methods, 3-D building blocks approaches have
been proposed to use a set of proteins with known 3-D structures, first construct libraries of
building blocks or short structural motifs, the structures that appear frequently and have some
sequence to structure relation. These building blocks are then used to construct or analyze
structures of new proteins. The short structural fragments that recur across different protein
families can often be viewed as stand-alone units which fold independently and hence can help
assignment of building blocks to unknown proteins for reconstruction of 3-D structures [11].
Extraction of good representative building blocks is the key to the success of such approaches.
Unger et al. [12] proposed a two-stage clustering algorithm to choose hexamers (fragments of
length 6) with a large number of neighbors to be the centers of clusters and hence building
blocks. A similar approach was used by Micheletti et al. who considered the largest number of
nearby points within a similarity-cutoff called “proximity score” [13] to select cluster centers.
Kolodny et al., on the other hand, used a simulated annealing k-means method to extract
clusters with the minimal total variance score [14]. In this dissertation, a modified form of the
mountain clustering / subtractive clustering method [15]-[16] is proposed to find building
blocks. Results of some preliminary investigation are reported in [17]. The use of the modified
mountain clustering method is computationally expensive when the training data set size is
large. To reduce the computational burden, we also propose an incremental version of the
structural mountain clustering method. Our experiments with some benchmark datasets show
that the proposed algorithms can find better representative building blocks than the method in
[12] that selects cluster centers by counting neighbors. We also propose two alternative ways

for displaying the quality of the building blocks.

1.2 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 describes preliminaries and material



including the Structural Classification of Proteins (SCOP), 3D building block approach,
features used for classification and the datasets used in the dissertation. Chapter 3 explores the
results and methods by data fusion approach for the prediction of protein folds. Chapter 4
investigates how to find the useful building blocks for construction of protein structures using
a structural variant of Mountain clustering methods. Chapter 5 develops the incremental
version of Structural Mountain clustering methods. At last, we make the conclusions in

Chapter 6.



2. Preliminaries and Materials

2.1 Structural Classification of Proteins (SCOP) database

The SCOP database is a comprehensive ordering of all proteins of known structure, according
to their evolutionary and structural relationships. Protein domains in SCOP are grouped into
species and hierarchically classified into families, superfamilies, folds and classes. The first
two levels, family and superfamily, describe near and distant evolutionary relationships; the
third, fold, describes geometrical relationships. It is originally published in 1995[1] and
constantly updated over years till now [1][7][18]-[20]. The database and its associated files are
freely accessible from a number of WWW sites mirrored from URL

http://scop.mrc-lmb.cam.ac.uk/scop/.
The classification of the proteins in SCOP is on hierarchical levels as follows:

Family. Proteins are clustered together into families on the basis of one of two criteria that
imply their having a common evolutionary origin: first, all proteins that have residue identities
of 30% and greater; second, proteins with lower sequence identities but whose functions and

structures are very similar; for example, globins with sequence identities of 15%.

Superfamily. Families whose proteins have low sequence identities but whose structures and,
in many cases, functional features suggest that a common evolutionary origin is probable, are
placed together in superfamilies; for example, the variable and constant domains of

immunoglobulins.

Common fold. Superfamilies and families are defined as having a common fold if their proteins
have the same major secondary structures in the same arrangement and with the same
topological connections. The structural similarities of proteins in the same fold category

probably arise from the physics and chemistry of proteins favoring certain packing



arrangements and chain topologies.

Class. The different folds have been grouped into classes. Most of the folds are assigned to one

of the five structural classes:
1. all-a, those whose structure is essentially formed by a-helices;
2. all-B, those whose structure is essentially formed by B-sheets;
3. a/B, those with a-helices and B-strands;
4. o+p, those in which a-helices and B-strands are largely segregated;

5. multi-domain, those with domains of different fold and for which no homologues are

known at present.

Other classes have been assigned for peptides, small proteins, theoretical models, nucleic

acids and carbohydrates.

Following the previous published papers [5], [8], [21], we focus on the first four main
classes, i.e. all alpha (a), all beta (B), alpha and beta (a+f) and alpha/beta (a/p), with 27 folds

according to their structures representing all major structural classes.

2.2 Feature Sets used for Predicting Protein Folds
2.2.1 Global Features

In the previous studies [5], [8], several features have been considered for predicting protein
folds by using global descriptors computed from the physical, chemical or structural properties
of the constituent amino acids. Each property of the sequence was described based on three
global descriptors: Composition (C), Transition (T), and Distribution (D) [5], [8]. The

descriptor “Composition” is the occurrence percentage of each characteristic (attribute). The



descriptor “Transition” is change count from one characteristic to another. There will be

different combinations which would be C)' for m kinds of characteristics. The descriptor

“Distribution” is the percentage of m kinds of characteristics appearing at the location in
0% 25% 50% 75% 100% of the sequence. These descriptors for each characteristic
essentially describe the frequencies with which the properties change along the sequence and
their distribution on the chain including the rate of composition, transition and distribution.
These properties of the amino acids after encoded by the descriptors were used as input

features to the machine learning network.

Next, we would like to illustrate how these descriptors are computed. For example, the
hydrophobicity of an amino acid could be classified into 3 types: “positive”, “neutral”
and “negative”. If we denote the three types of characteristics by “A”, “B”, “C” alphabets,
then each of amino acids in the protein sequence can be replaced by these three alphabets,
and therefore a new sequence represented by A B  C is obtained. Table 1 shows such an
example sequence that each position of individual alphabet are numbered. Then we can
count the percentages of A B and C for the whole sequence and obtain the composition as
shown in the first row of Table 2. Also we can calculate the transition count for the pairs of
A/B B/ Cand A/ C and compute the values in the second row o f Table 2. Finally, we
calculate the position of 0% 25% 50% 75% 100% of A B and C, and we can get 15
(5x3=15) distribution values from the ABC sequence as shown in the bottom rows of Table

2. After the procedure, a feature vector of dimension 21 (3+3+5+5+5) can be obtained for

this specific property encoded.



Table 1. An example sequence of characteristics using 3 alphabets.

Sequence 1 3 |4 7 |8 10| 11|12 |13 |14 (15|16 (17|18 |19 | 20
A B [B B |A c|lalala|B]|B|B|C|A |B |C
A B [B B [A clalala|B|B|B|C|A |B
A B |C A |B Al|lAa|la|B |B B |Cc|A|B |C
A 1 4 5 |6 |7 8
B 1|2 3 5 [6 |7 8
C 2 3 4
Table 2. An example of computing descriptors C, T and D
A B C
Composition (C) 8/20 8/20 4/20
Transition (T) AB BC CA
6/19 4/19 3/19
A_0%(1) A 25% A _50% A _75% A_100%
1/20 2/20 8/20 12/20 18/20
o B_0%(1) B_25% B 50% B_75% B_100%
Distribution (D - s n - -
() 3/20 4/20 9/20 15/20 19/20
C_0%(1) C_25% C_50% C_75% C_100%
5/20 5/20 10/20 17/20 20/20

In this study, we adopted six global features derived from the physical or chemical
characteristics (attributes) of proteins for fold classification. They are amino acid composition
(C), predicted secondary structure (S), hydrophobicity (H), normalized Van Der Waals volume
(V), polarity (P), and polarizability (Z). Among them, the first feature is simply the
composition of amino acid sequence with its dimension equal to 20 whereas the remaining
five features are extracted from the original primary sequence using the descriptor described
above. The six kinds of protein sequence information (PSI) and their abbreviated symbol and

dimension are shown in Table 3.



Table 3. The global features extracted from protein sequence.

Feature
Feature & its abbreviation |[Characteristics used in descriptors Sine

Composition (C) 20 kinds of amino acids 20
Predicted Secondary Structure (S) Alpha Beta Loop 21
Hydrophobicity (H) Positive | Neural | Negative 21
Volume (V) Large | Middle Small 21
Polarity (P) Positive | Neural | Negative 21
Polarizability (Z) Strong | Middle Weak 21

2.2.2 Local Features

The six types of PSI introduced above are kinds of global features extracted by the direct
encoding method. These six types of PSIs emphasize more on the global properties and
structures of the amino-acid sequences, and less on the local interactions among neighboring
amino acids. In this section, we will introduce two additional local features obtained by using
the bi-gram coding method and the spaced-bi-gram coding method. These two induced features,
which generated from the amino acid sequences, can well describe the interactions among
neighboring amino acids locally in a 3D structure and also those caused by the mutual
interactions among interleaving (every other) neighboring amino acids in a protein sequence.
And it is quite reasonable because the protein sequence of amino acid exist in space instead of
in line. There exists a force to influence others and the force is determined by different kind of
amino acid. Based on this idea, the bi-gram and spaced-bi-gram coded features were used in

our experiments.

Here, we would like to introduce the bi-gram coding method first whereas the

spaced-bi-gram coding method will be introduced latter. For a given sequence composed of M



alphabets, an N-gram coding scheme applied on it will produce a feature vector with M"
dimensions and n is the N-gram size (length of window). Each element in the feature vector
represents the number of appearance of a specific pair-wise combination of the M alphabets in
the neighboring two alphabets. Since a protein sequence is composed of twenty kinds of general
amino acids, these twenty kinds of amino acids are represented by twenty alphabets and others
may be represented by a common alphabet B or Z; therefore it is a sequence composed of
twenty-one alphabets (twenty kinds of amino acids plus an extra alphabet). In our experiments
we took the windows length n as 2 and therefore the N-gram coding method becomes bi-gram
coding method (or called 2-gram coding method) and we will obtain a feature vector with 441

dimensions for a protein sequence.

Similar to the bi-gram coding, the spaced-bi-gram coding is to detect the appearance
frequency of any two-alphabet pair in every other (interleaving) neighboring amino acids of a
protein sequence. This coding method we induced here is based on the concept of entropy and
indirectly coding algorithm, we call it the spaced-bi-gram method. The spaced-bi-gram method
will focus on the relationship between two neighbors of amino acids and count the transition of
whole sequence to obtain information from the amino acid sequence, but with a space. In this
manner, the transitions of the neighbor of amino acids sequence, but over one space, have been
calculated. We believe that the structures of protein are not only influenced by the composition
amino acids that combined with chemical bonds but also by other amino acids which do not
connect each other directly but they are nearby. The concept is similar with the Van Der Waals

force.

Same as the N-gram coding method, for an M alphabets sequence with windows length n,
the new coding method will produce the pairs with the number of M" . With the same reason we
took the windows length equal to two. Hence, the spaced-bi-gram coding method on a protein

sequence will also generate a feature vector with 441 dimensions. Let us consider a segment of

10



the amino acid sequence of the protein with ID number 1pga as an example. If there is a
segment occurred as ...MTYKLILNG..... in a sequence, we will use it as an illustrative
example. In the bi-gram coding method, we count the numbers of the amino acid pairs (MT)

(TY) (YK) (KL) (L) (IL) (LN)...,respectively. But in the spaced-bi-gram coding method,
for the same segment, we are going to count the numbers of the pairs (MY) (TK) (YL)

(KI) (LL) (IN) (LG)...,respectively. Itis clearly to find that we consider the pairs jumping
over an amino acid. It is believed that the mutual interactions between every two neighboring
amino acids, and also the mutual interactions between every other two neighboring amino acids
may play important roles in the space structure of a protein sequence. It is quite clearly that each
amino acid with its volume, after tangle up in space it is not only affected by its neighbor but

also affected by other composition.

The local features obtained by bi-gram and spaced-bi-gram here and also the six protein

sequence information (PSI) in the previous section are listed in the Table 4.

Table 4. The global features and local features

Symbol Protein Sequence Information Dimension
C Amino Acid Composition 20
S Predict Secondary Structure 21
H Hydrophobicity 21
P Polarity 21
\% Normalized Van Der Waals volume 21
z Polarizability 21
B Bi-Gram coding 441
SB Spaced Bi-gram coding 441

11



2.2.3 Feature Sets of Combined Features

The global and local features are combined and used as input feature sets of classifiers. Table 5

gives the combined features sets.

Table 5. The combined feature set of original features.

Feature set Features included Dimension
A C 20
B C+S 41
C C+S+H 62
D C+S+H+P 83
E C+S+H+P+V 104
F C+S+H+P+V+Z 125
G C+S+H+P+V+Z+B 566
H C+S+H+P+V+Z+B+SB 1007

2.3 The 3-D Building Block Approach for Analysis of Protein Structure

3-D building blocks approach for analysis of protein structure is usually a multi-stage approach.
First, we need to decide on the fragment length, i.e., the length of the building block. Then
given a set of training proteins we generate fragments and use some clustering /data
compression algorithm to divide these fragments into structurally similar clusters[11]-[14]. The
center of each cluster is then used as the building block or prototype. Typically, the number of
building blocks is much smaller than the total number of fragments. If there are an adequate
number of good building blocks, then they can be used to represent the original fragments
within a tolerable limit and hence in turn can be used to reconstruct the 3-D structure of a whole

protein from its amino acid sequences within some tolerance.

12



System block diagram Sample activities

Training peptides I_I_/l d/

Collect structural data of proteins Test peptide
ﬂ M a b
Compile the training set T e M ; L g
of short fragments :'/ = l—'
ﬂ a b P
Divide the fragments L Fe 1419
into clusters P A |—' W
ﬂ Building Blocks
Pick up representative fragments a b 9 d
as the building blocks m = L A
4 A P
2= " H e v L RMSD s small)

Reconstruct the proteins by the a b a*
building blocks & Evaluate RMSD | 1] = "1+ —_* LI (RMSDis larger)

Figure 1. A block diagram of the 3D building block approach.
(Note that fragment x* represents the fragment x after some rotation and alignment.)

For an easy understanding of the entire process, in the left part of Figure 1, we provide a
block diagram and in the right side of each block we illustrate the activity in the block using a
simple data set consisting of two training peptides and one test peptide. For illustration, we
consider fragments of length 4. Thus, the two training peptides result in 7 fragments named a-g
in Figure 1. In the third step (block), the clustering process finds four clusters. For example, in
the first cluster, fragment f and fragment a are placed together because they are almost the same
after alignment. The 4 clusters result in 4 building blocks, a, b, g and d as shown in the fourth
block in the right part of Figure 1. In the last step we show two reconstruction cases of which
the first one, (b*ta*+g), has a smaller reconstruction error (in terms of
Root-Mean-Square-Deviation (RMSD) ) than the second one since its corresponding building

blocks are better matched. It is noted that b* represents the building block b after alignment.
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2.4 Datasets used in the Dissertation

In this section, all the datasets used in this dissertation are listed below.

2.4.1 Dataset used for Protein Fold Prediction

2.4.1.1 Training Dataset

Following the prior published papers [5],[8],[21], the numbers of proteins for training are 313
and they should be classified into four main classes, i.e. all alpha(a), all beta(}), alpha and beta
(a+P) and alpha/beta (o/B), with 27 folds according to their structures representing all major
structural classes. To make sure the network will be well trained, the data set was selected by
their characteristics so that all proteins in the data set have less than 35% of the sequence

identity for the aligned subsequences-longer than 80 residues. The protein list and

corresponding 27 folds are shown in the Table 6 and 7.

Table 6. The twenty-seven folds used in the experiments of this study.

Globin-like

Cytochrome ¢

DNA/RNA-binding 3-helical bundle
Four-helical up-and-down bundle
4-helical cytokines

EF Hand-like

Immunoglobulin-like beta-sandwich
Cupredoxin-like
Nucleoplasmin-like/VP
Concanavalin A-like lectins/glucanases
SH3-like barrel

OB-fold

beta-Trefoil

Trypsin-like serine proteases

Lipocalins

TIM beta/alpha-barrel
FAD/NAD(P)-binding domain
Flavodoxin-like
NAD(P)-binding Rossmann-fold
domains

P-loop containing nucleoside
triphosphate hydrolases
Thioredoxin fold

Ribonuclease H-like motif
alpha/beta-Hydrolases
Periplasmic binding protein-like I
beta-Grasp

Ferredoxin-like

Knottins
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Table 7. Name list of training proteins used in the experiments of this study.

21hb
3sdh
1flp
2hbg
2mge
leca
2gdm
1bab
lith
lash
1hlb
lepe
lepe
lcer
Icxa
2pac
2mta
1¢53
1fed
1fed
lenh
11fb
lapl
1hdp
lher
Iret
Imse
Imse
1leb
3gap
lhst
1hks
1lpe
Iwas
256b
2ccy
2hmz

2tmv

3mdd
Ibge
11ki
lThuw
lgmf
Irch
lhme
lilk
lifa
1rfb
4icb
Irtp
Icta
Irec
2scp
2sas
2scm
6fab
1fc2
3cd4
Icid
1hnf
1dlh
1dlh
lvaa
lvaa
lcd8
1tlk
Itnn
1gof
lcgt
loxy
Icle
Ictn
Inci
2mcm
I1xso
1fna

Iten
Icfb
3hhr
3hhr
2hft
3dpa
Irsy
1fru
8fab
Iplc
Ipmy
laaj
2aza
Icbp
laoz
laoz
laoz
Inrd
2bpa
2bpa
2stv
4sbv
2tbv
2bbv
1bbt
1bbt
2cas
4rhv
4rhv
4rhv
2mev
2mev
2mev
1fod
llen
2ayh
Islt

1sac

Icel
1xnb
1lob
Ishf
Ishg
Ipkt
2hsp
lcsk
Isem
Ipse
Isso
11ts
Ibov
Iprt
Iprt
Iprt
1kab
Itss

lasz

Ipyp
ligp
lesp
1bgh
Lrip
Ibar
8ilb
lilr
2ila
labr
labr
Itie
lhce
larb
2sga
2alp
lept
Ippb
2snv

2hnt
2kai
Ibbr
1hbq
1bbp
lepa
Imup
lifc
1lid
Imdc
Icbs
2phy
lcgt
6taa
1ppi
lamg
lamy
1byb
lghs
Ixys
Inar
2ebn
Ictn
ladd
2kau
1fba
lads
4enl
2mnr
Ichr
loyb
1gox
2tmd
1pii
Iwsy
1pkn
3rub
Srub
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Itph
4xia
Infp
2tmd
3cox
Ipbe
1gal
1trb
2tpr
2tpr
3lad
3lad
Ifed
1fcd
3chy
Intr
Iscu
Iscu
2fcr
2fx2
4fxn
Ibmt
Icus
2nad
1gdh
20hx
Iqor
lhdc
1dhr
ludp
lhdg
2nad
1gdh
2cmd
Ibmd
111d
2pgd
Iscu

lgky
lukz
2ak3
S5p21
Itad
left
lefg
1dts
Inip
2reb
2trx
Imdk
1dsb
lego
laba
Igpl
2gst
lgsr
lgsq
3hsc
latn
latn
lgle
1glc
Ichm
2rn2
1hrh
1dpi
lhjr
lack
lede
1tht
Itca
3tgl
1tib
lerl
Itah
llpb

1wht
1wht
2dri
8abp
lgca
2liv
Ipda
Isbp
lolb
lomp
1hsl
Ipbp
Innt
Ipga
2ptl
lubi
2pia
1frd
Iput
Itss
1fca
1fxr
2atc
Ipba
Inhk
Isxl
Inrc
2bop
3rub
Srub
laps
Iris
lefg
4cpa
loma
2sn3
Iptx
2crd

Iscy
1chl
1ktx
lica
2gps
2c¢bh
11pb
1lpb
1tab



2.4.1.2 Testing dataset

The testing dataset was based on PDB-40D set developed by the authors of the SCOP database
[1], [18]-[21]. A total number of 385 proteins with identity less 40%, same as those used by
Ding and Dubchak [8], were selected for testing. Table 8 gives name list of the testing proteins.
Table 9 shows the numbers of proteins in the training and testing datasets for different folds of
each protein class used in our experiments, where there are 27 folds for the 4 main classes in

total.

Table 8. Name list of testing proteins used in the experiments

2cmd 1 Idar 2 2btfa2 Ipea Imli Ivaoal legf
Ibdmal Immd 2yhx 1 1 pnra2 1pil Igeo 1 2tgf
lhlpal 2 2yhx 2 Itlfa Inpk Igeo 2 lhre
lhyhal ladea Iglagl 2lbp lupl 1 Iwgtal lemo 1
11dm 1 2reb 1 1glag2 ligd lupl 2 Iwgta4 lemo 2
1ldg 1 Ibmfa3 lasu Iguab lurna Iwgta2 lapq
11db 1 Ibmfd3 litg lalo 2 2ula Iwgta3 lklo 1
lyvei2 lkte Ibco 2 2pia 3 ldhma lgur lklo 3
2pgd 2 Imek 1kfd 1 lesfa2 1vhia liva lklo 2
lhrdal 1dsba2 Inoya Ise4 2 3rubl2 leit 1flei
lgtmal 2gsta2 Isfe 2 1tif Sruba2 ltxm Iskz 1
llehal 1glqa2 Iwht.1 lgr 1 Idar 4 Itsk Iskz 2
Ideka lgsea2 ldin 1£d2 lafi Ipnh

1vtk lgnwa2 lbroa Ixer Ipsda3 lgps

laky 2trep Ithg lvjw Imla 2 Icbh

1tada2 lhpm 1 Itahb 2fxb Ifwp lesl 2

lhura lhpm 2 lhpla2 lraabl Iregx lhegb

left 3 2btfal lyasa Ispbp lab8a Iprha2
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Table 8. (cont.) Name list of testing proteins used in the experiments.

lhbg
Imbd
Imba
11h1
1baba
lalla
1dvh
lcyi
Scytr
Ice5
351c
1gks
laofal
letpal
letpa2
lyrna
lyrnb
loctcl
1fjla
Ires
Ipdnc
lignal
ligna2
Isfe 1
Ibia_1
llea
laoy
Icgpal
lopc
letd
Ipuee
2hts
ldpral
Ixgsal
1fow
2liga
1bbha
Icgo

lepq
2hmga
Ivtmp
Ibucal
Ifapb
Ibgc
Ientl
Icsga
2int
lhula
lThmeca
3inkc
1jli
Irmi
Isra
Irro
losa
Iscmb
2mysb
Itcob
ldjxal
Icpo_ 1
Icpo 2
Ineu
3cd4 1
Icid_1
Icdceb
1vtba
Icdlal
1dlhal
lvcaal
lzxq 1
3cd4 2
Icid 2
Ivcaa2
lzxq 2
2ncm

1thm

Iwiu
Itiu
lgof 1
Igba_1
Isvb 1
ledg 1
1lla_2
lhe2 2
Icle 2
letn 1
lggtal
lksr
Irhoa
2hft 1
2hft 2
lefb 1
3hhrbl
3hhrb2
lebpa
lcto
lbglal
lbgla2
1bhgal
lggta2
1ggta3
Inoa
lyaia
Imspa
4kbpal
2cbp
laiza
Icur
ljer
leyx
loccbl
lkew 1
lkew 2
lkew 3

lkew 4
lkew 5
lkew 6
Istma
Ismva
Ibmvl
1bmv2
lewpa
2bbva
1bbt3
Ipvcl
lpve2
Ipve3
Itmel
Isval
1dhx
Iscs
lcpn
1slaa
1lcl
1kit 1
1kit 2
lbia_2
lumua
1ckaa
1pht
lhsq
Immd_1
lvie
lihwa
Isty
1tiid
1prtb1
lesfal
Ised 1
lasyal
llylal
lcuk 3
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3ulla
Ijmcal
1jmca2
Imjc
Isro
1ah9
Ickmal
1yhb
1pfsa
1gpc
2prd
2fgf
lilb
I1wba
lhed
Isgc
lagja
Ibty
lhava
Lhbp
lobpa
1beba
lepba
1hms
11fo
leal
lcdg 4
1ppi 2
2aaa 2
1jdc 2
lamy 2
1xyza
ledg
Icec
lecea
1ghr
1bgla5
1bhga3

Icbg
lhvq
ledt
Ictn_ 2
Igba 3
Ipta
Inall
1dhpa
lucwa
Idosa
2acr
lak5
lebhal
2mnr 1
2chr_1
ldora
loya
Ipii 1
Insj
Ipii 2
ligs
Ipkya2
1dik 1
3rubll
Srubal
Itpfa
2Xis
Iluca
Ilucb
Iqapal
1djxa3
Igym
Ireqal
Iregbl
Ipud
1sfta2
lcoy 1
Ipbe 1

1gal 1
Ignd 1
Igesal
lgesa2
Itde 1
1tde 2
Inhp 1
Inhp 2
1lvl 1
1lvl 2
Irnl 2
Isrra
Iscubl
Ircf
Snul
Iqrda
Ireqa2
Ireqb2
lordal
lesc
2nacal
ldxy 1
Ipsdal
lkeva2
Ixel
Icyda
1fds
1fmca
leny
lybva
lgdlol
1dapal
1dih 1
lofgal
1dpgal
2naca2
ldxy 2
1psda2



Table 9. Fold numbers of each class and pattern numbers of each fold in SCOP which was

picked up to be training and testing patterns in this study.

Fold number per class Fold number per class
Classes

(Training patterns per fold) (Testing patterns per fold)
All Alpha 6 13,7,12,7,9,7 6 6,9,20,8,9,9
All Beta 9 30,9,16,7,8,13,8,9,9 9 44,12,13,6,8,19,4,4,7
Alpha/Beta 9 29,11,11,13,10,9,10,11,11 9 48,12,13,27,12,8,14,7,4
Alpha+Beta 3 7,13,14 3 8,27,27
Total Number 27 27

2.4.2 Dataset used for finding 3-D building blocks of protein structures

Two datasets are used for finding 3-D building blocks of protein structures and we call them as
Dataset A and Dataset B. Dataset A consists of the same set of 82 proteins as used in Unger et al.
[12]. Dataset B is the same as used by Kolodny et al. [14] excluding a few proteins with

sequence discontinuity. When creating the library of short fragments, only the ¢, coordinates

are used.

2.4.2.1 Dataset A

Dataset A is referred to as the “refined Brookhaven™ database in [12]. Actually, Dataset A has
two versions, Dataset Aorp and Angw . The Dataset Aorp is exactly the same database as used in
[12]. The data in the Protein Data Bank are updated continuously as more new experimental
observations become available. The Dataset Axgw contains the same set of proteins as that in

Dataset Aorp but with updated information.
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Table 10. Dataset AoLp: Refined Brookhaven Peptides

IAPR 1BP2 1CC5 ICCR 1CPP 1CPV 1CRN ICTF
IECA 1FB4h 1FBJI 1FC2d 1FDX 1GAPa 1GCR [IHIP
IHMQa 1INSa 2INSb 1LHI 1LZ1 ILZT IMBD INXB
IPCY 1PP2r IPPD 1PFT ISBT 1SN3 1TGSi 2ABXa
2ACT 2ALP 2APP 2AZAa 2CAB 2CCYa 2CDV 2CTS
2CYP 2ESTe 2FD1 2GN5 2INSa 2LHB 2LZM 20VO
2PABa 2PKAa 2PKAb 2RHE 2SGA 2SNS 2SODo 351C
3C2C  3DFR 3ICB 3PGM 3PTP 3RP2a 3RXN 3SGBe
3TLN 4ADH 4APE 4ATCa 4ATCb 4CYTr 4DFRa 4FXN
4HHBb 4HHBc 4HHBd 4SBVa 5CPA S5LDH 5PTI SRSA

SRXN 7CAT

Table 11. Updated peptides list of Dataset Axgw With new PDB number in the parentheses

IAPRQ2APR)  IGCR(GCR)  3PTP(5PTP)  1GAPa(1G6Na)
ICPP(2CPP)  1HMQa(2HMQa) 3RXN(7RXN) 2FDI(5FDI)
ICPV(5CPV)  1INSa(4INSa)  3TLN(8TLN) 4FXN(2FOX)
IFB4h(2FB4h) IPCY(IPLC)  4ADH(SADH) 2APP(3APP)
IFBJI2FBIl)  I1SN3(2SN3)  4ATCa(6ATla) 4CYTr(5CYTr)

1FDX(1DUR)

Table 11 displays the list of updated peptides in Table 10 that have changed over time. The
new PDB numbers are indicated in parentheses. We have used both Dataset Aorp and Angw to
evaluate the performance of our algorithms. Unger et al. [12] used four proteins (1BP2, 1PCY,
4HHBBD, 5PTI) as the training data and the remaining 78 proteins as the test data; we also use the

same protocols.
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2.4.2.2 Dataset B

Table 12 and Table 13 include the list of proteins in Dataset B. The training dataset (Table 12)

has 153 peptides whereas the test dataset (Table 13) has 144 peptides.

Table 12. Training data of Dataset B

1Alla  1A44 1A6M 1AAC 1ABA 1AH7 1AHO IAIE
1AJSa 1AKO 1AMM 1AOHa 1ATZa 1AY7b 1B0Ya 1B2Pa
1B3Aa 1B4Va 1B67a IBFD IBFG IBGF 1BKRa IBMS
1BSMa 1BURs 1BX4a 1BXOa IBYI 1BYQa 1CIKa I1CBN
ICEX ICIPa 1CJCa 1CSH ICTF 1CY5a 1CYO 1CZFa
ID3Va 1D40a 1D7Pm 1DCla 1DGFa IDHN IDMR 1DOZa
IDPSa 1DPTa 1EZM IFND IHFEl 1HFEs 1IFC  1lIBa
1IXH 1JHGa 1KAPp 1KID 1KPF 1KPTa 1KRN 1LAM
ILKKa IMFMa IMLA IMOQ IMRJ IMSIL  IMTYg IMUN
INKD INLS INOX 1ORC I1PCFa IPDO  1PHC 1PHP
IPIDa IPIDb 1POA IPPN IPTF 1QAUa 1QDDa 1QGUa
1Q0GXa 1QH4a 1QH5a 1QHFa 1QHVa 1QIPa 1QJ4a 1QKSa
1QQ5a IQREa 1QSla 1QSAa 1QTSa IRA9 1RB9 IRGEa
IRIE IRZL 1SGPi 1SMD 1SWUa IT1Da ITFE ITHW
ITTBa 1TX4a 1UBPa 1UTEa 1UTG 1VCC 1VFYa 1VHH
IVNS IWHI 1YGE 1YVEi 256Ba 2BBKl 2CPGa 2CPL
2END 2ERL 2FDN 2GSTa 2IGD 2ILK  2LISa 2PTH
3BTOa 3CHBd 3CYR 3EBX 3EUGa 3EZMa 3GRS 3LZT
3PTE  3PYP 3SIL  3VUB 5PTI  7A3Ha 7ATJa 7RSA

8ABP
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Table 13. Testing data of Dataset B

1ABP 1ACX 1BDS 1BMVI IBMV2 1BP2 ICC5 1CD4

ICHOi 1CLA 1CMS ICOHb ICRN 1CSC ICSEe ICTS

1CY3 1ECA 1EST 1F19h 1F191 1FCla 1FC2c 1FDX

1FX1 IGRCa 1HIP IHOE 1LI12 1LH1 1LH4 1LZ1

IMBA 1MBD 10VOa 1P09a 1PAZ IPCY 1PFKa 1PHH

1PP2r 1PPT  1PRCc IPRCh 1PRCI 1PRCm IPYP IRBBa

IREI IRHD 1RMUI1 1IRNT ISGT ITECi 1TIM 1TNFa

IWRPr 1WSYb 256Ba 2AAT 2ACT 2ALP 2ATlb 2AZA

2CAB 2CCYa 2CDV 2CNA 2CPP 2CYP. 2DHFa 2FD2

2GBP 2GDlo 2GLSa 2GN5 2HHBa 2HHBbL 2HLAa 2HLAb

211B 2KAIb 2LIV  2LZM 2MEV1 2MEV3 2PABa 2PCY

2PKAa 2PKAb 2R063 2RSPa 2SBT  2SGA  2SNS 2SODb

2SSI 2STV  2TAA 2TAAa 2TBVa 2TMVp 2UTGa 2YPIla

351C 3ADK 3B5C 3BLM 3CA2 3DFR 3FXC 3GAPa

3GPDr 3GRS 3HMGa 3HMGb 3ICD 3PGK 3PGM 4AIT

4APE  4DFRa 4ER4e 4HVPa 4MDHa 4SBVa 4SGBi 4TLN

4TMNe 4TSla 5CPA 5CPV  5EBX S5LDH S5MBN S5TNC

5XIAa 6ACN 7CATa 8ADH 8APla 8APIb 8CATa O9PAP
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3. Protein Fold Prediction by Data Fusion approach

3.1 Introduction

High technology large-scale sequencing projects have produced a massive number of proteins
with putative amino acid sequences but much less is known in terms of their three dimensional
(3-D) structure. Several popular structure databases, such as the Structural Classification of
Proteins (SCOP) [18] and the Class, Architecture, Topology, and Homologous superfamily
(CATH) [22], contribute only no more than 32000 entries in the Protein Data Bank (PDB)
(SCOP release version 1.65 [7]: 20619 PDB entries, PDB: 31217 entries in 07-Jun. 2005). This
number constitutes only about 20% of collections in the Swiss-Port (Swiss-Port release version
47.2: 184304 entries in 07-Jun. 2005). Physically, X-ray diffraction or NMR is used to
determine the 3-D structure for a protein. However, each has its limitation [5]. As such,
extracting structural information from the sequence databases becomes an important and
complementary alternative, especially for swiftly determining protein functions or discovering

new compounds for medical or therapeutic purposes.

The classification of protein structures has, more recently, been facilitated with some
computer-aided algorithms. Previous research [5]-[6] have shown that an accuracy rate of
70-80% has been achieved to classify most of proteins into four classes according to their
amino acid sequence information (i.e., all-alpha (o), all-beta (B), alpha/beta (o/B) and
alpha+beta (a+f)) [1]. In summary, these four classes contain 82.5% folding patterns, 84.7%
superfamilies and 88.1% families in the SCOP database (SCOP release version 1.65 [7]).
However, less optimal results are obtained if a more complicated category is used such as the

one with protein folding patterns in [8].

In [8], Ding and Dubchak proposed a taxonmetric approach for protein folding
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classification (into 27 folding patterns) beyond four simple classes with a Neural Network (NN)
and Support Vector Machine (SVM) [23]. Their approach attempts to predict the 3-D structure
of a protein from its primary amino acid sequence under the assumption that only limited
folding patterns are formed in most of these four protein classes and can be used as ‘template’.
They predicted protein folds according to six single-parameter features ‘C’, ‘S’, ‘H’, ‘P’, ‘V’
and ‘Z’ (see Section 2.2 for detail) first, then a combinatorial multiple-parameter features were
formed and checked for their prediction accuracy in protein folding classification. They then
demonstrated that one multiple-parameter feature ‘CSHP’ had the highest overall prediction

accuracy rate at 56.5% by SVM.

In Huang et al. [9], extra features were defined. They proposed two additional indirect

3

coding features ‘B’ and ‘SB’ (see Sections 2.2 and 2.3 for detail) to correlate ‘neighboring’
di-peptide pairs with protein structure classification. In addition to NN and SVM, they also
constructed a new computational architecture called hierarchical learning architecture (HLA).
In HLA, which was the first two-level classification strategy, a protein is classified into one of
four classes at first, and then further classified into a folding structure (into one of 27 folding
patterns). They combined the six single-parameter features proposed by Ding and Dubchak [§]
and the outcomes of the two indirect coding features to form two new multiple-parameter

features ‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’. With the latter features, Huang et al. [9]

improved the prediction accuracy rate by 9%, compared with the result from Ding and Dubchak

18],

In this study, we apply the technique of data fusion [24]-[28], in particular the
Combination Fusion Analysis described in Hsu et al. [27], to perform better protein structure
classification, and better feature selection and combination. Using data fusion, results from
various features are combined to obtain predictions with higher accuracy rate. In addition, the

notion of diversity rank/score function is used to select the most suitable features for
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combination. We start with eight features, six from Ding and Dubchak (‘C’, ‘CS’, ‘CSH’,
‘CSHP’, ‘CSHPV’ and ‘CSHPVZ’) [8] and two from Huang et al. [9] (‘CSHPVZ+B’ and
‘CSHPVZ+B+SB’) to assign protein class and folding pattern. Then, some explicit rules from
data fusion in information retrieval (IR) and virtual screening (VS) (see [24]-[28]) are used
together with a special diversity rank/score graph to choose the best discriminating features for
further combination. It has been demonstrated in IR and VS that using a combination of
distinctive features may result in higher prediction accuracy rate than using single features. The
proposed rules for proper feature selection are to reduce the complexity at the beginning. Then,
we systematically choose the best discriminating features according to the diversity (see
Section 3.2 for detail) of these features, which is represented in a diversity rank/score graph.
Our experimental results achieves an overall prediction accuracy rate at 87% for predicting
protein classes and 69.6% for predicting protein folding patterns which are higher than the

previous work at 83.6% and 65.5% by Huang et al. [9], respectively.

3.2 Computational Framework and Architecture
3.2.1 Protein Datasets

We use the data sets from Ding and Dubchak [8] which were originated from the SCOP
database for training and testing. Training data set is selected from the database built for the
prediction of 128 folding patterns in the SCOP database [21]. It is ensured that any pair of two
proteins in the training set is less than 35% identical in any aligned subsequence longer than 80
residues. The independent testing set is selected from the PDB-40D set [1], [18]-[21]. Moreover,
all proteins in the testing set are less than 40% identical to each other. No protein in the testing
set is more than 35% identical to any protein in the training set. The total number of proteins is
698 with 313 and 385 for training and testing, respectively. These proteins will be divided into 4
classes and 27 folding patterns all together according to their structures. Table 14 shows the

number of proteins in different classes and folding patterns used for training and testing in this
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study.

Table 14. The variety in protein structures for training and testing

Classes Folding patterns Numga;rra(i)rfiﬁrgo)tems Numlz;z;f Iﬁg) teins
1. a;: Globin-like 13 6
2. a,: Cytochrome C 7 9
L all-a. 3. o3: DNA-binding 3-helical bundle 12 20
4. a4: 4-helical up-and-down bundle 7 8
5. ais: 4-helical cytokines 9
6. a: Alpha; EF-hand 7 9
7. B1: Immunoglobulin-like B-sandwich 30 44
8. By: Cupredoxins 9 12
9. B3: Viral coat and capsid proteins 16 13
10. B4: ConA-like lections/glucanases 7 6
2.all-B | 11. Bs: SH3-like barrel 8 8
12. Bs: OB-fold 13 19
13. B7: Trefoil 8 4
14. Bs: Trypsin-like serine proteases
15. Bo: Lipocalins 9 7
16. (o/B);: (TIM)-barrel 29 48
17. (a/B),: FAD (also NAD)-binding motif 11 12
18. (a/B)3: Flavodoxin-like 11 13
19. (o/B)4: NAD(P)-binding Rossmann-fold 13 27
3.a/f | 20. (o/B)s: P-loop containing nucleotide 10 12
21. (a/B)s: Thioredoxin-like 9 8
22. (a/B)7: Ribonuclease H-like motif 10 14
23. (a/B)g: Hydrolases 11 7
24. (a/B)o: Periplasmic binding protein-like 11
25. (a+P);: B-grasp 7 8
4. o+ | 26. (a+p),: Ferredozin-like 13 27
27. (a+B);: Small inhibitors, toxins, lectins 12 27

3.2.2 Features

Features extraction from the data is critical for meaningful results before these features can be
subjected to machine learning techniques. Different features may result in different
classifications. Two major approaches including direct and indirect coding have been used to
extract features from the data. The direct one contains a vector for each peptide residue in the

chain that characterizes the position, sequence length and so on. In indirect coding, the vector is
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assigned for each sequence which is position and length independent [9]. Ding and Dubchak [8]
proposed six direct coding features for protein structure classification. These single-parameter
features are global descriptions of a peptide chain representing the proteins. These features are

based on physical, chemical and structural properties of the constituent amino acids.

The six single-parameter features are amino acid composition (C), predicted secondary
structure (S), hydrophobicity (H), normalized Van Der Waals volume (V), polarity (P) and
polarizability (Z). The five multiple-parameter features, ‘CS’, ‘CSH’, ‘CSHP’, ‘CSHPV’ and
‘CSHPVZ’ were constructed to classify protein folding patterns. Ding and Dubchak [8] finally
determined one multiple-parameter feature ‘CSHP’ with the highest overall accuracy rate for
protein structure prediction with SVM. The above eleven single and multiple parameter
features all emphasize more on the global properties and structures of amino acid sequences

than on the local interactions among neighboring peptides.

In Huang et al. [9], they used the N-gram concept while extracting features from the amino
acid sequence of proteins. Two other indirect coding features, generated from the bi-gram (B)
and the spaced-bi-gram coding (SB) scheme, respectively, were proposed. These features
reflect the local interactions among neighboring peptides within the 3-D structure of a protein.
We combined the six single-parameter features proposed by Ding and Dubchak [8] and the
outcomes of the two indirect coding features to form two new multiple-parameter features
‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’. We showed that using the feature ‘CSHPVZ+B+SB’
together with NN outperformed all single- or multiple-parameter features used by Ding and

Dubchak [8] in terms of prediction accuracy rate for protein structure classification.

In this study, we start with eight features, ‘C’, ‘CS’, ‘CSH’, ‘CSHP’, ‘CSHPV’,
‘CSHPVZ’, ‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’ to assign protein classes or folding patterns.

Then, we use the method of data fusion for feature selection and combination in order to
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improve classification accuracy.

3.2.3 The HLA Computational Architecture

The NNs have been commonly used in many machine learning and data mining applications,
such as input-output mapping and bioinformatics [29], [30]. We use NN as a multi-class
classifier to build hierarchical learning architecture (HLA) for the purpose of protein structure
prediction. The Multilayer Perceptron (MLP) and the Radial Basis Function Network (RBFN)
are two popular NN models. The RBFN is a three-layer network with Gaussian function that is
suitable to be a classifier [31] since the weights of RBFN are measured and adjusted according
to the distance of data. It was shown [9] that the overall prediction accuracy rate for protein
structure classification using RBFN is better than that using MLP. Therefore, we adopted the
RBFN model in this study where one hidden layer and nodes will be generated automatically.

The hidden layer nodes show the coordinate of training sample clusters.

The HLA framework, proposed in Huang et al. [9], consists of a two-level procedure. In
the first level, a protein is classified into one of four classes by a multi-class classifier (classifier
1 in Figure 2). Then, in the second level, it is further classified into one of f; folding patterns by
the corresponding multi-class classifier (f, f2, f3 and f; is equal to 6, 9, 9 and 3 in classifier 1, 2,

3, and 4 respectively in Figure 2).

In Huang et al. [9], it has been shown that the HLA framework is an effective learning
structure which reduces the number of classifiers, avoids the voting scheme, and directly
indicates the reliability or confidence of the result predicted. Our current study incorporates
data fusion in HLA for the testing data set, as shown in Figure 2. For the training data set, HLA
is used without data fusion. To predict which of four classes a protein belongs to with HLA, we
use eight individual features to assign class to each protein in the testing data set at first. Then,

we use the technique of data fusion to select the best feature and to combine results for the
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protein class discrimination. Finally, the protein class is predicted with the combined feature.
For protein folding patterns associated with each protein class, the eight individual features are
used once more to assign protein folding patterns to each protein in the class. Similarly, data
fusion is applied again for feature selection and combination in order to improve the prediction

of protein folding patterns

6 folds 9 folds 9 folds 3 folds

Data Fusion Data Fusion Data Fusion Data Fusion
Level 2 Level 2 Level 2 Level 2
(classifier 2) (classifier 3) (classifier 4) (classifier 5)

Class 1 T Class 2 T Class 3 T Class 4 T

Data Data ‘ Data ‘ Data
oy -

Data Fusion

:

Level 1 (classifier 1)

'

Data (for testing)

Figure 2. The architecture of HLA using data fusion

3.3 Data Fusion and Diversity Rank/Score Graph

The approach we take to properly select and combine features in protein structure classification
is analogous to those used in information retrieval [24], [25], [28], [32], [33], pattern
recognition [34], molecular similarity searching and structure-based screening [26], [35], and
microarray gene expression analysis [36], [37], [38]. In addition, we adopt some of the
notations and terminologies from [25], [26] and [27]. Moreover, each feature is viewed as a

scoring system F containing a score function sg and a rank function rg on the set of classes.

Previous work in information retrieval, molecular similarity searching, structure-based
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virtual screening and microarray gene expression study have demonstrated the following:

Remark 1: For a set of multiple scoring systems, each with a score function and a rank
function, we have

(@) the combination of multiple scoring systems would improve the prediction accuracy only
if (1) each of the systems has a relatively high performance, and (2) the individual systems are
distinctive (or diversified), and

(b) rank combination performs better than score combination under certain conditions.

Given a protein sequence and for each feature A, let Sa(X) be a function that assign a real
number to the class (or folding pattern) X in the set of all n classes (or folding patterns) D =
{C1, Ca, ..., Cn}. We view the function Sa(X) as the score function from D to R (the set of real
number) with respect to the feature A. When treating sa(X) as an array of real numbers, it
would lead to a rank function ra(X) after sorting the sa(X) array into descending order and
assigning a rank to each of their classes (folding patterns). The resulting rank function ra(X) is
a function from D to N = {1, 2, ..., n}.

In order to properly compare and correctly combine score functions from multiple

features, the function values have to be normalized. The normalization we used is the

transformation from Sa(X): D — Rtosa (X): D — [0, 1] where sa" (X) = M, X in

max ~ Smin
D and Smax = Max {sa(X) | x in D} and Smin = min {sa(x) | x in D}.

Suppose we have m features (i.e. m scoring functions). There are combinatorially, 2" — 1
. . T m m m . .
combinations for all m individual features ( (k ): 2" —1) with rank or score functions. The

k=1

total number of combinations to be considered for predicting protein class and protein folding
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pattern are 2™ — 2 and 2*™ - 2™ + 4 respectively in the HLA architecture. These numbers
can become huge when the number of features m is large. Moreover, we have to evaluate the
predictive power of each combination across all proteins. Because of this complexity, the
current study would start with combining only two features which still retain fairly good
prediction power. Combination of more than two features will be considered in our future

work.

3.3.1 Methods of Combination and Feature Selection

Suppose m features A;, i = 1, 2, ..., m, are given with score function Saj and rank function ra;,
there are several different ways of combination. Among others, there are score combination,
rank combination, voting, linear average combination and weighted combination
[24]-[28], [32]-[39]. Voting is ‘computationally simple and better than simple linear
combinations when applied to the situation with large number of features. However, a better
alternative is to reduce the number of features to a smaller number and then these features are
combined. In this study, we reduce the set of features to those which perform relatively well and
then use the diversity rank/score function to decide whether to combine by rank or by score. For
the m features Aj, rank functions raj, and score functions Saj, we have the score function Sg and Sg

of the rank combination and score combination respectively defined as:

m

SR(X) = El[(rAi(X))/m],and Ss(X) = X[(sai(x))/m]. (D
i=

=1

As we did before, Sg(X) and Ss(X) are then sorted into ascending and descending order to
obtain the rank function of the rank combination rg(X) and the score combination rg(X),
respectively.

In this study, we use the rules (a)(1), (a)(2) and (b) stated in Remark as our guiding
principle to select features and to decide on the method of combination. We started with eight
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features and, in each case, use rule (a)(1) to reduce the number of features to four. A diversity
function d(A,B) between features A and B is then defined using the concept of the rank/score

function defined by Hsu et al [24], [25], [27].

3.3.2 Rank/Score Function and Diversity Rank/Score Graph

Given a protein sequence and for each feature A, we have the score function Sa and rank
function ra. Both Sa and ra are functions from D to [0,1] and N respectively, where D = the set of
classes. As in other application domains [24]-[27], we explore the scoring (and ranking)

characteristics of feature A by calculating the rank/score function, fa : N — [0, 1] as follows:

faG) = (sa ° ra™) () =5a" (ra”'(i))- ()

We note that the set N is different from the set D which is the set of classes (or fold
patterns). The set N is used as the index set for the rank function value and |N| = n is indeed the
cardinality of D. The rank/score function so defined signifies the scoring (or ranking) behavior

of the feature A and is independent of the classes (or folding patterns) under consideration.

For protein p; in P = {pi, Pz, ..., Pt} and the pair of features A and B, the diversity score
function di(A,B) is defined as: di(A,B) = X | fa(j)—fa(j) | , where jisin N = {1,2,...,n} and nis

the number of classes (or folding patterns). When there are q features selected (in this study, g =

4), there are {g] = @ (in this study, this number is 6) diversity score functions. If we let

i vary and fix the feature pair (A,B), then di(A,B) is the diversity score function s g)(x) from
P ={p1, p2, ..., pi} to R. Sorting S g)(X) into descending order would lead to the diversity rank

function r(a g)(x). Consequently, the diversity rank/score function fia g)(X) is defined as:

fam () = (Smp) ° fap) () =Sap) (fap) " (), wherejisin T={1,2,3,..,t}. (3)

We note that the set T is different from the set P which is the protein set considered. The set
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T is used as the index set for the diversity rank function value and |T| =t is indeed the cardinality
of P. The diversity rank/score function fiag)(k) so defined exhibits the diversity trend of the
feature pair (A,B) across the whole spectrum of input set of t proteins and is independent of the

specific protein under study.

For two features A and B, the graph of the diversity rank/score function fa g(j) is called the
diversity rank/score graph (or diversity graph in short). Our current study aims to examine

q(@-D

all the E— diversity rank/score graphs to see which pair of features would give the

highest diversity measurement. Following rules (a)(2) and (b) in Remark 1, the rank
combination of these two features is then calculated to give the final rank function and to

choose the class (or folding pattern).

3.4. Results

The technique of combinatorial fusion (see [27]) is used for protein structure classification on a
testing data set with NN using RBFN under the HLA architecture. Initially, we use eight
features, ‘C’ (reworded as A), ‘CS’ (as B), ‘CSH’ (as C), ‘CSHP’ (as D), ‘CSHPV’ (as E),
‘CSHPVZ’ (as F), ‘CSHPVZ+B’ (as G) and ‘CSHPVZ+B+SB’ (as H), to assign protein classes
for all proteins tested. Following the rule (a)(1) in Section 3.1, we select four features E, F, G
and H, for further fusion (or combination) because of their higher accuracy rate than others as
demonstrated in [9]. With the help of rule (a)(1), we can reduce 2%-1 combinations to 2°*-1
combinations. Following the rules (a)(2) and (b) in Section 3.1, we shall use the rank

combination of the features to predict the protein class.

As stated in Section 3.2, the diversity of any two of features E, F, G and H can be

calculated for all proteins tested and features E and H are found to have the highest diversity,

4
as shown in Figure 3, among all six ((J =6 ) feature combinations. In conjunction with (b)
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in Remark 1, we use the rank combination of features E and H to predict protein classes for all
proteins tested. After the protein classes for all proteins tested have been predicted and
categorized, the prediction of protein folding patterns follows in the HLA architecture. We
use the same rules and a diversity graph to choose the best combined two features in each
class for the purpose. Accordingly, we choose a rank combination of features BG, GH, DH and
GH to predict protein folding patterns in classes 1, 2, 3 and 4, respectively. The diversity graph
to pick the pair of features (B,G), (GH), (D,H) and (G,H) for combination and to predict folding
patterns in class 1, 2, 3 and 4 are depicted in Figure 4(a),(b),(c) and (d), respectively. In Figures
4(b) and (d), only the pair of features (GH) is selected since its accuracy rate is higher than
others. It implies that the features G and H are more suitable than others for classifying

proteins, which belong to class 2 or class 4, into folding patterns.

We use the standard percentage accuracy rate Q; [8], [9], [40] to evaluate our work. Q; =
pi/ni X 100, where n; is the number of testing proteins in the ith class or folding pattern and pj is

the number of proteins being correctly predicted in the ith class or folding pattern. The overall

Kk
prediction accuracy rate Q is given by Q = > 0;Q; , where ¢; = ni/K, where K is the total
i=l

number of proteins tested, and n is the number of classes or folding patterns. We compare the
overall prediction accuracy rates Q for protein classes in the previous work [9] and current
work. These are shown in Table 15. The current overall prediction accuracy rate is 87%, 3.4%
higher than that of the previous work. Table 16 shows that for prediction of folding pattern,
our current work has an overall prediction accuracy rate of 69.6%, which is 13.1% higher than

that of Ding and Dubchak [8], 4.1% higher than that of the previous work.
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Table 15. The comparisons of overall prediction accuracy rates Q for protein classes

Method HLA, NN HLA, NN HLA, NN HLA, NN HLA + data
etho ‘CSHPVZ’* ‘B’* ‘CSHPVZ+B’* ‘CSHPVZ+B+SB’* fusion, NN
Q 81.6 79.2 83.1 83.6 87

* Data from Huang et al. [9]

Table 16. The comparisons of overall prediction accuracy rates Q for protein folding patterns

Feature JP Cas . s . ) . s . s ‘CSHPVZ+ ‘CSHPVZ+
Method C CS CSH CSHP CSHPV CSHPVZ B’ B+SB’
OvO!, NN** | 20.5 36.8 40.6 41.1 41.2 41.8 — —

ovO', _ _
VM 43.5 432 45.2 43.2 44.8 449
uovO’, o o
VM 49.4 48.6 51.1 49.4 50.9 49.6
AVA’, - .
VM 44.9 52.1 56.0 56.5 55.5 53.9
HLA, NN* 44.9 53.8 53.3 54.3 55.3 56.4 63.7 65.5
HLA-+data
fusion, NN 69.6

'one-versus-others method [8]; 2unique one-versus-others method [8]; *all-versus-all method [8]
( * Data from Huang et al. [9] ** Data from Ding and Dubchak [8] )
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Figure 5. The comparisons of prediction accuracy rates Q; of the previous work (Huang et al.
[9]) (in white) and the current work (in black) (a) for 4 protein classes and (b) for 27 protein
folding patterns

Prediction Accuracy (%)

We summarize the comparisons of prediction accuracy rates Q; of the previous work [9]

and our current work in Figure 5. Our results give prediction accuracy rates (>80%) in 3
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classes, especially in class o/f with accuracy rate reaches 97.2%, all higher than what those
achieved previously, shown in Figure 5(a). For protein folding patterns prediction, the current
work gives prediction accuracy rates (>80%) in 9 folding patterns, more than what in the
previous work[9], as shown in Figure 5(b). Also, the current work outperforms the previous
work in 10 folding patterns, especially (> 30% improvement) in folding patterns: o (4-helical
up-and-down bundle), B; (Viral coat and capsid proteins), Bs (SH3-like barrel), (a/P)s
(Flavodoxin-like) and (o/B)s (P-loop containing nucleotide). The previous work has slightly
better results only in 5 folding patterns (especially in fold o; (Globin-like)). Overall, there is an
improvement with our current method using the HLA framework and data fusion techniques. In
summary, the current method has achieved an accuracy rate of 69.6% for folding pattern
classification, which is a significant improvement over the result of Ding and Dubchak ([8],

2001) of 56.5%.

3.5. Summary and Discussion

Methods of combining multiple classification systems or multiple scoring systems have been
used in a variety of applications domains including information retrieval, pattern recognition,
microarray gene expression analysis, and molecular similarity searching [24], [28], [32]-[39].
More recently, criteria to select the classification systems or scoring systems for combination
and to decide ways to combine these systems have been discussed and studied [25]-[28], [39]. It
has been demonstrated in Combinatorial Fusion Analysis (see [27] and its references) that (a)
the combination of multiple systems (or features) would improve the performance only if (1)
each of the individual systems (features or functions) has a relatively high performance, and (2)
each individual systems are distinctive (or different), and (b) combination by rank outperform

combination by score under certain conditions.
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In this study, we use criterion (a)(1) to select features and then apply criterion (a)(2) by
computing the diversity rank/score graph in order to select the pair of features with the highest
diversity. Criterion (b) is then used to combine these two features using ranks. We have applied
the concept of Combinatorial Fusion to improve accuracy in protein structure prediction. In
particular, we have successfully improved the overall predictive accuracy rate of 87% for the
second structure (the four classes) and 69.6% for the folding patterns (the 27 folding categories).
We improve previous results by Huang et al. [9] (65.5% for folding structure) and Ding and
Dubchak [8] (56.5% for folding structure) by incorporating the method of combinatorial fusion
in their approach using neural network (NN) with the radial basis function network (RBFN)

using the hierarchical learning architecture (HLA).

One of the novelties of our current work is the notion of a diversity rank/score function
di(A,B) between a pair of features A and B (See c.g. Figures 3 and 4). This function
characterizes the diversity of ranking (or scoring) behavior between features A and B across the
whole spectrum of all protein sequences under consideration. This parameter is then used to
select appropriate and diverse features for combination. The current work is the first of a series
of on-going projects towards the protein structure prediction problem using HLA, NN-RBFN,
and Combination Fusion Analysis. Following the current work, we have observed the

following:

(A) The method of combinatorial fusion we used in this study is computational efficient,
able to adapt to different situations and approaches, and scalable to a large number of

classes (or folding patterns) and a large number of proteins.

(B) In this study, we considered only combination of a pair of two features in order to
improve the performance. It may be possible to achieve better results with combination
of more than two features. However, it is indicated in criteria (a)(1) and (2) that each of

these three or more features would have relatively high performance and individual

37



(©)

(D)

(E)

features should be different. As such, the diversity between three or more features

should be defined. This will be studied in a latter work.

Although it has been shown (e.g. [41]) that combining multiple predictors or servers
improves fold recognition, we note here that combining all the features or multiple

scoring systems together may not guarantee optimal performance (see also [26] and

[27]).

We used rank combination due to criterion (b) which was demonstrated to be better
under certain conditions analytically and by simulation in Hsu and Taksa [25]. We
observed that score combination does have its merit when the two features combined
are similar and homogeneous with respect to their scoring functions, rank function, or
rank/score function. We decided to use the rank combination because the pair of
features to be combined satisfies criteria (a)(1) and (a)(2) and these two items are

precisely the conditions stipulated in [25], [26], [28], [37] and [38].

In our feature selection process, we selected top four performers out of the original
eight features. The ideal case is to select those features which perform much better than
the others. That means there is a big difference on the performance between those

selected and those not selected.

Our current work represents the first of a series of investigations on the protein structure

prediction problem using HLA and Combinatorial Fusion. It has generated several issues and

topics worthy of further study. We summarize some of them here:

1)

Our diversity rank/score function di(A,B) for the feature pair (A,B) with respect to
protein pjis defined using the variation of the rank/score functions between A and B. As
indicated in [25], [27] and [28], variation of the rank functions or the score functions
between A and B can be used also to define the diversity score function. We will explore
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(2)

3)

(4)

these two other options in a latter work.

The effectiveness of our fusion of multiple features is limited by the set of eight original
chosen features. It might be worthwhile to study the content of original set of features.
For example, we like to explore the diversity among the original features such as local

vs. global, physical vs. chemical and bi-gram vs. tri-gram scheme.

Related to observation (D) above, one might ask if it is better to expand the scope and
the number of features. In this study, we started with eight features and four are selected
using the CFA criteria. In a separate paper [42], eleven features are collected and three
features are selected according to the criteria (a)(1) and (a)(2) in Remark 1. We have, in
Lin et al. [42], obtained a slightly better overall accuracy rate of 87.8% for four classes

and 70.9% for 27 folding categories.

Our results improve previous results by Huang et al. [9] and Ding and Dubchak [8]
which used neural network with radial basis function in a hierarchical learning
architecture. Work has been performed to improve those results which used other
machine learning technique such as kernel method, SVM and genetic algorithm. For
example, Yu et al. [43] has obtained good accuracy rate using SVM with n-peptide
coding schemes and jury voting. Future work can be performed to improve these results

using our combinatorial fusion approach.
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4. Finding 3-D building blocks of protein structures by Mountain

Clustering Approach

4.1 Introduction

Discovering the relations between protein sequences and their 3-D structures is an important
research topic and has received a lot of attention because knowing the 3-D structure of a protein
helps biologists to study the functions of the proteins, perform rational drug design, and design
novel proteins. Finding the 3-D structure of a protein using X-ray crystallography or by nuclear
magnetic resonance imaging is time consuming and expensive and hence alternative
approaches are being tried. Several approaches such as comparative modeling, fold recognition
[9], [44], ab-initio prediction [45]-[46] and 3-D building blocks approach [12]-[13] have been
proposed. As pointed out by Bujnicki [10] modeling of a protein structure de novo without
using templates is quite difficult because the search space is enormous even for proteins with
moderate sequence lengths. The methods based on assembly of short fragments have shown a
great promise [10]-[14]. Among these methods, 3-D building blocks approaches have been
successfully applied to construct libraries of well-chosen short structural motifs extracted from
known structures [13]-[14], [47]-[54]. These building blocks are then used to construct or
analyze structures of new proteins. The short structural fragments that recur across different
protein families can often be viewed as stand-alone units which fold independently and hence
can help assignment of building blocks to unknown proteins for reconstruction of 3-D structure
[11]. The clustering method used in [11] is a two stage process, where building blocks are
classified according to their SCOP protein family and clustered within the family in the first
stage, and then merged in the second stage. The building block cutting algorithm uses a stability
score function that involves properties like compactness, hydrophobicity, and isolatedness. The

critical building block finding algorithm uses a score function based on the contacts the
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building block has with other building blocks. This is an involved and interesting approach. Our
proposed approach is comparatively very simple and does not use those physical/ chemical/

structural properties of the residues.

In [52] Anishetty et al. suggested that rigid tri-peptides have no correlation with protein's
secondary structure and tri-peptide data may be used to predict plausible structures for
oligopeptides. The hybrid protein model of de Brevern et al learns 3-D protein fragments
encoded into a structural alphabet consisting of 16 protein blocks (PBs) [54]-[55]. Benros et al.
[53] further continued this study considering 11-residue fragments encoded as a series of seven
protein blocks. They had built a library of 120 overlapping prototypes with good local
approximation of 3-D structures. Every protein block in [54] is only five-residue long and
described by eight dihedral angles. Each of them serves as a building block approximately
representing a known structural motif like central a-helices, central B-strands, B-strand-N-caps
and so on. Consequently, a protein’s 3-D structure can be represented by a string of alphabets.
And unlike our approach, the similarity between fragments is defined by the RMS deviation on

angular values. The clustering algorithm used is a self-organizing map type neural network.

The effectiveness of such a method heavily depends on the extraction of good representative
3-D building blocks. Unger et al. [12] proposed a two-stage clustering algorithm to choose
hexamers (fragments of length 6) having a large number of neighbors to be the building blocks.
These center hexamers are called the 3-D building blocks [12]. Micheletti et al. also used
largest number of nearby points within a similarity cutoff called “proximity score” [13] to select
cluster centers, while Kolodny et al. proposed a simulated annealing k-means method to
perform the clustering task with the minimal total variance score [14], [50]-[51]. In this study, a
modified form of the mountain clustering / subtractive clustering method [15]-[16] is proposed
to find building blocks. Our experiments with some benchmark datasets show that it can find

better representative building blocks than the method in [12]. We also propose two alternative
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ways of depicting the quality of the building blocks.

4.2 3-D Building Block Approach

The 3-D building block approach involves several steps. First, we need to decide on the
fragment length. Then, given a set of proteins (training data) we need to compile the whole set
into all possible fragments of the selected length. Next, a clustering method is used to divide
these fragments into clusters and pick up the center of each cluster to be a building block. If
these building blocks are good enough, then they can be used successfully to represent all
original fragments within a tolerable limit and therefore can be used to reconstruct the 3-D

structure of a whole protein within some tolerance.

4.2.1 Distance Measure between 3-D structures

A well-accepted definition of dissimilarity between two fragments is the Root-Mean-Square
(RMS) deviation between two structures computed after alignment of the two fragments to the
greatest possible extent using the BMF (best molecular fit) algorithm [56], [57]. Given two

structures S and t, the RMS can be calculated as follows:

RMS = [(ZX, i~ )k -2 @

S t

where r® is 3-D coordinate of i C_ atom in the molecule s and K denotes the number

1 a

of atoms in the structure. Typically, for the computation of RMS, one should divide by K, but

for the ease of comparison with published results, we divide by (K -2) as done in [12].

4.2.2 Method of Reconstruction

Following [12] we use this procedure: First, we replace each original hexamer of a protein by its
closest building block. Then, since the building blocks overlap, we align every two consecutive

building blocks using the BMF algorithm. The chain grows as follows. Onto the suffix (the last
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five residues) of the first building block we fit the prefix (the first five residues) of the next
building block. The 3-D position of the sixth (last) residue of the latter hexamer is, thus,
determined and is added to the growing chain. This process is repeated until the whole protein is

reconstructed.

4.2.3 Performance Measure

To evaluate the performance of the proposed method, we use the same two criteria as in [14]: (1)
Local-fit RMS, which measures how well the fragments of the target proteins can be
represented by the library of building blocks at hand. It takes the average of all coordinate RMS
deviations between every fragment and its associated building block. (2) Global-fit RMS,
which measures the RMS deviation of the reconstructed 3-D structure from the entire native
structure of the target. In addition we also use two alternative ways, as explained later, for

assessment of quality of the building blocks.

4.3 Clustering Approach
4.3.1 Two Stage Clustering Algorithm (TSCA)

Since we shall compare our results with those by the algorithm in [12], we briefly describe the
same. The TSCA defines a cluster as a set of structures such that the RMS deviation of any
member in the cluster from a designated representative member is less than a threshold. In [12]
1 A is used as the separation between similar and not similar hexamers, and hence as the
threshold for defining clusters. In the first stage a randomly chosen hexamer is taken as the
center of the first cluster and all hexamers which are within 1 A distance after best molecular
fit are placed in that cluster. Each member of this cluster then acts a new center and adds all of
its neighbors which are within the threshold. This annexation process is continued till no more

hexamer can be added to the cluster. Then another unused hexamer is taken as the center of the
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next cluster and the process is repeated to get the next cluster. The entire process is repeated till
every hexamer is included in some cluster. It is obvious that in such a cluster the maximum
distance between a pair of hexamers could be much higher than 1 A . In the second stage, these
big clusters are divided into smaller clusters such that every member of a cluster is within a
distance of 1 A from a centroid. For each cluster, the hexamer with the maximum number of

neighbors within 1 A is taken as the center of a new sub-cluster having those neighbors as

members. The process is repeated until all hexamers of the cluster are assigned to sub-clusters.
4.3.2 Mountain Clustering Method (MCM) and Subtractive Clustering Method (SCM)

Let X = {Xl,xz,---,xn } c R” beasetof n datapoints in p-dimension. We denote X, as the

j™ component of the k™ point X, ; k=1,2,..n;j=12,..,p. The mountain clustering

method [15] generates a set of -N equispaced grid points Vv;,i=12,..,N in RP"over the

smallest hypercube (in R”) containing X . Then at every grid point a potential value (called
mountain potential) is computed which represents a kind of local density of points around the
grid point. Now the grid point with the maximum mountain potential is selected as the first
cluster center. To find other cluster centers, the mountain function values are “discounted” to
reduce the effect of already detected centers and the grid point corresponding to the highest
peak of the discounted potential is taken as the next cluster center. This process of discounting
and finding of cluster center is continued until the discounted potential becomes too small to

look for useful clusters.

In MCM the quality of the centers depends on the fineness of the grid and better resolution

leads to more cost. The computational overhead increases rapidly with dimension p. To
reduce the computational overhead of MCM Chiu [16] suggested a modification of MCM,

known as the Subtractive Clustering Method (SCM).
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Instead of imposing artificial grids, Chiu [16] suggested to use each data point as a potential

cluster center. Following the MCM, the potential function is defined as:

Pl(xi)zzeiadz(xk’xi)é i=12,---,m; %)
k=1
and discounting the potential on subsequent steps is done as follows:

P (Xi): P (Xi)_ P e_ﬁdz(xl’l’x‘)

6
,k=2,---,c;i=1,..,n (©)

Here Xx;_, isthe (k—1)" (most recently detected) cluster center, and & and S are positive

constants. The rest part of the SCM algorithm remains the same as that of mountain method.
Unlike MCM, here the number of prospective cluster centers is n, and hence is not dependent

on the dimensionality and spread of the data. Chiu [16] terminated SCM when

*

k-1

<0, 0.0<6<1.0. Although, SCM reduces the computational complexity, it will give

*

1

good results only if the desired cluster centers (points corresponding to the maximum local
density) coincide with one of the data points or close to it. For the present problem, since we

have to choose one of the hexamers as the center, the SCM framework is quite suitable.

4.3.3 Structural Mountain Clustering Methods (SMCM)

This is a modified form of subtractive mountain clustering method [15]-[16] so that it can
handle structural data such as hexamers. For hexamers, use of Euclidean distance will not be
meaningful because the Euclidean distance between two hexamers where one is a translated

version of the other or one is a rotated version of the other would be high, while for our purpose
they are the same. Suppose the set of hexamers is represented by X = {X1 J Xy sty X, } cRP.In

SMCM each hexamer is considered a potential cluster center. Instead of the Euclidean distance,

the contribution made by a hexamer X; to the potential associated with another hexamer X;;
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i # ] depends on the structural similarity between X; and X;. The structural similarity is

obtained after aligning the data points using the BMF routine [56]-[57]. Thus the higher the
similarity between two hexamers, the more quantity is added to the potential. In this way at

every hexamer we compute the mountain potential P using all other hexamers. After this, like

MCM we find the hexamer, X, , with the highest potential as the first building block. Now we

form the first cluster taking all hexamers which are within 1 A of RMS after best molecular fit.

We now remove all members in the first cluster and recompute the potential to find the next
cluster center. Note that, MCM and SCM neither remove any data point nor recompute the
potential. Here we recompute the potential as we want every cluster center to be at the center of
a dense region. To get the third cluster, the members of the second clusters are removed and the
potential is recomputed. The process is continued until every data point is assigned to some

cluster as described in the algorithm next:

Algorithm:
Input : Dataset X = {X,,X,,"--,X, }c R"
Choose : «

Compute d(xi,xj)z RMS,

ij?

forall i,j=12,.,n using the BMF Algorithm; RMS,; ,
is the Root Mean Square distance between X;and x; after BMF.

Repeat while any hexamer is left to be assigned to a cluster

1. Calculate the potential at each hexamer X; using equation (5).

2. Find the hexamer with the highest potential and choose it as a building block.
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3. Remove all hexamers, which are within a RMS error of 1 A from the building block, to
form the cluster associated with the building block.

End Repeat.

Choice of o may have effect on the clusters extracted and hence we experimented with

different choices of « to get an optimal value for it.

4.3.4 SMCM Can Produce Better Building Blocks Than TSCA

Note that, to find a local estimate of the density SMCM takes into account the geometry of the
data not just the count of number of points within a cut-off distance and hence it is likely to
produce better building blocks. For example, consider a two dimensional data set having 31
points such that one point is at the center of a circle of radius 1 A and the remaining thirty
points are grouped into two clusters each having 15 points such that 10 points from each cluster
are within a distance of 1 A from the central point. Here TSCA will take the center point as a

building block as it will have 21 points (including itself) within 1 A while the remaining 5

points from each cluster will form two other clusters. Clearly these clusters and building blocks
are not the desirable ones. But the SMCM will identify the center of each cluster with 15 points
as the building block. These building blocks are better than those selected by TSCA because
SMCM building blocks are at the centers of dense areas. The isolated central point will also be
extracted as a building block but since it is supported by only one point, it is a poor building
block and can be discarded. The SMCM is also expected to find better representative building
blocks than hierarchical clustering or k-means type clustering. This is so because hierarchical
clustering algorithms do not pay attention to the density of points (here density of similar
structures). Moreover, a hierarchical clustering algorithm does not produce any prototypical

building blocks. The poor performance of hierarchical clustering algorithms for fragment data
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is also pointed out in [14]. The usual k-means type clustering is also not very appropriate for
such a problem as the mean of a set of 3-D structures (even after best alignment) will not have

any associated residue sequence and hence is difficult to interpret.

4.4 Results

We have used the same 82 peptides as in [12]. (The list of peptides used can be found in Table

10.) To create the library of fragments, only the C, coordinates are used. We use the same four
proteins (1BP2, 1PCY, 4HHBD, 5PTI) as in [12] as the training set. The data in the Protein Data
Bank (PDB) are updated as new information becomes available. As of December 2006, in PDB
the information about the following 21 proteins was changed: 1APR (2APR), 1CPP (2CPP),
1CPV (5CPV), 1FB4h (2FB4h), 1FBJI (2FBJI), 1FDX (IDUR), IGCR (4GCR), IHMQa
(2HMQa), 1INSa (4INSa), 1PCY (1PLC), 1SN3 (2SN3), 3PTP (5PTP), 3RXN (7RXN), 3TLN
(8TLN), 4ADH (8ADH), 4ATCa (6AT1a), 1IGAPa (1G6Na), 2FD1 (5FD1), 4FXN (2FOX),
2APP (3APP), 4CYTr (5CYTr). The new PDB ID is shown within parentheses. We have used

both the old database as used in [12] and the new database downloaded in Dec. 2006.

4.4.1 Experimental Results

The SMCM has only one parameter, « . Using fragments of length 6 we have experimented
with different choices of @ suchas a =2, 3,4, 5 and 6 using the same database as used in [12].
We have found a =4 and 5 to yield better results. So we further fine-tuned « in the range 4
to 6 in steps of 0.5. Finally, we have got o =5 to produce the best result with a global-fit RMS
7.19 which is less than 7.3 that is reported in [12]. We have also experimented with the newly
updated database. For the new data set o =5.5 resulted in the best global-fit RMS of 7.32.
Table 17 summarizes the library size (number of building blocks) and the variations in the
local-fit RMS error and global-fit RMS error with the choice of o for both data sets. To

further compare the quality of building blocks, we have implemented TSCA method on the
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same data. We have obtained 55 main clusters and 102 sub-clusters (Unger et al. reported 103).
SMCM extracted 104 building blocks. So for a fair comparison we remove the trailing 2
building blocks from 104 building blocks. Thus, for both methods we use the same number of
building blocks to represent all target fragments and reconstruct the first 60 residues of 71
proteins whose lengths are larger than 60 residues using the same approach as in [12]. For our
method, when we use only 102 clusters, the local-fit RMS increases to 0.75 and global-fit RMS
increases to 7.23 which is still better than 7.3. Our implementation of TSCA results in a local-fit

RMS of 0.77 and a global-fit RMS 8.27 and these are higher than the values reported in [12].

Table 17. Effect of the choice of « on the local-fit RMS error and the global-fit RMS error
for the SMCM algorithm when the fragment length is six: (a) Original dataset and (b) Newly

updated dataset
(a) Original Dataset AgLp (b) Updated Dataset Angw
" Library [Local-fit |Global-fit y Library |Local-fit |Global-fit
Size |RMS RMS Size. |RMS RMS
6 106| 0.742 7.64 8 108 0.726 7.53
5.5 106| 0.742 7.64 7 107 0.727 7.48
5 104| 0.749 7.19 6.5 107 0.727 7.48
4.5 104 0.750 7.27 6 107 0.723 7.32
4 105] 0.748 7.30 5.5 107 0.723 7.32
35 104 0.750 7.62 5 107 0.725 7.59
3 103|  0.751 7.92 4.5 107 0.727 7.69
2 105| 0.746 7.95 4 106 0.728 7.75

4.4.2 Computation Complexity Analysis

Since the clustering algorithm is an iterative one, we provide an approximate analysis of its
complexity. Note that, although the Repeat —End Repeat loop in the algorithm uses equation (2),

—a dz(xkvxi)

e , Vi,k canbe computed just once for all and stored in a table to be used in the repeat

loop. Let us assume that the cost for computing e %) for any pair {X,,X;} be D. D
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involves the cost of computing the RMS deviation using the best molecular alignment of two

segments, the cost of a multiplication, and that of computing the exponential. Thus, the total

cost of computing e * 0% (xix ), Vi,k is n(n—1)D/2 . The iterative part of the algorithm needs

to make additions of such values read from the table. Let us assume that n hexamers are
iteratively divided into ¢ clusters and each cluster is of size k on average, i.c., n=ck.Inthe
first iteration, the potential for each hexamer is calculated by summation of n exponential
values taken from the table. It requires n° additions for n hexamers. In the second iteration,
since k hexamers are removed and assigned to the first cluster, the remaining hexamers
require (n—k)> additions in computation of potential. Likewise, in the final iteration, it
requires k’ additions. So the required time in addition operation to compute potential for the

entire algorithm is:

>c(c+1)(2c+1) A

5 (7)

c-—1
D (n-ik)* A=k
i=0

In (4) Ais the cost of one table lookup and that of an addition operation. The total computation

A. Since Ais a constant and D is

time required is thus, T = n(nT_l) D +k2w

assumed to be a constant, the first term in T is of O(n?) and the second term is of O(n’c). For

this specific dataset, SMCM takes 2 minutes 48 seconds on a personal computer with a 3.4GHz
CPU and 1GB RAM to find the clusters while TSCA uses 51 seconds for the clustering task.
One reason for the noticeable difference in running time between the two algorithms is that we
did not use the efficient table lookup procedure but evaluated the distances and exponentials in
every iteration of the repeat-loop in the algorithm. The use of small structural motifs as building
blocks is based on the hypothesis that there are repeatedly occurring stable fragments and hence,

in practice we shall not need to run such an algorithm on a very large database.
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4.4.3 Visual Assessment of the Quality of the Building Blocks

To have a visual assessment of the quality of the building blocks and the reconstruction, in
Figure 6(a) ~ Figure 6(c), we depict one of the most frequently used building block (NCYKQA),
a very good fit target hexamer (LANWMC), and its representation using the building block.
Figure 6(a) is the original building block (in solid red lines) while Figure 6(b) shows the
original target hexamer (in dashed blue lines). Although at first sight the two structures look
quite different, after the best alignment the superimposed structures look identical (Figure 6(c)).
It is interesting to observe that the local secondary structures of both fragments are all alpha
helix. This indicates that the identified building blocks are biologically meaningful structural
motifs. Figure 6(d) displays another building block (NKEHKN) and Figure 6(e) depicts a poor
fit target fragment (AAHCKN, the RMS error is larger than previous example but is still less

than 1 A ). In this case too, we find a very good match between the two structures in Figure 6(f).

34
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(a) NCYKQA (b) LANWMC (c) NCYKQA & LANWMC superimposed

15

05 72 35 72 35
(d) NKEHKN (e) AAHCKN (f) NKEHKN & AAHCKN superimposed

Figure 6. Representation of target fragments using building blocks.

(a) A building block with sequence NCYKQA; (b) A very good fit target hexamer with
sequence LANWMC; (c) The building block and target hexamer superimposed after
alignment; (d) Another building block with sequence NKEHKN; (e) A poor fit target
hexamer with sequence AAHCKN; (f) The building block and target hexamer superimposed
after alignment.
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i:% () NCYKQA (b) ICFSKY

(c) GKVTVN (d) NEITCS

Figure 7. (a) SMCM building block NCYKQA at residue 50-55 of 1BP2; (b) TSCA building
block ICFSKV at residue 104-109 of 1BP2; (c) SMCM building block GKVTVN at residue
94-99 of 1PCY; (d) TSCA building block NEITCS at residue 80-85 of 1BP2.

The most typical helical building block found by SMCM is NCYKQA and it is located at
residue 50-55 of 1BP2; while the most populated building block found by TSCA [12] is
ICFSKYV and it is located at residue 104-109 of 1BP2. From the fact that ICFSKYV is also an all
helical structure and is included in the cluster of NCYKQA, it appears that the TSCA cluster
associated with ICFSKV and the SMCM cluster associated with NCYKQA represent the same
biological structural motif. Figure 7(a) and Figure 7(b) show these two building blocks and it is
clear that they represent the same structural unit. Similarly, we find that the most typical
extended strand GKVTVN found by SMCM is located at residue 94 of 1PCY while its
counterpart NEITCS found by TSCA is located at residue 80 of 1BP2. These two building
blocks are depicted in Figure 7(c) and Figure 7(d). The hexamer CSSENN is another interesting
building block found by SMCM. Unger et al. [12] pointed out that CSSENN represents a turn
joining two beta strands. Thus we find that building blocks found by SMCM represent

structures of biological significance.
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4.4.4 Alternative Ways of Performance Evaluation

To evaluate the local-fit RMS quality we compare the histograms of local-fit RMS error
measuring the deviations of fragments from their corresponding building blocks (Figure 8(a)).
It shows that the total count of lower RMS error (area under the curve) for SMCM is larger than
that for TSCA and this indicates that more fragments are represented by good building blocks

with lower reconstruction errors for SMCM.
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Figure 8. (a) Histograms of local-fit RMS errors for SMCM and TSCA (b) Protein by protein
comparison of local-fit RMS error for SMCM and TSCA

Finally, we compare protein by protein the local-fit RMS error produced by SMCM and
TSCA in Figure 8(b), where proteins are sorted in descending order of local-fit-RMS errors
produced by SMCM. Figure 8(b) reveals that SMCM’s local-fit RMS error is usually lower
than the corresponding TSCA error. In this particular case, about 75% of the protein’s SMCM
local-fit RMS error is lower. The results on the updated database are found to be quite similar to
the results on the original database. We have also experimented with fragment lengths 5, 6 and

7 and found that for the SMCM, the fragment length six is the optimal in terms of

53



reconstruction error for both databases that we have experimented with. For SMCM the
reconstruction error obtained with fragment length 7 is 7.57 which is slightly higher than that
with hexamers. However, for TSCA the best reconstruction error of 7.59 is achieved with

fragment length 7 while the error with fragment length 6 is 8.14.

4.4.5 Evaluation of the Library of Building Blocks on Other Datasets

To evaluate the quality of the library of building blocks, we use it to reconstruct proteins used in
two more recent studies by Micheletti et al. [14] and Kolodny et al. [13]. We have excluded a
few proteins with sequence discontinuity [51]. In these two datasets there are 10 and 144
proteins that are used for test, respectively. For the reconstruction, we follow a scheme similar
in spirit with the method in [13]. The reconstruction process tries to minimize global-fit RMS
deviation (RMSD). While, reconstructing residue by residue, instead of using the building
block with the best local-fit RMS, the one with the minimum global-fit RMSD is chosen. It is
noted that local-fit RMSD at each residue during such reconstruction usually will be higher. For
the Micheletti et al. dataset, the global-fit RMSD obtained is 0.92 A which is slightly lower
than 1.06 A reported in [14]. For the dataset used by Kolodny et al., authors reported the
global-fit RMSD between 0.76 A and 2.9 o for different fragment lengths. While for this
dataset, using hexamers we have achieved a global-fit RMSD of only 1.05 A which is better

than a global-fit RMSD of 1.26 A reported in [13]. This further establishes that SMCM can

extract biologically meaningful structural motifs that can be used for reconstruction of protein

structure.
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5. Incremental Structural Mountain Clustering Methods

(ISMCM)

In case of a very big dataset for training, it becomes a time-consuming process for finding the
clusters. To shorten the training time, an incremental approach is proposed. At first, we choose
the longest protein in the training set and use it as the only protein for clustering to find the
building blocks in the first step and evaluate the performance by checking the unassigned count
of hexamers (that can’t be assigned to any building block within 1 A ) for each protein in the
whole training set. The protein with the largest count of unassigned hexamers in this step is
picked up and added to the selected set of proteins for clustering in the next step. Then, the two
chosen proteins are used for clustering and select the next protein with high unassigned count.
The same process is repeated until the unassigned ratio (abbreviated as U _ratio) of the whole
set of hexamers is less than a threshold. Thus, we use only part of the original training dataset to
cover the most occurring patterns and use them to find the building blocks accordingly. It will
save computation time and complexity because the number of training fragments is reduced.

Following the derivation in chapter 4, when the value n is reduced and then the approximate

computation complexity of O(n?) and O(n’c) will also be reduced.

5.1 ISMCM Algorithm

Algorithm:
Input: Dataset P = {The complete list of proteins for training}
Choose: Threshold on unassigned ratio to stop the iteration
Initialization: Selected set: P, ={}, Remaining set: P, =P
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Repeat until unassigned ratio is less than the threshold
1. Move the protein with largest unassigned count from P, into P,.Note that P,
and P, satisfy the conditions: P, UP, =P and P, NP, ={} (for the first
iteration, the longest protein is chosen and move into the selected set P, )
2. Find the building blocks from P, using SMCM.
3. Compute the unassigned count of hexamers for each protein in P, . These are the

counts of hexamers that can’t be represented by any building blocks derived from P,

within a RMS error of 1 A . Also, compute the unassigned ratio of the whole set of

hexamers.
End Repeat.

The incremental version of TSCA (ITSCA) can be written exactly in the same manner.

5.2. RESULTS

According to the incremental algorithm, we find the building blocks and evaluate the
global-fit RMS (GRMS) and local-fit RMS (LRMS) for both Training set and Test set until

U ratio is less than some threshold. The results are given in the tables within this section.

5.2.1 Results on Dataset A

For the incremental version of the two algorithms, we have varied the fragment length from 5 to
7. The choice of o is also varied from 3.5 to 5.5. For each fragment length, we report results
with the best choices of a. Table 18 summarizes the results using the ISMCM algorithm for
Dataset Aorp. In Table 18, U ratio denotes the percentage of total fragments that cannot be

assigned to any building block within a distance of 1 A . In this case too, we find that fragment
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length 6 with a=5 yields the best result of global-fit RMS error 7.19 which is less than 7.3
reported in Unger et al. These results are produced using the same dataset as used in Unger et al.

[12].

Table 18. ISMCM results on Dataset AorLp

Frag. Protein Library Train |Train  |Test Test
a PDB No. U ratio
length count size LRMS |GRMS |[LRMS |GRMS
5 3.5 1 4HHBb 20 20.5% 0.60 7.86 0.81 10.53
3.5 2 1PCY 38 2.9% 0.44 6.64 0.62 8.67
5 3.5 3 1BP2 40 1.5% 0.43 7.60 0.61 8.07
5 3.5 4 5PTI 44 0.0% 0.42 5.90 0.60 8.08
6 5.0 1 4HHBb 35 35.0% 0.77 5.80 1.08 9.48
6 5.0 2 1PCY 73 9.4% 0.49 7.06 0.81 8.79
6 5.0 3 1BP2 93 3.0% 0.41 5.07 0.76 8.36
6 5.0 4 5PTI 104 0.0% 0.37 3.35 0.75 7.19
7 3.5 1 4HHBb 51 43.8% 0.95 8.68 1.38 10.16
7 3.5 2 1PCY 117 16.4% 0.49| - 4.67 0.98 8.27
7 3.5 3 1BP2 153 6.2% 0.36 3.69 0.93 7.95
7 3.5 4 5PTI 173 0.0% 0.28 2.19 0.90 7.60

Table 18 shows that with one protein in the training set, the test error is quite high. As we
increase the number of proteins in the training set, the number of building blocks increases and
the training and test errors decrease. Table 18 also reveals that increasing the number of proteins
from 1 to 2 in training set changes the number of building blocks and test error more drastically
than those by increasing the number of training proteins from 3 to 4. This asymptotic behavior,
which will be illustrated further with Dataset B, indicates the utility and consistency of the

incremental version of SMCM.

Table 19 depicts the performance of the ISMCM on the updated version of Dataset Axgw,
We find from Table 19 that when sequence length=6 and a=5.5, we have the best reconstruction

errors on the test set using 107 clusters: local-fit RMS = 0.72 and global-fit RMS = 7.32. On the
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other hand, when we apply incremental version of the TSCA to the same dataset with sequence
length 6 and use the 4 training proteins to construct the building blocks, we obtain 101 clusters
with no unassigned hexamers (unassigned ratio =0%). The local-fit RMS error is 0.76 and
global-fit RMS error is 8.14 on the test data (See Table 20). Since ISMCM uses six more
building blocks than ITSCA, to make a fair comparison of ITSCA and ISMCM, we remove the
trailing 6 building blocks from the 107 building blocks. Thus, for both methods we now use the
same number of building blocks to represent all target fragments and reconstruct the first 60
residues of the 71 proteins whose lengths are larger than 60. For ISMCM, when we use only
101 clusters, the local-fit RMS very marginally increases to 0.73 and global-fit RMS increases
to 7.55 from 7.32 (a 3% increase). But it is still better than 8.14 realized by ITSCA with the

same fragment length of six.

Table 19. ISMCM results on the updated Dataset Axgw

Frag. Protein Library Train  |Train |Test Test
a PDB No. U_ratio
length count size LRMS |GRMS |[LRMS |GRMS
5 5.5 1 4HHBb 20| 20.7%|  0.60, 7.88] 0.79 10.37
5.5 2 IPCY 35 3.9%| 044 7.76] 0.61 9.14
5 5.5 3 1BP2 39 0.7%| 0.42| 5.14] 0.59 7.97
5 5.5 4 5PTI 45 0.0%| 041 4.63] 0.59 8.86
6 5.5 1 4HHBb 35| 35.0%| 0.77] 6.60 1.06 9.63
6 5.5 2 1PCY 74 9.9%| 049 6.59| 0.79 8.29
6 5.5 3 1BP2 94 3.2%| 041 492 0.74 8.21
6 5.5 4 5PTI 107 0.0%| 0.36] 4.00f 0.72 7.32
7 3.5 1 4HHBb 51| 43.8%| 0.95 8.28 1.36 10.06
7 3.5 2 1PCY 117 16.7%| 0.49| 446 0.96 8.03
7 3.5 3 1BP2 152 6.2%| 0.36] 276/ 091 7.83
7 3.5 4 5PTI 174 0.0%| 0.28 1.90| 0.88 7.57

When we apply the ITSCA to the updated Dataset Angw, we get the best result with
fragment length=7 and using all 4 proteins. However, the test global-fit RMS error is 7.59,

which is still higher than the global-fit RMS error of 7.32 produced by the SMCM with
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fragment length 6. The results are summarized in Table 20.

Table 20. ITSCA results on the updated Dataset Axgw

Frag. |Protein Library Train  |Train |Test Test
Length |count FDB No. size U_ratio LRMS |GRMS |LRMS |GRMS
5 1 4HHBb 18| 21.0%|  0.69 8.28 0.86 10.81
2 IPCY 29| 4.6%| 057 7.48 0.70 9.07
5 3 1BP2 34| 22%| 0.50] 8.00[ 0.64 9.04
5 4 5PTI 38 0.0%| 0.49 5.64| 0.62 8.21
6 1 4HHBb 34| 34.7%| 0.81 7.39 1.08 10.12
6 2 1PCY 70 9.9%| 0.53 7.33 0.82 8.83
6 3 1BP2 90| 3.4%| 0.46 6.63 0.77 8.29
6 4 5PTI 101| 0.0%| 043 594/ 0.76 8.14
7 1 4HHBb 51 433% 0.96 8.62 1.37 10.05
7 2 1PCY 113] 16.4%| 0.51 4.67) 098 8.31
7 3 1BP2 151 . 6.2%|  0.38 347 0.92 7.95
7 4 5PTI 168| 0.0%| 0.31 2.12|  0.90 7.59

5.2.2. Results on the Dataset B

For this data too, we have experimented with fragment lengths 5, 6 and 7 as summarized in
Table 21 and Table 22 for the ISMCM and ITSCA respectively. For these two tables we find
that ISMCM with fragment length 7 produces the best results of global-fit RMS error of 14.67
which is better than the best global-fit RMS error of 16.26 achieved by ITSCA with fragment
length seven. However, the ISMCM usually finds more building blocks than the ITSCA. For
example, Table 22 shows that with fragment length 7 and five training proteins, the total
number of building blocks found by ITSCA is 756 and this results in a global-fit RMS
reconstruction error of 16.26 whereas for ISMCM the number of building blocks is 871
yielding the best reconstruction error of 14.67. Just to compare the performance when ISMCM
uses 716 building locks (fragment length 7, number of proteins equal to 4) the global-fit RMS

error is 15.44 which is again smaller than 16.26. Thus the improvement in performance by the
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ISMCM is primarily not by the fact that it finds and uses more building blocks but because of
quality of the building blocks that are placed at the center of dense areas of data points (here

3-D structures of length 5, 6 or 7).

Table 21. ISMCM results on Dataset B

Frag. Protein Library Train  |Train Test Test
length ’ count FB No. size Uratio LRMS |GRMS |LRMS |GRMS

5 5.5 1 |1YGE 61 2.7%| 0.52 17.02|  0.58 19.78

5.5 2 |1CZFa 73 1.7%|  0.52 17.36]  0.58 19.49
5 5.5 3 |IDMR 81 1.0%| 0.52 17.23|  0.57 19.38
5 5.5 4 |1SMD 86 0.7%|  0.50 16.71 0.55 18.63
5 5.5 5 |ILAM 91 0.5%| 0.50 16.75]  0.55 17.83
5 5.5 6 |IPPN 92 0.4%| 0.50 16.43|  0.55 17.93
6 5 1 1YGE 171 11.0%|  0.62 15.93]  0.69 18.03
6 5 2 |IDMR 221 6.5%| 0.59 15.44| 0.66 17.20
6 5 3 |ICZFa 258 5.0%|  0.61 15.58|  0.67 17.26
6 5 4 |1ISMD 288 4.1%| ~ 0.59 14.38]  0.65 16.70
6 5 5 |1B4Va 316 34%| 0.58 14.46| 0.64 16.06
6 5 6 |3SIL 354 2.8%|  0.57 14.44| 0.64 16.30
7 5 1 |1YGE 337 27.8%|  0.76 15.51 0.83 17.52
7 5 2 |IDMR 517 19.5%| 0.70 14.29| 0.78 15.95
7 5 3 |1ICZFa 614 16.7%| 0.68 14.13|  0.76 16.59
7 5 4 |1SMD 716| 14.3%| 0.67 13.76|  0.75 15.44
7 5 5 |1KAPp 798|  12.3%| 0.65 13.39] 0.74 14.91
7 5 6 |3SIL 871 11.0%| 0.64 13.39)  0.73 14.67

Comparison of the global-fit RMS errors in Tables 21 and 22 reveals that the ISMCM
errors are usually less than those by the ITSCA. From Table 21 we also find that as we increase
the number of training proteins, the number of building blocks increases. But the increase in the
number of building blocks when the number of training proteins is increased from 1 to 2 is
much more than that when we increase the number from 4 to 5. And this is true for all fragment
lengths. Moreover, going beyond five proteins increases the number of building blocks only

marginally. These are very desirable attributes of any incremental algorithm and it suggests that
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beyond certain number, increasing the number of proteins in the training data will not have

much effect on the building blocks.

Table 22. ITSCA results on Dataset B

Frag. |Protein Library ~ |Train |Train Test Test
length |count FB Ne. size Yrato LRMS |[GRMS |[LRMS |GRMS

5 1 |1YGE 56 3.1%| 0.62 19.29 0.66 20.83

2 |1IDMR 56 2.0%| 0.61 18.38 0.64 20.31
5 3 |1CZFa 70 1.3%| 0.56 17.36 0.60 19.23
5 4 |1LAM 74 0.9%| 0.60 18.88 0.63 20.27
5 5 |1SMD 80 0.8%| 0.60 18.77 0.63 20.23
5 6 |1BXOa 79 0.6%| 0.59 18.50 0.63 20.01
6 1 |1YGE 151  13.7%| 0.68 16.68 0.74 18.90
6 2 |1IDMR 208 7.9%|  0.68 15.44 0.73 17.60
6 3 |1CZFa 239 6.2%| . 0.67 15.27 0.72 17.14
6 4 |1SMD 274 4.9%| 0.66 15.39 0.71 17.25
6 5 |ILAM 289 4.4%| - 0.61 15.15 0.67 16.47
6 6 |1QKSa 306 3.7%| 0.60 15.22 0.66 16.66
7 1 |1YGE 327 29.7%| 0.80 16.18 0.86 17.76
7 2 |1IDMR 496 20.4%| 0.79 16.09 0.84 17.26
7 3 |1CZFa 5771 17.9%| 0.77 15.49 0.83 16.65
7 4 |1SMD 685 15.0%| 0.75 15.66 0.82 16.91
7 5 |1VNS 756 13.3%| 0.74 15.22 0.81 16.26
7 6 |1QKSa 806| 12.2%| 0.73 15.17 0.80 16.30

To investigate it further, in Table 23 we report the results when we increased the number of
proteins in the training set to 12 with fragment length 6. Table 23 depicts that the first six
proteins generated 354 building blocks whereas another additional six proteins added only 68
building blocks. When the number of proteins is increased from 11 to 12 the number of building
blocks is increased by just 1. This behavior is more clearly reflected in Figure 9 which displays
the variation of number of building blocks and global-fit RMS errors on the test data as a
function of number of proteins in the training set. Thus use of more proteins in the training data

increases the computational cost substantially, but the gain may not be significant. The
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computational cost will be increasing when more proteins are used for training and the marginal
benefit is decreasing. As we can find in the Figure 9, the library size is going to stop increasing

its number, and also the test GRMS stop decreasing. The details are listed in the Table 23.

Table 23. ISMCM results on Dataset B using 12 training proteins

Frag. Protein Library Train  |Train Test Test
v PDB No. U ratio
Length count Size LRMS |GRMS |LRMS |GRMS
6 5 1 |1YGE 171 11.0%| 0.62 1593  0.69 18.03
6 5 2 |IDMR 221 6.5%| 0.59 15.44]  0.66 17.20
6 5 3 |ICZFa 258 5.0%| 0.61 15.58)  0.67 17.26
6 5 4 |1SMD 288 4.1%| 0.59 14.38)  0.65 16.70
6 5 5 |1B4Va 316 3.4%| 0.58 14.46| 0.64 16.06
6 5 6 |3SIL 354 2.8%| 0.57 14.44| 0.64 16.30
6 5 7 |1ILAM 372 2.6%| 0.56 14.14]  0.63 16.60
6 5 8 |1QGUa 387 2.2%)|- 0.56 14.57|  0.63 16.12
6 5 9 |1DGFa 394 2.1%|  0.56 14.65| 0.63 16.35
6 5 10 |7A3Ha 411 1.7%| 0.55 14.00f 0.62 16.08
6 5 11 |[1IEZM 421 1.7%|  0.55 14.57)  0.62 15.76
6 5 12 |IKAPp 422 1.7%| . 0.56 14.72|  0.62 1591
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Figure 9. The variation of library size and that of reconstruction errors as functions of the
number of training proteins.
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5.2.3 Alternative Ways of Performance Evaluation

To evaluate quality of the building blocks for Dataset Anxgw, we compare the histogram of
local-fit RMS measuring the deviations of fragments from their corresponding building blocks
(Figure 10(a)). It is found that the total count of lower RMS error (area under the curve) for
ISMCM is larger than that for ITSCA and this indicates that more fragments are represented by
good building blocks with lower errors for ISMCM. Finally, we sort the proteins according to
their ISMCM local-fit RMS deviations and compare the results one by one with the ITSCA

local-fit RMS error for the same protein. We get the two curves as shown in Figure 10(b), which

reveals that ISMCM local-fit RMS errors are usually lower than ITSCA errors.
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Figure 10. (a) Histograms of local-fit RMS errors for ISMCM and ITSCA (b) Protein by

Avg. RMS

Protein

protein comparison of local-fit RMS error for ISMCM and ITSCA on Dataset Angw
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To compare the performance of both methods on the Dataset B, we proceed in the same
way as we did for Dataset A. We remove the trailing clusters with smaller number of members
to make both methods use the same number of building blocks. In Figure 11(a) and 11(b), we
compare the histogram of local-fit RMS errors and average local-fit RMS error per protein,
respectively. Like Dataset A, here we also find that ISMCM outperforms ITSCA with respect to

these evaluation criteria.
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Fig.ure 11. (a) Histograms of local-fit RMS errors for ISMCM and ITSCA (b) Protein by
protein comparison of local-fit RMS error for ISMCM and ITSCA on Dataset B

5.2.4 Visual Assessment of the Quality of the Building Blocks

In this section, we examine visually how well the building blocks can represent the target
fragments. For this we consider two examples, one with a very good fit (Figure 12) and the

other with a relatively poor fit (Figure 13), but still within 1 A threshold. Figure 12 (a) shows a

building block (AVGFMLA) whereas Figure 12(b) represents a target fragment (TLSELHC).
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Apparently the two structures look quite different. But Figure 12(c), the rotated version of the
building block AVGFMLA obtained after best molecular fit with the target look almost
identical to Figure 12(b). The superimposition of AVGFMLA and TLSELHC shown in Figure
12(d) clearly demonstrates an excellent fit between the two. The four panels in Figure 13 show
the representation of the target fragment EGVEIAC with the building block ENAIGGS.
Although, in terms of the local-fit RMS error it is a poorer fit, yet the building block matches

very nicely to the target (Figure 13(d)).
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Figure 12. Representation of a target fragment using a building block, a good fit case. (a) The
original building block; (b) The target hexamer; (c) The rotated and shifted building block; (d)
The building block and target hexamer superimposed after alignment.
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Figure 13. Representation of a target fragment using a building block, a poor fit case. (a) The
original building block; (b) The target hexamer; (¢) The rotated and shifted building block; (d)
The building block and target hexamer superimposed after alignment.

Next, we would like to show the biological structures of the building blocks of top two
most populated clusters using ISMCM and compare them with the building blocks of top two
clusters using ITSCA method. The most typical helical building block found by ISMCM is
AVGFMLA and it is located at residue 324-330 of 1SMD; whereas the most populated building
block found by ITSCA is GAAQVIM and it is located at residue 147-153 of 1IDMR. The fact
that GAAQVIM is also helical structure and is included in the cluster of AVGFMLA, appears
that the ITSCA cluster associated with GAAQVIM and the ISMCM cluster associated with
AVGFMLA represent the same biological structural motif. Figure 14(a) and Figure 14(b) show
these two building blocks and it is clear that they represent the same structural unit. Similarly,
we find that the most typical extended strand TKVIFEG found by ISMCM is located at residue
43 of 1CZFa whereas its counterpart GIKIYVS found by ITSCA is located at residue 464 of
1SMD. These two building blocks are depicted in Figure 15(a) and Figure 15(b). It can be seen

that these building blocks represent similar structures of biological significance.
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Figure 14. (a) ISMCM building block (AVGFMLA) at residue 324-330 of 1SMD (b) ITSCA
building block (GAAQVIM) at residue 147-153 of IDMR

(a) TKVIFEG (b) GIKIYVS

Figure 15. (a) ISMCM building block (TKVIFEG) at residue 43-49 of 1CZFa (b) ITSCA
building block (GIKIYVS) at residue 464-470 of ISMD
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6. CONCLUSIONS AND FUTURE WORK

We have applied the concept of combinatorial fusion to improve accuracy in protein structure
prediction. In particular, we have successfully improved the overall predictive accuracy rate of
87% for the four classes and 69.6% for the 27 folding patterns. We improve previous results by
Huang et al. [9] (65.5% for folding structures) and Ding and Dubchak [8] (56.5% for folding
structures) by incorporating the method of combinatorial fusion with the RBFN neural network
using the hierarchical learning architecture. These rates are higher than previous results and it
demonstrates that data fusion is a viable method for feature selection and combination in the
prediction and classification of protein structures. Work has been performed to improve those
results which used other machine learning technique such as kernel method, SVM and genetic
algorithm. For example, Yu et al. [43] has obtained good accuracy rate using SVM with
n-peptide coding schemes and jury voting. Future work can be performed to improve these

results using our combinatorial fusion approach.

Also, we present a structural variant of the mountain clustering method that is suitable for
data like 3-D structures of protein fragments. We have analyzed the SMCM and TSCA and have
demonstrated that since TSCA does not take into account the geometry of the data, it may
extract poorer building blocks than the SMCM. The utility of this algorithm is demonstrated on
the same dataset used by Unger et al. In fact, the superiority of this algorithm is demonstrated
on two versions of datasets (the original one and the newly updated one on the same set of
proteins). To visually compare the quality of reconstructions we also proposed two alternative
ways revealing that the performance of SMCM building blocks is usually better than TSCA
building blocks both in terms of the local-fit RMS histogram and in terms of the average RMS
deviation for individual protein. Our experiments demonstrate that the SMCM can find useful
building blocks to successfully reconstruct the 3-D protein structures for the first 60 residues

(as done by Unger et al.) of all test proteins with global-fit RMS error within 7.19 A . It can also
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obtain good local-fit RMS errors indicating that these building blocks can model the nearby

fragments within tolerable errors.

Both SMCM and TSCA are computationally expensive when the size of training dataset is
large. Hence we proposed an incremental version of the SMCM. The same concept is also used
to obtain an incremental version of the TSCA. We have made extensive experimentation with
these two algorithms using two versions of the dataset used by Unger et al. as well as another
dataset used by other researchers. The incremental SMCM is also found to be quite effective
and it is found to exhibit the properties expected from an incremental algorithm. More
specifically, as the number of proteins increases in the training set, the increase in the number of
building blocks decreases and consequently the rate of decrease in the global reconstruction
error both on the training and test data falls. down. Moreover, the incremental SMCM is found
to be more effective than the incremental TSCA. Although, the SMCM usually finds more
building blocks than those found by the TSCA, we have demonstrated that the improved
performance for SMCM comes from the quality of the building blocks which are placed at the

center of areas dense in training data.

None of the algorithms discussed here can take into account fragments of variable length.
To extend the algorithms for fragments of variable length, we need measures of similarity
between fragments of different lengths. For example, if we have two fragments both are helix,
but of different length, the structural similarity between the two should be very high; on a [0-1]

scale, it should be 1. We plan to investigate this in near future.

69



Bibliography

[1] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP: a structural
classification of proteins database for the investigation of sequence and structures,” Journal of

Molecular Biology, Vol. 247, pp. 536-540, 1995.

[2] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton,
“CATH — a hierarchic classification of protein domain structure,” Structure, Vol. 5, No. &, pp.

1093-1108, 1997.

[3] R.D. Finn, J. Tate, J. Mistry, P.C. Coggill, J.S. Sammut, H.R. Hotz, G. Ceric, K. Forslund,
S.R. Eddy, E.L. Sonnhammer and A. Bateman,” The Pfam protein families database,” Nucleic

Acids Research: Database Issue, Vol. 36, pp. D281-D288, 2008.

[4] D. Baker and A. Sali, “Protein structure prediction and structural genomics,” Science, Vol.

294, pp.93-96, 2001.

[5] L. Dubchak, I. Muchnik, S. R. Holbrook, and S. H. Kim, “Prediction of protein folding

class using global description of amino acid sequence,” Proc. Natl. Acad. Sci., USA, Vol. 92,

pp. 8700-8704, 1995.

[6] K.C. Chou and C.T. Zhang, “Prediction of protein structural classes,” Crit. Rev. in

Biochem. Mol. Biol., Vol. 30, No. 4, 1995, pp. 275-349.

[7] A. Antonina, H. Dave, E.B. Steven, J.P.H. Tim, C. Cyrus, and G.M. Alexey, “SCOP
database in 2004: refinements integrate structure and sequence family data,” Nuclear Acid

Research, Vol. 32, 2004, pp.226-229.

[8] C.H.Q. Ding and I. Dubchak, “Multi-class protein fold recognition using support vector

machines and neural networks,” Bioinformatics, Vol. 17, No. 4, 2001, pp. 349-358.

70



[9] C. D. Huang, C.T. Lin, and N.R. Pal, “Hierarchical learning architecture with automatic

feature selection for multi-class protein fold classification,” IEEE Trans. NanoBioscience, Vol.

2, No. 4, 2003, pp. 503-517.

[10] J.M. Bujnicki, “Protein structure prediction by recombination of fragments,”

ChemBioChem, Vol. 7, pp. 19-27, 2006.

[11] N. Haspel, C. J. Tsai, H. Wolfson and R. Nussinov, “Hierarchical protein folding

pathways: A computational study of protein fragments,” Proteins: Structure, Function, and

Genetics, Vol.51, Issue 2, pp. 203-215, 2003.

[12] R. Unger, D. Harel, S. Wherland and J.L. Sussman, “A 3D building blocks approach to

analyzing and predicting structure of proteins,” Proteins: Structure, Function, and Genetics,

Vol. 5, pp. 355-373, 1989.

[13] C. Micheletti, F. Seno and A. Maritan, “Recurrent oligomers in proteins: an optimal
scheme reconciling accurate and concise backbone representations in automated folding and

design studies,” Proteins: Structure, Function, and Genetics, Vol. 40, pp. 662—674, 2000.

[14] R. Kolodny, P. Koehl, L. Guibas and M. Levitt, “Small libraries of protein fragments

model native protein structures accurately,”_Journal of Molecular Biology, Vol. 323, pp.

297-307, 2002.

[15] R.R. Yager and D.P. Filev, “Approximate clustering via the mountain method,” |IEEE

Trans. Systems Man and Cybernetics, Vol. 24, pp. 1279-1284, 1994.

[16] S.L. Chiu, “Extracting fuzzy rules for pattern classification by cluster estimation,” in

Proc. 6th Int. Fuz. Systs. Assoc, World Congress (IFSA'95), 1995, pp. 1-4.

[17] K. L. Lin, C. T. Lin, N. R. Pal, and S. Ojha, “Finding useful building blocks for

71



construction of protein 3-D structures using a structural variant of mountain clustering

method,” in Second IAPR International Workshop (PRIB 2007), submitted for publication.

[18] L. L. Conte, B. Ailey, T. J. Hubbard, S. E. Brenner, A. G. Murzin, and C. Chothia,

“SCOP: a structural classification of proteins database,” Nuclear Acid Research, Vol. 28, No.

1, pp. 257-259, 2000.

[19] L. L. Conte, S. E. Brenner, T. J. Hubbard, C. Chothia, and A.G. Murzin, “SCOP database

in 2002: refinements accommodate structural genomics,” Nucleic Acids Research, Vol. 30,

No. 1, pp. 264-267, 2002.

[20] A. Andreeva, D. Howorth, J.M. Chandonia, S.E. Brenner, T.J.P. Hubbard, C.Chothis and
A. G. Murzin, "Data growth and its impact on the SCOP database: new developments",

Nucleic Acids Research,Vol. 36, D419-D425, 2008

[21] I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, and S. H. Kim “Recognition of a protein

fold in the context of the SCOP classification,” Proteins: Structure, Function, and Genetics,

Vol. 35, pp. 401-407, 1999.

[22] F.M. Pearl, D. Lee, J.E. Bray, L. Sillitoe, A.E. Todd, A.P. Harrison, J.M. Thornton, and

C.A. Orengo, “Assigning genomic sequences to CATH,” Nuclear Acid Research, Vol. 28, No.

2, 2000, pp. 584-599.

[23] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, N.Y., 1995.

[24] D.F. Hsu, J. Shapiro, and 1. Taksa, “Methods of data fusion in information retreival: rank

vs. score combination,” DIMACS Technical Report 58, 2002.

[25] D.F. Hsu and I. Taksa, “Comparing rank and score combination methods for data fusion

in information retrieval,” Information Retrieval, Vol. 8, 2005, pp. 449-480.

72



[26] J.M. Yang, Y.F. Chen, T.W. Shen, B.S. Kristal, and D.F. Hsu, “Consensus scoring

criteria for improving enrichment in virtual screening,” Journal of Chemical Information and

Modeling, Vol. 45, 2005, pp. 1134-1146.

[27] D.F. Hsu, Y.S. Chung, and B.S. Kristal, “Combinatorial fusion analysis: method and

practice of combining multiple scoring systems,” Advanced Data Mining Technologies in

Bioinformatics, Idea Group Inc., 2006, pp. 32-36.

[28] K.B. Ng and P.B. Kantor, “Predicting the effectiveness of naive data fusion on the basis

of system characteristics,” J. American Society for Information Sci., Vol. 51. No. 13, 2000, pp.

1177:1189.

[29] P. Baldi and S. Brunak, Bioinformatics: the Machine Learning Approach, MIT Press,

1998.

[30] C.H. Wu, Neural Networks and Genome Informatics. Amsterdam, The Netherlands:

Elsevier, 2000.

[31]J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,”

Neural Computation, Vol. 1, No. 2, pp. 281-294, 1989.

[32] N.J. Belken, P.B. Kantor, E.A. Fox, and J.A. Shaw, “Combining evidence of multiple

query representation for information retrieval,” Information Processing and Management, Vol.

31, No. 3, 1995, pp. 431-448.

[33] C.C. Vogt and G.W. Cotrell, “Fusion via a linear combination of scores,” Information

Retrieval, Vol. 1, 1999, pp. 151-172.

[34] L. Xu, A. Krzyzak, and C.Y. Suen, “Method of combining multiple classifiers and their

application to handwriting recognition,” IEEE Trans. Systems Man and Cybernetics, Vol. 22,

73



1992, pp. 418-435.

[35] C.M.R. Ginn, P. Willett, and J. Bradshaw, “Combination of molecular similarity

measures using data fusion,” Perspectives in Drug Discovery and Design, Vol. 20, 2000,

pp.1-16.

[36] M.A. Kuriakose, W.T. Chen, Z.M. He, A.G. Sikora, P. Zhang, Z.Y. Zhang, W.L. Qiu,
D.F. Hsu, C.M. Coffran, S.M. Brown, E.M. Elango, M.D. Delacure, and F.A. Chen,
“Selection and validation of differentially expressed genes in head and neck cancer,” Cellular

and Mol. Life Sci., Vol. 61, 2004, pp. 1372-1383.

[37] H.Y. Chuang, H.F. Liu, S. Brown, C.M. Coffran, and D.F. Hsu, “Identifying significant
genes from microarray Data,” in Proc. IEEE Symp. Bioinformatics and Bioengineering

(BIBE’04), 2004, pp. 358-365.

[38] H.Y. Chuang, H.F. Liu, F.A. Chen, C.Y. Kao, and D.F. Hsu, “Combination methods in
microarray analysis,” in Proc. 7th Intl. Symp. Parallel Architectures, Algorithms and

Networks (I-SPAN °04), IEEE Computer Society, 2004, pp. 625-630.

[39] D.F. Hsu and A. Palumbo, “A study of data fusion in Cayley graphs G (Sn, Pn),” in Proc.
7th Intl. Symp. Parallel Architectures, Algorithms and Networks (I-SPAN °04), IEEE

Computer Society, 2004, pp. 557-562.

[40] B. Rost and C. Sander, “Prediction of protein secondary structure at better than 70%

accuracy,” Journal of Molecular Biology, Vol. 232, 1993, pp. 584-599.

[41] J. Jundstrom, L. Rychlewski, J. Bujnicki and A. Elofsson; “Pcons: A

neural-network-based consensus predictor that improves fold recognition,” Protein Science,

Vol. 10, 2001, pp. 2354-2362.

74



[42] K.L. Lin, C. Y. Lin, C.D. Huang, H.M. Chang, C. Y. Yang, C.T. Lin, C. Y. Tang, and D.
F. Hsu; “Methods of improving protein structure prediction based on HLA neural network

and combinatorial fusion analysis, ” WSEAS Trans. Information Science & Applications, Vol.

2, No. 12, 2005, pp. 2146-2153.

[43] C.S. Yu, J.Y. Wang, J.M. Yang, P.C. Lyu, C.J. Lin, and J.K. Hwang, “Fine-Grained

Protein Fold Assignment by Support Vector Machines Using Generalized nPeptide Coding

Schemes and Jury Voting From Multiple-Parameter Sets,” Proteins, Vol. 50, 2003,

pp-531-536.

[44] C. Bystroff and D. Baker, “Prediction of local structure in proteins using a library of

sequence-structure motifs,” Journal of Molecular Biology, Vol. 281, pp. 565-577, 1988.

[45] Y. Liu and D.L. Beveridge, “Exploratory studies of ab-initio protein structure prediction:
multiple copy simulated annealing, amber energy functions, and a generalized born/solvent

accessibility solvation model,” Proteins: Structure, Function, and Genetics, Vol. 46, pp.

128-146, 2002.

[46] P. Pokarowski, A. Kolinski and J. Skolnick, “A minimal physically realistic protein-like
lattice model: Designing an energy landscape that ensures all-or-none folding to a unique

native state,” Biophys J., Vol. 84, pp. 1518-1526, 2003.

[47] G. Chikenji, Y. Fujitsuka and S. Takada, “A reversible fragment assembly method for de

novo protein structure prediction,” J. Chem. Phys, Vol. 119, pp. 6895-6903, 2003.

[48] D. Kihara and J. Skolnick, “The PDB is a covering set of small protein structures,”

Journal of Molecular Biology, Vol. 334, pp. 793-802, 2003.

[49] Y. Zhang and J. Skolnick, “The protein structure prediction problem could be solved

using the current PDB library,” Proc. Natl. Acad. Sci., USA, Vol. 102, pp. 1029-1034, 2005.

75



[50] R. Kolodny and M. Levitt, “Protein decoy assembly using short fragments under

geometric constraints,” Biopolymers, Vol. 68, pp. 278-285, 2003.

[51] B. H. Park and M. Levitt, “The Complexity and accuracy of discrete state models of

protein structure,” Journal of Molecular Biology, Vol. 249, pp. 493-507, 1995.

[52] S. Anishetty, G. Pennathur and R. Anishetty, “Tripeptide analysis of protein structures,”

BMC Structural Biology, Vol. 2, No. 9, 2002.

[53] C. Benros, A. G. de Brevern, C. Etchebest and S. Hazout, “Assessing a novel approach

for predicting local 3D protein structures from sequence,” Proteins: Structure, Function, and

Genetics, Vol. 62, Issue 4, pp.865-880, 2006.

[54] A.G. de Brevern and S. Hazout, ““Hybrid protein model for optimally defining 3D protein

structure fragments,” Bioinformatics, Vol. 19, No. 3, pp. 345-353, 2003.

[55] A. G. de Brevern, C. Etchebest and S. Hazout, “Bayesian probabilistic approach for
prediction backbone structures in terms of protein blocks,” Proteins, Vol. 41, pp. 271-287,

2000.

[56] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta

Crystallogr., Vol. B32, pp. 922-923, 1976.

[57] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of

vectors,” Acta Crystallogr., Vol. A34, pp. 828-829, 1978.

76



