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資料融合及山峰群聚法應用於 

改善蛋白質結構預測與分析 

研究生：林肯豊                        指導教授：林進燈  博士 

 

國立交通大學  電機與控制工程學系  博士班 

 

摘  要 

在本研究中，主要探討二個與蛋白質結構預測與分析相關的問題，首先，將類神經網路

以二階段分類的階層式學習架構用於蛋白質的結構預測分類問題，並進一步延伸，結合

資訊融合的組合分析技術，有系統的利用多樣性次序/計分圖 (Diversity rank/score 

graph)，選取出重要的分類特徵，藉以提昇第一階段及第二階段的分類正確率分別逹到

87%及69.6%，印證此組合特徵擷取方式及系統分類架構，確為有效的方法，可協助改

善此類蛋白質結構預測分類的問題，提昇正確率。其次，利用山峰群聚法來分析蛋白質

3D結構的組成區塊，結合Best Molecular Fit (BMF)方法用於計算3D結構距離，使傳統山

峰群聚法，可轉而用於立體三維空間向量之分群(稱之為Structural Mountain Clustering 

Method，簡稱SMCM)，藉由估測區域密度來找出有用的3D結構組成區塊，並以實例驗

證當這些組成區塊用於重建蛋白質3D結構時，以整體及區段均方根誤差值(Global-fit 

Root Mean Square Error及Local-fit Root Mean Square Error) 作為衡量標準時，均獲得良

好的效果。另外，也針對SMCM山峰群聚法進行計算複雜度的探討，並提出遞增法

(Incremental approach)來運用山峰群聚法，以因應一次處理大量訓練資料時，計算複雜

度高而耗時過久的情形，此外，文中也採用不同的效能評比方式，以實例驗證本方法較

以往二階段群聚法有更好的效果。 
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Abstract 

In this dissertation, we focus on two issues concerning protein structure prediction and 

analysis. First, we have applied a two-level classification strategy called hierarchical 

learning architecture (HLA) using neural networks to differentiate proteins according to 

their classes and folding patterns and then use a combinatorial fusion technique to facilitate 

feature selection and combination for improving predictive accuracy in protein structure 

classification. When applying combinatorial fusion to the protein fold prediction problem 

using neural networks with HLA, the resulting classification has an overall prediction 

accuracy rate of 87% for four classes and 69.6% for 27 folding categories. These rates are 

higher than previous results and it demonstrates that data fusion is a viable method for 

feature selection and combination in the prediction and classification of protein structure. 

Second, we propose an algorithm named Structural Mountain Clustering Method (SMCM) 

to find a library of short 3-D structural motifs (building blocks) for construction of 3-D 

structures of proteins/peptides. The algorithm finds the building blocks based on an estimate 
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of local "density" of 3-D fragments computed using a measure of structural similarity that is 

obtained after best molecular fit alignment of pairs of fragments. The algorithm is tested on 

two well known benchmark datasets and is found to successfully reconstruct the test 

peptides in terms of both global-fit Root-Mean-Square (RMS) errors and local-fit RMS 

errors. The good local-fit RMS errors achieved by SMCM indicate that these short 

structural motifs extracted by our algorithm can model the nearby fragments quite 

accurately. We then analyze the computational complexity of the SMCM and propose an 

incremental version of SMCM to deal with large training dataset. In addition to using the 

global-fit and local-fit RMS errors, we propose and use two alternative ways to compare the 

quality of such quantization and reconstruction results between SMCM and Two Stage 

Clustering Algorithm (TSCA) to show the superiority of SMCM. 
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1. Introduction 

1.1 Statements of the Problems 

The structure prediction and classification of proteins plays a very important role in 

bioinformatics, since three-dimensional (3-D) structure of a protein is essential for 

understanding and studying its function. A lot of efforts have been put by researchers to find the 

relations between protein sequences and their three-dimensional structures but it’s still a 

difficult and unsolved problem. There are several famous classification databases such as 

Structure Classification of Protein (SCOP) [1], Class, Architecture, Topology, and Homologous 

superfamily (CATH) [2], DIAL-derived domain database (DDBASE) and Pfam [3], which 

imbue the structure with context and analysis. However, the number of known 3-D protein 

structures is much less than that of the determined protein sequences. Thus, there is still the 

need for some effective methods to investigate the protein structure from its primary sequence. 

Finding the 3-D structure of a protein using X-ray crystallography or by nuclear magnetic 

resonance imaging is not only time consuming but also quite expensive and hence alternative 

computational approaches are being tried. Computational structure prediction methods will 

provide valuable information for the large fraction of sequences whose structures will not be 

determined experimentally. The first class of protein structure prediction methods, including 

threading or fold recognition and comparative modeling, rely on detectable similarity spanning 

most of the modeled sequence and at least one known structure. The second class of methods, 

de novo or ab initio methods, predict the structure from sequence alone, without relying on 

similarity at the fold level between the modeled sequence and any of the known structures [4]. 

    Among the former methods, fold recognition methods are widely used and effective 

because it is believed that there are a strictly limited number of different protein folds in nature, 

mostly as a result of evolution but also due to constraints imposed by the basic physics and 
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chemistry of polypeptide chains. There is, therefore, a good chance that a protein which has a 

similar fold to the target protein has already been studied by X-ray crystallography or NMR 

spectroscopy and can be found in the PDB (Protein Data Bank). The basic idea is that the target 

sequence (the protein sequence for which the structure is being predicted) is threaded through 

the backbone structures of a collection of template proteins. Fold recognition methods can 

utilize the profile information derived from properties of amino acid sequences and the 

structures in the fold library and even take into account the local secondary structure (e.g. 

whether the amino acid is part of an alpha helix) or even evolutionary information (how 

conserved the amino acid is) for structure prediction. Previous research [5], [6] have shown that 

an accuracy rate of 70-80% has been achieved to classify most of proteins into four classes 

according to their amino acid sequence information (i.e., all-alpha (α), all-beta (β), alpha/beta 

(α/β) and alpha+beta (α+β)) [1]. In summary, these four classes contain 82.5% folding patterns, 

84.7% superfamilies and 88.1% families in the SCOP database (SCOP release version 1.65 [7]). 

In [8], Ding and Dubchak proposed a taxonmetric approach for protein folding classification 

(into 27 folding patterns) beyond four simple classes had the highest overall prediction 

accuracy rate at 56.5%. In Huang et al. [9], extra features were defined and improved the 

prediction accuracy rate by 9% to reach 65.5%. In this dissertation, we use a combinatorial 

fusion technique to facilitate feature selection and combination for improving predictive 

accuracy in this problem and obtain better prediction accuracy rate of 87% for four classes and 

69.6% for 27 folding categories.  

For the ab initio structure prediction, to predict three-dimensional protein structures from 

amino-acid sequences alone is a long-standing challenge in computational molecular biology. 

Since the search space is enormous even for proteins with moderate sequence lengths, the 

modeling of a protein structure de novo without using templates is quite difficult. To allow 

rapid and efficient searching of conformational space, often only a subset of the atoms in the 
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protein chain is represented explicitly. Recently, methods based on assembly of short fragments 

have shown a great promise [10]. Among these methods, 3-D building blocks approaches have 

been proposed to use a set of proteins with known 3-D structures, first construct libraries of 

building blocks or short structural motifs, the structures that appear frequently and have some 

sequence to structure relation. These building blocks are then used to construct or analyze 

structures of new proteins. The short structural fragments that recur across different protein 

families can often be viewed as stand-alone units which fold independently and hence can help 

assignment of building blocks to unknown proteins for reconstruction of 3-D structures [11]. 

Extraction of good representative building blocks is the key to the success of such approaches. 

Unger et al. [12] proposed a two-stage clustering algorithm to choose hexamers (fragments of 

length 6) with a large number of neighbors to be the centers of clusters and hence building 

blocks. A similar approach was used by Micheletti et al. who considered the largest number of 

nearby points within a similarity cutoff called “proximity score” [13] to select cluster centers. 

Kolodny et al., on the other hand, used a simulated annealing k-means method to extract 

clusters with the minimal total variance score [14]. In this dissertation, a modified form of the 

mountain clustering / subtractive clustering method [15]-[16] is proposed to find building 

blocks. Results of some preliminary investigation are reported in [17]. The use of the modified 

mountain clustering method is computationally expensive when the training data set size is 

large. To reduce the computational burden, we also propose an incremental version of the 

structural mountain clustering method. Our experiments with some benchmark datasets show 

that the proposed algorithms can find better representative building blocks than the method in 

[12] that selects cluster centers by counting neighbors. We also propose two alternative ways 

for displaying the quality of the building blocks. 

1.2 Organization of the Dissertation 

This dissertation is organized as follows. Chapter 2 describes preliminaries and material 
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including the Structural Classification of Proteins (SCOP), 3D building block approach, 

features used for classification and the datasets used in the dissertation. Chapter 3 explores the 

results and methods by data fusion approach for the prediction of protein folds. Chapter 4 

investigates how to find the useful building blocks for construction of protein structures using 

a structural variant of Mountain clustering methods. Chapter 5 develops the incremental 

version of Structural Mountain clustering methods. At last, we make the conclusions in 

Chapter 6. 
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2. Preliminaries and Materials 

2.1 Structural Classification of Proteins (SCOP) database 

The SCOP database is a comprehensive ordering of all proteins of known structure, according 

to their evolutionary and structural relationships. Protein domains in SCOP are grouped into 

species and hierarchically classified into families, superfamilies, folds and classes. The first 

two levels, family and superfamily, describe near and distant evolutionary relationships; the 

third, fold, describes geometrical relationships. It is originally published in 1995[1] and 

constantly updated over years till now [1][7][18]-[20]. The database and its associated files are 

freely accessible from a number of WWW sites mirrored from URL 

http://scop.mrc-lmb.cam.ac.uk/scop/. 

The classification of the proteins in SCOP is on hierarchical levels as follows: 

Family. Proteins are clustered together into families on the basis of one of two criteria that 

imply their having a common evolutionary origin: first, all proteins that have residue identities 

of 30% and greater; second, proteins with lower sequence identities but whose functions and 

structures are very similar; for example, globins with sequence identities of 15%. 

Superfamily. Families whose proteins have low sequence identities but whose structures and, 

in many cases, functional features suggest that a common evolutionary origin is probable, are 

placed together in superfamilies; for example, the variable and constant domains of 

immunoglobulins. 

Common fold. Superfamilies and families are defined as having a common fold if their proteins 

have the same major secondary structures in the same arrangement and with the same 

topological connections. The structural similarities of proteins in the same fold category 

probably arise from the physics and chemistry of proteins favoring certain packing 
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arrangements and chain topologies. 

Class. The different folds have been grouped into classes. Most of the folds are assigned to one 

of the five structural classes: 

1. all-α, those whose structure is essentially formed by α-helices; 

2. all-β, those whose structure is essentially formed by β-sheets; 

3. α/β, those with α-helices and β-strands; 

4. α+β, those in which α-helices and β-strands are largely segregated; 

5. multi-domain, those with domains of different fold and for which no homologues are 

known at present. 

Other classes have been assigned for peptides, small proteins, theoretical models, nucleic 

acids and carbohydrates. 

Following the previous published papers [5], [8], [21], we focus on the first four main 

classes, i.e. all alpha (α), all beta (β), alpha and beta (α+β) and alpha/beta (α/β), with 27 folds 

according to their structures representing all major structural classes. 

2.2 Feature Sets used for Predicting Protein Folds 

2.2.1 Global Features 

In the previous studies [5], [8], several features have been considered for predicting protein 

folds by using global descriptors computed from the physical, chemical or structural properties 

of the constituent amino acids. Each property of the sequence was described based on three 

global descriptors: Composition (C), Transition (T), and Distribution (D) [5], [8]. The 

descriptor “Composition” is the occurrence percentage of each characteristic (attribute). The 
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descriptor “Transition” is change count from one characteristic to another. There will be 

different combinations which would be 2
mC  for m kinds of characteristics. The descriptor 

“Distribution” is the percentage of m kinds of characteristics appearing at the location in  

0%、25%、50%、75%、100% of the sequence. These descriptors for each characteristic 

essentially describe the frequencies with which the properties change along the sequence and 

their distribution on the chain including the rate of composition, transition and distribution. 

These properties of the amino acids after encoded by the descriptors were used as input 

features to the machine learning network.  

Next, we would like to illustrate how these descriptors are computed. For example, the 

hydrophobicity of an amino acid could be classified into 3 types: “positive”, “neutral” 

and ”negative”. If we denote the three types of characteristics by “A”, “B”, “C” alphabets, 

then each of amino acids in the protein sequence can be replaced by these three alphabets, 

and therefore a new sequence represented by A、B、C is obtained. Table 1 shows such an 

example sequence that each position of individual alphabet are numbered. Then we can 

count the percentages of A、B and C for the whole sequence and obtain the composition as 

shown in the first row of Table 2. Also we can calculate the transition count for the pairs of 

A / B，B/ C and A / C and compute the values in the second row o f Table 2. Finally, we 

calculate the position of 0%、25%、50%、75%、100% of A，B and C, and we can get 15 

(5x3=15) distribution values from the ABC sequence as shown in the bottom rows of Table 

2. After the procedure, a feature vector of dimension 21 (3+3+5+5+5) can be obtained for 

this specific property encoded.  
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Table 1. An example sequence of characteristics using 3 alphabets. 

 

Table 2. An example of computing descriptors C, T and D  

 

In this study, we adopted six global features derived from the physical or chemical 

characteristics (attributes) of proteins for fold classification. They are amino acid composition 

(C), predicted secondary structure (S), hydrophobicity (H), normalized Van Der Waals volume 

(V), polarity (P), and polarizability (Z). Among them, the first feature is simply the 

composition of amino acid sequence with its dimension equal to 20 whereas the remaining 

five features are extracted from the original primary sequence using the descriptor described 

above. The six kinds of protein sequence information (PSI) and their abbreviated symbol and 

dimension are shown in Table 3. 
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Table 3. The global features extracted from protein sequence. 

Feature & its abbreviation  Characteristics used in descriptors 
Feature 

Size 

Composition (C) 20 kinds of amino acids 20

Predicted Secondary Structure (S) Alpha Beta Loop 21

Hydrophobicity (H) Positive Neural Negative 21

Volume (V) Large Middle Small 21

Polarity (P) Positive Neural Negative 21

Polarizability (Z) Strong Middle Weak 21

 

 

2.2.2 Local Features 

The six types of PSI introduced above are kinds of global features extracted by the direct 

encoding method. These six types of PSIs emphasize more on the global properties and 

structures of the amino-acid sequences, and less on the local interactions among neighboring 

amino acids. In this section, we will introduce two additional local features obtained by using 

the bi-gram coding method and the spaced-bi-gram coding method. These two induced features, 

which generated from the amino acid sequences, can well describe the interactions among 

neighboring amino acids locally in a 3D structure and also those caused by the mutual 

interactions among interleaving (every other) neighboring amino acids in a protein sequence. 

And it is quite reasonable because the protein sequence of amino acid exist in space instead of 

in line. There exists a force to influence others and the force is determined by different kind of 

amino acid. Based on this idea, the bi-gram and spaced-bi-gram coded features were used in 

our experiments.  

Here, we would like to introduce the bi-gram coding method first whereas the 

spaced-bi-gram coding method will be introduced latter. For a given sequence composed of M 
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alphabets, an N-gram coding scheme applied on it will produce a feature vector with Mn 

dimensions and n is the N-gram size (length of window). Each element in the feature vector 

represents the number of appearance of a specific pair-wise combination of the M alphabets in 

the neighboring two alphabets. Since a protein sequence is composed of twenty kinds of general 

amino acids, these twenty kinds of amino acids are represented by twenty alphabets and others 

may be represented by a common alphabet B or Z; therefore it is a sequence composed of 

twenty-one alphabets (twenty kinds of amino acids plus an extra alphabet). In our experiments 

we took the windows length n as 2 and therefore the N-gram coding method becomes bi-gram 

coding method (or called 2-gram coding method) and we will obtain a feature vector with 441 

dimensions for a protein sequence.  

Similar to the bi-gram coding, the spaced-bi-gram coding is to detect the appearance 

frequency of any two-alphabet pair in every other (interleaving) neighboring amino acids of a 

protein sequence. This coding method we induced here is based on the concept of entropy and 

indirectly coding algorithm, we call it the spaced-bi-gram method. The spaced-bi-gram method 

will focus on the relationship between two neighbors of amino acids and count the transition of 

whole sequence to obtain information from the amino acid sequence, but with a space. In this 

manner, the transitions of the neighbor of amino acids sequence, but over one space, have been 

calculated. We believe that the structures of protein are not only influenced by the composition 

amino acids that combined with chemical bonds but also by other amino acids which do not 

connect each other directly but they are nearby. The concept is similar with the Van Der Waals 

force. 

Same as the N-gram coding method, for an M alphabets sequence with windows length n, 

the new coding method will produce the pairs with the number of Mn . With the same reason we 

took the windows length equal to two. Hence, the spaced-bi-gram coding method on a protein 

sequence will also generate a feature vector with 441 dimensions. Let us consider a segment of 
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the amino acid sequence of the protein with ID number 1pga as an example. If there is a 

segment occurred as ….MTYKLILNG….. in a sequence, we will use it as an illustrative 

example. In the bi-gram coding method, we count the numbers of the amino acid pairs (MT)、

(TY)、(YK)、(KL)、(LI)、(IL)、(LN) … , respectively. But in the spaced-bi-gram coding method, 

for the same segment, we are going to count the numbers of the pairs (MY)、(TK)、(YL)、

(KI) 、(LL)、(IN)、(LG)…, respectively. It is clearly to find that we consider the pairs jumping 

over an amino acid. It is believed that the mutual interactions between every two neighboring 

amino acids, and also the mutual interactions between every other two neighboring amino acids 

may play important roles in the space structure of a protein sequence. It is quite clearly that each 

amino acid with its volume, after tangle up in space it is not only affected by its neighbor but 

also affected by other composition.   

The local features obtained by bi-gram and spaced-bi-gram here and also the six protein 

sequence information (PSI) in the previous section are listed in the Table 4. 

Table 4. The global features and local features 

Symbol Protein Sequence Information Dimension

C Amino Acid Composition 20 

S Predict Secondary Structure 21 

H Hydrophobicity 21 

P Polarity 21 

V Normalized Van Der Waals volume 21 

Z Polarizability 21 

B Bi-Gram coding 441 

SB Spaced Bi-gram coding 441 
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 2.2.3 Feature Sets of Combined Features 

The global and local features are combined and used as input feature sets of classifiers. Table 5 

gives the combined features sets.  

Table 5. The combined feature set of original features. 

 Feature set Features included Dimension 

A C 20 

B C+S 41 

C C+S+H 62 

D C+S+H+P 83 

E C+S+H+P+V 104 

F C+S+H+P+V+Z 125 

G C+S+H+P+V+Z+B 566 

H C+S+H+P+V+Z+B+SB 1007 

 

2.3 The 3-D Building Block Approach for Analysis of Protein Structure 

3-D building blocks approach for analysis of protein structure is usually a multi-stage approach. 

First, we need to decide on the fragment length, i.e., the length of the building block. Then 

given a set of training proteins we generate fragments and use some clustering /data 

compression algorithm to divide these fragments into structurally similar clusters[11]-[14]. The 

center of each cluster is then used as the building block or prototype. Typically, the number of 

building blocks is much smaller than the total number of fragments. If there are an adequate 

number of good building blocks, then they can be used to represent the original fragments 

within a tolerable limit and hence in turn can be used to reconstruct the 3-D structure of a whole 

protein from its amino acid sequences within some tolerance. 
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Figure 1. A block diagram of the 3D building block approach. 
 (Note that fragment x* represents the fragment x after some rotation and alignment.) 
 

For an easy understanding of the entire process, in the left part of Figure 1, we provide a 

block diagram and in the right side of each block we illustrate the activity in the block using a 

simple data set consisting of two training peptides and one test peptide. For illustration, we 

consider fragments of length 4. Thus, the two training peptides result in 7 fragments named a-g 

in Figure 1. In the third step (block), the clustering process finds four clusters. For example, in 

the first cluster, fragment f and fragment a are placed together because they are almost the same 

after alignment. The 4 clusters result in 4 building blocks, a, b, g and d as shown in the fourth 

block in the right part of Figure 1. In the last step we show two reconstruction cases of which 

the first one, (b*+a*+g), has a smaller reconstruction error (in terms of 

Root-Mean-Square-Deviation (RMSD) ) than the second one since its corresponding building 

blocks are better matched. It is noted that b* represents the building block b after alignment. 
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2.4 Datasets used in the Dissertation 

  In this section, all the datasets used in this dissertation are listed below. 

2.4.1 Dataset used for Protein Fold Prediction 

2.4.1.1 Training Dataset 

Following the prior published papers [5],[8],[21], the numbers of proteins for training are 313 

and they should be classified into four main classes, i.e. all alpha(α), all beta(β), alpha and beta 

(α+β) and alpha/beta (α/β), with 27 folds according to their structures representing all major 

structural classes. To make sure the network will be well trained, the data set was selected by 

their characteristics so that all proteins in the data set have less than 35% of the sequence 

identity for the aligned subsequences longer than 80 residues. The protein list and 

corresponding 27 folds are shown in the Table 6 and 7. 

Table 6. The twenty-seven folds used in the experiments of this study. 

 

Globin-like      
Cytochrome c        
DNA/RNA-binding 3-helical bundle  
Four-helical up-and-down bundle      
4-helical cytokines   
EF Hand-like  
Immunoglobulin-like beta-sandwich  
Cupredoxin-like  
Nucleoplasmin-like/VP 
Concanavalin A-like lectins/glucanases  
SH3-like barrel   
OB-fold  
beta-Trefoil  
Trypsin-like serine proteases   
Lipocalins     

TIM beta/alpha-barrel  
FAD/NAD(P)-binding domain  
Flavodoxin-like   
NAD(P)-binding Rossmann-fold 
domains  
P-loop containing nucleoside 
triphosphate hydrolases  
Thioredoxin fold   
Ribonuclease H-like motif   
alpha/beta-Hydrolases   
Periplasmic binding protein-like I  
beta-Grasp      
Ferredoxin-like    
Knottins     
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Table 7. Name list of training proteins used in the experiments of this study. 

2lhb 
3sdh 
1flp 
2hbg 
2mge 
1eca 
2gdm 
1bab 
1ith 
1ash 
1hlb 
1cpc 
1cpc 
1ccr 
1cxa 
2pac 
2mta 
1c53 
1fcd 
1fcd 
1enh 
1lfb 
1apl 
1hdp 
1hcr 
1ret 
1mse 
1mse 
1leb 
3gap 
1hst 
1hks 
1lpe 
1was 
256b 
2ccy 
2hmz 
2tmv 

3mdd 
1bge 
1lki 
1huw 
1gmf 
1rcb 
1hmc 
1ilk 
1ifa 
1rfb 
4icb 
1rtp 
1cta 
1rec 
2scp 
2sas 
2scm 
6fab 
1fc2 
3cd4 
1cid 
1hnf 
1dlh 
1dlh 
1vaa 
1vaa 
1cd8 
1tlk 
1tnn 
1gof 
1cgt 
1oxy 
1clc 
1ctn 
1nci 
2mcm 
1xso 
1fna 

1ten 
1cfb 
3hhr 
3hhr 
2hft 
3dpa 
1rsy 
1fru 
8fab 
1plc 
1pmy 
1aaj 
2aza 
1cbp 
1aoz 
1aoz 
1aoz 
1nrd 
2bpa 
2bpa 
2stv 
4sbv 
2tbv 
2bbv 
1bbt 
1bbt 
2cas 
4rhv 
4rhv 
4rhv 
2mev 
2mev 
2mev 
1fod 
1len 
2ayh 
1slt 
1sac 

1cel 
1xnb 
1lob 
1shf 
1shg 
1pkt 
2hsp 
1csk 
1sem 
1pse 
1sso 
1lts 
1bov 
1prt 
1prt 
1prt 
1kab 
1tss 
1asz 
1pyp 
1igp 
1csp 
1bgh 
1rip 
1bar 
8i1b 
1ilr 
2ila 
1abr 
1abr 
1tie 
1hce 
1arb 
2sga 
2alp 
1ept 
1ppb 
2snv 

2hnt 
2kai 
1bbr 
1hbq 
1bbp 
1epa 
1mup 
1ifc 
1lid 
1mdc 
1cbs 
2phy 
1cgt 
6taa 
1ppi 
1amg 
1amy 
1byb 
1ghs 
1xys 
1nar 
2ebn 
1ctn 
1add 
2kau 
1fba 
1ads 
4enl 
2mnr 
1chr 
1oyb 
1gox 
2tmd 
1pii 
1wsy 
1pkn 
3rub 
5rub 

1tph 
4xia 
1nfp 
2tmd 
3cox 
1pbe 
1gal 
1trb 
2tpr 
2tpr 
3lad 
3lad 
1fcd 
1fcd 
3chy 
1ntr 
1scu 
1scu 
2fcr 
2fx2 
4fxn 
1bmt 
1cus 
2nad 
1gdh 
2ohx 
1qor 
1hdc 
1dhr 
1udp 
1hdg 
2nad 
1gdh 
2cmd 
1bmd 
1lld 
2pgd 
1scu 

1gky 
1ukz 
2ak3 
5p21 
1tad 
1eft 
1efg 
1dts 
1nip 
2reb 
2trx 
1mdk 
1dsb 
1ego 
1aba 
1gp1 
2gst 
1gsr 
1gsq 
3hsc 
1atn 
1atn 
1glc 
1glc 
1chm 
2rn2 
1hrh 
1dpi 
1hjr 
1ack 
1ede 
1tht 
1tca 
3tgl 
1tib 
1crl 
1tah 
1lpb 

1wht 
1wht 
2dri 
8abp 
1gca 
2liv 
1pda 
1sbp 
1olb 
1omp 
1hsl 
1pbp 
1nnt 
1pga 
2ptl 
1ubi 
2pia 
1frd 
1put 
1tss 
1fca 
1fxr 
2atc 
1pba 
1nhk 
1sxl 
1nrc 
2bop 
3rub 
5rub 
1aps 
1ris 
1efg 
4cpa 
1oma 
2sn3 
1ptx 
2crd 

1scy 
1chl 
1ktx 
1ica 
2gps 
2cbh 
1lpb 
1lpb 
1tab 
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2.4.1.2 Testing dataset 

The testing dataset was based on PDB-40D set developed by the authors of the SCOP database 

[1], [18]-[21]. A total number of 385 proteins with identity less 40%, same as those used by 

Ding and Dubchak [8], were selected for testing. Table 8 gives name list of the testing proteins. 

Table 9 shows the numbers of proteins in the training and testing datasets for different folds of 

each protein class used in our experiments, where there are 27 folds for the 4 main classes in 

total. 

 

 

Table 8. Name list of testing proteins used in the experiments 

 

2cmd_1 
1bdma1 
1hlpa1 
1hyha1 
1ldm_1 
1ldg_1 
1ldb_1 
1yvei2 
2pgd_2 
1hrda1 
1gtma1 
1leha1 
1deka  
1vtk   
1aky   
1tada2 
1hura  
1eft_3 

1dar_2 
1mmd_
2 
1adea  
2reb_1 
1bmfa3 
1bmfd3 
1kte   
1mek   
1dsba2 
2gsta2 
1glqa2 
1gsea2 
1gnwa2 
2trcp  
1hpm_1 
1hpm_2 
2btfa1 

2btfa2 
2yhx_1 
2yhx_2 
1glag1 
1glag2 
1asu   
1itg   
1bco_2 
1kfd_1 
1noya  
1sfe_2 
1wht.1 
1din   
1broa  
1thg   
1tahb  
1hpla2 
1yasa  

1pea   
1pnra2 
1tlfa  
2lbp   
1igd   
1guab  
1alo_2 
2pia_3 
1esfa2 
1se4_2 
1tif   
1lgr_1 
1fd2   
1xer   
1vjw   
2fxb   
1raab1 
1spbp  

1mli   
1pil   
1npk   
1up1_1 
1up1_2 
1urna  
2u1a   
1dhma  
1vhia  
3rubl2 
5ruba2 
1dar_4 
1afi   
1psda3 
1mla_2 
1fwp   
1regx  
1ab8a  

1vaoa1 
1geo_1 
1geo_2 
1wgta1 
1wgta4 
1wgta2 
1wgta3 
1gur   
1iva   
1eit   
1txm   
1tsk   
1pnh   
1gps   
1cbh   
1esl_2 
1hcgb  
1prha2 

1egf   
2tgf   
1hre   
1emo_1 
1emo_2 
1apq   
1klo_1 
1klo_3 
1klo_2 
1flei  
1skz_1 
1skz_2 
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Table 8. (cont.) Name list of testing proteins used in the experiments. 

 

1hbg   
1mbd   
1mba   
1lh1   
1baba  
1alla  
1dvh   
1cyi   
5cytr  
1cc5   
351c   
1gks   
1aofa1 
1etpa1 
1etpa2 
1yrna  
1yrnb  
1octc1 
1fjla  
1res   
1pdnc  
1igna1 
1igna2 
1sfe_1 
1bia_1 
1lea   
1aoy   
1cgpa1 
1opc   
1etd   
1puee  
2hts   
1dpra1 
1xgsa1 
1fow   
2liga  
1bbha  
1cgo   

1cpq   
2hmqa  
1vtmp  
1buca1 
1fapb  
1bgc   
1cnt1  
1csga  
2int   
1hula  
1hmca  
3inkc  
1jli   
1rmi   
1sra   
1rro   
1osa   
1scmb  
2mysb  
1tcob  
1djxa1 
1cpo_1 
1cpo_2 
1neu   
3cd4_1 
1cid_1 
1cdcb  
1vfba  
1cd1a1 
1dlha1 
1vcaa1 
1zxq_1 
3cd4_2 
1cid_2 
1vcaa2 
1zxq_2 
2ncm   
1tnm   

1wiu   
1tiu   
1gof_1 
1qba_1 
1svb_1 
1cdg_1 
1lla_2 
1hc2_2 
1clc_2 
1ctn_1 
1ggta1 
1ksr   
1rhoa  
2hft_1 
2hft_2 
1cfb_1 
3hhrb1 
3hhrb2 
1ebpa  
1cto   
1bgla1 
1bgla2 
1bhga1 
1ggta2 
1ggta3 
1noa   
1yaia  
1mspa  
4kbpa1 
2cbp   
1aiza  
1cur   
1jer   
1cyx   
1occb1 
1kcw_1 
1kcw_2 
1kcw_3 

1kcw_4 
1kcw_5 
1kcw_6 
1stma  
1smva  
1bmv1  
1bmv2  
1cwpa  
2bbva  
1bbt3  
1pvc1  
1pvc2  
1pvc3  
1tme1  
1sva1  
1dhx   
1scs   
1cpn   
1slaa  
1lcl   
1kit_1 
1kit_2 
1bia_2 
1umua  
1ckaa  
1pht   
1hsq   
1mmd_1 
1vie   
1ihwa  
1sty   
1tiid  
1prtb1 
1esfa1 
1se4_1 
1asya1 
1lyla1 
1cuk_3 

3ulla  
1jmca1 
1jmca2 
1mjc   
1sro   
1ah9   
1ckma1 
1yhb   
1pfsa  
1gpc   
2prd   
2fgf   
1i1b   
1wba   
1hcd   
1sgc   
1agja  
1bty   
1hava  
1hbp   
1obpa  
1beba  
1epba  
1hms   
1lfo   
1eal   
1cdg_4 
1ppi_2 
2aaa_2 
1jdc_2 
1amy_2 
1xyza  
1edg   
1cec   
1ecea  
1ghr   
1bgla5 
1bhga3 

1cbg   
1hvq   
1edt   
1ctn_2 
1qba_3 
1pta   
1nal1  
1dhpa  
1ucwa  
1dosa  
2acr   
1ak5   
1ebha1 
2mnr_1 
2chr_1 
1dora  
1oya   
1pii_1 
1nsj   
1pii_2 
1igs   
1pkya2 
1dik_1 
3rubl1 
5ruba1 
1tpfa  
2xis   
1luca  
1lucb  
1qapa1 
1djxa3 
1gym   
1reqa1 
1reqb1 
1pud   
1sfta2 
1coy_1 
1pbe_1 

1gal_1 
1gnd_1 
1gesa1 
1gesa2 
1tde_1 
1tde_2 
1nhp_1 
1nhp_2 
1lvl_1 
1lvl_2 
1rnl_2 
1srra  
1scub1 
1rcf   
5nul   
1qrda  
1reqa2 
1reqb2 
1orda1 
1esc   
2naca1 
1dxy_1 
1psda1 
1keva2 
1xel   
1cyda  
1fds   
1fmca  
1eny   
1ybva  
1gd1o1 
1dapa1 
1dih_1 
1ofga1 
1dpga1 
2naca2 
1dxy_2 
1psda2 
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Table 9. Fold numbers of each class and pattern numbers of each fold in SCOP which was 
picked up to be training and testing patterns in this study. 

 

Classes 
Fold number per class 

(Training patterns per fold) 

Fold number per class 

(Testing patterns per fold) 

All Alpha 6 13,7,12,7,9,7 6 6,9,20,8,9,9 

All Beta 9 30,9,16,7,8,13,8,9,9 9 44,12,13,6,8,19,4,4,7 

Alpha/Beta 9 29,11,11,13,10,9,10,11,11 9 48,12,13,27,12,8,14,7,4 

Alpha+Beta 3 7,13,14 3 8,27,27 

Total Number 27 27 

 

2.4.2 Dataset used for finding 3-D building blocks of protein structures 

Two datasets are used for finding 3-D building blocks of protein structures and we call them as 

Dataset A and Dataset B. Dataset A consists of the same set of 82 proteins as used in Unger et al. 

[12]. Dataset B is the same as used by Kolodny et al. [14] excluding a few proteins with 

sequence discontinuity. When creating the library of short fragments, only the αc  coordinates 

are used. 

2.4.2.1 Dataset A 

Dataset A is referred to as the “refined Brookhaven” database in [12]. Actually, Dataset A has 

two versions, Dataset AOLD and ANEW . The Dataset AOLD is exactly the same database as used in 

[12]. The data in the Protein Data Bank are updated continuously as more new experimental 

observations become available. The Dataset ANEW contains the same set of proteins as that in 

Dataset AOLD but with updated information.  
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Table 10. Dataset AOLD: Refined Brookhaven Peptides 

1APR 1BP2 1CC5 1CCR 1CPP 1CPV 1CRN 1CTF 

1ECA 1FB4h 1FBJl 1FC2d 1FDX 1GAPa 1GCR 1HIP 

1HMQa 1INSa 2INSb 1LHl 1LZl 1LZT 1MBD 1NXB 

1PCY 1PP2r 1PPD 1PFT 1SBT 1SN3 1TGSi 2ABXa

2ACT 2ALP 2APP 2AZAa 2CAB 2CCYa 2CDV 2CTS 

2CYP 2ESTe 2FD1 2GN5 2INSa 2LHB 2LZM 2OVO 

2PABa 2PKAa 2PKAb 2RHE 2SGA 2SNS 2SODo 351C  

3C2C 3DFR 3ICB 3PGM 3PTP 3RP2a 3RXN 3SGBe

3TLN 4ADH 4APE 4ATCa 4ATCb 4CYTr 4DFRa 4FXN 

4HHBb 4HHBc 4HHBd 4SBVa 5CPA 5LDH 5PTI 5RSA 

5RXN 7CAT             

Table 11. Updated peptides list of Dataset ANEW with new PDB number in the parentheses 

1APR(2APR) 1GCR(4GCR) 3PTP(5PTP) 1GAPa(1G6Na) 

1CPP(2CPP) 1HMQa(2HMQa) 3RXN(7RXN) 2FD1(5FD1) 

1CPV(5CPV) 1INSa(4INSa) 3TLN(8TLN) 4FXN(2FOX) 

1FB4h(2FB4h) 1PCY(1PLC) 4ADH(8ADH) 2APP(3APP) 

1FBJl(2FBJl) 1SN3(2SN3) 4ATCa(6AT1a) 4CYTr(5CYTr) 

1FDX(1DUR)    

Table 11 displays the list of updated peptides in Table 10 that have changed over time. The 

new PDB numbers are indicated in parentheses. We have used both Dataset AOLD and ANEW to 

evaluate the performance of our algorithms. Unger et al. [12] used four proteins (1BP2, 1PCY, 

4HHBb, 5PTI) as the training data and the remaining 78 proteins as the test data; we also use the 

same protocols. 
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2.4.2.2 Dataset B 

Table 12 and Table 13 include the list of proteins in Dataset B. The training dataset (Table 12) 

has 153 peptides whereas the test dataset (Table 13) has 144 peptides. 

Table 12. Training data of Dataset B 

1A1Ia 1A44 1A6M 1AAC 1ABA 1AH7 1AHO 1AIE 

1AJSa 1AKO 1AMM 1AOHa 1ATZa 1AY7b 1B0Ya 1B2Pa

1B3Aa 1B4Va 1B67a 1BFD 1BFG 1BGF 1BKRa 1BM8 

1BSMa 1BURs 1BX4a 1BXOa 1BYI 1BYQa 1C1Ka 1CBN 

1CEX 1CIPa 1CJCa 1CSH 1CTF 1CY5a 1CYO 1CZFa

1D3Va 1D4Oa 1D7Pm 1DCIa 1DGFa 1DHN 1DMR 1DOZa

1DPSa 1DPTa 1EZM 1FND 1HFEl 1HFEs 1IFC 1IIBa 

1IXH 1JHGa 1KAPp 1KID 1KPF 1KPTa 1KRN 1LAM

1LKKa 1MFMa 1MLA 1MOQ 1MRJ 1MSI 1MTYg 1MUN

1NKD 1NLS 1NOX 1ORC 1PCFa 1PDO 1PHC 1PHP 

1PIDa 1PIDb 1POA 1PPN 1PTF 1QAUa 1QDDa 1QGUa

1QGXa 1QH4a 1QH5a 1QHFa 1QHVa 1QIPa 1QJ4a 1QKSa

1QQ5a 1QREa 1QS1a 1QSAa 1QTSa 1RA9 1RB9 1RGEa

1RIE 1RZL 1SGPi 1SMD 1SWUa 1T1Da 1TFE 1THW

1TTBa 1TX4a 1UBPa 1UTEa 1UTG 1VCC 1VFYa 1VHH

1VNS 1WHI 1YGE 1YVEi 256Ba 2BBKl 2CPGa 2CPL 

2END 2ERL 2FDN 2GSTa 2IGD 2ILK 2LISa 2PTH 

3BTOa 3CHBd 3CYR 3EBX 3EUGa 3EZMa 3GRS 3LZT 

3PTE 3PYP 3SIL 3VUB 5PTI 7A3Ha 7ATJa 7RSA 

8ABP               
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Table 13. Testing data of Dataset B  

1ABP 1ACX 1BDS 1BMV1 1BMV2 1BP2 1CC5 1CD4 

1CHOi 1CLA 1CMS 1COHb 1CRN 1CSC 1CSEe 1CTS 

1CY3 1ECA 1EST 1F19h 1F19l 1FC1a 1FC2c 1FDX 

1FX1 1GRCa 1HIP 1HOE 1L12 1LH1 1LH4 1LZ1 

1MBA 1MBD 1OVOa 1P09a 1PAZ 1PCY 1PFKa 1PHH 

1PP2r 1PPT 1PRCc 1PRCh 1PRCl 1PRCm 1PYP 1RBBa

1REI 1RHD 1RMU1 1RNT 1SGT 1TECi 1TIM 1TNFa

1WRPr 1WSYb 256Ba 2AAT 2ACT 2ALP 2AT1b 2AZA 

2CAB 2CCYa 2CDV 2CNA 2CPP 2CYP 2DHFa 2FD2 

2GBP 2GD1o 2GLSa 2GN5 2HHBa 2HHBb 2HLAa 2HLAb

2I1B 2KAIb 2LIV 2LZM 2MEV1 2MEV3 2PABa 2PCY 

2PKAa 2PKAb 2R063 2RSPa 2SBT 2SGA 2SNS 2SODb

2SSI 2STV 2TAA 2TAAa 2TBVa 2TMVp 2UTGa 2YPIa 

351C  3ADK 3B5C 3BLM 3CA2 3DFR 3FXC 3GAPa

3GPDr 3GRS 3HMGa 3HMGb 3ICD 3PGK 3PGM 4AIT 

4APE 4DFRa 4ER4e 4HVPa 4MDHa 4SBVa 4SGBi 4TLN 

4TMNe 4TS1a 5CPA 5CPV 5EBX 5LDH 5MBN 5TNC 

5XIAa 6ACN 7CATa 8ADH 8APIa 8APIb 8CATa 9PAP 
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3. Protein Fold Prediction by Data Fusion approach 

3.1 Introduction 

High technology large-scale sequencing projects have produced a massive number of proteins 

with putative amino acid sequences but much less is known in terms of their three dimensional 

(3-D) structure. Several popular structure databases, such as the Structural Classification of 

Proteins (SCOP) [18] and the Class, Architecture, Topology, and Homologous superfamily 

(CATH) [22], contribute only no more than 32000 entries in the Protein Data Bank (PDB) 

(SCOP release version 1.65 [7]: 20619 PDB entries, PDB: 31217 entries in 07-Jun. 2005). This 

number constitutes only about 20% of collections in the Swiss-Port (Swiss-Port release version 

47.2: 184304 entries in 07-Jun. 2005). Physically, x-ray diffraction or NMR is used to 

determine the 3-D structure for a protein. However, each has its limitation [5]. As such, 

extracting structural information from the sequence databases becomes an important and 

complementary alternative, especially for swiftly determining protein functions or discovering 

new compounds for medical or therapeutic purposes. 

The classification of protein structures has, more recently, been facilitated with some 

computer-aided algorithms. Previous research [5]-[6] have shown that an accuracy rate of 

70-80% has been achieved to classify most of proteins into four classes according to their 

amino acid sequence information (i.e., all-alpha (α), all-beta (β), alpha/beta (α/β) and 

alpha+beta (α+β)) [1]. In summary, these four classes contain 82.5% folding patterns, 84.7% 

superfamilies and 88.1% families in the SCOP database (SCOP release version 1.65 [7]). 

However, less optimal results are obtained if a more complicated category is used such as the 

one with protein folding patterns in [8].  

In [8], Ding and Dubchak proposed a taxonmetric approach for protein folding 
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classification (into 27 folding patterns) beyond four simple classes with a Neural Network (NN) 

and Support Vector Machine (SVM) [23]. Their approach attempts to predict the 3-D structure 

of a protein from its primary amino acid sequence under the assumption that only limited 

folding patterns are formed in most of these four protein classes and can be used as ‘template’. 

They predicted protein folds according to six single-parameter features ‘C’, ‘S’, ‘H’, ‘P’, ‘V’ 

and ‘Z’ (see Section 2.2 for detail) first, then a combinatorial multiple-parameter features were 

formed and checked for their prediction accuracy in protein folding classification. They then 

demonstrated that one multiple-parameter feature ‘CSHP’ had the highest overall prediction 

accuracy rate at 56.5% by SVM. 

In Huang et al. [9], extra features were defined. They proposed two additional indirect 

coding features ‘B’ and ‘SB’ (see Sections 2.2 and 2.3 for detail) to correlate ‘neighboring’ 

di-peptide pairs with protein structure classification. In addition to NN and SVM, they also 

constructed a new computational architecture called hierarchical learning architecture (HLA). 

In HLA, which was the first two-level classification strategy, a protein is classified into one of 

four classes at first, and then further classified into a folding structure (into one of 27 folding 

patterns). They combined the six single-parameter features proposed by Ding and Dubchak [8] 

and the outcomes of the two indirect coding features to form two new multiple-parameter 

features ‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’. With the latter features, Huang et al. [9] 

improved the prediction accuracy rate by 9%, compared with the result from Ding and Dubchak 

[8].  

In this study, we apply the technique of data fusion [24]-[28], in particular the 

Combination Fusion Analysis described in Hsu et al. [27], to perform better protein structure 

classification, and better feature selection and combination. Using data fusion, results from 

various features are combined to obtain predictions with higher accuracy rate. In addition, the 

notion of diversity rank/score function is used to select the most suitable features for 
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combination. We start with eight features, six from Ding and Dubchak (‘C’, ‘CS’, ‘CSH’, 

‘CSHP’, ‘CSHPV’ and ‘CSHPVZ’) [8] and two from Huang et al. [9] (‘CSHPVZ+B’ and 

‘CSHPVZ+B+SB’) to assign protein class and folding pattern. Then, some explicit rules from 

data fusion in information retrieval (IR) and virtual screening (VS) (see [24]-[28]) are used 

together with a special diversity rank/score graph to choose the best discriminating features for 

further combination. It has been demonstrated in IR and VS that using a combination of 

distinctive features may result in higher prediction accuracy rate than using single features. The 

proposed rules for proper feature selection are to reduce the complexity at the beginning. Then, 

we systematically choose the best discriminating features according to the diversity (see 

Section 3.2 for detail) of these features, which is represented in a diversity rank/score graph. 

Our experimental results achieves an overall prediction accuracy rate at 87% for predicting 

protein classes and 69.6% for predicting protein folding patterns which are higher than the 

previous work at 83.6% and 65.5% by Huang et al. [9], respectively.  

3.2 Computational Framework and Architecture 

3.2.1 Protein Datasets 

We use the data sets from Ding and Dubchak [8] which were originated from the SCOP 

database for training and testing. Training data set is selected from the database built for the 

prediction of 128 folding patterns in the SCOP database [21]. It is ensured that any pair of two 

proteins in the training set is less than 35% identical in any aligned subsequence longer than 80 

residues. The independent testing set is selected from the PDB-40D set [1], [18]-[21]. Moreover, 

all proteins in the testing set are less than 40% identical to each other. No protein in the testing 

set is more than 35% identical to any protein in the training set. The total number of proteins is 

698 with 313 and 385 for training and testing, respectively. These proteins will be divided into 4 

classes and 27 folding patterns all together according to their structures. Table 14 shows the 

number of proteins in different classes and folding patterns used for training and testing in this 
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study. 

Table 14. The variety in protein structures for training and testing  

 

3.2.2 Features 

Features extraction from the data is critical for meaningful results before these features can be 

subjected to machine learning techniques. Different features may result in different 

classifications. Two major approaches including direct and indirect coding have been used to 

extract features from the data. The direct one contains a vector for each peptide residue in the 

chain that characterizes the position, sequence length and so on. In indirect coding, the vector is 

Classes Folding patterns Number of proteins 
(Training) 

Number of proteins 
(Testing) 

1. α1: Globin-like 13 6 
2. α2: Cytochrome c 7 9 
3. α3: DNA-binding 3-helical bundle 12 20 
4. α4: 4-helical up-and-down bundle 7 8 
5. α5: 4-helical cytokines 9 9 

1. all-α 

6. α6: Alpha; EF-hand 7 9 
7. β1: Immunoglobulin-like β-sandwich 30 44 
8. β2: Cupredoxins 9 12 
9. β3: Viral coat and capsid proteins 16 13 

10. β4: ConA-like lections/glucanases 7 6 
11. β5: SH3-like barrel 8 8 
12. β6: OB-fold 13 19 
13. β7: Trefoil 8 4 
14. β8: Trypsin-like serine proteases 9 4 

2. all-β 

15. β9: Lipocalins 9 7 
16. (α/β)1: (TIM)-barrel 29 48 
17. (α/β)2: FAD (also NAD)-binding motif 11 12 
18. (α/β)3: Flavodoxin-like 11 13 
19. (α/β)4: NAD(P)-binding Rossmann-fold 13 27 
20. (α/β)5: P-loop containing nucleotide 10 12 
21. (α/β)6: Thioredoxin-like 9 8 
22. (α/β)7: Ribonuclease H-like motif 10 14 
23. (α/β)8: Hydrolases 11 7 

3. α/β 

24. (α/β)9: Periplasmic binding protein-like 11 4 
25. (α+β)1: β-grasp 7 8 
26. (α+β)2: Ferredozin-like 13 27 4. α+β 
27. (α+β)3: Small inhibitors, toxins, lectins 12 27 
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assigned for each sequence which is position and length independent [9]. Ding and Dubchak [8] 

proposed six direct coding features for protein structure classification. These single-parameter 

features are global descriptions of a peptide chain representing the proteins. These features are 

based on physical, chemical and structural properties of the constituent amino acids.  

The six single-parameter features are amino acid composition (C), predicted secondary 

structure (S), hydrophobicity (H), normalized Van Der Waals volume (V), polarity (P) and 

polarizability (Z). The five multiple-parameter features, ‘CS’, ‘CSH’, ‘CSHP’, ‘CSHPV’ and 

‘CSHPVZ’ were constructed to classify protein folding patterns. Ding and Dubchak [8] finally 

determined one multiple-parameter feature ‘CSHP’ with the highest overall accuracy rate for 

protein structure prediction with SVM. The above eleven single and multiple parameter 

features all emphasize more on the global properties and structures of amino acid sequences 

than on the local interactions among neighboring peptides. 

In Huang et al. [9], they used the N-gram concept while extracting features from the amino 

acid sequence of proteins. Two other indirect coding features, generated from the bi-gram (B) 

and the spaced-bi-gram coding (SB) scheme, respectively, were proposed. These features 

reflect the local interactions among neighboring peptides within the 3-D structure of a protein. 

We combined the six single-parameter features proposed by Ding and Dubchak [8] and the 

outcomes of the two indirect coding features to form two new multiple-parameter features 

‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’. We showed that using the feature ‘CSHPVZ+B+SB’ 

together with NN outperformed all single- or multiple-parameter features used by Ding and 

Dubchak [8] in terms of prediction accuracy rate for protein structure classification. 

In this study, we start with eight features, ‘C’, ‘CS’, ‘CSH’, ‘CSHP’, ‘CSHPV’, 

‘CSHPVZ’, ‘CSHPVZ+B’ and ‘CSHPVZ+B+SB’ to assign protein classes or folding patterns. 

Then, we use the method of data fusion for feature selection and combination in order to 



 27

improve classification accuracy. 

3.2.3 The HLA Computational Architecture 

The NNs have been commonly used in many machine learning and data mining applications, 

such as input-output mapping and bioinformatics [29], [30]. We use NN as a multi-class 

classifier to build hierarchical learning architecture (HLA) for the purpose of protein structure 

prediction. The Multilayer Perceptron (MLP) and the Radial Basis Function Network (RBFN) 

are two popular NN models. The RBFN is a three-layer network with Gaussian function that is 

suitable to be a classifier [31] since the weights of RBFN are measured and adjusted according 

to the distance of data. It was shown [9] that the overall prediction accuracy rate for protein 

structure classification using RBFN is better than that using MLP. Therefore, we adopted the 

RBFN model in this study where one hidden layer and nodes will be generated automatically. 

The hidden layer nodes show the coordinate of training sample clusters. 

The HLA framework, proposed in Huang et al. [9], consists of a two-level procedure. In 

the first level, a protein is classified into one of four classes by a multi-class classifier (classifier 

1 in Figure 2). Then, in the second level, it is further classified into one of fi folding patterns by 

the corresponding multi-class classifier (f1, f2, f3 and f4 is equal to 6, 9, 9 and 3 in classifier 1, 2, 

3, and 4 respectively in Figure 2). 

In Huang et al. [9], it has been shown that the HLA framework is an effective learning 

structure which reduces the number of classifiers, avoids the voting scheme, and directly 

indicates the reliability or confidence of the result predicted. Our current study incorporates 

data fusion in HLA for the testing data set, as shown in Figure 2. For the training data set, HLA 

is used without data fusion. To predict which of four classes a protein belongs to with HLA, we 

use eight individual features to assign class to each protein in the testing data set at first. Then, 

we use the technique of data fusion to select the best feature and to combine results for the 
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protein class discrimination. Finally, the protein class is predicted with the combined feature. 

For protein folding patterns associated with each protein class, the eight individual features are 

used once more to assign protein folding patterns to each protein in the class. Similarly, data 

fusion is applied again for feature selection and combination in order to improve the prediction 

of protein folding patterns 

 

Figure 2. The architecture of HLA using data fusion  
 

3.3 Data Fusion and Diversity Rank/Score Graph 

The approach we take to properly select and combine features in protein structure classification 

is analogous to those used in information retrieval [24], [25], [28], [32], [33], pattern 

recognition [34], molecular similarity searching and structure-based screening [26], [35], and 

microarray gene expression analysis [36], [37], [38]. In addition, we adopt some of the 

notations and terminologies from [25], [26] and [27]. Moreover, each feature is viewed as a 

scoring system F containing a score function sF and a rank function rF on the set of classes. 

Previous work in information retrieval, molecular similarity searching, structure-based 
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virtual screening and microarray gene expression study have demonstrated the following: 

 

Remark 1:  For a set of multiple scoring systems, each with a score function and a rank 

function, we have  

(a) the combination of multiple scoring systems would improve the prediction accuracy only 

if (1) each of the systems has a relatively high performance, and (2) the individual systems are 

distinctive (or diversified), and 

(b) rank combination performs better than score combination under certain conditions. 

 

Given a protein sequence and for each feature A, let sA(x) be a function that assign a real 

number to the class (or folding pattern) x in the set of all n classes (or folding patterns) D = 

{c1, c2, ..., cn}. We view the function sA(x) as the score function from D to R (the set of real 

number) with respect to the feature A. When treating sA(x) as an array of real numbers, it 

would lead to a rank function rA(x) after sorting the sA(x) array into descending order and 

assigning a rank to each of their classes (folding patterns). The resulting rank function rA(x) is 

a function from D to N = {1, 2, ..., n}. 

In order to properly compare and correctly combine score functions from multiple 

features, the function values have to be normalized. The normalization we used is the 

transformation from sA(x): D → R to sA
*(x): D → [0, 1] where sA

*(x) = 
minmax

min)(
ss
sxsA

−
− , x in 

D and smax = max {sA(x)│x in D} and smin = min {sA(x)│x in D}. 

Suppose we have m features (i.e. m scoring functions). There are combinatorially, 2m – 1 

combinations for all m individual features ( ( ) 12
1

−=∑
=

mm

k

m
k ) with rank or score functions. The 

total number of combinations to be considered for predicting protein class and protein folding 
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pattern are 2m+1 – 2 and 22m+2 - 2m+3 + 4 respectively in the HLA architecture. These numbers 

can become huge when the number of features m is large. Moreover, we have to evaluate the 

predictive power of each combination across all proteins. Because of this complexity, the 

current study would start with combining only two features which still retain fairly good 

prediction power. Combination of more than two features will be considered in our future 

work. 

 

3.3.1 Methods of Combination and Feature Selection 

Suppose m features Ai, i = 1, 2, ..., m, are given with score function sAi and rank function rAi, 

there are several different ways of combination. Among others, there are score combination, 

rank combination, voting, linear average combination and weighted combination 

[24]-[28], [32]-[39]. Voting is computationally simple and better than simple linear 

combinations when applied to the situation with large number of features. However, a better 

alternative is to reduce the number of features to a smaller number and then these features are 

combined. In this study, we reduce the set of features to those which perform relatively well and 

then use the diversity rank/score function to decide whether to combine by rank or by score. For 

the m features Ai, rank functions rAi, and score functions sAi, we have the score function sR and sS 

of the rank combination and score combination respectively defined as:  

sR(x) = ∑
=

m

i 1
Ai (x))/m][(r , and sS(x) = ∑

=

m

i 1
Ai (x))/m][(s .     (1) 

As we did before, sR(x) and sS(x) are then sorted into ascending and descending order to 

obtain the rank function of the rank combination rR(x) and the score combination rS(x), 

respectively. 

In this study, we use the rules (a)(1), (a)(2) and (b) stated in Remark as our guiding 

principle to select features and to decide on the method of combination. We started with eight 
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features and, in each case, use rule (a)(1) to reduce the number of features to four. A diversity 

function d(A,B) between features A and B is then defined using the concept of the rank/score 

function defined by Hsu et al [24], [25], [27]. 

 

3.3.2 Rank/Score Function and Diversity Rank/Score Graph 

Given a protein sequence and for each feature A, we have the score function sA and rank 

function rA. Both sA and rA are functions from D to [0,1] and N respectively, where D = the set of 

classes. As in other application domains [24]-[27], we explore the scoring (and ranking) 

characteristics of feature A by calculating the rank/score function, fA : N → [0, 1] as follows: 

fA(j) = (sA
* ◦ rA

-1) (j) = sA
* (rA

-1(j)).                 (2) 

We note that the set N is different from the set D which is the set of classes (or fold 

patterns). The set N is used as the index set for the rank function value and |N| = n is indeed the 

cardinality of D. The rank/score function so defined signifies the scoring (or ranking) behavior 

of the feature A and is independent of the classes (or folding patterns) under consideration. 

For protein pi in P = {p1, p2, ..., pt} and the pair of features A and B, the diversity score 

function di(A,B) is defined as: di(A,B) = Σ│fA(j)–fB(j)│, where j is in N = {1, 2, . . ., n} and n is 

the number of classes (or folding patterns). When there are q features selected (in this study, q = 

4), there are 
2

)1(
2

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ qqq
 (in this study, this number is 6) diversity score functions. If we let 

i vary and fix the feature pair (A,B), then di(A,B) is the diversity score function s(A,B)(x) from 

P = {p1, p2, ..., pt} to R. Sorting s(A,B)(x) into descending order would lead to the diversity rank 

function r(A,B)(x). Consequently, the diversity rank/score function f(A,B)(x) is defined as: 

f(A,B)(j) = (s(A,B) ◦ r(A,B)
-1) (j) = s(A,B) (r(A,B)

-1 (j)), where j is in T = {1, 2, 3, ..., t}.   (3) 

We note that the set T is different from the set P which is the protein set considered. The set 
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T is used as the index set for the diversity rank function value and |T| = t is indeed the cardinality 

of P. The diversity rank/score function f(A,B)(k) so defined exhibits the diversity trend of the 

feature pair (A,B) across the whole spectrum of input set of t proteins and is independent of the 

specific protein under study. 

For two features A and B, the graph of the diversity rank/score function f(A,B)(j) is called the 

diversity rank/score graph (or diversity graph in short). Our current study aims to examine 

all the 
2

)1( −qq  diversity rank/score graphs to see which pair of features would give the 

highest diversity measurement. Following rules (a)(2) and (b) in Remark 1, the rank 

combination of these two features is then calculated to give the final rank function and to 

choose the class (or folding pattern). 

3.4. Results 

The technique of combinatorial fusion (see [27]) is used for protein structure classification on a 

testing data set with NN using RBFN under the HLA architecture. Initially, we use eight 

features, ‘C’ (reworded as A), ‘CS’ (as B), ‘CSH’ (as C), ‘CSHP’ (as D), ‘CSHPV’ (as E), 

‘CSHPVZ’ (as F), ‘CSHPVZ+B’ (as G) and ‘CSHPVZ+B+SB’ (as H), to assign protein classes 

for all proteins tested. Following the rule (a)(1) in Section 3.1, we select four features E, F, G 

and H, for further fusion (or combination) because of their higher accuracy rate than others as 

demonstrated in [9]. With the help of rule (a)(1), we can reduce 28-1 combinations to 24-1 

combinations. Following the rules (a)(2) and (b) in Section 3.1, we shall use the rank 

combination of the features to predict the protein class. 

As stated in Section 3.2, the diversity of any two of features E, F, G and H can be 

calculated for all proteins tested and features E and H are found to have the highest diversity, 

as shown in Figure 3, among all six ( 6
2
4

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
) feature combinations. In conjunction with (b) 
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in Remark 1, we use the rank combination of features E and H to predict protein classes for all 

proteins tested. After the protein classes for all proteins tested have been predicted and 

categorized, the prediction of protein folding patterns follows in the HLA architecture. We 

use the same rules and a diversity graph to choose the best combined two features in each 

class for the purpose. Accordingly, we choose a rank combination of features BG, GH, DH and 

GH to predict protein folding patterns in classes 1, 2, 3 and 4, respectively. The diversity graph 

to pick the pair of features (B,G), (G,H), (D,H) and (G,H) for combination and to predict folding 

patterns in class 1, 2, 3 and 4 are depicted in Figure 4(a),(b),(c) and (d), respectively. In Figures 

4(b) and (d), only the pair of features (G,H) is selected since its accuracy rate is higher than 

others. It implies that the features G and H are more suitable than others for classifying 

proteins, which belong to class 2 or class 4, into folding patterns. 

We use the standard percentage accuracy rate Qi [8], [9], [40] to evaluate our work. Qi = 

pi/ni 100, where ni is the number of testing proteins in the ith class or folding pattern and pi is 

the number of proteins being correctly predicted in the ith class or folding pattern. The overall 

prediction accuracy rate Q is given by Q = ∑
=

k

i
iiQq

1
, where qi = ni/K, where K is the total 

number of proteins tested, and n is the number of classes or folding patterns. We compare the 

overall prediction accuracy rates Q for protein classes in the previous work [9] and current 

work. These are shown in Table 15. The current overall prediction accuracy rate is 87%, 3.4% 

higher than that of the previous work. Table 16 shows that for prediction of folding pattern, 

our current work has an overall prediction accuracy rate of 69.6%, which is 13.1% higher than 

that of Ding and Dubchak [8], 4.1% higher than that of the previous work. 
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Figure 3. The diversity rank/score graph for each pair of features from {E,F,G,H}for 
classifying protein classes 
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                  (c) Class 3                                   (d) Class 4 

Figure 4. The diversity rank/score graph for each pair of features in {B,F,G,H}for classifying 
protein folding patterns in class1; in {G,H}for classifying protein folding patterns in class2; in 
{B,D,G,H}for classifying protein folding patterns in class3; and in {G,H}for classifying 
protein folding patterns in class4 
 
 



 35

Table 15. The comparisons of overall prediction accuracy rates Q for protein classes 

Method HLA, NN 
‘CSHPVZ’* 

HLA, NN 
‘B’* 

HLA, NN 
‘CSHPVZ+B’* 

HLA, NN 
‘CSHPVZ+B+SB’* 

HLA + data 
fusion, NN 

Q  81.6 79.2 83.1 83.6 87 
* Data from Huang et al. [9] 

Table 16. The comparisons of overall prediction accuracy rates Q for protein folding patterns 

Feature 
Method ‘C’ ‘CS’ ‘CSH’ ‘CSHP’ ‘CSHPV’ ‘CSHPVZ’ ‘CSHPVZ+

B’ 
‘CSHPVZ+

B+SB’ 
OvO1, NN** 20.5 36.8 40.6 41.1 41.2 41.8 ─ ─ 

OvO1, 
SVMs** 43.5 43.2 45.2 43.2 44.8 44.9 ─ ─ 

uOvO2, 
SVMs** 49.4 48.6 51.1 49.4 50.9 49.6 ─ ─ 

AvA3, 
SVMs** 44.9 52.1 56.0 56.5 55.5 53.9 ─ ─ 

HLA, NN* 44.9 53.8 53.3 54.3 55.3 56.4 63.7 65.5 
HLA+data 
fusion, NN 69.6 

1one-versus-others method [8]; 2unique one-versus-others method [8]; 3all-versus-all method [8]  
( * Data from Huang et al. [9]  ** Data from Ding and Dubchak [8] ) 
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(b) Protein folds 

Figure 5. The comparisons of prediction accuracy rates Qi of the previous work (Huang et al. 
[9]) (in white) and the current work (in black) (a) for 4 protein classes and (b) for 27 protein 
folding patterns 
 

We summarize the comparisons of prediction accuracy rates Qi of the previous work [9] 

and our current work in Figure 5. Our results give prediction accuracy rates (>80%) in 3 
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classes, especially in class α/β with accuracy rate reaches 97.2%, all higher than what those 

achieved previously, shown in Figure 5(a). For protein folding patterns prediction, the current 

work gives prediction accuracy rates (>80%) in 9 folding patterns, more than what in the 

previous work[9], as shown in Figure 5(b). Also, the current work outperforms the previous 

work in 10 folding patterns, especially (> 30% improvement) in folding patterns: α4 (4-helical 

up-and-down bundle), β3 (Viral coat and capsid proteins), β5 (SH3-like barrel), (α/β)3 

(Flavodoxin-like) and (α/β)5 (P-loop containing nucleotide). The previous work has slightly 

better results only in 5 folding patterns (especially in fold α1 (Globin-like)). Overall, there is an 

improvement with our current method using the HLA framework and data fusion techniques. In 

summary, the current method has achieved an accuracy rate of 69.6% for folding pattern 

classification, which is a significant improvement over the result of Ding and Dubchak ([8], 

2001) of 56.5%. 

 

3.5. Summary and Discussion 

Methods of combining multiple classification systems or multiple scoring systems have been 

used in a variety of applications domains including information retrieval, pattern recognition, 

microarray gene expression analysis, and molecular similarity searching [24], [28], [32]-[39]. 

More recently, criteria to select the classification systems or scoring systems for combination 

and to decide ways to combine these systems have been discussed and studied [25]-[28], [39]. It 

has been demonstrated in Combinatorial Fusion Analysis (see [27] and its references) that (a) 

the combination of multiple systems (or features) would improve the performance only if (1) 

each of the individual systems (features or functions) has a relatively high performance, and (2) 

each individual systems are distinctive (or different), and (b) combination by rank outperform 

combination by score under certain conditions. 
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In this study, we use criterion (a)(1) to select features and then apply criterion (a)(2) by 

computing the diversity rank/score graph in order to select the pair of features with the highest 

diversity. Criterion (b) is then used to combine these two features using ranks. We have applied 

the concept of Combinatorial Fusion to improve accuracy in protein structure prediction. In 

particular, we have successfully improved the overall predictive accuracy rate of 87% for the 

second structure (the four classes) and 69.6% for the folding patterns (the 27 folding categories). 

We improve previous results by Huang et al. [9] (65.5% for folding structure) and Ding and 

Dubchak [8] (56.5% for folding structure) by incorporating the method of combinatorial fusion 

in their approach using neural network (NN) with the radial basis function network (RBFN) 

using the hierarchical learning architecture (HLA).  

One of the novelties of our current work is the notion of a diversity rank/score function 

di(A,B) between a pair of features A and B (See e.g. Figures 3 and 4). This function 

characterizes the diversity of ranking (or scoring) behavior between features A and B across the 

whole spectrum of all protein sequences under consideration. This parameter is then used to 

select appropriate and diverse features for combination. The current work is the first of a series 

of on-going projects towards the protein structure prediction problem using HLA, NN-RBFN, 

and Combination Fusion Analysis. Following the current work, we have observed the 

following: 

(A) The method of combinatorial fusion we used in this study is computational efficient, 

able to adapt to different situations and approaches, and scalable to a large number of 

classes (or folding patterns) and a large number of proteins. 

(B) In this study, we considered only combination of a pair of two features in order to 

improve the performance. It may be possible to achieve better results with combination 

of more than two features. However, it is indicated in criteria (a)(1) and (2) that each of 

these three or more features would have relatively high performance and individual 
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features should be different. As such, the diversity between three or more features 

should be defined. This will be studied in a latter work. 

(C) Although it has been shown (e.g. [41]) that combining multiple predictors or servers 

improves fold recognition, we note here that combining all the features or multiple 

scoring systems together may not guarantee optimal performance (see also [26] and 

[27]). 

(D) We used rank combination due to criterion (b) which was demonstrated to be better 

under certain conditions analytically and by simulation in Hsu and Taksa [25]. We 

observed that score combination does have its merit when the two features combined 

are similar and homogeneous with respect to their scoring functions, rank function, or 

rank/score function. We decided to use the rank combination because the pair of 

features to be combined satisfies criteria (a)(1) and (a)(2) and these two items are 

precisely the conditions stipulated in [25], [26], [28], [37] and [38]. 

(E) In our feature selection process, we selected top four performers out of the original 

eight features. The ideal case is to select those features which perform much better than 

the others. That means there is a big difference on the performance between those 

selected and those not selected. 

Our current work represents the first of a series of investigations on the protein structure 

prediction problem using HLA and Combinatorial Fusion. It has generated several issues and 

topics worthy of further study. We summarize some of them here: 

(1) Our diversity rank/score function di(A,B) for the feature pair (A,B) with respect to 

protein pi is defined using the variation of the rank/score functions between A and B. As 

indicated in [25], [27] and [28], variation of the rank functions or the score functions 

between A and B can be used also to define the diversity score function. We will explore 
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these two other options in a latter work. 

(2) The effectiveness of our fusion of multiple features is limited by the set of eight original 

chosen features. It might be worthwhile to study the content of original set of features. 

For example, we like to explore the diversity among the original features such as local 

vs. global, physical vs. chemical and bi-gram vs. tri-gram scheme. 

(3) Related to observation (D) above, one might ask if it is better to expand the scope and 

the number of features. In this study, we started with eight features and four are selected 

using the CFA criteria. In a separate paper [42], eleven features are collected and three 

features are selected according to the criteria (a)(1) and (a)(2) in Remark 1. We have, in 

Lin et al. [42], obtained a slightly better overall accuracy rate of 87.8% for four classes 

and 70.9% for 27 folding categories. 

(4) Our results improve previous results by Huang et al. [9] and Ding and Dubchak [8] 

which used neural network with radial basis function in a hierarchical learning 

architecture. Work has been performed to improve those results which used other 

machine learning technique such as kernel method, SVM and genetic algorithm. For 

example, Yu et al. [43] has obtained good accuracy rate using SVM with n-peptide 

coding schemes and jury voting. Future work can be performed to improve these results 

using our combinatorial fusion approach.  
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4. Finding 3-D building blocks of protein structures by Mountain 

Clustering Approach 

4.1 Introduction 

Discovering the relations between protein sequences and their 3-D structures is an important 

research topic and has received a lot of attention because knowing the 3-D structure of a protein 

helps biologists to study the functions of the proteins, perform rational drug design, and design 

novel proteins. Finding the 3-D structure of a protein using X-ray crystallography or by nuclear 

magnetic resonance imaging is time consuming and expensive and hence alternative 

approaches are being tried. Several approaches such as comparative modeling, fold recognition 

[9], [44], ab-initio prediction [45]-[46] and 3-D building blocks approach [12]-[13] have been 

proposed. As pointed out by Bujnicki [10] modeling of a protein structure de novo without 

using templates is quite difficult because the search space is enormous even for proteins with 

moderate sequence lengths. The methods based on assembly of short fragments have shown a 

great promise [10]-[14]. Among these methods, 3-D building blocks approaches have been 

successfully applied to construct libraries of well-chosen short structural motifs extracted from 

known structures [13]-[14], [47]-[54]. These building blocks are then used to construct or 

analyze structures of new proteins. The short structural fragments that recur across different 

protein families can often be viewed as stand-alone units which fold independently and hence 

can help assignment of building blocks to unknown proteins for reconstruction of 3-D structure 

[11]. The clustering method used in [11] is a two stage process, where building blocks are 

classified according to their SCOP protein family and clustered within the family in the first 

stage, and then merged in the second stage. The building block cutting algorithm uses a stability 

score function that involves properties like compactness, hydrophobicity, and isolatedness. The 

critical building block finding algorithm uses a score function based on the contacts the 
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building block has with other building blocks. This is an involved and interesting approach. Our 

proposed approach is comparatively very simple and does not use those physical/ chemical/ 

structural properties of the residues. 

In [52] Anishetty et al. suggested that rigid tri-peptides have no correlation with protein's 

secondary structure and tri-peptide data may be used to predict plausible structures for 

oligopeptides. The hybrid protein model of de Brevern et al learns 3-D protein fragments 

encoded into a structural alphabet consisting of 16 protein blocks (PBs) [54]-[55]. Benros et al. 

[53] further continued this study considering 11-residue fragments encoded as a series of seven 

protein blocks. They had built a library of 120 overlapping prototypes with good local 

approximation of 3-D structures. Every protein block in [54] is only five-residue long and 

described by eight dihedral angles. Each of them serves as a building block approximately 

representing a known structural motif like central α-helices, central β-strands, β-strand-N-caps 

and so on. Consequently, a protein’s 3-D structure can be represented by a string of alphabets. 

And unlike our approach, the similarity between fragments is defined by the RMS deviation on 

angular values. The clustering algorithm used is a self-organizing map type neural network. 

   The effectiveness of such a method heavily depends on the extraction of good representative 

3-D building blocks. Unger et al. [12] proposed a two-stage clustering algorithm to choose 

hexamers (fragments of length 6) having a large number of neighbors to be the building blocks. 

These center hexamers are called the 3-D building blocks [12]. Micheletti et al. also used 

largest number of nearby points within a similarity cutoff called “proximity score” [13] to select 

cluster centers, while Kolodny et al. proposed a simulated annealing k-means method to 

perform the clustering task with the minimal total variance score [14], [50]-[51]. In this study, a 

modified form of the mountain clustering / subtractive clustering method [15]-[16] is proposed 

to find building blocks. Our experiments with some benchmark datasets show that it can find 

better representative building blocks than the method in [12]. We also propose two alternative 
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ways of depicting the quality of the building blocks. 

4.2 3-D Building Block Approach 

The 3-D building block approach involves several steps. First, we need to decide on the 

fragment length. Then, given a set of proteins (training data) we need to compile the whole set 

into all possible fragments of the selected length. Next, a clustering method is used to divide 

these fragments into clusters and pick up the center of each cluster to be a building block. If 

these building blocks are good enough, then they can be used successfully to represent all 

original fragments within a tolerable limit and therefore can be used to reconstruct the 3-D 

structure of a whole protein within some tolerance.  

4.2.1 Distance Measure between 3-D structures 

A well-accepted definition of dissimilarity between two fragments is the Root-Mean-Square 

(RMS) deviation between two structures computed after alignment of the two fragments to the 

greatest possible extent using the BMF (best molecular fit) algorithm [56], [57]. Given two 

structures s  and t , the RMS can be calculated as follows: 
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i
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i KrrRMS              (4)  

where s
ir  is 3-D coordinate of thi  αC  atom in the molecule s  and K  denotes the number 

of atoms in the structure. Typically, for the computation of RMS, one should divide by K , but 

for the ease of comparison with published results, we divide by ( K -2) as done in [12]. 

4.2.2 Method of Reconstruction 

Following [12] we use this procedure: First, we replace each original hexamer of a protein by its 

closest building block. Then, since the building blocks overlap, we align every two consecutive 

building blocks using the BMF algorithm. The chain grows as follows. Onto the suffix (the last 
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five residues) of the first building block we fit the prefix (the first five residues) of the next 

building block. The 3-D position of the sixth (last) residue of the latter hexamer is, thus, 

determined and is added to the growing chain. This process is repeated until the whole protein is 

reconstructed. 

4.2.3 Performance Measure 

To evaluate the performance of the proposed method, we use the same two criteria as in [14]: (1) 

Local-fit RMS, which measures how well the fragments of the target proteins can be 

represented by the library of building blocks at hand. It takes the average of all coordinate RMS 

deviations between every fragment and its associated building block. (2) Global-fit RMS, 

which measures the RMS deviation of the reconstructed 3-D structure from the entire native 

structure of the target. In addition we also use two alternative ways, as explained later, for 

assessment of quality of the building blocks.  

 

4.3 Clustering Approach  

4.3.1 Two Stage Clustering Algorithm (TSCA) 

Since we shall compare our results with those by the algorithm in [12], we briefly describe the 

same. The TSCA defines a cluster as a set of structures such that the RMS deviation of any 

member in the cluster from a designated representative member is less than a threshold. In [12] 

1
o

A  is used as the separation between similar and not similar hexamers, and hence as the 

threshold for defining clusters. In the first stage a randomly chosen hexamer is taken as the 

center of the first cluster and all hexamers which are within 1
o

A  distance after best molecular 

fit are placed in that cluster. Each member of this cluster then acts a new center and adds all of 

its neighbors which are within the threshold. This annexation process is continued till no more 

hexamer can be added to the cluster. Then another unused hexamer is taken as the center of the 



 44

next cluster and the process is repeated to get the next cluster. The entire process is repeated till 

every hexamer is included in some cluster. It is obvious that in such a cluster the maximum 

distance between a pair of hexamers could be much higher than 1
o

A . In the second stage, these 

big clusters are divided into smaller clusters such that every member of a cluster is within a 

distance of 1
o

A  from a centroid. For each cluster, the hexamer with the maximum number of 

neighbors within 1
o

A  is taken as the center of a new sub-cluster having those neighbors as 

members. The process is repeated until all hexamers of the cluster are assigned to sub-clusters.   

4.3.2 Mountain Clustering Method (MCM) and Subtractive Clustering Method (SCM) 

Let { } p
nX ℜ⊂= xxx ,,, 21 L  be a set of n  data points in p-dimension. We denote jkx  as the 

thj  component of the thk  point kx ; pjnk ,...,2,1;,...,2,1 == . The mountain clustering 

method [15] generates a set of N  equispaced grid points iv , Ni ,...,2,1=  in pℜ over the 

smallest hypercube (in pℜ ) containing X . Then at every grid point a potential value (called 

mountain potential) is computed which represents a kind of local density of points around the 

grid point. Now the grid point with the maximum mountain potential is selected as the first 

cluster center. To find other cluster centers, the mountain function values are “discounted” to 

reduce the effect of already detected centers and the grid point corresponding to the highest 

peak of the discounted potential is taken as the next cluster center. This process of discounting 

and finding of cluster center is continued until the discounted potential becomes too small to 

look for useful clusters. 

    In MCM the quality of the centers depends on the fineness of the grid and better resolution 

leads to more cost. The computational overhead increases rapidly with dimension p . To 

reduce the computational overhead of MCM Chiu [16] suggested a modification of MCM, 

known as the Subtractive Clustering Method (SCM). 
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   Instead of imposing artificial grids, Chiu [16] suggested to use each data point as a potential 

cluster center. Following the MCM, the potential function is defined as:  
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and discounting the potential on subsequent steps is done as follows: 
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Here ∗
−1kx  is the thk )1( −  (most recently detected) cluster center, and α  and β  are positive 

constants. The rest part of the SCM algorithm remains the same as that of mountain method. 

Unlike MCM, here the number of prospective cluster centers is n , and hence is not dependent 

on the dimensionality and spread of the data. Chiu [16] terminated SCM when 

0.10.0,*
1

*
1 <<<− δδ

P
Pk . Although, SCM reduces the computational complexity, it will give 

good results only if the desired cluster centers (points corresponding to the maximum local 

density) coincide with one of the data points or close to it. For the present problem, since we 

have to choose one of the hexamers as the center, the SCM framework is quite suitable.  

4.3.3 Structural Mountain Clustering Methods (SMCM) 

This is a modified form of subtractive mountain clustering method [15]-[16] so that it can 

handle structural data such as hexamers. For hexamers, use of Euclidean distance will not be 

meaningful because the Euclidean distance between two hexamers where one is a translated 

version of the other or one is a rotated version of the other would be high, while for our purpose 

they are the same. Suppose the set of hexamers is represented by { } p
nX ℜ⊂= xxx ,,, 21 L . In 

SMCM each hexamer is considered a potential cluster center. Instead of the Euclidean distance, 

the contribution made by a hexamer jx  to the potential associated with another hexamer ix ; 
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ji ≠  depends on the structural similarity between jx  and ix . The structural similarity is 

obtained after aligning the data points using the BMF routine [56]-[57]. Thus the higher the 

similarity between two hexamers, the more quantity is added to the potential. In this way at 

every hexamer we compute the mountain potential P  using all other hexamers. After this, like 

MCM we find the hexamer, kx , with the highest potential as the first building block. Now we 

form the first cluster taking all hexamers which are within 1
o

A  of RMS after best molecular fit. 

We now remove all members in the first cluster and recompute the potential to find the next 

cluster center. Note that, MCM and SCM neither remove any data point nor recompute the 

potential. Here we recompute the potential as we want every cluster center to be at the center of 

a dense region. To get the third cluster, the members of the second clusters are removed and the 

potential is recomputed. The process is continued until every data point is assigned to some 

cluster as described in the algorithm next: 

 

Algorithm: 

Input : Data set { } p
nX ℜ⊂= xxx ,,, 21 L  

Choose : α   

Compute ( ) jiji RMSd ,, =xx , for all nji ,...,2,1, =  using the BMF Algorithm; jiRMS ,  

is the Root Mean Square distance between ix and jx  after BMF.         

Repeat while any hexamer is left to be assigned to a cluster 

1. Calculate the potential at each hexamer ix  using equation (5). 

2. Find the hexamer with the highest potential and choose it as a building block. 
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3. Remove all hexamers, which are within a RMS error of 1
o

A from the building block, to 

form the cluster associated with the building block. 

End Repeat. 

 

Choice of α  may have effect on the clusters extracted and hence we experimented with 

different choices of α  to get an optimal value for it.   

4.3.4 SMCM Can Produce Better Building Blocks Than TSCA 

Note that, to find a local estimate of the density SMCM takes into account the geometry of the 

data not just the count of number of points within a cut-off distance and hence it is likely to 

produce better building blocks. For example, consider a two dimensional data set having 31 

points such that one point is at the center of a circle of radius 1
o

A  and the remaining thirty 

points are grouped into two clusters each having 15 points such that 10 points from each cluster 

are within a distance of 1
o

A  from the central point. Here TSCA will take the center point as a 

building block as it will have 21 points (including itself) within 1
o

A while the remaining 5 

points from each cluster will form two other clusters. Clearly these clusters and building blocks 

are not the desirable ones. But the SMCM will identify the center of each cluster with 15 points 

as the building block. These building blocks are better than those selected by TSCA because 

SMCM building blocks are at the centers of dense areas. The isolated central point will also be 

extracted as a building block but since it is supported by only one point, it is a poor building 

block and can be discarded. The SMCM is also expected to find better representative building 

blocks than hierarchical clustering or k-means type clustering. This is so because hierarchical 

clustering algorithms do not pay attention to the density of points (here density of similar 

structures). Moreover, a hierarchical clustering algorithm does not produce any prototypical 

building blocks. The poor performance of hierarchical clustering algorithms for fragment data 
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is also pointed out in [14]. The usual k-means type clustering is also not very appropriate for 

such a problem as the mean of a set of 3-D structures (even after best alignment) will not have 

any associated residue sequence and hence is difficult to interpret.   

4.4 Results 

We have used the same 82 peptides as in [12]. (The list of peptides used can be found in Table 

10.) To create the library of fragments, only the αC  coordinates are used. We use the same four 

proteins (1BP2, 1PCY, 4HHBb, 5PTI) as in [12] as the training set. The data in the Protein Data 

Bank (PDB) are updated as new information becomes available. As of December 2006, in PDB 

the information about the following 21 proteins was changed: 1APR (2APR), 1CPP (2CPP), 

1CPV (5CPV), 1FB4h (2FB4h), 1FBJl (2FBJl), 1FDX (1DUR), 1GCR (4GCR), 1HMQa 

(2HMQa), 1INSa (4INSa), 1PCY (1PLC), 1SN3 (2SN3), 3PTP (5PTP), 3RXN (7RXN), 3TLN 

(8TLN), 4ADH (8ADH), 4ATCa (6AT1a), 1GAPa (1G6Na), 2FD1 (5FD1), 4FXN (2FOX), 

2APP (3APP), 4CYTr (5CYTr). The new PDB ID is shown within parentheses. We have used 

both the old database as used in [12] and the new database downloaded in Dec. 2006. 

4.4.1 Experimental Results 

The SMCM has only one parameter, α . Using fragments of length 6 we have experimented 

with different choices of α  such as α =2, 3, 4, 5 and 6 using the same database as used in [12]. 

We have found 4=α  and 5 to yield better results. So we further fine-tuned α  in the range 4 

to 6 in steps of 0.5. Finally, we have got 5=α  to produce the best result with a global-fit RMS 

7.19 which is less than 7.3 that is reported in [12]. We have also experimented with the newly 

updated database. For the new data set 5.5=α  resulted in the best global-fit RMS of 7.32. 

Table 17 summarizes the library size (number of building blocks) and the variations in the 

local-fit RMS error and global-fit RMS error with the choice of α  for both data sets. To 

further compare the quality of building blocks, we have implemented TSCA method on the 
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same data. We have obtained 55 main clusters and 102 sub-clusters (Unger et al. reported 103). 

SMCM extracted 104 building blocks. So for a fair comparison we remove the trailing 2 

building blocks from 104 building blocks. Thus, for both methods we use the same number of 

building blocks to represent all target fragments and reconstruct the first 60 residues of 71 

proteins whose lengths are larger than 60 residues using the same approach as in [12]. For our 

method, when we use only 102 clusters, the local-fit RMS increases to 0.75 and global-fit RMS 

increases to 7.23 which is still better than 7.3. Our implementation of TSCA results in a local-fit 

RMS of 0.77 and a global-fit RMS 8.27 and these are higher than the values reported in [12].  

Table 17. Effect of the choice of α  on the local-fit RMS error and the global-fit RMS error 
for the SMCM algorithm when the fragment length is six: (a) Original dataset and (b) Newly 
updated dataset 

    (a) Original Dataset AOLD  

 α  
Library 

Size 

Local-fit 

RMS 

Global-fit 

RMS 

6 106 0.742 7.64 

5.5 106 0.742 7.64

5 104 0.749 7.19 

4.5 104 0.750 7.27 

4 105 0.748 7.30

3.5 104 0.750 7.62

3 103 0.751 7.92 

2 105 0.746 7.95  

 (b) Updated Dataset ANEW  

   α
Library 

Size 

Local-fit 

RMS 

Global-fit 

RMS 

8 108 0.726 7.53 

7 107 0.727 7.48 

6.5 107 0.727 7.48 

6 107 0.723 7.32 

5.5 107 0.723 7.32 

5 107 0.725 7.59 

4.5 107 0.727 7.69 

4 106 0.728 7.75 

 

4.4.2 Computation Complexity Analysis 

Since the clustering algorithm is an iterative one, we provide an approximate analysis of its 

complexity. Note that, although the Repeat –End Repeat loop in the algorithm uses equation (2), 

( ) kie ikd ,,,2
∀− xxα  can be computed just once for all and stored in a table to be used in the repeat 

loop. Let us assume that the cost for computing ( )ikde xx ,2α−  for any pair },{ ik xx  be D. D 
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involves the cost of computing the RMS deviation using the best molecular alignment of two 

segments, the cost of a multiplication, and that of computing the exponential. Thus, the total 

cost of computing ( ) kie ikd ,,,2
∀− xxα  is 2/)1( Dnn − . The iterative part of the algorithm needs 

to make additions of such values read from the table. Let us assume that n  hexamers are 

iteratively divided into c  clusters and each cluster is of size k  on average, i.e., ckn = . In the 

first iteration, the potential for each hexamer is calculated by summation of n  exponential 

values taken from the table. It requires 2n  additions for n  hexamers. In the second iteration, 

since k  hexamers are removed and assigned to the first cluster, the remaining hexamers 

require 2)( kn −  additions in computation of potential. Likewise, in the final iteration, it 

requires 2k  additions. So the required time in addition operation to compute potential for the 

entire algorithm is: 

    AccckAikn
c

i 6
)12)(1()( 2

1

0

2 ++
=−∑

−

=

                              (7) 

In (4) A is the cost of one table lookup and that of an addition operation. The total computation 

time required is thus, DnnT
2

)1( −
= + Accck

6
)12)(1(2 ++ . Since A is a constant and D  is 

assumed to be a constant, the first term in T is of )( 2nO  and the second term is of )( 2cnO . For 

this specific dataset, SMCM takes 2 minutes 48 seconds on a personal computer with a 3.4GHz 

CPU and 1GB RAM to find the clusters while TSCA uses 51 seconds for the clustering task. 

One reason for the noticeable difference in running time between the two algorithms is that we 

did not use the efficient table lookup procedure but evaluated the distances and exponentials in 

every iteration of the repeat-loop in the algorithm. The use of small structural motifs as building 

blocks is based on the hypothesis that there are repeatedly occurring stable fragments and hence, 

in practice we shall not need to run such an algorithm on a very large database. 
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4.4.3 Visual Assessment of the Quality of the Building Blocks 

To have a visual assessment of the quality of the building blocks and the reconstruction, in 

Figure 6(a) ~ Figure 6(c), we depict one of the most frequently used building block (NCYKQA), 

a very good fit target hexamer (LANWMC), and its representation using the building block. 

Figure 6(a) is the original building block (in solid red lines) while Figure 6(b) shows the 

original target hexamer (in dashed blue lines). Although at first sight the two structures look 

quite different, after the best alignment the superimposed structures look identical (Figure 6(c)). 

It is interesting to observe that the local secondary structures of both fragments are all alpha 

helix. This indicates that the identified building blocks are biologically meaningful structural 

motifs. Figure 6(d) displays another building block (NKEHKN) and Figure 6(e) depicts a poor 

fit target fragment (AAHCKN¸ the RMS error is larger than previous example but is still less 

than 1
o

A ). In this case too, we find a very good match between the two structures in Figure 6(f). 

 

 

Figure 6. Representation of target fragments using building blocks.  
(a) A building block with sequence NCYKQA; (b) A very good fit target hexamer with 
sequence LANWMC; (c) The building block and target hexamer superimposed after 
alignment;  (d) Another building block with sequence NKEHKN; (e) A poor fit target 
hexamer with sequence AAHCKN; (f) The building block and target hexamer superimposed 
after alignment. 

20

25

30

8
10

12
14
26

28

30

32

34

(a) NCYKQA

15

20

25

15

20

25
20

22

24

26

(b) LANWMC

15

20

25

15

20

25
20

22

24

26

(c) NCYKQA & LANWMC superimposed

5

10

15

0

5

10
5

10

15

20

(d) NKEHKN

35

40

45

72
74

76
78
75

80

85

(e) AAHCKN

35

40

45

72
74

76
78
75

80

85

(f) NKEHKN & AAHCKN superimposed



 52

 

 
 
Figure 7. (a) SMCM building block NCYKQA at residue 50-55 of 1BP2; (b) TSCA building 
block ICFSKV at residue 104-109 of 1BP2; (c) SMCM building block GKVTVN at residue 
94-99 of 1PCY; (d) TSCA building block NEITCS at residue 80-85 of 1BP2. 

 

The most typical helical building block found by SMCM is NCYKQA and it is located at 

residue 50-55 of 1BP2; while the most populated building block found by TSCA [12] is 

ICFSKV and it is located at residue 104-109 of 1BP2. From the fact that ICFSKV is also an all 

helical structure and is included in the cluster of NCYKQA, it appears that the TSCA cluster 

associated with ICFSKV and the SMCM cluster associated with NCYKQA represent the same 

biological structural motif. Figure 7(a) and Figure 7(b) show these two building blocks and it is 

clear that they represent the same structural unit. Similarly, we find that the most typical 

extended strand GKVTVN found by SMCM is located at residue 94 of 1PCY while its 

counterpart NEITCS found by TSCA is located at residue 80 of 1BP2. These two building 

blocks are depicted in Figure 7(c) and Figure 7(d). The hexamer CSSENN is another interesting 

building block found by SMCM. Unger et al. [12] pointed out that CSSENN represents a turn 

joining two beta strands. Thus we find that building blocks found by SMCM represent 

structures of biological significance. 
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4.4.4 Alternative Ways of Performance Evaluation 

To evaluate the local-fit RMS quality we compare the histograms of local-fit RMS error 

measuring the deviations of fragments from their corresponding building blocks (Figure 8(a)). 

It shows that the total count of lower RMS error (area under the curve) for SMCM is larger than 

that for TSCA and this indicates that more fragments are represented by good building blocks 

with lower reconstruction errors for SMCM.  
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Figure 8. (a) Histograms of local-fit RMS errors for SMCM and TSCA (b) Protein by protein 
comparison of local-fit RMS error for SMCM and TSCA  

 

    Finally, we compare protein by protein the local-fit RMS error produced by SMCM and 

TSCA in Figure 8(b), where proteins are sorted in descending order of local-fit-RMS errors 

produced by SMCM. Figure 8(b) reveals that SMCM’s local-fit RMS error is usually lower 

than the corresponding TSCA error. In this particular case, about 75% of the protein’s SMCM 

local-fit RMS error is lower. The results on the updated database are found to be quite similar to 

the results on the original database. We have also experimented with fragment lengths 5, 6 and 

7 and found that for the SMCM, the fragment length six is the optimal in terms of 
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reconstruction error for both databases that we have experimented with. For SMCM the 

reconstruction error obtained with fragment length 7 is 7.57 which is slightly higher than that 

with hexamers. However, for TSCA the best reconstruction error of 7.59 is achieved with 

fragment length 7 while the error with fragment length 6 is 8.14.   

4.4.5 Evaluation of the Library of Building Blocks on Other Datasets   

To evaluate the quality of the library of building blocks, we use it to reconstruct proteins used in 

two more recent studies by Micheletti et al. [14] and Kolodny et al. [13]. We have excluded a 

few proteins with sequence discontinuity [51]. In these two datasets there are 10 and 144 

proteins that are used for test, respectively. For the reconstruction, we follow a scheme similar 

in spirit with the method in [13]. The reconstruction process tries to minimize global-fit RMS 

deviation (RMSD). While, reconstructing residue by residue, instead of using the building 

block with the best local-fit RMS, the one with the minimum global-fit RMSD is chosen. It is 

noted that local-fit RMSD at each residue during such reconstruction usually will be higher. For 

the Micheletti et al. dataset, the global-fit RMSD obtained is 0.92
o

A  which is slightly lower 

than 1.06
o

A  reported in [14]. For the dataset used by Kolodny et al., authors reported the 

global-fit RMSD between 0.76
o

A  and 2.9
o

A  for different fragment lengths. While for this 

dataset, using hexamers we have achieved a global-fit RMSD of only 1.05
o

A  which is better 

than a global-fit RMSD of 1.26
o

A  reported in [13]. This further establishes that SMCM can 

extract biologically meaningful structural motifs that can be used for reconstruction of protein 

structure. 
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5. Incremental Structural Mountain Clustering Methods 

(ISMCM) 

In case of a very big dataset for training, it becomes a time-consuming process for finding the 

clusters. To shorten the training time, an incremental approach is proposed. At first, we choose 

the longest protein in the training set and use it as the only protein for clustering to find the 

building blocks in the first step and evaluate the performance by checking the unassigned count 

of hexamers (that can’t be assigned to any building block within 1
o

A ) for each protein in the 

whole training set. The protein with the largest count of unassigned hexamers in this step is 

picked up and added to the selected set of proteins for clustering in the next step. Then, the two 

chosen proteins are used for clustering and select the next protein with high unassigned count. 

The same process is repeated until the unassigned ratio (abbreviated as U_ratio) of the whole 

set of hexamers is less than a threshold. Thus, we use only part of the original training dataset to 

cover the most occurring patterns and use them to find the building blocks accordingly. It will 

save computation time and complexity because the number of training fragments is reduced. 

Following the derivation in chapter 4, when the value n is reduced and then the approximate 

computation complexity of )( 2nO  and )( 2cnO  will also be reduced. 

 

5.1 ISMCM Algorithm 

Algorithm: 

Input: Dataset P = {The complete list of proteins for training} 

Choose: Threshold on unassigned ratio to stop the iteration 

Initialization: Selected set: {}1 =P , Remaining set: PP =2  
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Repeat until unassigned ratio is less than the threshold 

1. Move the protein with largest unassigned count from 2P  into 1P . Note that 1P  

and 2P  satisfy the conditions: PPP =∪ 21  and {}21 =∩ PP  (for the first 

iteration, the longest protein is chosen and move into the selected set 1P ) 

2. Find the building blocks from 1P  using SMCM. 

3. Compute the unassigned count of hexamers for each protein in 2P . These are the 

counts of hexamers that can’t be represented by any building blocks derived from 1P  

within a RMS error of 1
o

A . Also, compute the unassigned ratio of the whole set of 

hexamers. 

End Repeat. 

The incremental version of TSCA (ITSCA) can be written exactly in the same manner. 

5.2. RESULTS 

According to the incremental algorithm, we find the building blocks and evaluate the 

global-fit RMS (GRMS) and local-fit RMS (LRMS) for both Training set and Test set until 

U_ratio is less than some threshold. The results are given in the tables within this section. 

5.2.1 Results on Dataset A  

For the incremental version of the two algorithms, we have varied the fragment length from 5 to 

7. The choice of α  is also varied from 3.5 to 5.5. For each fragment length, we report results 

with the best choices of α . Table 18 summarizes the results using the ISMCM algorithm for 

Dataset AOLD. In Table 18, U_ratio denotes the percentage of total fragments that cannot be 

assigned to any building block within a distance of 1
o

A . In this case too, we find that fragment 
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length 6 with α =5 yields the best result of global-fit RMS error 7.19 which is less than 7.3 

reported in Unger et al. These results are produced using the same dataset as used in Unger et al. 

[12].  

Table 18. ISMCM results on Dataset AOLD  

Frag. 

length 
α  

Protein 

count 
PDB No. 

Library

size 
U_ratio 

Train 

LRMS

Train 

GRMS

Test 

LRMS

Test 

GRMS 

5 3.5 1 4HHBb 20 20.5% 0.60 7.86 0.81 10.53 

5 3.5 2 1PCY 38 2.9% 0.44 6.64 0.62 8.67 

5 3.5 3 1BP2 40 1.5% 0.43 7.60 0.61 8.07 

5 3.5 4 5PTI 44 0.0% 0.42 5.90 0.60 8.08 

6 5.0 1 4HHBb 35 35.0% 0.77 5.80 1.08 9.48 

6 5.0 2 1PCY 73 9.4% 0.49 7.06 0.81 8.79 

6 5.0 3 1BP2 93 3.0% 0.41 5.07 0.76 8.36 

6 5.0 4 5PTI 104 0.0% 0.37 3.35 0.75 7.19 

7 3.5 1 4HHBb 51 43.8% 0.95 8.68 1.38 10.16 

7 3.5 2 1PCY 117 16.4% 0.49 4.67 0.98 8.27 

7 3.5 3 1BP2 153 6.2% 0.36 3.69 0.93 7.95 

7 3.5 4 5PTI 173 0.0% 0.28 2.19 0.90 7.60 

 

Table 18 shows that with one protein in the training set, the test error is quite high. As we 

increase the number of proteins in the training set, the number of building blocks increases and 

the training and test errors decrease. Table 18 also reveals that increasing the number of proteins 

from 1 to 2 in training set changes the number of building blocks and test error more drastically 

than those by increasing the number of training proteins from 3 to 4. This asymptotic behavior, 

which will be illustrated further with Dataset B, indicates the utility and consistency of the 

incremental version of SMCM.  

Table 19 depicts the performance of the ISMCM on the updated version of Dataset ANEW. 

We find from Table 19 that when sequence length=6 and α=5.5, we have the best reconstruction 

errors on the test set using 107 clusters: local-fit RMS = 0.72 and global-fit RMS = 7.32. On the 
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other hand, when we apply incremental version of the TSCA to the same dataset with sequence 

length 6 and use the 4 training proteins to construct the building blocks, we obtain 101 clusters 

with no unassigned hexamers (unassigned ratio =0%). The local-fit RMS error is 0.76 and 

global-fit RMS error is 8.14 on the test data (See Table 20). Since ISMCM uses six more 

building blocks than ITSCA, to make a fair comparison of ITSCA and ISMCM, we remove the 

trailing 6 building blocks from the 107 building blocks. Thus, for both methods we now use the 

same number of building blocks to represent all target fragments and reconstruct the first 60 

residues of the 71 proteins whose lengths are larger than 60. For ISMCM, when we use only 

101 clusters, the local-fit RMS very marginally increases to 0.73 and global-fit RMS increases 

to 7.55 from 7.32 (a 3% increase). But it is still better than 8.14 realized by ITSCA with the 

same fragment length of six.  

Table 19. ISMCM results on the updated Dataset ANEW 

Frag. 

length 
α  

Protein 

count 
PDB No. 

Library

size 
U_ratio 

Train 

LRMS

Train 

GRMS

Test 

LRMS

Test 

GRMS 

5 5.5 1 4HHBb 20 20.7% 0.60 7.88 0.79 10.37 

5 5.5 2 1PCY 35 3.9% 0.44 7.76 0.61 9.14 

5 5.5 3 1BP2 39 0.7% 0.42 5.14 0.59 7.97 

5 5.5 4 5PTI 45 0.0% 0.41 4.63 0.59 8.86 

6 5.5 1 4HHBb 35 35.0% 0.77 6.60 1.06 9.63 

6 5.5 2 1PCY 74 9.9% 0.49 6.59 0.79 8.29 

6 5.5 3 1BP2 94 3.2% 0.41 4.92 0.74 8.21 

6 5.5 4 5PTI 107 0.0% 0.36 4.00 0.72 7.32 

7 3.5 1 4HHBb 51 43.8% 0.95 8.28 1.36 10.06 

7 3.5 2 1PCY 117 16.7% 0.49 4.46 0.96 8.03 

7 3.5 3 1BP2 152 6.2% 0.36 2.76 0.91 7.83 

7 3.5 4 5PTI 174 0.0% 0.28 1.90 0.88 7.57 

When we apply the ITSCA to the updated Dataset ANEW, we get the best result with 

fragment length=7 and using all 4 proteins. However, the test global-fit RMS error is 7.59, 

which is still higher than the global-fit RMS error of 7.32 produced by the SMCM with 
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fragment length 6. The results are summarized in Table 20. 

Table 20. ITSCA results on the updated Dataset ANEW  

Frag. 

Length 

Protein 

count 
PDB No. 

Library 

size 
U_ratio

Train 

LRMS

Train 

GRMS

Test 

LRMS

Test 

GRMS 

5 1 4HHBb 18 21.0% 0.69 8.28 0.86 10.81 

5 2 1PCY 29 4.6% 0.57 7.48 0.70 9.07 

5 3 1BP2 34 2.2% 0.50 8.00 0.64 9.04 

5 4 5PTI 38 0.0% 0.49 5.64 0.62 8.21 

6 1 4HHBb 34 34.7% 0.81 7.39 1.08 10.12 

6 2 1PCY 70 9.9% 0.53 7.33 0.82 8.83 

6 3 1BP2 90 3.4% 0.46 6.63 0.77 8.29 

6 4 5PTI 101 0.0% 0.43 5.94 0.76 8.14 

7 1 4HHBb 51 43.3% 0.96 8.62 1.37 10.05 

7 2 1PCY 113 16.4% 0.51 4.67 0.98 8.31 

7 3 1BP2 151 6.2% 0.38 3.47 0.92 7.95 

7 4 5PTI 168 0.0% 0.31 2.12 0.90 7.59 

 

5.2.2. Results on the Dataset B 

For this data too, we have experimented with fragment lengths 5, 6 and 7 as summarized in 

Table 21 and Table 22 for the ISMCM and ITSCA respectively. For these two tables we find 

that ISMCM with fragment length 7 produces the best results of global-fit RMS error of 14.67 

which is better than the best global-fit RMS error of 16.26 achieved by ITSCA with fragment 

length seven. However, the ISMCM usually finds more building blocks than the ITSCA. For 

example, Table 22 shows that with fragment length 7 and five training proteins, the total 

number of building blocks found by ITSCA is 756 and this results in a global-fit RMS 

reconstruction error of 16.26 whereas for ISMCM the number of building blocks is 871 

yielding the best reconstruction error of 14.67. Just to compare the performance when ISMCM 

uses 716 building locks (fragment length 7, number of proteins equal to 4) the global-fit RMS 

error is 15.44 which is again smaller than 16.26. Thus the improvement in performance by the 
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ISMCM is primarily not by the fact that it finds and uses more building blocks but because of 

quality of the building blocks that are placed at the center of dense areas of data points (here 

3-D structures of length 5, 6 or 7). 

Table 21. ISMCM results on Dataset B 

Frag. 

length 
α  

Protein 

count 
PDB No. 

Library

size 
U_ratio 

Train 

LRMS

Train 

GRMS 

Test 

LRMS

Test 

GRMS 

5 5.5 1 1YGE 61 2.7% 0.52 17.02 0.58 19.78 

5 5.5 2 1CZFa 73 1.7% 0.52 17.36 0.58 19.49 

5 5.5 3 1DMR 81 1.0% 0.52 17.23 0.57 19.38 

5 5.5 4 1SMD 86 0.7% 0.50 16.71 0.55 18.63 

5 5.5 5 1LAM 91 0.5% 0.50 16.75 0.55 17.83 

5 5.5 6 1PPN 92 0.4% 0.50 16.43 0.55 17.93 

6 5 1 1YGE 171 11.0% 0.62 15.93 0.69 18.03 

6 5 2 1DMR 221 6.5% 0.59 15.44 0.66 17.20 

6 5 3 1CZFa 258 5.0% 0.61 15.58 0.67 17.26 

6 5 4 1SMD 288 4.1% 0.59 14.38 0.65 16.70 

6 5 5 1B4Va 316 3.4% 0.58 14.46 0.64 16.06 

6 5 6 3SIL 354 2.8% 0.57 14.44 0.64 16.30 

7 5 1 1YGE 337 27.8% 0.76 15.51 0.83 17.52 

7 5 2 1DMR 517 19.5% 0.70 14.29 0.78 15.95 

7 5 3 1CZFa 614 16.7% 0.68 14.13 0.76 16.59 

7 5 4 1SMD 716 14.3% 0.67 13.76 0.75 15.44 

7 5 5 1KAPp 798 12.3% 0.65 13.39 0.74 14.91 

7 5 6 3SIL 871 11.0% 0.64 13.39 0.73 14.67 

Comparison of the global-fit RMS errors in Tables 21 and 22 reveals that the ISMCM 

errors are usually less than those by the ITSCA. From Table 21 we also find that as we increase 

the number of training proteins, the number of building blocks increases. But the increase in the 

number of building blocks when the number of training proteins is increased from 1 to 2 is 

much more than that when we increase the number from 4 to 5. And this is true for all fragment 

lengths. Moreover, going beyond five proteins increases the number of building blocks only 

marginally. These are very desirable attributes of any incremental algorithm and it suggests that 
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beyond certain number, increasing the number of proteins in the training data will not have 

much effect on the building blocks. 

Table 22. ITSCA results on Dataset B 

Frag. 

length 

Protein 

count 
PDB No. 

Library 

size 
U_ratio 

Train 

LRMS

Train 

GRMS 

Test 

LRMS 

Test 

GRMS 

5 1 1YGE 56 3.1% 0.62 19.29 0.66 20.83 

5 2 1DMR 56 2.0% 0.61 18.38 0.64 20.31 

5 3 1CZFa 70 1.3% 0.56 17.36 0.60 19.23 

5 4 1LAM 74 0.9% 0.60 18.88 0.63 20.27 

5 5 1SMD 80 0.8% 0.60 18.77 0.63 20.23 

5 6 1BXOa 79 0.6% 0.59 18.50 0.63 20.01 

6 1 1YGE 151 13.7% 0.68 16.68 0.74 18.90 

6 2 1DMR 208 7.9% 0.68 15.44 0.73 17.60 

6 3 1CZFa 239 6.2% 0.67 15.27 0.72 17.14 

6 4 1SMD 274 4.9% 0.66 15.39 0.71 17.25 

6 5 1LAM 289 4.4% 0.61 15.15 0.67 16.47 

6 6 1QKSa 306 3.7% 0.60 15.22 0.66 16.66 

7 1 1YGE 327 29.7% 0.80 16.18 0.86 17.76 

7 2 1DMR 496 20.4% 0.79 16.09 0.84 17.26 

7 3 1CZFa 577 17.9% 0.77 15.49 0.83 16.65 

7 4 1SMD 685 15.0% 0.75 15.66 0.82 16.91 

7 5 1VNS 756 13.3% 0.74 15.22 0.81 16.26 

7 6 1QKSa 806 12.2% 0.73 15.17 0.80 16.30 

To investigate it further, in Table 23 we report the results when we increased the number of 

proteins in the training set to 12 with fragment length 6. Table 23 depicts that the first six 

proteins generated 354 building blocks whereas another additional six proteins added only 68 

building blocks. When the number of proteins is increased from 11 to 12 the number of building 

blocks is increased by just 1. This behavior is more clearly reflected in Figure 9 which displays 

the variation of number of building blocks and global-fit RMS errors on the test data as a 

function of number of proteins in the training set. Thus use of more proteins in the training data 

increases the computational cost substantially, but the gain may not be significant. The 
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computational cost will be increasing when more proteins are used for training and the marginal 

benefit is decreasing. As we can find in the Figure 9, the library size is going to stop increasing 

its number, and also the test GRMS stop decreasing. The details are listed in the Table 23. 

Table 23. ISMCM results on Dataset B using 12 training proteins  

Frag. 

Length 
α  

Protein 

count 
PDB No. 

Library 

Size 
U_ratio 

Train 

LRMS

Train 

GRMS 

Test 

LRMS 

Test 

GRMS 

6 5 1 1YGE 171 11.0% 0.62 15.93 0.69 18.03 

6 5 2 1DMR 221 6.5% 0.59 15.44 0.66 17.20 

6 5 3 1CZFa 258 5.0% 0.61 15.58 0.67 17.26 

6 5 4 1SMD 288 4.1% 0.59 14.38 0.65 16.70 

6 5 5 1B4Va 316 3.4% 0.58 14.46 0.64 16.06 

6 5 6 3SIL 354 2.8% 0.57 14.44 0.64 16.30 

6 5 7 1LAM 372 2.6% 0.56 14.14 0.63 16.60 

6 5 8 1QGUa 387 2.2% 0.56 14.57 0.63 16.12 

6 5 9 1DGFa 394 2.1% 0.56 14.65 0.63 16.35 

6 5 10 7A3Ha 411 1.7% 0.55 14.00 0.62 16.08 

6 5 11 1EZM 421 1.7% 0.55 14.57 0.62 15.76 

6 5 12 1KAPp 422 1.7% 0.56 14.72 0.62 15.91 
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Figure 9. The variation of library size and that of reconstruction errors as functions of the 
number of training proteins. 
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5.2.3 Alternative Ways of Performance Evaluation 

To evaluate quality of the building blocks for Dataset ANEW, we compare the histogram of 

local-fit RMS measuring the deviations of fragments from their corresponding building blocks 

(Figure 10(a)). It is found that the total count of lower RMS error (area under the curve) for 

ISMCM is larger than that for ITSCA and this indicates that more fragments are represented by 

good building blocks with lower errors for ISMCM. Finally, we sort the proteins according to 

their ISMCM local-fit RMS deviations and compare the results one by one with the ITSCA 

local-fit RMS error for the same protein. We get the two curves as shown in Figure 10(b), which 

reveals that ISMCM local-fit RMS errors are usually lower than ITSCA errors. 
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Figure 10. (a) Histograms of local-fit RMS errors for ISMCM and ITSCA (b) Protein by 
protein comparison of local-fit RMS error for ISMCM and ITSCA on Dataset ANEW 
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To compare the performance of both methods on the Dataset B, we proceed in the same 

way as we did for Dataset A. We remove the trailing clusters with smaller number of members 

to make both methods use the same number of building blocks. In Figure 11(a) and 11(b), we 

compare the histogram of local-fit RMS errors and average local-fit RMS error per protein, 

respectively. Like Dataset A, here we also find that ISMCM outperforms ITSCA with respect to 

these evaluation criteria. 
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Fig.ure 11. (a) Histograms of local-fit RMS errors for ISMCM and ITSCA (b) Protein by 
protein comparison of local-fit RMS error for ISMCM and ITSCA on Dataset B 

 

5.2.4 Visual Assessment of the Quality of the Building Blocks 

In this section, we examine visually how well the building blocks can represent the target 

fragments. For this we consider two examples, one with a very good fit (Figure 12) and the 

other with a relatively poor fit (Figure 13), but still within 1
o

A  threshold. Figure 12 (a) shows a 

building block (AVGFMLA) whereas Figure 12(b) represents a target fragment (TLSELHC). 
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Apparently the two structures look quite different. But Figure 12(c), the rotated version of the 

building block AVGFMLA obtained after best molecular fit with the target look almost 

identical to Figure 12(b). The superimposition of AVGFMLA and TLSELHC shown in Figure 

12(d) clearly demonstrates an excellent fit between the two. The four panels in Figure 13 show 

the representation of the target fragment EGVEIAC with the building block ENAIGGS. 

Although, in terms of the local-fit RMS error it is a poorer fit, yet the building block matches 

very nicely to the target (Figure 13(d)).  

 
Figure 12. Representation of a target fragment using a building block, a good fit case. (a) The 
original building block; (b) The target hexamer; (c) The rotated and shifted building block; (d) 
The building block and target hexamer superimposed after alignment. 
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Figure 13. Representation of a target fragment using a building block, a poor fit case. (a) The 
original building block; (b) The target hexamer; (c) The rotated and shifted building block; (d) 
The building block and target hexamer superimposed after alignment. 
 

Next, we would like to show the biological structures of the building blocks of top two 

most populated clusters using ISMCM and compare them with the building blocks of top two 

clusters using ITSCA method. The most typical helical building block found by ISMCM is 

AVGFMLA and it is located at residue 324-330 of 1SMD; whereas the most populated building 

block found by ITSCA is GAAQVIM and it is located at residue 147-153 of 1DMR. The fact 

that GAAQVIM is also helical structure and is included in the cluster of AVGFMLA, appears 

that the ITSCA cluster associated with GAAQVIM and the ISMCM cluster associated with 

AVGFMLA represent the same biological structural motif. Figure 14(a) and Figure 14(b) show 

these two building blocks and it is clear that they represent the same structural unit. Similarly, 

we find that the most typical extended strand TKVIFEG found by ISMCM is located at residue 

43 of 1CZFa whereas its counterpart GIKIYVS found by ITSCA is located at residue 464 of 

1SMD. These two building blocks are depicted in Figure 15(a) and Figure 15(b). It can be seen 

that these building blocks represent similar structures of biological significance. 
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Figure 14. (a) ISMCM building block (AVGFMLA) at residue 324-330 of 1SMD (b) ITSCA 
building block (GAAQVIM) at residue 147-153 of 1DMR 
 

 
Figure 15. (a) ISMCM building block (TKVIFEG) at residue 43-49 of 1CZFa (b) ITSCA 
building block (GIKIYVS) at residue 464-470 of 1SMD 

 

 

 

 



 68

6. CONCLUSIONS AND FUTURE WORK 

We have applied the concept of combinatorial fusion to improve accuracy in protein structure 

prediction. In particular, we have successfully improved the overall predictive accuracy rate of 

87% for the four classes and 69.6% for the 27 folding patterns. We improve previous results by 

Huang et al. [9] (65.5% for folding structures) and Ding and Dubchak [8] (56.5% for folding 

structures) by incorporating the method of combinatorial fusion with the RBFN neural network 

using the hierarchical learning architecture. These rates are higher than previous results and it 

demonstrates that data fusion is a viable method for feature selection and combination in the 

prediction and classification of protein structures. Work has been performed to improve those 

results which used other machine learning technique such as kernel method, SVM and genetic 

algorithm. For example, Yu et al. [43] has obtained good accuracy rate using SVM with 

n-peptide coding schemes and jury voting. Future work can be performed to improve these 

results using our combinatorial fusion approach. 

Also, we present a structural variant of the mountain clustering method that is suitable for 

data like 3-D structures of protein fragments. We have analyzed the SMCM and TSCA and have 

demonstrated that since TSCA does not take into account the geometry of the data, it may 

extract poorer building blocks than the SMCM. The utility of this algorithm is demonstrated on 

the same dataset used by Unger et al. In fact, the superiority of this algorithm is demonstrated 

on two versions of datasets (the original one and the newly updated one on the same set of 

proteins). To visually compare the quality of reconstructions we also proposed two alternative 

ways revealing that the performance of SMCM building blocks is usually better than TSCA 

building blocks both in terms of the local-fit RMS histogram and in terms of the average RMS 

deviation for individual protein. Our experiments demonstrate that the SMCM can find useful 

building blocks to successfully reconstruct the 3-D protein structures for the first 60 residues 

(as done by Unger et al.) of all test proteins with global-fit RMS error within 7.19
o

A . It can also 
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obtain good local-fit RMS errors indicating that these building blocks can model the nearby 

fragments within tolerable errors.  

Both SMCM and TSCA are computationally expensive when the size of training dataset is 

large. Hence we proposed an incremental version of the SMCM. The same concept is also used 

to obtain an incremental version of the TSCA. We have made extensive experimentation with 

these two algorithms using two versions of the dataset used by Unger et al. as well as another 

dataset used by other researchers. The incremental SMCM is also found to be quite effective 

and it is found to exhibit the properties expected from an incremental algorithm. More 

specifically, as the number of proteins increases in the training set, the increase in the number of 

building blocks decreases and consequently the rate of decrease in the global reconstruction 

error both on the training and test data falls down. Moreover, the incremental SMCM is found 

to be more effective than the incremental TSCA. Although, the SMCM usually finds more 

building blocks than those found by the TSCA, we have demonstrated that the improved 

performance for SMCM comes from the quality of the building blocks which are placed at the 

center of areas dense in training data. 

None of the algorithms discussed here can take into account fragments of variable length. 

To extend the algorithms for fragments of variable length, we need measures of similarity 

between fragments of different lengths. For example, if we have two fragments both are helix, 

but of different length, the structural similarity between the two should be very high; on a [0-1] 

scale, it should be 1. We plan to investigate this in near future. 
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