LIST OF FIGURES

Figure 2.1	The phase portrait, Poincaré map for the fractional order	11
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.2	The phase portrait, Poincaré map for the fractional order	11
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 1$	
Figure 2.3	The phase portrait, Poincaré map for the fractional order	12
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 0.1$	
Figure 2.4	The phase portrait, Poincaré map for the fractional order	12
	double van der Pol system, u versus v, $\alpha_1 = 1, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.5	The phase portrait, Poincaré map for the fractional order	13
Figure 2.6	double van der Pol system, u versus v, $\alpha_1 = 0.9, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$ The phase portrait. Poincaré map for the fractional order	13
8	double van der Pol system,x versus y,	
	$\alpha_1 = 0.9, \beta_1 = 0.9, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.7	The phase portrait, Poincaré map for the fractional order	14
	double van der Pol system, x versus y, $\alpha_1 = 0.1, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.8	The phase portrait, Poincar∈ map for the fractional order	14
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.9	The phase portrait, Poincaré map for the fractional order	15
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 1$	

Figure 2.10	The phase portrait, Poincaré map for the fractional order	15
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 0.1$	
Figure 2.11	The phase portrait, Poincaré map for the fractional order	16
	double van der Pol system, x versus y, $\alpha_1 = 1, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.12	The phase portrait, Poincaré map for the fractional order	16
	double van der Pol system, x versus y, $\alpha_1 = 0.9, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.13	The phase portrait, Poincaré map for the fractional order	17
	double van der Pol system, x versus y, $\alpha_1 = 0.1, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.14	The phase portrait, Poincaré map for the fractional order	17
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta = 0.1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.15	The phase portrait, Poincaré map for the fractional order	18
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 1$	
E ' 2 1(1896	10
Figure 2.10	double you der Del gystem y yourges y	10
	double van der Foi system, x versus y, $\alpha = 0.1 \ \beta = 0.1 \ \alpha = 0.1 \ \beta = 0.1$	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 0.1$	
Figure 2.17	The phase portrait, Poincaré map for the fractional order	19
	double van der Pol system,x versus y,	
	$\alpha_1 = 1, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.18	The phase portrait, Poincaré map for the fractional order	19
	double van der Pol system, x versus y, $\alpha_1 = 0.1, \beta_1 = 1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.19	The phase portrait, Poincaré map for the fractional order	20
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 1, \beta_2 = 1$	
Figure 2.20	The phase portrait, Poincaré map for the fractional order	20
	double van der Pol system,x versus y,	

	$\alpha = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 1$	
Figure 2.21	The phase portrait, Poincaré map for the fractional order	21
	double van der Pol system,x versus y,	
	$\alpha_1 = 0.1, \beta_1 = 0.1, \alpha_2 = 0.1, \beta_2 = 0.1$	
Figure 3.1	Lyapunov exponent diagram of the double van der Pol system	26
	for c between 1.0 and 3.0 in (a) and enlarge ib (b).	
Figure 3.2	Phase portraits of the double van der Pol system.	26
Figure 3.3	CS and AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂)= (-3, 4, -3, 4) and	26
	k=1,	
	(a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	
Figure 3.4	AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂) = (-3, 4, -3, 4) and k=0.9,	27
	(a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	
Figure 3.5	CS and AS for initial condition $(x_2, y_2, u_2, v_2) = (3, -4, 3, -4)$ and	27
	k=1,	
	(a) e ₁ , e ₂ , e ₃ , e ₄ (b) E ₁ , E ₂ , E ₃ , E ₄ .	
Figure 3.6	CS for initial condition(x ₂ , y ₂ , u ₂ , v ₂) = (3, -4, 3, -4) and k=0.9,	27
	(a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	
Figure 3.7	CS or AS vs. the k for different initial conditions:	28
	case a: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (-3, 4, -3, -3)$	
	4)	
	case b: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (3, -4, 3, -4)$	
-	-4)	•
Figure 3.8	CS and AS for initial condition(x ₂ , y ₂ , u ₂ , v ₂) = (-3, 4, 3, 4) and k=0.97,	28
	(a) e ₁ , e ₂ , e ₃ , e ₄ (b) E ₁ , E ₂ , E ₃ , E ₄ .	
Figure 3.9	CS and AS for initial condition $(x_2, y_2, u_2, v_2) = (-3, 4, 3, 4)$ and	29
	k=1.02,	
	(a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	
Figure 3.10	CS and AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂) = (3, -4, -3, -4)	29
	and k=0.97,(a) e ₁ , e ₂ , e ₃ , e ₄ (b) E ₁ , E ₂ , E ₃ , E ₄ .	

Figure 3.11	CS and AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂) = (3, -4, -3, -4) and k=1.02, (a) e ₁ , e ₂ , e ₃ , e ₄ (b) E ₁ , E ₂ , E ₃ , E ₄ .	29
Figure 3.12	CS or AS vs. the k for different initial conditions:	30
	case c: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (-3, 4, 3, 4)$	
	case d: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (3, -4, -3, -4)$	
Figure 4.1	CS and AS for initial condition(x ₂ , y ₂ , u ₂ , v ₂)= (3, -4, 3, -4) and <i>k</i> =1,	36
	(a) e_1 , e_2 , e_3 , e_4 (b) E_1 , E_2 , E_3 , E_4	
Figure 4.2	AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂) = (3, -4, 3, -4) and <i>k</i> =529,	36
	(a)e ₁ , e ₂ , e ₃ , e ₄ (b) E ₁ , E ₂ , E ₃ , E ₄ .	
Figure 4.3	CS and AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂) = (-3, 4, -3, 4) and <i>k</i> =1,	36
Figure 4.4	 (a) e₁, e₂, e₃, e₄ (b) E₁, E₂, E₃, E₄. CS for initial condition(x₂, y₂, u₂, v₂) = (-3, 4, -3, 4) and k=529, (a) e₁, e₂, e₃, e₄ (b) E₁, E₂, E₃, E₄. 	37
Figure 4.5	CS or AS vs. the <i>k</i> for different initial conditions:	37
	case a: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (3, -4, 3, -4)$	
	case b: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (-3, 4, -3, 4)$	
Figure 4.6	CS and AS for initial condition(x ₂ , y ₂ , u ₂ , v ₂) = (3, -4, 3, -4) and <i>k</i> =1,	38
	(a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	
Figure 4.7	CS and AS for initial condition $(x_2, y_2, u_2, v_2) = (3, -4, 3, -4)$ and $k=2379$,(a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	38
Figure 4.8	CS and AS for initial condition (x ₂ , y ₂ , u ₂ , v ₂) = (-3, 4, -3, 4) and <i>k</i> =1	38
	(a) e ₁ , e ₂ , e ₃ , e ₄ (b) E ₁ , E ₂ , E ₃ , E ₄ .	

Figure 4.9	CS and AS for initial condition $(x_2, y_2, u_2, v_2) = (-3, 4, -3, 4)$	39
	and $k=2379$, (a) e_1, e_2, e_3, e_4 (b) E_1, E_2, E_3, E_4 .	
Figure 4.10	CS or AS vs. the k for different initial conditions:	39
	case c: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (3, -4, 3, -4)$	
	case d: $(x_1, y_1, u_1, v_1) = (3, 4, 3, 4)$ and $(x_2, y_2, u_2, v_2) = (-3, 4, -3, 4)$	
Figure 5.1	Phase portraits of the double Duffing system	52
Figure 5.2	Time histories of state errors for E_1 , E_2 , E_3 , E_4 ,	52
Figure 5.3	Time histories of coefficients $b_1, c_1, c_2, d_1, j_1, g_1, h_1, h_2$	53
Figure 5.4	Time histories of state errors for $E_{1,} E_{2,} E_{3,} E_{4}$ for Case (b)	54
Figure 5.5	Time histories of coefficients $k_1, a_1, b_1, c_1, d_1, j_1, f_1, g_1, h_1, \lambda_1$ for	55
	Case (b)	
	ESAN	

