
Chapter 1 

Introduction 
  In recent years, many scholars have devoted themselves to study the applications of the 

fractional order system to physics and engineering such as viscoelastic systems [1], 

dielectric polarization, and electromagnetic waves. More recently, there is a new trend to 

investigate the control [2] and dynamics [3-10] of the fractional order dynamical systems 

[11-14]. In [1] it has been shown that nonlinear chaotic systems can still behave 

chaotically when their models become fractional. In [11], chaos control was investigated 

for fractional chaotic systems by the ‘‘backstepping’’ method of nonlinear control design. 

In [12] and [13], it was found that chaos exists in a fractional order Chen system with 

order less than 3. Linear feedback control of chaos in this system was also studied. In 

[14], chaos synchronization of fractional order chaotic systems were studied. The 

existence and uniqueness of solutions of initial value problems for fractional order 

differential equations have been studied in the literature [15-18]. In this paper, chaotic 

behaviors of a fractional order double van der Pol system are studied by phase portraits 

[19-24] and Poincaré maps [25-32]. It is found that chaos exists in this system with order 

from 3.9 down to 0.4 much less than the number of states of the system. Linear transfer 

function approximations of the fractional integrator block are calculated for a set of 

fractional orders in [ 0.1, 0.9 ] based on frequency domain arguments [33]. 

Chaos synchronization is an important problem in nonlinear science. Since the 

discovery of chaos synchronization by Pecora and Carroll [34], there have been 

tremendous interests in studying the synchronization of various chaotic systems [35–49]. 

Most of synchronizations can only realize when there exist various couplings between 

two chaotic systems. A major drawback of these approaches is that they, to some extent, 

require mutually coupled structures. In practice, such as in physical and electrical systems, 

sometimes it is difficult even impossible to couple two chaotic systems. In comparison 

with coupled chaotic systems, synchronization between the uncoupled chaotic systems 

has many advantages [50,51]. In this paper, the variable of a third double van der Pol 

system substituted for the strength of two corresponding mutual coupling term of two 

identical chaotic double van der Pol system, give rise to their complete synchronization 
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(CS) or anti-synchronization (AS). Numerical simulations show that either CS or AS 

depends on initial conditions and on the strengths of the substituting chaotic variable. 

There have been tremendous interests in studying the complete synchronization (CS) 

and antisynchronization (AS) of various chaotic systems [52–91]. Here, we focus on the 

synchronization and antisynchronization of two identical double van der Pol systems 

whose corresponding parameters are replaced by a white noise, a Rayleigh noise 

respectively. It is noted that whether CS or AS appears depends on the driving strength 

[92-98].  

Since chaos control problem was firstly considered by Ott et al. [99], it has been 

investigated extensively by lots of authors. Many linear and nonlinear control methods 

have been employed to control chaos [100-109]. Simple linear feedback control method 

was proposed [101]. The authors proposed time delay feedback control method to control 

chaotic system in [102-103]. Sliding variable method was employed to control chaos in 

[104-107]. Backstepping method was used to control chaotic systems in [108]. Adaptive 

control method was also used to control chaotic system [109-111]. However, traditional 

adaptive chaos control is limited for the same system. Proposed pragmatical adaptive 

control method enlarges the function of chaos control. We can control a chaotic system to 

any given simple unchaotic system or to any more complex given chaotic system 

[123-127]. Based on a pragmatical theorem of asymptotical stability using the concept of 

probability, an adaptive control law is derived such that it can be proved strictly that the 

zero solution of error dynamics and of parameter dynamics is asymptotically stable 

[128-129]. Numerical results are given for a chaotic double van der Pol system controlled 

to a double Duffing system and to an exponentially damped-simple harmonic system. 

This thesis is organized as follows. Chapter 2 gives the dynamic equation of double van 

der Pol system. The fractional derivative and its approximation are introduced. The 

system under study is described both in its integer and fractional forms. Numerical 

simulation results are presented. 

In Chapter 3, numerical simulations of synchronization scheme based on driving the 

corresponding parameters of two chaotic systems by a chaotic signal of a third system are 

presented. In Chapter 4, numerical simulations of chaos complete synchronization and 

antisynchronization by replacing two corresponding parameters of two uncoupled 
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identical double van der Pol chaotic dynamical systems by a white noise, a Rayleigh 

noise respectively. 

 In Chapter 5, numerical simulations for control of a chaotic double van der Pol 

system to a given chaotic double Duffing system and to an exponentially damped-simple 

harmonic system, are based on a new pragmatical adaptive control method. In Chapter 6, 

conclusions are drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3



Chapter 2 

Chaos in a Double Van der Pol System and in Its 

Fractional Order System 
In this chapter, the dynamic equation of double van der Pol system is given. The 

fractional derivative and its approximation are introduced. The system under study is 

described both in its integer and fractional forms. Numerical simulation results are 

presented. 

 
2.1  Fractional derivative and its approximation 

Two commonly used definitions for the general fractional differintegral are the 

Grunwald definition and the Riemann-Liouville definition. The Riemann-Liouville 

definition of the fractional integral is given here as [27] 
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where q can have noninteger values, and thus the name fractional differintegral. Notice 

that the definition is based on integration and more importantly is a convolution integral 

for q < 0. When q > 0, then the usual integer nth derivative must be taken of the fractional 

(q–n)th integral, and yields the fractional derivative of order q as 
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This appears so vastly different from the usual intuitive definition of derivative and 

integral that the reader must abandon the familiar concepts of slope and area and attempt 

to get some new insight. Fortunately, the basic engineering tool for analyzing linear 

systems, the Laplace transform, is still applicable and works as one would expect; that is, 
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where n is an integer such that n - 1 < q < n . If the initial conditions are considered to be 

zero, this formula reduces to the more expected and comforting form 
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An efficient method is to approximate fractional operators by using standard integer 

order operators. In [27], an effective algorithm is developed to approximate fractional 

order transfer functions. Basically, the idea is to approximate the system behavior in the 

frequency domain. By utilizing frequency domain techniques based on Bode diagrams, 

one can obtain a linear approximation of fractional order integrator, the order of which 

depends on the desired bandwidth and discrepancy between the actual and the 

approximate magnitude Bode diagrams. In Table 1 of [13], approximations for qs
1  

with q=0.1~0.9 in steps 0.1 are given, with errors of approximately 2dB. These 

approximations are used in following simulations. 
 

2.2  A double van der Pol system and the corresponding fractional order  

 system 
   Firstly, a van der Pol [130-132] oscillator driven by a periodic excitation is 

considered. The equation of motion can be written as: 

 

0sin)1( 2 =−−++ tbxxaxx ωϕ                       (2.5)   

 

where ,  ,  a bϕ are constant parameters and s i nb tω is an external excitation . In 

Eq. (2.5), the linear term stands for a conservative harmonic force which determines the 

intrinsic oscillation frequency. The self-sustaining mechanism which is responsible for 

the perpetual oscillation rests on the nonlinear term. Energy exchange with the external 

agent depends on the magnitude of displacement |x| and on the sign of velocity . 

During a complete cycle of oscillation, the energy is dissipated if displacement x(t) is 

large than one, and that energy is fed-in if |x| < 1. The time-dependent term stands for the 

external driving force with amplitude b and frequency 

x

ω .Eq. (2.5) can be rewritten as 

two first order equations: 
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With suitable parameters ,  ,  a bϕ system (2.6) becomes a chaotic one. With two 

van der Pol systems  
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the double van der Pol system and its fractional order system studied is formed by 

replacing two external excitation s i na tω  and s i nd tω  by mutual coupling 

terms  and :   au dx
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where ,  are mutual coupling terms, au dx 1 2 1, , , α α β β  are either integer numbers or 

fractional numbers. System (2.7) becomes a new autonomous system which has not been 

studied before. 

2.3  Numerical simulations 
In this section, the phase portraits, Poincaré maps are studied for system (2.7) for 

1 2 1 2  4α α β β+ + + ≤ . A time step of 0.01 is used. It is found that chaos exists for 

following four different choices of parameters a, b, c, d, e, f : 
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A.  0.0005,  0.0003,  0.0001,  0.5,  0.2,  0.1
B.  0.01,  0.2,  1,  0.3,  2,  1
C.  0.04,  0.2,  12,  0.3,  2,  1
D.  0.03,  0.07,  12,  1,  2,  1

a b c d e f
a b c d e f
a b c d e f
a b c d e f

= = = = =
= − = = = = =
= = = = − = =
= − = = = − = =

=

 

After 148 cases are tested, we find that chaos exists only in 21 cases. The results are 

shown in Table 1. 

 

 

 

 

Table 1 Relation between orders of derivatives and existence of chaos. 

Choice A B C D 

   Parameter 

 
 
Number of 
order 

0.0005, 0.0003
0.0001, 0.5
0.5, 0.1

a b
c d
e f

= =
= =
= =

0.01, 0.2
1, 0.3
2, 1

a b
c d
e f

 

= − =
= =
= =

0.04, 0.2
12, 0.3
2, 1

a b
c d
e f

= =
= = −
= =

0.03, 0.07
12, 1
2, 1

a b
c d
e f

  

=− =
= =−
= =

 

Integral order 1,1,1,1  chaos chaos chaos 
Fractional order 0.9,1,1,1  chaos chaos  

0.9,0.9,1,1  chaos   
0.1,1,1,1  chaos chaos chaos 
0.1,0.1,1,1 chaos chaos chaos chaos 
0.1,0.1,0.1,1 chaos chaos chaos chaos 

 

0.1,0.1,0.1,0.1 chaos chaos chaos chaos 

 

Other fractional order nonchaotic cases in choices A, B, C, D are listed in Table 2. 

Table 2 Fractional order nonchaotic cases in four choices A, B, C, D. 
0.9,0.9,0.9,1 0.9,0.9,0.9,0.9 0.8,1,1,1 0.8,0.8,1,1 0.8,0.8,0.8,1 0.8,0.8,0.8,0.8 

0.7,1,1,1 0.7,0.7,1,1 0.7,0.7,0.7,1 0.7,0.7,0.7,0.7 0.6,1,1,1 0.6,0.6,1,1 

0.6,0.6,0.6,1 0.6,0.6,0.6,0.6 0.5,1,1,1 0.5,0.5,1,1 0.5,0.5,0.5,1 0.5,0.5,0.5,0.5 

0.4,1,1,1 0.4,0.4,1,1 0.4,0.4,0.4,1 0.4,0.4,0.4,0.4 0.3,1,1,1 0.3,0.3,1,1 

0.3,0.3,0.3,1 0.3,0.3,0.3,0.3 0.2,1,1,1 0.2,0.2,1,1 0.2,0.2,0.2,1 0.2,0.2,0.2,0.2 
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In Choice A: 

Case 1 Let 1 1 2 20.1, 0.1, 1, 1α β α β= = = = .Fig. 2.1 shows the phase portrait, Poincaré 

map of chaotic motion. 

Case 2 Let 1 1 2 20.1, 0.1, 0.1, 1α β α β= = = = . Fig. 2.2 shows the phase portrait, Poincaré 

map of chaotic motion. 
Case 3 Let 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = = . Fig. 2.3 shows the phase portrait, 

Poincaré map of chaotic motion. 

  From Table 1, choice A, when all the parameters  in system (2.7) are 

positive, it is not easy to get chaotic phenomenon in the system with integral order 

derivatives. With reducing the derivative orders, the range of chaotic phase portraits 

decrease, and its shape changes from brush-like to star-like. 

,  ,  ,  ,  ,  a b c d e f

  

In Choice B: 

Case 4 Let 1 1 2 21, 1, 1, 1α β α β= = = = . Fig. 2.4 shows the phase portrait, Poincaré map of 

chaotic motion. 

Case 5 Let 1 1 2 20.9, 1, 1, 1α β α β= = = = .Fig. 2.5 shows the phase portrait, Poincaré map 

of chaotic motion. 

Case 6 Let 1 1 2 20.9, 0.9, 1, 1α β α β= = = = . Fig. 2.6 shows the phase portrait, Poincaré 

map of chaotic motion. 
Case 7 Let 1 1 2 20.1, 1, 1, 1α β α β= = = = . Fig. 2.7 shows the phase portrait, Poincaré map 

of chaotic motion. 

Case 8 Let 1 1 2 20.1, 0.1, 1, 1α β α β= = = = . Fig. 2.8 shows the phase portrait, Poincaré 

map of chaotic motion. 

Case 9 Let 1 1 2 20.1, 0.1, 0.1, 1α β α β= = = = . Fig. 2.9 shows the phase portrait, Poincaré 

map of chaotic motion. 

Case 10 Let 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = = . Fig. 2.10 shows the phase portrait, 

Poincaré map of chaotic motion. 

  With reducing the derivative order, the ranges of the chaotic phase portraits decrease 

greatly, and its shape changes from mouth-like to ring-like, hollow ellipse-like, and 
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finally solid ellipse-like.  

In Choice C: 

Case 11 Let 1 1 2 21, 1, 1, 1α β α β= = = = . Fig. 2.11 shows the phase portrait, Poincaré map 

of chaotic motion. 

Case 12 Let 1 1 2 20.9, 1, 1, 1α β α β= = = = .Fig. 2.12 shows the phase portrait, Poincaré 

map of chaotic motion. 

Case 13 Let 1 1 2 20.1, 1, 1, 1α β α β= = = = . Fig. 2.13 shows the phase portrait, Poincaré 

map of chaotic motion. 
Case 14 Let 1 1 2 20.1, 0.1, 1, 1α β α β= = = = . Fig. 2.14 shows the phase portrait, Poincaré 

map of chaotic motion. 

Case 15 Let 1 1 2 20.1, 0.1, 0.1, 1α β α β= = = = . Fig. 2.15 shows the phase portrait, 

Poincaré map of chaotic motion. 

Case 16 Let 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = = . Fig. 2.16 shows the phase portrait, 

Poincaré map of chaotic motion. 

  With reducing the derivative order, the ranges of the chaotic phase portraits decrease 

greatly, and its shape changes from ring-like to meshed ring-like, hollow ellipse-like, and 

finally thick hollow ellipse-like. 

In Choice D: 

Case 17 Let 1 1 2 21, 1, 1, 1α β α β= = = = . Fig. 2.17 shows the phase portrait, Poincaré map 

of chaotic motion. 

Case 18 Let 1 1 2 20.1, 1, 1, 1α β α β= = = = . Fig. 2.18 shows the phase portrait, Poincaré 

map of chaotic motion. 
Case 19 Let 1 1 2 20.1, 0.1, 1, 1α β α β= = = = . Fig. 2.19 shows the phase portrait, Poincaré 

map of chaotic motion. 

Case 20 Let 1 1 2 20.1, 0.1, 0.1, 1α β α β= = = = . Fig. 2.20 shows the phase portrait, 

Poincaré map of chaotic motion. 

Case 21 Let 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = = . Fig. 2.21 shows the phase portrait, 

Poincaré map of chaotic motion. 

  With reducing the derivative order, the ranges of the chaotic phase portraits decrease 
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greatly, and its shape changes from ring-like to hollow ellipse-like, and finally haired 

ellipse-like. Chaos of fractional order systems only exists when one or more than one 0.1 

order derivative appears. 
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Fig 2.1: The phase portrait, Poincaré map for the fractional order double van der Pol       
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Fig 2.2: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 0.1, 1α β α β= = =
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Fig 2.3: The phase portrait, Poincaré map for the fractional order double van der Pol 
system, 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = =  
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Fig 2.4: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 21, 1, 1, 1α β α β= = = =  
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Fig 2.5: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.9, 1, 1, 1α β α β= = = =  
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Fig 2.6: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.9, 0.9, 1, 1α β α β= = =
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Fig 2.7: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 1, 1, 1α β α β= = = =  
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Fig 2.8: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 1, 1α β α β= = =
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Fig 2.9: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 0.1, 1α β α β= = =

 x  

=  

 

 y
 

Fig 2.10: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = =  
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Fig 2.11: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 21, 1, 1, 1α β α β= = = =  
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Fig 2.12: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.9, 1, 1, 1α β α β= = =
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Fig 2.13: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 1, 1, 1α β α β= = = =  
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Fig 2.14: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 20.1, 0.1, 1, 1

 x 

2α β α β= = = =  
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Fig 2.15: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 0.1, 1α β α β= = =
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Fig 2.16: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = =  

 x 
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Fig 2.17: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 21, 1, 1, 1α β α β= = = =  
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Fig 2.18: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 1, 1, 1α β α β= = = =  

 x 
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Fig 2.19: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 1, 1α β α β= = =

 x

=  

 

 y
 

Fig 2.20: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 2 20.1, 0.1, 0.1, 1α β α β= = = =    

 x 

 20



 

 y
 

Fig 2.21: The phase portrait, Poincaré map for the fractional order double van der Pol 

system, 1 1 2 20.1, 0.1, 0.1, 0.1α β α β= = = =  
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Chapter 3 

Chaos-excited Synchronization of Uncopuled 

Double Van der Pol systems 

3.1 Preliminaries 
Chaos synchronizations of two uncoupled identical double van der Pol systems are 

studied, the variable with adjustable strength of a third double van der Pol system 

substituted for the strength of two corresponding mutual coupling terms of two 

identical chaotic double van der Pol system, gives rise to their synchronization or 

anti-synchronization. The method is named parameter excited chaos synchronization. 

3.2 Numerical simulations for synchronization between uncoupled 

double van der Pol system  
The double van der Pol system studied in this paper consists of two van der Pol 

systems with mutual coupling terms instead of two external excitations:   
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1

1 2
1 1 1

1
1

1 2
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⎪
⎪
⎪ = − + − +
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                                        (3.1)  

                                        
where au1, dx1 are mutual coupling terms. When a = 0.04 , b = 0.2, c = 12 ,   
d = -0.3, e = 2, f = 1, chaos of the system are illustrated by Lyapunov exponent 
diagram (Fig. 3.1) and phase portrait (Fig. 3.2). 
 
Take system (3.1) as master system, the slave system is    
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                                       (3.2) 

A third double van der Pol system is given: 
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                                        (3.3) 

 Substituting kx3 or ky3 for both a in system (3.1) and system (3.2), respectively. and 
giving suitable values for k and initial conditions, we obtain that two system (3.1) and 
system (3.2) are either synchronized or anti-synchronized.    
 

Matlab method is used to all of the simulations with time step 0.01. The parameters 
of two systems (3.1) and system (3.2) are given as a = 0.04, b = 0.2, c = 12,   
d = -0.3, e = 2, f = 1 to ensure the chaotic behavior. To verify CS and AS, it is 
convenient to introduce the following coordinate transformation: E1= (x1 + x2) and 
e1= (x1 − x2) and the same transformation for y, u and v variables. Therefore, the new 
coordinate systems (E1, E2, E3, E4) and (e1, e2, e3, e4) represent the sum and difference 
motions of the original coordinate system, respectively. We can easily see that the (e1, 

e2, e3, e4) subspace represents the CS case, and the (E1, E2, E3, E4) subspace for the AS 
one. 
 
Choice A 
  Take kx3 instead of both a in system (3.1) and system (3.2),and take (x1, y1, u1, v1 

) = (3, 4, 3, 4), (x2, y2, u2, v2) = (-3, 4, -3, 4) as the initial conditions of system (3.1) 
and system (3.2). For Fig. 3.3, k = 1 and for Fig. 3.4, k = 0.9. Fig. 3.3 and Fig. 3.4 
show the time-series of AS (case (a)) and CS (case (b)) phenomena for different k, 
respectively. These simulation results indicate that the final state develops to CS or 
AS, depending sensitively on k in spite of the identical initial conditions in both cases. 
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For Fig. 3.3, e4 (CS), E2 (AS), E3 (AS), converge to zero, while the other coordinates 
remain chaotic. For Fig. 3.4 , on the other hand, only E2 (AS) converge to zero. 
                                     

  Depending on the initial conditions both AS and CS can also be observed. To study 
how these phenomena depend upon the initial conditions, we change the initial 
conditions for fixed k. The results are shown in Figs. 3.5 and 3.6. Fig. 3.5 (a) shows 
that the differences e2 = y1 − y2 and e3=u1 − u2 tend to zero. In Fig. 3.5 (b), the sum 
E4=v1 + v2 tends to zero. Comparing Fig. 3.3 with Fig. 3.5, one can find that they have 
different behaviors. The only reason lies in the different initial conditions. Similar 
result also exists by comparing Fig. 3.4 with Fig. 3.6. But we have not observed the 
intermittent synchronization and antisynchronization states as declared in Ref. [133]. 

 

  The simulation results are shown in Fig. 3.7 for different value of k. The solid 
circle “●” and triangle “▲” correspond to CS where parameter values k leads to 
synchronized behavior. While white circle “○” and triangle “△” indicate AS. The 
blank space means no AS or CS. We can see that the system (3.1) and system (3.2) 
tend to either AS or CS by using combination of different value of k and initial values. 
However, as we can see from Fig. 3.7, both cases agree well with the fact that the 
system goes to either synchronized state or anti-synchronized state depending on 
initial values and on k. When k = 0.8 ~ 0.82, neither synchronization nor 
anti-synchronization is found. 

Choice B 
Take kx3 instead of both a in system (3.1) and system (3.2), and take (x1, y1, u1, v1 

) = (3, 4, 3, 4), (x2, y2, u2, v2) = (-3, 4, 3, 4) as the initial conditions of system (3.1) and 
system (3.2). For Fig. 3.8, k = 0.97 and for Fig. 3.9, k = 1.02. Fig. 3.8 and Fig. 3.9 
show the time-series of AS (case (c)) and CS (case (d)) phenomena for different k, 
respectively. These simulation results indicate that the final state develops to CS or 
AS, depending sensitively on k in spite of the identical initial conditions in both cases. 
For Fig. 3.8, e2 (CS) , e3 (CS), E4 (AS),  converge to zero, while the other 
coordinates remain chaotic. For the Fig. 3.9 , on the other hand, e2 (CS) , e3 (CS), E4 
(AS) also converge to zero. 

Depending on the initial conditions, both AS and CS can also be observed. To 
study how these phenomena depend upon the initial conditions, we change the initial 
conditions for fixed k. The results are shown in Figs. 3.10 and 3.11. Fig. 3.10 (a) 
shows that the difference e4=v1 − v2 tends to zero. In Fig. 3.10 (b), the sums 
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E2=y1 + y2, E3=u1 + u2 tend to zero. Comparing Fig. 3.8 with Fig. 3.10 one can find 
that they have different behaviors. The only reason lies in the different initial 
conditions. Similar result also exists by comparing Fig. 3.9 with Fig. 3.11. But we 
have not observed the intermittent synchronization and antisynchronization states as 
declared in Ref. [133].. 

 

The simulation results are shown in Fig. 3.12 for different value of k. The solid 
circle “●” and triangle “▲” correspond to CS where parameter values k leads to 
synchronized behavior. While white circle “○” and triangle “△” indicate AS. The 
blank space means no AS or CS. We can see that the system (3.1) and system (3.2) 
tend to either AS or CS by using combination of different value of k and initial values. 
However, as we can see from Fig. 3.12, both cases agree well with the fact that the 
system goes to either synchronized state or anti-synchronized state depending on 
initial values and on k. When k = 0.9 ~ 0.96 and 1.04 ~ 1.10, neither synchronization 
nor anti-synchronization is found.   
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(a) (b)  

Fig. 3.1 Lyapunov exponent diagram of the double van der Pol system for c between 
1.0 and 3.0 in (a) and enlarge in (b). 

 

 
Fig. 3.2 Phase portraits of the double van der Pol system 
 

(a) (b)  

  Fig. 3.3 CS and AS for initial condition(x2, y2, u2, v2)= (-3, 4, -3, 4) and k=1, 
       (a) e1, e2, e3, e4 (b) E1, E2, E3, E4.  
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(a) (b)  

Fig. 3.4 AS for initial condition (x2, y2, u2, v2) = (-3, 4, -3, 4) and k=0.9,  
(a) e1, e2, e3, e4 (b) E1, E2, E3, E4.  

 

(a) (b)  

Fig. 3.5 CS and AS for initial condition (x2, y2, u2, v2) = (3, -4, 3, -4) and k=1,  
(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 (a) (b)  

Fig. 3.6 CS for initial condition(x2, y2, u2, v2) = (3, -4, 3, -4) and k=0.9, 
 (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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                                                        ● ● ●

 
        ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

                         ● : case a : CS 
                         ○ : case a : AS  
                         ▲ : case b : CS 
                         △ : case b : AS  
        ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

 
                                                        △ △ △

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0 1.01  

                                     k 

Fig. 3.7  CS or AS vs. the k for different initial conditions,  
case a: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = (-3, 4, -3, 4) 
case b: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = (3, -4, 3, -4) 

 

(a) (b)  

Fig. 3.8 CS and AS for initial condition(x2, y2, u2, v2) = (-3, 4, 3, 4) and k=0.97, 
(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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(a) (b)  

Fig. 3.9 CS and AS for initial condition (x2, y2, u2, v2) = (-3, 4, 3, 4) and k=1.02, 
(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 

(a) (b)  
Fig. 3.10 CS and AS for initial condition (x2, y2, u2, v2) = (3, -4, -3, -4) and k=0.97, 

(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
  

(a) (b)  
Fig. 3.11 CS and AS for initial condition (x2, y2, u2, v2) = (3, -4, -3, -4) and k=1.02, 

 (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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                     ● ●       ● ● ●                     
                     ○ ○       ○ ○ ○  
 
                        ● : case c : CS 
                        ○ : case c : AS  
                        ▲ : case d : CS 
                        △ : case d : AS  
  

                   ▲ ▲       ▲ ▲ ▲     
                     △ △       △ △ △       

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 

k 

Fig. 3.12 CS or AS vs. the k for different initial conditions,  
case c: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = (-3, 4, 3, 4)  
case d: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = (3, -4, -3, -4) 
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Chapter 4 

Uncoupled Chaos Synchronization and 

Antisynchronization of Double Van der Pol 

Systems by Noise Excited Parameters  
4.1 Preliminaries 

In this chapter, chaos complete synchronization and antisynchronization are 

obtained by replacing two corresponding parameters of two uncoupled identical 

double van der Pol chaotic dynamical systems by a white noise, or by a Rayleigh 

noise respectively. 

 

4.2 Numerical simulations for uncoupled chaos synchronization and 

antisynchronization of double van der Pol systems by noise 

excited parameters 

In this section, the double van der Pol system, studied in this chapter consists of 

two van der Pol systems with mutual coupling terms:   

                                            

1
1

1 2
1 1 1

1
1

1 2
1 1 1

(1 )

(1 )

dx y
dt
dy

1

1

x b cx y au
dt
du v
dt
dv u e fu v dx
dt

⎧ =⎪
⎪
⎪ = − + − +⎪⎪
⎨
⎪ =
⎪
⎪
⎪ = − + − +
⎪⎩

                                        (4.1)  

                                        

where au1, dx1 are mutual coupling terms. When a = 0.04 , b = 0.2, c = 12 ,   

d = -0.3, e = 2, f = 1, chaos of the system are illustrated by Lyapunov exponent 

diagram (Fig. 3.1) and phase portraits (Fig. 3.2). 
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Take system (4.1) as master system, the slave system is    

2
2

2 2
2 2 2

2
2

2 2
2 2 2

(1 )

(1 )

dx y
dt
dy

2

2

x b cx y au
dt
du v
dt

dv u e fu v dx
dt

⎧ =⎪
⎪
⎪ = − + − +⎪⎪
⎨
⎪ =
⎪
⎪
⎪ = − + − +
⎪⎩

                                       (4.2) 

                                                                                  

   In order to obtain CS and AS of systems (4.1) and (4.2), the two corresponding 

parameters a of two systems are replaced respectively by a noise term k , 

where k is constant driving strength and  is a noise signal. 

)(xf

)(xf

The error state variables are defined:  

                                                   (4.3) 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=
−=
−=
−=

214

213

212

211

vve
uue
yye
xxe

Giving suitable values for k and initial conditions, CS or AS of systems (4.1) and 

(4.2) can be obtained. 

Matlab method for simulations with time step 0.01. The parameters of systems 

(4.1) and (4.2) are given as a = 0.04, b = 0.2, c = 12 , d = -0.3, e = 2, f = 1 to ensure 

the chaotic behavior. To verify CS and AS, it is convenient to introduce the 

following coordinate transformation: E1= (x1 + x2) and e1= (x1 − x2) and the same 

transformation for y, u and v variables. Therefore, the new coordinate systems (E1, 

E2, E3, E4) and (e1, e2, e3, e4) represent the sum and difference motions of the original 

coordinate system, respectively. We can easily see that (e1, e2, e3, e4) subspace 

represents the CS case, and (E1, E2, E3, E4) subspace the AS one. 

In order to obtain CS or AS of systems (4.1) and (4.2), we replace two 
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corresponding parameters a of two identical systems by the same noise signal as 

follow: 

Case1: White noise 

The probability density function of n-dimensional Gaussian noise is 

)2/)()(exp()det)2(()( 12
1

μμπ −−−= −−
xKxKxf Tn                    

where x is a length-one vector, K is the one-by-one covariance matrix, µ is the 

mean value vector, and the superscript T indicates matrix transpose. The Simulink 

Communications toolbox provides the Gaussian Noise Generator block. The initial 

seed, the mean value and the variance in the simulation must be specified. We take 

the initial seed 41, the mean value 1 and the variance 1 in the simulation. 

   Take k )(xf  instead of both a in system (4.1) and in system (4.2), and take 

(x1, y1, u1, v1 ) = (3, 4, 3, 4), (x2, y2, u2, v2) = (3, -4, 3, -4) as the initial conditions of 

system (4.1) and system (4.2). For Fig. 4.1, k = 1 and for Fig. 4.2, k = 529, 

simulation results indicate that parts of final states develops to CS or AS, depending 

on k for the identical initial conditions in both cases. In Fig. 4.1, e1 (CS), e2 (CS), e3 

(CS), E4 (AS), converge to zero, while the other coordinates remain chaotic. In Fig. 

4.2, on the other hand, e4 (CS), E1 (AS), E2 (AS) ,E3 (AS),converge to zero. 

                                     

  Depending on the initial conditions both AS and CS can also be observed. To 

study how these phenomena depend upon the initial conditions, we change the 

initial conditions for fixed k. The results are shown in Figs. 4.3 and 4.4. Fig. 4.3 (a) 

shows that only e4=v1 − v2 tends to zero. In Fig. 4.3 (b), E1=x1 + x2, E2=y1 + y2, 

E3=u1 + u2 tend to zero. One CS in Fig. 4.1 and three AS in Fig. 4.3, for different 

initial conditions complete all four states of the system. Similar result is obtained 

by comparing Fig. 4.2 with Fig. 4.4. 

 33



    The simulation results are shown in Fig. 4.5 for different value of k. The solid 

circle “●” and triangle “▲” correspond to CS where parameter values k leads to 

synchronized behavior. While white circle “○” and triangle “△” indicate AS. It is  

discovered that system (4.1) and system (4.2) tend to either AS or CS by using 

combination of different k and initial values. However, as we can see from Fig. 4.5, 

both cases agree well with the fact that the system goes to either synchronized state 

or anti-synchronized state depending on initial values and on k. When k = -1 ~ 529, 

either synchronization or anti-synchronization is found. 

 

Case2: Rayleigh noise 

The Rayleigh probability density function is given by 

 
⎪
⎩

⎪
⎨

⎧

<

≥=
−

00

0)(
2

2

2
2

x

xex
xf

x
σ

σ                                         

where x is a length-one vector,  is known as the fading envelope of the 

Rayleigh distribution. The Simulink Communications toolbox provides the 

Rayleigh Noise Generator block. The initial seed and the sigma parameter in the 

simulation must be specified. We specify the initial seed 47 and the sigma 

parameter 5 in the simulation. 

2σ

For this case, we take k )(xf  instead of both a in system (4.1) and system (4.2), 

and take (x1, y1, u1, v1 ) = (3, 4, 3, 4), (x2, y2, u2, v2) = (3, -4, 3, -4) as the initial 

conditions of system (4.1) and system (4.2). For Fig. 4.6, k = 1 and for Fig. 4.7, 

k = 2379, simulation results indicate that the final state develops to CS or AS, 

depending sensitively on k, while independent of the identical initial conditions. 

For Fig. 4.6, e1 (CS) , e2 (CS), e3 (CS), E4 (AS), converge to zero, while the other 
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coordinates remain chaotic. For the Fig. 4.7 , on the other hand, e4 (CS) , E1 (AS), 

E2 (AS), E3 (AS) converge to zero. 

Depending on the initial conditions, both AS and CS can also be observed. To 

study how these phenomena depend upon the initial conditions, we change the 

initial conditions for fixed k. The results are shown in Figs. 4.8 and 4.9. Fig. 4.8 (a) 

shows that the difference e4=v1 − v2 tends to zero. In Fig. 4.8 (b), the sums 

E1=x1 + x2, E2=y1 + y2, E3=u1 + u2 tend to zero. Comparing Fig. 4.6 with Fig. 4.8 

one can find that they have opposite behaviors. The only reason lies in the different 

initial conditions. Similar result is also obtained by comparing Fig. 4.7 with Fig. 

4.9. 

 

 

 

 

 

 

. 
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(a) (b)                    
Fig. 4.1 CS and AS for initial condition(x2, y2, u2, v2)= ( 3, -4, 3, -4) and k=1, 

    (a) e1, e2, e3, e4 (b) E1, E2, E3, E4 

 

(a) (b)  
Fig. 4.2 AS for initial condition (x2, y2, u2, v2) = ( 3, -4, 3, -4) and k=529,  

(a)e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 

(a) (b)  
Fig. 4.3 CS and AS for initial condition (x2, y2, u2, v2) = (-3, 4, -3, 4) and k=1,  

(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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(a) (b)  
 
Fig. 4.4 CS for initial condition(x2, y2, u2, v2) = (-3, 4, -3, 4) and k=529, 

 (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 

 
●   ●    ●    ●   ●   ●    ●    ●   ●   ●    ●    ● 
 
○   ○    ○    ○   ○   ○    ○    ○   ○   ○    ○    ○ 
                         ● : case a : CS 
                         ○ : case a : AS  
                         ▲ : case b : CS 
                         △ : case b : AS  
▲   ▲    ▲    ▲   ▲   ▲    ▲    ▲   ▲   ▲    ▲    ▲ 
 
△   △    △    △   △   △    △    △   △   △    △    △ 

-1     1      10     100    200   300     400     420    440   430    530     529 

                                    

                                   k 

Fig. 4.5  CS or AS vs. the k for different initial conditions,  
case a: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = ( 3, -4, 3, -4) 
case b: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = ( -3, 4, -3, 4) 
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(a) (b)  
Fig. 4.6 CS and AS for initial condition(x2, y2, u2, v2) = ( 3, -4, 3, -4) and k=1, 

(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 

(a) (b)  

Fig. 4.7 CS and AS for initial condition (x2, y2, u2, v2) = ( 3, -4, 3, -4) and k=2379, 
(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 

(a) (b)  

Fig. 4.8 CS and AS for initial condition (x2, y2, u2, v2) = (-3, 4, -3, 4) and k=1 
(a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 
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(a) (b)  
Fig. 4.9 CS and AS for initial condition (x2, y2, u2, v2) = ( -3, 4, -3, 4) and k=2379, 

 (a) e1, e2, e3, e4 (b) E1, E2, E3, E4. 

 

 
●   ●    ●    ●   ●   ●    ●    ●   ●   ●    ●    ● 
 
○   ○    ○    ○   ○   ○    ○    ○   ○   ○    ○    ○ 
                         ● : case c : CS 
                         ○ : case c : AS  
                         ▲ : case d : CS 
                         △ : case d : AS  
▲   ▲    ▲    ▲   ▲   ▲    ▲    ▲   ▲   ▲    ▲    ▲ 
 
△   △    △    △   △   △    △    △   △   △    △    △ 

-1     1      10     100    500    800    1000    1200   1500   1800   2100   2379 

                                     k 

Fig. 4.10 CS or AS vs. the k for different initial conditions,  
case c: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = ( 3, -4, 3, -4)  
case d: (x1, y1, u1, v1 ) = (3, 4, 3, 4) and (x2, y2, u2, v2) = ( -3, 4, -3, 4) 
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Chapter 5 

Pragmatical Adaptive Chaos Control from 

Double Van der Pol System to Double Duffing 

System 
A new pragmatical adaptive control method for different chaotic systems is 

proposed. Traditional chaos control is limited for the same system. This method 

enlarges the function of chaos control. We can control a chaotic system, eg a 

double van der Pol system, to a given chaotic or regular system, eg a double 

Duffing system or an exponentially damoed-simple harmonic system. Based on a 

pragmatical theorem of asymptotical stability using the concept of probability, an 

adaptive control law is derived such that it can be proved strictly that the zero 

solution of error dynamics and of parameter dynamics is asymptotically stable.  

 

5.1 Pragmatical adaptive control cheme  

Consider the following chaotic system 

 

( , ) ( )x f x A u t= +                                                 (5.1)               

where [ ]1 2, , , T n
nx x x x R= ∈  denotes a state vector, 1 2[ , ,..., ] m

mA A A A R= ∈ is 

an original coefficient vector, and f is a vector function, and 

[ ]1 2( ) ( ), ( ), , ( ) T n
nu t u t u t u t R= ∈  is a control input vector. 

The goal system which can be either chaotic or nonchaotic, is  

( , )y g y B=                                                     (5.2) 

where [ ]1 2, , , T n
ny y y y R= ∈ denotes a state vector, 1 2[ , ,..., ]T

pB B B B R= ∈ p  is a 
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goal coefficient vector, and g is a vector function. Our goal is to design an adaptive 

control method and a controller u(t) so that the state vector of the chaotic system 

(5.1) asymptotically approaches the state vector of the goal system (5.2). 

The chaos control is accomplished in the sense that the limit of the error vector 

[ ]1 2( ) , , , T
ne t e e e=  approaches zero: 

lim 0
t

e
→∞

=                                                        (5.3) 

where 

e y x= −                                                       (5.4) 

    From Eq. (5.4) we have 

e y x= −                                                       (5.5) 

ˆ( , ) ( , ) ( )e g y B f x A u t= − −                                         (5.6)                 

A Lyapnuov function  is chosen as a positive definite function ( , , )V e A B

     1 1 1( , , )
2 2 2

T T TV e A B e e A A B B= + +                           (5.7) 

where ˆA A A= − , ˆB B B= − , A and B are two column matrices whose elements 

are the original coefficients of systems (5.1) and (5.2) respectively, A , B  are two 

column matrices whose elements are the goal coefficients of systems (5.1) and (5.2) 

respectively.  

Its derivative along any solution of the differential equation system consisting of 

Eq. (5.6) and update parameter differential equations for A and B  is 

ˆ( ) [ ( , ) ( , ) ( )]TV e e g y B f x A u t A A B B= − − + +                        (5.8) 

where u(t), , and A B  are chosen so that  C is a diagonal negative 

definite matrix, and V  is a negative semi-definite function of e and parameter 

differences 

,TV e Ce=

A and B .  In current scheme of adaptive control of chaotic motion 
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[117-119], traditional asymptotical Lyapunov stability theorem and Babalat lemma 

are used to prove the error vector approaches zero, as time approaches infinity. But 

the question, why the estimated or given parameters also approach to the uncertain 

or goal parameters, remains no answer. By pragmatical asymptotical stability 

theorem, the question can be answered strictly. 

The stability for many problems in real dynamical systems is actual asymptotical 

stability, although may not be mathematical asymptotical stability. The 

mathematical asymptotical stability demands that trajectories from all initial states 

in the neighborhood of zero solution must approach the origin as . If there 

are only a small part or even a few of the initial states from which the trajectories 

do not approach the origin as t , the zero solution is not mathematically 

asymptotically stable. However, when the probability of occurrence of an event is 

zero, it means the event does not occur actually. If the probability of occurrence of 

the event that the trajectries from the initial states are that they do not approach 

zero when t , is zero, the stability of zero solution is actual asymptotical 

stability though it is not mathematical asymptotical stability. In order to analyze the 

asymptotical stability of the equilibrium point of such systems, the pragmatical 

asymptotical stability theorem is used. 

t →∞

→∞

→∞

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and ϕ  

be a differentiable map from X to Y, then ( )Xϕ  is subset of Lebesque measure 0 

of Y [122]. For an autonomous system 

1( , , )n
dx f x x
dt

=                                                (5.9) 

where [ ]1, , T
nx x x=  is a state vector, the function [ ]1, , T

nf f f= is defined 

on  and nD R⊂ 0x H≤ > . Let x=0 be an equilibrium point for the system (5.9). 

Then 
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(0) 0f =                                                       (5.10) 

                                                      

Definition The equilibrium point for the system (5.9) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on D－C, the corresponding trajectories 

behave as that agree with traditional asymptotical stability [120,121]. 

Theorem Let : D→R1[ , , ]T
nV x x= + be positive definite and analytic on D, 

such that the derivative of V through Eq. (5.9), , is negative semi-definite. V

Let X be the m-manifold consisted of point set for which 0x∀ ≠ ,  and 

D is a n-manifold. If m+1<n, then the equilibrium point of the system is 

pragmatically asymptotically stable. 

( ) 0V x =

Proof Since every point of X can be passed by a trajectory of Eq. (5.9), which is 

one- dimensional, the collection of these trajectories, C, is a (m+1)-manifold [123, 

124]. 

If m+1＜n, then the collection C is a subset of Lebesque measure 0 of D. By the 

above definition, the equilibrium point of the system is pragmatically 

asymptotically stable.  

If an initial point is ergodicly chosen in D, the probability of that the initial point 

falls on the collection C is zero. Here, equal probability is assumed for every point 

chosen as an initial point in the neighborhood of the equilibrium point. Hence, the 

event that the initial point is chosen from collection C does not occur actually. 

Therefore, under the equal probability assumption, pragmatical asymptotical 

stability becomes actual asymptotical stability. When the initial point falls on 

D C− , , the corresponding trajectories behave as that agree with ( ) 0V x <
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traditional asymptotical stability because by the existence and uniqueness of the 

solution of initial-value problem, these trajectories never meet C.  

In Eq. (5.7) V is a positive definite function of n variables, i.e. p error state 

variables and n-p=m differences between unknown and estimated parameters, 

while  is a negative semi-definite function of n variables. Since the 

number of error state variables is always more than one, p>1, m+1<n is always 

satisfied, by pragmatical asymptotical stability theorem we have 

TV e Ce=

lim 0
t

e
→∞

=                                                       (5.11) 

and the estimated parameters approach the uncertain parameters. The pragmatical 

adaptive control theorem is obtained. Therefore, the equilibrium point of the system 

is pragmatically asymptotically stable. Under the equal probability assumption, it 

is actually asymptotically stable for both error state variables and parameter 

variables. 

 

5.2 Numerical results of the chaos ontrol  

In this section, the double van der Pol system is:   

                                            

  

1
1

21
1 1 1 1 1 1 1 1 1

1
1

21
1 1 1 1 1 1 1 1 1

dx y
dt
dy a x b y c x y d u
dt
du v
dt
dv j x f u g v h u v
dt

⎧ =⎪
⎪
⎪ = + + +⎪⎪
⎨
⎪ =
⎪
⎪
⎪ = + + +
⎪⎩

                                 (5.12) 

 

where , 1 1d u 1 1j x  are mutual coupling terms. When  = -1 ,  = 0.2, = -2.4 , 

= 0.04, 

1a 1b 1c

1d 1j  = -0.3, 1f  = -1, =2, =-2 are original coefficients and initial 1g 1h
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conditions are x1(0)=3, y1(0)=4, u1(0)=3, and v1(0)=4, chaos of the system are 

illustrated by phase portraits (Fig. 3.1). 

 

Case (a) Control a chaotic double van der Pol system to a double Duffing system 

 The goal system is a double Duffing system. The Duffing system is 

tdcxbxxax ωcos3 =+++                                        (5.13) 

where ω,,,, dcba  are constant parameters, td ωcos  is an external excitation. It 

can be written as two first order differential equations : 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−−−=

=

tdcxbxay
dt
dy

y
dt
dx

ωcos3
                                   (5.14) 

Consider the following double Duffing system as goal system: 

2
2

32
1 2 11 2 2 2 2

2
2

32
22 1 2 2 21 1

dx y
dt
dy a x b y c x d u
dt

du v
dt

dv j x f u g v h u
dt

⎧ =⎪
⎪
⎪ = + + +⎪⎪
⎨
⎪ =
⎪
⎪
⎪ = + + +
⎪⎩

                                   (5.15) 

It consists of two Duffing systems in which two external excitations are replaced 

by two coupling terms. It is an autonomous system with four states where , , 

, , , and  are constant goal coefficients of the system. When 

1̂b 2ĉ

1̂d 1̂j 1ĝ 2̂h

1 2 1 21 10.05, 3, 7, 7, 0.05, 3b c d j g h= − = − = = − = = − , the chaotic behavior is 

presented in Fig 5.1.  

                                                       

In order to lead (x1, y1, u1, v1) to (x2, y2, u2, v2), we add controllers U1, U2, U3, and 

U4 to each equation of Eq. (5.12), respectively. 
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1
1 1

21
1 1 1 1 1 1 1 1 1 2

1
1 3

21
1 1 1 1 1 1 1 1 1 4

dx y U
dt
dy a x b y c x y d u U
dt
du v U
dt
dv j x f u g v h u v U
dt

⎧ = +⎪
⎪
⎪ = + + + +⎪⎪
⎨
⎪ = +
⎪
⎪
⎪ = + + + +
⎪⎩

                               (5.16) 

We define error vector 

.Subtracting Eq. (5.16) from Eq. 

(5.15), we obtain the error dynamics. 

1, 2, 3, 4 2 2 2 2 1 1 1 1[ ] [ , , , ] [ , ,T TE E E E E x y u v x y u v= = − , ]T

2

 

 

1 2 1 1

3 2
1 2 12 1 2 2 2 2 1 1 1 1 1 1 1 1 1

3 2 1 3

3 2
24 2 1 2 2 2 1 1 1 1 1 1 1 1 1 41 1

E y y U

E a x b y c x d u a x b y c x y d u U

E v v U

E j x f u g v h u j x f u g v h u v U

= − −

= + + + − − − − −

= − −

= + + + − − − − −

            (5.17) 

 

where , , 1 2 1E x x= − 2 2E y y= − 3 2E u u1 1− 4 2 1E v v, = − . =

 

Choose a Lyapunov function in the form of the positive definite function: 

1 1 2 1 1 21 2 3 4 1 1

2 2 2 2 2 2 2 22 2 2 2
1 1 2 1 1 21 2 3 4 1 1

( , , , , , , , , , , , )
1 ( )
2

V E E E E b c c d j g h h

E E E E b c c d j g h h= + + + + + + + + + + +
            (5.18) 

where , , 1 1 1b b b= − 1 1 1c c c= − 2 2 2c c c= − , 1 1 1d d d= − , 11 1j j j= − , 

11 1g g g= − , 1 1 1h h h= − , 2 2 2h h h= − and 1 1 2 1 1 1 1 2, , , , , , , ,b c c d j g h h  are goal 

parameters, 1 1 2 1 1 21 10.05, 0, 3, 7, 7, 0.05, 0, 3b c c d j g h h= − = = − = = − = = = − . 

Its time derivative along any solution of Eq. (5.17) and parameter dynamics is 
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3 2
1 2 11 2 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 2

3 2
23 2 1 3 4 2 1 2 2 2 1 1 1 1 1 1 1 1 1 41 1

1 1 1 1 2 2 1 1

1 1 1 1 1 1 2

[ ] [

[ ] [

( ) ( ) ( ) ( )

( ) ( ) ( ) (

V E y y U E a x b y c x d u a x b y c x y d u U ]

]E v v U E j x f u g v h u j x f u g v h u v U

b b c c c c d d

j j g g h h h

= − − + + + + − − − − −

+ − − + + + + − − − − −

+ − + − + − + −

+ − + − + − + − 2 )h

  

                                                             (5.19) 

     Choose 

1 2 1 1
2 2 2 23 2

1 2 1 1 1 1 22 1 2 2 2 2 1 1 1 1 1 1 1 1 1 2

3 2 1 3
2 2 2 2 23 2

2 14 2 1 2 2 2 1 1 1 1 1 1 1 1 1 41 1 1 1

U y y E

U a x b y c x d u a x b y c x y d u E a b c c d
U v v E

U j x f u g v h u j x f u g v h u v E e f g h h

= − +

= + + + − − − − + + + + + +
= − +

= + + + − − − − + + + + + +

2
1

1 2

2

                                                              (5.20) 

11 2

11 2

22 2

11

1 41

1 41

11 4

22 4

b b E

c c E

c c E

d d E

j j E

g g E

h h E

h h E

− =

− =

− =

− =

− =

− =

− =

− =

                                                    (5.21) 

Eq.(5.21) is the parameter dynamics. Substituting Eq. (5.20) and Eq. (5.21) into 

Eq. (5.16), we obtain 

  2 2 2 2
1 2 3 4 0V E E E E= − − − <

which is a negative semi-definite function of E1, E2, E3, E4, 

1 1 2 1 1 1 1 2, , , , , , , ,b c c d e g h h . The Lyapunov asymptotical stability theorem is not 

satisfied. We cannot obtain that the common origin of error dynamics (5.17) and 

parameter dynamics (5.18) is asymptotically stable. Now, D is an 8-manifold, n=12 

and the number of error state variables p=4. When E1=E2=E3=E4=0 and  
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1 1 2 1 1 1 1 2, , , , , , , ,b c c d e g h h take arbitrary values, 0V = , so X is 4-manifold, 

m=n-p=12-4=8. m+1<n is satisfied. By pragmatical asymptotical stability theorem, 

error vector e approaches zero and the estimated parameters also approach the 

uncertain parameters. The pragmatical generalized synchronization is obtained. 

Under the assumption of equal probability, it is actually asymptotically stable. This 

means that the chaos control for different systems, from a double van der Pol 

system to a double Duffing system, can be achieved. The simulation results are 

shown in Fig. 5.2 and Fig. 5.3. 

 

Case (b) Control a chaotic double van der Pol system to a exponentially 

damped-simlpe harmonic system 

Consider the following exponentially damped-simlpe harmonic system: 

3
1 3

3
1 3

3
3

3
31

dx x
dt
dy b y
dt
du v
dt

dv f u
dt

λ⎧ = −⎪
⎪
⎪ = −⎪⎪
⎨
⎪ =
⎪
⎪
⎪ = −
⎪⎩

                                                  (5.22) 

In the first equation of Eq. (5.16), =1.  1k

1
1 1 1

21
1 1 1 1 1 1 1 1 1 2

1
1 3

21
1 1 1 1 1 1 1 1 1 4

dx k y U
dt
dy a x b y c x y d u U
dt
du v U
dt
dv j x f u g v h u v U
dt

⎧ = +⎪
⎪
⎪ = + + + +⎪⎪
⎨
⎪ = +
⎪
⎪
⎪ = + + + +
⎪⎩

                               (5.23) 

where =1,  = -1 ,  = 0.2, = -2.4 , = 0.04, 1k 1a 1b 1c 1d 1j  = -0.3, 1f  = -1, =2, 1g

 48



1h =-2, 1λ =0. 

We define error vector 

.Subtracting Eq. (5.23) from Eq. 

(5.22), we obtain the error dynamics. 

1, 2, 3, 4 3 3 3 3 1 1 1 1[ ] [ , , , ] [ , ,T TE E E E E x y u v x y u v= = − , ]T

2

 

 

11 3 1 1 1

2
12 3 1 1 1 1 1 1 1 1 1

3 3 1 3

2
4 3 1 1 1 1 1 1 1 1 1 41

E x k y U

E b y a x b y c x y d u U

E v v U

E f u j x f u g v h u v U

λ= − − −

= − − − − − −

= − −

= − − − − − −

                          (5.24) 

 

where , , 1 2 1E x x= − 2 2E y y= − 3 2E u u1 1− 4 2 1E v v, = − . =

 

Choose a Lyapunov function in the form of the positive definite function: 

1 1 1 1 1 1 11 2 3 4 1 1 1

2 2 2 2 2 2 2 2 2 22 2 2 2
1 1 1 1 1 1 11 2 3 4 1 1 1

( , , , , , , , , , , , , , )
1 ( )
2

V E E E E k a b c d j f g h

E E E E k a b c d j f g h

λ

λ= + + + + + + + + + + + + +
    (5.25) 

where 1 1 1k k k= − , 1 1 1a a a= − , 1 1 1b b b= − , 1 1 1c c c= − , 1 1 1d d d= − , 11 1j j j= − , 

11 1f f f= − , 1 1 1 11 11 1 , ,g g g h h h 1λ λ λ= − = − = − ,  

and 1 1 1 1 1 1 1 1 1 1, , , , , , , , , ,k a b c d j f g h λ  are goal parameters, 

1 1 1 1 1 1 11 1 10, 0, 2, 0, 0, 0, 2.3, 0, 0, 3k a b c d j f g h λ= = = = = = = = = = . 

Its time derivative along any solution of Eq. (5.25) and parameter dynamics is 

2
1 11 2 1 1 1 2 3 1 1 1 1 1 1 1 1 1 2

2
3 2 1 3 4 3 1 1 1 1 1 1 1 1 1 41

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

[ ] [

[ ] [ ]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

V E x k y U E b y a x b y c x y d u U

E v v U E f u j x f u g v h u v U

k k a a b b c c d d

j j f f g g h h

λ

λ λ

= − − − + − − − − − −

+ − − + − − − − − −

+ − + − + − + − + −

+ − + − + − + − + −

]

      (5.26) 
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     Choose 

11 2 1 1 1
2 2 2 22

1 1 12 3 1 1 1 1 1 1 1 1 1 2

3 3
2 2 2 22

14 3 1 1 1 1 1 1 1 1 1 41 1 1

U x k y E

U b y a x b y c x y d u a b c d E
U E

U f u j x f u g v h u v j f g h

λ= − − +

= − − − − − + + + + +
=

= − − − − − + + + + +

1 1

1 E

2

            (5.27)      

                               

11 1

11 2

11 2

11 2

11

1 41

1 41

1 41

11 4

11 1

k k E

a a E

b b E

c c E

d d E

j j E

f f E

g g E

h h E

Eλ λ

− =

− =

− =

− =

− =

− =

− =

− =

− =

− =

                                                    (5.28) 

Eq.(5.28) is the parameter dynamics. Substituting Eq. (5.27) and Eq. (5.28) into 

Eq. (5.26), we obtain 

  2 2 2 2
1 2 3 4 0V E E E E= − − − <

which is a negative semi-definite function of E1, E2, E3, E4, 

1 1 1 1 1 1 1 1 1 1, , , , , , , , , ,k a b c d j f g h λ The Lyapunov asymptotical stability theorem is not 

satisfied. We cannot obtain that the common origin of error dynamics (5.24) and 

parameter dynamics (5.25) is asymptotically stable. Now, D is an 8-manifold, n=12 

and the number of error state variables p=4. When E1=E2=E3=E4=0 and  

, , , , , , , , , ,k a b c d j f g h1 1 1 1 1 1 1 1 1 1λ take arbitrary values, 0V = , so X is 4-manifold, 

m=n-p=12-4=8. m+1<n is satisfied. By pragmatical asymptotical stability theorem, 

error vector e approaches zero and the estimated parameters also approach the 
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uncertain parameters. The pragmatical generalized synchronization is obtained. 

Under the assumption of equal probability, it is actually asymptotically stable. This 

means that the chaos control for different systems, from a double van der Pol system 

to a exponentially damped-simlpe harmonic system, can be achieved. The simulation 

results are shown in Fig. 5.4 and Fig. 5.5. 
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Fig. 5.1 Phase portraits of the double Duffing system 

 

Fig. 5.2 Time histories of state errors for E1, E2, E3, E4 for Case (a) 
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Fig. 5.3 Time histories of coefficients for Case (a) 1 1 2 1 1 1 1 2, , , , , , ,b c c d j g h h
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Fig. 5.4 Time histories of state errors for E1, E2, E3, E4 for Case (b) 
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Fig. 5.5 Time histories of coefficients 1 1 1 1 1 1 1 1 1 1, , , , , , , , ,k a b c d j f g h λ  for Case (b) 
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Chapter 6 

Conclusions 
In this thesis the chaos in double van der Pol system and in its fractional order 

systems is studied in Chapter 2. It is found that with reducing the total derivative 

order  1 1 2 2α β α β+ + +  the ranges of the chaotic phase portraits of the system 

decrease and its shape changes differently for different choices of 

parameters.Twenty-one chaotic cases for ( )1 1 2 20.4 4.0α β α β≤ + + + ≤  are studied, 

and the lowest total order for chaos existence in the system is found to be 0.4. Thirty 

nonchaotic cases are found.  

In Chapter 3, the state variable with adjustable strength of a third double van der 

Pol system substituted for the strength of two corresponding mutual coupling terms of 

two uncoupled identical chaotic double van der Pol system, gives rise to their 

synchronization or anti-synchronization. Both CS and AS can be achived by adjusting 

the strength of the substituted state variable and the initial conditions. 

In Chapter 4, complete synchronization and antisynchronization scheme based on 

the substitution of two corresponding parameters in two identical chaotic double 

van der Pol systems by a white noise, or by a Rayleigh noise respectively. For the 

white noise case and Rayleigh noise case, CS and AS are obtained for different 

noise strengths and initial conditions. Numerical simulations show that whether CS 

or AS occurs is sensitive to the noise strength. 

In Chapter 5, to control chaotic systems to different systems is study by new 

pragmatical adaptive control method. The pragmatical asymptotical stability 

theorem fills the vacancy between the actual asymptotical stability and 

mathematical asymptotical stability, the conditions of the Lyapunov function for 

pragmatical asymptotical stability are lower than that for traditional asymptotical 

stability. By using this theorem, with the same conditions for Lyapunov function, 
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0V > , , as that in current scheme of adaptive chaos control, we not only 

obtain the adaptive control of chaotic systems but also prove that the estimated 

parameters approach the uncertain values. Traditional chaos control is limited for 

the same system. This method enlarges the function of chaos control. We can 

control a chaotic system to a given chaotic or nonchaotic system.  

0V ≤
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Appendix 
 

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY  
2 db ERROR FROM    = 10–2 TO 102 rad/sec ω

                 4 3 2

0.1 5 4 3 2

1 220.4 5004 503 234.5 0.484
359.8 5742 4247 147.7 0.2099

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                 

                

4 3 2

0.2 5 4 3 2

1 60.95 816.9 582.8 23.24 0.04934
134 956.5 383.5 8.953 0.01821

s s s s
s s s s s s

+ + + +
≈

+ + + + +
 4 3 2

0.3 5 4 3 2

1 23.76 224.9 129.1 4.733 0.01052
64.51 252.2 63.61 1.104 0.002267

s s s s
s s s s s s

+ + + +
≈

+ + + + +
 

                

 
                

                

                

4 3 2

0.4 5 4 3 2

1 25 558.5 664.2 44.15 0.1562
125.6 840.6 317.2 7.428 0.02343

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.5 5 4 3 2

1 15.97 593.2 1080 135.4 1
134.3 1072 543.4 20.1 0.1259

s s s s
s s s s s s

+ + + +
≈

+ + + + + 
4 3 2

0.6 5 4 3 2

1 8.579 255.6 405.3 35.93 0.1696
94.22 472.9 134.8 2.639 0.009882

s s s s
s s s s s s

+ + + +
≈

+ + + + + 
4 3 2

0.7 5 4 3 2

1 4.406 177.6 209.6 9.179 0.0145
88.12 279.2 33.3 1.927 0.0002276

s s s s
s s s s s s

+ + + +
≈

+ + + + + 
                3 2

0.8 4 3 2

1 5.235 1453 5306 254.9
658.1 5700 658.2 1

s s s
s s s s s

+ + +
≈

+ + + +

                 2

0.9 3 2

1 1.766 38.27 4.914
36.15 7.789 0.01

s s
s s s s

+ +
≈

+ + +
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