
 Chapter 4                             

Chaos control and synchronization of double 

Mackey-Glass system by noise excitation of 

parameters 

In this Chapter, the parameter excited method is applied to control chaos of a 

double Mackey-Glass system and to synchronize two uncoupled identical double 

Mackey-Glass systems. By replacing a parameter of the chaotic system by a noise 

signal, its chaotic motion can be eliminated. By replacing the corresponding 

parameters of two identical chaotic systems by a noise signal, these two chaotic 

systems with different initial conditions can be synchronized. 

4.1 Chaos control and synchronization for uncoupled double Mackey-Glass 

system by parameter excited method 

We consider a double Mackey-Glass system as follow:  

    

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−
+

=

−
+

=

12
2

2
2

1
1

1
1

1

1

xrx
x

bxx

rx
x

bxx

n

n

τ

τ

τ

τ

                                          (4.1) 

where , are state variables and 1x 2x )( ττ −= txx ii , )2,1( =i , τ  is a time delay, 

and , b r ,  are constant parameter. We keep the delay time fixed at 20 second 

(

n

20=τ ) and the parameters are taken as 2.0=b , 1.0=r , 10=n . The initial values 

are given as . With these data, the equilibrium point (0,0,0) of Eq. 

(4.1) is unstable and leads to chaotic motion. The bifurcation diagram is shown in Fig. 

2.2 of Chapter 2. By replacing a parameter by a noise signal, the chaotic motion can 

be eliminated and the equilibrium point becomes asymptotically stable. 

)1.0,1.0(),( 2010 =xx

 30



Next, a second identical double Mackey-Glass system is given by 
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where the parameters and time delay τ  are the same as Eq. (4.1) but with different 

initial values . We use the parameter excited method to 

synchronize these two identical double Mackey-Glass chaotic systems with different 

initial conditions. By replacing the corresponding parameters of these two chaotic 

systems by a noise signal, the synchronizations are achieved successfully in major 

cases. 

)2.0,2.0(),( 2010 =yy

4.2 Numerical simulations of chaos control 

In Sections 4.2 and 4.3, the numerical simulations which carried out by Simulink 

environment of MATLAB are presented. The corresponding parameter is replaced by 

Gaussian noise, Rayleigh noise, Rician noise and uniform noise respectively and the 

noise strength is adjustable. With suitable noise strengths, the chaotic motions of 

double Mackey-Glass system can be eliminated, and the motions converge to zero. 

4.2.1 Gaussian noise 

The noise that has a probability density function (PDF) of the normal distribution 

22 2)(

2
1)( σμ

σπ
−−= xexf                                         (4.3) 

is called Gaussian distributed noise, where μ  is the mean and  is the variance of 

the random variable. The Simulink Communication toolbox provides the Gaussian 

noise generator block. In our case, we take the mean as 0 and the variance as 1. 

Therefore, 

2σ

μ  is a constant vector and  is a constant matrix. K

Parameter  and parameter b r  of Eq. (4.1) are substituted respectively by 

 where  is Gaussian noise and  is the noise strength. When  is 11Fp 1F 1p b

 31



replaced, the chaotic behavior is suppressed and the system is asymptotically stable at 

the origin as . Fig 4.1 shows the time histories of the variables  and  

with noise strength . When 

6.01 <p 1x 2x

5.01 =p r  is replaced, the trajectories gradually increase 

unbounded when  and chaotic behavior cannot eliminated with any noise 

strength. 

5.01 >p

 4.2.2 Rayleigh noise 

The probability density function of Rayleigh distributed noise is 
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where  is known as the 2σ fading envelope of the Rayleigh distribution. The 

Simulink Communication toolbox provides the Rayleigh noise generator block. We 

specify 1=σ  in the case. 

    Parameter r  of Eq. (4.1) is substituted by  where  is Rayleigh noise 

and  is the noise strength. The chaotic motion of the system can be eliminated 

when . In other words, noise excitation of parameters makes the double 

Mackey-Glass system asymptotically stable at the origin. The time histories of the 

variables  and  with noise strength 0.2 are shown in Fig. 4.2. 

22Fp 2F

2p

165.02 ≥p

1x 2x

 4.2.3 Rician noise 

The probability density function of Rician distributed noise is 
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where σ  is the standard deviation of the Gaussian distribution that underlies the 

Rician distribution noise,  is the modified 0th-order Bessel function of the first 

kind given by 

0I
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And  is defined as  where  and  are the mean values of 

two independent Gaussian components. The Simulink Communication toolbox 

provides the Rician noise generator block. We assign that 

m 222
QI mmm += Im Qm

1=σ  and K-factor 2 in 

the case, which the K-factor has a definition as a form of 22 2σmK = . 

    Parameter r  of Eq. (4.1) is substituted by  where  is Rician noise and 

 is the noise strength. The chaotic motion of the system can be eliminated as 

. Numerical simulation, illustrated in Fig. 4.3, shows that the motion is 

asymptotically stabilized to the equilibrium point (0,0,0) by the noise excitation 

method with noise strength . 

33Fp 3F

3p

08.03 >p

1.03 =p

 4.2.4 Uniform noise 

The probability density function of uniform distributed noise is  
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The mean value of this density function μ  and its variance σ  are given as follow: 

2
dc +

=μ                                                     (4.8) 

12
)( 2

2 cd −
=σ                                                  (4.9) 

The Simulink Communication toolbox provides the Rician noise generator block. We 

specify lower bound  and upper bound 0=c 1=d  in the case. 

    Parameter r  of Eq. (4.1) is substituted by  where  is uniform noise 

and  is the noise strength. When , the chaotic motion can be eliminated 

and the system is asymptotically stable at the origin. Fig. 4.4 illustrates the time 

44Fp 4F

4p 4.04 >p
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histories of the states of the system with noise strength 5.04 =p . 

4.3 Numerical simulations of chaos synchronizations 

In this section, we use the parameter excited method by replacing the 

corresponding parameters by Gaussian noise, Rayleigh noise, Rician noise and 

uniform noise respectively, to synchronize two uncoupled double Mackey-Glass 

systems. The system parameter b and r are substituted by noise respectively and the 

noise strength is variable. The error states which are defined as iii yxe −= ,  

will converge to zero as  when the strength is chosen properly. The results of 

simulations show that the synchronizations are successfully achieved via parameter 

excited method in major cases. 

)2,1( =i

∞→t

 4.3.1 Gaussian noise 

We replace two corresponding parameters  and two corresponding parameters b

r  of the systems (4.1) and (4.2) by  respectively where  is Gaussian noise 

and  is the noise strength. When  is replaced, the trajectory of the states 

converge to zero with . When the strength is increased, the error states 

oscillate. However, in a small range of 0.61~0.625, the systems show temporary chaos 

synchronization. Fig. 4.5 shows error  and the time histories of the state 

variables with noise strength . As 

11Fp 1F

1p b

6.01 <p

21,ee

625.01 =p r  is replaced, the trajectory of the states 

gradually increase unbounded when the strength is larger than 0.5. In other words, 

Gaussian noise excitation can be used only when the noise strength  to 

synchronize two identical double Mackey-Glass systems with different initial 

conditions. Fig. 4.6 shows error  and the time histories of the state variables 

with noise strength . 

5.01 <p

21,ee

05.01 =p

 4.3.2 Rayleigh noise 

We replace two corresponding parameters  and two corresponding parameters b
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r  of the systems (4.1) and (4.2) by  respectively where  is Rayleigh noise 

and  is the noise strength. The synchronizations are successfully achieved in both 

cases. When  is replaced, we assume that the noise strength  

22Fp 2F

2p

b

ip 25.02 = ,                                         (4.10) 50,...,2,1=i

Fig. 4.7 shows the result of the simulation. We find that the synchronizations of two 

double Mackey-Glass systems are achieved with major noise strength, but failed with 

minor cases. Fig. 4.8 and Fig. 4.9 show the error states and the phase portraits of the 

systems with 5.02 =p  and 25.92 =p . The error states approach to zero in the 

former case, but not in the latter case. However, if we choose the strength 

appropriately, the chaos synchronizations are accomplished. 

    When two corresponding r  are substituted, only a small interval of the noise 

strength  leads to synchronization. Error ,  and the phase 

portraits of the systems with 

16.0105.0 2 ≤≤ p 1e 2e

16.02 =p  are shown in Fig. 4.10. Besides, in a small 

range of 0.08~0.1, the systems show temporary chaos synchronization. Fig. 4.11 

shows error  and the time histories of the state variables with noise 

strength . For the values of other than these ranges, chaos 

synchronization cannot be obtained. 

21,ee

08.02 =p 2p

 4.3.3 Rician noise 

We replace two corresponding parameter  and two corresponding parameters b

r  of the system (4.1) and (4.2) with  respectively where  is Rician noise 

and  is the noise strength. In the case of , we assume that the noise strength  

33Fp 3F

3p b

ip 25.03 = ,                                         (4.11) 50,...,2,1=i

As shown in Fig. 4.12, the Rician noise is more effective than Rayleigh noise. In the 

range of , the synchronization is achieved except  takes 1.25, 5.1225.0 3 ≤≤ p 3p
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4.75, 11.25, 12 and 12.25. Fig. 4.13 shows the error states and the phase portraits of 

the systems with noise strength 53 =p . 

    In the case of r , synchronization is obtained only when 08.006.0 3 ≤≤ p . Error 

,  and the phase portraits of the systems with noise strength  are 

given in Fig. 4.14. The error states oscillate when 

1e 2e 07.03 =p

06.03 <p  and the state variables 

of the system converge to zero as . Chaos synchronization cannot obtain 

for the values of other than 0.105~0.16. 

08.03 >p

2p

 4.3.4 Uniform noise 

We replace two corresponding parameters  and two corresponding parameters  b

r  of the system (4.1) and (4.2) by  respectively where  is uniform noise 

and  is the noise strength. In the case of , we assume that the noise strength  

44Fp 4F

4p b

ip 25.03 = ,                                         (4.13) 50,...,2,1=i

As shown in Fig. 4.15, the synchronization is achieved except for a few  in the 

range of . Fig. 4.16 shows the error states and the phase portraits of 

the systems with noise strength 

4p

5.1225.0 4 ≤≤ p

25.104 =p . 

In the case of r , synchronization is obtained only when . Error 

,  and the phase portraits of the systems with noise strength  are 

given in Fig. 4.17. The error states oscillate while 

4.026.0 4 ≤≤ p

1e 2e 27.04 =p

26.04 <p  and the states of the 

system converge to zero as . Two systems cannot be synchronized with the 

values of the noise strength other than 0.26~0.4. 

4.04 >p
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