Chapter 5
Robust chaos lag synchronization of d ouble
M ackey-Glass system by noise excitation of

parameters

In this Chapter, the lag synchronization of two uncoupled double Mackey -Glass
systems is achieved via the parameter excited method. This method is accomplished
by replacing the corresponding parameters of the systems with two lag noise signals.
By means of the difference of the timing between two replacements for the first
system and the second system, the lag synchronization can be obtained.

5.1 Lag synchronization of double Mackey-Glass system by parameter excited
method

We consider a double Mackey -Glass system described by

— ler _
Xl 1+ Xj'_l 1X1
bx (5.2)
X, = —Z——1,X, —
2 1+ Xgr 2732 kxl
and a second identical double Mackey-Glass system described by
: b
Y= ylrn -y
l+ ylr
b (5.2
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where X, X, VY,, Y, are state variables and x_. =x(t-t), Y. =V (t-1)
(i=12), v isatime delay, and b, r, r,, n, k are constant parameters. The
parameters and the time delay are chosen as follows: b=0.2, r,=r,=0.1, n=10,
k=1and t=20. The initial values are given as (X;,X,)=(0.10.1) and

(ylo’ yzo) = (0-210-2) .
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The lag synchronization is obtained by using the control scheme called
parameter excited method. The designated parameter is replaced by a Rayleigh noise
signal, but there exist a time difference between two replacements for the first system
and for the second system. The parameter of the first system is substituted by a noise
at t=0sec, and the parameter of the second system is substituted by the noise at
t =dsec. In other words, the control schemes do not work sy nchronously for these
two systems. The illustrations will show that the system (1) and system (2) arein lag
synchronization.

5.2 Numerical smulation results of lag synchronizations

All simulations are carried out by Simulink environment of MATLAB. By
replacing the corresponding parameter b, r,, r, or k by a Rayleigh noise signal
respectively, lag synchronizations of two_uncoupled double Mackey -Glass systems
can be achieved with appropriate noise. strengths. Errors are defined as
e(t) =x(t) -y, (t+d), e(t) =X, (t)=Y{t+d)., where d is the lag of the states of
the second system lag behind the states of the first system and also the time difference
of the control schemes acting on these two systems. In our study, d is kept a constant,
d=30. e and e, will converge to zero as t — c and the lag synchronization is
obtained.

Firstly, two corresponding parameters b of systems (1) and (2) are replaced by
pN where N is a Rayleigh noise and p is the noise strength. In this case, we
take the noise strength

p=0.25, i=12,..,50 (5.3
The simulation results are shown in Fig. 5.1. It isfound that the lag synchronization is
successfully achieved with most noise strengths. Fig. 5.2 shows the error states e,
e, and the time histories of x,y (i=212) with noise strength p=11. Lag
synchronization is accomplished when t>4000sec. It is noted that some lag
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synchronizations need more time (>30000sec). For instance, in Fig. 5.3, when the
noise strength istaken as p = 8.5, the error states converge to zero at t > 37500sec.

Then the corresponding parameters r, and r, arereplaced by a Rayleigh noise
signal pN where p isthe noise strength. When the noise strength is in the range
of 0.105< p<0.16, the lag synchronization is obtained. Error e, e, and the time
histories of the state variables with noise strength p=0.15 are givenin Fig. 5.4. As
p > 0.165, the state variables of the system (5.1) and (5.2) approach zero and Fig. 5.5
shows the time histories of x, V(i =12) with noise strength p=0.165. No lag
synchronization is found in the rest range of the noise strength.

Next, we replace two corresponding parameters r, and k of the systems (5.1)
and (5.2) by pN where N isaRayleighnoiscand p isthe noise strength. Asthe
noise strength in the range of  0.02< p<0.05 and 0.105< p<0.16, the lag
synchronization can be accomplished: Fig. 5.6.and Fig. 5.7 show the error states and
the time histories of the states vari ablesof twa systems with noise strengths p = 0.03
and p = 0.12respectively. When the noise strength p is taken between two foregoing
ranges, 0.05< p < 0.105, a phenomenon called temporary lag synchronization (TLS)
is found. Fig. 5.8 shows the error states and the time histories of the state variables
with p=0.103. When the noise strength decreases as p < 0.01, the error state e
converge to zero and the lag synchronization for x, and vy, is achieved. However,
the error state e, is chaotic and the lag synchronization for x, and y,can not be
obtained. This phenomenon is caled partial lag synchronization. The error states
e, e, and the time histories of x;,y, are shown in Fig. 5.9. When the noise strength
increases to p > 0.16, the trajectories of x,y, approach to zero and the difference
between x, and Yy,is chaotic. The error states e, e, and the time histories of x,, Yy,
are shownin Fig. 5.10.

In order to verify the robustness of lag synchronization, a small disturbance
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e(x, —y,)cost isadded in two double Mackey-Glass systems:

X, = 12)(2,1 — 1, +&(X — y,)cost
% 1?52; B

and
V.= %_rlyl +¢(x, —Y,)cost
Y2 ZJ?—;T;—rz)’z—kyl

(5.4)

(5.5)

where ¢ isasmall number which is taken as 10™°. The lag synchronization is

accomplished as well via the parameter excited met hod. In the case of replacing b,

Fig. 5.11 and Fig. 5.12 show the error states and the time histories of the state

variables of systems (5.4) and (5.5) with:different noise strengths. One can find that

the error states approach to zer o.in the caseéwith, p=8.5 and the lag synchronization

is obtain temporarily in the case with p =5.25 "which is defined as temporary lag

synchronization (TLS). In the casesof replacing r,,r, and r,k, Figs. 5.13 and 5.14

indicate that the error states practically| approach zero which

imply that lag

synchronization by parameter excited method is robust in the presence of small

disturbances.
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Fig. 5.1 Two corresponding parameters b are substituted by a Rayleigh noise with

different noise strengths.
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Fig. 5.2 The error states and the time histories of x,x, (red) and v,,y, (blue) of
the double Mackey-Glass systems when two corresponding parameters b are

substituted by a Rayleigh noise with noise strength p =11.
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Fig. 5.3 The error states and the time’histories of x,%, (red) and y,,y, (blue) of

the double Mackey-Glass systems when«two corresponding parameters b are
substituted by a Rayleigh noise'with noise strength 'p.= 8.5.
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Fig. 5.4 The error states and the time histories of x,x, (red) and y,,y, (blue) of

the double Mackey-Glass systems when two corresponding parameters r are
substituted by a Rayleigh noise with noise strength p =0.15.
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Fig. 5.5 Chaos control by parameter excited method. The time historiesof x,x, (red)

x 10

and vy,Yy, (blue) of the double Mackey-Glass system when parameter r is

substituted by a uniform noise withnoise stréngth p=0.165.
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Fig. 5.6 The error states and the time histories of x,x, (red) and v,,y, (blue) of
the double Mackey-Glass systems when two corresponding parameters r, and k

are substituted by a Rayleigh noise with noise strength p = 0.03.
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Fig. 5.7 The error states and the time histories of x,x, (red) and vy,,y, (blue) of

the double Mackey-Glass systemsiwhen two corresponding parameters r, and k
are substituted by a Rayleigh noise withinoise strength p=0.12.
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Fig. 5.8 Temporary lag synchronization. The error states and the time histories of
X, X, (red) and y,,Yy, (blue) of the double Mackey-Glass systems when the two
corresponding parameters r, and k are substituted by a Rayleigh noise with noise
strength p=0.103.
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Fig. 5.9 Partial lag synchronization. T he error states and the time histories of x, (red)
and vy, (blue) of the double Mackey-Glass systems when the two corresponding
parameters r, and k are substitutéd byva Rayleigh noise with noise strength

p=0.005.
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Fig. 5.10 Partial chaos control by parameter excited method. The error states and the
time histories of x, (red) and vy, (blue) of the double Mackey-Glass systems when
the two corresponding parameters r, and k are substituted by a Rayleigh noise

with noise strength p =1.
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Fig. 5.11 The error states and the time histories of x,x, (red) and vy,,y, (blue)

when the two corresponding parameters b are substituted by a Rayleigh noise with
noise strength p =85 in presence of asmall disturbance.
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Fig. 5.12 The eror states and the time histories of x,x, (red) and v,,y, (blue)

when the two corresponding parameters b are substituted by a Rayleigh noise with
noise strength p =5.25 in presence of asmall disturbance.
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Fig. 5.13 The error states and the time hiStories of x,x, (red) and vy, y, (blue)

when the two corresponding parameterssrare substituted by a Rayleigh noise with
noise strength p =0.15 in presence of a:small disturbance.
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Fig. 5.14 The eror states and the time histories of x,x, (red) and v,,y, (blue)
when the two corresponding parameters r, and k are substituted by a Rayleigh

noise with noise strength p =0.03 in presence of asmall disturbance.
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