CONTENTS

ABSRACT		i
ACKNOW	LEDGMENT	iv
CONTENT	S	v
LIST OF T	ABLES	vii
	IGURES	
Chapter 1	Introduction	1
Chapter 2	Chaos in Integral and Fractional Order Double Mackey-Glass Systems	5
2.1	Chaos in integral order double Mackey-Glass system	5
2.2	Definition and approximation of fractional order operator	6
2.3	The results of numerical simulations for fractional order systems	7
Chapter 3	Temporary Lag and Anticipated Synchronization and	
	Anti-Synchronization of Uncoupled Double Mackey-Glass Syste	ems
	E November 1	19
3.1	Temporary lag and anticipated synchronization and temporary lag ar	nd
	anticipated anti-synchronization of uncoupled time-delayed chaotic	
	systems	19
3.2	The lag and anticipated synchronization of two identical double	
	Mackey-Glass systems	20
3.3	The lag and anticipated anti-synchronization of two identical double	
	Mackey-Glass systems	23
Chapter 4	Chaos Control and Synchronization of Double Mackey-Glass	
	System by Noise Excitation of Parameters	30
4.1	Chaos control and synchronization for uncoupled double Mackey -G	lass
	system by parameter excited method	30
4.2	Numerical simulations of chaos control	31
	4.2.1 Gaussian noise	31
	4.2.2 Rayleigh noise	32
	4.2.3 Rician noise	32
	4.2.4 Uniform noise	33
4.3	Numerical simulations of chaos synchronizations	33
	4.3.1 Gaussian noise	34

	4.3.2	Rayleigh noise	34
	4.3.3	Rician noise	35
	4.3.4	Uniform noise	36
Chapter 5	Robu	st Chaos Lag Synchronization of Double Mackey-G	lass System
	by No	oise Excitation of Parameters	46
5.1	Lag sy	ynchronization of double Mackey-Glass system by para	meter
	excite	d method	46
5.2	Nume	erical simulation results of lag synchronizations	47
Chapter 6	Concl	lusions	57
References			59
Appendix	••••		67

LIST OF TABLES

Table I	Relation between orders of derivatives and existence of chaos.	8
Table II	The length of temporary lag (anticipated) synchronization and	22
	the lag (lead) of x_1 , x_2 to y_1 , y_2 .	
Table III	The lengths of the first time intervals of TLS and TAS where	22
	the initial values are varied from 0.00001 to 0.1.	
Table IV	The time histories of double Mackey-Glass system with	24
	negative initial values.	

LIST OF FIGURES

Figure 2.1	The phase portraits and the bifurcation diagram for Double	9
	Mackey-Glass system with order $q_1 = 1$ and $q_2 = 1$, $\tau_2 = 20$.	
Figure 2.2	The phase portraits and the bifurcation diagram for Double	10
	Mackey-Glass system with order $q_1 = 1$ and $q_2 = 1$.	
Figure 2.3	The phase portraits and the bifurcation diagram for Double	11
	Mackey-Glass system with order $q_1 = 1$ and $q_2 = 1$, $b_2 = 0.2$,	
	$r = 0.1, \ \tau_1 = \tau_2 = 20.$	
Figure 2.4	The phase portraits and the bifurcation diagram for Double	12
	Mackey-Glass system with order $q_1 = 0.9$ and $q_2 = 0.9$, $\tau_2 = 20$.	
Figure 2.5	The phase portraits and the bifurcation diagram for Double	13
	Mackey-Glass system with order $q_1 = 0.8$ and $q_2 = 0.8$, $\tau_2 = 20$.	
Figure 2.6	The phase portraits and the bifurcation diagram for Double	14
	Mackey-Glass system with order $q_1 = 0.1$ and $q_2 = 0.1$, $\tau_2 = 20$.	
Figure 2.7	The phase portraits and the bifurcation diagram for Double	15
	Mackey-Glass system with order $q_1 = 0.9$ and $q_2 = 0.9$.	
Figure 2.8	The phase portraits and the bifurcation diagram for Double	16
	Mackey-Glass system with order $q_1 = 0.8$ and $q_2 = 0.8$.	
Figure 2.9	The phase portraits and the bifurcation diagram for Double	17
	Mackey-Glass system with order $q_1 = 0.1$ and $q_2 = 0.1$.	
Figure 2.10	The phase portraits for Double Mackey-Glass system with order	18
	$q_1 = 0.7$ and $q_2 = 0.7$.	
Figure 2.11	The phase portraits for Double Mackey-Glass system with order	18
	$q_1 = 0.2$ and $q_2 = 0.2$.	
Figure 2.12	The phase portraits for Double Mackey-Glass system with order	18
	$q_1 = 0.5$ and $q_2 = 0.5$.	
Figure 3.1	(a)~(f) The time histories of x_1 (blue) and y_1 (red) and (g)~(l)	27
	error $e_1 = x_{1T_i} - y_1$ of double Mackey-Glass systems with initial	
	conditions $(x_{10}, x_{20}) = (0.001, 0.001), (y_{10}, y_{20}) = (0.0015, 0.0015)$	
Figure 3.2	The curve fitting of initial condition x_0 to the length of	28
	temporary lag or anticipated synchronization L_1 .	
Figure 3.3	The curve fitting of initial condition x_0 to the length of	28
	temporary lag or anticipated synchronization L_2 .	
Figure 3.4	(a)~(f) The time histories of x_1 (blue) and y_1 (red) and (g)~(l)	29
	error $e_1 = x_{1T_i} + y_1$ of double Mackey-Glass systems with initial	
	conditions $(x_{10}, x_{20}) = (-0.001, 0.001), (y_{10}, y_{20}) = (0.0015, 0.0015).$	
Figure 4.1	The time histories of r (red) and r (blue) of the double	37

	Mackey-Glass system when parameter b is substituted by a	
	Gaussian noise with noise strength $p_1 = 0.5$.	
Figure 4.2	The time histories of x_1 (red) and x_2 (blue) of the double	37
	Mackey-Glass system when parameter b is substituted by a	
	Rayleigh noise with noise strength $p_2 = 0.2$.	
Figure 4.3	The time histories of x_1 (red) and x_2 (blue) of the double	38
	Mackey-Glass system when parameter b is substituted by a	
	Rician noise with noise strength $p_3 = 0.1$.	
Figure 4.4	The time histories of x_1 (red) and x_2 (blue) of the double	38
	Mackey-Glass system when parameter b is substituted by a	
	uniform noise with noise strength $p_4 = 0.5$.	
Figure 4.5	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	39
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters r are substituted by a Gaussian noise	
	with noise strength $p_1 = 0.625$.	
Figure 4.6	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	39
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters r are substituted by a Gaussian noise	
	with noise strength $p_1 = 0.05$.	
Figure 4.7	Two corresponding parameters b are substituted by a Rayleigh	40
	noise with different noise strengths.	
Figure 4.8	The error states and the phase portraits of the double	40
	Mackey-Glass systems when two corresponding parameters b	
	are substituted by a Rayleigh noise with noise strength $p_2 = 0.5$.	
Figure 4.9	The error states and the phase portraits of the double	41
	Mackey-Glass systems when two corresponding parameters b	
	are substituted by a Rayleigh noise with noise strength $p_2 = 9.25$.	
Figure 4.10	The error states and the phase portraits of the double	41
	Mackey-Glass systems which two corresponding parameters r	
	are substituted by a Rayleigh noise with noise strength $p_2 = 0.16$.	
Figure 4.11	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	42
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters r are substituted by a Rayleigh noise	
	with noise strength $p_2 = 0.08$.	
Figure 4.12	Two corresponding parameters b are substituted by a Rician	42
	noise with different noise strengths.	
Figure 4.13	The error states and the phase portraits of the double	43
	Mackey-Glass systems when two corresponding parameters b	

Figure 4.14	The error states and the phase portraits of the double	43
	Mackey-Glass systems when two corresponding parameters r	
	are substituted by a Rician noise with noise strength $p_3 = 0.07$.	
Figure 4.15	Two corresponding parameters b are substituted by a Rician	44
	noise with different noise strengths.	
Figure 4.16	The error states and the phase portraits of the double	44
	Mackey-Glass systems when two corresponding parameters b	
	are substituted by a uniform noise with noise strength $p_4 = 10.25$.	
Figure 4.17	The error states and the phase portraits of the double	45
	Mackey-Glass systems when two corresponding parameters r	
	are substituted by a uniform noise with noise strength $p_4 = 0.27$.	
Figure 5.1	Two corresponding parameters b are substituted by a Rayleigh	50
	noise with different noise strengths.	
Figure 5.2	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	50
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters b are substituted by a Rayleigh noise	
	with noise strength $p = 11$.	
Figure 5.3	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	51
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters b are substituted by a Rayleigh noise	
	with noise strength $p = 8.5$.	
Figure 5.4	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	51
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters r are substituted by a Rayleigh noise	
	with noise strength $p = 0.15$.	
Figure 5.5	Chaos control by parameter excited method. The time histories of	52
	x_1, x_2 (red) and y_1, y_2 (blue) of the double Mackey-Glass system	
	when parameter r is substituted by a uniform noise with noise	
	strength $p = 0.165$.	
Figure 5.6	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	52
	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters r_1 and k are substituted by a	
	Rayleigh noise with noise strength $p = 0.03$.	
Figure 5.7	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	53
-	(blue) of the double Mackey-Glass systems when two	
	corresponding parameters r_1 and k are substituted by a	
	Rayleigh noise with noise strength $p = 0.12$.	

are substituted by a Rician noise with noise strength $p_3 = 5$.

Figure 5.8	Temporary lag synchronization. The error states and the time	53
	histories of x_1, x_2 (red) and y_1, y_2 (blue) of the double	
	Mackey-Glass systems when the two corresponding parameters r_1	
	and k are substituted by a Rayleigh noise with noise strength	
	p = 0.103.	
Figure 5.9	Partial lag synchronization. The error states and the time histories	54
	of x_1 (red) and y_1 (blue) of the double Mackey-Glass systems	
	when the two corresponding parameters r_1 and k are	
	substituted by a Rayleigh noise with noise strength $p = 0.005$.	
Figure 5.10	Partial chaos control by parameter excited method. The error states	54
	and the time histories of x_1 (red) and y_1 (blue) of the double	
	Mackey-Glass systems when the two corresponding parameters r_1	
	and k are substituted by a Rayleigh noise with noise strength	
	p=1.	
Figure 5.11	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	55
	(blue) when the two corresponding parameters b are substituted	
	by a Rayleigh noise with noise strength $p = 8.5$ in presence of a	
	small disturbance.	
Figure 5.12	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	55
	(blue) when the two corresponding parameters b are substituted	
	by a Rayleigh noise with noise strength $p = 5.25$ in presence of a	
	small disturbance.	
Figure 5.13	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	56
	(blue) when the two corresponding parameters r are substituted	
	by a Rayleigh noise with noise strength $p = 0.03$ in presence of a	
	small disturbance.	
Figure 5.14	The error states and the time histories of x_1, x_2 (red) and y_1, y_2	56
	(blue) when the two corresponding parameters r_i and k are	
	substituted by a Rayleigh noise with noise strength $p = 0.03$ in	
	presence of a small disturbance.	