## Chapter 3

# Temporary Lag and Anticipated Synchronization and Anti-Synchronization of Uncoupled Double 

## Mackey-Glass Systems

Without any control scheme and coupling terms, temporary lag or anticipated synchronization and the lag or anticipated anti-synchronization of double Mackey-Glass systems with small and similar initial conditions are discovered. When all initial conditions are positive, the lag synchronization is obtained. The negative initial values make the time history inverse and temporary lag anti-synchronization occurs. The phenomena both appear intermittently.
3.1 Temporary lag and anticipated synchronization and temporary lag and anticipated anti-synchronization of uncoupled time-delayed chaotic systems Consider the first time-delay chaotic system

$$
\begin{equation*}
\dot{x}=f\left(x, x_{\tau}, t\right) \tag{3.1}
\end{equation*}
$$

and second time-delay chaotic system

$$
\begin{equation*}
\dot{y}=f\left(y, y_{\tau}, t\right) \tag{3.2}
\end{equation*}
$$

where $x, y \in R^{n}$ are $n$-dimensional state vectors, $x_{\tau}=x(t-\tau), y_{\tau}=y(t-\tau)$ are corresponding time-delay state vectors, and $f: R^{n} \rightarrow R^{n}$ defines a vector function in $n$-dimensional space. The error are defined as $e=x(t-T)-y(t)$. If the following conditions hold, the systems are in temporary lag synchronization.

$$
\begin{equation*}
e_{i}=x_{i T_{j}}-y_{i}=0, \quad i=1,2, \ldots ., p \leq n, \quad j=1,2, \ldots, m \quad \text { for } t_{i T_{j 1}} \leq t \leq t_{i T_{j 2}} \tag{3.3}
\end{equation*}
$$

where $x_{i}, y_{i}$ are the state vectors of the system, $T_{j}$ is the time which $y_{i}$ lag
behind $x_{i}$ in the $j$-th intervals. When $T_{j}$ is negative, we have temporary anticipated synchronization.

In the case of anti-synchronization, the states of the systems which have opposite signs, the error $e=x(t-T)+y(t)$ will converge to zero. Therefore, we can say the temporary lag anti-synchronization is achieved when the following conditions are satisfied:

$$
\begin{equation*}
e_{i}=x_{i T_{j}}+y_{i}=0, \quad i=1,2, \ldots ., p \leq n, \quad j=1,2, \ldots ., m \quad \text { for } \quad t_{i T_{j 1}} \leq t \leq t_{i T_{j 2}} \tag{3.4}
\end{equation*}
$$

where $x_{i}, y_{i}$ are the state vectors of the system, $T_{j}$ is the time which $y_{i}$ lag behind $x_{i}$ in the $j$-th intervals. When $T_{j}$ is negative, we have temporary anticipated anti-synchronization.
3.2 The lag and anticipated synchronization of two id entical double

Mackey-Glass systems
We consider two double Mackey-Glass systems:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\frac{b x_{1 \tau}}{1+x_{1 \tau}^{n}}-r x_{1}  \tag{3.5}\\
\dot{x}_{2}=\frac{b x_{2 \tau}}{1+x_{2 \tau}^{n}}-r x_{2}-x_{1}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\dot{y}_{1}=\frac{b y_{1 \tau}}{1+y_{1 \tau}^{n}}-r y_{1}  \tag{3.6}\\
\dot{y}_{2}=\frac{b y_{2 \tau}}{1+y_{2 \tau}^{n}}-r y_{2}-y_{1}
\end{array}\right.
$$

The variables $x_{1}, x_{2}, y_{1}, y_{2}$ are the concentration of the mature blood cells in the blood, and $x_{1 \tau}, x_{2 \tau}, y_{1 \tau}, y_{2 \tau}$ are presented the request of the cells which is made after $\tau$ seconds, i.e. $x_{i \tau}=x_{i}(t-\tau), y_{i \tau}=y_{i}(t-\tau),(i=1,2)$. The time delay $\tau$ indicates the difference between the time of cellular production in the bone marrow and of the release of mature cells into the blood.

In our study, we keep the delay time fixed in 20 second $(\tau=20)$ and the parameters are shown as follow: $b=0.2, r=0.1$, and $n=10$. All the numerical simulations are implemented by Matlab. The initial conditions we choose are constant, i.e. the variable $x(t+\theta)$ maintains a constant for all $\theta \in(-\tau, 0)$.

Fig. 3.1 shows the time histories of double Mackey-Glass system with initial conditions $\left(x_{10}, x_{20}\right)=(0.001,0.001),\left(y_{10}, y_{20}\right)=(0.0015,0.0015)$ respectively. Because the similar characteristics exist for $x_{1}, y_{1}$ and for $x_{2}, y_{2}$, we only draw the time histories of $x_{1}, y_{1}$ (Fig. 3.1 (a) $\left.\sim(\mathrm{f})\right)$ and the time histories of error, $e_{1}=x_{1 T_{j}}-y_{1}$ (Fig. 3.1 (g)~(1)). From Fig. 3.1, the temporary lag and anticipated synchronizations appear intermittently. Anticipated synchronizations are more than lag synchronization. In Table II, we mârshal the length of the temporary lag (anticipated) synchronization and the lag (anticipated) of $x_{1}$ to $y_{1}$ and $x_{2}$ to $y_{2}$, which are varied in each intervals. There are two lag synchronous intervals and four anticipated synchronous intervals between 30000 seconds. Notice that the longest interval occur at the first interval, about 1200 seconds. Others are hundreds seconds long.

We also find the trend of decreasing the length of the temporary synchronization with increasing initial conditions. As the initial values increase, the time intervals for temporary lag or anticipated synchronization decrease. Table III show the lengths of the first time interval where the initial values are varied from 0.00001 to $0.1, L_{1}$ and $L_{2}$ indicate the length of first temporary synchronization of $x_{1}, y_{1}$ and of $x_{2}, y_{2}$, respectively. From the curve fitting presented in Fig. 3.2 and Fig. 3.3, the relations between $L_{1}, L_{2}$ and $x_{10}, x_{20}$ are obtained as follow:

$$
\begin{equation*}
L_{1}=-229.93 \ln \left(x_{10}\right)-262.06 \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2}=-229.88 \ln \left(x_{20}\right)-261.58 \tag{3.8}
\end{equation*}
$$

They are essentially identical.
Table II. The length of temporary lag (anticipated) synchronization and the lag (lead) of $x_{1}, x_{2}$ to $y_{1}, y_{2}$.


Table III. The lengths of the first time intervals of TLS and TAS where the initial values are varied from 0.00001 to 0.1 .

| Initial conditions <br> $\left(x_{10}=x_{20}, y_{10}=y_{20}\right)$ | $L_{1}$ | $L_{2}$ |
| :---: | :---: | :---: |
| $\left(10^{-5}, 1.5 \times 10^{-5}\right)$ | 2593 | 2593 |
| $\left(5 \times 10^{-5}, 7.5 \times 10^{-5}\right)$ | 1759 | 1759 |
| $\left(10^{-4}, 1.5 \times 10^{-4}\right)$ | 1683 | 1683 |
| $\left(5 \times 10^{-4}, 7.5 \times 10^{-4}\right)$ | 1806 | 1806 |
| $\left(10^{-3}, 1.5 \times 10^{-3}\right)$ | 1187 | 1186 |
| $\left(5 \times 10^{-3}, 7.5 \times 10^{-3}\right)$ | 843 | 843 |
| $(0.01,0.015)$ | 1031 | 1033 |
| $(0.05,0.075)$ | 382 | 382 |
| $(0.1,0.15)$ | 231 | 231 |

### 3.3 The lag and anticipated anti-synchronization of two identical double Mackey-Glass systems

In this section, we add one, two, three or four minus sign to the initial conditions, TLS and TLAS occur alternatively.

Table IV shows the results of the simulations. There are interesting phenomena. The minus sign makes the original time history inverse but with same magnitude, i.e. two time histories are symmetric to the abscissa. From Case 1~4, it is found that the inverse effect only appears when the initial condition $x_{10}$ or $y_{10}$ is negative. On the contrary, it does not work for $x_{20}$ and $y_{20}$. The trajectories of $x_{1}$ and $x_{2}$ are upside down as $x_{10}$ is negative, and the trajectories of $y_{1}$ and $y_{2}$ show the similar characteristics with negative $y_{10}$. In these two cases, the anticipated anti-synchronizations exist. Because the negative initial conditions $x_{20}, y_{20}$ have no influence on the systems, there are still anticipated synchronizations in Case 2 and 4. Case 5~9 show the results where there are two negative initial conditions at the same time. In Case 5 and 7, only the inverses of $x_{1}$ and $x_{2}$ occur, so two systems are in anticipated anti-synchronization. Case 6 and 9 maintain anticipated synchronization because both trajectories are opposite in the former case and no inversion exists in the latter case. Case 8 shows the anticipated anti-synchronization where the traject ory of $y_{1}$ and $y_{2}$ is reversed. Finally, the simulations where there are three and four negative initial values, are presented respectively. It is easy to know that Case 10 is the same as Case 6 and Case 11 and Case 1 are quite alike.

According to the symmetric relations between cases with negative initial conditions and the original cases, the lengths of the lag anti-synchronizations and the lags of $y_{1}$ to $x_{1}$ are all invariant, just as that in Table II which is listed in Section 3.2.

Table IV. The time histories of double Mackey -Glass system with negative initial values.

| Case | Initial conditions $\left(x_{10}, x_{20}\right),\left(y_{10}, y_{20}\right)$ | $x_{1}$ : blue, $y_{1}$ : red | $x_{2}$ : blue, $y_{2}$ : red |
| :---: | :---: | :---: | :---: |
| 0 | $\begin{gathered} (0.001,0.001), \\ (0.0015,0.0015) \end{gathered}$ | $\underbrace{20.0}_{0}$ |  |
|  |  | Anticipated synchronization | Anticipated synchronization |
| 1 | $\begin{aligned} & (-0.001,0.001), \\ & (0.0015,0.0015) \end{aligned}$ |  |  |
|  |  | §Anticipated anti-synchronization | Anticipated anti-synchronization |
| 2 | $\begin{aligned} & (0.001,-0.001), \\ & (0.0015,0.0015) \end{aligned}$ |  |  |
|  |  | Anticipated synchronization | Anticipated synchronization |
| 3 | $\begin{gathered} (0.001,0.001) \\ (-0.0015,0.0015) \end{gathered}$ |  |  |
|  |  | Anticipated anti-synchronization | Anticipated anti-synchronization |


| 4 | $\begin{aligned} & (0.001,0.001) \\ & (0.0015,-0.0015) \end{aligned}$ | - |  |
| :---: | :---: | :---: | :---: |
|  |  | Anticipated synchronization | Anticipated synchronization |
| 5 | $\begin{gathered} (-0.001,-0.001), \\ (0.0015,0.0015) \end{gathered}$ |  |  |
|  |  | Anticipated anti-synchronization | Anticipated anti-synchronization |
| 6 | $\begin{gathered} (-0.001,0.001), \\ (-0.0015,0.0015) \end{gathered}$ |  |  |
|  |  | Anticipated synchronization | Anticipated synchronization |
| 7 | $\begin{gathered} (-0.001,0.001), \\ (0.0015,-0.0015) \end{gathered}$ |  |  |
|  |  | Anticipated anti-synchronization | Anticipated anti-synchronization |
| 8 | $\begin{aligned} & (0.001,-0.001), \\ & (-0.0015,0.0015) \end{aligned}$ |  |  |
|  |  | Anticipated anti-synchronization | Anticipated anti-synchronization |


| 9 | $\begin{aligned} & (0.001,-0.001), \\ & (0.0015,-0.0015) \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
|  |  | Anticipated synchronization | Anticipated synchronization |
| 10 | $\begin{aligned} & (-0.001,-0.001), \\ & (-0.0015,0.0015) \end{aligned}$ |  |  |
|  |  | Anticipated synchronization | Anticipated synchronization |
| 11 | $\begin{aligned} & (-0.001,-0.001), \\ & (0.0015,-0.0015) \end{aligned}$ |  |  |
|  |  | Anticipated anti-synchronization | Anticipated anti-synchronization |
| 12 | $\begin{gathered} (-0.001,-0.001) \\ (-0.0015,-0.0015) \end{gathered}$ |  |  |
|  |  | Anticipated synchronization | Anticipated synchronization |

The time histories and the time histories of error $e_{1}=x_{1 T_{j}}+y_{1}$ with initial conditions $\left(x_{10}, y_{10}\right)=(-0.001,0.001),\left(x_{20}, y_{20}\right)=(0.0015,0.0015)$ are shown in Fig. 3.4. Comparing with Fig. 3.1, nothing is changed except the inverse of $x_{1}$ and $y_{1}$.


Fig. 3.1 (a) $\sim(\mathrm{f})$ The time histories of $x_{1}$ (blue) and $y_{1}$ (red) and (g)~(l) error $e_{1}=x_{1 T_{j}}-y_{1}$ of double Mackey-Glass systems with initial conditions $\left(x_{10}, x_{20}\right)=$ $(0.001,0.001), \quad\left(y_{10}, y_{20}\right)=(0.0015,0.0015)$.


Fig. 3.2 The curve fitting of initial condition $x_{0}$, to the length of temporary lag or



Fig. 3.3 The curve fitting of initial condition $x_{0}$ to the length of temporary lag or anticipated synchronization $L_{2}$.


Fig. 3.4 (a)~(f) The time histories of $x_{1}$ (blue) and $y_{1}$ (red) and (g)~(l) error $e_{1}=x_{1 T_{j}}+y_{1}$ of double Mackey-Glass systems with initial conditions $\left(x_{10}, x_{20}\right)=(-0.001,0.001),\left(y_{10}, y_{20}\right)=(0.0015,0.0015)$.

