
Chapter 1 

Introduction 
Chaotic systems have been a focal point of renewed interest for many researchers 

in the past few decades. Such nonlinear systems can occur in various natural and 

man-made systems, and are known to have great sensitivity to initial conditions [1].  

Besides the theoretical interest in the analysis of such nonlinear systems, there is 

another dimension to that interest; namely, utilizing such systems for useful practical 

applications [2-13]. Many researchers have devoted themselves to finding new ways 

to control chaos more efficiently [14-17]. Chaotic phenomena are quite useful in 

many applications such as fluid mixing [18], human brain dynamics [19], and heart 

beat regulation [20], information processing, etc. Therefore, making a periodic 

dynamical system chaotic, or preserving chaos of a chaotic dynamical system, is very 

meaningful and worthy to be investigated [21,22]. 

Fractional calculus is a 300-year-old mathematical topic [23-26]. Although it has 

a long history, for many years it was not used in physics and engineering. However, 

during the last 10 years or so, fractional calculus starts to attract increasing attention 

of physicists and engineers from an application point of view [27,28]. It was found 

that many systems in interdisciplinary fields can be elegantly described with the help 

of fractional derivatives. Many systems are known to display fractional-order 

dynamics, such as viscoelastic systems [29], dielectric polarization [30], 

electrode–electrolyte polarization [31], electromagnetic waves [32], quantitative 

finance [33], and quantum evolution of complex systems [34]. 

There are few investigations about delay system with fractional order. In this 

proposal, chaos in new integral and fractional order double Ikeda delay systems is 
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studied. A double Ikeda delay system consists of two traditional Ikeda delay systems 

which are coupled together. Numerical simulations display the chaotic behaviors of 

the integral and fractional order delay systems by phase portraits, Poincaré maps and 

bifurcation diagrams. 

Since the pioneering work was given by Pecorra and Carroll [35], chaos 

synchronization [36-41] has become an important topic in engineering science. Many 

effective control schemes have been developed in a variety of fields, such as 

parameters adaptive control [42-49], observer-based control [50, 51], variable 

structure control [52, 53], active control [54-58], anti-control [59-63], nonlinear 

control [64-66] and so on. The applications of chaos synchronization are implemented 

extensively in secure communications, chemical, physical, and biological systems and 

neural networks. 

    Recently, the concept of synchronization has been extended the scope to, such as 

generalized synchronization, lag and anticipated synchronization, phase 

synchronization and anti-synchronization. The basic synchronization called complete 

synchronization is that the state vectors of the first system  is equal to the state 

vectors of the second system : 

)(tx

)(ty )()( txty = . The lag synchronization [67] is that 

the state vector of the second system y  delays that of driver system x : 

with positive )()( Ttxty −= T . If T  is negative, we have anticipated 

synchronization. Lag anti-synchronization [68] means )()( Ttxty −−= . When T  is 

negative, we have anticipated anti-synchronization. 

Time-delayed systems are ubiquitous in nature, technology, and society because 

of finite signal transmission times, switching speeds, and memory effects [69]. 

Therefore the study of chaos synchronization in these systems is of considerable 

practical significance. It is well known that dissipative systems with a nonlinear 

time-delayed feedback or ‘‘memory’’ can produce chaotic dynamics, and the 
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dimension of their chaotic attractors can be made arbitrarily large by increasing their 

delay time sufficiently. Thus time-delay systems are good candidates for secure 

communications based on chaos synchronization [70].  

This thesis is organized as follows. Chapter 2 gives the dynamic equation of 

double Ikeda system. The fractional derivative and its approximation are introduced. 

The system under study is described both in its integer and fractional forms. 

Numerical simulation results are presented. 

In Chapter 3, it is discovered that lag synchronization and lag 

anti-synchronization appear for two identical double Ikeda systems, without any 

control scheme or coupling terms, but with different initial conditions. 

In Chapter 4, the chaotic behaviors of double Ikeda systems are obtained by 

replacing the original constant delay time by a function of chaotic state variable of a 

second chaotic double Ikeda system. Numerical simulations are illustrated by phase 

portraits. Phase portrait is expressed by numerical analysis.  

In Chapter 5, the chaotic behaviors of double Ikeda systems are obtained by 

replacing the parameters by different chaotic state variables of a third chaotic double 

Ikeda system. The method is named parameter excited method for synchronization 

which will be successfully used for uncoupled synchronization. Numerical 

simulations are illustrated by phase portraits and time histories.  

In Chapter 6, conclusions are drawn. 
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Chapter 2 

Chaos in Integral and Fractional Order 

Double Ikeda Systems 

2.1 Preliminaries 

In this Chapter, the chaotic behaviors in integral and fractional order double 

Ikeda systems are studied numerically by phase portraits, Poincaré maps and 

bifurcation diagrams. It is found that chaos exists for all systems with total orders of 

derivatives from 2 to 0.2. 

2.2 Fractional Derivative and Its Approximation  

The idea of fractional integrals and derivatives has been known since the 

development of the regular calculus, with the first reference probably being associated 

with Leibniz in 1695 [71]. 

Two commonly used definitions for the general fractional differintegral are the 

Grunwald definition and the Riemann-Liouville definition. The latter is given here 
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By considering the initial conditions to be zero, this formula reduces to the more 

 4



expected and comforting form 

{ )()( tfLs
dt

tfdL q
q
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⎭
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⎨
⎧ }                                         (2.3) 

and the fractional integral of order q can be described as qs
sF 1)( =  in the frequency 

domain. 

The standard definitions of the fractional differintegral do not allow direct 

implementation of the operator in time domain simulations of complicated systems 

with fractional elements. Using the standard integer order operators to approximate 

the fractional operators is an effective method to analyze such systems. 

The approximation approach taken here is to approximate the system behavior in 

the frequency domain [72]. By utilizing frequency domain techniques based in Bode 

diagrams, one can obtain a linear approximation of a fractional order integrator. Thus 

an approximation of any desired accuracy over any frequency band can be achieved. 

Table I of Ref. [73] gives approximations for qs
1  with 9.0~1.0=q  in steps of 0.1 

with errors of approximately 2 dB from  to  rad/s. These 

approximations will be used in the following numerical simulations. 

210−=ω 210

2.3 Integral and Fractional Order Double Ikeda Systems 

The traditional Ikeda system is 

    sinx ax b xτ= − −                                           (2.4) 

where )( ττ −≡ txx with positive τ . x is the phase lag of the electric field across the 

resonator, and )( τ−tx  is the round trip time of the light in the resonator or feedback 

delay time in the coupled systems. 

In this paper, we consider a new delay system which consists of two coupled 

Ikeda systems, called double Ikeda system: 
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1

2

1 1

2 2

sin sin

sin

x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                                   (2.5) 

where , , ,  and c are constants. and the delay times of x and y can be 

represented as 

1a 2a 1b 2b

1τ  and 2τ , respectively. The chaotic behaviors are also changed when 

the time delays are varied.  

Now, consider a fractional order modified Double Ikeda system. Here, the 

conventional derivatives in Eq.(2.5) are replaced by the fractional derivatives as 

follows: 

1

11

2

22

1 1

2 2

sin sin

sin

q

q

q

q

d x a x b x c y
dt
d y a y b y
dt

τ

τ

⎧
= − − −⎪⎪

⎨
⎪ = − −⎪⎩

                                 (2.6) 

where  are two fractional order numbers. 21 ,qq

In this paper, we analyse and present simulation results of the chaotic dynamics 

produced from a new fractional Double Ikeda system as the fractional order 

derivatives  in the state equations of Eq. (2.6) is varied from 1 to 0.1. 21 ,qq

2.4 Simulation Results 

We vary the derivative orders  and the system parameter c. Other system 

parameters are fixed, which are given as:

21,qq

1 1a = , 2 15a = , 1 2 20b b= = , 1τ = 2τ =2. 

The numerical simulations are carried out by MATLAB with using the fractional 

operator in table I of [73] in the Simulink environment. 

The phase portraits, Poincaré maps and bifurcation diagrams of the systems with 

total order of derivatives from 2~0.2 are showed in Fig.2.1~Fig.2.10. Chaos exists for 

all cases. The period 2 phase portraits in Fig.2.1(b), Fig.2.2(b), Fig.2.3(b) seems 

contradictory with the “four lines” bifurcations in Fig.2.1(d), Fig.2.2(d), Fig.2.3(d), 

respectively. Actually, the “four lines” are dotted lines, the corresponding two dotted 
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lines form a undotted line. Therefore period 2 motions also appear in Fig.2.1(d), 

Fig.2.2(d), Fig.2.3(d). 
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          (a) Period 1, c=151                               (b) Period 2, c=152 

 

 

y 
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(c) Chaos, c=157 
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(d) 
Fig. 2.1 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=151.2. The second bifurcation 
point c=151.7. The third bifurcation point c=155.7.  
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(a) Period 1, c=292                             (b) Period 2, c=294 
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x
(c) Chaos, c=291 
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                    (d) 

Fig. 2.2 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=292.9. The second 
bifurcation point c=293.8. The third bifurcation point c=297.1. The fourth bifurcation 
point c=299.2. 

1 0.9q = 2 0.9q =
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Fig. 2.3 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=411.4.  1 0.8q = 2 0.8q =
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Fig. 2.4 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=1256. The second 
bifurcation point c=512.  
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Fig. 2.5 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=1821. The second 
bifurcation point c=437. 
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Fig. 2.6 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=4316. The second 
bifurcation point c=334. 
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Fig. 2.7 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=211. 1 0.4q = 2 0.4q =
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Fig. 2.8 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=225. 1 0.3q = 2 0.3q =
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Fig. 2.9 The phase portraits and the bifurcation diagram for double Ikeda system with 
order  and . The first bifurcation point c=230. 1 0.2q = 2 0.2q =
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Fig. 2.10 The phase portraits and the bifurcation diagram for double Ikeda system 
with order  and . The first bifurcation point c=232. 1 0.1q = 2 0.1q =
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Chapter 3 

Lag and Anticipated Synchronization and 

Anti-synchronization of Two Uncoupled 

Time-delayed Chaotic Systems 

3.1 Preliminaries 

Lag and anticipated synchronization and lag and anticipated anti-synchronization 

are newly discovered in two identical double Ikeda systems with different initial 

conditions without any control scheme and coupling terms. There are two situations 

for all possible initial conditions. They are the lag or anticipated synchronization, the 

lag or anticipated anti-synchronization. 

 

3.2 Lag or anticipated synchronization and lag or anticipated 

anti-synchronization 

 

Consider the first time-delay chaotic system  

),,( txxfx τ=                                              (3.1) 

and second time-delay chaotic system 

),,( tyyfy τ=                                                     (3.2) 

where  are n-dimensional state vectors,nRyx ∈, )( ττ −= txx  are corresponding 

time-delay state vectors. The error are defined as )()( tyTtxe −−= . If the following 

conditions hold, the systems are in lag synchronization. 

0i iT ie x y= − =
i

,                                      (3.3) npi ≤= ,....,2,1
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where ,  are the state vectors of the system,  is the time which  lag 

behind . When  is negative, we have anticipated synchronization. 

ix iy iT ix

iy iT

In the case of anti-synchronization, the states of the systems which have opposite 

signs, the error )()( tyTtxe +−=  will converge to zero. Therefore, we can say the 

lag anti-synchronization is achieved when the following conditions are satisfied: 

0i iT ie x y= + =
i

1

,                                      (3.4) npi ≤= ,....,2,1

where ,  are the state vectors of the system,  is the time which  lag 

behind . When  is negative, we have anticipated anti-synchronization. 

ix iy iT ix

iy iT

 

3.3 The lag or anticipated synchronization of two identical double 

Ikeda systems 
 

    We consider two double Ikeda systems which consist of two coupled Ikeda 

equations: 

System A 

1

2

1 1 1 1 1

1 2 1 2 1

sin sin

sin

x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                                 (3.5) 

and system B 

1

2

2 1 2 1 2

2 2 2 2 2

sin sin

sin
2x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                                (3.6) 

with positive  and  1,2a 1,2b

This investigation is of considerable practical importance, as the equations of the class 

B lasers with feedback (typical representatives of class B are solid-state, 

semiconductor, and low pressure CO2 lasers [74]) can be reduced to an equation of 
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the Ikeda type [75].  

The Ikeda model was introduced to describe the dynamics of an optical bistable 

resonator, plays an important role in electronics and physiological studies and is 

well-known for delay-induced chaotic behavior [76,77,78,79]. Physically x is the 

phase lag of the electric field across the resonator;  is the relaxation coefficient for 

the driving x and driven y dynamical variables;  are the laser intensities injected 

into the driving and driven systems, respectively. 

a

1,2b

1,2τ  are the feedback delay times in 

the coupled systems. 

    We keep the delay time fixed in 2 second ( 2τ = ) and the parameters are shown 

as follows: ，  ，1 1a = 2 15a = 1 20b = ， 2 20b = ， 157c = . The system is chaotic in 

foregoing conditions as shown in Fig. 3.1. The numerical simulations are carried out 

by MATLAB, The initial conditions we choose are constant. 

    Fig.3.2 shows the time histories of double Ikeda system with initial conditions as 

follows in Table 1. Fig.3.2 (b) is the magnified diagram of Fig.3.2 (a). After 180 sec, 

state variables of system A become in lag synchronization with that of the system B. 

Lag of 1x  to 2x  is 0.14868 sec. And lag of  to  is 0.14868 sec. The situation 

remain unchanged until 20000 sec. From Fig. 3.2, we can see the lag synchronization 

in Case 1~8 by Table 3.1. From Fig.3.2 (b), state variables of system A is in lag 

synchronization with that of system B, or state variables of system B is in anticipated 

synchronization with that of system A. 

1y 2y

   

Table 3.1 The initial condition of lag or anticipated synchronization. 

Case 1x  1y  2x  2y  

1 1 1 0.000000001 0.000000001 

2 1 1 -0.000000001 0.000000001 
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3 1 -1 0.000000001 -0.000000001 

4 1 -1 -0.000000001 -0.000000001 

5 -1 1 0.000000001 0.000000001 

6 -1 1 -0.000000001 0.000000001 

7 -1 -1 0.000000001 -0.000000001 

8 -1 -1 -0.000000001 -0.000000001 

 

3.4 The lag or anticipated anti-synchronization of two identical 

double Ikeda systems 
 

    In this section, we change the initial conditions. The lag anti-synchronization is 

occurred. Fig.3.3 shows the time histories of double Ikeda system with initial 

conditions as follows in Table 3.2. Fig.3.3 (b) is the magnified diagram of Fig.3.3 (a). 

Fig.3.3 (c) is the time history of -  (blue) and 1x 2x  (red), - (blue) and (red) of 

double Ikeda systems. Lag of 

1y 2y

1x  to 2x  is 0.14868 sec. And lag of  to  is 

0.14868 sec. The situation remain unchanged until 20000 sec. From Fig. 3.3, we can 

see the lag synchronization in Case 9~16 by Table 2. From Fig.3.3 (b), state variables 

of system A is in lag anti-synchronization with that of system B, or state variables of 

system B is in anticipated anti-synchronization with that of system A. 

1y 2y

 

Table 3.2 The initial condition of lag or anticipated anti-synchronization. 

Case 1x  1y  2x  2y  

9 1 1 0.000000001 -0.000000001 

10 1 1 -0.000000001 -0.000000001 

11 1 -1 0.000000001 0.000000001 

12 1 -1 -0.000000001 0.000000001 
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13 -1 1 0.000000001 -0.000000001 

14 -1 1 -0.000000001 -0.000000001 

15 -1 -1 0.000000001 0.000000001 

16 -1 -1 -0.000000001 0.000000001 
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Fig. 3.1 The phase portraits diagram for double Ikeda system. 
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Fig.3.2 (a) The time histories of  (blue) and 1x 2x  (red), (blue) and (red) of 
double Ikeda systems with initial conditions in Table 3.1. 
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1 2,x x  
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1 2,y y
 

time (sec) 

Fig.3.2 (b) The time histories of  (blue) and 1x 2x  (red), (blue) and (red) of 
double Ikeda systems with initial conditions in Table 3.1. 

1y 2y
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Fig.3.3 (a) The time histories of  (blue) and 1x 2x  (red), (blue) and (red) of 
double Ikeda systems with initial conditions in Table 3.2. 

1y 2y
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1 2,y y
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Fig.3.3 (b) The time histories of  (blue) and 1x 2x  (red), (blue) and (red) of 
double Ikeda systems with initial conditions in Table 3.2. 
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1 2,x x−  
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1 2,y y−  
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Fig.3.3 (c) The time histories of -  (blue) and 1x 2x  (red), - (blue) and (red) of 
double Ikeda systems with initial conditions in Table 3.2. 

1y 2y
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Chapter 4 

Chaos and Chaotization of a Double Ikeda 

System by Chaotic Delay Time 

4.1 Preliminaries 

In this Chapter, the chaotization of a double Ikeda delay system by replacing the 

original constant delay time by a function of chaotic state variable of a second double 

Ikeda chaotic system. It is found that chaos exists for many cases. 

4.2 Chaos of a double Ikeda system 

According to Chapter 3, we consider two double Ikeda systems which consist of 

two coupled Ikeda equations: 

1

2

1 1 1 1 1

1 2 1 2 1

sin sin

sin
1x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                                (4.1) 

and 

1

2

2 1 2 1 2

2 2 2 2 2

sin sin

sin
2x a x b x d y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                               (4.2) 

The scheme is to replace the constant delay time 1τ  or 2τ  in system (4.1) by a 

function of a chaotic state of system (4.2).  

 

4.3 Chaotization scheme of a double Ikeda system by chaotic delay 

time 
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Creating chaos is called chaotization at times. The above replacements enhance 

the existing chaos of the originally system effectively. The results are demonstrated 

by numerical results. 

In order to induce chaotic phenomena of the double Ikeda system (4.1), 2p qx+  

and 2p qy+  replace the delay times in system (4.1) respectively, where p, q are 

constant. 

 

4.4 Numerical Simulations for Chaos and Chaotization by time delay 

driven by a chaotic signal 

 

In following simulations, we replace the delay time in system (4.1) by 2x  where 

2x  is a state variable in system (4.2). In our numerical simulations, , , 

, , , 

1 1a = 2 15a =

1 20b = 2 20b = 157c = 1 2 2sτ τ= =  of system (4.1) and (4.2) are fixed. The 

initial states of system (4.1) and (4.2) are 1(0) 1x = − , 1(0) 1y = − , , 

. The numerical simulations are carried out by MATLAB. 

2 (0) 1.1x = −

2 (0) 1.1y = −

Case 1 : The parameters , 1 1a = 2 15a = , 1 20b = , 2 20b = , 157c = , of 

system (4.1) and (4.2) are fixed. The delay time 

157d =

1τ  of system (4.1) is replaced by 

2200 x+ , where 2x  is the state variable of system (4.2). The phase portraits are 

shown in Fig. 4.1. The phase portrait with the original constant delay time is shown in 

Fig. 4.1(b) 

Case 2 : The parameters , 1 1a = 2 15a = , 1 20b = , 2 20b = , 157c = , of 

system (4.1) and (4.2) are fixed. The delay time 

157d =

2τ  of system (4.1) is replaced by 

2200 x+ , where 2x  is the state variable of system (4.2). The phase portraits are 

shown in Fig. 4.2. 

Case 3~4 : The delay times are changed by 2200 0.5x+ , the sequences which are 

similar to Case 1~2. The phase portraits are shown in Fig. 4.3~4.4. 
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Case 5~6 : The delay times are changed by 2200 0.612x+ , the sequences which are 

similar to Case 1~2. The phase portraits are shown in Fig. 4.5~4.6. 

In Case 2 and 4, it is not found that chaos exists. The time history are not 

conform the chaos. The time histories are shown in Fig. 4.7~4.8. 

For the chaotization, we replace the delay time in system (4.1) by a function of 

chaotic states of system (4.2). The system (4.1) is periodic and the system (4.2) is 

chaotic. 

Case 7 : The parameters ， 1 1a = 2 15a =  ， 1 20b = ， 2 20b = ， 151c =  of system (4.1)  

is fixed. And the parameters  of system (4.2), the others are the same .The 

delay time 

157d =

1τ  of system (4.1) is replaced by 2200 0.612x+ , where 2x  is the state 

variable of system (4.2). The phase portraits are shown in Fig. 4.9. The phase portrait 

that the state is periodic is shown in Fig. 4.9(b) 

Case 8 : The parameters ， 1 1a = 2 15a =  ， 1 20b = ， 2 20b = ， 151c =  of system (4.1)  

is fixed. And the parameters  of system (4.2), the others are the same .The 

delay time 

157d =

2τ  of system (4.1) is replaced by 2200 0.612x+ , where 2x  is the state 

variable of system (4.2). The phase portraits are shown in Fig. 4.10. 

Case 9~10 : The delay times are changed by 2200 0.1y+ , the sequences which are 

similar to Case 7~8. The phase portraits are shown in Fig. 4.11~4.12. 

In Case 10, no chaotization exists. The time histories are shown in Fig. 4.13. 
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(a)                               (b) 

Fig. 4.1 (a) The phase portrait, the delay time 1τ  of system (4.1) is replaced by 

2200 x+ . 
Fig. 4.1 (b) The phase portrait, the original constant delay time is fixed. 

 
Fig. 4.1 (c) It is the magnified diagram of Fig.4.1 (a). 
 

 

Fig. 4.2 The phase portrait, the delay time 2τ  of system (4.1) is replaced by 

2200 x+ . 
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Fig. 4.3 (a) The phase portrait, the delay time 1τ  of system (4.1) is replaced by 

2200 0.5x+ . 

 
Fig. 4.3 (b) It is the magnified diagram of Fig.4.3 (a). 
 

 
Fig. 4.4 The phase portrait, the delay time 2τ  of system (4.1) is replaced by 

2200 0.5x+ . 
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Fig. 4.5 (a) The phase portrait, the delay time 1τ  of system (4.1) is replaced by 

2200 0.612x+ . 

 
Fig. 4.5 (b) It is the magnified diagram of Fig.5 (a). 

 
Fig. 4.6 The phase portrait, the delay time 2τ  of system (4.1) is replaced by 

2200 0.612x+ . 
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Fig. 4.7 The time history when the delay time 2τ  of system (4.1) is replaced by 

2200 x+ . 

 

 
Fig. 4.8 The time history when the delay time 2τ  of system (4.1) is replaced by 

2200 0.5x+ . 
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                (a)                                (b) 

Fig. 4.9 (a) The phase portrait, the delay time 1τ  of system (4.1) is replaced by 

2200 0.612x+ . 
Fig. 4.9 (b) The phase portrait, the state is periodic.  

 
Fig. 4.9 (c) It is the magnified diagram of Fig.4.9 (a). 

 
Fig. 4.10 The phase portrait, the delay time 2τ  of system (4.1) is replaced by 

2200 0.612x+ . 
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Fig. 4.11 (a) The phase portrait, the delay time 1τ  of system (4.1) is replaced by 

. 2200 0.1y+

 
Fig. 4.11 (b) It is the magnified diagram of Fig.4.11 (a). 

 
Fig. 4.12 The phase portrait, the delay time 2τ  of system (4.1) is replaced by 

. 2200 0.1y+
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Fig. 4.13 The time history, the delay time 2τ  of system (4.1) is replaced by 

. 2200 0.1y+
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Chapter 5 

Robust Lag Chaos Synchronization, Lag Chaos 

Quasi-Synchronization and Chaos Control of 

Double Ikeda System by Uncoupled Parameter 

Excited Method 

5.1 Preliminaries 

In this chapter, lag synchronization, lag quasi-synchronization and chaos control 

of two uncoupled double Ikeda systems, are achieved by replacing the corresponding 

parameters of two systems by the chaotic state variables of a third chaotic system. It is 

named as parameter excited method for synchronization. Numerical simulations are 

illustrated by phase portraits, Poincaré maps and time histories. 

 

5.2 Lag Chaos Synchronization, Lag Chaos Quasi-Synchronization 

and Chaos Control with Parameters Replaced by Different Chaotic 

Signals 
 
In this section, consider three identical double Ikeda systems： 

1

2

1 1 1 1 1

1 2 1 2 1

sin sin

sin
1x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                                (5.1) 

and 
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1

2

2 1 2 1 2

2 2 2 2 2

sin sin

sin
2x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                               (5.2) 

and 

1

2

3 1 3 1 3

3 2 3 2 3

sin sin

sin
3x a x b x c y

y a y b y
τ

τ

= − − −⎧⎪
⎨ = − −⎪⎩

                               (5.3) 

The scheme is to replace the parameters ,  in system (5.1) and (5.2) by two 

different chaotic states of system (5.3), respectively. One replaces a parameter in 

system (5.1) by a chaotic state of system (5.3), and replaces the corresponding 

parameter in system (5.2) by the same chaotic state of system (5.3) with a delay time 

1b 2b

3τ . 

In following simulations, the parameter in system (5.1) is replaced by 3x  where 

3x  is a state variable in system (5.3). The parameter in system (5.2) is replaced by 

33 3 3( )x t x
τ

τ− = where 3τ  is a constant. In our numerical simulations, , , 

, , , 

1 1a = 2 15a =

1 20b = 2 20b = 157c = 1 2 2sτ τ= =  of system (5.1), (5.2) and (5.3) are fixed. 

The initial states of system (5.1), (5.2) and (5.3) are 1(0) 1x = − , , 

, , 

1(0) 1y = −

2 (0) 1.1x = − 2 (0) 1.1y = − 3(0) 1x = − , 3 (0) 1y = − . Chaotic phase portraits are 

shown in Fig. 5.1. The numerical simulations are carried out by MATLAB. 

The parameter  of system (5.1) is replaced by 1b 3x , and the parameter  of 

system (5.2) is replaced by 

1b

33x
τ

. 3τ =10, 50, 100 are used in simulation. The phase 

portraits, Poincaré maps and time histories are shown in Figs. 5.2~5.4. Fig.5.3 (d) is 

the magnified diagram of Fig.5.3 (b). Fig.5.3 (e) is the magnified diagram of Fig.5.3 

(c). Fig.5.4 (d) is the magnified diagram of Fig.5.4 (b). Fig.5.4 (e) is the magnified 

diagram of Fig.5.4 (c). 
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In these cases, we can find the lag quasi-synchronization between  and 1x 2x , 

and lag synchronization between  and . 1y 2y

Then the parameter  of system (5.1) is replaced by 2b 3y , and the parameter  

of system (5.2) is replaced by 

2b

33y
τ

, where 3τ =100. The phase portraits are shown in 

Fig. 5.5. In this case, by parameter excited method we successfully control 1x , 2x  to 

constants, and ,  to zero.  1y 2y

Parameter excited method for lag synchronization by replacements of ,  

and c has not been found effective. 

1a 2a

 

5.3 Robustness of Lag Chaos Synchronization 

In the section, noises are added to systems (5.1) and (5.2) as follows : 

1

2

1 1 1 1 1 1

1 2 1 2 1

sin sin

sin
1x a x b x c y kN

y a y b y
τ

τ

= − − − +⎧⎪
⎨ = − −⎪⎩

                          (5.4) 

and 

1

2

2 1 2 1 2 2

2 2 2 2 2

sin sin

sin
2x a x b x c y kN

y a y b y
τ

τ

= − − − +⎧⎪
⎨ = − −⎪⎩

                         (5.5) 

where k is strength constant, and  are different kinds of noise. 1 2,N N

Three kind of noise are used. There are Gaussian noise, Rayleigh noise, and 

Rician noise. 

The probability density function of n-dimensional Gaussian noise is 

)2/)()(exp()det)2(()( 12
1

μμπ −−−= −−
xKxKxf Tn                    (5.6) 

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the mean value 

vector, and the superscript T indicates matrix transpose. The Simulink 

Communications toolbox provides the Gaussian Noise Generator block. The initial 
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seed, the mean value and the variance in the simulation must be specified. We take 

the initial seed 41, the mean value 1 and the variance 1 in the simulation. 

The Rayleigh probability density function is given by 

 
⎪
⎩

⎪
⎨

⎧

<

≥=
−

00

0)(
2

2

2
2

x

xex
xf

x
σ

σ                                         (5.7) 

where  is known as the fading envelope of the Rayleigh distribution. The 

Simulink Communications toolbox provides the Rayleigh Noise Generator block. The 

initial seed and the sigma parameter in the simulation must be specified. We specify 

the initial seed 47 and the sigma parameter 1 in the simulation. 

2σ

The Rician probability density function is given by 

 
⎪
⎩

⎪
⎨

⎧

<

≥=

+
−

00

0)()(
2

22

2
202

x

xemxIx
xf

mx
σ

σσ                                 (5.8) 

where σ is the standard deviation of the Gaussian distribution that underlies the 

Rician distribution noise, , where  and  are the mean values 

of two independent Gaussian components, and  is the modified 0th-order Bessel 

function of the first kind given by   

222
QI mmm += Im Qm

0I

∫
−

=
π

ππ
dteyI ty cos

0 2
1)(                                             (5.9) 

Note that m and σ  are not the mean value and standard deviation for the Rician 

noise. The Simulink Communications toolbox provides the Rician Noise Generator 

block. The initial seed, Rician K-factor and the sigma parameter must be specified in 

the simulation. We specify the initial seed 59, Rician K-factor 2 and the sigma 

parameter 1 in the simulation. 

External terms ,  are added to systems of (5.4) and (5.5), where , 1kN 2kN 1N
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2N  are the Gaussian noise and Rayleigh noise, respectively. In addition, the 

parameter  of system (5.4) is replaced by 1b 3x , and the parameter  of system 

(5.5) by 

1b

33x
τ

 where 3τ =10. k=1, k=50 are used. For k=1, as shown in Fig. 5.6, 

robustness of lag synchronization of , and of lag quasi-synchronization of 1y 2y 1x , 

2x  is satisfactory. For k=50, as shown in Fig. 5.7, robustness of lag synchronization 

of ,  is still satisfactory, but robustness of the lag quasi-synchronization of 1y 2y 1x , 

2x  is lost. 

Lastly, external terms ,  are added to the systems of (5.4) and (5.5), 

where ,  are the Gaussian noise and Rician noise, respectively. The parameter 

 of system (5.4) is replaced by 

1kN 2kN

1N 2N

1b 3x , and the parameter  of system (5.5) by 1b

33x
τ

where  3τ =10. k=1, k=30 are used. For k=1, as shown in Fig. 5.8, robustness of 

lag synchronization of , and of lag quasi-synchronization of 1y 2y 1x , 2x  is 

satisfactory. For k=30, as shown in Fig. 5.9, robustness of lag synchronization of , 

 is still satisfactory, but robustness of the lag quasi-synchronization of 

1y

2y 1x , 2x  is 

lost. 
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Fig. 5.1 The phase portraits for systems (5.1) and (5.2).  

 
(a)  
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1 2,x x

time (sec) 

(b)  
 

 

1 2,y y

time (sec) 

                               (c) 

Fig. 5.2 (a) The phase portraits, 3τ =10. (b) The time histories of  (blue) and 1x 2x  

(red), 3τ =10. (c) The time histories of  (blue) and  (red), 1y 2y 3τ =10. 
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(a)  

 

1 2,x x

time (sec) 

(b)  
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1 2,y y

time (sec) 

                               (c) 

 

1 2,x x

time (sec) 

                             (d) 
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1 2,y y

time (sec) 

                            (e) 

Fig. 5.3 (a) The phase portraits, 3τ =50. (b) The time histories of  (blue) and 1x 2x  

(red), 3τ =50. (c) The time histories of  (blue) and  (red), 1y 2y 3τ =50. (d) Magnified 

diagram of (b). (e) Magnified diagram of (c). 
 

 
(a)  
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1 2,x x

time (sec) 

(b)  

 

1 2,y y

time (sec) 

(c) 
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1 2,x x

time (sec) 

                             (d) 

 

1 2,y y

time (sec) 

                               (e) 

Fig. 5.4 (a) The phase portraits, 3τ =100. (b) The time histories of  (blue) and 1x 2x  

(red), 3τ =100. (c) The time histories of  (blue) and  (red), 1y 2y 3τ =100. (d) 

Magnified diagram of (b). (e) Magnified diagram of (c). 
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Fig. 5.5 The phase portraits, 3τ =100.  
 
 
 

 
(a)  

 

1 2,x x

time (sec) 
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(b) 

 

1 2,y y

time (sec) 

(c)  

Fig. 5.6 (a) The phase portraits, 3τ =10 and k=1. (b) The time histories of  (blue) and 1x

2x  (red), 3τ =10 and k=1. (c) The time histories of  (blue) and  (red), 1y 2y 3τ =10 

and k=1. 

 
(a)  
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1 2,x x

time (sec) 

(b)  

 

1 2,y y

time (sec) 

(c)  

Fig. 5.7 (a) The phase portraits, 3τ =10 and k=50. (b) The time histories of  (blue) 

and 

1x

2x  (red), 3τ =10 and k=50. (c) The time histories of  (blue) and  (red), 1y 2y

3τ =10 and k=50. 
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(a)  

 

1 2,x x

time (sec) 

(b)  
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1 2,y y

time (sec) 

(c) 

Fig. 5.8 (a) The phase portraits, 3τ =10 and k=1. (b) The time histories of  (blue) and 1x

2x  (red), 3τ =10 and k=1. (c) The time histories of  (blue) and  (red), 1y 2y 3τ =10 

and k=1. 

 
 (a)  
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1 2,x x

time (sec) 

(b)  

 

1 2,y y

time (sec) 

(c) 

Fig. 5.9 (a) The phase portraits, 3τ =10 and k=30. (b) The time histories of  (blue) 

and 

1x

2x  (red), 3τ =10 and k=30. (c) The time histories of  (blue) and  (red), 1y 2y

3τ =10 and k=30. 
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Chapter 6 

Conclusions 
In this thesis, we have studied the chaos in the integral and fractional order 

double Ikeda systems by phase portraits, Poincaré maps and bifurcation diagrams. In 

Chapter 2, the chaos in integral and fractional order double Ikeda systems with total 

order of derivatives from 2 to 0.2 are studied by phase portraits, Poincaré maps and 

bifurcation diagrams. It is found that chaos exists in all cases. 

In Chapter 3, lag or anticipated synchronization and the lag or anticipated 

anti-synchronization of two double Ikeda systems with different initial conditions are 

discovered. Cases 1~8 are the lag or anticipated synchronizations. Cases 9~16 are the 

lag or anticipated anti-synchronizations. 

    In Chapter 4, the chaotic behaviors of double Ikeda systems are obtained by 

replacing their delay time by a function of chaotic state variables of a second chaotic 

system. It is found that chaos exists for Case 1, 3, 5, 6. The chaotization of a double 

Ikeda system is studied by using a function of state variable of a second identical 

system to replace the delay time of the first system. It is found that in Case 7, 8, 9, 

chaotization exists.  

In Chapter 5, robust lag chaos synchronization, lag quasi-synchronization and 

chaos control of two uncoupled double Ikeda system, are achieved by replacing the 

corresponding parameters of two systems by different chaotic state variables of a third 

chaotic system. Robustness of synchronization is studied by addition of various noises. 

The results are satisfactory. 

 57



 

References 

 

[1] Koliopanos, Ch.L.; Kyprianidis, I.M.; Stouboulos, I.N.; Anagnostopoulos, A.N.; 

Magafas, L. “Chaotic behaviour of a fourth-order autonomous electric circuit”.  

Chaos, Solitons & Fractals 2003;16:173-82. 

[2] Lu, Jun Guo “Synchronization of a class of fractional-order chaotic systems via a 

scalar transmitted signal”. Chaos, Solitons & Fractals 2006;27:519-25. 

[3] Lu, Jun Guo “Chaotic dynamics and synchronization of fractional-order 
Arneodo_s systems”. Chaos, Solitons & Fractals 2005;26:1125-33. 

[4] Gao, Xin; Yu, Juebang “Synchronization of two coupled fractional-order chaotic 

oscillators”. Chaos, Solitons & Fractals 2005;26:141-5. 

[5] Ge, Zheng-Ming; Lee, Ching-I “Control, anticontrol and synchronization of chaos 

for an autonomous rotational machine system with time-delay”. Chaos, Solitons 

& Fractals 2005;23:1855-64. 

[6] Ge, Zheng-Ming; Chen, Yen-Sheng “Adaptive synchronization of unidirectional 

and mutual coupled chaotic systems”. Chaos, Solitons & Fractals 2005;26:881-8. 

[7] Ge, Zheng-Ming; Chen, Yen-Sheng “Synchronization of unidirectional coupled 

chaotic systems via partial stability”. Chaos, Solitons & Fractals 2004;21:101-11. 

[8] Ge, Zheng-Ming; Chen, Chien-Cheng “Phase synchronization of coupled chaotic 

multiple time scales systems”. Chaos, Solitons & Fractals 2004;20:639-47. 

[9] Ge, Zheng-Ming; Lee, Ching-I “Anticontrol and synchronization of chaos for an 

autonomous rotational machine system with a hexagonal centrifugal governor”.  

Journal of Sound and Vibration 2005;282:635-48. 

[10] Zheng-Ming Ge, Chan-Yi Ou "Chaos in a fractional order modified Duffing 

 58



system", Chaos, Solitons and Fractals, in press. 

[11] Zheng-Ming Ge, Chang-Xian Yi " Chaos in a nonlinear damped Mathieu System, 

in a nano Resonator system and in its fractional order systems", Solitons and 

Fractals, in press. 

[12] Zheng-Ming Ge, Mao-Yuan Hsu " Chaos in a generalized van der Pol system and 

in its fractional order system", Chaos, Solitons and Fractals, in press. 

[13] Zheng-Ming Ge, An-Ray Zhang "Chaos in a modified van der Pol system and in 

its fractional order systems", Chaos, Solitons and Fractals, in press. 

[14] Ahmad, Wajdi M. “Generation and control of multi-scroll chaotic attractors in 

fractional order systems”. Chaos, Solitons & Fractals 2005;25:727-35. 

[15]  Gao, Xin; Yu, Juebang “Chaos in the fractional order periodically forced 
complex Duffing_s oscillators”. Chaos, Solitons & Fractals 2005;24: 1097-104. 

[16] Ahmad, Wajdi M.; Harb, Ahmad M. “On nonlinear control design for 

autonomous chaotic systems of integer and fractional orders”. Chaos, Solitons & 

Fractals 2003;18:693-701. 

[17] Nimmo, Stuart; Evans, Allan K. “The Effects of Continuously Varying the 

Fractional Differential Order of Chaotic Nonlinear Systems”. Chaos, Solitons & 

Fractals 1999;10:1111-8. 

[18] J. M. Ottino et al., “Chaos, Symmetry, and Self-Similarity: Exploiting Order and 

Disorder in Mixing Process”, Science, Vol. 257, pp. 754-760(1992). 

[19]  S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto, 

“Controlling Chaos in the Brain”, Nature, Vol. 370, pp. 615-620(1994). 

[20]  M. E. Brandt and G. Chen, “Bifurcation Control of Two Nonlinear Models of 

Cardiac Activity”, IEEE Trans. Circuits Syst., Vol. 44, pp. 1031-1034(1997). 

[21] Al-Assaf, Yousef; El-Khazali, Reyad; Ahmad, Wajdi “Identification of fractional 

chaotic system parameters”. Chaos, Solitons & Fractals 2004;22:897-905. 

 59



[22] Ahmad, Wajdi M.; El-Khazali, Reyad; Al-Assaf, Yousef pp. “Stabilization of 

generalized fractional order chaotic systems using state feedback control”.  

Chaos, Solitons & Fractals 2004;22:141-50. 

[23] He, G.L.; Zhou, S.P. “What is the exact condition for fractional integrals and 

derivatives of Besicovitch functions to have exact box dimension?” Chaos, 

Solitons & Fractals 2005;26:867-79. 

[24] Yao, K.; Su, W.Y.; Zhou, S.P. “On the connection between the order of fractional 

calculus and the dimensions of a fractal function”. Chaos, Solitons & Fractals 

2005;23: 621-9. 

[25] Jumarie, Guy “Fractional master equation: non-standard analysis and 

Liouville–Riemann derivative”. Chaos, Solitons & Fractals 2001;12: 2577-87. 

[26] Elwakil, S. A.; Zahran, M. A. “Fractional Integral Representation of Master 

Equation”. Chaos, Solitons & Fractals 1999;10: 1545-8. 

[27] Podlubny I. “Fractional differential equations”. New York: Academic Press; 

1999. 

[28] Hilfer R, editor. “Applications of fractional calculus in physics”. New Jersey: 

World Scientific; 2001. 

[29] Bagley RL, Calico RA. “Fractional order state equations for the control of 

viscoelastically damped structures”. J Guid Contr Dyn 1991;14:304–11. 

[30] Sun HH, Abdelwahad AA, Onaral B. “Linear approximation of transfer function 

with a pole of fractional order”. IEEE Trans Automat Contr 1984;29:441–4. 

[31] Ichise M, Nagayanagi Y, Kojima T. “An analog simulation of noninteger order 

transfer functions for analysis of electrode process”. J Electroanal Chem 

1971;33:253–65. 

[32] Heaviside O. “Electromagnetic theory”. New York: Chelsea; 1971. 

[33] Laskin N. “Fractional market dynamics”. Physica A 2000;287:482–92. 

 60



[34] Kusnezov D, Bulgac A, Dang GD. “Quantum levy processes and fractional 

kinetics”. Phys Rev Lett 1999;82:1136–9. 

[35] Pecora, L.M. and Carroll, T.L., “Synchronization in chaotic systems”,Phys. Rev. 

Lett. 64:821–4;1990. 

[36] Chen H.-K. “Synchronization of two different chaotic systems: a new system and 

each of the dynamical systems Lorenz, Chen and Lü”, Chaos, Solitons and 

Fractals Vol. 25; 1049-56, 2005. 

[37] Chen H.-K. and Lin T.-N. “Synchronization of chaotic symmetric gyros by 

one-way coupling conditions”, ImechE Part C: Journal of Mechanical Engineering 

Science Vol. 217; 331-40, 2003. 

[38] Chen H.-K. “Chaos and chaos synchronization of a symmetric gyro with 

linear-plus-cubic damping”, Journal of Sound & Vibration, Vol. 255; 

719-40,2002. 

[39] Ge Z.-M., Yu T.-C., and Chen Y.-S. “Chaos synchronization of a horizontal 

platform system”, Journal of Sound and Vibration 731-49, 2003. 

[40] Ge Z.-M. and Lin T.-N. “Chaos, chaos control and synchronization of 

electro-mechanical gyrostat system”, Journal of Sound and Vibration Vol. 259; 

No.3, 2003. 

[41] Ge Z.-M., Lin C.-C. and Chen Y.-S. “Chaos, chaos control and synchronization 

of vibromrter system”, Journal of Mechanical Engineering Science Vol. 218; 

1001-20, 2004. 

[42] Awad El-Gohary and Rizk Yassen “Adaptive control and synchronization of a 

coupled dynamo system with uncertain parameters” 

[43] Yang Y., Ma X.-K and Zhang H. “Synchronization and parameter identification 

of high-dimensional discrete chaotic systems via parametric adaptive control”, 

Chaos, Solitons and Fractals 28; 244-251, 2006. 

 61



[44] Ge Z.-M., Tzen P.-C. and LeeS.-C. “Parametric analysis and fractal-like basins 

of attraction by modified interpolates cell mapping”, Journal of Sound and 

Vibration Vol. 253; No. 3, 2002. 

[45] Ge Z.-M. and Lee S.-C. “Parameter used and accuracies obtain in MICM global 

analyses”, Journal of Sound and Vibration Vol. 272; 1079-85, 2004. 

[46] Ge Z.-M. and Leu W.-Y. “Chaos synchronization and parameter identification 

for loudspeaker system” Chaos, Solitons and Fractals Vol. 21; 1231-47, 2004. 

[47] Ge Z.-M. and Chang C.-M. “Chaos synchronization and parameter identification 

for single time scale brushless DC motor”, Chaos, Solitons and Fractals Vol. 20; 

889-903, 2004. 

[48] Ge Z.-M. and Lee J.-K. “Chaos synchronization and parameter identification for 

gyroscope system”, Applied Mathematics and Computation, Vol. 63; 667-82, 

2004. 

[49] Ge Z.-M. and Cheng J.-W. “Chaos synchronization and parameter identification 

of three time scales brushless DC motor”, Chaos, Solitons and Fractals Vol. 24; 

597-616, 2005. 

[50] Edouard, D., Dufour, P. and Hammouri, H. “Observer based multivariable 

control of a catalytic reverse flow reactor: comparison between LQR and MPC 

approaches “, Computers and Chemical Engineering 29; 851-865, 2005. 

[51] Ho H.-F., Wong Y.-K., Rad A.-B. and Lo W.-L. “State observer based indirect 

adaptive fuzzy tracking control”, Simulation Modelling Practice and Theory 13; 

646-63, 2005. 

[52] Xunhe, Yin, Yong, Ren and Xiuming, Shan “Synchronization of discrete 

spatiotemporal chaos by using variable structure control”, Chaos, Solitons & 

Fractals Vol. 14;1077-1082, 2002. 

[53] Wang Chun-Chieh and Su Juhng-Perng “A novel variable structure control 

 62



scheme for chaotic synchronization”, Chaos, Solitons & Fractals Vol. 2;275-287, 

2003. 

[54] Bai E.-W., Lonngren K.-E. “Sequential synchronization of two Lorenz systems 

using active control”, Chaos, Solitons & Fractals 7;1041-44, 2000. 

[55] Li Z., Han C.-Z. and Shi S.-J. “Modification for synchronization of Rossler and 

Chen chaotic systems”, Phys Lett A 3-4; 224-30, 2002. 

[56] Ho M.-C., Hung Y.-C. and Chou C.H. “Phase and anti-phase synchronization of 

two chaotic systems by using active control”, Phys Lett A 1; 43-48, 2002. 

[57] Yassen M.-T. “Chaos synchronization between two different chaotic systems 

using active control”, Chaos, Solitons & Fractals Vol. 23;153-158, 2005. 

[58] Agiza H.-N. and Yassen M.-T. “Synchronization of Rossler and Chen chaotic 

dynamical systems using active control”, Phys Lett A 278;191-197,2001. 

[59] Chen H.-K. and Lee C.-I “Anti-control of chaos in rigid body motion”, Chaos, 

Solitons and Fractals Vol. 21; 957-965, 2004. 

[60] Ge Z.-M. and Wu H.-W. “Chaos synchronization and chaos anticontrol of a 

suspended track with moving loads”, Journal of Sound and Vibration Vol. 270; 

685-712, 2004. 

[61] Ge Z.-M., Yu C.-Y. and Chen Y.-S. “Chaos synchronization and chaos 

anticontrol of a rotational supported simple pendulum”, JSME International 

Journal, Series C, Vol. 47; No. 1, 233-41, 2004. 

[62] Ge Z.-M. and Leu W.-Y. “Anti-control of chaos of two-degree-of-freedom 

louderspeaker system and chaos system of different order system”, Chaos, 

Solitons and Fractals Vol. 20; 503-21, 2004. 

[63] Ge Z.-M., Cheng J.-W. and Chen Y.-S. “Chaos anticontrol and synchronization 

of three time scales brushless DC motor system”, Chaos, Solitons and Fractals 

Vol. 22; 1165-82, 2004. 

 63



[64] Chen H.-K. “Global chaos synchronization of new chaotic systems via nonlinear 

control”, Chaos, Solitons & Fractals 4; 1245-51, 2005. 

[65] Park Ju-H. “Chaos synchronization of a chaotic system via nonlinear control”, 

Chaos, Solitons & Fractals Vol.23;153-158, 2005. 

[66] Huang L.-L., Feng R.-P. and Wang M. “Synchronization of chaotic systems via 

nonlinear control”, Phys Lett A 4 271-75, 2004. 

[67] Shahverdiev, E.M., Sivaprakasam, S., and Shore, K.A. “Lag synchronization in 

time-delayed systems”, Phys Lett A 292;320-324, 2002. 

[68] Li Guo-Hui and Zhou Shi-Ping “An observer-based anti-synchronization”, Chaos, 

Solitons and Fractals Vol. 29; 495-498, 2006. 

[69] Hale JK, Lunel SMV. “Introduction to functional differential equations”. New 

York: Springer; 1993. 

[70] Fischer I, Liu Y, Davis P. “Synchronization of chaotic semiconductor laser 

dynamics on subnanosecond time scales and its potential for chaos communication”. 

Phys Rev A 2000;62:011801(R). 

[71] K. B. Oldham and J. Spanier, “The Fractional Calculus . San Diego, 

CA: Academic”, 1974. 

[72] A. Charef, H. H. Sun, Y. Y. Tsao, and B. Onaral, “Fractal system as 

represented by singularity function,” IEEE Trans. Automat. Contr., vol. 

37, pp. 1465-1470, Sept. 1992. 

[73] Hartley, T.T., Lorenzo, C.F. and Qammer, H.K., “Chaos in a fractional order 

Chua’s system”, IEEE Trans CAS-I 1995;42:485–90. 

[74] Khanin YaI. Chaos 1996;6:373.  

[75] Arecchi FT, Giacomelli G, Lapucci A, Meucci R. Phys Rev A 1994;43:4997.  

[76] Voss HU. Phys Rev E 2000;61:5115.  

[77] Masoller C, Zanette DH. Physica A 2001;300:359.  

 64



[78] Shahverdiev EM, Sivaprakasam S, Shore KA. SPIE Proc: Phys Simulat 

Optoelectron Dev 2002;4646:653. 

[79] Shahverdiev EM, Sivaprakasam S, Shore KA. Phys Rev E 2002;66:017204.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 65



 

 

Appendix 

Table 1. FRACTIONAL OPERATORS WITH APPROXIMATELY  
2 db ERROR FROM    = 10–2 TO 102 rad/sec ω

                 4 3 2

0.1 5 4 3 2

1 220.4 5004 503 234.5 0.484
359.8 5742 4247 147.7 0.2099

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                

                

4 3 2

0.2 5 4 3 2

1 60.95 816.9 582.8 23.24 0.04934
134 956.5 383.5 8.953 0.01821

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.3 5 4 3 2

1 23.76 224.9 129.1 4.733 0.01052
64.51 252.2 63.61 1.104 0.002267

s s s s
s s s s s s

+ + + +
≈

+ + + + +

                

                

                

                

4 3 2

0.4 5 4 3 2

1 25 558.5 664.2 44.15 0.1562
125.6 840.6 317.2 7.428 0.02343

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.5 5 4 3 2

1 15.97 593.2 1080 135.4 1
134.3 1072 543.4 20.1 0.1259

s s s s
s s s s s s

+ + + +
≈

+ + + + +
4 3 2

0.6 5 4 3 2

1 8.579 255.6 405.3 35.93 0.1696
94.22 472.9 134.8 2.639 0.009882

s s s s
s s s s s s

+ + + +
≈

+ + + + +

4 3 2

0.7 5 4 3 2

1 4.406 177.6 209.6 9.179 0.0145
88.12 279.2 33.3 1.927 0.0002276

s s s s
s s s s s s

+ + + +
≈

+ + + + +
                3 2

0.8 4 3 2

1 5.235 1453 5306 254.9
658.1 5700 658.2 1

s s s
s s s s s

+ + +
≈

+ + + +

                2

0.9 3 2

1 1.766 38.27 4.914
36.15 7.789 0.01

s s
s s s s

+ +
≈

+ + +
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