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National Chiao Tung University

Abstract

This study aims to investigate the effect of fiber array on the mechanical
responses of fiber composites. Basically three different fiber arrays, i.e., square edge
packing (SEP), square diagonal packing (SDP), and hexagonal packing (HP), were
considered in the analysis. The sensitivities of thermal residual stress on the
nonlinear constitutive behaviors as well as the damping behaviors of the composites
with different fiber arrays were the focus of the research. The representative volume
element (RVE) containing fiber and matrix phase was employed to describe the
overall mechanical behaviors of fiber composites. For the fiber phase, it was
assumed to be a linear elastic material with low damping capacity, whereas the matrix
was a nonlinear material with high damping capacity. The generalized method of
cell (GMC) micromechanical model originally proposed by Paley and Aboudi [1] was
extended to include the thermal-mechanical behavior, from which the thermal residual
stress within the fiber and matrix phases was calculated. Through a numerical
iteration, the constitutive relations of the composites in the presence of residual stress

were established. Results show that for the composites with square edge packing,

il



the mechanical behaviors are affected appreciably by the thermal residual stress. On
the other hand, the composites with hexagonal packing and square diagonal packing
are relatively less sensitive to the thermal residual stress.

Regarding the damping behaviors of the composites, the RVE was subjected to a
simple loading (either axial or pure-shear loading), and the corresponding damping
properties of the fiber composites with respect to the material principal directions
were calculated from the GMC analysis together with the energy dissipation concept.
With the assistance of FEM analysis, the mode shapes of composite rod and plate
structures with vibration under free and clamp boundary conditions were determined.
In conjunction with the model shape and the damping properties, the damping
capacity of the composite structures constructed based on unidirectional composites
with different fiber arrays were calculated. It was found that, in both composite
structures, the square diagonal packing always exhibits better damping performance

rather than other two fiber arrangements at first three vibration modes.
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Chapter 1 Introduction
1.1 Research motivation

Fiber composites, because of their superior mechanical performances and light
weight properties, have been extensively employed in various applications. This
study aims to investigate the mechanical behaviors of fiber composites with three
different fiber arrays, i.e., square edge packing, square diagonal packing, and
hexagonal packing. The thermal-mechanical properties as well as the damping
behaviors of composites are the focus in the paper. It is well known that the micro
architecture of the fiber may influence the mechanical performance of the fiber
composites. However, the extent of the fiber effect on the behavior of composites
which are very crucial to composites design and application has not been studied
systematically. In this paper, the micromechanical analytical scheme was employed
to model the micromechanical structures of the fiber composites and the overall

properties based on different microstructures were discussed.

1.2 Paper review

In the manufacturing process, the fiber composites were usually cured at high
temperatures followed by the cooling stage to room temperature. During the cooling,
because of the mismatch in the coefficients of thermal expansion of the fiber and
matrix together with the mutual constraint effect, the thermal residual stress was
induced in the constituents. The magnitude of the residual stress relies on the
properties of the fiber and matrix as well as the associated microstructures of the fiber
composites, including the fiber shape and fiber packing arrangements. In addition,

the formation of residual stress may have influences on the constitutive behaviors of



the fiber composites, especially in the nonlinear range because the nonlinear behavior
is highly dependent on the stress states of the composites.

The constitutive behaviors of the composites with different fiber architectures
have been characterized by many researchers using either finite element analysis or
analytical micromechanical approach [2—7]. Sun and Vaidya [2] use the finite element
method to predict the elastic modulus for boron/aluminum by utilizing the periodic
boundary conditions which was the salient of the representative volume element
(RVE). Furthermore, Zhu and Sun [3] investigated the nonlinear behaviors of
AS4/PEEK composites with three different fiber arrays under off-axis loading using
finite element approach. It was found that the nonlinear behaviors of the composites
were quite sensitive to the fiber packing arrangement. The similar conclusions were
also addressed by Hsu et al. [4], who proposed an analytical micromechanical model
for simulating the nonlinearity of AS4/PEEK composites subjected to combined
transverse compression and shear loading. Orozco and Pindera [5] conducted a
micromechanical analysis using the GMC model on the two-phase composites with
randomly distributed fibers, indicating that as the number of the refined sub-cells in
the unit cell is increased, the behaviors of the composites tend to be that of a
transversely isotropic solid. The influences of fiber shape and fiber distribution on
the elastic/plastic behavior of metal matrix composites were examined by Pindera and
Bednarcyk [6] using the GMC micromechanical model. It was shown that the fiber
packing exhibits a substantially greater effect on the responses of the composite
materials than does the fiber shape. Pindera et al. [7] investigated the nonlinear
behaviors of the boron/aluminum composites subjected to tensile, compressive and
off-axis loadings. The thermal residual stress was considered in their analysis in
order to explain the differences of initial yielding in tension and compression. The

effect of residual stresses on yielding of SiC/Ti plates was also reported by Zhou et al.
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[8]. Aghdam et al. [9] accounts for residual stresses, off-axis orientation and the
interface condition between fiber and matrix on the constitutive behaviors of SiC/Ti
metal matrix composites. However, their analysis is limited to single fiber array
(square). A comprehensive review regarding the effect of fiber arrangement on the
elastic and inelastic responses of fiber composites was provided by Arnold et al. [10].
In light of the aforementioned investigations, it was suggested that the behaviors of
the fiber composites were mainly dominated by the fiber packing arrangements.
However, few studies concerning the influence of the residual stress arising from
curing associated with different fiber arrays on the performances of fiber composites
have been reported.

Regarding to the damping behaviors of fiber composites, Saravanos and Chamis
[11] used the unified micromechanical model to evaluate the damping property of
unidirectional fiber composites with off-axis loading. Hwang and Gibson [12]
utilized the finite element approach and the micromechanical strain energy to predict
the damping property of the fiber-matrix interphase effects. It was also indicated that
for the longitudinal, transverse and out of plane shear loading, material damping does
not change much even though the interphase size was increased. In the previous
review, most of the efforts were made to understand the basic damping properties of
composites from the constitutive behavior of the ingredient in conjunction with the
microstructure. However, the vibration damping responses of composite structures
built based on the unidirectional composites with different fiber arrays has not been
examined comprehensively so far. Although Kaliske and Rothert [13] utilized the
GMC model to find the longitudinal damping property of fiber composites and then
applied those damping properties to derive the structure modal damping capacity with
the different fiber orientation, the microstructure effect on the damping responses was

not discussed in their study.



1.3 Research approach

The outline of the thesis and the primary tasks of each chapter are addressed as
follows. For the unidirectional composites, the fibers in general are displayed
randomly within the matrix. To investigate the fiber array effect, three typical fiber
arrangements, i.e., square edge packing, square diagonal packing, and hexagonal
packing were assumed in our fiber composites. An appropriate RVE corresponding
to each fiber array was selected in the micromechanical analysis where the fiber was
considered to be linear elastic with low damping capacity, and the matrix was
assumed to be a nonlinear with high damping capacity. By using Aboudi’s GMC
micromechanical model [1], the incremental form of the constitutive relations of the
composites was established in terms of the constituent properties as well as the
geometry parameters of the RVE, from which the thermal residual stress within the
ingredients was calculated. After a numerical iteration, the corresponding stress and
strain relations of the composites in the presence of thermal residual stress subjected
to off-axis loading were generated. The results were compared to those calculated
from the composites without taking into account the thermal stress effect, which were
presented in Chapter 2.

In addition, the fundamental assumptions in the GMC micromechanical model
were examined and compared to the other micromechanical model. The stress and
strain curves calculated based on the different micromechanical models were also

discussed in Chapter 3.

Moreover, from the GMC micromechanical analysis, the stress-states within
each ingredient can be evaluated properly. Based on the results, the damping
capacity of the unidirectional composites with simple loading can be obtained using

energy dissipation concept. With the damping capacity of the unidirectional



composites with different fiber arrays, the vibration damping properties of the
composite structures can be calculated from the FEM analysis together with the
energy dissipation concept. All detail procedures and results were illustrated in

Chapter 4.

Finally, the conclusions of the thesis were summarized in the Chapter 5.



Chapter 2 Effect of fiber array on thermal-mechanical behaviors of fiber
composites

In micromechanical analysis the constitutive behavior of fiber composites relies
on the properties of fiber and matrix as well as the associated microstructure of fiber
composites. In this chapter, the thermal-mechanical behaviors of composites with
three different fiber arrangements will be compared. The generalized method of
cells (GMC) proposed by Paley and Aboudi [1] was adopted for the micromechanical
analysis in which the fiber is linear elastic and the matrix was treat as a nonlinear
material.  The organization of this chapter is outlined as following. The
generalized method of cell was introduced to characterize the mechanical properties
of the composites associated with their ingredient properties. Subsequently, the
constitutive model was developed based on the plasticity theory for describing the
nonlinear behaviors of matrix material. The thermal stresses generated in the fiber
composites were calculated using GMC model and their effect on the nonlinear

behavior of the composites were discussed.

2.1 Generalized method of cells (GMC)

In general, for the fiber composites, the fibers are arranged randomly in the
matrix. In order to model the composites using micromechanical approach, we have
to assume a certain fiber array within the matrix such that a representative volume
element (RVE) (see Fig. 2.1) can be selected properly to describe the mechanical

responses of the composites. In GMC analysis, the RVE was divided into several

rectangular subcells (By) with B=1,..,N; and y=1,..,N,. Depending on fiber

v

arrangement, each subcells indicates either fiber or matrix phase on the RVE. In Fig.

2.2, the area of subcell is equal to N1, and the fiber extends in the X, direction.



Assume that a local coordinate system (xl,i(f),ig”) was located at the center of

each subcell and the displacement was assumed to be a linear expansion in terms of

the distances from the center of subcell as

) = V'V(By)(xl, X,, X 3)+§(B)(p(l3v) +X( )\Vl(ﬁv) i=1,2,3 (2.1.1)

1

(By)

(®) s the displacement rates at the center of subcell. In addition, @,

where W,
and \i/i(BY) are variables that characterize the linear dependence of displacement rates

on the local coordinate system X", X{"’. In elasticity, the small strain rate tensor

1S written as

1. : .
ny = 5(5iu§“”+8jufﬁ”) ij=1,2,3 2.1.2)

where 6, =3/0x,,0, =9/ex?) and 6, =0/ex\), substituting Eq. (2.1.1) into Eq.

(2.1.2) and using the average formula, we derived the average strain rates in any

subcell (By) as

BY //2 B/2 BY
n hl jy/zj " dxPax() (2.1.3)

Eq. (2.1.3) can be written explicitly in terms of the displacement as



—@) _ O ()

=—W

Tlll aX] 1

%) =P

ﬁggv) — \ilgﬁv)

2ﬁ£§Y) — ('prv) n \'V(zﬁv) (2.1.4)
2780 = )+ 00

0X,

0
B — 56r) 4 w )
M2 0, %, 2

It should be noted that the interface displacement rate of neighboring subcells and

neighboring RVE must be continuous. This condition led to the following relation

a) N alf) s (2.1.5)
B0 | =l (2.1.6)
where [§ and y are defined by
~ [B+1, B<N
= 2.1.7
+1, y<N
V= ! Y_ ! (2.1.8)
1, y=N,

Paley and Aboudi imposed the continuity condition on an average sense as [1]



L b2 e <) = L2 6) <)
— Ly/zui oy O =[P R (2.1.9)
Substitution of Eq. (2.1.1) into Eq. (2.1.9) yielded
N DL B ) N B
W, +5hﬁ(pi =W, _EhB(Pl (2110)
In the same manner, Eq. (2.1.6) was expressed as
SIS AN (AR R ()
W, +51y\yi =W, —El? ; (2.1.11)

In Fig. 2.3, both Eq. (2.1.10) and Eq. (2.1.11) represent the displacement continuity in

the interface between the subcells and all field quantities which are originated from

the centerline x(f) of the subcell (By) and the centerline x(f) of the subcell (ﬁy)

In order to introduce the location of the interface X(zl) among subcells (By) and

(ﬁy), the centerlines were shifted as

xP =% —lhB (2.1.12)

h, (2.1.13)

Using a Taylor expansion of the field variables in Eq. (2.1.10) and maintaining only

the linear terms, we obtained



v (8) _lhﬁ(iw(ﬁv) _('Pgﬁv)j — W(fiv) +lhﬁ[£w(ﬁ7) _ (Pfﬁv)] (2.1.14)

By defining
F®) 560 4 £ 0 _ (), ) (2.1.15)
where
1 0
£ — _Zh | (B ) 2.1.16
i 2 B(axz i ®i ( )

F® =0 B=1...N, (2.1.17)

() _llv(axiw(ﬁY) _ \ij(BY)J — v B7) +ll? (ﬂw(ﬁ?) — \]/i(ﬁ?)] (2.1.18)
3

By defining

va) =W§Bv)+gi(v)_w(ﬁ?)+g(?) (2.1.19)

i i

where
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From Egs. (2.1.17) and (2.1.21), we obtained

Np
Z Fi(ﬁ) =0
p=1
N’f
G"=0

S )
£6) =0

; 1

N,

> e=0

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)

(2.1.25)

Because the w®) was expanded in linear form, the above equations can be deduced
i p q

as

11



gfﬁ‘) =0 (2.1.26)
2

a%gfﬂ =0 (2.1.27)
3

By taking partial derivatives of Eqs. (2.1.17) and (2.1.21) with respect to x, and X;,

respectively, we obtained

iwi(ﬁv) ziwfﬁv) (2.1.28)
0X, 0X,
0 =0 56 (2.1.29)
)& 0X,

w =w. (2.1.30)
From Eq. (2.1.30), we concluded that displacement rate w. were the same for all

subcells. Using relation of Eq. (2.1.30) and substituting Eqs. (2.1.16) and (2.1.20)

into Egs. (2.1.24) and (2.1.25), respectively led to

Ng a
> h o = h——w, (2.1.31)
p=1

X,

12



Zl gl = 1—w (2.1.32)
0X,

In Egs. (2.1.30), (2.1.31) and (2.1.32), it established the strain rate relations between
entire RVE and all subcells.

The average strain rate of entire RVE was defined as

N N,

= Zzh ) (2.1.33)

Blvl

For i=j=1, by substituting the first relation in Eq. (2.1.4) into Eq. (2.1.33) and using

Eq. (2.1.30), the relation m,, =(2W‘ was obtained. For i=j=2, multiplying Eq.

X

(2.1.31) by 1, and performing a summation over y from1to N, ledto

Ng N, .
3 S h,1,e%) = hl% (2.1.34)

Comparing Eq. (2.1.34) with Eq. (2.1.33) and using relation in Eq. (2.1.4) gave rise

:8w2 . For i=1,j=2, multiplying Eq. (2.1.31) by 1, and performing a

to T]22 X v
2

summation over y fromlto N, ledto

(2.1.35)

z
<Z
Q)‘%)

h,L ¢! = hl

X,

=
Il

—_
=<
Il

—_
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By substituting the sixth relation in Eq. (2.1.4) into Eq. (2.1.33) and comparing with

oW, +% was obtained. In the same way, the
0x, 0X,

Eq. (2.1.35), the relation 7,, :%[

other three average strain rate components can be obtained. Hence, we suggested

the following general form as

. ow.
i, =l[%+ ’) (2.1.36)

Through this relation in Eq. (2.1.36), we can substitute the local variables ¢!" !

(By)

and global variable w; into local average strain rate 71"’ and global average strain

rate in Egs. (2.1.31) and (2.1.32). By substituting i=2 into Eq. (2.1.31) and using the

relation in Egs. (2.1.36) and (2.1.4), it can be obtained that

NI‘
Yhal =hn,  y=1..N, (2.1.37)
B=1

Similarly, when i=3, we can obtain

NY
YLag=m,  B=1,..N; (2.1.38)
y=1

1

Ny 2 (BY)
For the case i=3 in Eq. (2.1.31), by adding Zhﬁ( . J to both sides, the right
B=1

14



Np 5, (BY) ;
hand side term Zhﬁ[ 6; j can be simplified into h ow, Hence, we derived
B=1 1 X1
Ng .
Zhﬁ(fpﬁﬁyu%]:zhﬁu y=1..N, (2.139)
p=1 0X,

In the same way, the Eq. (2.1.32) can be written in the form as
N, .
Zly(\p{ﬁ” +%J=2lﬁl3 B=1,..,N, (2.1.40)

By comparing the left hand side of Eqgs. (2.1.39) and (2.1.40) with Eq. (2.1.4), we

obtained

Np
Yhat)=m,  y=1L..N, (2.1.41)
Bt
N,
LAY =m,  B=1..N, (2.1.42)
v=1

By setting i=1 and j=1 in Eq. (2.1.33) and using the relation in Eqgs. (2.1.4) and

(2.1.30), it was yielded as

=7, (2.1.43)

For the derivation ofn,,, unlike the other strain components which can be deduced

15



from the displacement continuity equations, Eq. (2.1.33) were employed directly and

the result was

Ng

ol
Tos =HZZhBIYn§§” (2.1.44)

B=1 y=1

Therefore, we can rewrite the relation of local average strain ﬁ(BY) and global

ij

average strain m; in Egs. (2.1.37), (2.1.38), (2.1.41), (2.1.42), (2.1.43) and (2.1.44)

into a matrix form as

A, =TW (2.1.45)

where nsz{ﬁ(“), 709, ... 7N }T, it was noted that each subcell had six
components, W={M,, Ny, Tu» 2Ny 205 20,) - In addition, A and J
contained the geometry parameters of the subcells and the RVE the dimensions of

which are 2(N,+N )+ NN +1 x 6NN and 2(N,+N )+ NN +1 x 6,

respectively.

Because of the traction rate continuity at interface, we obtained

) =z (2.1.46)

T =77 (2.1.47)
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when j=1,2,3, B=1,..,N; and y=1,..,N . From the relations of Egs. (2.1.46) and

p

(2.1.47), there were SN;N, — 2(N[3 +N, )—1 independent equations derived. These

independent interfacial relations are

W=zl =1, N,-1,  y=1..N, (2.1.48)
T =7 B=1,..N;, y=1,.,N I (2.1.49)
=zl =1 N,-1,  y=1..N, (2.1.50)
T =70 B=N,, y=1...,N, -1 (2.1.51)
=zl =1, N,-1, y=1..N, (2.1.52)
TP = 77) B=1,..N;, y=1,.,N I (2.1.53)
Define the constitutive equation as
T = (2.1.54)

where CY*®) includes elastic and plastic properties. By adopting the constitutive
equation given in Eq. (2.1.54), the traction continuity equations, Egs. (2.1.48)-(2.1.53),

can be expressed in term of the local strain rate components. Subsequently, we

17



simplify those equations in the matrix form as

AV, =0 (2.1.55)

- R02) _(NBNV)} it was noted that each subcells had six

where nsz{ﬁ , M, M

()

component and A} consisted of the components of tensor Cglfl the dimension

of which was SN N, —2(Nﬁ +N, )—1 by 6NN, . Then we combined Egs. (2.1.45)

and (2.1.55) and had the expression as

AV, =K7 (2.1.56)

where A'P isa 6NN, x 6NN, matrix and expressed explicitly as

- AVP
N { M } (2.1.57)

H
K = (2.1.58)

By inverting Eq. (2.1.56), the subcells strain rate collection matrix mn, was expressed

as
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N, =AY (2.1.59)

where

A =[R]'k (2.1.60)

Moreover, A" was a 6 N;N x6 matrix which can be partitioned into N N,

submatrix and each one is a 6x6 square matrix

AVP(ll)

Avp(lz)
AV = _ (2.1.61)

VP(NGN,)

A
From the Eq. (2.1.59), Eq. (2.1.61) can be written in an explicit form as
ﬁ(Bv) — AVP(BY)ﬁ (2.1.62)

Substituting the constitutive equation of Eq. (2.1.54) into Eq. (2.1.62) yielded

Z(B1) _ CVP(ﬁY)AVP(B‘I)ﬁ (2.1.63)

The average stress rate in composite was define by
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1 Ny N,
Ty= 2 2 hl (2.1.64)

p=1 v=1

By substituting Eq. (2.1.64) into Eq. (2.1.54), then the constitutive equation of RVE

was derived as

7=BVf (2.1.65)
where
1NN
B*VP — ﬁzzhﬁlvcvp(ﬁy)Avp(M (2.1.66)
p=1 y=1

2.2 Nonlinear behavior of epoxy matrix

For modeling the nonlinear behavior of fiber composites using the
micromechanical approach, the ingredient properties of the fiber composites have to
be specified. For the fiber phase, it was assumed to be linear elastic. On the other
hand, for the matrix part, it was assumed as a nonlinear material the behavior of
which can be treated using a von Mises plastic potential in conjunction with the
associated flow rule. In this section, the model how to describe the nonlinear
behavior of the matrix material was addressed in detail. It is noted that the nonlinear
part of the constitutive curve was simulated using the plasticity theory, although the
un-loading process was not conducted in the matrix materials. As a result, the

nonlinear part of matrix can be expressed as
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a,

06 ;;

def = da

where A was a proportional factor and J, was the plastic potential as

1
J, :g[(cn _022)2 +(622 _(533)2 +((533 _611)2]+6122 +G§3 +6123

Define an effective stress ¢ as

al
Il
(98]
y
)

Through the equivalent of plastic work, i.e.

dW? = deP = 5de” = 2J,d)

the effective plastic strain increment de” was expressed as

1/2
o l[(dz—:{’l —de?, )2 + (da‘iz’2 —del, )2 + (dsg’3 —del| )2
def = 2
+ %(dﬂ); + d7232 + de32)

Using the relation in Eq. (2.2.4), the Eq. (2.2.1) can be derived as
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(2.2.5)
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where H_ is the plastic modulus and written as
H =— (2.2.7)

In addition, the relationship of effective stress and effective plastic strain was assumed

to be described using a power law as

2 =A@G)" (2.2.8)

With Egs. (2.2.7) and (2.2.8), the plastic modulus dA was yielded as

L

Based on the definition of the effective stress given in Eq. (2.2.3), dG was deduced

explicitly as

_ 1 (2511 ~05 03 )dcn +(_ 0, +20, _033)‘1522 +(_ Oy =0y +2033)d533
do=— (2.2.10)
26| +60,,do,; +60,,do; +60,,d5 ,

By substituting Eq. (2.2.10) together with Eq. (2.2.6) into Eq. (2.2.1), the plastic strain

increment is written as

de!, S12 S,;S, SS; S8, SS5 S5 doy,
de?, S§ S,S; 8,8, S,S; S,5¢||doy,
a9 1 S S8, S8 S8 |Jdo| oy
dyh,| 4H,5’|  symmetric i 8.S; 88| |doy,
dyy; Sg S;Ss doys
dyy, L Sé - 4o
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where

1
Sz :g(_cn +2022 _633)

; (2.2.12)
Ss = g(_cn —0yp +2033)
84 = 2623
S, =20,
S, =20,

It is noted that in Eq. (2.2.11), the elements in the plastic compliance matrix
are not a constant, but they depend on the stress states, and for a given loading history,
a numerical iteration process is usually required to update the compliance matrix.
By combining the elastic parts, the incremental form of the constitutive relation of the

epoxy material was established as

{de }=[s"]{do ) (2.2.13)

where

|sM]=]s¢]+[s7] (2.2.14)

2.3 Thermal residual stress
The thermal residual stresses for each subcell within the RVE were calculated
from the thermal-elastic analysis with the assistance of the GMC micromechanical

analysis. For the subcell (B, y), the constitutive equation can be described as
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—(By)

7= —aPAT) 2.3.1)

Tij

: . . =) . .
where the Cfﬂ) represents the elastic material properties, nklY is the average strain

(By)

rate, o is the thermal coefficient corresponding to the subcell (B,y) and AT is

the temperature change of the RVE. After employing the conditions of interface
traction rat continue and following the procedure presented in chapter 2.1, we had the

following relation

Ay, —0AT)=0 (2.3.2)

where A,, is a matrix SNBN7—2(NB+NY)—1 x 6NyN, which included the

()

o NgN
components of the tensor Cjj’, and o is denoted as (x:{a(“),(x(lz),....,a( ¢ 7)}.

Using the displacement rate continue which derived previously in Eq. (2.3.45) as

A;n, =Jn and combining with Eq. (2.3.2), we obtained

Au Aw AT °l5 (2.3.3)
J— a = o
A, s 0 I n
Eq. (2.3.3) can be further written in a simple form as

An, —A" 0AT =Kn (2.3.4)

In which A and A" are 6NBNy X 6NBNy matrix and K is the 6NBNy x 6 matrix.
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From Eq. (2.3.4), it was indicated an expression for subcells strain increment in terms

of the composite average strain increment and thermal strain as

‘A D

K- A
==n+—0oAT 2.3.5
N =Nt (23.5)
Eq. (2.3.5) can be simplify as
N, =An+A’ aAT (2.3.6)

Eq. (2.3.6) can be written in a subcell form as

ﬁ(BY) :A(BY)T—]+AP(BV) aPIAT (2.3.7)

Employing Eq. (2.3.1) in Eq. (2.3.7), the following thermal residual stress of each

subcells can be established as

il :C(Bv)(A(BV)T_]+AP(BY) a(Bv)AT_a(Bv)AT) (2.3.8)

where ﬁ i1s the average strain increment after temperature change. However the

value of ﬁ is not evaluated yet at this moment and will be calculated in the

following. Based on the average sense, the overall stress increment of the RVE was

written as
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T:—ZZhﬁly_(BY) (2.3.9)

Through the relation of Eq. (2.3.9), the Eq. (2.3.8) was yielded

=_22h LCOD (AP 4 ATPD g (PDAT — g PDAT) (2.3.10)

Blvl

Simplifying Eq. (2.3.10), it can be rewritten as

B N
T=BH+ hizzh 1 C(By)(APwv) aPOAT —aPIAT ) (2.3.11)
p=1 y=1
where
Zih 1 CBr) A (BY) (2.3.12)
[3 1 y=1

It was note that during the cooling procedure, there is no mechanical loading applied.

Therefore, T was equal to zero, from which n was deduced as

3l
II

N N
zz C(ﬁv) (AP*) gPOAT — gBDAT) (2.3.13)
B Y=

By substituting n back into Eq. (2.3.8), the thermal residual stress of each subsell
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can be determined. In addition, the thermal residual stress was regarded as the initial
condition and substituted into each subcell to generate constitutive matrix listed in Eq.
(2.2.11) for the matrix materials. As a result, the strain-stress curve with the
presence of thermal residual stress can be established. The code for evaluating the

thermal residual stress is included in Appendix A.

2.4 Results and discussion

In this section, the result of thermal residual stress effect on nonlinear
mechanical behavior with three different fiber arrangements will be demonstrated.
In order to find the efficient number of subcells, the convergence test will be
discussed too. All the ingredient properties of the fiber composites used for the

following simulations are summarized in Table 1.

2.4.1 Convergence tests on the number of subcells

In the GMC analysis, the RVE is divided into the numbers of subcells to
represent either fiber or matrix phases. The number of the sub-cells is dependent on
the microstructure of the RVE, including fiber geometry and packing arrangement.
In general, when a RVE consists of round fibers embedded in matrix, significant
amounts of subcells are required in an attempt to precisely simulate the circular
geometry of the fiber. However, as more subcells the more computation time is
needed. In order to compromise the computation time with the accuracy of the
simulation, the converging tests have to be carried out on RVEs with different fiber
arrangements arrangement, i.e., square edge, diagonal edge, and hexagonal packing
(see Fig. 2.4). Fig. 2.5 demonstrates the RVE with square edge packing, containing
28%28 and 39%39 sub-cells, respectively, where the gray ones denote the fibers, and

the white ones are the surrounding matrix. In addition, the RVEs with square
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diagonal packing and hexagonal packing were also partitioned into different sub-cells
as shown in Figs. 2.6 and 2.7, respectively. Based on the different discretizations of
RVEs, the stress and strain curves of the composites with 45° fiber orientation were
calculated and the results were then compared in Fig. 2.8. It was shown that for each
fiber arrangement, the constitutive curves obtained from the RVEs with coarse
sub-cells demonstrate good agreements with those derived from the fine sub-cells.
In light of the above verification, it was suggested that the rough partitions of the
RVEs have accomplished the converged results and are suitable for characterizing the
nonlinear responses of composites with round fibers embedded. The code for
calculating the stress and strain curves using the GMC model is attached in Appendix

B.

2.4.2 Influence of thermal residual stress on the behaviors of composites

The nonlinear stress strain curves for 15°, 30°, 45°, and 60° fiber composites
with different fiber arrays are demonstrated respectively in Figs. 2.9-2.12. For
comparison purposes, the composites disregarding the thermal stress effect were also
enclosed in the Figures. In the simulations, the temperature change was assumed to
be 200 degrees. Results show that the composites with different fiber arrays exhibit
different stress and strain curves. Moreover, the square edge packing yields more
stiffening behaviors than other fiber packing arrangements. Regarding the thermal
stress effect, it is revealed that for the composites with square edge packing, the
mechanical behaviors are affected appreciably by the thermal residual stress.
Nevertheless, the composites with hexagonal packing and square diagonal packing are

relatively less sensitive to the thermal residual stress.
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Chapter 3 Comparison of GMC, SCMC and FEM analysis

In Chapter 2 the generalized method cells (GMC) was successful to predict the
stress-strain curve on the off-axial loading with three difference fiber arrays. On the
other hand, the constitutive relation of fiber composites with different fiber arrays also
can be simulated by using the finite element approach such as references [3.,4].
From the result of references [3,4], it can observe that when fiber composites apply
the off-axial loading the constitutive relation with SEP also exhibit more stiffness then
other two fiber arrangements but when fiber composites apply the pure shear loading
the constitutive relation with SDP become the most stiffness. In the GMC approach,
it can observe the same appearance of constitutive relation when it simulated the
off-axial loading but when it apply the pure shear loading the constitutive relation of
SEP still the highest stiffness. Because of the GMC exhibits a lack of what is so
called “shear-coupling”, which means that the transverse shear stresses on the
composites are in general nonzero when the composites are subjected to the transverse
tensile loading. This is due to the traction continuity assumption made in the
neighboring subcells in the GMC model. Thus, the GMC may product the error
result when apply the transverse loading. Hewen et al [15] proposed the strain
compatible method of cells (SCMC) model by considering the stress equilibrium in
the subcell instead of the continuity constraint in the micromechanical analysis. In
this chapter, SCMC model was introduced and the results obtained from the SCMC

model were compared with those obtained from GMC and FEM analysis [3].

3.1 Strain compatible method of cells (SCMC)
In the GMC model, the representative volume element (RVE) adopted for the
analysis was divided into several subcells. For each subcell, three fundamental

assumptions were made, which was described as following
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(1) The displacement was continuous between the neighboring subcells in the
interface.

(2) The RVE adopted in the analysis must satisfy the periodic boundary
condition.

(3) The traction continuity across all cell and subcell interfaces.

It was noted that the first and second assumptions are valid for both GMC and
SCMC model. However, the third assumption is modified in the SCMS model by
replacing the traction continuity condition with the equilibrium equations such that the
stress variation in the adjacent subcell is allowed as well as the transverse stress and
shear stress concentration. Through the ingredient constitutive equation, the elasticity
equation of equilibrium was expressed in terms of strain components. The
equilibrium equations together with the compatibility equations was employed to
replace the traction interface continuity given in Eq. (2.1.55) for the derivation of the
composite properties.

From the interface displacement continuity condition as derived in the previous

chapter, the relation of the local strain and global strain components was written as

Agn, =In (3.1.1)

Where 1, = {ﬁ(“) s ﬁ(u), ﬁ(N“NV) }T collect the engineering strain rate for

all subcells, and ﬁ:{ﬁ“, Mys Thss 2Mys  2Mis Zﬁlz}T represent the overall

strain rates of the RVE. In addition, matrices A; and J contain the geometry

parameters. Based on the equilibrium condition across the interface of the adjacent

subcells, the differential form of the elasticity equilibrium is written as
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06 0o
12 + 13

=0 3.1.2
0x, 0X, ( )
60_22+%:0 (3.1.3)
0x, OX,
%+%:o (3.1.4)
0X, 0X,

It was note that in the above derivation, the fiber in the unidirectional composites
1s in the x, direction and the applied loading is independent of the X, coordinates.
Thus, the derivative of stress components with respective to the X, direction is equal
to zero. With the assistance of the constitutive equation, the equilibrium equation
given in Egs. (3.1.2)-(3.1.4) can be expressed in terms of strain components. In

addition, the compatibility conditions originally written as

aznzz +82r|33 + 262”23

~0 (3.1.5)
on; on;  Ox,0x,
3 (—81131 +6n12):0 (3.1.6)
0x, O0x, O0X,
O (-0, Doy (3.1.7)
0x, 0x, 0X,

Because all derivatives with respective to X, are equal to zero, and the strain

components 1,, was an invariant such that its derivative is zero as well. Integrating

Egs. (3.1.6) and (3.1.7) respectively with X, and X, together with the periodic

boundary conditions results in the following relation

M _ My _ (3.1.8)
0x; O0X,

It is noted that in the expression of equilibrium equation ( Egs. (3.1.2)-(3.1.4) )
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and compatibility equation ( Eqs (3.1.5) and (3.1.8) ), all the quantities are assumed to
be continuous with the RVE. However, in the SCMC model (GMC model), due to
the discrete domain of the RVE, these quantities are not continuous from one subcell
to other subcells. Thus, to accomplish the discrete characteristics, the difference
equation was replaced using the finite difference approach. For example, regarding
to the subcell (1,1) in Fig. 3.1, the equilibrium equation in Eq. (3.1.2) was expressed

alternatively as

2,1) (L,1) (1,1)
O, —Op +013 —Oi3

0.5(h, +h,)  0.5(1,+1)

(1.2)

(3.1.9)

In addition, for the second order partial difference, such as the first two terms
shown in Eq. (3.1.5), regarding to the subcell (2,2) in Fig. 3.1 by using central

difference approach it was yielded as

N -ni? ng -nd!
o'y 050, +1;)  0.5(1, +1,) (3.1.10)
0x3 0.51, +0.25(1, +1,)

Furthermore, by using the forward difference and backward difference approach,
For example, regarding to the subcell (1,2) in Fig. 3.1, the third term in Eq. (3.1.5)

was yielded as

(2,3) (1,3) (1,2)

0" N,y z[”‘]23 — My — M5 M (3.1.11)
oxdx, - 0250, +1,)(h, +hy)

By means of the finite difference method, the differential forms of the

equilibrium and compatibility equations were replaced in the discrete quantities of
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each subcell. Based on the periodic boundary condition, there are 3(NyN, —1)

independent equations in the equilibrium equations and 2(N, -1)(N, -1)

independent equations in compatibility conditions. Combination of these equations

expressed in term of the local stain components in the subcells leads to

A, =0 (3.1.12)

where 1), ={ﬁ(“), 7, . ﬁ(N“N*) }T. As compared to the GMC model, Eq.

(3.1.12) is equivalent to Eq. (2.1.55) which is derived from the interfacial traction
continuity condition. In conjunction with displacement continuity condition as given

in Eq. (3.1.1), Eq. (3.1.12) becomes
An, =Kn (3.1.13)

where

From now on, the procedure for the derivation of the global constitutive equation
of the composites using SCMC is the same as that described in Chapter 2 for the

GMC model.

3.2 Finite element analysis
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The mechanical properties of the composites were investigated using Finite
element approach. The commercial finite element program ANSYS was adopted for

the analysis.

3.2.1 Boundary conditions and mesh
In the FEM analysis, the fiber was assumed to be an orthotropic elastic material
and the matrix is assuming to be nonlinear material in which the stress and plastic

strain curve was determined by a nonlinear function with four coefficients as

c=k+Rie"+R (1-¢) (3.2.1)

where k is the yield stress, R, R_ and b are parameters which can be determined

properly from the stress and strain curve by following the suggestion provided in the
ANSYS manual [14].

During the FEM analysis, the mechanical behaviors of fiber composite were
simulated by considering the representative volume element. The element type was
solid-185. In order to characterize the mechanical properties of composites by
employing the RVE, the deformation as well as the boundary condition of the RVE
needs to be specified properly. In general, the boundary condition was imposed
depending on the loading condition and the geometry of the RVE. In this study, we

considered the normal stress and the shear stress into the RVE. It is noted that for

the applied stresses component o,;, the full model of the RVE need to be accounted
for; however, for the other applied stresses, such as 6,,, 6,,(05;)and 6,,(0,;), due
to symmetric boundary condition, only a quadrant of the REV was taken into account.

In order to describe the appropriate boundary condition according to each loading
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with easy, the coordinate system as well the dimension of the RVE with square edge
packing as shown in Fig. 3.2 were utilized hereafter. It should be noted that the
following boundary conditions implemented in our simulation were referred to the

literature [2, 3].

(1) Stress component with ;.

. Y
Because of non-symmetry stress field, the deformation at V(XI,T,XQ and

H . .
w(X, Xz,?) was not zero where u, v and w denote the displacement in x,, X, and

x, direction, respectively. The associated mesh of RVE for three different fiber
arrays were shown in Figs. 3.3-3.5, respectively. Base on the characteristic of
periodicity, the boundary condition for this case was given as follows

On x,=0and x,=L face

u(0,x,,x;) = constant

u(L,x,,x;) = constant

(3.2.2)
V(0=X2=X3) = V(L9X29X3)
w(09X2:X3) = W(L7X2:X3)
On x,=0and x,=W face
V(XIBO’X3) = V(X1>W7X3) (3 ) 3)
W(O,Xz,X3):W(L,X2,X3) o
On x,=0and x,=H face
- V(X,X,,0) = v(x,,X,,H) (3.2.4)

w(X,,X,,0) = w(x,,X,,H)

35



In order to avoid the rigid body motion, the bottom corners was placed on the

rollers hence an additional displacement constrain was

w(x,,0,0) = w(x,, W,0) = 0 (3.2.5)

(2) Stress component with 6,,, ©,,(6;;)and 6,(c;).

Under this stress component field, we only need to analyze quarter of the RVE

because of symmetry

V(Xl,%,x3)=0 ; w(xl,xz,%)=0 (3.2.6)

where u, v and w respectively to denote the displacement in x;, x, and x,

direction. Figs. 3.6-3.8 illustrates the finite element mesh of SEP, SDP and HP. Base
on the characteristic of periodicity, the boundary condition for this case was given as
follows. In the following derivation, the dimension and coordinate system of the
simulation box was shown in Fig. 3.9.

On x,=0and x, =a face

u(O,xz,x3)—u a,xz,x3): constant
V(O,XZ,X3)=V3,X2,X3) (3.2.7)

W(O’Xzaxa): W(aaxz,x3)

On x,=0and x, =b face
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v XI,O,X3)=0

(
(

v(x,,b, x3): constant
(3.2.8)
w(al ,0, X, ) = w(az,O, X, ) = constant
w(al,b, X,)= W(az, b,x, ) = constant
where a, and a, indicate any two point with other two identical coordinates.
On x,=0and x,=c face
w(x,,x,,0)=0
w(Xx,,X,,C)=constant
(x1-%2.¢) (3.2.9)

V(a1 , X, ,0) = V(a2 X, ,O) = constant

V(al,xz,c): V(az,xz,c) = constant

In addition, in order to eliminate the rigid body motion, an additional

displacement constrain was imposed.

u(0,0,0) = 0 (3.2.10)

3.3 Comparison the results of GMC, SCMC and FEM analysis

In GMC, due to the lack of shear-coupling, a direct application of a shear load to
a fiber composite will cause the inaccurate result. At this section, the results
obtained from GMC, SCMC and FEM will be compared and in order to probe the
effect of the shear couple in GMC, the fiber composites subject to the transverse
loading ©,,. The material properties were given in Table 2.1, where the fiber
volume fraction was 60% and those four parameters used in the FEM to simulate the
matrix properties were list in Table 3.1. Fig. 3.10 illustrated the matrix stress-strain

curves used in the GMC, SCMC and FEM models to ensure that all models have the
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same matrix properties. Figs. 3.11 shows the stress and strain curves of the fiber
composites with three different fiber arrays obtained from GMC and FEM analysis
under the transverse loading. It can be seen that there is some discrepancy between
these two approaches which could be caused by the shear coupling effect in the GMC
analysis. However, the results obtained from the SCMC analysis are in a good
agreement with the FEM analysis as illustrated in Figs. 3.12. Based on the above
comparison, it seems that the SCMC model can provide more accurate stress and
strain curves of the fiber composites under transverse loading.

On the other hand, the significant drawback in the SCMC model is the
convergence problem, which was also observed by other researchers [15]. To
understand the degree of the convergence in the GMC and SCMC models, we adopted
the two meshes, one is coarse and the other is fine, in our simulation for the fiber
composites with hexagonal packing under pure shear loading. The results obtained
for the GMC and SCMC models are demonstrated in Figs. 3.13-3.14, respectively.
Apparently, the GMC model exhibits superior convergence property than the SCMC
model. Moreover, in some cases, it is difficult to find the convergence solution in
the SCMC analysis. In view of the forgoing, the GMC model still posses its
advantage in the convergence issue, although its solution in some cases may not be
very accurate. From now on, we will continue to employ the GMC model in the
investigation of the mechanical behaviors of the fiber composites, even though some

defects exist in the model.
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Chapter 4 Effect of fiber array on damping behavior of fiber composites

In this chapter, the GMC model was extended to calculate the fundamental
damping properties of fiber composites with different fiber arrays and the damping
properties were then implemented as input in the calculation of the modal damping
capacity of composite structures with vibrations [13]. The damping behaviors of rod
type as well as plate type composites structure constructed based on different fiber

arrays will be taken into account in this chapter.

4.1 Damping characterization using GMC

The fundamental damping capacities of fiber composites in material principal
directions were calculated by applying a simple loading on the RVE. The RVE used
in the previous section was employed to evaluate the stress and strain states of the
fiber composites when they were subjected to simple loading. For example, for the
calculation of damping properties in longitudinal direction, the unidirectional
composites was applied a loading and then through the GMC analysis, the stress states
in the fiber and matrix can be evaluated. Based on the energy dissipation concept
that the specific damping capacity of material in vibration was defined as the ratio of

the dissipated energy and the stored energy for per circle of vibration [11]
D
=— 4.1.1
V=3 (4.1.1)

the specific damping capacity of the composites can be expressed in terms of damping

properties and strain energy of the constituents, i.e. fiber and matrix, as [12]

— Wfo + WmUm

4.1.2
U;,+U,_, ( )

39



where .= specific damping capacity of the fiber

y . = specific damping capacity of the matrix

U, = strain energy stored in the fiber

U, = strain energy stored in the matrix
Thus, the longitudinal damping properties can be calculated from Eq. (4.1.2) directly,
once the strain energy as well as the ingredient damping properties was provided. In
the fiber composites, the damping behaviors of fiber and matrix were assumed to be
isotropic and the corresponding specific damping capacities were listed in Table 4.1.
where the data were measured experimentally [17]. As a result, by introducing a
simple loading (simple tension, or simple shear) on the RVE, the strain and stress of
each subcell was evaluated respectively from Egs. (2.1.64), (2.1.65) in which 1 was
the overall strain and can be calculated from the constitutive relation of RVE given in
Eq. (2.1.67). Moreover, with Eq. (4.1.2), the specific damping capacity of
composites in the material directions can be estimated in terms of the damping
properties as well as the strain energies of the fiber and matrix phases. Basically the
strain energy was computed from the products of the strain and stress states of each
subcell associated with either fiber or matrix phases. It is noted that for

unidirectional composites, because of the transverse isotropic attribute, only four

independent damping properties (y,;, W,,, V;,, W,;)needs to be calculated.

The damping property of the unidirectional composites with three different fiber
arrangements, i.e. square edge packing, square diagonal packing and hexagonal
packing, obtained from GMC in conjunction with energy dissipation concept are
summarized in Tables 4.2-4.4, respectively. In the calculation, the fiber volume

fraction of composites was assumed to be equal to 60%. The damping properties
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evaluated based on ANSYS commercial code for the calculation of strain energy were
also included for comparison purpose. It can be seen that the specific damping
capacity obtained from the GMC analysis are quite closes to those calculated from
ANSYS except for m,, properties. The difference in m,, is attributed the fact that
GMC model imposed more constrains in the interfacial condition, i.e. the interface
traction rate continuity, such that the shear stress as well as the shear strains around

the fiber and matrix interface may not be valid.

4.2 Calculation of vibration damping of composite structures

From the GMC analysis together with the energy dissipation concept, we can
have the damping properties of unidirectional composites by means of implementing
simple loading, such as tension and pure shear on the RVE. However, when the
composite structures are adopted for engineering applications, the vibration in general
takes place in bending and torsional modes and the damping properties associated
with these modes can not be estimated directly from the GMC approach. Here we
adopted the two step simulation procedure to predict the damping behaviors of the
composite structures with vibration motion. First, the basic material properties of
the unidirectional composites, such as E,, y,,, E,, y,, et al, were evaluated
using the GMC micromechanical model. In the second step, the material properties
were considered as global material properties of equivalent element and utilized as
inputs in the composites structures for the structural dynamic analysis. In other
words, in the structural level, only the material properties of the composites prevail in
the analysis. In this study, the structural dynamic analysis was carried out using the
FEM approach in which the elements contain the damping and material properties of
equivalent element. The detail analytical procedure was illustrated in Fig. 4.1.

The modal damping capacity of composite structures can also be derived from

41



the strain energy dissipation concept. For a linear elastic material, the strain energy

stored in a volume element is expressed as

1
(e) _
U" = Ejvcllsll +6,,€0 033833 0,3V 10373 +0,7,,dV

. (4.2.1)
ol elav
Substituting the constitutive relation {G} = [C]{s} into Eq. (4.2.1) yields
e) _ 1 T
uv = [ &} [clelav (422)

where [C] is the stiffness matrix of composites. The corresponding dissipated
strain energy of a volume element can be written in terms of the specific damping

capacity in the material principal directions as

o 1
D® ZEIV\VUGUSU + W 5,050€0 + + W ,6,7,dV
1
— [ o} vlielav 423)

- v

where [\p] indicated the matrix form of damping properties of equivalent elements as

shown in Tables 4.2-4.4.
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Therefore, with the energy dissipation and the strain energy of the equivalent element,
the specific damping capacity of a volume element associated with a deformation can

be written as follows

po o[ e Clvlielay

(e _ _2

U0 ey

2

(4.2.5)

In the finite element analysis, the strain field of a volume element can be expressed in

terms of the nodal displacement in conjunction with the shape function as.

{e}=[Blid} (4.2.6)

where [B] was the shape function of a element and {d} was the nodal displacement.

In combination with Eq. (4.2.6), Eq. (4.2.5) becomes

j |[BJd}dv
ff C] [BJ{d}av

(4.2.7)

It is noted that in the Eq. (4.2.7), {d} indicated the displacement of each node. For
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a vibration motion, {d} can be regarded as the mode shape of structure representing
the relative nodal displacement of the element associated with its natural frequency.
Thus, once the model shapes of the composite structures were determined, the specific
damping capacity of the composites structure can be determined by summating the
specific damping capacity of each element calculated from Eq. (4.2.7). In the
following, the mode shape of the composite structure will be evaluated from structural
dynamics analysis together with finite element approach [13].

From the principle of virtual work, the governing equation for composite
structure with dynamic loading were derived by making the virtual work done by
externally applied loads equal to the sum of virtual energy caused by inertial,
dissipative, and internal forces for any virtual displacement. For a single element of

volume V with surface area of S, this relation is written explicitly as

[{ou) (Flav + [ fou} {1 )ds

(4.2.8)

- [l oty touy et foo ) dotlov

in which {F} and {T} indicate the body forces and surface tractions, p and c
denote the mass density and a damping parameter, {8u} and {88} exhibit virtual
displacements and their corresponding strains and {G} is the assumed stress existing
in the body prior to virtual strains applied. For a undamped structure with free
vibration or with clamp boundary conditions, all of virtual energy caused by the
applied loading terms as well as the damping parameter, ¢ were assumed to be zero,

and thus the Eq. given in (4.2.8) was deduced as
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© ()

[Bu}'pliijav + j e} {oldv =0 (4.2.9)

v

Here the superscript (e) designates that the integration is within a volume
element. In the finite element method, the displacement field, {u} and strain field
{8} in the element can be represented by the nodal displacement as well as the shape

function as

w=NJay  Ga)=INt) f=INd) fl=[Blle) @210

where [N] is the shape functions, {d} is nodal displacement which is function of

du fiil= d’u

time, [B] is the differentiation of shape function [N], and {u}:a, u i

indicate the velocity and acceleration respectively. Substituting the Eq. (4.2.10) into

Eq. (4.2.9) yields
(e) (e)
{sdf'| [pINT[NJavid}+ [[B] {o}av |=0 (4.2.11)

By assuming the material is linear elastic, {c} in Eq. (4.2.11) can be substituted by

{0}: [C]{s} In addition, with the assistance of displacement and strain relation, i.e.,

{e}=[BJ{d}, Eq. (4.2.11) is written as
[m]°{d}+[k]*{d}=0 (4.2.12)

where the element mass matrix [m]|” and element stiffness matrix [k|” is defined
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as

(©)

[m]? = [p[N] [NJav (4.2.13)

(©

k] = [[B]'[C][BJav (4.2.14)

Substituting Eq. (4.2.14) into Eq. (4.2.7) yields

1
y© = %— (4.2.15)
2

where [k]f;) representing the “energy dissipation stiffness matrix” is written as

_

¢

k7 = [[B]'[c][v][B] (4.2.16)

v

For the global response, the structure mass matrix [M] and the structure stiffness

matrix [K] can be derived through the superposition of the element mass matrix
[m](e) and stiffness matrix [k](e), respectively by properly assigning each element

matrix in the structure matrix depending on the structure node numbering. As a

result, the equation of motion for the structure can be written as

[M]{&}+ [K]Jid}=0 (4.2.17)
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Moreover, the natural frequency and mode shape of the composites structures
associated with each vibration mode can be evaluated by solving the eigenvalue
problem of Eq. (4.2.17). In this study, the eigenvalue and eigenvector {CD} of Eq.
(4.2.17) corresponding to the natural frequency and modal shape of the structure,
respectively were calculated by Matlab commercial code with “eig” command. 1t is
worthy to mention that in the calculation of the mode shape of the composite
structures, the effect of material damping was neglected and only the mass matrix and
stiffness matrix were accounted for. From the definition of specific damping
capacity, the modal damping capacity of the structure associated to each modal shape

can be expressed in terms of the global stiffness matrix [K], the global energy

dissipation stiffness matrix [K] and the corresponding modal eigenvector {(D} as

\

(4.2.18)

where the index 1 indicates the i" modal shape. It is noted that the global energy

dissipation stiffness matrix [K]W is obtained from the superposition of the energy

dissipation stiffness matrix given in Eq. (4.2.16). The code for calculating the modal

shapes and damping capacity of composite structures is listed in Appendix C.

4.3 Discussions of the damping capacity of fiber composites with three different
fiber arrays
In order to investigate the fiber arrangement effect on the vibration damping of

composite structures, the rods and plates constructed with unidirectional composites
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were employed for demonstration. Two different boundary conditions, i.e. free-free

and free-clamped boundary conditions, were accounted in this study.

4.3.1 Vibration with free-free boundary condition

The modal damping capacities of rod-type and plate-type structures with
free-free boundary condition were considered at the beginning. The dimensions of
the composite structures used in the simulation were illustrated in Fig. 4.2 where the
fiber was assumed in the x-direction. It should be noted that in both structures, the
unidirectional fibers could be extended either in the x-direction or in the z-direction to
simulate the longitudinal and transverse vibrations. Because of the models were
applied with the free boundary, the first six modes were the rigid body motion which
was neglected in the model analysis. Figs. 4.3 and 4.4 show the modal shapes of the
composite rod with fiber in the x and z directions, respectively. It was shown that
for the fiber in the longitudinal direction (x-direction), the first mode is torsion mode
which is followed by the bending mode. In contrast, for the rod with the fiber in the
transverse direction (z-direction), the first two modes are bending modes and the third
one is torsion mode. Tables 4.5 and 4.6 show the first three modal damping
capacities of the composite rod structures constructed based on three different fiber
arrangements. It can be seen that, no matter what the fiber direction is, the SDP
packing always exhibits the highest damping capacity suggesting that the composites
with SDP microstructure were easier to dissipated strain energy.

The first three modal shapes for the composite plate with free-free boundary
condition are shown in Fig. 4.4. Twisting in the x-direction is the first modal shape
and the second one is the bending in the x-direction (fiber direction) and the third
mode is the twisting in the z direction (transverse direction). The corresponding

damping capacity for the modal shapes is shown in Table 4.7. Apparently, the
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composite plate created with SDP also posses the highest damping capacity as
compared to the other two cases. As a result, for the composite rod and plate in free
vibration, the SDP can provide the superior damping responses than the SEP and HP

fiber arrays.

4.3.2 Vibration with clamp-free boundary condition

In addition to the free vibration, the cantilever type vibration, i.e. free-clamped
boundary condition, were considered in the study. The clamped end was always in
the x-direction and the fiber direction could be either in the x-direction or in the
z-direction. Fig. 4.2(a) illustrates the composite rod with fiber in the x-direction and
the associated modal shapes are presented in the Fig 4.6. The first one and two
modes are bending and torsion modes, respectively and the third one is bending again.
It is interesting to mention that the modal shapes for the unidirectional composites
with clamped-free boundary condition are different from those with free-free
boundary condition as shown in Figure. The modal shapes for composite rod with
fiber in the z direction are shown in Fig 4.7. It was observed that all shapes are in
the bending modes. The damping capacities of the composite rods with clamped
condition corresponding to two different fiber directions are listed in Tables 4.8 and
4.9. Results show that SDP also demonstrate better damping capacity in the
cantilever type vibration.

Again, the plate type structure with one side clamped was examined and the
clamped condition was implemented in the x direction as shown in Fig. 4.2(b), where
the fiber was assumed in the x direction. The modal shapes for the fiber in the
x-direction and z direction were shown in Figs. 4.8 and 4.9, respectively. Moreover,
the damping capacities for the plates with fiber in the x-direction and z direction were

summarized in Tables 4.10 and 4.11, respectively. Similar to the conclusion in the
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rod structure, the plate structure made of unidirectional composites with SDP fiber
packing exhibits greater damping properties than the plates established based on the

other two fiber arrays.
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Chapter 5 Conclusions

The GMC micromechanical model was employed successfully to calculate the
thermal residual stress of the fiber composites with different fiber arrays, i.e., square
edge packing, square diagonal packing, and hexagonal packing, during the cooling
process. Based on the micromechanical analysis, the nonlinear mechanical
behaviors of the fiber composites in the presence of the thermal residual stress effect
were determined. Results indicated that for the composites with square edge packing,
the constitutive behaviors are affected appreciably by the thermal residual stress.
However, for the composites with hexagonal packing and square diagonal packing,
the thermal residual stress exhibits little effects on their properties.

With regard to the damping properties, it was observed that the composite
structures constructed based on square diagonal packing fiber array demonstrate
superior vibration damping properties than the other two cases. This phenomenon
could be due to the fact that in the composites with square diagonal packing, the
matrix phase with higher damping capacity dissipates more strain energy under one
cycle of vibration.

In addition, from the comparison of the GMC and SCMC micromechanical
models, it was suggested that although more constrains were implemented in the
GMC model inducing the shear coupling effect, GMC model still exhibit the
advantage of converging efficiency during the micromechanical analysis. As a result,
the GMC micromechanical model still can be employed efficiently for characterizing
the mechanical behaviors of fiber composites in terms of the geometry of

microstructure.
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Appendix A MATLAB code for calculating the thermal residual stresses using
GMC analysis

clear all

% something to input

% material properties (transversely isotropic fiber + isotropic matrix)
Ef1=234000; % 11 Young's modulus of fiber
Ef2=14000; % 22 Young's modulus of fiber

Ef3=Ef2;

nuf12=0.2; % 12 Poisson's ratio of fiber

nufl13=0.2;

nuf23=0.25;

Gf12=27600;%Ef1/(2*(1+nuf12)); % 12 shear modulus of fiberGf13=Gf12;
Gf23=5500;

Em=3400; % Young's Modulus of matrix

num=0.37; % Poisson's ratio of matrix

Gm=Em/(2*(1+num)); % Shear modulus of matrix

T=-200; % temperature change
af=0; % thermal coefficient of fiber
am=1.18e-4; % thermal coefficient of matrix

% Geometry information

n=3 ;% (1)2*2  (2)square random

(3)hexagonal
if n==

h=1;

I=1;
volf=0.8;
Nb=2; % divided portions in the beta direction
Nr=2; % divided portions in the gama direction
bb=sqrt(volf);

hh=1-bb;

hb=[bb hh]; % h_beta

hr=hb; % h_gama

Nfiber=1;

regionf=[1]; % denote what cells are fiber
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%end of code
elseif n==

h=1;

1=1;

load hb.txt;

hb=hb';

hr=hb;
Nb=size(hb);
Nb=Nb(1,2);
Nr=Nb;

load regionf.txt;
regionf=regionf’;
Nfiber=size(regionf);
Nfiber=Nfiber(1,1);
elseif n==
h=sqrt(3);

I=1;

load hb.txt;

load hr.txt;

hb=hb';

hr=hr";
Nb=size(hb);
Nr=size(hr);
Nb=Nb(1,2);
Nr=Nr(1,2);

load regionf.txt;
regionf=regionf’;
Nfiber=size(regionf);
Nfiber=Nfiber(1,1);

end

% matrix deploy

Sm=zeros(6,6);
AG=zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr);
J=zeros(2*(Nb+Nr)+Nb*Nr+1,6);
AVPM=zeros(5*Nb*Nr-2*(Nb+Nr)-1,6¥*Nb*Nr);
Cs=zeros(6*Nb*Nr,6); % sub-cell stiffness matrix
AVP=zeros(6*Nb*Nr,6);
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cs=zeros(6*Nb*Nr,6);
aT=zeros(6*Nb*Nr,1);
displ=0;

% current stress & strain independent matrix

% fiber stiffness matrix
nuf2 1=Ef2*nuf12/Efl;
nuf3 1=Ef3*nuf13/Efl;
nuf32=Ef3*nuf23/Ef2;
S=[1/Ef] -nuf21/Ef2 -nuf31/Ef3 0 0 0; -nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;...
-nufl13/Efl -nuf23/Ef2 1/Ef3000;000 1/Gf2300,00 0 0 1/Gf130;00 0 0 0 1/Gf12];
Ctf=inv(Sf);

Sm=[1/Em -num/Em -num/Em 0 0 0; -num/Em 1/Em -num/Em 0 0 0;...
-num/Em -num/Em 1/Em000;0001/Gm00;0000 1/Gm0; 00000 1/Gm];

Cm=inv(Sm);

% main loop and code

% AG matrix
index=-5;

for i=1:Nb*Nr % 11 displ. continuity

index=index+6;
AG(i,index)=1;
J4,1)=1;

end

for gama=1:Nr % loop to apply displ. continuity
for beta=1:Nb

index=Nr*beta-Nr+gama;
AG(Nb*Nr+gama,(index-1)*6+2)=hb(1,beta); % 22
J(Nb*Nr+gama,2)=h;
AG(Nb*Nr+Nr+beta,(index-1)*6+3)=hr(1,gama); %33
J(Nb*Nr+Nrtbeta,3)=l;
AG(Nb*Nr+Nr+Nb+1,(index-1)*6+4)=hb(1,beta)*hr(1,gama)/2; %23
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JINb*Nr+Nr+Nb+1,4)=h*1/2;
AG(Nb*Nr+Nr+Nb+1+beta,(index-1)*6+5)=hr(1,gama)/2; %13
JINb*Nr+Nr+Nb+1+beta,5)=1/2;
AG(Nb*Nr+Nr+2*Nb+1+gama,(index-1)*6+6)=hb(1,beta)/2; %12
JINb*Nr+Nr+2*Nb+1+gama,6)=h/2;

end

end

% K matrix

K=[zeros(5*Nb*Nr-2*(Nb+Nr)-1,6); J];

for i=1:Nfiber;
cs(regionf(i,1)*6-5,1)=1;

end

for beta=1:Nb;
for gama=1:Nr;
index=(beta-1)*Nr+gama;
pl1=6*(index-1)+1;
p2=6*(index-1)+6;
al=6*(index-1)+1;
a2=6*(index-1)+3;

if cs(index*6-5,1)==1,
Cs(pl:p2,:)=Cf;
aT(al:a2,:)=af*T;
else
Cs(pl:p2,:)=Cm;
aT(al:a2,:)=am*T;

end

end
end
count=0;
for beta=1:Nb-1 % construct AVPM matrix
for gama=1:Nr

betahat=beta+1;
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index=(beta-1)*Nr+gama-1;

index2=(betahat-1)*Nr+gama-1;

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+2.,j); % 22 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+2,j);

end

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+6.,j); % 12 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+6.j);

end

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+4.j); % 23 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+4,j);

end

end

end

for gama=1:Nr-1 % construct AVPM matrix
for beta=1:Nb
gamahat=gama+1;
index=(beta-1)*Nr+gama-1;
index2=(beta-1)*Nr+gamahat-1;
count=count+1;
for j=1:6
AVPM(count,6*index+j)=Cs(6*index+3.j); % 33 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+3,j);
end
count=count+1;
for j=1:6
AVPM(count,6*index+j)=Cs(6*index+5.,j); % 13 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+5.j);
end
end

end
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for gama=1:Nr-1

count=count+1;

beta=Nb;

gamahat=gama-+1;

index=(beta-1)*Nr+gama-1;

index2=(beta-1)*Nr+gamahat-1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+4.,j); % 23 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+4,j);

end

end

AtVP=[AVPM; AG];
AVP=AtVP\K;
Bvp=zeros(6,6);
APh=[AVPM;zeros(2*(Nb+Nr)+Nb*Nr+1,6 *“Nb*Nr)];
AP=AtVP\APh;
APaT=AP*aT;
for beta=1:Nb
for gama=1:Nr
index=(beta-1)*Nr+gama;
pl=6*(index-1)+1;
p2=6*(index-1)+6;
Bvp=Bvp+hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)* AVP(pl:p2,:);
end

end

Bvp=Bvp/h/l;
S=inv(Bvp);
E1=1/5(1,1);
E2=1/5(2,2);
G12=1/5(6,6);
G23=1/5(4,4);
nul2=S(2,1)*(-E1);
%end

% thermal strain
afT=zeros(6,1);
for beta=1:Nb;
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for gama=1:Nr;
index=(beta-1)*Nr+gama;
pl1=6*(index-1)+1;
p2=6*(index-1)+6;
afT=-S*hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)*(APaT(p1l:p2,:)-aT(p1:p2,:))+afT;
end

end

avT=-S*afT/(h*]);
deps=avT;

% thermal residual stresses
AtVP=[AVPM; AG];
APh=[AVPM;zeros(2*(Nb+Nr)+Nb*Nr+1,6 *“Nb*Nr)];
AVP=AtVP\K;

AP=AtVP\APh;
APaT=AP*aT;
for beta=1:Nb;
for gama=1:Nr;
index=(beta-1)*Nr+gama;
pl=6*(index-1)+1;
p2=6*(index-1)+6;
sigma(pl:p2,:)=Cs(pl:p2,:)*(AVP(pl:p2,:)*deps+APaT(pl:p2,:)-aT(pl:p2,:));
end

end
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Appendix B MATLAB code for GMC analysis

clear all

tic

% something to input

% material properties (transversely isotropic fiber + isotropic matrix)
Ef1=234000; % 11 Young's modulus of fiber

Ef2=14000; % 22 Young's modulus of fiber

Ef3=Ef2;

nuf12=0.2; % 12 Poisson's ratio of fiber

nufl13=0.2;

nuf23=0.25;

Gf12=27600;%Ef1/(2*(1+nuf12)); % 12 shear modulus of fiber, Ef/(2*(1+nuf)) - if
isotropic

Gf13=Gf12;

Gf23=5500;

Em=3400; % Young's Modulus of matrix

num=0.37; % Poisson's ratio of matrix

Gm=Em/(2*(1+num)); % Shear modulus of matrix

% Power law coefficient

b=6.42e-11; % power law coefficient beta
pn=4.11; % power law coefficient n

% Geometry information

n=1 ;% (1)2*2  (2)square random

(3)hexagonal

if n==

h=1;

I=1;

volf=0.6;

Nb=2; % divided portions in the beta direction
Nr=2; % divided portions in the gama direction
bb=sqrt(volf);

hh=1-bb;

hb=[bb hh]; % h_beta

hr=hb; % h_gama

61

fibers are



Nfiber=1;
regionf=[1]; % denote what cells are fiber
%end of code
elseif n==

h=1;

I=1;

load hb.txt;

hb=hb';

hr=hb;
Nb=size(hb);
Nb=Nb(1,2);
Nr=Nb;

load regionf.txt;
regionf=regionf’;
Nfiber=size(regionf);
Nfiber=Nfiber(1,1);
elseif n==

h=1;

I=sqrt(3);

load hb.txt;

load hr.txt;

hb=hb';

hr=hr";
Nb=size(hb);
Nr=size(hr);
Nb=Nb(1,2);
Nr=Nr(1,2);

load regionf.txt;
regionf=regionf’;
Nfiber=size(regionf);
Nfiber=Nfiber(1,1);

end

%

step=80;

Data=zeros(step+1,12);

bb=0;

Step
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for aaa=7;
ifaaa==12|314|5|7
bb=bb+2;
bbb=bb-1;

% Loop & angle
Nstep=step;

delta=2; % stress increment
angle=(aaa-1)*15;
rad=angle/180%pi;

Angle

%

matrix deploy

Sm=zeros(6,6);

AG=zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr);
J=zeros(2*(Nb+Nr)+Nb*Nr+1,6);

subStrain=zeros(6*Nb*Nr,1);
subStress=zeros(6*Nb*Nr, 1);

deps=zeros(6,1);

AVPM=zeros(5*Nb*Nr-2*(Nb+Nr)-1,6¥*Nb*Nr);

sigam=zeros(6,1); % current stress

Cs=zeros(6*Nb*Nr,6); % sub-cell stiffness matrix

cs=zeros(6*Nb*Nr,6);
Tstress=zeros(Nstep+1,1);
Tstrain=zeros(Nstep+1,1);
AVP=zeros(6*Nb*Nr,6);

%

% fiber stiffness matrix
nuf2 1=Ef2*nuf12/Efl;
nuf3 1=Ef3*nufl3/Efl;
nuf32=Ef3*nuf23/Ef2;

current stress & strain independent matrix

S=[1/Efl -nuf21/Ef2 -nuf31/Ef3 0 0 0;...
-nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;...
-nuf13/Efl -nuf23/Ef2 1/Ef3 0 0 0;...

0001/Gf2300;...
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0000 1/Gf13 0;...
00000 1/Gf12];
Cf=inv(SP);

Sme=[1/Em -num/Em -num/Em 0 0 0;...
-num/Em 1/Em -num/Em 0 0 0;...
-num/Em -num/Em 1/Em 0 0 0;...
0001/GmO0 0;...

0000 1/Gm 0;...
00000 1/Gm];

% AG matrix

index=-5;

for i=1:Nb*Nr % 11 displ. continuity
index=index+6;
AG(,index)=1;
Ja,D=1;

end

for gama=1:Nr % loop to apply displ. continuity

for beta=1:Nb
index=Nr*beta-Nr+gama;
AG(Nb*Nr+gama,(index-1)*6+2)=hb(1,beta); % 22
J(Nb*Nr+gama,2)=h;
AG(Nb*Nr+Nr+beta,(index-1)*6+3)=hr(1,gama); %33
J(Nb*Nr+Nrtbeta,3)=l;
AG(Nb*Nr+Nr+Nb+1,(index-1)*6+4)=hb(1,beta)*hr(1,gama)/2; %23
JINDb*Nr+Nr+Nb+1,4)=h*1/2;
AG(Nb*Nr+Nr+Nb+1+beta,(index-1)*6+5)=hr(1,gama)/2; %13
JINb*Nr+Nr+Nb+1+beta,5)=1/2;
AG(Nb*Nr+Nr+2*Nb+1+gama,(index-1)*6+6)=hb(1,beta)/2; %12
JINb*Nr+Nr+2*Nb+1+gama,6)=h/2;

end

end

% Tsig & Teps
Tsig=[cos(rad)"2 sin(rad)*2 0 0 0 2*cos(rad)*sin(rad);...
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sin(rad)"2 cos(rad)*2 0 0 0 -2*cos(rad)*sin(rad);...

001000;...

0 0 0 cos(rad) -sin(rad) 0;...

0 0 0 sin(rad) cos(rad) 0;...

-cos(rad)*sin(rad) cos(rad)*sin(rad) 0 0 0 cos(rad)"2-sin(rad)"2];

Teps=[cos(rad)"2 sin(rad)*2 0 0 0 -cos(rad)*sin(rad);...

sin(rad)*2 cos(rad)*2 0 0 0 cos(rad)*sin(rad);...

001000;...

0 0 0 cos(rad) sin(rad) 0;...

0 0 0 -sin(rad) cos(rad) 0;...

2*cos(rad)*sin(rad) -2*cos(rad)*sin(rad) 0 0 0 cos(rad)"2-sin(rad)"2];
% K matrix

K=[zeros(5*Nb*Nr-2*(Nb+Nr)-1,6); J];

for i=1:Nfiber;
cs(regionf(i,1)*6-5,1)=1;

end

for beta=1:Nb;
for gama=1:Nr;
index=(beta-1)*Nr+gama;
pl1=6*(index-1)+1;
p2=6*(index-1)+6;

if cs(index*6-5,1)==1,
Cs(pl:p2,:)=Cf;

else
Cs(pl:p2,:)=inv(Sme);

end

end

end

% thermal stress in GMC

load residualStress.txt;
subStress=residualStress;

clear residualStress;
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% main loop and code

dsig=Tsig*dsigl;
%dsig=dsig1;

for i=1:Nstep

now=1

count=0;
for beta=1:Nb-1 % construct AVPM matrix
for gama=1:Nr

betahat=beta+1;

index=(beta-1)*Nr+gama-1;

index2=(betahat-1)*Nr+gama-1;

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+2.,j); % 22 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+2,j);

end

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+6.j); % 12 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+6.j);

end

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+4.,j); % 23 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+4,j);

end

end

end

for gama=1:Nr-1 % construct AVPM matrix
for beta=1:Nb
gamahat=gama+1;
index=(beta-1)*Nr+gama-1;

index2=(beta-1)*Nr+gamahat-1;
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count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+3.j); % 33 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+3,j);

end

count=count+1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+5.,j); % 13 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+5.j);

end

end

end

for gama=1:Nr-1

count=count+1;

beta=Nb;

gamahat=gama-+1;

index=(beta-1)*Nr+gama-1;

index2=(beta-1)*Nr+gamahat-1;

for j=1:6
AVPM(count,6*index+j)=Cs(6*index+4.,j); % 23 traction continuity
AVPM(count,6*index2+j)=-Cs(6*index2+4.j);

end

end

AtVP=[AVPM; AG];
AVP=AtVP\K;
Bvp=zeros(6,6);

for beta=1:Nb
for gama=1:Nr
index=(beta-1)*Nr+gama;
pl=6*(index-1)+1;
p2=6*(index-1)+6;
Bvp=Bvp+hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)*AVP(pl:p2,:);
end
end

Bvp=Bvp/h/l;
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deps=Bvp\dsig; % engineering strain increment of composite in the material axis

deps1=Teps*deps; % strain increment in the loading axis

%epss(i,:)=deps(:,1)";

%if Tstrain(i+1,1) >= 0.04
%  break

%oelse

%end

for i=1:Nfiber;
cs(regionf(i,1)*6-5,1)=1;

end

for beta=1:Nb;
for gama=1:Nr;
index=(beta-1)*Nr+gama;
pl=6*(index-1)+1;
p2=6*(index-1)+6;

if cs(index*6-5,1)==1,
Cs(pl:p2,:)=Cf;

else

%leps(pl:p2,1)=AVP(pl:p2,:)*deps;
sigam=Cs(p1:p2,:)*AVP(p1:p2,:)*deps; % evaluate local stress increment
%check(p1:p2,1)=sigam,;
subStress(p1:p2,1)=subStress(p1:p2,1)+sigam; % current stress state
sigam=subStress(p1:p2,1);
s1=1/3*(2*sigam(1,1)-sigam(2,1)-sigam(3,1));
s2=1/3*(-sigam(1,1)+2*sigam(2,1)-sigam(3,1));
s3=1/3*(-sigam(1,1)-sigam(2,1)+2*sigam(3,1));
s4=2*sigam(4,1);
s5=2*sigam(5,1);
s6=2*sigam(6,1);

efsig=sqrt((sigam(1,1)+sigam(2,1)+sigam(3,1))"2-3*(sigam(2,1)*sigam(3,1)-sigam(4,1)"2+sigam(1,1)
*sigam(3,1)-...
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sigam(5,1)"2+sigam(1,1)*sigam(2,1)-sigam(6,1)"2));
%if index ==
% test(i,1)=efsig;
%else
%end
Smp=3/4*b*pn*efsig"(pn-3)*[s1; s2; s3; s4; s5; s6]*3*[s1; s2; s3; s4; s5; s6]';
%Smp(4:6,:)=Smp(4:6,:)*2;
Sm=Sme+Smp;
Cs(pl:p2,:)=inv(Sm);
end
end
end
end
sho=[Tstrain, Tstress];

Data(:,bbb:bb)=sho;

end

end

%sho=[Tstrain, Tstress];
plot(Tstrain, Tstress,'b");

toc
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Appendix C MATLAB code for calculating the modal shapes and damping
capacity of composite structures

clear all
Array=1; %different fiber array (1)SEP (2)SDP (3)HP
lo=10; Y%structure density

modal=7; %save number of modal

%
load MT.txt; %material properties
load element3d.txt; % nodal number of each element

load nposition3d.txt; % nodal location
load dampinge.txt; %damping capacity of six direction
load dampingd.txt;
load dampingh.txt;
if Array==
damping=dampinge;
elseif Array==
damping=dampingd;
else Array==3
damping=dampingh;
end
c=size(element3d);
d=size(nposition3d);
d=d(1,1);
G=zeros(3*3,8*3);,
gk=zeros(d(1,1)*3,d(1,1)*3);
GK=zeros(d(1,1)*3,d(1,1)*3); % global K
gkcapa=zeros(d(1,1)*3,d(1,1)*3);
GKcapa=zeros(d(1,1)*3,d(1,1)*3);
gm=zeros(d(1,1)*3,d(1,1)*3);

GM=zeros(d(1,1)*3,d(1,1)*3); % global M
% material property
for i=Array

Ef1=MT(1,i); % zz Young's modulus of fiber
Ef2=MT(2,i); % xx Young's modulus of fiber
Ef3=Ef2; % yy Young's modulus of fiber
nuf12=MT(5,i);

nufl3=nufl2;
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nuf23=MT(6,i);

Gf12=MT(3,1); %Ef1/(2*(1+nufl2)) - if fibers are isotropic

Gf13=Gf12;

Gf23=MT(4,1); %Ef2/(2*(1+nuf23));%Gf12;

end

nuf21=Ef2*nuf12/Ef1;

nuf31=Ef3*nuf13/Efl;

nuf32=Ef3*nuf23/Ef2;

S=[1/Ef1 -nuf21/Ef2 -nuf31/Ef3 0 0 0; -nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;...
-nuf13/Efl -nuf23/Ef2 1/Ef3000;00 0 1/Gf1200;00 0 0 1/Gf23 0; 00 0 0 0 1/Gf13];

E=inv(Sf);

% B matrix
for a=1:c(1,1);
KE=zeros(24,24);
KM=zeros(24,24);
KEcapa=zeros(24,24);
for k=0:2:2

for j=0:2:2

for i=0:2:2

XI=(i-1)/sqrt(3);
YI=(j-1)/sqrt(3);
Z1=(k-1)/sqrt(3);

L=[100000000 % L matrix
000010000
000000001
010100000
000001010
0010001007

DN(5,1)=-1/8*(1-YI)*(1+ZI);
DN(6,1)= 1/8*(1-YT)*(1+ZI);
DN(7,1)= 1/8*(1+YT)*(1+ZI);
DN(8,1)=-1/8*(1+YT)*(1+ZI);
DN(1,1)=-1/8*(1-YT)*(1-ZI);
DN(2,1)= 1/8*(1-YT)*(1-ZI);
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DN(@3,1)= 1/8*(1+YT)*(1-ZI);
DN(4,1)=-1/8*(1+YT)*(1-ZI);

DN(5,2)=-1/8*(1-XI)*(1+ZI);
DN(6,2)=-1/8*(1+XI)*(1+ZI);
DN(7,2)= 1/8*(1+XD)*(1+ZI);
DN(8,2)= 1/8*(1-XI)*(1+ZI);
DN(1,2)=-1/8*(1-XI)*(1-ZI);
DN(2,2)=-1/8*(1+X1)*(1-ZI);
DN(3,2)= 1/8*(1+XI)*(1-ZI);
DN(4,2)= 1/8*(1-XI)*(1-ZI);

DN(5.,3)= 1/8*(1-XI)*(1-Y1);

DN(6,3)= 1/8*(1+XT)*(1-YI);
DN(7,3)= 1/8*(1+XD)*(1+YT);
DN(8,3)= 1/8*(1-XI)*(1+YI);
DN(1,3)=-1/8*(1-XI)*(1-YI);

DN(2,3)=-1/8*(1+XI)*(1-YI);
DN(3,3)=-1/8*(1-+XI)*(1+YI);
DN(4,3)=-1/8*(1-XD)*(1+YI);

NN(1,1)=1/8*(1-XIy*(1-YT)*(1-ZI);
NN(2,1)=1/8*(1+XI)*(1-YT)*(1-ZI);
NN@,D)=1/8*(1+XI)*(1+YT)*(1-ZI);
NN(@,1)=1/8*(1-XIy*(1+YT)*(1-ZI);
NN(5,1)=1/8*(1-XIy*(1-YT)*(1+ZI);
NN(6,1)=1/8*(1+XI)*(1-YT)*(1+ZI);
NN(7,1)=1/8*(14+XI)*(1+YT)*(1+ZI);
NN(8,1)=1/8*(1-XIy*(1+YT)*(1+ZI);

index=0; %
for I=1:8
index=index+3;
for J=1:3
G(J,index-2)=DN(LJ);
G(J+3,index-1)=DN(LJ);
G(J+6,index)=DN(1,J);

end
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T=[INVI(1,1) INVI(1,2) INVI(1,3)0 0 0 0 0
INVJI(2,1) INVI(2,2) INVI(2,3)0 0 0 0 0
INVJI(3,1) INVI(3,2) INVI(3,3)0 0 0 0 0
0
0

%

0
0
0

0
0
0

end

index2=0; % N(shape function) matrix

for J=1:8
index2=index2+3;
NNN(1,index2-2)=NN(J,1);
NNN(2,index2-1)=NN(J,1);
NNN(3,index2)=NN(J,1);

end
% Jacobian Matrix
JACO=zeros(3,3);
for M=1:3
for N=1:3
for K=1:8
JACO(M,N)=JACO(M,N)+DN(K,M)*nposition3d(element3d(a,K+6),N+1);
end
end
end

INVI=inv(JACO);

0 0 INVI(1,1)INVI(1,2) INVI(1,3) 0
0 0 INVI2,1)INVI2,2) INVI2,3)0

0 0 INVI3,1)INVI(3,2)INVI(3,3)0 0
0 0 0 0 OINVIII)INVI(1,2) INVI(,3)
0 0 0 0 OINVI21)INVI(2.2)INVI2,3)
0 0 0 0 O0INVI3,1)INVI(3,2) INVI3.3);

0
0
0
0
0
0

B=L*T*G; % B

K, M Kfi matrix

kk=B'*E*B;
kkcapa=B'*E*damping*B;

KE=KE+det(JACO)*kk; % K matrix of element
KEcapa=KEcapat+det(JACO)*kkcapa;  %kcapa matrix of element

km=I10*NNN'*NNN;  %mass matrix of gauss integral point
KM=KM+det(JACO)*km,; %mass matrix of element
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end
end
end
% Global K:
for n=1:8

for m=1:8

gk(element3d(a,n+1+5)*3-2 element3d(a,m+1+5)*3-2)=KE(n*3-2,m*3-2);
GK(element3d(a,n+1+5)*3-2 element3d(a,m+1+5)*3-2)=GK(element3d(a,n+1+5)*3-2,
element3d(a,m+1+5)*3-2)+gk(element3d(a,n+1+5)*3-2, element3d(a,m+1+5)*3-2);
gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=KE(n*3-1,m*3-2);
GK(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=GK(element3d(a,n+1+5)*3-1,
element3d(a,m+1+5)*3-2)+gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2);
gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=KE(n*3,m*3-2);
GK(element3d(a,nt+1+5)*3, element3d(a,m+1+5)*3-2)=GK(element3d(a,n+1+5)*3,
element3d(a,m+1+5)*3-2)+gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2);
gk(element3d(a,n+1+5)*3-2 element3d(a,m+1+5)*3-1)=KE(n*3-2,m*3-1);
GK(element3d(a,nt+1+5)*3-2 element3d(a,m+1+5)*3-1)=GK(element3d(a,n+1+5)*3-2,
element3d(a,m+1+5)*3-1)+gk(element3d(a,n+1+5)*3-2, element3d(a,m+1+5)*3-1);
gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=KE(n*3-1,m*3-1);
GK(element3d(a,n+1+5)*3-1 element3d(a,m+1+5)*3-1)=GK(element3d(a,n+1+5)*3-1,
element3d(a,m+1+5)*3-1)+gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1);
gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=KE(n*3,m*3-1);
GK(element3d(a,n+1+5)*3 element3d(a,m+1+5)*3-1)=GK(element3d(a,n+1+5)*3,
element3d(a,m+1+5)*3-1)+gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1);
gk(element3d(a,n+1+5)*3-2 element3d(a,m+1+5)*3)=KE(n*3-2,m*3);
GK(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=GK(element3d(a,n+1+5)*3-2,
element3d(a,m+1+5)*3)+gk(element3d(a,n+1+5)*3-2 element3d(a,m+1+5)*3);
gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=KE(n*3-1,m*3);
GK(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=GK(element3d(a,n+1+5)*3-1,
element3d(a,m+1+5)*3)+gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3);
gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=KE(n*3,m*3);
GK(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=GK(element3d(a,n+1+5)*3,

element3d(a,m+1+5)*3)+gk(element3d(a,n+1+5)*3, element3d(a,m+1+5)*3);

% Global

Kcapa

gkcapa(element3d(a,n+1+5)*3-2, element3d(a,m+1+5)*3-2)=KEcapa(n*3-2,m*3-2);

74



GKcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=GK capa(element3d(a,n+1+5)*3-2,eleme
nt3d(a,m+1+5)*3-2)+gkcapa(element3d(a,n+1+5)*3-2 element3d(a,m+1+5)*3-2);
gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=KEcapa(n*3-1,m*3-2);
GKcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=GK capa(element3d(a,n+1+5)*3-1 ,€
lement3d(a,m+1+5)*3-2)+gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2);
gkcapa(element3d(a,n+1+5)*3 element3d(a,m+1+5)*3-2)=KEcapa(n*3,m*3-2);
GKcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=GKcapa(element3d(a,n+1+5)*3 ele
ment3d(a,m+1+5)*3-2)+gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2);
gkcapa(element3d(a,n+1+5)*3-2, element3d(a,m+1+5)*3-1)=KEcapa(n*3-2,m*3-1);
GKcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=GK capa(element3d(a,n+1+5)*3-2 ,€
lement3d(a,m+1+5)*3-1)+gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1);
gkcapa(element3d(a,nt1+5)*3-1,element3d(a,m+1+5)*3-1)=KEcapa(n*3-1,m*3-1);
GKcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=GKcapa(element3d(a,n+1+5)*3-1 ,€
lement3d(a,m+1+5)*3-1)+gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1);
gkcapa(element3d(a,n+1+5)*3 element3d(a,m+1+5)*3-1)=KEcapa(n*3,m*3-1);
GKcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=GKcapa(element3d(a,n+1+5)*3,
ele ment3d(a,m+1+5)*3-1)+gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1);
gkcapa(element3d(a,n+1+5)*3-2, element3d(a,m+1+5)*3)=KEcapa(n*3-2,m*3);
GKcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=GKcapa(element3d(a,n+1+5)*3-2,
element3d(a,m+1+5)*3)+gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3);
gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=KEcapa(n*3-1,m*3);
GKcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=GKcapa(element3d(a,n+1+5)*3-1,
element3d(a,m+1+5)*3)+gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3);
gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=KEcapa(n*3,m*3);
GKcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=GKcapa(element3d(a,n+1+5)*3,

element3d(a,m+1+5)*3)+gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3);

% Global mass matrix
gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=KM(n*3-2,m*3-2);
GM(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=GM(element3d(a,n+1+5)*3-2,

element3d(a,m+1+5)*3-2)+gm(element3d(a,n+1+5)*3-2, element3d(a,m+1+5)*3-2);
gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=KM(n*3-1,m*3-2);
GM(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=GM(element3d(a,n+1+5)*3-1,

element3d(a,m+1+5)*3-2)+gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2);
gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=KM(n*3,m*3-2);
GM(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=GM(element3d(a,n+1+5)*3,

element3d(a,m+1+5)*3-2)+gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2);

gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=KM(n*3-2,m*3-1);
GM(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=GM(element3d(a,n+1+5)*3-2,

75



element3d(a,m+1+5)*3-1)+gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1);
gm(element3d(a,n+1+5)*3-1,element3d(a,m+14+5)*3-1)=KM(n*3-1,m*3-1);
GM(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=GM(element3d(a,n+1+5)*3-1,
element3d(a,m+1+5)*3-1)+gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1);
gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=KM(n*3,m*3-1);
GM(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=GM(element3d(a,n+1+5)*3,
element3d(a,m+1+5)*3-1)+gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1);
gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=KM(n*3-2,m*3);
GM(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=GM(element3d(a,nt+1+5)*3-2,
element3d(a,m+1+5)*3)+gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3);
gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=KM(n*3-1,m*3);
GM(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=GM(element3d(a,nt+1+5)*3-1,
element3d(a,m+1+5)*3)+gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3);
gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=KM(n*3,m*3);
GM(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=GM(element3d(a,n+1+5)*3,
element3d(a,m+1+5)*3)+gm(element3d(a,n+1+5)*3, element3d(a,m+1+5)*3);
end

end

end

% boundary conditions
load BC.txt; % nodal boundary condition at x direction
x=size(BC);

z=z(1,1);

GKnew=zeros(3*d-(3*x),3*d-(3*x));
GKcapanew=zeros(3*d-(3*x),3*d-(3¥x));
GMnew=zeros(3*d-(3*x),3*d-(3*x));
GK1=zeros(1,(3*d-(3*x))"2);
GKcapal=zeros(1,(3*d-(3*x))"2);
GM1=zeros(1,(3*d-(3*x))"2);

pk=923456;

for i=1:x
NBC=BCx(1,1)*3-2;
GK(:,NBC)=pk;
GK(:;,NBC+1)=pk;
GK(:;,NBC+2)=pk;
GK(NBC,:)=pk;
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GK(NBC+1,:)=pk;
GK(NBC+2,:)=pk;
end
index=0;
for i=1:3*d
for j=1:3*d
if GK(i,j)==pk;
else
index=index+1;
GK1(1,index)=GK(i,j);
GM1(1,index)=GM(i,));
GKecapal(1,index)=GKcapa(i,j);
end
end
end
for i=1:(3*d-(3*x))
GKnew(i,:)=GK1(1,31-1)*(3*d-(3*x))+1:1*(3*d-(3*x)));
GMnew(i,:)=GM1(1,(i-1)*(3*d-(3*x))+1:1*(3*d-(3*x)));
GKcapanew(i,:)=GKcapal(1,(i-1)*(3*d-(3*x))+1:1*(3*d-(3*x)));

end

% eigenvalue & eigenvector
[eigenvector,eigenvalue]=eig(GKnew,GMnew);
eigenvalue=eig(GKnew,GMnew);
Esort=sort(eigenvalue);
qg=size(Esort);
qq=qq(1,1);
FF=sqrt(Esort)/(2*pi);
index2=0;
for i=1:modal
index=0;
es=Esort(i,1);
for j=1:qq
index=index+1;
ee=eigenvalue(j,1);
if ee==es
%pp=index
index2=index2+1;

evector(:,index2)=eigenvector(:,index);
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end
end
end
Mdamp=zeros(modal,1);
for i=1:modal
Mdamp(i,1)=(1/2*evector(:,i)"*GKcapanew*evector(:,1))/(1/2*evector(:,i)"*GKnew*evector(:,i));
end
yy=size(evector);
Dvector=zeros(yy(1,1)/3,yy(1,2)*3);

DDvector=zeros(d,modal*3);

for k=1:modal
mr=evector(:,k)'’*GMnew*evector(:,k);
index3=0;
index2=0;
index=1;
for i=1:d
BBCx=BCx(index,1);
if index==x
index=1;
index3=index3+1;
elseif nposition3d(i,1 )==BBCx
index=index+1;
index3=index3+1;
DDvector(index3,k*3-2)=nposition3d(i,2);
DDvector(index3,k*3-1)=nposition3d(i,3);
DDvector(index3,k*3)=nposition3d(i,4);
else
index2=index2+1;
index3=index3+1;
DDvector(index3,k*3-2)=(evector(index2*3-2,k)/sqrt(mr)+nposition3d(i,2));
DDvector(index3,k*3-1)=(evector(index2*3-1,k)/sqrt(mr)+nposition3d(i,3));
DDvector(index3,k*3)=(evector(index2 *3,k)/sqrt(mr)+nposition3d(i,4));
end
end

end
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Table 2.1 Mechanical properties and thermal properties of the ingredients of fiber

composites used in the GMC analysis.

Fiber Matrix
E,(GPa) 234 34
E,(GPa) 14
G,,(GPa) 27.6
G,;(GPa) 5.5
Vi, 0.2 0.37
V93 0.25
a (1/ oC) 1.18x104
A 6.42x1011
n 4.11
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Table 3.1 Four parameters used in ANSYS to simulate the nonlinear behavior of

matrix materials

K R, R
Parameter 29 2000 48 620
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Table 4.1 Mechanical properties and damping capacities of fiber and matrix used in
GMC analysis [13]

Fiber Matrix

E,(GPa) 225 3.197
E,(GPa) 15.64
G,,(GPa) 38.03
G,;(GPa) 52.48

VY, 0.229 0.347

V93 0.49

v 0.00101 0.06537

Table 4.2 Damping property of fiber composites with SEP packing obtained by using

the GMC and FEM analysis
GMC FEM Error(%)
v, 0.00123 0.00123 0
v, 0.01321 0.01256 4.9
W, 0.01321 0.01256 4.9
v, 0.01799 0.01689 6.1
v, 0.02131 0.02164 1.5

v, 0.02131 0.02164 1.5
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Table 4.3 Damping property of fiber composites with SDP packing obtained by using

the GMC and FEM analysis
GMC FEM Error(%)

v, 0.00123 0.00123 0

v, 0.01742 0.01658 4.8
W, 0.01742 0.01658 4.8
v, 0.01799 0.01251 304
v, 0.02252 0.02175 34
v, 0.02252 0.02175 34

Table 4.4 Damping property of fiber composites with HP packing obtained by using

the GMC and FEM analysis
GMC FEM Error(%)
v, 0.00123 0.00123 0
v, 0.01509 0.01477 2.1
W, 0.01509 0.01477 2.1
v, 0.01794 0.01426 20.5
v, 0.02233 0.02164 3

v, 0.02233 0.02164 3
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Table 4.5 Fiber array effect on the first three modal damping capacities of composite

rod with fiber extended in x-direction under free-free boundary condition

SEP SDP HP
First mode 0.02125 0.02245 0.02178
Second mode 0.01096 0.01330 0.01187
Third mode 0.02111 0.02228 0.02163

Table 4.6 Fiber array effect on the first three modal damping capacities of composite

rod with fiber extended in z-direction under free-free boundary condition

SEP SDP HP
First mode 0.01403 0.01795 0.01579
Second mode 0.01365 0.01747 0.01535
Third mode 0.01971 0.02068 0.02008

Table 4.7 Fiber array effect on the first three modal damping capacities of composite

plate with fiber extended in x-direction under free-free boundary condition

SEP SDP HP
First mode 0.02097 0.02220 0.02150
Second mode 0.01378 0.01749 0.01543
Third mode 0.01821 0.02012 0.01911
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Table 4.8 Fiber array effect on the first three modal damping capacities of composite

rod with fiber extended in x-direction under clamp-free boundary condition

SEP SDP HP
First mode 0.00699 0.00884 0.00767
Second mode 0.02115 0.02233 0.02167
Third mode 0.01433 0.01591 0.01499

Table 4.9 Fiber array effect on the first three modal damping capacities of composite

rod with fiber extended in z-direction under clamp-free boundary condition

SEP SDP HP
First mode 0.01385 0.01780 0.01563
Second mode 0.01354 0.01746 0.01530
Third mode 0.01475 0.01846 0.01638

Table 4.10 Fiber array effect on the first three modal damping capacities of composite

plate with fiber extended in x-direction under one side clamped boundary condition

SEP SDP HP
First mode 0.00834 0.01046 0.00913
Second mode 0.01360 0.01478 0.01405
Third mode 0.01952 0.02099 0.02015

84



Table 4.11 Fiber array effect on the first three modal damping capacities of composite

plate with fiber extended in z-direction under one side clamped boundary

SEP SDP HP
First mode 0.01367 0.01749 0.01538
Second mode 0.01932 0.02092 0.02004
Third mode 0.01641 0.01966 0.01777
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Fig. 2.1 Representative volume element, (RVE)
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Fig. 2.2 Geometry and coordinate system of representative volume element [1]
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Fig. 2.3 Local coordinate systems of the representative volume element [1]
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Fig. 2.4 Fiber composites with three different fiber arrangements
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(2) (b)

Fig. 2.5 RVE with square edge packing portioned into (a) 28 X 28 subcells and (b)
3939 subcells

(a) (b)

Fig. 2.6 RVE with square diagonal packing portioned into (a) 27X 27 subcells and (b)
3939 subcells
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(2) (b)

Fig. 2.7 RVE with square edge packing portioned into (a) 20X 35 subcells and (b)

31x49 subcells
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Fig. 2.8 Comparison of stress and strain curves obtained from the RVEs with coarse

subclls and refined subcells
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Fig. 2.9 Thermal residual stress effects on the stress and strain curves of 15° off-axis

fiber composites with three different fiber arrays. (fiber volume fraction 60%)

200 F

160 |

I

N

o
T

Stress(MPa)

Square edge (Thermal)
—g— Square edge
—&—— Square diagonal (Thermal)
——A—— Square diagonal
——— Hexagonal (Thermal)
—&— Hexagonal

0 0.01 0.02

40

Strain

Fig. 2.10 Thermal residual stress effects on the stress and strain curves of 30° off-axis

fiber composites with three different fiber arrays. (fiber volume fraction 60%)
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Fig. 2.11 Thermal residual stress effects on the stress and strain curves of 45° off-axis

fiber composites with three different fiber arrays. (fiber volume fraction 60%)
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Fig. 2.12 Thermal residual stress effects on the stress and strain curves of 60° off-axis

fiber composites with three different fiber arrays. (fiber volume fraction 60%)

91



(€AY (3,2) (3.3)
(2,1) (2,2) | (23
(1,1) (1,2) (1,3)

> X
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/—> %,(V)
L

Fig. 3.2 Coordinate system of the RVE with square edge packing fiber

92



7
i

gy
>

<

LA

/S
/LA
o
R

il

P77

77
117
H LS
7

o7

Fig. 3.3 Finite element mesh of the RVE with square edge packing fiber

"b";‘g

T
s

aetr
e

;‘

il
.'b

-
o

777

]
“"

75

Fig. 3.4 Finite element mesh of the RVE with square diagonal packing fiber
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Fig. 3.6 Finite element mesh for a quadrant of the RVE with square edge packing fiber
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Fig. 3.8 Finite element mesh for a quadrant of the RVE with hexagonal packing fiber
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Fig. 3.9 Coordinate system and dimension for a quadrant of the RVE with square edge
packing fiber
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Fig. 3.10 Stress strain curve of matrix employed in GMC, SCMC and FEM analysis
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Fig. 3.11 Comparison of stress and strain curves obtained from GMC and FEM
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Fig. 3.12 Comparison of stress and strain curves obtained from SCMC and FEM

analysis under transverse loading o,
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Fig. 3.13 Converge test for the stress and strain curves of composites with hexagonal
square edge packing fiber obtained from SCMC model under shear loading o,
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Fig. 3.14 Converge test for the stress and strain curves of composites with hexagonal
square edge packing fiber obtained from GMC model under shear loading o,
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Fig. 4.1 Modeling procedure for characterizing the damping properties of composite

structures.
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Fig. 4.2 The dimension of composite structures (a) composite rod with fiber extended

in x-direction (b) composite plate with fiber extended in x direction
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(

Fig. 4.3 The first three modal shapes of composite rod with fiber in x-direction under

free-free boundary condition (a) First mode (b) Second mode (¢) Third mode
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(b)

(©)

Fig. 4.4 The first three modal shapes of composite rod with fiber in z-direction under

free-free boundary condition (a) First mode (b) Second mode (¢) Third mode
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Fig. 4.5 The first three modal shapes of composite plate with fiber in x-direction

under free-free boundary condition (a) First mode (b) Second mode (c¢) Third mode
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(b)

(©)

Fig. 4.6 The first three modal shapes of composite rod with fiber in x-direction under

clamp-free boundary condition (a) First mode (b) Second mode (¢) Third mode
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Fig. 4.7 The first three modal shapes of composite rod with fiber in z-direction under

clamp-free boundary condition (a) First mode (b) Second mode (¢) Third mode
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(b)

Fig. 4.8 The first three modal shapes of composite plate with fiber in x-direction

under one side clamped boundary condition (a) First mode (b) Second mode (c) Third
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mode

(b)

Fig. 4.9 The first three modal shapes of composite rod with fiber in z-direction under

one side clamped boundary condition (a) First mode (b) Second mode (¢) Third mode
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