
國 立 交 通 大 學 

機械工程學系 

 

碩 士 論 文  

 
 

 

 

探討不同纖維排列下複合材料 

之機械行為 

 

 

Investigating the mechanical behaviors of fiber composites with 

different fiber arrays 
 

 

研 究 生 ：齊揚楷 

指導教授 ：蔡佳霖 博士 

 

 

 

中 華 民 國 九 十 六 年 七 月  



探討不同纖維排列下複合材料之機械行為 

Investigating the mechanical behaviors of fiber composites with 

different fiber arrays 
 

研 究 生：齊揚楷                      Student：Yang-Kai Chi 

指導教授：蔡佳霖                     Advisor：Jia-Lin Tsai 

國  立  交  通  大  學 

機 械 工 程 系 

碩 士 論 文 

 
A Thesis 

Submitted to Department of Mechanical Engineering  

College of Engineering National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Mechanical Engineering 

 
July 2007 

 
Hsinchu, Taiwan, Republic of China 

 
 

中 華 民 國 九 十 六 年 七 月 



探討不同纖維排列下複合材料之機械行為 

 

學生：齊揚楷                        指導教授：蔡佳霖 

 

國立交通大學機械工程學系碩士班 

 

摘  要 
 

本研究目的在於探討纖維複合材料在不同纖維排列情況下對其

機械性質之影響，而主要探討的幾何排列分為下列三種，正方型排列

(SEP)，對角線排列(SDP)，六角形排列(HP)。本論文將對此三種不同

排列之纖維複合材料做以下探討，熱殘留應力對於不同纖維排列之複

合材料其非線性機械行為之影響，以及不同纖維排列下複合材料之阻

尼響應。在模擬纖維複合材料時，將取出一代表性單元體

（Representative Volume Element, RVE）進行分析，進而推求出整體

纖維複合材料之機械性質。在材料特性方面，纖維部份假設為線彈性

且具低阻尼特性，而基材部份則假設為非線性且具高阻尼特性。在熱

殘留應力對機械性質之非線性影響的分析裡，利用 Paley 以及 Aboudi 

[1]所提出的微觀力學廣義網格法  (Generalized Method of Cells, 

GMC)，來做纖維以及基材的熱殘留應力分析。再經由數值上的運算，
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建構出含有熱殘留應力之纖維複合材料的應力應變關係。分析結果顯

示，相較於對角線纖維排列，熱殘留應力對六角形及正方型纖維排列

之機械性質之影響，來的輕微了許多。 

對於不同纖維排列之複合材料對其阻尼影響的分析中，於代表性

單元體上分別施以相對於材料主軸方向的單軸載重或是剪力，利用微

觀力學廣義網格法，推求纖維複合材料主軸方向的應變能及其相對應

的應變能消散量。藉由應變能消散概念，計算出纖維複合材料位於各

材料主軸方向上的阻尼參數。從有限單元的分析方法，首先求出纖維

複合材料所構成的桿或平板結構，分別在自由邊界 (free-free) 以及一

端固定 (clamp-free)的情況下，其自由震動振動模態之變形﹔並結合

材料主軸方向上之阻尼係數以及振動模態之變形，即可求得在不同纖

維幾何排列下，對於不同結構的模態振動阻尼效應 (Damping 

Capacity) 。由分析結果可觀察出，在由對角線排列所構成的桿或平

板之複合材料結構上，在前三個振動的模態中，所求得之阻尼效應，

分別大於另外兩種纖維排列。

ii 



Investigating the mechanical behaviors of fiber composites 

with different fiber arrays 

 
Student：Yang-Kai Chi 　                  Advisor：Dr. Jia-Lin Tsai 

 

Department of Mechanical Engineering  

 

National Chiao Tung University 

 
Abstract 

 

This study aims to investigate the effect of fiber array on the mechanical 

responses of fiber composites.  Basically three different fiber arrays, i.e., square edge 

packing (SEP), square diagonal packing (SDP), and hexagonal packing (HP), were 

considered in the analysis.  The sensitivities of thermal residual stress on the 

nonlinear constitutive behaviors as well as the damping behaviors of the composites 

with different fiber arrays were the focus of the research.  The representative volume 

element (RVE) containing fiber and matrix phase was employed to describe the 

overall mechanical behaviors of fiber composites.  For the fiber phase, it was 

assumed to be a linear elastic material with low damping capacity, whereas the matrix 

was a nonlinear material with high damping capacity.  The generalized method of 

cell (GMC) micromechanical model originally proposed by Paley and Aboudi [1] was 

extended to include the thermal-mechanical behavior, from which the thermal residual 

stress within the fiber and matrix phases was calculated.  Through a numerical 

iteration, the constitutive relations of the composites in the presence of residual stress 

were established.  Results show that for the composites with square edge packing, 
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the mechanical behaviors are affected appreciably by the thermal residual stress.  On 

the other hand, the composites with hexagonal packing and square diagonal packing 

are relatively less sensitive to the thermal residual stress.  

Regarding the damping behaviors of the composites, the RVE was subjected to a 

simple loading (either axial or pure-shear loading), and the corresponding damping 

properties of the fiber composites with respect to the material principal directions 

were calculated from the GMC analysis together with the energy dissipation concept.  

With the assistance of FEM analysis, the mode shapes of composite rod and plate 

structures with vibration under free and clamp boundary conditions were determined.  

In conjunction with the model shape and the damping properties, the damping 

capacity of the composite structures constructed based on unidirectional composites 

with different fiber arrays were calculated.  It was found that, in both composite 

structures, the square diagonal packing always exhibits better damping performance 

rather than other two fiber arrangements at first three vibration modes.
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Chapter 1 Introduction 

1.1 Research motivation 

Fiber composites, because of their superior mechanical performances and light 

weight properties, have been extensively employed in various applications.  This 

study aims to investigate the mechanical behaviors of fiber composites with three 

different fiber arrays, i.e., square edge packing, square diagonal packing, and 

hexagonal packing.  The thermal-mechanical properties as well as the damping 

behaviors of composites are the focus in the paper.  It is well known that the micro 

architecture of the fiber may influence the mechanical performance of the fiber 

composites.  However, the extent of the fiber effect on the behavior of composites 

which are very crucial to composites design and application has not been studied 

systematically.  In this paper, the micromechanical analytical scheme was employed 

to model the micromechanical structures of the fiber composites and the overall 

properties based on different microstructures were discussed.    

 

1.2 Paper review 

In the manufacturing process, the fiber composites were usually cured at high 

temperatures followed by the cooling stage to room temperature.  During the cooling, 

because of the mismatch in the coefficients of thermal expansion of the fiber and 

matrix together with the mutual constraint effect, the thermal residual stress was 

induced in the constituents.  The magnitude of the residual stress relies on the 

properties of the fiber and matrix as well as the associated microstructures of the fiber 

composites, including the fiber shape and fiber packing arrangements.  In addition, 

the formation of residual stress may have influences on the constitutive behaviors of 
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the fiber composites, especially in the nonlinear range because the nonlinear behavior 

is highly dependent on the stress states of the composites.   

The constitutive behaviors of the composites with different fiber architectures 

have been characterized by many researchers using either finite element analysis or 

analytical micromechanical approach [2–7]. Sun and Vaidya [2] use the finite element 

method to predict the elastic modulus for boron/aluminum by utilizing the periodic 

boundary conditions which was the salient of the representative volume element 

(RVE).  Furthermore, Zhu and Sun [3] investigated the nonlinear behaviors of 

AS4/PEEK composites with three different fiber arrays under off-axis loading using 

finite element approach.  It was found that the nonlinear behaviors of the composites 

were quite sensitive to the fiber packing arrangement.  The similar conclusions were 

also addressed by Hsu et al. [4], who proposed an analytical micromechanical model 

for simulating the nonlinearity of AS4/PEEK composites subjected to combined 

transverse compression and shear loading.  Orozco and Pindera [5] conducted a 

micromechanical analysis using the GMC model on the two-phase composites with 

randomly distributed fibers, indicating that as the number of the refined sub-cells in 

the unit cell is increased, the behaviors of the composites tend to be that of a 

transversely isotropic solid.  The influences of fiber shape and fiber distribution on 

the elastic/plastic behavior of metal matrix composites were examined by Pindera and 

Bednarcyk [6] using the GMC micromechanical model.  It was shown that the fiber 

packing exhibits a substantially greater effect on the responses of the composite 

materials than does the fiber shape.  Pindera et al. [7] investigated the nonlinear 

behaviors of the boron/aluminum composites subjected to tensile, compressive and 

off-axis loadings.  The thermal residual stress was considered in their analysis in 

order to explain the differences of initial yielding in tension and compression.  The 

effect of residual stresses on yielding of SiC/Ti plates was also reported by Zhou et al. 
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[8].  Aghdam et al. [9] accounts for residual stresses, off-axis orientation and the 

interface condition between fiber and matrix on the constitutive behaviors of SiC/Ti 

metal matrix composites.  However, their analysis is limited to single fiber array 

(square).  A comprehensive review regarding the effect of fiber arrangement on the 

elastic and inelastic responses of fiber composites was provided by Arnold et al. [10].  

In light of the aforementioned investigations, it was suggested that the behaviors of 

the fiber composites were mainly dominated by the fiber packing arrangements.  

However, few studies concerning the influence of the residual stress arising from 

curing associated with different fiber arrays on the performances of fiber composites 

have been reported.   

Regarding to the damping behaviors of fiber composites, Saravanos and Chamis 

[11] used the unified micromechanical model to evaluate the damping property of 

unidirectional fiber composites with off-axis loading.  Hwang and Gibson [12] 

utilized the finite element approach and the micromechanical strain energy to predict 

the damping property of the fiber-matrix interphase effects. It was also indicated that 

for the longitudinal, transverse and out of plane shear loading, material damping does 

not change much even though the interphase size was increased.  In the previous 

review, most of the efforts were made to understand the basic damping properties of 

composites from the constitutive behavior of the ingredient in conjunction with the 

microstructure.  However, the vibration damping responses of composite structures 

built based on the unidirectional composites with different fiber arrays has not been 

examined comprehensively so far.  Although Kaliske and Rothert [13] utilized the 

GMC model to find the longitudinal damping property of fiber composites and then 

applied those damping properties to derive the structure modal damping capacity with 

the different fiber orientation, the microstructure effect on the damping responses was 

not discussed in their study. 
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1.3 Research approach 

The outline of the thesis and the primary tasks of each chapter are addressed as 

follows. For the unidirectional composites, the fibers in general are displayed 

randomly within the matrix.  To investigate the fiber array effect, three typical fiber 

arrangements, i.e., square edge packing, square diagonal packing, and hexagonal 

packing were assumed in our fiber composites.  An appropriate RVE corresponding 

to each fiber array was selected in the micromechanical analysis where the fiber was 

considered to be linear elastic with low damping capacity, and the matrix was 

assumed to be a nonlinear with high damping capacity.  By using Aboudi’s GMC 

micromechanical model [1], the incremental form of the constitutive relations of the 

composites was established in terms of the constituent properties as well as the 

geometry parameters of the RVE, from which the thermal residual stress within the 

ingredients was calculated.  After a numerical iteration, the corresponding stress and 

strain relations of the composites in the presence of thermal residual stress subjected 

to off-axis loading were generated.  The results were compared to those calculated 

from the composites without taking into account the thermal stress effect, which were 

presented in Chapter 2.   

In addition, the fundamental assumptions in the GMC micromechanical model 

were examined and compared to the other micromechanical model.  The stress and 

strain curves calculated based on the different micromechanical models were also 

discussed in Chapter 3.    

Moreover, from the GMC micromechanical analysis, the stress-states within 

each ingredient can be evaluated properly.  Based on the results, the damping 

capacity of the unidirectional composites with simple loading can be obtained using 

energy dissipation concept.  With the damping capacity of the unidirectional 
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composites with different fiber arrays, the vibration damping properties of the 

composite structures can be calculated from the FEM analysis together with the 

energy dissipation concept.  All detail procedures and results were illustrated in 

Chapter 4.    

Finally, the conclusions of the thesis were summarized in the Chapter 5.  
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Chapter 2 Effect of fiber array on thermal-mechanical behaviors of fiber 

composites 

In micromechanical analysis the constitutive behavior of fiber composites relies 

on the properties of fiber and matrix as well as the associated microstructure of fiber 

composites.  In this chapter, the thermal-mechanical behaviors of composites with 

three different fiber arrangements will be compared.  The generalized method of 

cells (GMC) proposed by Paley and Aboudi [1] was adopted for the micromechanical 

analysis in which the fiber is linear elastic and the matrix was treat as a nonlinear 

material.  The organization of this chapter is outlined as following.  The 

generalized method of cell was introduced to characterize the mechanical properties 

of the composites associated with their ingredient properties.  Subsequently, the 

constitutive model was developed based on the plasticity theory for describing the 

nonlinear behaviors of matrix material.  The thermal stresses generated in the fiber 

composites were calculated using GMC model and their effect on the nonlinear 

behavior of the composites were discussed.  

  

2.1 Generalized method of cells (GMC) 

In general, for the fiber composites, the fibers are arranged randomly in the 

matrix.  In order to model the composites using micromechanical approach, we have 

to assume a certain fiber array within the matrix such that a representative volume 

element (RVE) (see Fig. 2.1) can be selected properly to describe the mechanical 

responses of the composites.  In GMC analysis, the RVE was divided into several 

rectangular subcells ( ) with βγ βN1,....,β =  and γN1,...,γ = .  Depending on fiber 

arrangement, each subcells indicates either fiber or matrix phase on the RVE.  In Fig. 

2.2, the area of subcell is equal to  and the fiber extends in the  direction. γβlN 1x
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Assume that a local coordinate system ( ) ( )( )γ
3

β
21 x ,x ,x  was located at the center of 

each subcell and the displacement was assumed to be a linear expansion in terms of 

the distances from the center of subcell as   

 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 2, 1,i           ψxφx x, x,xwu βγ
i

γ
3

βγ
i

β
2321

βγ
i

βγ
i =++= &&&&        (2.1.1) 

 

where  is the displacement rates at the center of subcell.  In addition,  

and  are variables that characterize the linear dependence of displacement rates 

on the local coordinate system 

( )βγ
iw& ( )βγ

iφ&

( )βγ
iψ&

) β (
2x , )  γ(

3x .  In elasticity, the small strain rate tensor 

is written as 

 

( ) ( ) ( )( ) 3 2, 1,ji,       uu
2
1η βγ

ij
βγ
ji

βγ
ij =∂+∂= &&             (2.1.2) 

 

where 11 x∂∂=∂ , ( )β
22 x∂∂=∂  and ( )γ

33 x∂∂=∂ , substituting Eq. (2.1.1) into Eq. 

(2.1.2) and using the average formula, we derived the average strain rates in any 

subcell (βγ ) as 

 

( ) ( ) ( ) ( )∫ ∫− −
=

2l 

2l

2h 

2h

γ
3

β
2

βγ
ij

γβ

βγ
ij

γ

γ

β

β

xdxdη
lh

1η              (2.1.3) 

 

Eq. (2.1.3) can be written explicitly in terms of the displacement as 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )βγ
2

1

βγ
1

βγ
12

βγ
3

1

βγ
1

βγ
13

βγ
2

βγ
3

βγ
23

βγ
3

βγ
33

βγ
2

βγ
22

βγ
1

1

βγ
11

w
x

φη2

w
x

ψη2

ψφη2

ψη

φη

w
x

η

&&

&&

&&

&

&

&

∂
∂

+=

∂
∂

+=

+=

=

=

∂
∂

=

                  (2.1.4) 

 

It should be noted that the interface displacement rate of neighboring subcells and 

neighboring RVE must be continuous.  This condition led to the following relation  

 

( )
( )

( )
( ) 2hx

γβ̂
i2hx

βγ
i

β̂
β̂

2β
β

2
|u|u

−==
= &&                   (2.1.5) 

 

   ( )
( )

( )
( ) 2lx

γ̂β
i2lx

βγ
i

γ̂
γ̂

3γ
γ

3
|u|u

−==
= &&           (2.1.6) 

 

where  and  are defined by β̂ γ̂

 

⎩
⎨
⎧

=
<+

=
β

β

Nβ        1,
Nβ   1,β

β̂                        (2.1.7) 

 

⎩
⎨
⎧

=
<+

=
γ

γ

N        γ1,
N   γ1,γ

γ̂                        (2.1.8) 

 

Paley and Aboudi imposed the continuity condition on an average sense as [1] 
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( )
( )

( ) ( )
( )

( )∫∫ − −=− =
=

2l 

2l

γ
32hx

γβ̂
i

2l 

2l

γ
32hx

βγ
i

γ

γ β̂
β̂

2

γ

γ β
β

2
xd|u

hl
1xd|u

hl
1

&&        (2.1.9) 

 

Substitution of Eq. (2.1.1) into Eq. (2.1.9) yielded 

 

( ) ( ) ( ) ( )γβ̂
iβ̂

γβ̂
i

βγ
iβ

βγ
i φh

2
1wφh

2
1w &&&& −=+                 (2.1.10) 

 

In the same manner, Eq. (2.1.6) was expressed as 

 

( ) ( ) ( ) ( )γ̂β
iγ̂

γ̂β
i

βγ
iγ

βγ
i ψl

2
1wψl

2
1w &&&& −=+                 (2.1.11) 

 

In Fig. 2.3, both Eq. (2.1.10) and Eq. (2.1.11) represent the displacement continuity in 

the interface between the subcells and all field quantities which are originated from 

the centerline  of the subcell ( )β
2x ( )βγ  and the centerline ( )β̂

2x  of the subcell ( )γβ̂ .  

In order to introduce the location of the interface ( )I
2x  among subcells (  and )βγ

( )γβ̂ , the centerlines were shifted as  

 

( ) ( )
β

I
2

β
2 h

2
1xx −=                        (2.1.12) 

 

( ) ( )
β̂

I
2

β̂
2 h

2
1xx +=                        (2.1.13) 

 

Using a Taylor expansion of the field variables in Eq. (2.1.10) and maintaining only 

the linear terms, we obtained 
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( ) ( ) ( ) ( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

− γβ̂
i

γβ̂
i

2
β̂

γβ̂
i

βγ
i

βγ
i

2
β

βγ
i φw

x
h

2
1wφw

x
h

2
1w &&&&&&      (2.1.14) 

 

By defining 

 

( ) ( ) ( ) ( ) ( )β̂
i

γβ̂
i

β
i

βγ
i

β
i fwfwF +−+= &&                (2.1.15) 

 

where 

 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−= βγ
i

βγ
i

2
β

β
i φw

x
h

2
1f &&               (2.1.16) 

 

Eq. (2.1.14) can be written in a simple form as 

 

( )
β

β =β= N,...,1               0Fi                 (2.1.17) 

 

Similarly, Eq. (2.1.11) can be obtained as 

 

( ) ( ) ( ) ( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

− γ̂β
i

γ̂β
i

3
γ̂

γ̂β
i

βγ
i

βγ
i

3
γ

βγ
i ψw

x
l

2
1wψw

x
l

2
1w &&&&&&      (2.1.18) 

 

By defining 

( ) ( ) ( ) ( ) ( )γ̂
i

γ̂β
i

γ
i

βγ
i

γ
i gwgwG +−+= &&                    (2.1.19) 

 

where 
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    ( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−= βγ
i

βγ
i

3
γ

γ
i ψw

x
l

2
1g &&                    (2.1.20) 

 

Eq. (2.18) can be rewritten as 

 

( )
γ

γ
i N1,...,     γ          0G ==                  (2.1.21) 

 

From Eqs. (2.1.17) and (2.1.21), we obtained 

 

( )∑
=

=
βN

1β

β
i 0F                        (2.1.22) 

 

( )∑
=

=
γN

1γ

γ
i 0G                        (2.1.23) 

Employing the periodic boundary conditions in Eqs. (2.1.22) and (2.1.23) yielded  

 

( )∑
=

=
βN

1β

β
i 0f                        (2.1.24) 

 

( )∑
=

=
γN

1γ

γ
i 0g                        (2.1.25) 

 

Because the  was expanded in linear form, the above equations can be deduced 

as  

( )βγ
iw&
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( ) 0f
x

β
i

2

=
∂
∂                        (2.1.26) 

 

( ) 0g
x

γ
i

3

=
∂
∂                        (2.1.27) 

 

By taking partial derivatives of Eqs. (2.1.17) and (2.1.21) with respect to  and , 

respectively, we obtained 

2x 3x

 

( ) ( )γβ̂
i

2

βγ
i

2

w
x

w
x

&&
∂
∂

=
∂
∂                   (2.1.28) 

 

( ) ( )γ̂β
i

3

βγ
i

3

w
x

w
x

&&
∂
∂

=
∂
∂                   (2.1.29) 

 

In order to satisfy the relation of Eqs. (2.1.29) and (2.1.30), it was assumed that 

 

( )
i

βγ
i ww && =                        (2.1.30) 

 

From Eq. (2.1.30), we concluded that displacement rate  were the same for all 

subcells.  Using relation of Eq. (2.1.30) and substituting Eqs. (2.1.16) and (2.1.20) 

into Eqs. (2.1.24) and (2.1.25), respectively led to  

iw&

 

( )
i

2

N

1β

βγ
iβ w

x
hφh

β

&&
∂
∂

=∑
=

                  (2.1.31) 
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( )
i

3

N

1γ

βγ
iγ w

x
lψl

γ

&&
∂
∂

=∑
=

                   (2.1.32) 

 

In Eqs. (2.1.30), (2.1.31) and (2.1.32), it established the strain rate relations between 

entire RVE and all subcells.  

The average strain rate of entire RVE was defined as 

 

( )∑∑
= =

=
β γN

1β

N

1γ

βγ
ijγβij ηlh

hl
1η                   (2.1.33) 

 

For i=j=1, by substituting the first relation in Eq. (2.1.4) into Eq. (2.1.33) and using 

Eq. (2.1.30), the relation 
1

1
11 x

wη
∂
∂

=
&

 was obtained.  For i=j=2, multiplying Eq. 

(2.1.31) by  and performing a summation over γl γ  from 1 to  led to  γN

 

( )∑∑
= = ∂

∂
=

β γN

1β

N

1γ 2

2βγ
2γβ x

whlφlh
&

&                   (2.1.34) 

 

Comparing Eq. (2.1.34) with Eq. (2.1.33) and using relation in Eq. (2.1.4) gave rise 

to
2

2
22 x

wη
∂
∂

=
&

. For i=1,j=2, multiplying Eq. (2.1.31) by  and performing a 

summation over 

γl

γ  from 1 to  led to γN

 

( )∑∑
= = ∂

∂
=

β γN

1β

N

1γ 2

1βγ
1γβ x

whlφlh
&

&                   (2.1.35) 
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By substituting the sixth relation in Eq. (2.1.4) into Eq. (2.1.33) and comparing with 

Eq. (2.1.35), the relation ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
2

1

1

2
12 x

w
x
w

2
1η

&&
 was obtained.  In the same way, the 

other three average strain rate components can be obtained.  Hence, we suggested 

the following general form as 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=
i

j

j

i
ij x

w
x
w

2
1η

&&
                    (2.1.36) 

 

Through this relation in Eq. (2.1.36), we can substitute the local variables  

and global variable  into local average strain rate 

) βγ (
i

) βγ (
i ψ,φ &&

iw& ( )βγ
ijη  and global average strain 

rate in Eqs. (2.1.31) and (2.1.32).  By substituting i=2 into Eq. (2.1.31) and using the 

relation in Eqs. (2.1.36) and (2.1.4), it can be obtained that 

 

( )
γ22

N

1β

βγ
22β N1,...,γ          ηhηh

β

==∑
=

             (2.1.37) 

 

Similarly, when i=3, we can obtain 

 

( )
β33

N

1γ

βγ
33γ N1,...,β          ηlηl

γ

==∑
=

              (2.1.38) 

 

For the case i=3 in Eq. (2.1.31), by adding ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂βN

1β 1

) βγ (
2

β x
wh
&

 to both sides, the right 
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hand side term ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂βN

1β 1

) βγ (
2

β x
wh
&

 can be simplified into 
1

2

x
wh
∂
∂ & .  Hence, we derived 

 

( )
γ12

N

1β 1

2βγ
1β N1,...,γ          η2h

x
wφh

β

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∑
=

&
&           (2.1.39) 

 

In the same way, the Eq. (2.1.32) can be written in the form as 

 

( )
β13

N

1γ 1

3βγ
1γ N1,...,β          η2l

x
wψl

γ

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+∑
=

&
&             (2.1.40) 

 

By comparing the left hand side of Eqs. (2.1.39) and (2.1.40) with Eq. (2.1.4), we 

obtained 

 

( )
γ12

N

1β

βγ
12β N1,...,γ          ηhηh

β

==∑
=

               (2.1.41) 

 

( )
β13

N

1γ

βγ
13γ N1,...,β          ηlηl

γ

==∑
=

                (2.1.42) 

 

By setting i=1 and j=1 in Eq. (2.1.33) and using the relation in Eqs. (2.1.4) and 

(2.1.30), it was yielded as 

 

( )
11

βγ
11 ηη =                         (2.1.43) 

 

For the derivation of 23η , unlike the other strain components which can be deduced 
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from the displacement continuity equations, Eq. (2.1.33) were employed directly and 

the result was  

 

( )∑∑
= =

=
β γN

1β

N

1γ

βγ
23γβ23 ηlh

hl
1η                    (2.1.44) 

 

Therefore, we can rewrite the relation of local average strain ( )βγ
ijη  and global 

average strain ijη  in Eqs. (2.1.37), (2.1.38), (2.1.41), (2.1.42), (2.1.43) and (2.1.44) 

into a matrix form as 

 

ηJηA sG =                         (2.1.45) 

 

where ( ) ( ) ( ){ TNN1211
s  η,η,η η γβL= } , it was noted that each subcell had six 

components, { }T
121323332211 η2,η2,η2,η,η,η η = .  In addition,  and  

contained the geometry parameters of the subcells and the RVE the dimensions of 

which are 

GA J

( ) 1NNNN2 γβγβ +++ × γβN6N  and ( ) 1NNNN2 γβγβ +++ × 6, 

respectively.   

Because of the traction rate continuity at interface, we obtained 

 

( ) ( )γβ̂
2j

βγ
2j ττ =                        (2.1.46) 

 

( ) ( )γ̂β
3j

βγ
3j ττ =                        (2.1.47) 
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when j=1,2,3,  and βN1,...,β = γN1,...,γ = .  From the relations of Eqs. (2.1.46) and 

(2.1.47), there were ( ) 1NN2N5N γβγβ −+−  independent equations derived.  These 

independent interfacial relations are 

 

( ) ( )
γβ

γβ̂
22

βγ
22 N1,...,      γ1,N1,...,β          ττ =−==          (2.1.48) 

 

( ) ( ) 1N1,...,      γ,N1,...,β          ττ γβ
γ̂β

33
βγ

33 −===          (2.1.49) 

 

( ) ( )
γβ

γβ̂
23

βγ
23 N1,...,      γ1,N1,...,β          ττ =−==          (2.1.50) 

 

( ) ( ) 1N1,...,      γ,Nβ          ττ γβ
γ̂β

32
βγ

32 −===             (2.1.51) 

 

( ) ( )
γβ

γβ̂
21

βγ
21 N1,...,      γ1,N1,...,β          ττ =−==          (2.1.52) 

 

( ) ( ) 1N1,...,      γ,N1,...,β          ττ γβ
γ̂β

31
βγ

31 −===          (2.1.53) 

 

Define the constitutive equation as 

 

( ) ( ) ( )βγ
kl

βγVP
ijkl

βγ
ij ηCτ =                     (2.1.54) 

 

where  includes elastic and plastic properties.  By adopting the constitutive 

equation given in Eq. (2.1.54), the traction continuity equations, Eqs. (2.1.48)-(2.1.53), 

can be expressed in term of the local strain rate components.  Subsequently, we 

( )βγVPC
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simplify those equations in the matrix form as 

 

0ηA s
VP
M =                       (2.1.55) 

 

where ( ) ( ) ( ){ } η,η,η η γβNN1211
s L=  it was noted that each subcells had six 

component and  consisted of the components of tensor VP
MA ( )βγVP

ijklC  the dimension 

of which was ( ) 1NN2N5N γβγβ −+−  by .  Then we combined Eqs. (2.1.45) 

and (2.1.55) and had the expression as 

γβN6N

 

η=η KA~ s
VP                         (2.1.56) 

 

where   is a  ×  matrix and expressed explicitly as VPA~ γβNN6 γβNN6

 

⎥
⎦

⎤
⎢
⎣

⎡
=

G

VP
MVP

A
A

A~                         (2.1.57) 

 

In addition, K is a  × 6 matrix and expressed explicitly as γβN6N

 

⎥
⎦

⎤
⎢
⎣

⎡
=

J
0

K                            (2.1.58) 

 

By inverting Eq. (2.1.56), the subcells strain rate collection matrix  was expressed 

as 

sη
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ηAη VP
s =                          (2.1.59) 

 

where 

 

[ ] KA~A
1VPVP −

=                       (2.1.60) 

 

Moreover,  was a 6 ×6 matrix which can be partitioned into  

submatrix and each one is a 6×6 square matrix 

VPA γβNN γβNN

 

( )

( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)NVP(N

12VP

11VP

VP

γβA

A
A

A
M

                     (2.1.61) 

 

From the Eq. (2.1.59), Eq. (2.1.61) can be written in an explicit form as 

 

( ) ( )ηAη βγVPβγ =                       (2.1.62) 

 

Substituting the constitutive equation of Eq. (2.1.54) into Eq. (2.1.62) yielded 

 

( ) ( ) ( )ηACτ βγVPβγVPβγ =                  (2.1.63) 

 

The average stress rate in composite was define by 
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( )∑∑
= =

=
β γN

1β

N

1γ

βγ
ijγβij τlh

hl
1τ                   (2.1.64) 

 

By substituting Eq. (2.1.64) into Eq. (2.1.54), then the constitutive equation of RVE 

was derived as  

 

ηBτ *VP=                            (2.1.65) 

 

where 

 

( ) ( )∑∑
= =

=
β γN

1β

N

1γ

βγVPβγVP
γβ

VP* AClh
hl
1B               (2.1.66) 

 

 

2.2 Nonlinear behavior of epoxy matrix 

For modeling the nonlinear behavior of fiber composites using the 

micromechanical approach, the ingredient properties of the fiber composites have to 

be specified.  For the fiber phase, it was assumed to be linear elastic.  On the other 

hand, for the matrix part, it was assumed as a nonlinear material the behavior of 

which can be treated using a von Mises plastic potential in conjunction with the 

associated flow rule.  In this section, the model how to describe the nonlinear 

behavior of the matrix material was addressed in detail.  It is noted that the nonlinear 

part of the constitutive curve was simulated using the plasticity theory, although the 

un-loading process was not conducted in the matrix materials.  As a result, the 

nonlinear part of matrix can be expressed as 
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ij

2p
ij σ

Jdλdε
∂
∂

=                 (2.2.1) 

 

where λ&  was a proportional factor and  was the plastic potential as  2J

 

( ) ( ) ( )[ ] 2
13

2
23

2
12

2 
1133

2 
3322

2 
22112 σσσσσσσσσ 

6
1J +++−+−+−=     (2.2.2) 

 

Define an effective stress σ  as 

 

23Jσ =                         (2.2.3) 

 

Through the equivalent of plastic work, i.e. 

 

dλ2JεdσdεσdW 2
pp

ijij
p ===                   (2.2.4) 

 

the effective plastic strain increment pεd  was expressed as 

 

( ) ( ) ( )[ ]
( )

21

2p
13

2p
23

2p
12

2p
11

p
33

2p
33

p
22

2p
22

p
11

p

 dγdγdγ
4
3

dεdεdεdεdεdε 
2
1

3
2εd

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+++

−+−+−
=         (2.2.5) 

 

Using the relation in Eq. (2.2.4), the Eq. (2.2.1) can be derived as 

 

σ
σ

=
σ
ε

=λ
p

p

H
d

2
3d

2
3d                      (2.2.6) 
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where  is the plastic modulus and written as pH

 

pp
d
dH
ε
σ

=                          (2.2.7) 

 

In addition, the relationship of effective stress and effective plastic strain was assumed 

to be described using a power law as 

 
np )σA(ε =                        (2.2.8) 

 

With Eqs. (2.2.7) and (2.2.8), the plastic modulus λd  was yielded as  

 

1np )σnA(
1H −=                       (2.2.9) 

 

Based on the definition of the effective stress given in Eq. (2.2.3), σd  was deduced 

explicitly as 

 

( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
+++

+−−+−+−+−−
=

121213132323

333322112233221111332211

dσ6σdσ6σdσ6σ
dσ2σσσdσσ2σσdσσσ2σ

σ2
1σd (2.2.10) 

 

By substituting Eq. (2.2.10) together with Eq. (2.2.6) into Eq. (2.2.1), the plastic strain 

increment is written as 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

12

13

23

33

22

11

2
6

65
2
5

6454
2
4

635343
2
3

62524232
2
2

6151413121
2
1

2
p

p
12

p
13

p
23

p
33

p
22

p
11

dσ
dσ
dσ
dσ
dσ
dσ

 

S
SSS
SSSSSsymmetric
SSSSSSS
SSSSSSSSS
SSSSSSSSSSS

 
σH

1
4
9

dγ
dγ
dγ
dε
dε
dε

   (2.2.11) 
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where 

 

( )

( )

( )

126

135

234

3322113

3322112

3322111

2σS
2σS
2σS

2σσσ
3
1S

σ2σσ
3
1S

σσ2σ
3
1S

=
=
=

+−−=

−+−=

−−=

                  (2.2.12) 

 

It is noted that in Eq. (2.2.11), the elements in the plastic compliance matrix 

are not a constant, but they depend on the stress states, and for a given loading history, 

a numerical iteration process is usually required to update the compliance matrix.  

By combining the elastic parts, the incremental form of the constitutive relation of the 

epoxy material was established as 

 

{ } [ ]{ } dσ  S  dε M=                      (2.2.13) 

 

where 

 

[ ] [ ] [ ]peM S S S  +=                      (2.2.14) 

 

 

2.3 Thermal residual stress 

The thermal residual stresses for each subcell within the RVE were calculated 

from the thermal-elastic analysis with the assistance of the GMC micromechanical 

analysis.  For the subcell ( , the constitutive equation can be described as )γβ,
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ΔT)αη(Cτ ) βγ () βγ (

kl
) βγ (

ijkl
) βγ (

ij −=           (2.3.1) 

 

where the  represents the elastic material properties, ) βγ (
ijklC

) βγ (

klη  is the average strain 

rate,  is the thermal coefficient corresponding to the subcell ) βγ (α ( )γβ,  and  is 

the temperature change of the RVE.  After employing the conditions of interface 

traction rat continue and following the procedure presented in chapter 2.1, we had the 

following relation 

ΔT

 

0αΔT)(ηA sM =−               (2.3.2) 

 

where  is a matrix MA ( ) 1NN2N5N γβγβ −+− ×  which included the 

components of the tensor , and 

γβN6N

( )βγ
ijklC α  is denoted as { })N(N(12)(11) γβα,....,α,αα = .  

Using the displacement rate continue which derived previously in Eq. (2.3.45) as 

ηJηA sG =  and combining with Eq. (2.3.2), we obtained 
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Eq. (2.3.3) can be further written in a simple form as 

 

ηKαΔT A~ηA~ P
s =−                     (2.3.4) 

 

In which  and  are A~ PA~ γβγβ N6NN6N × matrix and K is the   matrix.  6N6N γβ ×
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From Eq. (2.3.4), it was indicated an expression for subcells strain increment in terms 

of the composite average strain increment and thermal strain as 

 

αΔT 
A~
A~η

A~
Kη

p

s +=              (2.3.5) 

 

Eq. (2.3.5) can be simplify as 

 

αΔT AηAη P
s +=               (2.3.6) 

 

Eq. (2.3.6) can be written in a subcell form as 

 

( )ΔTα AηAη βγ) βγ P() βγ () βγ (
+=            (2.3.7) 

 

Employing Eq. (2.3.1) in Eq. (2.3.7), the following thermal residual stress of each 

subcells can be established as 

 

( ) ( )ΔT)αΔTα Aη(ACτ βγβγ) βγ P() βγ () βγ () βγ (
−+=         (2.3.8) 

 

where η  is the average strain increment after temperature change. However the 

value of η  is not evaluated yet at this moment and will be calculated in the 

following.  Based on the average sense, the overall stress increment of the RVE was 

written as 
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Through the relation of Eq. (2.3.9), the Eq. (2.3.8) was yielded 
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Simplifying Eq. (2.3.10), it can be rewritten as  
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where 
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N
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N
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It was note that during the cooling procedure, there is no mechanical loading applied. 

Therefore, τ  was equal to zero, from which η  was deduced as 
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−

β γ
1

N
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By substituting η  back into Eq. (2.3.8), the thermal residual stress of each subsell 
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can be determined.  In addition, the thermal residual stress was regarded as the initial 

condition and substituted into each subcell to generate constitutive matrix listed in Eq. 

(2.2.11) for the matrix materials.  As a result, the strain-stress curve with the 

presence of thermal residual stress can be established.  The code for evaluating the 

thermal residual stress is included in Appendix A. 

 

2.4 Results and discussion 

In this section, the result of thermal residual stress effect on nonlinear 

mechanical behavior with three different fiber arrangements will be demonstrated.  

In order to find the efficient number of subcells, the convergence test will be 

discussed too.  All the ingredient properties of the fiber composites used for the 

following simulations are summarized in Table 1.   

 

2.4.1 Convergence tests on the number of subcells 

In the GMC analysis, the RVE is divided into the numbers of subcells to 

represent either fiber or matrix phases.  The number of the sub-cells is dependent on 

the microstructure of the RVE, including fiber geometry and packing arrangement.  

In general, when a RVE consists of round fibers embedded in matrix, significant 

amounts of subcells are required in an attempt to precisely simulate the circular 

geometry of the fiber.  However, as more subcells the more computation time is 

needed. In order to compromise the computation time with the accuracy of the 

simulation, the converging tests have to be carried out on RVEs with different fiber 

arrangements arrangement, i.e., square edge, diagonal edge, and hexagonal packing 

(see Fig. 2.4).  Fig. 2.5 demonstrates the RVE with square edge packing, containing 

28×28 and 39×39 sub-cells, respectively, where the gray ones denote the fibers, and 

the white ones are the surrounding matrix.  In addition, the RVEs with square 
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diagonal packing and hexagonal packing were also partitioned into different sub-cells 

as shown in Figs. 2.6 and 2.7, respectively.  Based on the different discretizations of 

RVEs, the stress and strain curves of the composites with 45° fiber orientation were 

calculated and the results were then compared in Fig. 2.8.  It was shown that for each 

fiber arrangement, the constitutive curves obtained from the RVEs with coarse 

sub-cells demonstrate good agreements with those derived from the fine sub-cells.  

In light of the above verification, it was suggested that the rough partitions of the 

RVEs have accomplished the converged results and are suitable for characterizing the 

nonlinear responses of composites with round fibers embedded.  The code for 

calculating the stress and strain curves using the GMC model is attached in Appendix 

B. 

 

2.4.2 Influence of thermal residual stress on the behaviors of composites  

The nonlinear stress strain curves for 15°, 30°, 45°, and 60° fiber composites 

with different fiber arrays are demonstrated respectively in Figs. 2.9-2.12.  For 

comparison purposes, the composites disregarding the thermal stress effect were also 

enclosed in the Figures.  In the simulations, the temperature change was assumed to 

be 200 degrees.  Results show that the composites with different fiber arrays exhibit 

different stress and strain curves. Moreover, the square edge packing yields more 

stiffening behaviors than other fiber packing arrangements.  Regarding the thermal 

stress effect, it is revealed that for the composites with square edge packing, the 

mechanical behaviors are affected appreciably by the thermal residual stress. 

Nevertheless, the composites with hexagonal packing and square diagonal packing are 

relatively less sensitive to the thermal residual stress.
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Chapter 3 Comparison of GMC, SCMC and FEM analysis 

In Chapter 2 the generalized method cells (GMC) was successful to predict the 

stress-strain curve on the off-axial loading with three difference fiber arrays.  On the 

other hand, the constitutive relation of fiber composites with different fiber arrays also 

can be simulated by using the finite element approach such as references [3,4].  

From the result of references [3,4], it can observe that when fiber composites apply 

the off-axial loading the constitutive relation with SEP also exhibit more stiffness then 

other two fiber arrangements but when fiber composites apply the pure shear loading 

the constitutive relation with SDP become the most stiffness.  In the GMC approach, 

it can observe the same appearance of constitutive relation when it simulated the 

off-axial loading but when it apply the pure shear loading the constitutive relation of 

SEP still the highest stiffness.  Because of the GMC exhibits a lack of what is so 

called “shear-coupling”, which means that the transverse shear stresses on the 

composites are in general nonzero when the composites are subjected to the transverse 

tensile loading. This is due to the traction continuity assumption made in the 

neighboring subcells in the GMC model.  Thus, the GMC may product the error 

result when apply the transverse loading.  Hewen et al [15] proposed the strain 

compatible method of cells (SCMC) model by considering the stress equilibrium in 

the subcell instead of the continuity constraint in the micromechanical analysis.  In 

this chapter, SCMC model was introduced and the results obtained from the SCMC 

model were compared with those obtained from GMC and FEM analysis [3]. 

 

3.1 Strain compatible method of cells (SCMC) 

In the GMC model, the representative volume element (RVE) adopted for the 

analysis was divided into several subcells.  For each subcell, three fundamental 

assumptions were made, which was described as following 
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(1) The displacement was continuous between the neighboring subcells in the 

interface.  

(2) The RVE adopted in the analysis must satisfy the periodic boundary 

condition.  

(3) The traction continuity across all cell and subcell interfaces.  

It was noted that the first and second assumptions are valid for both GMC and 

SCMC model.  However, the third assumption is modified in the SCMS model by 

replacing the traction continuity condition with the equilibrium equations such that the 

stress variation in the adjacent subcell is allowed as well as the transverse stress and 

shear stress concentration. Through the ingredient constitutive equation, the elasticity 

equation of equilibrium was expressed in terms of strain components.  The 

equilibrium equations together with the compatibility equations was employed to 

replace the traction interface continuity given in Eq. (2.1.55) for the derivation of the 

composite properties.   

From the interface displacement continuity condition as derived in the previous 

chapter, the relation of the local strain and global strain components was written as  

  

ηJηA sG =                             (3.1.1) 

 

Where ( ) ( ) ( ){ }TNN1211
s  η,η,η η γβL=  collect the engineering strain rate for 

all subcells, and { }T
121323332211 η2,η2,η2,η,η,η η =  represent the overall 

strain rates of the RVE. In addition, matrices  and  contain the geometry 

parameters.  Based on the equilibrium condition across the interface of the adjacent 

subcells, the differential form of the elasticity equilibrium is written as  

GA J
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It was note that in the above derivation, the fiber in the unidirectional composites 

is in the  direction and the applied loading is independent of the  coordinates.  

Thus, the derivative of stress components with respective to the  direction is equal 

to zero.  With the assistance of the constitutive equation, the equilibrium equation 

given in Eqs. (3.1.2)-(3.1.4) can be expressed in terms of strain components.   In 

addition, the compatibility conditions originally written as 
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Because all derivatives with respective to  are equal to zero, and the strain 

components  was an invariant such that its derivative is zero as well.  Integrating 

Eqs. (3.1.6) and (3.1.7) respectively with  and  together with the periodic 

boundary conditions results in the following relation  
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It is noted that in the expression of equilibrium equation ( Eqs. (3.1.2)-(3.1.4) ) 
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and compatibility equation ( Eqs (3.1.5) and (3.1.8) ), all the quantities are assumed to 

be continuous with the RVE.  However, in the SCMC model (GMC model), due to 

the discrete domain of the RVE, these quantities are not continuous from one subcell 

to other subcells.  Thus, to accomplish the discrete characteristics, the difference 

equation was replaced using the finite difference approach.  For example, regarding 

to the subcell (1,1) in Fig. 3.1, the equilibrium equation in Eq. (3.1.2) was expressed 

alternatively as 

 

0
)l0.5(l
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In addition, for the second order partial difference, such as the first two terms 

shown in Eq. (3.1.5), regarding to the subcell (2,2) in Fig. 3.1 by using central 

difference approach it was yielded as  
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Furthermore, by using the forward difference and backward difference approach, 

For example, regarding to the subcell (1,2) in Fig. 3.1, the third term in Eq. (3.1.5) 

was yielded as 

 

)h)(hl0.25(l
]ηηη[η

xx
η

2132

(1,2)
23

(2,2)
23

(1,3)
23

(2,3)
23

32

23
2

++
+−−

≈
∂∂

∂                (3.1.11) 

 

By means of the finite difference method, the differential forms of the 

equilibrium and compatibility equations were replaced in the discrete quantities of 
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each subcell.  Based on the periodic boundary condition, there are  

independent equations in the equilibrium equations and  

independent equations in compatibility conditions.  Combination of these equations 

expressed in term of the local stain components in the subcells leads to   

1)N3(N γβ −

1)1)(N2(N γβ −−

 

0ηA sE =                        (3.1.12) 

 

where ( ) ( ) ( ){ TNN1211
s  η,η,η η γβL= } . As compared to the GMC model, Eq. 

(3.1.12) is equivalent to Eq. (2.1.55) which is derived from the interfacial traction 

continuity condition.  In conjunction with displacement continuity condition as given 

in Eq. (3.1.1), Eq. (3.1.12) becomes 
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From now on, the procedure for the derivation of the global constitutive equation 

of the composites using SCMC is the same as that described in Chapter 2 for the 

GMC model.   

 

3.2 Finite element analysis 
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The mechanical properties of the composites were investigated using Finite 

element approach.  The commercial finite element program ANSYS was adopted for 

the analysis. 

 

3.2.1 Boundary conditions and mesh 

In the FEM analysis, the fiber was assumed to be an orthotropic elastic material 

and the matrix is assuming to be nonlinear material in which the stress and plastic 

strain curve was determined by a nonlinear function with four coefficients as 

 

)e(1RεRkσ
pbεp

0
−

∞ −++=                 (3.2.1) 

 

where k is the yield stress,  and b are parameters which can be determined 

properly from the stress and strain curve by following the suggestion provided in the 

ANSYS manual [14]. 

0R  ∞R

During the FEM analysis, the mechanical behaviors of fiber composite were 

simulated by considering the representative volume element.  The element type was 

solid-185.  In order to characterize the mechanical properties of composites by 

employing the RVE, the deformation as well as the boundary condition of the RVE 

needs to be specified properly.  In general, the boundary condition was imposed 

depending on the loading condition and the geometry of the RVE.  In this study, we 

considered the normal stress and the shear stress into the RVE.  It is noted that for 

the applied stresses component , the full model of the RVE need to be accounted 

for; however, for the other applied stresses, such as , ( ) and ( ), due 

to symmetric boundary condition, only a quadrant of the REV was taken into account.   

In order to describe the appropriate boundary condition according to each loading 

23σ

11σ 22σ 33σ 12σ 13σ
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with easy, the coordinate system as well the dimension of the RVE with square edge 

packing as shown in Fig. 3.2 were utilized hereafter.  It should be noted that the 

following boundary conditions implemented in our simulation were referred to the 

literature [2, 3]. 

 

(1) Stress component with . 23σ

Because of non-symmetry stress field, the deformation at )x,
2
W,v(x 31  and 

)
2
H,xw(x 21,  was not zero where u, v and w denote the displacement in ,  and 

 direction, respectively.  The associated mesh of RVE for three different fiber 

arrays were shown in Figs. 3.3-3.5, respectively.  Base on the characteristic of 

periodicity, the boundary condition for this case was given as follows 
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In order to avoid the rigid body motion, the bottom corners was placed on the 

rollers hence an additional displacement constrain was 

 

0W,0),w(x,0,0)w(x 11 ==                  (3.2.5) 

 

(2) Stress component with , ( ) and ( ). 11σ 22σ 33σ 12σ 13σ

Under this stress component field, we only need to analyze quarter of the RVE 

because of symmetry  
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W,v(x 31 =  ; 0)

2
H,xw(x 21, =                 (3.2.6) 

 

where u, v and w respectively to denote the displacement in ,  and 

direction. Figs. 3.6-3.8 illustrates the finite element mesh of SEP, SDP and HP.  Base 

on the characteristic of periodicity, the boundary condition for this case was given as 

follows.  In the following derivation, the dimension and coordinate system of the 

simulation box was shown in Fig. 3.9. 
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where  and  indicate any two point with other two identical coordinates. 1a 2a

On =0 and 3x cx3 =  face 
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In addition, in order to eliminate the rigid body motion, an additional 

displacement constrain was imposed. 

 

0u(0,0,0) =                          (3.2.10) 

 

 

3.3 Comparison the results of GMC, SCMC and FEM analysis 

In GMC, due to the lack of shear-coupling, a direct application of a shear load to 

a fiber composite will cause the inaccurate result.  At this section, the results 

obtained from GMC, SCMC and FEM will be compared and in order to probe the 

effect of the shear couple in GMC, the fiber composites subject to the transverse 

loading .  The material properties were given in Table 2.1, where the fiber 

volume fraction was 60% and those four parameters used in the FEM to simulate the 

matrix properties were list in Table 3.1.  Fig. 3.10 illustrated the matrix stress-strain 

curves used in the GMC, SCMC and FEM models to ensure that all models have the 

22σ
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same matrix properties.  Figs. 3.11 shows the stress and strain curves of the fiber 

composites with three different fiber arrays obtained from GMC and FEM analysis 

under the transverse loading.  It can be seen that there is some discrepancy between 

these two approaches which could be caused by the shear coupling effect in the GMC 

analysis.  However, the results obtained from the SCMC analysis are in a good 

agreement with the FEM analysis as illustrated in Figs. 3.12.  Based on the above 

comparison, it seems that the SCMC model can provide more accurate stress and 

strain curves of the fiber composites under transverse loading.   

On the other hand, the significant drawback in the SCMC model is the 

convergence problem, which was also observed by other researchers [15].  To 

understand the degree of the convergence in the GMC and SCMC models, we adopted 

the two meshes, one is coarse and the other is fine, in our simulation for the fiber 

composites with hexagonal packing under pure shear loading.  The results obtained 

for the GMC and SCMC models are demonstrated in Figs. 3.13-3.14, respectively.  

Apparently, the GMC model exhibits superior convergence property than the SCMC 

model.  Moreover, in some cases, it is difficult to find the convergence solution in 

the SCMC analysis.   In view of the forgoing, the GMC model still posses its 

advantage in the convergence issue, although its solution in some cases may not be 

very accurate.  From now on, we will continue to employ the GMC model in the 

investigation of the mechanical behaviors of the fiber composites, even though some 

defects exist in the model.       
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Chapter 4 Effect of fiber array on damping behavior of fiber composites 

In this chapter, the GMC model was extended to calculate the fundamental 

damping properties of fiber composites with different fiber arrays and the damping 

properties were then implemented as input in the calculation of the modal damping 

capacity of composite structures with vibrations [13].  The damping behaviors of rod 

type as well as plate type composites structure constructed based on different fiber 

arrays will be taken into account in this chapter.  

 

4.1 Damping characterization using GMC 

The fundamental damping capacities of fiber composites in material principal 

directions were calculated by applying a simple loading on the RVE.  The RVE used 

in the previous section was employed to evaluate the stress and strain states of the 

fiber composites when they were subjected to simple loading.  For example, for the 

calculation of damping properties in longitudinal direction, the unidirectional 

composites was applied a loading and then through the GMC analysis, the stress states 

in the fiber and matrix can be evaluated.  Based on the energy dissipation concept 

that the specific damping capacity of material in vibration was defined as the ratio of 

the dissipated energy and the stored energy for per circle of vibration [11] 

 

U
Dψ =                             (4.1.1) 

 

the specific damping capacity of the composites can be expressed in terms of damping 

properties and strain energy of the constituents, i.e. fiber and matrix, as [12] 
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where = specific damping capacity of the fiber fψ

      = specific damping capacity of the matrix mψ

      = strain energy stored in the fiber fU

      = strain energy stored in the matrix mU

Thus, the longitudinal damping properties can be calculated from Eq. (4.1.2) directly, 

once the strain energy as well as the ingredient damping properties was provided.  In 

the fiber composites, the damping behaviors of fiber and matrix were assumed to be 

isotropic and the corresponding specific damping capacities were listed in Table 4.1. 

where the data were measured experimentally [17].  As a result, by introducing a 

simple loading (simple tension, or simple shear) on the RVE, the strain and stress of 

each subcell was evaluated respectively from Eqs. (2.1.64), (2.1.65) in which η  was 

the overall strain and can be calculated from the constitutive relation of RVE given in 

Eq. (2.1.67).  Moreover, with Eq. (4.1.2), the specific damping capacity of 

composites in the material directions can be estimated in terms of the damping 

properties as well as the strain energies of the fiber and matrix phases.  Basically the 

strain energy was computed from the products of the strain and stress states of each 

subcell associated with either fiber or matrix phases.  It is noted that for 

unidirectional composites, because of the transverse isotropic attribute, only four 

independent damping properties ( , , , ) needs to be calculated.   11ψ 22ψ 12ψ 23ψ

The damping property of the unidirectional composites with three different fiber 

arrangements, i.e. square edge packing, square diagonal packing and hexagonal 

packing, obtained from GMC in conjunction with energy dissipation concept are 

summarized in Tables 4.2-4.4, respectively.  In the calculation, the fiber volume 

fraction of composites was assumed to be equal to 60%.  The damping properties 
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evaluated based on ANSYS commercial code for the calculation of strain energy were 

also included for comparison purpose.  It can be seen that the specific damping 

capacity obtained from the GMC analysis are quite closes to those calculated from 

ANSYS except for  properties.  The difference in  is attributed the fact that 

GMC model imposed more constrains in the interfacial condition, i.e. the interface 

traction rate continuity, such that the shear stress as well as the shear strains around 

the fiber and matrix interface may not be valid.   

23η 23η

 

4.2 Calculation of vibration damping of composite structures 

From the GMC analysis together with the energy dissipation concept, we can 

have the damping properties of unidirectional composites by means of implementing 

simple loading, such as tension and pure shear on the RVE.  However, when the 

composite structures are adopted for engineering applications, the vibration in general 

takes place in bending and torsional modes and the damping properties associated 

with these modes can not be estimated directly from the GMC approach.  Here we 

adopted the two step simulation procedure to predict the damping behaviors of the 

composite structures with vibration motion.  First, the basic material properties of 

the unidirectional composites, such as , , ,  et al, were evaluated 

using the GMC micromechanical model.  In the second step, the material properties 

were considered as global material properties of equivalent element and utilized as 

inputs in the composites structures for the structural dynamic analysis.  In other 

words, in the structural level, only the material properties of the composites prevail in 

the analysis.  In this study, the structural dynamic analysis was carried out using the 

FEM approach in which the elements contain the damping and material properties of 

equivalent element.  The detail analytical procedure was illustrated in Fig. 4.1.   

1E 11ψ 2E 22ψ

The modal damping capacity of composite structures can also be derived from 
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the strain energy dissipation concept.  For a linear elastic material, the strain energy 

stored in a volume element is expressed as 
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2
1       

dVγσγσγσεσεσεσ
2
1U

     (4.2.1) 

 

Substituting the constitutive relation { } [ ]{ }εCσ =  into Eq. (4.2.1) yields 

 

{ } [ ]{ }∫=
V

T(e) dVεCε
2
1U                     (4.2.2) 

 

where  is the stiffness matrix of composites.  The corresponding dissipated 

strain energy of a volume element can be written in terms of the specific damping 

capacity in the material principal directions as 

[ ]C

 

{ } [ ]{ }

{ } [ ][ ]{ }∫

∫

∫

=

=

+++=

V

T

V

T

V 121212222222111111
(e)

dVεψ Cε
2
1      

dVεψσ
2
1      
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       (4.2.3) 

 

where  indicated the matrix form of damping properties of equivalent elements as 

shown in Tables 4.2-4.4. 

[ ]ψ
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Therefore, with the energy dissipation and the strain energy of the equivalent element, 

the specific damping capacity of a volume element associated with a deformation can 

be written as follows 

 

{ } [ ][ ]{ }

{ } [ ]{ }∫

∫
==

V

T

V

T

(e)

(e)
(e)

dVε Cε
2
1

dVεψ Cε
2
1

U
Dψ                   (4.2.5) 

 

In the finite element analysis, the strain field of a volume element can be expressed in 

terms of the nodal displacement in conjunction with the shape function as.  

 

{ } [ ]{ }dBε =                           (4.2.6) 

 

where  was the shape function of a element and [ ]B { }d  was the nodal displacement. 

In combination with Eq. (4.2.6), Eq. (4.2.5) becomes   

 

{ } [ ][ ][ ][ ]{ }

{ } [ ][ ][ ]{ }∫

∫
=

dVd B C Bd
2
1

dVdB C ψ Bd
2
1

ψ
T

T

(e)                  (4.2.7) 

 

It is noted that in the Eq. (4.2.7), { }d  indicated the displacement of each node.  For 
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a vibration motion,  can be regarded as the mode shape of structure representing 

the relative nodal displacement of the element associated with its natural frequency.  

Thus, once the model shapes of the composite structures were determined, the specific 

damping capacity of the composites structure can be determined by summating the 

specific damping capacity of each element calculated from Eq. (4.2.7).  In the 

following, the mode shape of the composite structure will be evaluated from structural 

dynamics analysis together with finite element approach [13].  

{ }d

From the principle of virtual work, the governing equation for composite 

structure with dynamic loading were derived by making the virtual work done by 

externally applied loads equal to the sum of virtual energy caused by inertial, 

dissipative, and internal forces for any virtual displacement.  For a single element of 

volume V with surface area of S, this relation is written explicitly as 

 

{ } { } { } { }

{ } { } { } { } { } { }[ ]dV σδεucδuuρδu

dSTδudVFδu   

V

TTT

V S

TT

∫

∫ ∫

++=

+

&&&

         (4.2.8) 

 

in which {  and  indicate the body forces and surface tractions, ρ  and c 

denote the mass density and a damping parameter, 

}F { }T

{ }δu  and { }δε  exhibit virtual 

displacements and their corresponding strains and { }σ  is the assumed stress existing 

in the body prior to virtual strains applied.  For a undamped structure with free 

vibration or with clamp boundary conditions, all of virtual energy caused by the 

applied loading terms as well as the damping parameter, c were assumed to be zero, 

and thus the Eq. given in (4.2.8) was deduced as 
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{ } { } { } { } 0dVσδεdVuρδu
(e)

V

T
(e)

V

T =+ ∫∫ &&                 (4.2.9) 

 

Here the superscript (e) designates that the integration is within a volume 

element.  In the finite element method, the displacement field, { }u  and strain field 

 in the element can be represented by the nodal displacement as well as the shape 

function as  

{ }ε

 

{ } [ ]{ } { } [ ]{ } { } [ ]{ } { } [ ]{ }dBε       dNu       dNu       dNu ==== &&&&&&       (4.2.10) 

 

where  is the shape functions, [ ]N { }d  is nodal displacement which is function of 

time,  is the differentiation of shape function [ ]B [ ]N , and { }
dt
duu =& , { } 2

2

dt
udu =&&  

indicate the velocity and acceleration respectively.  Substituting the Eq. (4.2.10) into 

Eq. (4.2.9) yields  

 

{ } [ ] [ ] { } [ ] { } 0dVσBddVNNρδd
(e)

V

(e)

V

TTT =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∫ ∫&&             (4.2.11) 

 

By assuming the material is linear elastic, { }σ  in Eq. (4.2.11) can be substituted by 

.  In addition, with the assistance of displacement and strain relation, i.e., 

, Eq. (4.2.11) is written as  

{ } [ ]{ }εCσ =

{ } [ ]{ }dBε =

 

[ ] { } [ ] { } 0dkdm (e)(e) =+&&                   (4.2.12) 

 

where the element mass matrix [ ](e)m  and element stiffness matrix  is defined [ ](e)k
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as 

 

[ ] [ ] [ ]∫=
(e)

V

T(e) dVNNρm                    (4.2.13) 

[ ] [ ] [ ] [ ]dVB CBk
(e)

V

T(e) ∫=                   (4.2.14) 

 

Substituting Eq. (4.2.14) into Eq. (4.2.7) yields 

 

{ } [ ] { }

{ } [ ] { }d kd
2
1

d kd
2
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ψ
(e)T

(e)
ψ

T
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where  representing the “energy dissipation stiffness matrix” is written as [ ](e)
ψk

 

[ ] [ ] [ ] [ ][ ]dVB ψ CBk
(e)

V

T(e)
ψ ∫=                  (4.2.16) 

 

For the global response, the structure mass matrix [ ]M  and the structure stiffness 

matrix  can be derived through the superposition of the element mass matrix 

and stiffness matrix [ ] , respectively by properly assigning each element 

matrix in the structure matrix depending on the structure node numbering.  As a 

result, the equation of motion for the structure can be written as 

[ ]K

[ ](e)m (e)k

 

[ ]{ } [ ]{ } 0dKdM =+&&                 (4.2.17) 
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Moreover, the natural frequency and mode shape of the composites structures 

associated with each vibration mode can be evaluated by solving the eigenvalue 

problem of Eq. (4.2.17).  In this study, the eigenvalue and eigenvector  of Eq. 

(4.2.17) corresponding to the natural frequency and modal shape of the structure, 

respectively were calculated by Matlab commercial code with “eig” command.  It is 

worthy to mention that in the calculation of the mode shape of the composite 

structures, the effect of material damping was neglected and only the mass matrix and 

stiffness matrix were accounted for.  From the definition of specific damping 

capacity, the modal damping capacity of the structure associated to each modal shape 

can be expressed in terms of the global stiffness matrix 

{ }Φ

[ ]K , the global energy 

dissipation stiffness matrix  and the corresponding modal eigenvector  as  [ ]ψK { }Φ

 

 
{ } [ ] { }

{ } [ ]{ }iT
i

iψ
T

i

i

Φ KΦ
2
1

Φ KΦ
2
1

ψ =                     (4.2.18) 

 

where the index  indicates the ii th  modal shape.  It is noted that the global energy 

dissipation stiffness matrix  is obtained from the superposition of the energy 

dissipation stiffness matrix given in Eq. (4.2.16).  The code for calculating the modal 

shapes and damping capacity of composite structures is listed in Appendix C.   

[ ]ψK

 

4.3 Discussions of the damping capacity of fiber composites with three different 

fiber arrays 

In order to investigate the fiber arrangement effect on the vibration damping of 

composite structures, the rods and plates constructed with unidirectional composites 
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were employed for demonstration.  Two different boundary conditions, i.e. free-free 

and free-clamped boundary conditions, were accounted in this study.   

 

4.3.1 Vibration with free-free boundary condition 

The modal damping capacities of rod-type and plate-type structures with 

free-free boundary condition were considered at the beginning.  The dimensions of 

the composite structures used in the simulation were illustrated in Fig. 4.2 where the 

fiber was assumed in the x-direction.  It should be noted that in both structures, the 

unidirectional fibers could be extended either in the x-direction or in the z-direction to 

simulate the longitudinal and transverse vibrations.  Because of the models were 

applied with the free boundary, the first six modes were the rigid body motion which 

was neglected in the model analysis.  Figs. 4.3 and 4.4 show the modal shapes of the 

composite rod with fiber in the x and z directions, respectively.  It was shown that 

for the fiber in the longitudinal direction (x-direction), the first mode is torsion mode 

which is followed by the bending mode.  In contrast, for the rod with the fiber in the 

transverse direction (z-direction), the first two modes are bending modes and the third 

one is torsion mode.  Tables 4.5 and 4.6 show the first three modal damping 

capacities of the composite rod structures constructed based on three different fiber 

arrangements.  It can be seen that, no matter what the fiber direction is, the SDP 

packing always exhibits the highest damping capacity suggesting that the composites 

with SDP microstructure were easier to dissipated strain energy.   

The first three modal shapes for the composite plate with free-free boundary 

condition are shown in Fig. 4.4.  Twisting in the x-direction is the first modal shape 

and the second one is the bending in the x-direction (fiber direction) and the third 

mode is the twisting in the z direction (transverse direction).  The corresponding 

damping capacity for the modal shapes is shown in Table 4.7.  Apparently, the 
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composite plate created with SDP also posses the highest damping capacity as 

compared to the other two cases.  As a result, for the composite rod and plate in free 

vibration, the SDP can provide the superior damping responses than the SEP and HP 

fiber arrays. 

 

4.3.2 Vibration with clamp-free boundary condition 

In addition to the free vibration, the cantilever type vibration, i.e. free-clamped 

boundary condition, were considered in the study.  The clamped end was always in 

the x-direction and the fiber direction could be either in the x-direction or in the 

z-direction.  Fig. 4.2(a) illustrates the composite rod with fiber in the x-direction and 

the associated modal shapes are presented in the Fig 4.6.  The first one and two 

modes are bending and torsion modes, respectively and the third one is bending again.   

It is interesting to mention that the modal shapes for the unidirectional composites 

with clamped-free boundary condition are different from those with free-free 

boundary condition as shown in Figure.  The modal shapes for composite rod with 

fiber in the z direction are shown in Fig 4.7.  It was observed that all shapes are in 

the bending modes.  The damping capacities of the composite rods with clamped 

condition corresponding to two different fiber directions are listed in Tables 4.8 and 

4.9.  Results show that SDP also demonstrate better damping capacity in the 

cantilever type vibration.    

Again, the plate type structure with one side clamped was examined and the 

clamped condition was implemented in the x direction as shown in Fig. 4.2(b), where 

the fiber was assumed in the x direction.  The modal shapes for the fiber in the 

x-direction and z direction were shown in Figs. 4.8 and 4.9, respectively.  Moreover, 

the damping capacities for the plates with fiber in the x-direction and z direction were 

summarized in Tables 4.10 and 4.11, respectively.  Similar to the conclusion in the 
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rod structure, the plate structure made of unidirectional composites with SDP fiber 

packing exhibits greater damping properties than the plates established based on the 

other two fiber arrays. 
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Chapter 5 Conclusions 

The GMC micromechanical model was employed successfully to calculate the 

thermal residual stress of the fiber composites with different fiber arrays, i.e., square 

edge packing, square diagonal packing, and hexagonal packing, during the cooling 

process.  Based on the micromechanical analysis, the nonlinear mechanical 

behaviors of the fiber composites in the presence of the thermal residual stress effect 

were determined.  Results indicated that for the composites with square edge packing, 

the constitutive behaviors are affected appreciably by the thermal residual stress.  

However, for the composites with hexagonal packing and square diagonal packing, 

the thermal residual stress exhibits little effects on their properties. 

With regard to the damping properties, it was observed that the composite 

structures constructed based on square diagonal packing fiber array demonstrate 

superior vibration damping properties than the other two cases.  This phenomenon 

could be due to the fact that in the composites with square diagonal packing, the 

matrix phase with higher damping capacity dissipates more strain energy under one 

cycle of vibration.  

In addition, from the comparison of the GMC and SCMC micromechanical 

models, it was suggested that although more constrains were implemented in the 

GMC model inducing the shear coupling effect, GMC model still exhibit the 

advantage of converging efficiency during the micromechanical analysis.  As a result, 

the GMC micromechanical model still can be employed efficiently for characterizing 

the mechanical behaviors of fiber composites in terms of the geometry of 

microstructure. 
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Appendix A MATLAB code for calculating the thermal residual stresses using 
GMC analysis 

 
clear all  

% =============================== something to input 

============================== 

% material properties (transversely isotropic fiber + isotropic matrix) 

Ef1=234000;  % 11 Young's modulus of fiber 

Ef2=14000;   % 22 Young's modulus of fiber 

Ef3=Ef2; 

nuf12=0.2;   % 12 Poisson's ratio of fiber 

nuf13=0.2; 

nuf23=0.25; 

Gf12=27600;%Ef1/(2*(1+nuf12)); % 12 shear modulus of fiberGf13=Gf12; 

Gf23=5500; 

Em=3400;      % Young's Modulus of matrix 

num=0.37;     % Poisson's ratio of matrix 

Gm=Em/(2*(1+num)); % Shear modulus of matrix 

 

T=-200;              % temperature change 

af=0;                % thermal coefficient of fiber 

am=1.18e-4;          % thermal coefficient of matrix 

% Geometry information 

 

n=3  ; %================= (1)2*2  (2)square random 

(3)hexagonal====================== 

if n==1 

h=1; 

l=1; 

volf=0.8; 

Nb=2; % divided portions in the beta direction 

Nr=2; % divided portions in the gama direction 

bb=sqrt(volf); 

hh=1-bb; 

hb=[bb hh]; % h_beta 

hr=hb; % h_gama 

Nfiber=1; 

regionf=[1]; % denote what cells are fiber 
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%end of code 

elseif n==2 

h=1; 

l=1; 

load hb.txt; 

hb=hb'; 

hr=hb; 

Nb=size(hb); 

Nb=Nb(1,2); 

Nr=Nb; 

load regionf.txt; 

regionf=regionf'; 

Nfiber=size(regionf); 

Nfiber=Nfiber(1,1); 

elseif n==3 

h=sqrt(3); 

l=1; 

load hb.txt; 

load hr.txt; 

hb=hb'; 

hr=hr'; 

Nb=size(hb); 

Nr=size(hr); 

Nb=Nb(1,2); 

Nr=Nr(1,2); 

load regionf.txt; 

regionf=regionf'; 

Nfiber=size(regionf); 

Nfiber=Nfiber(1,1); 

end 

% ================================== matrix deploy 

================================== 

Sm=zeros(6,6); 

AG=zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr); 

J=zeros(2*(Nb+Nr)+Nb*Nr+1,6); 

AVPM=zeros(5*Nb*Nr-2*(Nb+Nr)-1,6*Nb*Nr); 

Cs=zeros(6*Nb*Nr,6); % sub-cell stiffness matrix 

AVP=zeros(6*Nb*Nr,6); 
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cs=zeros(6*Nb*Nr,6); 

aT=zeros(6*Nb*Nr,1); 

displ=0; 

% =================== current stress & strain independent matrix ==================== 

% fiber stiffness matrix 

nuf21=Ef2*nuf12/Ef1; 

nuf31=Ef3*nuf13/Ef1; 

nuf32=Ef3*nuf23/Ef2; 

Sf=[1/Ef1 -nuf21/Ef2 -nuf31/Ef3 0 0 0; -nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;... 

    -nuf13/Ef1 -nuf23/Ef2 1/Ef3 0 0 0; 0 0 0 1/Gf23 0 0; 0 0 0 0 1/Gf13 0; 0 0 0 0 0 1/Gf12]; 

Cf=inv(Sf); 

 

Sm=[1/Em -num/Em -num/Em 0 0 0; -num/Em 1/Em -num/Em 0 0 0;... 

    -num/Em -num/Em 1/Em 0 0 0; 0 0 0 1/Gm 0 0; 0 0 0 0 1/Gm 0; 0 0 0 0 0 1/Gm]; 

Cm=inv(Sm); 

 

% ============================= main loop and code 

=================================== 

 

% AG matrix 

   index=-5; 

   for i=1:Nb*Nr % 11 displ. continuity 

 

 

      index=index+6; 

      AG(i,index)=1; 

      J(i,1)=1; 

   end 

 

 

for gama=1:Nr %  loop to apply displ. continuity 

   for beta=1:Nb 

      index=Nr*beta-Nr+gama; 

      AG(Nb*Nr+gama,(index-1)*6+2)=hb(1,beta); % 22 

      J(Nb*Nr+gama,2)=h;    

      AG(Nb*Nr+Nr+beta,(index-1)*6+3)=hr(1,gama); %33 

      J(Nb*Nr+Nr+beta,3)=l;    

      AG(Nb*Nr+Nr+Nb+1,(index-1)*6+4)=hb(1,beta)*hr(1,gama)/2; %23 
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      J(Nb*Nr+Nr+Nb+1,4)=h*l/2; 

      AG(Nb*Nr+Nr+Nb+1+beta,(index-1)*6+5)=hr(1,gama)/2; %13 

      J(Nb*Nr+Nr+Nb+1+beta,5)=l/2; 

      AG(Nb*Nr+Nr+2*Nb+1+gama,(index-1)*6+6)=hb(1,beta)/2; %12 

      J(Nb*Nr+Nr+2*Nb+1+gama,6)=h/2; 

   end 

end 

 

 

% K matrix 

K=[zeros(5*Nb*Nr-2*(Nb+Nr)-1,6); J]; 

 

for i=1:Nfiber; 

    cs(regionf(i,1)*6-5,1)=1; 

end 

 

for beta=1:Nb; 

    for gama=1:Nr; 

        index=(beta-1)*Nr+gama; 

        p1=6*(index-1)+1; 

        p2=6*(index-1)+6; 

        a1=6*(index-1)+1; 

        a2=6*(index-1)+3; 

         

            if cs(index*6-5,1)==1; 

                Cs(p1:p2,:)=Cf; 

                aT(a1:a2,:)=af*T; 

            else 

                Cs(p1:p2,:)=Cm; 

                aT(a1:a2,:)=am*T; 

            end     

             

     end 

end  

   count=0; 

   for beta=1:Nb-1 % construct AVPM matrix 

      for gama=1:Nr 

         betahat=beta+1; 
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         index=(beta-1)*Nr+gama-1; 

         index2=(betahat-1)*Nr+gama-1; 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+2,j); % 22 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+2,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+6,j); % 12 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+6,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+4,j); % 23 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+4,j); 

         end 

      end 

   end 

    

   for gama=1:Nr-1 % construct AVPM matrix 

      for beta=1:Nb 

         gamahat=gama+1; 

         index=(beta-1)*Nr+gama-1; 

         index2=(beta-1)*Nr+gamahat-1; 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+3,j); % 33 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+3,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+5,j); % 13 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+5,j); 

         end 

      end 

   end 
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   for gama=1:Nr-1 

      count=count+1; 

      beta=Nb; 

      gamahat=gama+1; 

      index=(beta-1)*Nr+gama-1; 

      index2=(beta-1)*Nr+gamahat-1; 

      for j=1:6 

         AVPM(count,6*index+j)=Cs(6*index+4,j); % 23 traction continuity 

         AVPM(count,6*index2+j)=-Cs(6*index2+4,j); 

      end 

   end 

    

   AtVP=[AVPM; AG]; 

   AVP=AtVP\K; 

   Bvp=zeros(6,6);  

   APh=[AVPM;zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr)]; 

   AP=AtVP\APh; 

   APaT=AP*aT; 

   for beta=1:Nb 

      for gama=1:Nr 

         index=(beta-1)*Nr+gama; 

         p1=6*(index-1)+1; 

         p2=6*(index-1)+6; 

         Bvp=Bvp+hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)*AVP(p1:p2,:); 

      end 

   end 

    

   Bvp=Bvp/h/l; 

   S=inv(Bvp); 

   E1=1/S(1,1); 

   E2=1/S(2,2); 

   G12=1/S(6,6); 

   G23=1/S(4,4); 

   nu12=S(2,1)*(-E1); 

%end 

%=========================== thermal strain ======================= 

afT=zeros(6,1); 

   for beta=1:Nb; 
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       for gama=1:Nr; 

               index=(beta-1)*Nr+gama; 

               p1=6*(index-1)+1; 

               p2=6*(index-1)+6; 

               afT=-S*hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)*(APaT(p1:p2,:)-aT(p1:p2,:))+afT; 

           end 

       end 

    

avT=-S*afT/(h*l);    

deps=avT; 

 

%========================== thermal residual stresses========================= 

   AtVP=[AVPM; AG]; 

   APh=[AVPM;zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr)]; 

   AVP=AtVP\K; 

   AP=AtVP\APh; 

   APaT=AP*aT; 

   for beta=1:Nb; 

       for gama=1:Nr; 

          index=(beta-1)*Nr+gama; 

          p1=6*(index-1)+1; 

          p2=6*(index-1)+6; 

          sigma(p1:p2,:)=Cs(p1:p2,:)*(AVP(p1:p2,:)*deps+APaT(p1:p2,:)-aT(p1:p2,:)); 

        end 

    end       
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Appendix B MATLAB code for GMC analysis 
 

clear all 

tic 

% =============================== something to input 

============================== 

% material properties (transversely isotropic fiber + isotropic matrix) 

Ef1=234000;  % 11 Young's modulus of fiber 

Ef2=14000;   % 22 Young's modulus of fiber 

Ef3=Ef2; 

nuf12=0.2;   % 12 Poisson's ratio of fiber 

nuf13=0.2; 

nuf23=0.25; 

Gf12=27600;%Ef1/(2*(1+nuf12)); % 12 shear modulus of fiber, Ef/(2*(1+nuf)) - if  fibers are 

isotropic 

Gf13=Gf12; 

Gf23=5500; 

Em=3400;    % Young's Modulus of matrix 

num=0.37;     % Poisson's ratio of matrix 

Gm=Em/(2*(1+num)); % Shear modulus of matrix 

 

% Power law coefficient 

b=6.42e-11; % power law coefficient beta 

pn=4.11; % power law coefficient n 

% Geometry information 

n=1  ; %================= (1)2*2  (2)square random 

(3)hexagonal====================== 

 

if n==1 

h=1; 

l=1; 

volf=0.6; 

Nb=2; % divided portions in the beta direction 

Nr=2; % divided portions in the gama direction 

bb=sqrt(volf); 

hh=1-bb; 

hb=[bb hh]; % h_beta 

hr=hb; % h_gama 
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Nfiber=1; 

regionf=[1]; % denote what cells are fiber 

%end of code 

elseif n==2 

h=1; 

l=1; 

load hb.txt; 

hb=hb'; 

hr=hb; 

Nb=size(hb); 

Nb=Nb(1,2); 

Nr=Nb; 

load regionf.txt; 

regionf=regionf'; 

Nfiber=size(regionf); 

Nfiber=Nfiber(1,1); 

elseif n==3 

h=1; 

l=sqrt(3); 

load hb.txt; 

load hr.txt; 

hb=hb'; 

hr=hr'; 

Nb=size(hb); 

Nr=size(hr); 

Nb=Nb(1,2); 

Nr=Nr(1,2); 

load regionf.txt; 

regionf=regionf'; 

Nfiber=size(regionf); 

Nfiber=Nfiber(1,1); 

end 

%=================================Step====================================

= 

step=80; 

Data=zeros(step+1,12); 

 

bb=0; 
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for aaa=7; 

    if aaa==1 | 2 | 3 | 4 | 5 | 7 

        bb=bb+2; 

        bbb=bb-1; 

%====================================Angle===============================

========== 

 

% Loop & angle 

Nstep=step; 

delta=2; % stress increment 

angle=(aaa-1)*15; 

rad=angle/180*pi; 

 

% ================================== matrix deploy 

================================== 

Sm=zeros(6,6); 

AG=zeros(2*(Nb+Nr)+Nb*Nr+1,6*Nb*Nr); 

J=zeros(2*(Nb+Nr)+Nb*Nr+1,6); 

subStrain=zeros(6*Nb*Nr,1); 

subStress=zeros(6*Nb*Nr,1); 

deps=zeros(6,1); 

AVPM=zeros(5*Nb*Nr-2*(Nb+Nr)-1,6*Nb*Nr); 

sigam=zeros(6,1); % current stress 

Cs=zeros(6*Nb*Nr,6); % sub-cell stiffness matrix 

cs=zeros(6*Nb*Nr,6); 

Tstress=zeros(Nstep+1,1); 

Tstrain=zeros(Nstep+1,1); 

AVP=zeros(6*Nb*Nr,6); 

 

% =================== current stress & strain independent matrix ==================== 

% fiber stiffness matrix 

nuf21=Ef2*nuf12/Ef1; 

nuf31=Ef3*nuf13/Ef1; 

nuf32=Ef3*nuf23/Ef2; 

Sf=[1/Ef1 -nuf21/Ef2 -nuf31/Ef3 0 0 0;... 

    -nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;... 

    -nuf13/Ef1 -nuf23/Ef2 1/Ef3 0 0 0;... 

    0 0 0 1/Gf23 0 0;... 
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    0 0 0 0 1/Gf13 0;... 

    0 0 0 0 0 1/Gf12]; 

Cf=inv(Sf); 

 

Sme=[1/Em -num/Em -num/Em 0 0 0;...  

     -num/Em 1/Em -num/Em 0 0 0;... 

     -num/Em -num/Em 1/Em 0 0 0;... 

     0 0 0 1/Gm 0 0;... 

     0 0 0 0 1/Gm 0;... 

     0 0 0 0 0 1/Gm]; 

 

% AG matrix 

index=-5; 

for i=1:Nb*Nr % 11 displ. continuity 

   index=index+6; 

   AG(i,index)=1; 

   J(i,1)=1; 

end 

 

 

for gama=1:Nr %  loop to apply displ. continuity 

   for beta=1:Nb 

      index=Nr*beta-Nr+gama; 

      AG(Nb*Nr+gama,(index-1)*6+2)=hb(1,beta); % 22 

      J(Nb*Nr+gama,2)=h;    

      AG(Nb*Nr+Nr+beta,(index-1)*6+3)=hr(1,gama); %33 

      J(Nb*Nr+Nr+beta,3)=l;    

      AG(Nb*Nr+Nr+Nb+1,(index-1)*6+4)=hb(1,beta)*hr(1,gama)/2; %23 

      J(Nb*Nr+Nr+Nb+1,4)=h*l/2; 

      AG(Nb*Nr+Nr+Nb+1+beta,(index-1)*6+5)=hr(1,gama)/2; %13 

      J(Nb*Nr+Nr+Nb+1+beta,5)=l/2; 

      AG(Nb*Nr+Nr+2*Nb+1+gama,(index-1)*6+6)=hb(1,beta)/2; %12 

      J(Nb*Nr+Nr+2*Nb+1+gama,6)=h/2; 

   end 

end 

 

% Tsig & Teps 

Tsig=[cos(rad)^2 sin(rad)^2 0 0 0 2*cos(rad)*sin(rad);... 
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      sin(rad)^2 cos(rad)^2 0 0 0 -2*cos(rad)*sin(rad);... 

      0 0 1 0 0 0;... 

      0 0 0 cos(rad) -sin(rad) 0;... 

      0 0 0 sin(rad) cos(rad) 0;... 

      -cos(rad)*sin(rad) cos(rad)*sin(rad) 0 0 0 cos(rad)^2-sin(rad)^2]; 

 

Teps=[cos(rad)^2 sin(rad)^2 0 0 0 -cos(rad)*sin(rad);... 

      sin(rad)^2 cos(rad)^2 0 0 0 cos(rad)*sin(rad);... 

      0 0 1 0 0 0;... 

      0 0 0 cos(rad) sin(rad) 0;... 

      0 0 0 -sin(rad) cos(rad) 0;... 

      2*cos(rad)*sin(rad) -2*cos(rad)*sin(rad) 0 0 0 cos(rad)^2-sin(rad)^2]; 

% K matrix 

K=[zeros(5*Nb*Nr-2*(Nb+Nr)-1,6); J]; 

 

for i=1:Nfiber; 

    cs(regionf(i,1)*6-5,1)=1; 

end 

 

for beta=1:Nb; 

    for gama=1:Nr; 

        index=(beta-1)*Nr+gama; 

        p1=6*(index-1)+1; 

        p2=6*(index-1)+6; 

         

            if cs(index*6-5,1)==1; 

                Cs(p1:p2,:)=Cf; 

            else 

                Cs(p1:p2,:)=inv(Sme); 

            end     

         

     end 

end 

 

%==========================thermal stress in GMC============================ 

load residualStress.txt; 

subStress=residualStress; 

clear residualStress; 
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% ============================= main loop and code 

=================================== 

dsig1=[ delta; 0; 0; 0; 0; 0]; % !!!!!!! 

dsig=Tsig*dsig1; 

%dsig=dsig1; 

 

for i=1:Nstep 

    now=i 

   Tstress(i+1,1)=Tstress(i,1)+dsig1(1,1); %!!!!!! 

   count=0; 

   for beta=1:Nb-1 % construct AVPM matrix 

      for gama=1:Nr 

         betahat=beta+1; 

         index=(beta-1)*Nr+gama-1; 

         index2=(betahat-1)*Nr+gama-1; 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+2,j); % 22 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+2,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+6,j); % 12 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+6,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+4,j); % 23 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+4,j); 

         end 

      end 

   end 

    

   for gama=1:Nr-1 % construct AVPM matrix 

      for beta=1:Nb 

         gamahat=gama+1; 

         index=(beta-1)*Nr+gama-1; 

         index2=(beta-1)*Nr+gamahat-1; 
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         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+3,j); % 33 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+3,j); 

         end 

         count=count+1; 

         for j=1:6 

            AVPM(count,6*index+j)=Cs(6*index+5,j); % 13 traction continuity 

            AVPM(count,6*index2+j)=-Cs(6*index2+5,j); 

         end 

      end 

   end 

    

   for gama=1:Nr-1 

      count=count+1; 

      beta=Nb; 

      gamahat=gama+1; 

      index=(beta-1)*Nr+gama-1; 

      index2=(beta-1)*Nr+gamahat-1; 

      for j=1:6 

         AVPM(count,6*index+j)=Cs(6*index+4,j); % 23 traction continuity 

         AVPM(count,6*index2+j)=-Cs(6*index2+4,j); 

      end 

   end 

    

   AtVP=[AVPM; AG]; 

   AVP=AtVP\K; 

   Bvp=zeros(6,6);  

    

   for beta=1:Nb 

      for gama=1:Nr 

         index=(beta-1)*Nr+gama; 

         p1=6*(index-1)+1; 

         p2=6*(index-1)+6; 

         Bvp=Bvp+hb(1,beta)*hr(1,gama)*Cs(p1:p2,:)*AVP(p1:p2,:); 

      end 

   end 

   Bvp=Bvp/h/l; 
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   deps=Bvp\dsig; % engineering strain increment of composite in the material axis 

   deps1=Teps*deps; % strain increment in the loading axis 

   Tstrain(i+1,1)=Tstrain(i,1)+deps1(1,1); %!!!!!!!! 

   %epss(i,:)=deps(:,1)'; 

   %if Tstrain(i+1,1) >= 0.04 

   %   break 

   %else 

   %end 

    

   for i=1:Nfiber; 

       cs(regionf(i,1)*6-5,1)=1; 

   end 

 

   for beta=1:Nb; 

       for gama=1:Nr; 

          index=(beta-1)*Nr+gama; 

          p1=6*(index-1)+1; 

          p2=6*(index-1)+6; 

         

            if cs(index*6-5,1)==1; 

               Cs(p1:p2,:)=Cf; 

                             

            else 

                 

                %leps(p1:p2,1)=AVP(p1:p2,:)*deps; 

            sigam=Cs(p1:p2,:)*AVP(p1:p2,:)*deps; % evaluate local stress increment 

            %check(p1:p2,1)=sigam; 

            subStress(p1:p2,1)=subStress(p1:p2,1)+sigam; % current stress state 

            sigam=subStress(p1:p2,1); 

            s1=1/3*(2*sigam(1,1)-sigam(2,1)-sigam(3,1));            

            s2=1/3*(-sigam(1,1)+2*sigam(2,1)-sigam(3,1)); 

            s3=1/3*(-sigam(1,1)-sigam(2,1)+2*sigam(3,1)); 

            s4=2*sigam(4,1); 

            s5=2*sigam(5,1); 

            s6=2*sigam(6,1); 

            

efsig=sqrt((sigam(1,1)+sigam(2,1)+sigam(3,1))^2-3*(sigam(2,1)*sigam(3,1)-sigam(4,1)^2+sigam(1,1)

*sigam(3,1)-... 
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                  sigam(5,1)^2+sigam(1,1)*sigam(2,1)-sigam(6,1)^2)); 

            %if index == 2 

            %  test(i,1)=efsig; 

            %else 

            %end 

        Smp=3/4*b*pn*efsig^(pn-3)*[s1; s2; s3; s4; s5; s6]*3*[s1; s2; s3; s4; s5; s6]'; 

            %Smp(4:6,:)=Smp(4:6,:)*2;    

            Sm=Sme+Smp; 

            Cs(p1:p2,:)=inv(Sm); 

            end                        

        end 

    end 

end 

sho=[Tstrain, Tstress]; 

Data(:,bbb:bb)=sho; 

 

end 

end 

%sho=[Tstrain, Tstress]; 

plot(Tstrain,Tstress,'b'); 

toc 
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Appendix C MATLAB code for calculating the modal shapes and damping 
capacity of composite structures 

 

clear all 

Array=1;  %different fiber array (1)SEP (2)SDP (3)HP 

lo=10;    %structure density 

modal=7;  %save number of modal 

%================================================================ 

load MT.txt;            %material properties 

load element3d.txt;     % nodal number of each element  

load nposition3d.txt;   % nodal location 

load dampinge.txt;      %damping capacity of six direction 

load dampingd.txt; 

load dampingh.txt; 

if Array==1 

    damping=dampinge; 

elseif Array==2 

    damping=dampingd; 

else Array==3 

    damping=dampingh; 

end 

c=size(element3d);        

d=size(nposition3d);      

d=d(1,1); 

G=zeros(3*3,8*3);                

gk=zeros(d(1,1)*3,d(1,1)*3); 

GK=zeros(d(1,1)*3,d(1,1)*3);           % global K 

gkcapa=zeros(d(1,1)*3,d(1,1)*3); 

GKcapa=zeros(d(1,1)*3,d(1,1)*3); 

gm=zeros(d(1,1)*3,d(1,1)*3); 

GM=zeros(d(1,1)*3,d(1,1)*3);           % global M 

%==================material property================ 

for i=Array 

Ef1=MT(1,i);  % zz Young's modulus of fiber 

Ef2=MT(2,i);   % xx Young's modulus of fiber 

Ef3=Ef2;     % yy Young's modulus of fiber 

nuf12=MT(5,i);    

nuf13=nuf12; 
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nuf23=MT(6,i); 

Gf12=MT(3,i); %Ef1/(2*(1+nuf12)) - if  fibers are isotropic 

Gf13=Gf12; 

Gf23=MT(4,i);  %Ef2/(2*(1+nuf23));%Gf12; 

end 

nuf21=Ef2*nuf12/Ef1; 

nuf31=Ef3*nuf13/Ef1; 

nuf32=Ef3*nuf23/Ef2; 

Sf=[1/Ef1 -nuf21/Ef2 -nuf31/Ef3 0 0 0; -nuf12/Ef1 1/Ef2 -nuf32/Ef3 0 0 0;... 

    -nuf13/Ef1 -nuf23/Ef2 1/Ef3 0 0 0; 0 0 0 1/Gf12 0 0; 0 0 0 0 1/Gf23 0; 0 0 0 0 0 1/Gf13]; 

E=inv(Sf); 

 

%======================= B matrix======================== 

for a=1:c(1,1); 

KE=zeros(24,24); 

KM=zeros(24,24); 

KEcapa=zeros(24,24); 

for k=0:2:2 

    for j=0:2:2 

        for i=0:2:2 

 

        XI=(i-1)/sqrt(3);      

        YI=(j-1)/sqrt(3); 

        ZI=(k-1)/sqrt(3); 

        

        L=[1 0 0 0 0 0 0 0 0       % L matrix 

           0 0 0 0 1 0 0 0 0 

           0 0 0 0 0 0 0 0 1 

           0 1 0 1 0 0 0 0 0 

           0 0 0 0 0 1 0 1 0 

           0 0 1 0 0 0 1 0 0]; 

        

         DN(5,1)=-1/8*(1-YI)*(1+ZI); 

     DN(6,1)= 1/8*(1-YI)*(1+ZI); 

     DN(7,1)= 1/8*(1+YI)*(1+ZI); 

     DN(8,1)=-1/8*(1+YI)*(1+ZI); 

     DN(1,1)=-1/8*(1-YI)*(1-ZI); 

         DN(2,1)= 1/8*(1-YI)*(1-ZI); 
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       DN(3,1)= 1/8*(1+YI)*(1-ZI); 

         DN(4,1)=-1/8*(1+YI)*(1-ZI); 

 

         DN(5,2)=-1/8*(1-XI)*(1+ZI); 

     DN(6,2)=-1/8*(1+XI)*(1+ZI); 

     DN(7,2)= 1/8*(1+XI)*(1+ZI); 

     DN(8,2)= 1/8*(1-XI)*(1+ZI); 

     DN(1,2)=-1/8*(1-XI)*(1-ZI); 

         DN(2,2)=-1/8*(1+XI)*(1-ZI); 

       DN(3,2)= 1/8*(1+XI)*(1-ZI); 

         DN(4,2)= 1/8*(1-XI)*(1-ZI); 

         

         DN(5,3)= 1/8*(1-XI)*(1-YI); 

     DN(6,3)= 1/8*(1+XI)*(1-YI); 

     DN(7,3)= 1/8*(1+XI)*(1+YI); 

     DN(8,3)= 1/8*(1-XI)*(1+YI); 

     DN(1,3)=-1/8*(1-XI)*(1-YI); 

         DN(2,3)=-1/8*(1+XI)*(1-YI); 

       DN(3,3)=-1/8*(1+XI)*(1+YI); 

         DN(4,3)=-1/8*(1-XI)*(1+YI); 

         

        NN(1,1)=1/8*(1-XI)*(1-YI)*(1-ZI); 

        NN(2,1)=1/8*(1+XI)*(1-YI)*(1-ZI); 

        NN(3,1)=1/8*(1+XI)*(1+YI)*(1-ZI); 

        NN(4,1)=1/8*(1-XI)*(1+YI)*(1-ZI); 

        NN(5,1)=1/8*(1-XI)*(1-YI)*(1+ZI); 

        NN(6,1)=1/8*(1+XI)*(1-YI)*(1+ZI); 

        NN(7,1)=1/8*(1+XI)*(1+YI)*(1+ZI); 

        NN(8,1)=1/8*(1-XI)*(1+YI)*(1+ZI); 

     

       index=0;       %  

       for I=1:8 

           index=index+3;           

           for J=1:3 

               G(J,index-2)=DN(I,J); 

               G(J+3,index-1)=DN(I,J); 

               G(J+6,index)=DN(I,J); 

           end 
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       end            

       index2=0;       % N(shape function) matrix 

       for J=1:8 

           index2=index2+3; 

           NNN(1,index2-2)=NN(J,1); 

           NNN(2,index2-1)=NN(J,1); 

           NNN(3,index2)=NN(J,1); 

       end 

      %=============================Jacobian Matrix========================= 

      JACO=zeros(3,3);    

      for M=1:3 

       for N=1:3 

        for K=1:8 

            JACO(M,N)=JACO(M,N)+DN(K,M)*nposition3d(element3d(a,K+6),N+1); 

              end 

          end 

      end 

      INVJ=inv(JACO); 

 

 T=[INVJ(1,1) INVJ(1,2) INVJ(1,3) 0  0  0  0  0  0 

    INVJ(2,1) INVJ(2,2) INVJ(2,3) 0  0  0  0  0  0 

    INVJ(3,1) INVJ(3,2) INVJ(3,3) 0  0  0  0  0  0 

    0  0  0  INVJ(1,1) INVJ(1,2) INVJ(1,3) 0  0  0 

    0  0  0  INVJ(2,1) INVJ(2,2) INVJ(2,3) 0  0  0     

    0  0  0  INVJ(3,1) INVJ(3,2) INVJ(3,3) 0  0  0 

    0  0  0  0  0  0 INVJ(1,1) INVJ(1,2) INVJ(1,3) 

    0  0  0  0  0  0 INVJ(2,1) INVJ(2,2) INVJ(2,3) 

    0  0  0  0  0  0 INVJ(3,1) INVJ(3,2) INVJ(3,3)]; 

      

           B=L*T*G;     %  B    

%======================= K, M Kfi matrix===================== 

      kk=B'*E*B;    

      kkcapa=B'*E*damping*B;    

    KE=KE+det(JACO)*kk;  % K matrix of element 

      KEcapa=KEcapa+det(JACO)*kkcapa;   %kcapa matrix of element 

       

      km=lo*NNN'*NNN;   %mass matrix of gauss integral point 

      KM=KM+det(JACO)*km;    %mass matrix of element 
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      end 

   end 

end 

%======================Global K========================== 

    for n=1:8 

        for m=1:8 

 

gk(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=KE(n*3-2,m*3-2);        

GK(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=GK(element3d(a,n+1+5)*3-2,    

element3d(a,m+1+5)*3-2)+gk(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2); 

gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=KE(n*3-1,m*3-2);            

GK(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=GK(element3d(a,n+1+5)*3-1,  

element3d(a,m+1+5)*3-2)+gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2); 

gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=KE(n*3,m*3-2);            

GK(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=GK(element3d(a,n+1+5)*3,  

element3d(a,m+1+5)*3-2)+gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2); 

gk(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=KE(n*3-2,m*3-1);           

GK(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=GK(element3d(a,n+1+5)*3-2,  

element3d(a,m+1+5)*3-1)+gk(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1); 

gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=KE(n*3-1,m*3-1);           

GK(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=GK(element3d(a,n+1+5)*3-1,   

element3d(a,m+1+5)*3-1)+gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1); 

gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=KE(n*3,m*3-1);            

GK(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=GK(element3d(a,n+1+5)*3,  

element3d(a,m+1+5)*3-1)+gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1); 

gk(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=KE(n*3-2,m*3);            

GK(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=GK(element3d(a,n+1+5)*3-2,  

element3d(a,m+1+5)*3)+gk(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3); 

gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=KE(n*3-1,m*3);           

GK(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=GK(element3d(a,n+1+5)*3-1,   

element3d(a,m+1+5)*3)+gk(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3); 

gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=KE(n*3,m*3);    

GK(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=GK(element3d(a,n+1+5)*3,  

element3d(a,m+1+5)*3)+gk(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3); 

 

%===============================Global 

Kcapa======================================            

gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=KEcapa(n*3-2,m*3-2);            
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GKcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=GKcapa(element3d(a,n+1+5)*3-2,eleme

nt3d(a,m+1+5)*3-2)+gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2);            

gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=KEcapa(n*3-1,m*3-2);            

GKcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=GKcapa(element3d(a,n+1+5)*3-1    ,e

lement3d(a,m+1+5)*3-2)+gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2); 

gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=KEcapa(n*3,m*3-2);            

GKcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=GKcapa(element3d(a,n+1+5)*3,ele    

ment3d(a,m+1+5)*3-2)+gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2);            

gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=KEcapa(n*3-2,m*3-1);            

GKcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=GKcapa(element3d(a,n+1+5)*3-2    ,e

lement3d(a,m+1+5)*3-1)+gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1);            

gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=KEcapa(n*3-1,m*3-1);            

GKcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=GKcapa(element3d(a,n+1+5)*3-1    ,e

lement3d(a,m+1+5)*3-1)+gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1); 

gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=KEcapa(n*3,m*3-1);            

GKcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=GKcapa(element3d(a,n+1+5)*3,    

ele ment3d(a,m+1+5)*3-1)+gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1); 

gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=KEcapa(n*3-2,m*3);            

GKcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=GKcapa(element3d(a,n+1+5)*3-2,   

element3d(a,m+1+5)*3)+gkcapa(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3); 

gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=KEcapa(n*3-1,m*3);            

GKcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=GKcapa(element3d(a,n+1+5)*3-1,   

element3d(a,m+1+5)*3)+gkcapa(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3); 

gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=KEcapa(n*3,m*3);            

GKcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=GKcapa(element3d(a,n+1+5)*3,   

element3d(a,m+1+5)*3)+gkcapa(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3); 

%==========================Global mass matrix================================ 

gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=KM(n*3-2,m*3-2);            

GM(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2)=GM(element3d(a,n+1+5)*3-2,    

element3d(a,m+1+5)*3-2)+gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-2); 

gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=KM(n*3-1,m*3-2);            

GM(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2)=GM(element3d(a,n+1+5)*3-1,  

element3d(a,m+1+5)*3-2)+gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-2); 

gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=KM(n*3,m*3-2);            

GM(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2)=GM(element3d(a,n+1+5)*3,  

element3d(a,m+1+5)*3-2)+gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-2); 

gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=KM(n*3-2,m*3-1);            

GM(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1)=GM(element3d(a,n+1+5)*3-2,  
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element3d(a,m+1+5)*3-1)+gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3-1); 

gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=KM(n*3-1,m*3-1);            

GM(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1)=GM(element3d(a,n+1+5)*3-1,   

element3d(a,m+1+5)*3-1)+gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3-1); 

gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=KM(n*3,m*3-1);            

GM(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1)=GM(element3d(a,n+1+5)*3,   

element3d(a,m+1+5)*3-1)+gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3-1); 

gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=KM(n*3-2,m*3);            

GM(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3)=GM(element3d(a,n+1+5)*3-2,   

element3d(a,m+1+5)*3)+gm(element3d(a,n+1+5)*3-2,element3d(a,m+1+5)*3); 

gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=KM(n*3-1,m*3);            

GM(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3)=GM(element3d(a,n+1+5)*3-1,  

element3d(a,m+1+5)*3)+gm(element3d(a,n+1+5)*3-1,element3d(a,m+1+5)*3); 

gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=KM(n*3,m*3);            

GM(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3)=GM(element3d(a,n+1+5)*3,  

element3d(a,m+1+5)*3)+gm(element3d(a,n+1+5)*3,element3d(a,m+1+5)*3); 

        end 

    end     

     

end 

%============================ boundary conditions============================ 

load BC.txt;    % nodal boundary condition at x direction 

x=size(BC); 

z=z(1,1); 

GKnew=zeros(3*d-(3*x),3*d-(3*x)); 

GKcapanew=zeros(3*d-(3*x),3*d-(3*x)); 

GMnew=zeros(3*d-(3*x),3*d-(3*x)); 

GK1=zeros(1,(3*d-(3*x))^2); 

GKcapa1=zeros(1,(3*d-(3*x))^2); 

GM1=zeros(1,(3*d-(3*x))^2); 

 

pk=923456; 

for i=1:x 

    NBC=BCx(i,1)*3-2; 

    GK(:,NBC)=pk; 

    GK(:,NBC+1)=pk; 

    GK(:,NBC+2)=pk; 

    GK(NBC,:)=pk; 
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    GK(NBC+1,:)=pk; 

    GK(NBC+2,:)=pk; 

end 

index=0; 

for i=1:3*d 

    for j=1:3*d 

        if GK(i,j)==pk; 

        else 

           index=index+1;  

           GK1(1,index)=GK(i,j);     

           GM1(1,index)=GM(i,j); 

           GKcapa1(1,index)=GKcapa(i,j); 

        end    

     end 

 end      

 for i=1:(3*d-(3*x)) 

     GKnew(i,:)=GK1(1,(i-1)*(3*d-(3*x))+1:i*(3*d-(3*x))); 

     GMnew(i,:)=GM1(1,(i-1)*(3*d-(3*x))+1:i*(3*d-(3*x))); 

     GKcapanew(i,:)=GKcapa1(1,(i-1)*(3*d-(3*x))+1:i*(3*d-(3*x))); 

 end     

%===================eigenvalue & eigenvector============================= 

[eigenvector,eigenvalue]=eig(GKnew,GMnew); 

eigenvalue=eig(GKnew,GMnew); 

Esort=sort(eigenvalue); 

qq=size(Esort); 

qq=qq(1,1); 

FF=sqrt(Esort)/(2*pi);     

index2=0; 

for i=1:modal 

    index=0; 

    es=Esort(i,1); 

    for j=1:qq 

        index=index+1; 

        ee=eigenvalue(j,1); 

        if ee==es 

           %pp=index 

           index2=index2+1; 

           evector(:,index2)=eigenvector(:,index); 
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        end 

    end 

end     

Mdamp=zeros(modal,1); 

for i=1:modal 

    Mdamp(i,1)=(1/2*evector(:,i)'*GKcapanew*evector(:,i))/(1/2*evector(:,i)'*GKnew*evector(:,i)); 

end     

yy=size(evector); 

Dvector=zeros(yy(1,1)/3,yy(1,2)*3); 

DDvector=zeros(d,modal*3); 

 

for k=1:modal 

    mr=evector(:,k)'*GMnew*evector(:,k); 

    index3=0; 

    index2=0; 

    index=1; 

for i=1:d 

    BBCx=BCx(index,1); 

    if index==x 

        index=1; 

        index3=index3+1; 

    elseif nposition3d(i,1)==BBCx 

        index=index+1; 

        index3=index3+1; 

        DDvector(index3,k*3-2)=nposition3d(i,2); 

        DDvector(index3,k*3-1)=nposition3d(i,3); 

        DDvector(index3,k*3)=nposition3d(i,4); 

    else 

        index2=index2+1; 

        index3=index3+1; 

        DDvector(index3,k*3-2)=(evector(index2*3-2,k)/sqrt(mr)+nposition3d(i,2)); 

        DDvector(index3,k*3-1)=(evector(index2*3-1,k)/sqrt(mr)+nposition3d(i,3)); 

        DDvector(index3,k*3)=(evector(index2*3,k)/sqrt(mr)+nposition3d(i,4)); 

    end 

end 

end
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Table 2.1 Mechanical properties and thermal properties of the ingredients of fiber 

composites used in the GMC analysis. 

4.11n
6.42×10-11A

1.18×10-4α(1/ oC)

0.25ν23

0.370.2ν12

5.5G23(GPa)
27.6G12(GPa)
14E2(GPa)

3.4234E1(GPa)
MatrixFiber

4.11n
6.42×10-11A

1.18×10-4α(1/ oC)

0.25ν23

0.370.2ν12

5.5G23(GPa)
27.6G12(GPa)
14E2(GPa)

3.4234E1(GPa)
MatrixFiber
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Table 3.1 Four parameters used in ANSYS to simulate the nonlinear behavior of 

matrix materials 

62048200029Parameter
bR∞R0K

62048200029Parameter
bR∞R0K
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Table 4.1 Mechanical properties and damping capacities of fiber and matrix used in 
GMC analysis [13] 

0.065370.00101Ψ

0.49ν23

0.3470.229ν12

52.48G23(GPa)
38.03G12(GPa)
15.64E2(GPa)

3.197225E1(GPa)
MatrixFiber

0.065370.00101Ψ

0.49ν23

0.3470.229ν12

52.48G23(GPa)
38.03G12(GPa)
15.64E2(GPa)

3.197225E1(GPa)
MatrixFiber

 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2 Damping property of fiber composites with SEP packing obtained by using 
the GMC and FEM analysis 

1.50.021640.02131Ψ12

1.50.021640.02131Ψ13

6.10.016890.01799Ψ23

4.90.012560.01321Ψ33

4.90.012560.01321Ψ22

00.001230.00123Ψ11

Error(%)FEMGMC

1.50.021640.02131Ψ12

1.50.021640.02131Ψ13

6.10.016890.01799Ψ23

4.90.012560.01321Ψ33

4.90.012560.01321Ψ22

00.001230.00123Ψ11

Error(%)FEMGMC
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Table 4.3 Damping property of fiber composites with SDP packing obtained by using 
the GMC and FEM analysis 

3.40.021750.02252Ψ12

3.40.021750.02252Ψ13

30.40.012510.01799Ψ23

4.80.016580.01742Ψ33

4.80.016580.01742Ψ22

00.001230.00123Ψ11

Error(%)FEMGMC

3.40.021750.02252Ψ12

3.40.021750.02252Ψ13

30.40.012510.01799Ψ23

4.80.016580.01742Ψ33

4.80.016580.01742Ψ22

00.001230.00123Ψ11

Error(%)FEMGMC

 
 
 
 
 
 
 
 
 

Table 4.4 Damping property of fiber composites with HP packing obtained by using 
the GMC and FEM analysis 

30.021640.02233Ψ12

30.021640.02233Ψ13

20.50.014260.01794Ψ23

2.10.014770.01509Ψ33

2.10.014770.01509Ψ22

00.001230.00123Ψ11

Error(%)FEMGMC

30.021640.02233Ψ12

30.021640.02233Ψ13

20.50.014260.01794Ψ23

2.10.014770.01509Ψ33

2.10.014770.01509Ψ22

00.001230.00123Ψ11

Error(%)FEMGMC
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Table 4.5 Fiber array effect on the first three modal damping capacities of composite 
rod with fiber extended in x-direction under free-free boundary condition 

0.021630.022280.02111Third mode  

0.011870.013300.01096Second mode

0.021780.022450.02125First mode

HPSDPSEP

0.021630.022280.02111Third mode  

0.011870.013300.01096Second mode

0.021780.022450.02125First mode

HPSDPSEP

 

 
 
 
 
 
 

Table 4.6 Fiber array effect on the first three modal damping capacities of composite 
rod with fiber extended in z-direction under free-free boundary condition 

0.020080.020680.01971Third mode  

0.015350.017470.01365Second mode

0.015790.017950.01403First mode

HPSDPSEP

0.020080.020680.01971Third mode  

0.015350.017470.01365Second mode

0.015790.017950.01403First mode

HPSDPSEP

 

 
 
 
 
 
 

Table 4.7 Fiber array effect on the first three modal damping capacities of composite 
plate with fiber extended in x-direction under free-free boundary condition 

0.019110.020120.01821Third mode  

0.015430.017490.01378Second mode

0.021500.022200.02097First mode

HPSDPSEP

0.019110.020120.01821Third mode  

0.015430.017490.01378Second mode

0.021500.022200.02097First mode

HPSDPSEP
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Table 4.8 Fiber array effect on the first three modal damping capacities of composite 
rod with fiber extended in x-direction under clamp-free boundary condition 

0.021670.022330.02115Second mode

0.014990.015910.01433Third mode  

0.007670.008840.00699First mode

HPSDPSEP

0.021670.022330.02115Second mode

0.014990.015910.01433Third mode  

0.007670.008840.00699First mode

HPSDPSEP

 

 
 
 
 
 
 

Table 4.9 Fiber array effect on the first three modal damping capacities of composite 
rod with fiber extended in z-direction under clamp-free boundary condition  

0.016380.018460.01475Third mode  

0.015300.017460.01354Second mode

0.015630.017800.01385First mode

HPSDPSEP

0.016380.018460.01475Third mode  

0.015300.017460.01354Second mode

0.015630.017800.01385First mode

HPSDPSEP

 

 
 
 
 
 
 

Table 4.10 Fiber array effect on the first three modal damping capacities of composite 
plate with fiber extended in x-direction under one side clamped boundary condition  

0.020150.020990.01952Third mode  

0.014050.014780.01360Second mode

0.009130.010460.00834First mode

HPSDPSEP

0.020150.020990.01952Third mode  

0.014050.014780.01360Second mode

0.009130.010460.00834First mode

HPSDPSEP
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Table 4.11 Fiber array effect on the first three modal damping capacities of composite 
plate with fiber extended in z-direction under one side clamped boundary  

0.017770.019660.01641Third mode  

0.020040.020920.01932Second mode

0.015380.017490.01367First mode

HPSDPSEP

0.017770.019660.01641Third mode  

0.020040.020920.01932Second mode

0.015380.017490.01367First mode

HPSDPSEP
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Fig. 2.1 Representative volume element, (RVE) 
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Fig. 2.2 Geometry and coordinate system of representative volume element [1] 
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Fig. 2.3 Local coordinate systems of the representative volume element [1] 
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Fig. 2.4 Fiber composites with three different fiber arrangements 
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       (a)                             (b) 
 

Fig. 2.5 RVE with square edge packing portioned into (a) 28×28 subcells and (b) 
39×39 subcells 

 
 
 
 
 
 
 
 

 

 
                   (a)                             (b) 

 
Fig. 2.6 RVE with square diagonal packing portioned into (a) 27×27 subcells and (b) 

39×39 subcells 
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                    (a)                          (b) 
 

Fig. 2.7 RVE with square edge packing portioned into (a) 20×35 subcells and (b) 
31×49 subcells 
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Fig. 2.8 Comparison of stress and strain curves obtained from the RVEs with coarse 

subclls and refined subcells 
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Fig. 2.9 Thermal residual stress effects on the stress and strain curves of 15° off-axis 

fiber composites with three different fiber arrays. (fiber volume fraction 60%) 
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Fig. 2.10 Thermal residual stress effects on the stress and strain curves of 30° off-axis 

fiber composites with three different fiber arrays. (fiber volume fraction 60%) 
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Fig. 2.11 Thermal residual stress effects on the stress and strain curves of 45° off-axis 

fiber composites with three different fiber arrays. (fiber volume fraction 60%) 
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Fig. 2.12 Thermal residual stress effects on the stress and strain curves of 60° off-axis 

fiber composites with three different fiber arrays. (fiber volume fraction 60%) 
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Fig. 3.1 Unit cell with 3×3 subcells to illustrate finite difference procedure 
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Fig. 3.2 Coordinate system of the RVE with square edge packing fiber 
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Fig. 3.3 Finite element mesh of the RVE with square edge packing fiber 
 
 

 

Fig. 3.4 Finite element mesh of the RVE with square diagonal packing fiber
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Fig. 3.5 Finite element mesh of the RVE with hexagonal packing fiber 
 
 

 

Fig. 3.6 Finite element mesh for a quadrant of the RVE with square edge packing fiber 
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Fig. 3.7 Finite element mesh for a quadrant of the RVE with square diagonal packing 
fiber 

 
 

 

Fig. 3.8 Finite element mesh for a quadrant of the RVE with hexagonal packing fiber 
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Fig. 3.9 Coordinate system and dimension for a quadrant of the RVE with square edge 

packing fiber 
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Fig. 3.10 Stress strain curve of matrix employed in GMC, SCMC and FEM analysis 
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Fig. 3.11 Comparison of stress and strain curves obtained from GMC and FEM 

analysis under transverse loading 22σ  
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Fig. 3.12 Comparison of stress and strain curves obtained from SCMC and FEM 

analysis under transverse loading 22σ  
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Fig. 3.13 Converge test for the stress and strain curves of composites with hexagonal 

square edge packing fiber obtained from SCMC model under shear loading 12σ  
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Fig. 3.14 Converge test for the stress and strain curves of composites with hexagonal 

square edge packing fiber obtained from GMC model under shear loading 12σ
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Fig. 4.1 Modeling procedure for characterizing the damping properties of composite 

structures. 
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Fig. 4.2 The dimension of composite structures (a) composite rod with fiber extended 
in x-direction (b) composite plate with fiber extended in x direction 
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Fig. 4.3 The first three modal shapes of composite rod with fiber in x-direction under 
free-free boundary condition (a) First mode (b) Second mode (c) Third mode 
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Fig. 4.4 The first three modal shapes of composite rod with fiber in z-direction under 
free-free boundary condition (a) First mode (b) Second mode (c) Third mode  

 102



x

y

z x

y

z x

y

z

 

 (a) 
 
 

x

y

z x

y

z x

y

z

 
 (b) 

 
 

x

y

z x

y

z x

y

z

 
 (c) 

 
 
 

Fig. 4.5 The first three modal shapes of composite plate with fiber in x-direction 
under free-free boundary condition (a) First mode (b) Second mode (c) Third mode  
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Fig. 4.6 The first three modal shapes of composite rod with fiber in x-direction under 

clamp-free boundary condition (a) First mode (b) Second mode (c) Third mode 
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Fig. 4.7 The first three modal shapes of composite rod with fiber in z-direction under 

clamp-free boundary condition (a) First mode (b) Second mode (c) Third mode 
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Fig. 4.8 The first three modal shapes of composite plate with fiber in x-direction 
under one side clamped boundary condition (a) First mode (b) Second mode (c) Third 
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Fig. 4.9 The first three modal shapes of composite rod with fiber in z-direction under 
one side clamped boundary condition (a) First mode (b) Second mode (c) Third mode  
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