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NAT Inbound 連線, Web快取, 與行動環境中的

Web連線切換 

 
研究生：謝明燈          指導教授：曾建超 

 

國立交通大學資訊工程學系博士班 

 

摘 要       

 

在本論文中，我們提出了可動態設定的 NAT (DCNAT)、混合式的Web快取管理演

算法、Web瀏覽連線換手機制、以及利用網路拓樸與移動方向來進行鍊接層快速換手的

機制，以便利用這些機制來支援不間斷的 Web 存取，與推送即時資訊至私有網路內的

行動主機。 

DCNAT 是一個基於連接埠的 NAT機制，它可以讓網際網路上的主機主動建立連線

與推送即時資訊至 NAT 網路內的主機。DCNAT 包含了一個 Binding Entry Request 程

序，藉由此程序，網際網路上的主機在連線至一私有網路內的主機之前，可以要求

DCNAT 路由器來動態地建立關於此一私有網路主機的 NAT binding entry。再者，動態

建立 binding entry的特色使得DCNAT能夠有彈性地支援私有網路主機動態開放的連接

埠與網路服務之存取。此外，網際網路上的內容提供者也能夠藉由 DCNAT，主動地推

送即時資訊給散佈於各個私有 NAT網路的訂閱者。 

為改善Web快取的效能，我們提出了混合式的Web快取管理演算法。此一混合式

Web 快取管理演算法將快取的儲存空間分成熱區與冷區共兩個區域，熱區採用簡單的

LRU演算法，冷區採用較複雜的 GreedyDual系列的演算法。這樣的混合式Web快取管

理演算法，結合了 SLRU、LRU、GreedyDual系列的優點，卻只須要在快取儲存空間的

一部份(冷區)應用較複雜的 GreedyDual系列演算法，便可以藉由冷區較周詳的管理演算

法來提升快取的整體效能。因而混合式 Web 快取管理演算法可以達到略低於 GDSP 演

算法的高文件命中率(DHR)與略低於 LRU演算法的高位元組命中率(BHR)，但卻只需要
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遠低於 GreedyDual系列演算法的維護代價。 

為了讓使用者在更換設備後，可以繼續Web瀏覽連線，我們提出一個Web瀏覽連

線換手系統。此一 Web 瀏覽連線換手系統可以在同質或異質的使用者設備之間切換無

狀態或有狀態的瀏覽連線，讓使用者在更換設備後可以進行不中斷且無接縫的 Web 存

取。為了能夠在使用者設備之間追蹤與交換各式各樣的連線相關資訊，我們採用的是代

理伺服器為基礎的方法，再加上非必須的使用者端的輔助機制。首先，使用者利用其設

備向一個稱之為 UAP的代理伺服器註冊其瀏覽連線；隨後 UAP便可以追蹤此瀏覽連線

並記錄必要的連線資訊，以供換手使用。此外，使用者端的輔助機制可以幫助 UAP 來

換手更詳盡的連線資訊。相較於以使用者端為基礎的方法，我們的設計有許多優點，例

如：使用者設備需要較少的修改、實用性、與錯誤相容。我們已實作了一 UAP 主機，

並在個人電腦(PC)與個人數位助理(PDA)實作了使用者端的程式。實作的結果能夠成功

地在個人電腦與個人數位助理換手一有狀態的線上購物瀏覽連線。 

為加速在 802.11 無線基地臺之間進行鍊接層換手的過程，我們利用無線基地臺拓

樸、行動主機的移動方向、與行動主機的位置來計算換手的候選無線基地臺，並減少候

選無線基地臺的數目。此方法另有許多優點：第一，在換手的過程中，行動主機不需要

執行耗時的無線基地臺搜尋程序，便能夠直接與無線基地臺取得關聯(association)，從而

進一步加快換手的速度；第二，此一計算換手的候選無線基地臺的機制可以與其它現存

的快速換手機制(例如：預先驗證與預先金鑰分配)互相配合。 

這四個機制一起作用，為行動環境與 NAT 環境的使用者提供了方便的網際網路存

取。 

 

關鍵詞：網路位址轉譯、即時資訊推送、快取、瀏覽連線換手、鍊接層快速換手 
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ABSTRACT 

 

In this thesis, we propose a Dynamically Configurable NAT (DCNAT), a hybrid web 

cache replacement algorithm, a web session handoff mechanism, and a Topology- 

and-Direction-aware link layer fast handoff scheme to support continuous web access and 

real-time information pushing for mobile hosts that may visit private networks. 

With DCNAT, a host situates in Internet can spontaneously establish inbound session 

and push instant information to hosts beneath NAT networks. DCNAT is a port-based NAT 

scheme that adopts a Binding Entry Request procedure for an Internet host to request a 

DCNAT router to dynamically create binding entries, for address:port translation, associated 

with a private host behind the DCNAT router just before the Internet host originates a 

communication session to the private host. Furthermore, the dynamic creation of NAT binding 

entries makes DCNAT very flexible in supporting inbound accesses to the ports/services 

opened dynamically by the private nodes behind an NAT router. Besides, with DCNAT, a 

content service provider can push information contents spontaneously to subscribers that are 

widely spreading and beneath different private networks with NAT. 

In order to improve web cache performance, we propose a hybrid web cache 

replacement algorithm that divides a cache space into two zones, a hot zone and a cold zone, 

and adopt a simple LRU replacement algorithm for the hot zone and a complex GD-Family 

replacement algorithm for the cold zone. This hybrid replacement algorithm combines the 

advantage of SLRU, LRU, and GD-Family algorithms but applies a complex GD-Family 

replacement algorithm only to a portion of the cache where strict object ordering is much 
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significant to the overall cache performance. Therefore it can achieve a high DHR just slightly 

lower than that of GDSP and a high BHR just slightly lower than that of LRU while incurs 

much less maintenance cost, comparing with GD-Family algorithms. 

To resume a web browsing session after a user changes the device that he uses to browse 

Internet, we propose a web session handoff system that can hand over not only stateless but 

also stateful sessions between homogenous or heterogeneous user devices to enable 

uninterrupted and seamless web accesses. The proposed system adopts a proxy-based 

approach and an optional client-assisted scheme to track and hand over a variety of session 

information from one device to another. In the proposed system, a user device needs to 

register a session with a User Agent Proxy (UAP) and the UAP then tracks the registered 

session and records the information necessary to the web session handoffs. In addition to 

session information tracked by a UAP, the UAP can hand over more comprehensive session 

information by using the client-assisted scheme. Compared with client-based approaches, our 

design has several advantages, such as less modification to user devices, practicability, and 

fault tolerance. We have implemented a UAP on a PC and client programs for both PC and 

PDA. The implementation can successfully hand over between PC and PDA a stateful session 

for online shopping applications. 

To speed up the process of handoff between 802.11 APs, we propose a 

Topology-and-Direction-aware fast handoff scheme that resolves a reduced set of candidate 

APs according to AP topology, MN’s its moving trend and/or MN’s position. The proposed 

approach further benefits handoff by allowing 802.11 station reassociates directly with an AP 

without performing AP discovery during handoff. Besides, the topology-and-movement-aware 

candidate-AP generation scheme can work in conjunction with the existing fast-handoff 

schemes that leverage pre-authentication, proactive key distribution, or context transfer. 

These four approaches together provide convenient Internet access in mobile 

environments and NAT environments. 

 

Keywords : NAT inbound session, real-time information pushing, web cache, web session 

handoff, link layer fast handoff 
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Chapter 1 Introduction 

 

1.1 Motivation and goal 

In recent years, advances in wireless technologies and capability of mobile devices have 

made mobile Internet practically feasible. In mobile Internet environments, a person can use a 

mobile device to access Internet and may switch to another device. Besides, he may move into 

an NAT network, e.g., a GPRS network or an 802.11 family wireless network that provides a 

private IP address. Such mobile Internet access challenges researchers to provide mobility 

support to information acquisition applications and enable inbound session to NAT networks 

[1]. In the literature, there is much research on terminal mobility or personal mobility, but 

little on session mobility [2]. Providing session mobility support to applications enables 

handing over an application session between user devices and therefore enables a user to 

resume his application after he changes device. Besides, solve NAT inbound session enables 

information pushing to a user moving into an NAT network. Pushing without a user’s probing 

is a convenient way different from traditional ones, e.g., email or SMS, to delivery real-time 

information content, e.g., stock information and surveillance alerts, to the user regardless the 

user’s location. 

 

 
Figure 1-1. Problems overview 
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Among current information acquisition applications in Internet, web browsing and email 

are the most important two. However, e-mail is not suitable for real-time information delivery. 

Therefore this thesis, from the viewpoint of applications, aims at improving web browsing 

and real-time information delivery in mobile environments. Figure 1-1 illustrates four 

problems that a person may encounter in mobile environments. These four  problems are 

described as follows: 

1. NAT Inbound session establishment and information pushing to NAT private 

networks : Inbound session problem is a notorious problem in NAT environments that 

prevents an Internet host from initiating a session to a host in an NAT private network. 

In mobile environments, there will be many NAT private networks since most GPRS 

and 802.11 family wireless networks provide private IP address to users and use NAT to 

connect to Internet. Therefore, a mobile node (MN) will probably move into an NAT 

network and encounter the inbound session problem. Besides, the inbound session 

problem also impedes Internet content or information servers from pushing real-time 

information, such as surveillance alerts or stock information, to the hosts in NAT private 

networks. Pushing information is better than traditional ways such as those use email or 

SMS since information subscribers need not probe for non-periodically produced 

information content. In mobile environments, many users that subscribe to the same 

information content service may be spread over several NAT private networks operated 

by different ISPs. The information server thus needs to deliver information actively to 

each NAT private network where one or more subscribers reside. However it is currently 

impossible for the information servers to push information content to private hosts 

behind legacy NAT routers. 

2. Web cache performance of web proxy: Web browsing is an important Internet 

application that a person would perform in daily Internet access. In current Internet 

environments, web caching is widely used to reduce network traffic, server load, 

user-perceived retrieval delay, etc. Previous web cache replacement algorithms may 

trade document hit ratio with byte hit ratio or require high maintenance cost to achieve 
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both high document hit ratio and high byte hit ratio. Therefore, we aim to achieve high 

document hit ratio and high byte hit ratio with less maintenance cost. 

3. Web session handoff: Web session handoff between user devices provides much 

convenience. It enables a user to resume browsing the last page that he viewed on a first 

device without traversing again the hierarchy of a web site’s content after he changes to 

a second device. Besides, handing over history of a web session enable s a user to review 

the pages that he just viewed on the first device. Furthermore, handing over inputted 

values in HTML form fields exempts users from tedious form refilling. Due to such 

convenience, web session handoff is useful in real life scenarios. For example, one may 

use a PC in his office to start browsing for preparing a suddenly-notified meeting and  

then can hand over his browsing session to a portable computer (a homogeneous device) 

or a PDA (a heterogeneous device) before he leaves his office or when he moves into a 

meeting room. Moreover, a session initially on a capability- limited mobile device can be 

handed over to a more powerful stationary device for purpose of the user’s convenience. 

For example, one may initially view and process stock information with a PDA or a 

smartphone and then hand over this session to a PC when a PC is available. In the 

literature, session handoff has been envisioned in first aid and clinical domains [3]. As 

mobile Internet access becomes popular, there will be more useful and diverse scenarios 

about web session handoff in the future. Therefore, users need an approach that can 

hand over session information between user devices rather than re- initiate a session 

from a second device. 

4. Fast inter-AP handoff: In mobile environments, there will be 802.11 wireless networks 

consisting of a lot of 802.11 access points (AP). Inter-AP handoff occurs when an MN 

moves between the coverage of two wireless access points. A fast inter-AP handoff 

scheme is therefore required so that a mobile node has sufficient time to perform 

handoff above link layers, e.g., Mobile-IP (at network layer), SIP (at application layer), 

and Web (at application layer). 

In this thesis, we respectively propose an approach to each of these problems. For the inbound 
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session problem, we propose a DCNAT approach that enables inbound session to dynamically 

opened ports/services by hosts in NAT private networks. Besides, we extend DCNAT to solve 

the problem of information pushing to NAT private networks. For web cache performance, we 

propose a hybrid web cache replacement algorithm to achieve high document hit ratio and 

high byte hit ratio while spending less maintenance cost. For the web session handoff problem, 

we propose a proxy-based approach and optional client-assisted scheme to hand over web 

session information between user devices. For inter-AP handoff problem, we propose a 

Topology-and-Direction-aware fast handoff scheme. These approaches would jointly 

contribute to convenient mobile Internet access. 

 

1.2 Thesis organization 

The remainder of this paper is organized as follows. Chapter 2 gives detailed description 

and causes of the problems solved in the thesis. Chapter 3 discusses previous related work on 

the four problems. Chapter 4 proposes DCNAT, our approach to the NAT inbound session 

problem and extends DCNAT to fit for the information pushing application. Chapter 5 

elaborates our hybrid web cache replacement algorithm. Chapter 6 elaborates our web session 

handoff system, addresses issues of session tracking in detail, and discusses ways to track and 

hand over sessions. Chapter 7 elaborates our Topology-and-Direction-aware fast handoff 

approach. Chapter 8 gives conclusions and future work. 
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Chapter 2 Background 

 

2.1 Inbound session problem in NAT environments 

2.1.1 NAT 

Network Address Translation (NAT) [1] is a technique that can translate one IP address 

to another while providing transparent routing to hosts. It is widely deployed by many 

Internet services providers (ISP) to solve the IP address depletion problem of IPv4. In an 

NAT1 network that uses private IP addresses, there will be an NAT router with two networks 

interface, an internal interface to the NAT network and an external interface to the public 

network. The internal interface of the NAT router and hosts in the NAT network (henceforth 

referred to as internal host) use Internet-non-routable  private IP addresses to communicate 

with each other. On the other hand, internal hosts communicate with hosts external to the NAT 

network (henceforth referred to as external host) via the external interface of the NAT router, 

which uses public IP address(s). When packets pass through the NAT router, the NAT router 

transparently translates an Internet-non-routable private IP addresses used by internal hosts to 

an Internet-routable public IP address of the external interface. Therefore, a private IP address 

can be reused by another NAT network and the IP address depletion problem can be solved. 

In the following, we first explain two types of traditional NAT: Basic NAT and NAPT 

(Network Address and Port Translation). 

Basic NAT : With Basic NAT, the NAT router reserves a pool of public IP addresses for 

address translation. When an internal host originates a session to an external host, the 

NAT router selects an address from the reserved IP addresses and creates an address 

binding between the private address of the internal host and the selected public address. 

Afterward, packets of the session can be translated and routed according to the created 

                                                 
1 Although NAT is restricted to translation between a private address realm and a public address realm, in this 

thesis we focus only on using NAT to translate between a private address realm and a public address realm. 

Therefore, we will use NAT network, private network, and NAT private network in interchange throughout this 

thesis.. 
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address binding. For packets outbound from the NAT network, the NAT router changes 

the source IP addresses from private addresses to public ones; for inbound packets, the 

NAT router replaces their destination IP address in reverse from public addresses to 

private ones. 

NAPT: NAPT extends the translation further by also translating the transport identifier, e.g., 

TCP and UDP port numbers, or ICMP query identifiers. With this extension, transport 

identifiers of a number of private hosts are multiplexed into transport identifiers of a 

single public address. Thus NAPT allows multiple  hosts to share a single public address 

for saving public addresses. Therefore most current NAT routers adopt NAPT for 

address translation. 

 

Figure 2-1. NAPT operation 

There are many variations of NAT that lend themselves to different applications. IETF has 

defined terminology, consideration, and variations of NAT in RFC 2663 [4] and RFC3489 [5]. 

In reality, each vendor may implement NAT in its own way. For example, Iptables [6], an 

implementation of NAPT in Linux operating system, classifies binding entries into two 

categories: Source NAT (SNAT) and Destination NAT (DNAT). In Iptables, an NAT router 
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checks SNAT entries for each outbound IP packet and DNAT entries for each inbound IP 

packet. Figure 2-1 illustrates the NAPT operations performed by an NAT router for SNAT 

translation. A host (PN) in a private network with private IP (192.168.0.3) is communicating 

with another host (CN) in the Internet. PN sends outbound packets with IP:port as 

192.168.0.3:1234 which are routed to the NAT Router. The NAT Router then finds that the 

source IP:port of the received packet matches an SNAT entry in the NAT table, and therefore 

translates the packet’s source IP: port into 140.113.1.1:2345 according to the matched entry. 

After the translation, the translated IP packets are routed to the Internet according to the 

routing table of the NAT router. Afterward, when the CN receives translated packets, it can 

reply PN by simply using the source IP:port of the received translated packets as the 

destination IP:port of the replied packets. Upon receiving inbound packets from CN, the NAT 

router knows, by examining DNAT entries, how to replace the destination IP:port with an 

internal IP:port for the packets. Consequently, PN receives the translated inbound packets 

destined for PN’s internal private IP from the specified port on which PN is expecting to 

receive the inbound packets. 

Besides, RFC3489 [5] further classifies NAT as full cone, restricted cone, port-restricted 

cone, and symmetric ones. In full cone NAT, all packets from the same internal IP address 

and port are mapped to the same external IP address and port. Furthermore, any external host 

can then send a packet to the internal host, by sending a packet to the mapped external address 

and/or port. In restricted cone NAT, all packets from the same internal IP address and port 

are mapped to the same external IP address and port. Unlike a full cone NAT, an external host 

(with IP address X) can send then a packet to the internal host only if the internal host had 

previously sent a packet to IP address X. As for port restricted cone NAT, it is like a 

restricted cone NAT, but the restriction includes port numbers. Specifically, an external host 

can send a packet, with source IP address X and source port P, to the internal host only if the  

internal host had previously sent a packet to IP address X and port P. In symmetric NAT, all 

requests from the same internal IP address and port, to a specific destination IP address and a 

specific port, are mapped to the same external IP address and  port. If the same internal host 
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sends a packet with the same source address and port, but to a different destination, a different  

mapping is used. Furthermore, only the external host that receives a packet from a specific 

port on a specific internal host can then send a packet back to the specific port on the specific 

internal host. 

 

2.1.2 Inbound session problem 

 
Figure 2-2. Inbound session problem 

 

However, an external host cannot originate a session to an internal host behind an NAT 

router unless the NAT router has established NAT binding entry(s) for the internal host. Figure 

2-2 illustrates the inbound session problem. Assume that there is no binding entry for port 

80 (used by HTTP service) on the NAT router’s external IP address and an Internet host (CN) 

wishes to initiate an HTTP session with PN1, a host in the NAT network. CN should first 

issue a DNS [7-8] request to learn PN1’s IP address. The DNS request is then replied by a 

DNS server with the external IP address of PN1’s NAT router. Afterward, CN sends a 

connection request to port 80 on the NAT router’s external IP address. However, when the 
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NAT router receives the connection request packet, it would find no match in the NAT table 

and it won’t know which host in the private network is the desired destination host. 

 

2.1.3 Information pushing service 

Among current mobile Internet connectivity techniques, GPRS and 802.11 family 

wireless networks are most popularly adopted. GPRS and 802.11 family are superior to 

traditional dial-up Internet access in providing inexpensive and fast continuous Internet 

connectivity. With continuous Internet connectivity, mobile devices are kept online so that the 

mobile devices can be reached by other nodes even the mobile devices have no ongoing 

connections with any other nodes. Therefore, contents about real-time information, e.g. stock 

information and surveillance alerts, can be pushed to subscribers without subscribers’ probing. 

Delivering information by pushing is better than traditional ways, e.g., email or SMS, since 

subscribers will not need to probe for non-periodically produced information. However, it is 

difficult to push information to mobile users in GPRS networks and 802.11 family wireless 

networks since many of these networks provide private IP addresses to mobile users and 

utilize NAT to connect to the Internet. 

 

2.1.4 Our approach -- DCNAT 

Many researchers have proposed approaches to resolve the inbound session problem. 

However, these approaches suffer from wasting IP addresses, being unable to support 

dynamically open ports by PN, being unable to support lots of PNs, or lack of inflexibility. 

Therefore, we propose a dynamically configurable NAT (DCNAT) approach to solve the 

inbound session problem as well as the problem of information pushing to NAT networks. 

The proposed DCNAT approach uses an add-on NAT Agent on an NAT router and a Binding 

Entry Request procedure so that an Internet host or its agent can request the NAT router to 

create dynamic NAT binding entries. After creation of binding entries, packets sent from the 

Internet host can pass through the NAT router and reach their desired destination host. 

DCNAT can support general inbound sessions as well as information pushing to a private 
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network. Compared with previous proposals, DCNAT is more scalable and flexible because it 

can support inbound accesses to lots private hosts and ports/services opened dynamically by 

private hosts by using just a single or few IP addresses. 

 

 

2.2 Web caching 

Caching has been used for decades as an effective performance enhancing technique in 

computer systems. As World Wide Web applications becomes popular and contribute to much 

Internet traffic, web caching is widely used to reduce network traffic, server load, 

user-perceived retrieval delay, etc. Though the ever decreasing prices of RAM and disks can 

provide large cache space to achieve higher hit ratio, the optimization or fine tuning of cache 

replacement is still significant since previous studies have shown that web cache hit ratio 

grows in a log- like fashion as function of cache size [9-12]. Thus, a better algorithm that 

increases hit ratios by only several percentage points would be equivalent to increasing cache 

size by several times. Besides, the growth rate of web content is much higher than that of 

cache size. The only way to bridge this widening gap is through efficient cache management. 

Moreover, the benefit of even a slight improvement in cache performance may have an 

appreciable effect on network traffic, especially when such gains are compounded through a 

hierarchy of caches. 

Many traditional cache replacement algorithms have also been used in web cache 

replacement, e.g., Least-Recently Used (LRU) and Least-Frequently Used (LFU). However, 

web caching differs substantially from the traditional ones. Two main features of the web 

caching that differ from the traditional caching are (1) non-uniformity of the object sizes and 

(2) non-uniformity of the cost of cache misses (as opposed to the traditional caching where all 

cache blocks have the same size and require the same amount of time to be retrieved in case 

of cache misses). These features have led researchers to propose web cache replacement 

algorithms that take these features into consideration, e.g. GreedyDual and its variants 

[11,13-14]. 
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Traditional web caching algorithms such as LRU does not perform well in terms of 

document hit ratio (DHR). On the other hand, GreedyDual and its variants, spending higher 

maintenance cost, basically perform well in terms of document hit ratio but not well in terms 

of byte hit ratio (BHR). Although there are algorithms dealing with multiple and complex 

parameters that may perform well both in terms of DHR and BHR, these algorithms require 

further higher maintenance cost. In mobile environments, each proxy situated at different 

network and hierarchy may favor high byte document hit ratio or high byte hit ratio according 

to bandwidth, traffic, and other network characteristics. Therefore, we propose a hybrid web 

cache replacement algorithm to improve DHR of web caching and retain high BHR while 

spending less maintenance cost. 

 

2.3 Web session handoff 

Web session handoff intrinsically means handoff of session information maintained by a 

browser program of a first user device to a browser program of a second device. (Note that the 

first device is hereafter referred to as source device since it is the source providing session 

information, while the second device is referred to as target device since it is the target 

accepting session information.) The so-called session information consists of any information 

about a session such as session history, HTTP cookies, web objects maintained by browsers, 

etc. If complete session information of a session can be handed over, a user will be able to 

continue browsing seamlessly as if he had not changed to a second device. Therefore, a web 

session handoff system should be able to track and obtain as much as session information 

from source devices so that session information can be handed over as complete as possible 

and a session can be more seamlessly resumed on the target device. 

HTTP [15], the basic communication protocol of web browsing, is originally designed 

to support stateless sessions. However, as web browsing become popular and is widely used 

for more aspect of information exchange, it is important and necessary to support stateful web 

sessions  [16-17], in which session state persists across multiple HTTP transactions. For 

example, an online shopping web site should differentiate sessions initiated by different  
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clients and maintain the shopping cart of each client as separate session state. Therefore, 

many approaches [18-19] have been proposed and extensively used by web servers to enable 

stateful web sessions. In order to hand over not only stateless sessions but also stateful 

sessions, a web session handoff protocol/system should be able to track and hand over session 

state between users devices. For example, BSR [20] adopts a client-based approach that uses a 

substantially modified browser to save and hand over browser state to/from a BSR repository. 

However, using client-based approaches to hand over web sessions is not desirable since they 

require substantial modification to browsers. In client-based approaches, each browser 

program for various types of user devices needs its own modification to program code. 

Besides, the inefficient browser-dependent modification is impractical and usually has 

incompatibility problem when inter-working with unmodified web proxies or web servers. 

In this thesis, we propose a web session handoff system that adopts a proxy-based 

approach and an optional client-assisted scheme in order to track and hand over session 

information. In the proposed system, we introduce the functionalities of web session tracking 

and handoff into traditional web proxies to provide a special purpose proxy, called UAP. The 

UAP can track a session while the user browsing and then can hand over session information 

to another device. In addition to session information tracked by a UAP, the UAP can hand 

over more comprehensive session information by using the client-assisted scheme. As a result, 

the proposed web session handoff system requires less modification to user devices while 

being able to hand over much of session information. In our experience, proxy-based 

approaches are practical for web session handoff before a standardized or popular web session 

handoff protocol is widely recognized. 

 

 

2.4 Fast inter-AP handoff 

Critical to IEEE 802.11 network machinery is the handoff process, which occurs when a 

mobile node (MN) moves its association from one access point (AP) to another. A standard 

802.11 handoff consists of AP discovery, legacy authentication, and reassociation procedures. 
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Among these procedures, AP discovery by an MN’s active scan imposes a significant delay 

[21]. In active scan [22], an MN repeats the following operations for each channel: 

1. The MN switches antenna to the channel and waits for either an indication of an 

incoming frame or for the ProbeDelay timer to expire. If an incoming frame on the 

channel is detected, the MN knows the channel is in use and can be probed. 

2. The MN gains access to the medium using the basic DCF access procedure and 

sends a Probe Request frame. 

3. The MN waits for the minimum channel time, MinChannelTime, to elapse. 

a. If the medium was never busy, the MN knows there is no network and therefore 

tries another channel. 

b. If the medium was busy during the MinChannelTime interval, the MN waits 

until the maximum time, MaxChannelTime, and processes any Probe Response 

frames sent from APs on the channel. 

After all the channels have been tried, the MN selects a target AP, usually the AP with the best 

received signal strength, from the APs that have responded the MN’s probe. Since the number 

of channels in 802.11 family is at least 11, this AP discovery procedure can take up at least 

250 ms. Furthermore, if a security scheme stronger [23-24] than legacy authentication such as 

open system authentication or WEP [22] was adopted, the time for performing authentication 

will increase. For example, the IEEE 802.1X [25] framework has been adopted as mandatory 

part of emerging Robust Security Networks [26] in additional to authentication and 

cryptographic key management. Given IEEE 802.1X transactions at remote sites, 

internetwork transmission account for another potentially prohibitive handoff delay. 

As a remedy, some researchers have proposed schemes to pre-authenticate MN with APs 

[27] or proactively distribute key material to neighboring APs [28]. With these schemes, the 

target AP, upon detecting reassociation, can complete handoff sooner than would otherwise be 

possible. However, such pre-authentication or key distribution involves the APs in the vicinity 

of the MN according to some mobility profiles, regardless of the MN’s movement, topology 

information, and whereabouts. As a consequence, a number of APs per MN, e.g., those 
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opposite to the moving direction, are excessively involved. Although another efficient method 

for AP discovery was developed in [29], these schemes may still suffer from AP discovery. 

This thesis proposes a Topology-and-Direction-aware approach to moderating the 

handoff overhead further in IEEE 802.11 networks. We allow an MN to learn of APs toward 

which it will roam shortly using its location, moving trend/direction, and the topology 

information about APs and environment objects. The topology information is provided by 

some designated server which also provides parameters for AP (re)association so that the MN 

need not learn these parameters without a probe beforehand. In light of the moving trend or 

direction, the MN, being able to determine its moving trend and/or position, selects a reduced 

set of neighbor APs to which pre-authentication messages or security information can be 

delivered in aforementioned fast handoff schemes. Besides, the MN can in advance select a 

target AP from the candidate AP set with which the MN will directly reassociate and therefore 

the time-consuming AP discovery is avoided upon handoff. 
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Chapter 3 Related Work 

 

3.1 Related work on NAT inbound session problem 

Many researchers have attempted to solve the inbound session problem. In this chapter, 

we briefly describe the mechanisms that have previously been proposed in literature. 

 

3.1.1 Bi-directional NAT 

Bi-directional NAT [4] attempts to solve the inbound session problem by adopting an 

address binding procedure similar to that for the outbound session in Basic NAT. In 

Bi-directional NAT, an NAT router would reserve a pool of public IP addresses and there is a 

DNS Application Layer Gateway (DNS_ALG [30]) co-situated with the NAT router.  

Referring back to Figure 2-2, when an Internet host (CN) issues a DNS request to learn the IP 

address of the designated node (PN) and the DNS_ALG receives the DNS request, the 

DND_ALG will select an unused public IP address of NAT_R (named IP_A), create NAT 

binding entries for PN, and inform CN of the selected public address with a DNS reply 

message. 

Bi-directional NAT is a transparent approach since no modification to hosts in public 

networks or private networks is required. But a drawback of Bi-directional NAT is that an 

extra public address will be needed for each internal private host that has connection(s) with 

external hosts on Internet. This drawback conflicts with NAT’s original goal in mitigating the 

IP Address Depletion Problem. 

 

3.1.2 Expanded NAT 

Expanded NAT [31] tackles the Inbound Session Problem by pre-configuring NAT 

binding entries to enable inbound accesses to some pre-defined services on internal hosts. 

Therefore only the services that have already been defined on specific hosts can be accessed 

by external hosts in Internet. Moreover, Expanded NAT has a Port Collision Problem since it 

can map a specific well-known service port, such port 21 for ftp, only to a particular internal 
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host. No two distinct internal hosts can offer the same service using the same port on an NAT 

router. 

 

3.1.3 Tunnel Approach 

 

Figure 3-1. System architecture of Tunnel Approach 

 

Figure 3-1 illustrates the system architecture of the Tunnel Approach [32]. The Tunnel 

Approach assumes that an intermediate system, which is situated on the route to/from CN 

to/from the Internet, can intercept packets originating from or designated to CN, and an 

IP-in-IP tunnel has been established between the Intermediate System and the NAT router of 

PN. Before CN initiates a communication session with PN, it issues a DNS request to inquire 

PN’s IP address. This DNS request will be intercepted by the Intermediate System. Since the 

DNS query is for a host PN within a private network that is reachable through the 

pre-configured tunnel, the Intermediate System chooses an IP address (IP_External) as the 

external IP address of PN seen by CN, and informs the NAT router to establish binding entries 

between IP_External and PN’s private IP. It should be noted that the Intermediate System 

could use private IPs for IP_External addresses. After establishing NAT binding entries, the 

intermediate system returns IP_External as PN’s IP in a DNS reply to CN. CN can then use 

IP_External as the destination address for the packets to PN.  The packets that are sent to 

IP_External will be intercepted by the Intermediate System. The Intermediate System will 
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encapsulate the packets and send the encapsulated packets to the NAT router through the  

IP-in-IP tunnel. When the NAT router receives the encapsulated packets, it de-capsulates the 

packets, performs address translation from IP_External to PN’s internal IP, and routes the 

de-capsulated inbound packets to PN. 

Although the Tunnel Approach requires no modifications to hosts in both public and 

private networks, IP- in-IP tunnels must have been established between the Intermediate 

System en route and the intended private network. It is clearly impractical to have an 

Intermediate System en route, and establish a tunnel between the Intermediate System and 

each possible private network beforehand. 

 

3.1.4 NAT binding inquiry 

In contrast to Bi-directional NAT, Expanded NAT, and Tunnel Approach, which are 

transparent approach to PNs, many non-transparent approaches have been proposed, e.g. 

UPnP IGD[33] and STUN[34]. These non-transparent approaches rely on PN, aware of NAT, 

actively sending some messages to acquire the mapped public IP:port of PN and informing 

CN of the mapped IP:port. These schemes may be appropriate for applications that can learn a 

CN’s IP:port from a centralized server or cooperatively distributed servers, e.g., SIP-based 

VoIP. However they are not well-suited for the real-time content pushing services since PN 

can not foresee when a real-time push server is ready to push messages to PN, and inquire 

PN’s own mapped IP:port beforehand. Furthermore, in these schemes, PN will occupy a port 

on an NAT router even if there are no ongoing sessions, which may reduce the available 

number of ports on an NAT router when there are many PNs in the private network. 

 

 

3.2 Related work on web caching 

Many traditional cache replacement algorithms have also been used in web cache 

replacement, e.g., Least-Recently Used (LRU) and Least-Frequently Used (LFU). However, 

web caching differs substantially from the traditional ones. Two main features of the web 
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caching that differ from the traditional caching are (1) non-uniformity of the object sizes and 

(2) non-uniformity of the cost of cache misses (as opposed to the traditional caching where all 

cache blocks have the same size and require the same amount of time to be retrieved in case 

of cache misses). These features have led researchers to propose web cache replacement 

algorithm that take these features into consideration, e.g. GreedyDual and its variants 

[11,13-14]. 

 

3.2.1 Performance metrics 

Different performance evaluation measurements will produce different competition 

results. There are three categories of commonly used performance metrics for evaluating 

performance of web caching: 

� Document Hit Ratio (DHR) refers to the percentage of hits in terms of the request 

times. Byte Hit Ratio (BHR) refers to the percentage of hits in terms of byte 

requested. There is a tradeoff between these two metrics. For example, an algorithm 

that prefers to keep 10 small objects probably achieves higher DHR than the 

algorithm that keeps only one objects of the same total size. 

� Request Response Time : Real world tests found that response time is not as stable as 

being measured in the synthetic environments [11,35]. Though it is not appropriate to 

be an algorithm metric, the response time is still a dependable metric to measure 

performance improvement. 

� Outbound Network Traffic: All misses will cause outbound network traffic for 

retrieving data from original web servers or other web caches. Unlike response time, 

the outbound traffic is a static metric that in most case equal to the object size. 

Among these performance metrics, DHR and BHR are the most basic and are the most 

popularly adopted since other metrics are usually affected by DHR or BHR. For example, 

request response time is affected by DHR since web cache can responds on document hit, 

without requesting documents from original web servers or other web caches, faster than on 

document miss. Outbound network traffic is affected by DHR and BHR since more document 
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misses or more byte misses cause a web cache requesting more from original web servers or 

other cache proxies. 

 

3.2.2 LRU and SLRU 

LRU, in principle of capturing temporal locality in web traffic, ranks objects according 

to each object’s last reference time. The existing of temporal locality in web traffic has been 

proven by much analysis on web traffic. For example, [10] shows that the probability of an 

object’s inter-access time is inversely proportional to the object’s inter-access time. Figure 3-2 

illustrates logical flow of LRU. In LRU, an object is inserted at cache head on cache miss, 

pushed toward cache tail by other requested objects, promoted to cache head if requested 

again, and removed when it reaches cache tail. Such operations are simple and of a 

maintenance cost of constant order. Due to its simplicity, LRU becomes the most widely used 

replacement algorithm in popular web cache systems, e.g., Squid [35]. 

 

Figure 3-2. Logical flow of LRU 

 

Since pushing an object from cache head to cache tail needs long time, inserting an 

object at cache head may be unnecessary before the cache knows the object is popular or not. 

Therefore, Rassul Ayani et al proposed Segmented LRU (SLRU) [36] in which a missed 



 20 

object is fetched not into cache head. Figure 3-3 illustrates logical flow of SLRU. SLRU 

divides cache space into two segments, each of which operates according to LRU. A missed 

object is fetched into the head of the lower segment and becomes the most recently used 

(MRU) object of the lower segment. An object in the lower segment is promoted to the head 

of the upper segment after several times of hit and becomes the MRU object of the upper 

segment. Victims of the upper segment are moved to the head of the lower segment and 

victims of the lower segment are removed from cache. The evaluation results in [36] shows 

that SLRU improves LRU in terms of both DHR and BHR. 

 
Figure 3-3. Logical flow of SLRU 

 

The simple recency-based strategy of LRU works well for short-term popularity. 

Observe that a recently hot object is very probably requested again and therefore should not 

be removed soon. Besides, the ranking of a hot object relative to other objects will change 

drastically since the object is very probably requested again and re-ranked. Figure 3-4 shows 

an example in which relative ranking of the four objects: A, B, C, D at cache head when time1 

(Figure 3-4(a)) changes drastically when any of the four objects reaches cache tail when time2 

(Figure 3-4(b)). Therefore, it is unnecessary for a cache to spend lots efforts to maintain 

strong short-term popularity ranking for popular objects. From this point of view, LRU 

manages short-term popularity in a right way. 
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(a) Ranking at time1     (b) Ranking at time2 

Figure 3-4. Long-term behavior of objects 

 

On the other hand, the simple recency-based strategy of LRU does not suit for 

maintaining long-term popularity. Observe that object’s recency, a probable indication of the 

object’s short-term popularity, does not have strong relationship between the object’s 

long-term popularity. For example, a pure LRU would remove the least-recently-used object, 

which has been requested 1,000 times, even though the secondly least-recently-used object 

has been requested only once. From the viewpoint of probability, a cache, except having very 

small space, had better remove objects according to long-term popularity rather than 

short-term popularity. From this point of view, LRU is not proper for determining victims of a 

cache. 

 

3.2.3 GreedyDual and its variants 

GreedyDual (GD) algorithm [37] is originally proposed to deal with variable-cost 

uniform-size page caching problem. Cao and Irani extend GD into GreedyDual-Size (GDS) 

[11] to deal with variable-size web objects. Arlitt et al further proposed GDSF [38] to take 

object frequency into consideration. According to GDSF, Jin and Bestavros proposed GDSP 

(Popularity-Aware GreedyDual-Size) [14], which maintains object frequency as popularity 

profile. Besides, there are numerous algorithms [39-40] varied from GD. In [13], Jin and 

Bestavros summarize some variants into GreedyDual* (GD*). In GreedyDual*, each object p 
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is associated a utilization value, β/1)()( puLpH += , where L is the global inflation value 

representing recency, )
)(

)()(
()(

ps
pcpf

pu
×

=  is evaluated according to p’s access frequency 

function )(pf , retrieval cost function )(pc , and size function )( ps , and β  is the 

short-term temporal correlation factor )10( ≤≤ β . On retrieval or on a hit of an object p, 

)(pH  is re-evaluated. On eviction of an object p, L is set to the )(pH . In general, each 

variant of GD is equivalent to GD* with specially defined )(pf , )(pc , )( ps , and β . 

Besides, some variants of GD further use runtime statistics to perform probability estimation 

and may dynamically adjust the key function )(pH  or function parameters, e.g. CERA [39]. 

All variants of GD use the following algorithm: 

0=L  

For each request for object p do 

 If p is in cache then β/1)()( puLpH +=   

 else fetch p 

  While there is not enough free space for p 

   do L = min{ )(qH | all objects q in cache} 

    Evict the q with minimum )(qH  

  β/1)()( puLpH +=  

 

According to the above definition of utilization function and the above algorithm, most 

variants of GD favor objects of small size than large objects. Therefore GD and its variants 

can significantly outperform LRU in terms of DHR. As for the comparison between BHR of 

GD-Family and LRU, previous research has shown different results. Generally speaking, a 

GD variant with very high DHR often has lower BHR than LRU while a GD variant with 

proper parameters or utilization function can trade off some DHR for outperforming LRU in 

term of BHR. 
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Figure 3-5. Logical flow of GD-Family 

 

Since GD-Family evict the object with minimum utilization value, GD-Family often use 

a priority queue or a min heap, whose maintenance complexity is )(log nO , to rank objects 

according to each object’s utilization value. Figure 3-5 illustrates the logical flow of GD- 

Family. In comparison with LRU, the comprehensive strategy used by GD-Family is better 

for maintaining long-term popularity of objects and determining victims. For example, when 

selecting a victim from a least-recently-used object that have been accessed for 1,000 times 

and a secondly least-recently-used object that have been accessed once, GD-Family would 

comprehensively select the secondly least-recently-used object while LRU would select the 

least-recently-used object. However, the comprehensive strategy used by GD-Family is not 

unnecessary for maintaining short-term popularity as described in Section 3.2.2. Furthermore, 

GD variants that dynamically adjust the utilization function or function parameters may incur 

further higher maintenance cost if the adjustment requires global re-evaluation of utilization 

values of all objects. Therefore, GD variants are not widely used in popular web cache system 

due to higher complexity although they outperform LRU. 

 

 

3.3 Related work on session mobility and web session handoff 

3.3.1 Previous work on session mobility 

In the literature, much research on mobility focus on terminal mobility, e.g., Mobile IP 

[41] and its variants [42]. Mobile IP and many of its variants deal with delivering packets via 

the home agent and foreign agent s to a mobile terminal. In [42], by looking-up the location of 
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a mobile terminal and directly establishing a connection to the mobile terminal, packets can 

be delivered by a correspondent node without passing through the home agent or foreign 

agents of the mobile terminal. On the other hand, personal mobility becomes more and more 

important [43-49] because it realizes a convenient scenario that allows a user to use various 

devices and to switch between them. Netchaser [43] uses agent programs residing on user 

devices and servers to achieve personal mobility. MPA [44-45] aims to contact a user 

regardless of devices available at hand and usable communication protocols. The 

iProxy/iMobile system [47] is a cross-platform middleware that allows client applications on 

various devices with various underlying protocols to access web services. VHE [48] in UMTS 

aims to provide global service portability that enables a user to tailor his service set and to 

receive personalized services, regardless of his location, access network or device type. In 

general, most systems support personal mobility by using a performance enhancing 

middleware server [49] situated between mobile devices and correspondent nodes to perform 

protocol conversion, content adaptation, and content caching. These middleware servers can 

store and use information about users preference, devices capability, and personal service 

profiles to adapt contents for mobile devices accordingly. 

There is little research on handing over between user devices application sessions. 

iMASH [3] implements a system to fulfill this concept and uses it in a special-purposed 

healthcare domain. Besides, web session handoff can be realized by using process migration, 

Virtual Network Computing (VNC) [50], or Remote Desktop provided by Microsoft Windows 

XP operating system. However, protocols for process migration are too complex and heavy to 

suit application handoff. Furthermore, VNC and Remote Desktop are intrinsically different 

from application handoff since they are designed for remote console that outputs the screen of 

a first device to a second device and sends user input to the first device for processing. The 

transmission of screen data is a weakness since it may consume much network bandwidth. 

Besides, they cannot work well between heterogeneous user devices. 

To hand over web sessions, Browser State Repository (BSR) Service [20] has 

implemented a BSR repository server and a BSR plug- in for Microsoft Internet Explorer (IE) 
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5.0. The BSR plug- in of a first device takes a snapshot of a browser’s state and saves the 

snapshot at a BSR repository server, and then a browser on a second device can retrieve the 

saved snapshot to resume the saved state and session. Note that the first device is hereafter 

referred to as source device since it is the source providing session information, while the 

second device is referred to as target device since it is the target to accept saved snapshot. In 

its current implementation, BSR service only supports Microsoft’s desktop OS and does not 

show the ability to hand over web sessions between heterogeneous devices (though it 

envisions such scenarios). Besides, BSR is a client-based approach and therefore requires 

much effort for modification to user devices. 

 

3.3.2 Approaches for web session handoff 

A web session handoff system should be able to track and obtain session information 

from source devices so that session information can be handed over as much as possible and a 

session can be more completely resumed on the target device. There can be three alternatives 

to web session handoff: client-based, server-based, and proxy-based approaches. As described 

in [20], server-based approaches are restricted by the information that a client sends to a web 

server and are not compatible to web servers that do not support web session handoff.  

Client-based and proxy-based approaches can hand over more session information than 

server-based approaches, but require modification to client s and proxies respectively.  Since 

these two kinds of approaches require no modification to web servers, session handoff can be 

performed transparently to web servers and therefore server compatibility problem needs not 

be concerned. 

The main advantage of client-based approaches is that complete and precise session 

information can be obtained since a modified client can locally monitor complete session 

information. However, each client-based approach is currently restricted to user devices that 

have specially modified browsers or specialized client programs for each approach. It is 

impractical and inefficient to modify all existing browser programs for all types of user 

devices unless a standardized or popular web session handoff protocol is widely recognized. 
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In proxy-based approaches, a proxy should record all HTTP requests and responses 

passing through the proxy and perform additional treatment to track session information. 

Proxy-based approaches have two advantages over client-based approaches: 

1. Practicability: Proxy-based approaches have high practicability since they require 

less or no modification to user devices and therefore are easy to support more 

browsers and devices. Although client-based approaches can hand over complete 

and precise session information, they require in-depth knowledge about browsers 

and substantial modification to user devices. For example, the modification to user 

devices in BSR [20] is made directly to Microsoft’s IE 5.0.  In contrast, an 

unmodified user device in proxy-based approaches can still hand over a session 

without losing much session information. Besides, a user device in proxy-based 

approaches can be slightly modified without in-depth knowledge about browsers to 

hand over more session information. Thus client-based approaches cannot work 

properly when modified devices are un-available to users. Besides, users may suffer 

from the problem that their favorite browsers do not have a modified version that 

supports web session handoff. 

2. Fault tolerance to unreachable source device: During handoff, a source device 

may be unreachable due to lack of battery or wireless connection. In this case, a 

proxy-based approach can still hand over a session because this session has been 

tracked by a proxy while the user is browsing. As a result, session handoff in a 

proxy-based approach fails only when the tracking proxy is unreachable. On the 

contrary, client-based approaches store session information in source devices or 

outer repositories (e.g. BSR repository), and therefore session information will not 

be stored or handed over if source devices, outer repositories, or network 

connections to them fail. In summary, proxy-based approaches are tolerant to the 

failure due to unreachable source devices. Thus, proxy-based approaches are more 

robust than the client-based approaches in terms of fault tolerance, especially in 

wireless and mobile environment. 
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On the contrary, compared with client-based approaches, proxy-based approaches have 

two disadvantages: 

1. The additional treatment generates extra load to proxies. 

2. Session information tracked by proxy-based approaches might be incomplete since 

some session information may not pass through a proxy and will not be tracked by 

the proxy. 

To overcome these disadvantages, we adopt in our design a proxy-based approach with 

optional assistant information from user devices. The assistant information includes session 

information that cannot be tracked by a proxy, but can be collected by a slightly modified 

browser or an optionally installed client program in a user device. With the combination of 

proxy-based and client-assisted scheme, the proposed approach elaborated in the following 

sections outperforms the existing approaches. 

 

 

3.4 Related work on fasth Handoff for 802.11 networks 

3.4.1 Pre-authentication and Frequent Handoff Region 

Much research adopts performing pre-authentication [27,51-52] to APs in order to speed 

up handoff procedure. With pre-authentication, an MN performs authentication to one or more 

APs to establish security association between the MN and APs before an MN hands over and 

therefore the security information for the MN, such as key material, can be proactively 

distributed to the APs. As a result, when the MN enters the coverage of a pre-authenticated AP, 

the MN need not perform authentication to the pre-authenticated AP and the AP can directly 

use the proactively distributed key to communicate with the MN. Handoff latency is therefore 

reduced, especially in networks that adopt remote authentication procedure, e.g. RADIUS [23] 

and DIAMETER [24]. 

However, performing pre-authentication to all neighbor APs may be unnecessary. 

Therefore, some research uses predictive approach [27,51-52] to drive a reduced set of APs to 

which pre-authentication is performed. S. Pack and Y. Choi propose in [27,51] a fast handoff 
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scheme that performs pre-authentication to a reduced set of neighbor APs, called Frequent 

Handoff Region (FHR). In this scheme, an MN entering the coverage of an AP, performs 

authentication procedures to the current APs as well neighbor APs selected by a FHR 

selection algorithm, which takes into account users’ mobility patterns, service classes, etc. 

 

3.4.2 Neighbor Graph 

In [28-29,53], A. Mishra et al. use a data structure, the Neighbor Graph, to dynamically 

capture the mobility topology of a wireless network as a means for discovering candidate APs 

[29] and proactively distributing key [28]. The Neighbor Graph records the channel used by 

each AP and APs’ reassociation relationship, which exists between two APs if an MN can 

perform reassociation from one of the two APs to another AP but may not exist between two 

APs that are geographical neighbor. Figure 3-6 shows an example AP topology of a door 

environment and the corresponding Neighbor Graph. In this environment, there are four APs 

in passages and one AP in a room. The dashed lines in the left of Figure 3-6 show the 

potential paths of motion and the reassociation relationship between APs. As shown in the 

example, APA and APC are geographically neighbor but does not have reassociation 

relationship. With the knowledge of the Neighbor graph, an MN can perform 

pre-authentication and proactive key distribution only to a reduced set of candidate APs that 

have reassociation relationship with the MN’s current AP. Therefore, those neighbor APs that 

are not candidate will not incur the overhead for pre-authentication and proactive key 

distribution. Besides, the MN, upon handoff, can restrict the AP discovery procedure only to 

the channels used by the candidate APs, not to 11 or more channels. Furthermore, the MN, 

knowing from the Neighbor Graph the number of candidate APs at each channel, can advance 

the termination of AP discovery procedure for a channel when the MN have received probe 

responses from all candidate APs at the channel. Therefore, the latency for AP discovery 

procedure can be greatly reduced. 
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Figure 3-6. An example AP topology and corresponding Neighbor Graph 
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Chapter 4 Dynamically Configurable Network Address 

Translation (DCNAT) and Information Pushing 

 

In this chapter, we first describe a dynamically configurable NAT (NAPT, more 

precisely), henceforth referred as DCNAT, approach to the inbound session problem. DCNAT 

is originally proposed in [54]. We then describe our improvement to DCNAT and extend 

DCNAT to fit for information pushing service. 
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Figure 4-1. System architecture of DCNAT 

 

4.1 DCNAT 

4.1.1 System architecture and protocol flow 

Figure 4-1 shows the system architecture and major functional component s of DCNAT. 

Similar to a traditional NAT, DCNAT incorporates a Naming Agent for intercepting and 

processing identifier-to-IP queries to hosts inside a private network. It replies the external IP 

(henceforth referred to as IP_E) of the NAT router, rather than the private IP (henceforth 

referred to as IP_P) of the intended private host PN, for the identifier-to-IP queries originated 

by external hosts outside the private network. The Naming Agent is a DNS_ALG if the 

unique identifier of PN is a domain name. However, if the unique identifier is a telephone 

number or an NAI [55], the Naming Agent may be an ENUM [56] or other directory services. 
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In addition, DCNAT uses an NAT Agent for session registration process, data port 

selection, and NAT table management. The detailed function of the NAT Agent will be 

explained later. 

In addition to the two agents, DCNAT defines three additional ports: 

� Service port: a port on which PN is expecting data from CN. 

� Data port : a port on NAT_R’s external interface, selected dynamically by NAT Agent 

for a specific session from CN to PN. 

� Registration port : a port on NAT_R’s external interface that NAT_R opens for 

Session Registration Request messages from the Internet. 

 

DCNAT assumes that CN is a DCNAT-enabled proxy or host, and knows the unique 

identifier of PN it intends to communicate with. Furthermore, CN knows the Registration port 

on the NAT Router for perform Binding Entry Request procedure, and the service port on 

which PN expects to receive inbound packets. 

Before CN sends packets to PN, it first must issue a Binding Entry request, containing 

PN’s identifier and desired service port, to NAT_R. Upon receiving the Binding Entry request, 

NAT Agent on NAT_R creates NAT binding entries for PN, and replies to CN with the external 

IP of NAT_R and the data port associated with the newly created binding entry(s). After the 

Binding Entry Request procedure, CN knows which address and data port it should use for 

sending packets to PN. NAT_R can then translates the destination IP and port of the packet 

sent by CN from “external IP of NAT_R:data port” into “Private IP of PN:service port” and 

can route the translated packet to PN. 

 

Figure 4-2 illustrates the protocol flow for establishing an inbound TCP session with 

DCNAT. The steps are explained as follows: 

1. CN issues a DNS request in order to query PN’s IP address. This packet is routed to NAT_R 

according to DNS [7] mechanism. 
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Figure 4-2. Protocol flow of DCNAT 

 

2. Naming Agent in NAT_R intercepts the DNS request and discovers that it is an inquiry for a 

host within its private network. Therefore, Naming Agent sends CN a DNS reply 

containing a DNS resource record of type A [8] indicating NAT_R’s external IP address 

(henceforth referred to as IP_E) and a DNS resource record of type HINFO [8] indicating 

that IP_E belongs to an NAT router. 

3. Upon receiving the DNS reply, CN discovers from the HINFO resource record of the DNS 

reply that PN is a host behind an NAT router with IP_E. Therefore CN performs a Binding 

Entry Request procedure  by sending a Binding Entry Request message to NAT_R’s 

external IP address (IP_E acquired from the DNS reply). The Binding Entry Request 

message specifies the designated PN and the desired service port on which PN expects to 

receive inbound packets. 

When the Binding Entry Request message arrives at NAT_R, the NAT Agent in NAT_R 

performs the following steps: 

3.1 NAT Agent selects an unused port of IP_E as the data port for the Binding Entry 

Request. 

3.2 NAT Agent creates two entries in the NAT table : a DNAT entry for the binding 

between “IP_E:data port” to “IP_P:service port” for inbound traffic and an SNAT 

entry for the binding between “IP_P:service port” to “IP_E:data port” for outbound 
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traffic (NAT Agent learned the service port from the Binding Entry Request message 

and IP_P via normal DNS operation internally within the private network). Note that 

a Binding Entry Request message can carry multiple destination PNs. In this 

condition, the NAT router creates binding entries between CN and each PN. 

4. NAT Agent sends a Binding Entry Reply message to inform CN of the result, containing 

IP_E and data port. 

5. Upon receiving the Binding Entry Reply message, CN sends a connection request to the 

data port on IP_E if the registration succeeds. 

5.1 Upon reception of the connection request packet, NAT_R translates the destination IP 

and port of the packet from “IP_E:data port” into “IP_P:service port” according to 

the NAT table. The translated packet is then routed to IP_P (PN). 

6. PN receives the packet on the service port and replies message to CN using the service port 

as the source port. 

6.1 When the replied packets arrives at NAT_R, NAT_R translates the source IP and port 

of the packets from “IP_P:service port” into “IP_E:data port” according to the NAT 

table. Finally, the translated packets are then routed toward CN. 

 

4.1.2 Modification to NAT routers  

In order to support DCNAT, an NAT router should be modified. First, the Naming Agent 

should be modified so that the Naming Agent will include in DNS reply an HINFO DNS 

resource record in addition to an A DNS resource record. The value of HINFO DNS resource 

record is “NAT Router” indicating that the IP address in the A DNS resource record belongs 

to an NAT router. 

Besides, the NAT Agent in an NAT router should be modified to support the following 

functions: 

� Processing Binding Entry Requests: The NAT Agent opens a port at the NAT  router’s 

external interface waiting for Binding Entry Request messages. When a Binding 

Entry Request arrives at the NAT router, the NAT Agent examines the request, 
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performs data port selection and NAT table manipulation if the Binding Entry 

Request is granted, and issues a Binding Entry Reply (containing request status, 

lifetime, data Port, etc) to the originator of the Binding Entry Request message. 

� Data port selection: At the external interface of an NAT router, a pool of ports is 

reserved as data ports for inbound sessions. When a Binding Entry Request arrives at 

the NAT router, the NAT Agent selects an unused port from the reserved ports as the 

data port for this Binging Entry Request. 

� NAT table manipulation: The NAT Agent creates two NAT binding entries in the NAT 

table (as described in protocol Step 4.2). The NAT binding entries have a timer and if 

the timer expires then NAT Agent deletes the corresponding entries. The lifetime of 

binding entries are extended if packets of the associated session arrive continuously. 

 

4.1.3 Modification to originating sides 

Besides modifications to an NAT router, a DCNAT-enabled host should be modified to 

perform the following functions in order to originate inbound sessions to a private network. 

1. Determine whether the destination address is an NAT router or a normal host: The 

host should examine the DNS reply to check if the reply contains an extra HINFO 

DNS resource record indicating that the IP address in the A DNS resource record 

belongs to an NAT router. 

2. Perform the Binding Entry Request procedure. 

3. Redirect data packets: The host should connect to the data port indicated in the 

Session Registration Reply instead of the original service port. 

Although DCNAT requires modification to CN, the modification can be retrained to 

some specific hosts. The modification would not be an issue for new Internet applications that 

would like to pass through NAT routers since these applications can be developed by 

incorporating DCNAT functionalities. For example in real-time information pushing services, 

only the push server needs to be equipped with DCNAT functionalities, and the content server 

of an Internet service provider need not be aware of the DCNAT functionalities. 
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4.1.4 Use Port-Restricted Cone NAT in DCNAT 

In DCNAT, a CN may connect a data port different from the original service port. This 

phenomenon is due to using Full Cone NAT [5] in the original DCNAT (henceforth referred to 

as Full Cone DCNAT). In Full Cone NAT, address translation is performed if the destination 

address and/or port of an inbound packet match a binding entry or the source address and/or 

port of an outbound packet match a binding entry. Therefore, if an NAT router can map its 

port 23 to port 23 on two hosts, PN1 and PN2, the destination address of inbound packets 

desired for port 23 on PN1 and PN2 will both be the external address of the NAT router and 

port 23. This makes the NAT router unable to distinguish the desired destination of these 

inbound packets. As a result, an NAT router using Full Cone DCNAT cannot map its one port 

to more than one PN. In the above example, port 23 on either PN1 or PN2 cannot be mapped 

to port 23 on the NAT router and will be mapped to another port. Due the possibility of this 

port mapping, the applications on CNs should be able connect to another data port instead of 

original service port (as mentioned in Section 4.1.3). This requires modification to application 

programs or CNs. 

 

Figure 4-3. Use Port-Restriction Cone NAT in DCNAT 

 

To avoid connection to another data port and reduce modification to application 

programs, we introduce Port-Restricted Cone NAT [5] to DCNAT (henceforth referred to as 

Port-Restricted Cone DCNAT). In Port-Restricted Cone NAT, inbound packet is translated if 

the source address, source port, and destination address match a binding entry and outbound 

packet is translated if the source address, destination address, and destination port match a 
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binding entry. Therefore, an NAT router can map its one port to more than one PNs. Figure 

4-3 shows an example. In this example, both CN1 and CN2 have connections to port s on 

PN1. Since the inbound packets sent by CN1 and CN2 have different combinations of source 

address, source port, and destination address, the NAT router can correctly multiplex and 

translate inbound packet destined to its port s to PN1’s and PN2’s port s. Similarly, the 

outbound packets can also be correctly multiplexed and translated according to the source 

address, destination address, and destination port. Besides, if CN2 has simultaneous 

connections to port s on PN1 and PN2, the NAT router still can correctly multiplex and 

translate packets since the packets to/from PN1 and PN2 have different combinations of 

source address, source port, destination address, and destination port. As a result, by using 

Port-Restricted Cone DCNAT, applications on CNs need not connect to another port instead 

of original service port. Besides, applications on CNs can utilize Port-Restricted Cone 

DCNAT without modification since the related modification to perform the other two 

functions mentioned in Section 4.1.3 can be implemented in CN’s system libraries or 

auxiliary programs. 

 

Figure 4-4. Protocol flow of Port-Restricted Cone DCNAT 

 

Figure 4-4 shows the protocol flow of Port-Restricted Cone DCNAT. This protocol flow 

differs that shown in Figure 4-2 in Steps 3 to 6. In Step 3, the Binding Entry Request sent 

from CN contains an extra field for indicating the source address and port from which the CN 
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will initiate a connection. With the extra field and the desired destination field, the NAT router 

can then establish Port-Restricted Cone binding entry(s) without mapping the desired port of 

the desired PN onto another port on the NAT router. In Step 4, the NAT router reply CN with 

a Binding Entry Reply without needing to contain a mapped data port. In Steps 5 and 6, CN 

connects to the desired service port of PN via the same port number of the NAT router. 

 

4.1.5 Addition and removing of binding entries 

In Bi-directional NAT and Tunnel Approach, an NAT router creates binding entries 

when a CN performs DNS lookup. On the other hand, DCNAT adopts a Binding Entry 

Request procedure independent of DNS lookup. Coupling binding entry creation with DNS 

lookup is intrinsically not suitable for either Full Cone DCNAT or Port-Restricted Cone 

DCNAT. In Full Cone DCNAT is used, CNs can learn the mapped data port for its desired 

service port from Binding Entry Reply message but cannot learn from DNS reply messages. 

In Port-Restricted Cone DCNAT, in which port mapping is avoided, is used, an NAT router 

can learn from Binding Entry Request message the port with which a CN uses to 

communicate with a PN but cannot learn from DNS lookup messages. As regards this point, 

one may argue that if CN can send DNS lookup packet and connection packet from the same 

port on CN, the Binding Entry Request procedure can be omitted. However, most UNIX or 

Windows network application programs utilize system library to perform DNS lookup and 

therefore DNS lookup packet is sent from a port different from that used by an application 

program. Therefore, the Binding Entry Request procedure cannot be replaced by DNS lookup. 

Besides, using DNS lookup to create binding entries has the drawbacks of creating 

useless binding entries when a CN performs DNS lookup without any connecting action. On 

the contrary, DCNAT will not create useless binding entries when a host performs DNS 

lookup. Unfortunately, useless entries could still exist when a malicious program performs 

Binding Entry Request procedure without originating any connections. A simple remedy to 

the creation of useless binding entries is to initialize a binding entry a short lifetime and 

extend the lifetime when the first data packet matching that entry arrives, or another DNS 
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lookup or registration request resulting in the same binding entry arrives. 

Moreover, all approaches mentioned in this paper might suffer from Denial-Of-Service 

(DOS) or Distributed- Denial-Of-Service (DDOS) attack, which are difficult to solve, in the 

form of continuous DNS lookup or requesting for creating useless binding entries. Even 

though there are no perfect solutions to DOS and DDOS attacks, DCNAT is more robust than 

other approaches since DCNAT decouples creation of binding entry from DNS lookup. With 

this decoupling, DDOS registration attack to NAT router is more difficult to perform since a 

malicious host is difficult to find hosts willing to perform Binding Entry Request procedure 

for its distributed attack. On the other hand, a malicious host is easy to find hosts in the 

current Internet environment willing to perform DNS lookup. 

In comparison with addition of binding entries, removing of binding entries should also 

be taken care. RFC2663 [4] briefly discusses the considerations about the time to remove 

NAT binding entries in an NAT router. Besides the consideration discussed in [4] and the 

prevention from creation useless binding entries discussed in the above paragraphs, a CN can 

reasonably request an NAT router to remove binding entries that is previously created on the 

CN’s request. 

 

4.1.6 Proxy-based applications with DCNAT 

This subsection describes how a proxy-based application can utilize DCNAT. DCNAT is 

well suited to proxy-based applications since the application proxies can perform DCNAT 

functions transparent ly on behalf of client hosts. Thus hosts without modification can 

originate inbound sessions into private networks. 

In proxy-based applications, application layer proxies, such as web proxies for HTTP, 

are situated between communication peers. Such applications have the following properties: 

1. An originating host originates a connection request to a proxy using the application 

protocol. 

2. The request carries the identification of the destination host as the payload of the 

application protocol. 
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3. The proxy determines the location of the destination host by certain lookup scheme 

such as directory service or DNS. 

4. The proxy establishes a connection to the destination host for the originator hosts and 

inter-works for the two hosts. 

With DCNAT-enabled proxies and NAT routers, hosts without modification may originate 

connection to the hosts in a private network behind an NAT router. 

 

 

4.2 Information pushing with DCNAT 
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Figure 4-5. Information pushing scenario 

 

Figure 4-5 shows an application scenario of information pushing. In this scenario, CSs 

(Content Server) are producers of various paid or unpaid public information service content. 

CS1 produces stock information, CS2 produces news, and CS3 produces home surveillance 

alert. The CPA (Content Push Agent) is the deliverer for sending the produced information 

content through NAT routers to subscriber nodes (SN) spread over several networks. Although 

a CS capable of performing a CPA’s functionalities also works, we assume that the 

functionalities of CS and CPA are deployed at separated node. Such functionality separation 

allows many simple or private CSs sharing a public CPA. 

In practical condition, SNs can be in NAT networks or public networks and move 
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between these networks. Since there is little difficulty in delivering information to SNs in 

public networks, this thesis focuses on delivering information to SNs in NAT networks. 

 

4.2.1 Sketch protocol flow 

The proposed information pushing protocol works on the assumption as follows: 

1. An NAT router receives only one copy of produced information service content 

regardless of the number of SNs in the NAT network subscribing the information 

service content. 

1.1 An NAT router can uses either in-LAN multicast or multiple unicast to send 

information service content SNs behind the NAT network. Using multicast can 

greatly reduce network traffic in comparison with use of multiple unicast if the 

number of subscribers in the NAT network is large. Besides, using in-LAN multicast 

has two advantages. First, delivery of information content would not be blocked by 

Internet routers not supporting multicast. Second, the complex mechanism of 

Internet multicast [57-58] need not be tackled. 

1.2 Each SN receives a specific information service content on a service port at its 

private IP address or an IP multicast address. The multicast address (if used) and 

service port for receiving different information service content can be different and 

be assigned by a CPA or a CS when SNs subscribe to information services content. 

2. Each SN uses its unique identifier, e.g. NAI [55] and E.164 number [56] to subscribe 

to information service content and therefore CSs or CPAs know the unique identifier 

of each SN. Besides, CSs, CPAs, or NAT routers can perform adequate query to 

learn each SN’s current IP address, network, or NAT router by using each SN’s 

identifier (will be described in Section 4.2.3). 

3. Each CPA knows the registration port on an NAT router to which the CPA can 

perform Binding Entry Request procedure as if an Internet node does in DCNAT. 

Since the proposed information pushing approach is based on DCNAT, the definitions and 

usages of the three terms: service port, registration port, and data port, are the same as those in 
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DCNAT. 

Figure 4-6 illustrates the sketch message delivery protocol flow. This protocol flow 

incorporates the Binding Entry Request procedure of Full Cone DCNAT in which a CPA 

should request an NAT router to establish binding entries before pushing information content. 

The sketch protocol flow can be extended to fit for different scenario with unicast, multicast, 

or different subscribers mobility handling mechanism. For purpose of simplicity, the sketch 

protocol flow does not tackle subscriber mobility management and shows only one NAT 

router (NAT_R) while the protocol flow of multiple NAT routers can be easily deduced. The 

steps are explained as follows: 

1. The CS produces and sends an issue of a specific information service to the CPA. 

Besides, the CS may also send the CPA a list of SNs that may otherwise be 

maintained by the CPA. 

 

 

 

 

 

 

 

 

 

 

Figure 4-6. Message delivery protocol flow 

 

2. According to the mechanism mentioned in the subsection 4.2.3, the CPA decides that 

one or multiple binding entries on the NAT_R should be established before sending 

the information content. Therefore the CPA then sends a Binding Entry Request 

message to “NAT_R’s external IP address (IP_E) : registration port”, which contains 
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the following two elements: 

a. A destination multicast address (if all SNs receive the specific information 

service content at the same multicast address) or a list of identifiers of each SN 

[55-56] (if each SN receives the specific information service content at its private 

IP address). 

b. A destination service port. 

3. Upon receiving the Binding Entry Request message, the NAT_R selects an unused 

port on its external interface (named data port) for receiving the oncoming 

information content and creates binding entries according to the destination type: 

a. If the destination is a list of identifiers of each SN, two binding entries for 

each SN, one for the inbound direction and the other for the outbound direction 

(if necessary), will be established. In this case, the NAT_R performs adequate 

query to resolve each SN’s IP address according to the SN’s identifier and then 

establishes binding entries for mapping between “IP_E: data port” and each SN’s 

“private IP address : service port“. 

b. If the destination is a multicast IP address, total two binding entries, one for 

the inbound direction and the other for the outbound direction (if necessary), will 

be established. In this case, NAT_R establishes binding entries for mapping 

between “IP_E: data port” and “destination multicast IP address: service port“. 

4. The CPA sends the information content to “IP_E: data port”. 

5. According to the binding entries created at Step 3, the NAT_R multicasts the 

information content in the private network to “multicast IP address: service port” or 

perform multiple unicast to send the information content to each SN’s “private IP 

address: service port”. 

 

4.2.2 Multicast address and port assignment 

For purposes of differentiating between different information service content and 

delivering a specific information service content to desired subscribers, each SN should 

receive different issues of a specific information service content on the same multicast IP 
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address (if used) and the same port number. In the proposed approach, the content delivery 

CPA or the content producing CS of a specific information service is responsible for assigning 

this information service a multicast IP address (if used) and a port number for receiving the 

information service content. The multicast IP address (if used) and the receiving port number 

are then learned by SNs when SNs subscribes to this information service. 

Since there may be many CPAs and CSs on the Internet and a CPA may deliver content 

on behalf of many CSs, there should be a coordinating mechanism to avoid duplicated 

assignment by CSs and CPAs. In such a coordinating mechanism, CPAs should coordinate 

between each other to avo id duplicated or conflicted assignment. Furthermore, if CSs are 

capable of the assignment, their delivery CPA should coordinate between these CSs. Besides, 

if a coordinating mechanism will be widely adopted over the Internet, this mechanism will 

require globally or officially recognized multicast address allocation and therefore we do not 

propose a complete coordinating mechanism in this paper but just discuss the assignment 

policy. 

As for the assignment policy, several factors may be taken into consideration, e.g., 

differentiating the SNs of each information service and saving multicast IP addresses and 

service ports. In order to differentiating SNs, each private information service (e.g. home 

security information) or each paid information services can be assigned an exclusively used 

address and an exclusively used port. On the contrary, in order to save multicast IP address 

and service ports, many information services can be assigned the same address with a shared 

or non-shared service ports. If many information services are assigned the same multicast IP 

address with a shared service port, the followings should be taken care:  

1. On each SN, the application waiting on the service port should be able to process 

content of all subscribed information services received from the service port. 

2. Since each information service will have its group of SNs, in order to keep content 

secret to non-SNs that receive the content maliciously or accidentally, a CPA or a CS 

can deliver content in a ciphered form, which can only be deciphered by the desired 

SNs. 
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4.2.3 Subscribers mobility 

In order to handle user mobility for users moving between different NAT networks or 

different operators’ networks, there should be a mechanism for CSs or CPAs to locate 

subscribers. However, existing approaches or proposals about user mobility management such 

as Mobile IP [41] and its variants may not suit information pushing service. In Mobile IP and 

its variants without route optimization [59], a correspondent node (CN) always knows the 

home address of a mobile node (MN) and therefore the communication path between the CN 

and the MN should initially pass through the MN’s home agent. As a result, if the mobility 

management of Mobile IP or its variant is applied in the targeted environments of the 

proposed information pushing approach, a CPA or a CS will always know the home address of 

an SN instead of the SN’s current NAT router and therefore the CPA or the CS will not be able 

to request the SN’s current NAT router to create binding entry(s) for the oncoming 

information content. 

Due to the above problem and the fact that Mobile IP and its variants are not widely 

deployed, a practicable and easy mechanism is that mobile each SN’s actively register its 

current IP address, NAT router, or network to CSs, CPAs, or certain directory servers. The 

registration of an SN’s IP address should be adopted when the SN uses a public IP address, 

otherwise the SN should register its NAT router or network, from which CSs/CPAs can 

deduce the SN’s NAT router or with which CSs/CPAs can query a directory server to learn the 

SN’s NAT router. 

 

4.2.4 Illustration scenarios 

This subsection illustrates two information pushing scenarios and their protocol flows. 

Each of the example protocol flow is extended from the sketch protocol flow shown in Figure 

4-6 by including subscriber mobility handling mechanism. These scenarios are not meant for 

covering all combination of unicast, multicast, and subscriber mobility handling mechanisms 

but for illustrating the practicability of the protocol flow shown in Figure 4-5 in various 

information pushing services 
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4.2.4.1 epaper delivery 

Figure 4-7 illustrates an example epaper delivery scenario and protocol flow. In this 

scenario, each SN subscribes to a specific information content at a CPA, registers its NAT 

router to this CPA, and an NAT router uses multicast to deliver information content to SNs. 

The subscription at a CPA and the registration to the same CPA is a reasonable approach 

widely adopted by most public epaper service provider. The protocol flow is describe as 

follow: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7. ePaper delivery protocol flow 

 

A. CPA assigns CS a destination multicast address and port for SN to receive a specific 

information content. The assignment may be performed in out-of-band 

communication. 

B. Each SN uses its identifier to subscribe to the specific information content at the CPA 

and therefore CPA can maintain a list of subscribers. The subscription may also be 

performed in out-of-band communication. At this time, each SN learns the 

destination multicast address and port for receiving the information content. 

 
 

(1) Content 

(2) Binding Entry Request 
{To=Subscribers: port s} 

(4) Content 

{Src=CPA: port x; Dst=IP_E: port d} 

(3) Binding Entry Reply {port=d} 

(5) Content (multiicast) 

(C) Location registration 

CS CPA NAT_R SN 

(A) Destination Address and Port Assignment 

(B) Use identifier of each SN to subscribe content 



 47 

C. Each SN registers its location to the CPA when moves into another network. 

1. The CS sends the CPA an issue of information content without subscriber list, which 

are maintained by the CPA. 

2 and 3. The CPA, which knows the NAT router (NAT_R) of each SN at Steps B or C, 

requests the NAT_R to create binding entries. 

4 and 5. The CPA sends the NAT_R one copy of the information content without 

subscriber list and then the NAT_R multicast information content to SNs in its local 

NAT network according to the binding entries created at Step 2. 

 

4.2.4.2 home surveillance alerts delivery 

Figure 4-8 illustrates an example home surveillance alerts delivery protocol flow. The 

delivery of home surveillance information allows home members being aware of their home 

environment event (e.g. thief break- in) or household appliances status. In this scenario, a CS 

situated at a house either produces or collects home environment event or household 

appliances status, a CPA is provided by a network operator or a security service firm. 

However, subscription, location registration, and information delivery in an NAT networks are 

performed in ways different from those in e-paper delivery. In this scenario, each SN 

subscribes to a specific information content at a CS, registers its NAT router to this CS, and an 

NAT router uses multiple unicast to deliver information content to SNs. The subscription at a 

CS and the registration to the same CS is reasonable for home surveillance alerts since only 

home members, whose number is usually small, care home surveillance alert information and 

the information usually is not open for public subscription. The protocol flow is describe as 

follow: 

A. CPA assigns CS a destination multicast address and port for SN to receive a specific 

information content. The assignment may be performed in out-of-band 

communication.  

B. Each SN uses its identifier to subscribe to the specific information content at the CS 

and therefore CS can maintain a list of subscribers. The subscription may also be 
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performed in out-of-band communication. At this time, each SN learns the 

destination multicast address and port for receiving the information content.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8. Surveillance alerts delivery protocol flow 

 

C. Each SN registers its IP address to a local directory service server. If the directory 

service is DNS [7], the registration procedure can be combined with the procedure of 

SN’s acquisition of IP address such as DHCP [60] and Dynamic DNS. Besides 

registering to the CS, each SN registers its location to the CS when the SN moves 

into another network. 

1. The CS sends its produced information content along with subscribers list to the CPA. 

2. The CPA sends a Binding Entry Request message to “NAT_R’s external IP anddress : 

registration port”, which contains a list of SNs’ identifiers and the service port on 

which SNs receive information content. 

 
 

(1) Content, Subscribers 
(2) Binding Entry Request  

{To=Subscribers: port s} 

(4) Content {Src=CPA: port x; Dst=IP_E: port d} 

(3) Binding Entry Reply {port=d} 

(5) Content (unicast) 

(2.1) Directory Queries 

(2.2) Directory Responses 

(C.2) Location Registration 

(C.1) IP address 
 Registration 

CS CPA NAT_R SN Directory 
Server 

(A) Destination Address and Port Assignment 

(B) Use identifier of each SN to subscribe content 
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3. Upon receiving the Create Binding Entry Request message, the NAT_R selects a 

data port on its external interface and queries directory service server to lookup each 

SN’s IP address (Steps 2.1 and 2.2). The type of directory service server queried 

depends on the type of each SN’s unique identifier. If SNs can use different types of 

identifiers, the NAT_R should query directory servers of different types. Besides, the 

NAT_R and a directory server may require multiple query-reply exchanges for query 

multiple identifiers. After completion of all queries, the NAT_R creates binding 

entries between “NAT_R’s external IP address : data port” to each SN’s “private IP 

address: service port”. 

4 and 5. The CPA sends the NAT_R one copy of the information content without 

subscriber list and then the NAT_R multicast information content to SNs in its local 

NAT network according to the binding entries created at Step 2. 

 

 

4.3 Performance model and comparison 

4.3.1 Qualitative comparison 

In this subsection, we compare Bi-directional NAT, expanded NAT, and Tunnel 

Approach with DCNAT in terms of the number of needed IP addresses, extra processing, 

setup cost, and scalability.  As mentioned previously, NAT Binding Inquiry schemes are not 

suitable for real- time information pushing services since they rely on NAT inquiry messages 

sent actively by the private nodes at the connection termination endpoints. 

Table 4-1 summarizes the qualitative comparison of the four approaches to NAT 

Inbound Session Problem. In this table, scalability is judged according to two point-of-views. 

The first is the connection capacity that an NAT router offered to private hosts in an NAT 

network. The second is the number of NAT networks that a CN can connect to. Bi-directional 

NAT uses a public IP address for each NAT session so that its scalability is limited to the 

number of available public IP addresses. Expanded NAT has the port collision problem and 

does not support dynamically opened services. Therefore Expanded NAT might only work for 
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small networks with pre-configured services. The Tunnel Approach can assign private IPs for 

PNs’ external addresses because an IP- in-IP tunnel has been established between Intermediate 

System and the designated NAT router. Therefore it does not need any extra public IP address 

for NAT traversal and does not have the port collision problem. In addition, it requires no 

modifications to hosts in both public and private networks. However before a host can 

communicate with a private host, an IP- in-IP tunnel must have been established between the 

intermediate system en route and the intended private network. It is obviously impractical to 

establish tunnels toward all possible private networks beforehand. In DCNAT, before CN 

commences an inbound session to PN, CN registers with the destined NAT Agent two binding 

entries between “IP_E:data port” and “IP_P: service port” for PN. Therefore by examining 

the data port appearing in the destination port, the NAT router can distinguish inbound 

sessions destined to different internal hosts. Because the NAT router will redirect “IP_E:data 

port” to “IP_P:service port”, PN can just listen on a service port for inbound messages. 

Therefore a DCNAT-enabled CN can initiate an inbound session to PN and multiple PNs can 

open the same service port without port collision. Besides, similar to NAT/NAPT, DCNAT is 

very scalable since it can support many sessions with only a single public IP address. 

 

Table 4-1. Comparison of four NAT approaches 

 Bi-directional 
NAT 

Expanded 
NAT 

Tunnel 
Approach DCNAT 

# of Public 
Addresses 
Needed 

1 for each host 1 1 1 

Extra Setup 
Cost NAT Agent Pre-configuration for 

known services 

IP-in-IP tunnel, 
Intermediate System, 
NAT Agent 

NAT Agent 

Dynamic 
Opened 
Service 

Yes No Yes Yes 

Modification 
to Host 

No No No Yes 

Scalability 
Limited to the 
number of  
available public IP 

Good, but with port 
collision 

Works where an 
IP-in-IP tunnel exists 

Best 
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Although DCNAT requires some modification to CNs, previous experience on Internet 

applications has shown that modification to applications for supporting new features, such as 

passive mode ftp and WWW proxies, is acceptable. Furthermore, for the applications that 

have proxies inter-work between clients and servers, only the proxies, e.g., the CPAs in the 

proposed information pushing service, need to be DCNAT-aware.  

 

4.3.2 Numerical results 

This subsection presents the performance comparison between DCNAT and 

Bi-directional NAT in terms of service blocking probability. The performance of Expanded 

NAT and Tunnel Approach are not discussed here because their deployment are restricted by 

port collision, pre-configuration, or the number of predefined tunnels. We use the M/G/n/n 

loss system [61] to model the service blocking probability of an NAT router.  In the M/G/n/n 

loss system, inbound session requests can be regarded as the service arrivals whose 

inter-arrival time is of exponential distribution and whose service duration is of general 

distribut ion, and n represent the number of allowed services and the offered connection 

capacity in an NAT router. From [61], the blocking probability, pb, of M/G/n/n can be 

formulated by Erlang Loss Formula, as follows. 
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where ?=?/µ is the traffic load, ? is the arrival rate, and µ is the service rate. 
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Figure 4-9. Blocking probability of M/G/n/n system 

 

Figure 4-9 shows the relation between the offered connection capacity of an NAT router 

offers and the blocking probability under various traffic loads. As shown in this figure, in 

order to have a blocking probability lower than 1%, an NAT router needs to have capabilities 

of 30, 53, 75, 96, 117 connections, respectively, for traffic loads of 20, 40, 60, 80, and 100. 

For a blocking probability lower than 0.1%, an NAT router must have capacities of up to 35, 

60, 83, 106, and 128 connections, respectively, for traffic loads of 20, 40, 60, 80, and 100. 

One important point should be clarified. In Full Cone DCNAT, the connection capacity 

of an NAT router, having one public IP address, is exactly the same as the number of available 

ports. This is because that Full Cone DCNAT translation is based on IP address and port of the 

private side and therefore the NAT router can map its one port number to only one service on 

one private host. In Bi-directional NAT, though an NAT router performs translation according 

to only IP address of the private side, the connection capacity of the NAT router is not only 

the number of available public IP addresses. This is because that one private host can offer 
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multiple services to Internet by using one public IP address. Therefore the connection capacity 

of a Bi-directional NAT router can be estimated as the number of available public IP addresses 

multiplied by the average number of services offered by a single host. 

Generally speaking, the number of services offered by a host is small, usually several 

services at most. Therefore Bi-directional NAT would require a tremendous amount of public 

IPs when traffic load is high. On the contrary, DCNAT can offer more than 60,000 

simultaneous connections by using just one single IP address. Moreover, if Port-Restricted 

Cone DCNAT is used, the connection capacity will be more. 

 
 

4.4 Summary 

This chapter proposes a DCNAT approach to the inbound session problem for a private 

network behind  an NAT router. DCNAT can be generalized to fulfill general inbound sessions 

for private networks behind NAT routers and also be applied for real-time information 

pushing. For proxy-based applications, such as web browsing or real-time information 

pushing, only the proxies and NAT routers need to be equipped with DCNAT functionalities. 

DCNAT is a port-based NAT scheme that uses a Binding Entry Request procedure to create 

NAT binding entries so that dynamically inbound sessions into private networks are enabled, 

while also avoiding the port collision problem. With the dynamic creation of NAT binding 

entries, DCNAT provides lower blocking probability and better scalability by using just one 

or several public IP addresses. 
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Chapter 5 Hybrid Web Cache Replacement Algorithm 

 

5.1 Hybrid algorithm combining LRU and GD-Family 

As stated in section 3.2, the simple strategy used by LRU is suitable for maintaining 

short-term popularity while the comprehensive strategy used by GD variants is suitable for 

maintaining long-term popularity. Besides, giving an object highest cache ranking may be 

unnecessary before the cache knows the object is popular or not. Therefore, we propose a 

hybrid algorithm that combines the advantage of LRU, GD-Family [11,13-14], and SLRU 

[36]. The hybrid algorithm, similar to SLRU, also divides cache space into two zones, called 

hot zone and cold zone. Unlike SLRU, the cold zone adopts GD-Family to manage cold 

objects while the hot zone adopts LRU to manage hot objects. 

Figure 5-1 shows the logical flow of the proposed hybrid algorithm. The logical flow is 

summarized as follow: 

A. Cache Miss: The missed object is inserted into the cold zone according to its 

utilization value (A1 of Figure 5-1). If the cold zone does not have enough free space 

for the missed object, objects with minimum utilization values are removed for 

making space (A2 of Figure 5-1). 

B. Cache Hit in cold zone : If the hitted object has been hitted in cold zone for less than 

n times (n is a system parameter), this object is re-ranked according to its 

re-evaluated utilization value. Otherwise, this object is promoted to the head of the 

hot zone (B1 of Figure 5-1). If the hot zone does not have enough free space for this 

promoted object, objects at the tail of the hot zone are removed from the hot zone 

(B2 of Figure 5-1) and inserted into the cold zone according to its re-evaluated 

utilization value (B3 of Figure 5-1). 

C. Cache Hit in hot zone : The hitted object is moved to the head of the hot zone (C of 

Figure 5-1). 
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Figure 5-1. Logical flow of the hybrid algorithm 

 

5.1.1 Maintaining object’s utilization value or parameters for utilization value at LRU 

zone 

In this hybrid algorithm, objects may be moved back and forth between two zones that 

use different algorithms that should maintain different parameters. Therefore we should 

investigate if an object’s parameters for one zone should be maintained when the object is at 

another zone. 

For an object moved from LRU zone  to GD-Family zone, GD-Family zone need not 

maintain any extra parameter since pure LRU does not have any parameter. On the contrary, 

GD-Family algorithm has extra parameters that pure LRU does not have. Therefore, for an 

object moved from GD-Family zone to LRU zone, LRU zone should maintain utilization 

value or parameters for utilization value, e.g., recency, frequency, and cost. Otherwise, when 

an object is moved from LRU zone back to GD-Family zone, GD-Family will know only the 

object’s size and cannot correctly re-evaluate the object’s utilization value. Besides, the LRU 

zone of the hybrid algorithm should update the object’s utilization value or utilization value’s 

parameter when the object is hitted in LRU zone. Therefore, the LRU of our hybrid algorithm 

requires extra storage to maintain utilization value or utilization value’s parameters. Despite 

the extra maintenance, the maintenance cost of LRU is still of constant order. 

Moreover, some web cache algorithm should maintain parameters or statistics of all or 
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portion of objects that are removed from cache space. In this aspect, the hybrid algorithm 

need not maintain object parameters or statistic data for these removed objects. 

 

5.2 Performance evaluation 

In this subsection, we present the results of the trace-driven simulations that we have 

conducted to evaluate the performance of our hybrid algorithm. As stated in section 3.2, other 

performance metrics are usually functions of DHR and BHR. Therefore, our simulations 

evaluate the performance in terms of only DHR and BHR. In our trace-driven simulations, we 

use ten traces during October 5-11, 2004 from NLANR [62]. Table 5-1 shows the 

characteristics of these traces. In this table, “Number of one-timer” means number of objects 

that are requested only once, and DHR∞ and BHR∞ are the upper bound of the ratios that 

are evaluated with infinite cache size. Among the ten traces, we present evaluation results of 

BO2, SD, UC, and SV traces for representatives. BO2 trace is chosen due to its median 

average request size and low traffic. SD trace is chosen due to great traffic. UC trace is chosen 

due to its largest number of requests, smallest average request size and highest DHR. SV trace 

is chosen due to its largest average request size and lowest DHR. 

 

5.2.1 Effects of combining hot LRU and cold GDSP 

This subsection compares three algorithms: GDSP [Shu99], LRU, and the hybrid 

algorithm to see effects of combining hot LRU and cold GDSP. GDSP, a member of 

GD-Family algorithms, uses a utilization function as )
)(

()(
size

pf
LpH += with 

Ttpfpf ii
/2)(1)(1

−×+=+  in which t is the total number of accesses between (i+1)-th and i-th 

accesses to object p, and T, set as 700000, is the constant for controlling aging rate. The 

hybrid algorithm allocates 50 percentage of cache space for hot LRU zone and 50 percentage 

of cache space for cold GD-Family zone, whose utilization function is the same as that of 

GDSP. This hybrid algorithm is therefore referred to as HY5050 according to the space ratio 

of the zones. 
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Table 5-1. Statistics of ten NLANR traces 

Traces BO2 SD UC SV NY RTP PA PB SJ BO1 
Number of 

Requests  
2,369,703 3,523,585 7,194,834 2,014,677 2,675,402 5,428,951 919,124 2,815,620 4,046,330 2,611,844 

Number of 

Distinct Requests 
1,248,637 1,714,987 1,376,750 1,320,566 1,531,000 1,710,839 549,145 1,512,566 1,980,746 1,333,331 

Size of 

Requests  
28.56G 59.08G 36.91G 48.53G 34.88G 75.2G 9.83G 35.86G 55.16G 27.40G 

Number of 

one-timer 
1,052,390 1,420,643 1,044,386 1,171,779 1,301,744 1,201,486 460,440 1,210,199 1,639,272 1,128,774 

Size of 

Distinct Requests 
14.96G 20.83G 16.89G 22.16G 18.87G 19.83G 5.84G 15.64G 24.31G 16.58G 

Average Requests Size 

(Byte) 
12053 16766 5130 24090 13039 13865 10699 12735 15655 10492 

DHR∞ (%) 47.3 51.3 80.9 34.5 42.8 68.49 40.3 46.3 51.1 48.9 

BHR∞ (%)  48.1 65.2 55.5 54.6 46.2 74.41 40.7 53.8 57.1 40.1 
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Figure 5-2 shows the simulation results of the three algorithms. In terms of DHR, all the 

four traces have similar relative results: GDSP slightly outperforms HY5050 by 1% and 

significantly outperforms LRU. In terms of BHR, the four traces behave somewhat different. 

In BO2 and SD traces, LRU outperforms HY5050 by no more than 2%; LRU’s BHR is 

between those of GDSP2 and the hybrid algorithm; GDSP1 fall behind others substantially 

when cache size is small but improves to fall behind HY5050 by 1% when cache size is large 

enough to accommodate large objects. In UC trace, BHR of the four algorithms from high to 

low are: GDSP2, LRU, HY5050, and GDSP1 while each differs its immediate former by 

around 1%. Note that BHR of GDSP1 in UC trace does not substantially fall behind that of 

HY5050 since the average request size of UC trace is small in comparison with other traces. 

In SV trace, BHR of the four algorithms from high to low are: GDSP2/LRU, HY5050, and 

GDSP1 while each differs its immediate former by around 1.5% for small cache, HY5050 

outperforms GDSP1 by 5-10% for large cache, and GDSP2/LRU outperforms HY5050 by 

5-10% for large cache. The large difference in HY5050’s BHR and LRU’s BHR in SV trace 

may be attributed to the largest average request size and the lowest DHR. In case of large 

request size and low DHR, a missed object inserted into GD-Family zone is more probably 

removed soon before it is requested again. 

From the simulation result, we find that HY5050 can achieve a high DHR, slightly 

lower than that can be achieved by GDSP. We can reasonably infer that simple cache 

algorithm such as LRU is enough to manage hot objects. Moreover, HY5050 can achieve a 

high BHR, approximately 1-2% lower than that of LRU except for traffic with large request 

size and low DHR. That is, HY5050, the combination of LRU and GDSP, preserves 

advantages of both LRU and GD-Family. To see why HY5050 has such effects, Figure 5-2 

also shows the DHR and BHR of HY5050’s hot zone, which are labeled as HY5050hot. We 

can see that HY5050 has at least 80% of document hits (relative to total document hits) in hot 

LRU zone and at least 90% of byte hits (relative to total byte hits) in hot LRU zone. This 

result agrees with characteristics of web traces analyzed by previous research and explains 

why the hybrid algorithm can achieve a BHR slightly lower than that achieved by LRU. 
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Figure 5-2. Effects of combining LRU and GDSP 
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Figure 5-3. Effects of promoting an object to hot zone after twice hits 

 

5.2.2 Effects of promoting an object to hot zone after twice hits 

This subsection compares two variants of the proposed hybrid algorithms, one is 

HY5050 and the other is HY5050twice (also labeled as HY5050twice). HY5050twice is a variant 

of HY5050 that promotes an object from the cold zone to the hot zone when the object is 

hitted in the cold zone for the second time. The simulation results show that HY5050twice 

improve DHR over HY5050 very slightly. This improvement may be attributed to filtering of 

less popular objects: promoting an object after multiple times of hit can filter less popular 

objects and therefore more popular objects, which have higher probability of being requested 

again, can be kept in cache. However, the improvement is too little to be shown in a normal 

scale figure. Therefore, we do not show DHR of HY5050twice as a figure for saving space. On 

the other hand, the difference in BHR between HY5050twice and HY5050 is perceivable in a 

normal scale figure. Figure 5-3 shows the BHR of HY5050twice and HY5050. We can see that 
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HY5050twice degrades BHR by 1-2%. This degradation may be attributed to filtering of large 

objects: promoting an object after multiple times of hit would increases the possibility of 

removing a large object from GD-Family zone and therefore decrease the possibility of hitting 

large objects. 

 

5.2.3 Advantage of cold GDSP over cold LRU 

This subsection compares three algorithms: LRU, SLRU [36], and HY5050 to see the 

effects of using LRU and GDSP to manage cold objects. Figure 5-4 shows the simulation 

results of the three algorithms. In terms of DHR, all the four traces have similar relative 

results: the improvement over LRU by HY5050 is at least twice that by SLRU. In terms of 

BHR, SLRU outperforms LRU by about 1% except BO2 trace with small cache, which 

outperforms LRU by up to 5%. Since HY5050 and SLRU differs only in the cache algorithm 

used for managing cold zone, the difference in DHR between HY5050 and SLRU is therefore 

mainly incurred from performance difference between HY5050’s cold zone and SLRU’s cold 

zone. We can conclude from the simulation results that GDSP indeed manages cold objects 

better than LRU. Moreover, we can reasonably infer that comprehensive cache algorithms, 

such as GD-Family, manage non-popular or non-recently requested objects better than LRU. 
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Figure 5-4. Effects of cold GDSP over cold LRU 
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Figure 5-5. Effects of increasing space ratio of cold zone 

 

5.2.4 Effects of Increasing space ratio of cold zone and hot zone  

In this subsection, we study the impact on hit ratios of increasing space ratio of cold 

zone and hot zone. 

Figure 5-5 shows DHR of GDSP and six variants of the hybrid algorithm: HY2575, 
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HY2575 means 25% for hot LRU zone and 75% for cold GD-Family zone. Furthermore, 

GDSP can be regarded as a variant of the hybrid algorithm that allocates all space for cold 

zone. Note that Figure 5-5 is presented in the form of difference in DHR between LRU and 

each variant of the hybrid algorithm for purpose of clarity since DHR of each variant may 
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differ very slightly. From Figure 5-5, we can see that DHR increases as space ratio of cold 

zone increases. This effect agrees with GD-Family’s characteristic of being good at DHR. 

However, the DHR increasing effect weakens as space ratio of cold zone goes on increasing. 

That is, the increase in DHR made by per percentage of space decreases as space ratio of cold 

zone goes on increasing. This is attributed to temporal locality in web request streams. 

Previous analysis [9,12] on web request streams have shown that most re-requests for an 

object occurs in a short time interval and therefore most hits occur in hot zone (as shown in 

Figure 5-2). According to this characteristic, increase in DHR benefited by increasing space 

ratio of cold zone will be greatly cancelled out by decrease in DHR incurred by decreasing 

space ratio of hot zone. As a result, the weakened increasing effect and the high maintenance 

cost of GD-Family, )(log nO , discourage allocating too great space ratio for cold zone.  

Figure 5-6 shows BHR of GDSP and seven variants of the hybrid algorithm: HY2575, 

HY4060, HY5050, HY7525, HY9010, HY9505, and HY9802. Note that Figure 5-6 is also 

presented in the form of difference in BHR between LRU and each variant of the hybrid 

algorithm for purpose of clarity. From Figure 5-6, we can see that BHR increases as space 

ratio of hot zone increases from 0% to 50% (by looking at GDSP, HY2575, HY4060, and 

HY5050). This effect agrees with LRU’s characteristic of being good at BHR. On the contrary, 

BHR decreases as space ratio of hot zone increases from 50% to 100% (by looking at 

HY5050, HY7525, HY9010, HY9505, and HY9802). The latter effect is attributed to small 

cold zone. When cold zone is too small, cold zone of the hybrid algorithm is more probably 

unable to keep a misses and newly inserted object, especially a large object long enough 

before the object is requested again and promoted to hot zone. Therefore, BHR decreases 

when cold zone is too small to accommodate sufficient temporal locality in a web request 

stream. Besides, the BHR increasing effect (when hot zone is between 0% to 50%) and the 

BHR decreasing effect (when hot zone is between 50% to 100%) weaken as space ratio of hot 

zone approaches 50%. That is, the inc rease in DHR made by per percentage of space 

decreases as space ratio of cold zone goes on increasing. This is also attributed to temporal 

locality in web request streams. 
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Figure 5-6. Effects of increasing space ratio of hot zone 
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From the simulation results shown in Figure 5-5 and Figure 5-6 and the weakened 

increasing or decreasing effects when space ratio of the two zone goes on increasing or 

decreasing, we can conclude that allocate 50% of space for each zone is a good choice. Such 

choice can not only retain both high DHR and high BHR but also reduce maintenance cost, 

compared to GD-Family. Based on this 50%-50% segmentation, a cache using the hybrid 

algorithm can slightly adjust the space ratios of the two zones according as the cache favors 

DHR or BHR. 

 

5.2.5 Increasing number of zones 

We further evaluate a three-zone hybrid algorithm consisting of an upper LRU zone, a 

middle LRU zone, and a lower GD-Family zone. The evaluated three-zone hybrid algorithm 

is equivalent to a two-zone hybrid algorithm consisting of a hot LRU zone and a cold 

two-zone hybrid zone. From another point-of-view, this three-zone hybrid algorithm is 

equivalent to a two-zone hybrid algorithm consisting of a hot SLRU zone and a cold 

GD-Family zone except that a missed object is inserted into the hot SLRU zone. The proposal 

of this three-zone hybrid algorithm is inspired by the fact that SLRU outperforms LRU in 

terms of both DHR and BHR. Therefore, we evaluate the performance of this three-zone 

hybrid algorithm to see if DHR and BHR can be further improved. 

We do not show the simulation as figures for saving space since balancing of the space 

ratio of the three zones is more complex than in the two-zone hybrid algorithm. According to 

the characteristics of LRU, GD-Family, and multi-zone hybrid algorithms, increasing the 

space ratio of hot zone increases BHR but decrease DHR. Besides, increasing the space ratio 

of cold zone increases DHR but decrease BHR. Moreover, increasing the space ratio of 

middle zone increases BHR and slightly decreases DHR. This is attribute to the higher BHR 

of the middle LRU zone than that of a middle GD-Family zone. Furthermore, the combined 

space ratio of middle zone and cold zone significantly determine if a newly fetched object or 

an object removed from hot zone will be removed from the cache soon. Therefore, none of the 

three zones can be allocated a small space ratio otherwise the performance will significantly 
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fall behind that of a two-zone hybrid algorithm. 

According to the simulation results, we find that three-zone hybrid algorithm can 

slightly outperform two-zone hybrid algorithm only with limited space ratio allocation. 

However, it may not be efficient and practical to spend time finding such proper space ratio 

allocation while the improvement is slight. Furthermore, diving cache space into too many 

zones increases maintenance overhead for moving objects between zones. As a result, we 

conclude that two-zone hybrid algorithm is enough. 

 

 

5.3 Summary 

From the simulation result, we can see that the proposed hybrid algorithm can improve 

DHR of LRU by using a GD variant that is good at DHR while preserving most byte hit of 

LRU. The resulting DHR is slightly lower than that can be achieved by GDSP and the 

resulting BHR is slightly lower than that of LRU. Besides, the combination of hot LRU zone 

and cold GDSP zone, we have combined other algorithms in the proposed two-zone hybrid  

algorithms. For example, a GD variant whose utilization function is )
)(

)(
()(

10 sizelog
pf

LpH += , 

cold zone will not excessively favor small objects and therefore the resulting BHR is slightly 

higher than that of the combination of hot LRU and cold GDSP, but the resulting DHR is 

degraded more greatly. According to these simulation results, we infer that it maybe be a good 

idea to combine an algorithm very good at BHR with another algorithm very good at DHR as 

long as these two algorithms do not conflict. 

Compare to a pure GD-Family, the combination of hot LRU and cold GDSP can achieve 

approximately the same hit ratios with less maintenance cost. Table 5-2 shows the 

maintenance cost of LRU, GD-Family, and the proposed two-zone hybrid algorithm. The first 

three rows show the data structure used to maintain objects and the maintenance cost for five 

simple operations. The last two rows show the maintenance cost of cache hit and cache miss, 

which are consisted of several simple operations. In comparison with the maintenance cost of 
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Table 5-2. Maintenance costs of LRU, GD-Family, and proposed hybrid algorithm 

Hybrid  
LRU GD-Family 

Hot LRU 
Cold 

GD-Family 
Search Hash table: )1(O  * Hash table: )1(O  * Hash table: )1(O  * 

Delete/Insert 

/Re-Rank 
List/Stack: )1(O  

Heap/Priority Queue:  

)(log nO  (worst case) 
= LRU =GD-Family 

Update object 

statistics 
)1(O  )1(O  )1(O  

Hit in hot zone= )1(O  (= LRU) 

Hit 

)1(O : 

Search: )1(O  

Delete: )1(O  

Update: )1(O  

Insert: )1(O  

)(log nO : 

Search: )1(O  

Update: )1(O  

Re-Rank: )(log nO  

Hit in cold zone= 
)(log nO : 

Search: )1(O  

Delete for cold zone: )2(log nO  

Delete for hot zone: )1(O  

Update: )1(O  

Insert for hot zone: )1(O  

Insert for cold zone: )2(log nO  

Miss 

)1(O : 

Search: )1(O  

Delete: )1(O  

Update: )1(O  

Insert: )1(O  

)(log nO : 

Search: )1(O  

Delete: )(log nO ** 

Update: )1(O  

Insert: )1(O  

)(log nO  (=GD-Family) 

*: Depends on probability of hash collision 

**: May perform V times, where V depends on number of victims  

 

GD-Family, the proposed hybrid algorithm has reduced cost when cache hits in hot zone, 

equal cost when cache misses, and extra maintenance cost when cache hits in cold zone. This 

extra cost, of )(log nO , is for moving objects (hereafter referred to as internal victim(s)) from 

the hot zone to the cold zone in order to make space for promoting a hitted object of the cold 

zone to the hot zone. Note that each time the hybrid cache will move different number of 

internal victims since web objects are of different size. For example, if a promoted object is 

larger than the object at the tail of the hot zone, the number of internal victims will be more 

than one. On the other hand, if a promoted object is smaller than the object at the tail of the 

hot zone, removing the object at the tail of the hot zone will make extra free space and 

therefore the next promoting may be done without removing any internal victims. Table 5-3 
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shows the average number of internal victims in our simulations with different cache size. The 

average number of internal victims is slightly smaller than one as cache size is small and 

decreases as cache size increases. Such increase may due to popular objects are often of small 

size. 

 

Table 5-3. Average number of internal victims 

Traces 

BO2 SD UC SV NY RTP PA PB SJ BO1 

0.005 0.99 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 

0.01 0.99 0.99 0.98 0.98 1.00 0.99 0.99 0.99 1.00 0.99 

0.02 0.98 0.99 0.98 0.97 0.99 0.98 0.97 0.98 0.99 0.98 

0.04 0.97 0.97 0.97 0.95 0.97 0.98 0.93 0.97 0.99 0.97 

0.08 0.93 0.95 0.96 0.92 0.95 0.97 0.87 0.94 0.97 0.94 

0.16 0.85 0.93 0.90 0.88 0.89 0.92 0.76 0.89 0.95 0.89 

0.32 0.76 0.89 0.81 0.76 0.79 0.86 0.49 0.82 0.93 0.79 

0.64 0.55 0.77 0.65 0.60 0.60 0.76 0.20 0.67 0.85 0.59 

1.28 0.22 0.57 0.44 0.49 0.31 0.59 0 0.42 0.76 0.30 

2.56 0 0.21 0.15 0.28 0 0.36 0 0.09 0.42 0 

 

However, such extra cost does not occur frequently since less than 20% of total document hits 

are in cold zone for small cache and the percentage of total document hits in cold zone 

gradually reduce as cache size grows. Therefore, the proposed hybrid algorithm does not incur 

extra maintenance cost frequently. For example, if the DHR in cold zone is Hc=0.05 and the 

DHR in hot zone is Hh=0.3, the proposed hybrid algorithm has 5% of chance to incur extra 

cost and 30% of chance to save cost. Compared with a GD-Family algorithm having a 

DHR=0.37, the relative chance of saving cost will be 0.3/0.37=81%, a significantly great 

chance. As a result, we conclude that the hybrid algorithm provide high DHR and BHR 

efficiently. 

Size(GB) 
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Chapter 6 Web session handoff system 

 

This chapter describes our web session handoff system. Section 6.1 presents the system 

overview. Section 6.2 discusses ways to track sessions and addresses issues of session 

tracking in detail. Section 6.3 elaborates our session handoff protocol including ways to hand 

over session information. Section 6.4 shows our current implementation. 

 

Figure 6-1. System topology 

 

6.1 System overview 

Figure 6-1 illustrates the system topology of our design. This design is extended from 

our previous work [63-64]. The topology is similar to the traditional web access topology that 

consists of user devices, proxies, and web servers. In this topology, we introduce a special 

purpose web proxy, called User Agent Proxy (UAP), to replace a normal web proxy. In our 

design, user devices and the UAP are able to perform handoff-related functionalities in 

addition to traditionally functionalities of web proxies. The UAP, situated between user 

devices and web servers, provides user authentication, session tracking, session handoff, and 

content adaptation functionalities for fulfilling web session handoff. As for user devices, they 

can be unmodified or slightly modified in comparison with normal user devices. The slight 

modification to user devices is to plug in a small client program that performs handoff-related 
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functionalities such as registering sessions, collecting information for assisting the UAP in 

tracking sessions, and handing over sessions. User devices without modification still can 

perform session handoff as well, while the modification to user devices supports handoff of 

more session information, e.g., un-submitted user input. Intrinsically, the idea of this design is 

different from BSR service because a BSR repository server is not involved when a user 

device is browsing and does not provide functionalities of web caching and session tracking. 

 

6.1.1 Proxy session handling 

In our design, a UAP will track the session information of each proxy session for session 

handoff. A proxy session, in our definition, is different from a normal web session established 

between a user device and a web server. A proxy session starts when a browser process on a 

user device is authenticated with the UAP, remains when the user hands over his session to 

another device, and terminates when the authentication expires or the user logouts. According 

to this definition, a proxy session thus may contain multiple traditional sessions between 

several web servers in parallel. 

In our design, processing of a proxy session is divided into 3 stages: registration, 

browsing and tracking, and session handoff: 

� Registration: In this stage, a user authenticates himself and his current device with a 

UAP to register his device location, profiles, and sessions. For the user’s convenience, 

he is allowed registering a new session by using another browser process on the same 

or another device while keeping previously registered sessions. 

� Browsing and tracking : In this stage, an authenticated user device (can be a source 

device or a target device) sends browsing requests to the UAP, and then the UAP not 

only processes the browsing requests as a traditional proxy does but  also tracks the 

proxy session. If the UAP cannot satisfy the requests with its cached objects, the 

UAP will forward the requests to original web servers. However the UAP needs to 

add user profiles as CC/PPex [65-67] headers in the requests sent by the browsers not 

supporting CCPP [65]. Furthermore, it needs to add in the requests sent from a target 
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device or in the responses replied from web servers the session information, such as 

cookies, which has not been handed over to the target device. On the other hand, 

session tracking is performed when the user device and the UAP exchange browsing 

requests and responses. Therefore, no extra messages are exchanged between the user 

device and the UAP for session tracking. The basic treatment of session tracking is to 

record all HTTP requests from a registered browser and to track their corresponding 

responses for session information. Besides, the UAP can perform further treatment to 

learn more session information. The description of such further treatment about  

proxy session tracking will be elaborated in Section 6.2. 

� Session handoff: In this stage, the UAP, one or more source devices, and the target 

device co-operate to hand over the proxy session from a selected source device to the 

target device. First, the user switches to the target device and chooses to hand over a 

proxy session among those registered ones in the UAP. The UAP then combines 

necessary session information tracked at the UAP with assistant information 

collected at the source device (if available), and hands over the combined session 

information to the target device. Note that in this stage not all session information is 

handed over to the target device. Therefore, the UAP will hand over more session 

information to the target device when necessary. After handoff of the session 

information, the user can continue browsing with the same information that he 

viewed at the source device. The issues and protocol design of session handoff will 

be elaborated in Section 6.3. 

 

6.1.2 UAP architecture 

As shown in Figure 6-2, UAP provides the following functional components: 

1. User Authenticator: User Authenticator authenticates source or target user devices 

and browser processes before proceeding to other UAP functionalities. It stores users’ 

authentication information in User DB. 

2. Profile Manager: Profile Manager stores user profiles such as user preference, device 
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capabilities, and locations of user devices in User Profile DB. 

 

 

Figure 6-2. UAP architecture 

3. HTTP Proxy Agent : HTTP Proxy Agent behaves like a traditional web proxy. It 

receives browsing requests from registered browsers and responses from web servers, 

asks Session Manager to deal with the requests and the responses, obtains the 

requested objects from web servers or Content Cache , and then replies user devices 

with objects adapted by Content Adapter. 

4. Session Manager: Session Manager tracks proxy sessions and adjusts requests and 

responses during browsing and tracking stage. In addition, Session Manager will be 

also involved during session handoff stage. During browsing and tracking stage, 

Session Manager analyzes requests and responses received by HTTP Proxy Agent to 

track and record session information in Session DB. Session Manger also adjusts 

requests and responses by adding necessary session information in the requests and 

responses from/to target devices. Moreover, if browsers do not support CCPP 

[65-66], Session Manger will add user profiles as CC/PPex headers [67] in the 

requests as well. On the other hand, during session handoff stage Session Manager 

inter-works with source devices and target devices to accomplish session handoff. 



 75 

5. Content Adapter: Content Adapter adapts web content to fit a user’s profile during 

session handoff and browsing-and-tracking stages. If web servers can perform all the 

necessary adaptation, UAPs’ functionality of content adaptation can be optional. 

Otherwise, multiple passes of adaptation by UAPs and web servers would be 

possible. 

The detailed inter-working between these components in the registration, browsing and 

tracking, and session handoff stages is similar to that in our previous work [64], which can be 

found in Section 3.4 of [64]. 

 

 

6.2 Proxy session tracking 

This section discusses ways to track a proxy session with modified and unmodified user 

devices respectively and also addresses issues of session tracking in detail. Before going into 

proxy session tracking, we first clarify usage of the following terms in this paper: 

� Session information:  It consists of any information about a session such as session 

history, HTTP cookies, web objects maintained by browsers, etc. Intrinsically, web 

session handoff means handoff of session information. Session information is called 

Browser State in BSR [20]. In this paper, we use the term session information to 

avoid confusion between session state and browser state. 

� Session state: Session state is a subset of session information. It is the information 

used by web servers for identifying or recording a stateful session, e.g., HTTP 

cookies and other information discussed in Section 6.2.2. 

Proxy session tracking in our design includes three operations : session history tracking, 

session state handling, and un-submitted form fields tracking. 

 

6.2.1 Session history tracking 

Session history denotes the chronological sequence of pages browsed by a particular 

browser process. It can be accessed by a browser’s “back” and “forward” commands/buttons. 
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Handoff of session history enables users to traverse web pages in target devices in the original 

sequences as they have traversed in source devices. Therefore, it is the basis of session 

information. 

The most intuitive way to obtain session history is from source devices. However, most 

browsers maintain session history in memory, which cannot be directly and easily accessed 

without in-depth knowledge about these browsers. Thus obtaining session history requires a 

modified browser or a program snooping a browser’s session history. On the other hand, a 

UAP can track session history by recording requests and corresponding responses in the 

requested order.  From the two solutions, we choose the latter in order to minimize 

modification to user devices. 

The following sub-subsections further discuss three conditions about session history 

tracking and their respective treatments. 

 

6.2.1.1 Multiple browser processes on a user device 

For a user device executing multiple simultaneous browser processes, a UAP should be 

able to differentiate requests from different browser processes to separately track each proxy 

session.  If persist connection is used (RFC2616 [15], sec8.1), the simplest way to this 

differentiation is according to each request’s source TCP port. However, a browser’s 

connection to a UAP may occasionally terminate and the browser process will then use 

another TCP port to connect to the UAP. Thus the source port is not sufficient for 

differentiating requests. 

As a result, we propose a solution that requires modification to user devices and uses 

session ids to identify proxy sessions. Figure 4-3 illustrates the flow of using session ids. 

Initially, browser1 on the user device sends the UAP its first request without proxy session id. 

Since this request contains no session id, the UAP assigns a unique proxy session id (id1) to 

the proxy session for this request. Afterward, upon receiving the first request’s response from 

server1, the UAP adds in the response the session id as an extension HTTP header and relays 

this response to browser1. Browser1 will then tag all subsequent requests with this id so that 
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the UAP can recognize these requests are sent from the same browser process. Afterward, 

when browser2 on the same device sends its first request without proxy session id to the UAP, 

the UAP will assign another unique proxy session id to the proxy session for the request. As a 

result, different browser processes are assigned different proxy session ids, and therefore 

proxy sessions can be easily differentiated. In our implementation, we make no modifications 

to the browsers. Instead, we plug in a client program to intercept and store session ids when a 

user device receives responses. Consequently, our client program appends session id in the 

requests when a user device sends requests. 

 

Figure 6-3. Identification of proxy session 

 

6.2.1.2 HTML document containing other objects 

HTML documents may contain other objects, e.g., frames or pictures. For such 

documents, a browser will send additional requests for the contained objects. In this case, the 

UAP should exclude these objects from session history. For example, after browsing three 

objects: A, B, and C sequentially, the session history should be “A, B, C” even though object 

B contains another two objects: B1 and B2. If a UAP has no information about B’s structure 

and just records all requested objects into session history, the UAP will maintain an incorrect 

session history as “A, B, B1, B2, C”. Unfortunately, to recognize the requested document’s 
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structure requires parsing of the document, which will increase load to the UAP [64]. To 

alleviate load of UAPs, our client program will send a UAP assistant information indicating 

whether a requested object should be recorded into session history.  

 

6.2.1.3 A request with a message body 

An HTTP request may contain a message body (RFC2616 [15], sec4.3). For example, 

the message body can carry an uploaded file or user input in a form that used PUT method. 

The meaning and usage of the message body depend on the HTTP method and the requested 

URL of the request. Therefore, the message body should be included in the request if the UAP 

will re-request content from the original server after session handoff. Due to the specification 

of HTTP [15] and CC/PP [65], such recording and re-requesting can occur in our system only 

when the UAP can not perform content adaptation to fit for the target device and the HTTP 

method in the request is idempotent2. Table 4-1 summarizes the impact of a UAP’s adaptation 

capability and HTTP methods on the treatment of documents and message body recording. 

 

Table 6-1. Treatments for requests with a message body 

   UAP record 
message body 

Treatment of documents 

UAP can adapt content No Hand over adapted cached documents 

UAP can not adapt content; 

Method is idempotent 
Yes 

Hand over re-requested documents 

from web servers 

UAP can not adapt content; 

Method is not idempotent 
No 

Hand over un-adapted cached 

documents 

 

6.2.2 Session state treatment 

Originally, HTTP is designed to support only stateless sessions. However, as web 

                                                 
2 An HTTP request with non-idempotent HTTP method (RFC2616 [15], sec9.1.2) should not be unintentionally 
re-requested to an original web server since re-performing such a request may result in unwanted update to 
server contents . According to the specification of HTTP 1.1 [15], the methods GET, HEAD, PUT, DELETE, 
OPTIONS, and TRACES are idempotent and the method POST is not idempotent. In other words, requests using 
POST method should not be unintentionally re-performed. 

Impacts 
Condition
s 
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browsing become popular and is widely used for more aspect of information exchange, 

stateful sessions with session state persisting across multiple HTTP transactions become 

important and necessary. With stateful sessions, a web client can send requests with necessary 

session state so that a web server can identify a session and deal with these requests according 

to the session state. 

Since a stateful session is established between a source device and a web server, the 

target device initially will not have the session state sent between the source device and the 

web server. A UAP thus must track session state so that the target device can continue the 

stateful session after session handoff. Among the approaches [16-19] proposed to support 

stateful sessions on the original HTTP, our design deals with session state information 

supported by three extensively used approaches that use hidden form fields, cookies, and URL 

rewriting. Note that using cookies [17] is different from the other two  since transmission of 

cookies in HTTP is a special portion for stateful sessions under the definition in RFC2965 [17] 

while the other two approaches can serve for other usage as well as stateful sessions. The 

following sub-subsections describe the three approaches and their respective treatment in our 

design. 

 

6.2.2.1 Hidden form fields and URL rewriting 

To enable a stateful session, a web server can use hidden form fields (invisible in 

browser) [17] or URL rewriting [19] to embed session state in web documents. After 

browsing such web documents, a client thus can send browsing request with necessary 

session state included either in the requested URL or in the request’s message body. 

Consequently,  the web server can identify the session and deal with the request according to 

appropriate session state. 

The following shows the detail of submitting a form containing hidden form fields or 

using URL rewriting and the corresponding treatment in our design: 

A.1 A form using GET method and containing hidden form fields : When submitting such 

a form, a client includes the hidden form fields as part of the requested URL. Consider 
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submitting an example HTML document, which uses GET method and includes a form 

containing three form elements: the hidden field “session”, the select field “Year”, and 

the button “Submit”, as shown in Figure 6-4. The client will submit a request for 

http://nctu.edu.tw/F1.cgi?session=001&Year=2003. Note that the part “session=001” 

is the embedded session state. 

 

 

 

 

 

 

 

Figure 6-4. Form example using GET method and hidden form fields 

 

A.2 Rewriting  URL: A web server can use URL rewriting to encode session state as part of a 

requested URL. URL rewriting is a server-side technique that translates the path part of 

a requested URL to another path. For the example in Figure 6-4, if the web server 

translates its path “session001/F1.cgi” to “F1.cgi?session=001”, the server can send a 

client a different HTML document that embeds session state in the form action field as 

“http://nctu.edu.tw/session001/F1.cgi” without using hidden form field “session”. When 

submitting such a form, the client sends the server a request for 

“http://nctu.edu.tw/session001/F1.cgi?Year=2003” and the web server can 

automatically translate the requested URL to the real one  

“http://nctu.edu.tw/F1.cgi?session=001&Year=2003”. 

<html> 
<form name="F1" action="http://nctu.edu.tw/F1.cgi" method="GET"> 
            <input type="hidden" name="session" value="001"> 
            <select name="Year" size=1> 
              <option value="2003">2003</option> 
              <option value="2004">2004</option> 
            </select> 
            <input type="submit" value="Submit"> 
</form> 
</html> 
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As a result, the UAP performs no special treatment and can automatically record session state 

embedded by URL rewriting or in hidden form fields of a form using GET method since the 

UAP should record requested URLs for tracking session history. Besides, the UAP performs 

no special action and can hand over session state embedded in these two ways when handing 

over a session’s history. 

 

B. A form using POST method and containing hidden form fields : When submitting such 

a form, a client appends the hidden form fields in the message body of the request. 

Consider the same example in Figure 4-4, if the form method is POST, the client will 

submit a request for “http://nctu.edu.tw/F1.cgi” with a message body containing only 

one line “session=001&Year=2003”. 

As a result, tracking of session state embedded in this way needs the same treatment for a 

request’s message body as stated in Section 6.2.1.3. The handoff of recorded message body 

will be described in Section 6.3.3. 

 

6.2.2.2 Cookies 

To enable a stateful session by using cookies, a web server associates session state with 

cookies or encodes session state as cookies and then sends the cookies to a client. Afterward, 

the client will send requests containing these cookies so that the server can deal with the 

requests according to the session state. 

Transmission of cookies in HTTP is a special portion for stateful sessions under the 

definition in RFC2965 [17]. In a stateful session, when answering a client’s request, a server 

will assign the client cookies which are associated with certain domains and some paths in 

these domains. The assigned cookies are then sent to the client by using “Set-Cookie2” or 

“Set-Cookie” HTTP header in the server’s response and are stored in the client. Afterward, 

when the client wishes to access objects in domains and paths which have been associated 

with client’s stored cookies, the client will send requests containing the associated cookies in 

“Cookie” HTTP header in requests. 
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As a result, to track a stateful session using cookies, a UAP should handle 

“Set-Cookie2” or “Set-Cookie” headers in web servers’ responses, record cookies in the 

Session DB, and hand over recorded cookies to the target device when hand ing over the 

session. However, sending all cookies of a session to the target device may be unnecessary 

and slow for a mobile device. As a result, in our design the UAP will not send any cookie to 

the target device upon session handoff. Instead, the target device obtains necessary cookies 

during browsing and tacking stage. In this stage, the target device sends requests without 

cookies, and the UAP should append cookies in these requests and the corresponding 

responses if necessary. The detail will be described in Section 6.3.3. 

 

6.2.3 Form fields tracking 

Handoff of user input  in form fields provides users convenience to avoid tedious  form 

refilling. Tracking of user input includes two aspects as follows: 

� Submitted form: As stated in Section 6.2.2.1, a browser includes user’s input in form 

field either in the requested URL or the message body, depending on the method 

(GET or PUT) used by the form. Therefore, a UAP should obtain user input from the 

requested URL of a request for GET method and from the message body of a request 

for PUT method. The obtained user input is the form of “field_name=input_value” 

(for one input field) or “field_name1=input_value1&field_name2=input_value2&… ” 

(for multiple input fields). Note that the HTTP requet does not contain the URL of 

the original HTML documentin in which the user fills the input. Therefore, the UAP 

parses the obtained user input into individual fields and then uses these fields and the 

requested URL to find out the HTML document in which the user fills the input. 

Afterward, the UAP combines user input into corresponding fields according to each 

field’s name. 

� Un-submitted form: Tracking of user input in un-submitted forms is not so easy. In 

normal browsing operation, input values of form fields are sent to a UAP only after 

form submission and therefore the UAP has no way to receive  and track user input in 
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un-submitted form fields without assistance from modified user devices. In our 

design, we adopt a client program to snoop the maintained objects in browsers for the 

current-viewed HTML files, to find input fields, and to collect these fields’ input ted 

values. The collected data will then be requested by the UAP during session handoff 

stage. The detail operation will be described in Section 6.3.1. 

 

6.2.4 Violation of RFC’s Cache-Control directives 

In our design, UAPs may store responses and cookies for the purpose of session tracking. 

However, this storing operation may violate the specifications in RFC2616 and RFC2965 if a 

response is specified as non-cacheable by using “private”, “no-cache”, or “no-store” 

directives in “Cache-Control” header (RFC2616 [15], sec14.9). These directives are originally 

used for preventing reveal of private information when proxies reply with cached data to 

subsequent requests from other user devices. Thus, in order to protect the private information 

such as personalized data and session state, a user device and a UAP should establish security 

association. Fortunately, there have been many application layer, network layer, and link layer 

approaches that can establish the required secure association [68-72]. Besides, a UAP must 

separately maintain private information and must not provide the private information of a user 

device to other users devices. Moreover, the UAP should delete the private information when 

a proxy session terminates. 

 

 

6.3 Stateful session handoff 

Figure 6-5 shows the message flow of our session handoff protocol. In this protocol, the 

participants at a user device can be an unmodified browser or our client program (if it has 

been installed in the user device). Assume that several source devices have ongoing registered 

sessions tracked by the UAP. The steps of the session handoff protocol in Figure 6-5 are 

described as follows: 

1. The target device sends a handoff request to the UAP after registering to the UAP.  
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2. The UAP replies a list of the user’s registered sessions to the target device.  

3. The target device requests to hand over a selected session.  

4. If the source device is unreachable or without installing our client program, this step 

is skipped. Otherwise, from the selected source device the UAP obtains partial 

information of the selected session collected by our client program. 

5. The UAP sends the target device necessary session information that the UAP tracks 

as well as that collected by our client program. In the current state, our 

implementation only hands over the session history in order to avoid handing over 

unnecessary information that is not immediately used by the target device. If 

necessary, other part of the session information will be sent to the target device 

together with subsequent browsing responses. 

 

Figure 6-5. Session handoff protocol message flow 

 

6. The target device sends the UAP a browsing request for a page in the session, e.g., 

the last-viewed page. 
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7. If necessary,  the UAP adjusts the browsing request by adding the user profile as 

CC/PPex [65-67] header and session information containing the message body and 

cookies that are previously recorded by the UAP and associated with objects 

accessed in this browsing request. The adjusted request is then sent to the web 

server. 

8. The UAP receives a response from the web server.  

(Steps 7 and 8 can be optional if the UAP can perform content adaptation by using 

cached files.) 

9. The UAP adjusts the response by appending necessary cookies and relays the 

adjusted response to the target device.  

Note that Steps 6 to 9 will repeat for every browsing request sent by the target device. 

 

The following subsections describe flow of handing over user input in form fields, web 

pages, recorded cookies, and recorded message bodies. These flow are similar to those in 

chapter 4 of [64], which also gives examples for illustration. 

 

6.3.1 Handoff of user input in form 

As stated in Section 6.2.3, the way to tracking user input in submitted forms and 

un-submitted forms are different. User input in submitted forms is tracked by the UAP upon 

receiving requests from user devices during browsing and tracking stage, even user devices 

are not modified. However, user input in un-submitted forms can be tracked and handed over 

only using modified user devices. In our design, tracking and handoff of user input in 

un-submitted forms are assisted by our client program. The detailed operation is as follows: 

1. During browsing and tracking stage at a source device: The client program 

snoops the maintained objects in browsers and collects user input in un-submitted 

form fields as shown in the left of Figure 6-6. Besides, the UAP checks requested 

URL and received message body to obtain user input in submitted forms, parses the 

obtained user input into individual fields and then uses these fields and the requested 
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URL to find out the HTML document in which the user fills the input. 

 

Figure 6-6. Combination of user input 

 

2. During session handoff stage at a target device: The UAP obtains user input in 

un-submitted forms from our client program at the source device as part of session 

information during Step 4 of Figure 6-5, while user input in submitted forms has 

already been tracked the UAP. 

3. During browsing and tracking stage at the target device: When the target device 

requests an HTML document containing a form (Step 6 of Figure 6-5), the UAP 

combines user input into the HTML document before replying the target device 

(Step 9 of Figure 6-5). The combination flow is shown in the right of Figure 6-6. 

The UAP obtains the HTML document from the UAP’s Content Cache or the  

original web server, parses the HTML document, and combines user input into 
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corresponding fields according to each field’s name.  

Note that the program code for snooping different browsers’ maintained objects is 

browser-dependent. In the current state, we implement only the client programs for 

Microsoft’s IE of desktop Windows and Pocket PC. 

 

6.3.2 Handoff of a web page 

Intuitively, a web page can be handed over in form of its content or URL. Hand ing over 

real content data is a convenient and fast choice since the browser on the target device is 

unnecessary to send another browsing request in addition to the handoff request. However, in 

this way our client program must save the content data of the page and objects contained in 

this page as local files, parse the page, change references of the contained objects in the page 

into locally saved files, and notify the browser to open the locally saved file of the page. As a 

result, the browser will display the locally saved file’s name as the page’s URL instead of the 

original network URL. Furthermore, the extra parsing and reference changing will generate 

extra load to user devices. 

On the contrary,  handing over URL is unnatural and slower since a browser needs to 

send additional requests to obtain real content data from the UAP. These requests result in 

extra messages exchanged between a user device and the UAP. However, this way makes the 

browser on a target device display the original network URL as the page’s URL and frees the 

target device from the extra parsing and reference changing. Thus, our design adopts handoff 

of a web page in the form of its URL. 

In our design, handoff of a web page occurs only at the end of session handoff stage, 

while the content of this page is requested during browsing and tracking stage. At Step 9 of 

Figure 6-5, the  UAP sends the target device the list of URLs in the session history and also 

redirects the target device to open the last-viewed page that we reasonably assume the user 

would like to view first after session handoff. With the redirection, the user device will 

automatically request the last-viewed page from the UAP without the user’s instruction (at 

Step 6 of Figure 6-5). 
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6.3.3 Handoff of recorded cookies and message bodies 

As we have stated previously, to avoid handing over session information that is not 

immediately used, our session handoff protocol does not send a target device cookies and 

message bodies associated with a session and recorded by a UAP during session handoff stage. 

Instead, we send a target device session information associated with a particular object only 

when the target device requests this object. 

The handoff of recorded cookies and message bodies of a session is performed during 

the browsing and tracking stage of Figure 6-5. At Step 6, the target device sends a browsing 

request that may not contain the cookies and message body necessary for accessing the 

requested object. At Step 7, if necessary, the UAP appends in the browsing request the cookies 

and message body for accessing the requested object and forwards the adjusted browsing 

request to the web server. At Step 8, the web server replies the requested object to the UAP. 

Steps 7 and 8 can be optional if the UAP can perform content adaptation by using cached files. 

At Step 9, the UAP appends in the received response the cookies that it appends at Step 7 and 

that are associated with the object in the received response, and then forwards the adjusted 

response to the target device. Afterward, subsequent requests from the target device will 

contain these cookies. Therefore, the UAP need not append these cookies again until the 

session is handed over again. It should be noted that at Step 9 a recorded message body is not 

included in the adjusted response since the standard HTTP protocol cannot afford to send a 

message body in the reverse direction. Although the target device cannot obtain the message 

body, the target device is probably able to proceed to browse without the message body since 

the same browsing request of the target device can be satisfied by the cache of the target 

device or the UAP. 

 

6.3.4 Comparison with BSR 

Table 6-2 summarizes differences between BSR [20] and our approaches with and 

without modification to user devices. Our approach adopts a proxy-based approach that is 

inherently different to the client-based approach adopted by BSR. Besides the basic 
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differences between proxy-based approaches and client-based approaches, our approach has 

two main advantages over BSR service: 

� Handoff Action: BSR service requires source devices to explicitly save browser state. 

In contrast, our design has the flexibility that a user can perform session handoff 

when he leaves his source device without performing a saving action. 

� History and Cookies Handoff: The style of handoff performed by BSR service 

requires transmission of much session information and page content from a source 

device to a BSR repository server and then from a BSR repository server to a target 

device. Such transmission may be unnecessary since a user may not re-visit all the 

web pages of a session. Although BSR service provides adjustable limit on the 

history size, such limitation may be impractical since a user may need different limits 

for different sessions. In order to reduce network traffic, our protocol only hands over 

URLs of a session so that a user can follow the URLs to re-visit pages of the session. 
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Table 6-2. Differences between BSR and our approaches 

Our approach  
BSR 

Without modification With modification 

Modification to 

user devices 
Substantially modified browser No Install a small client program 

Session Registration Unnecessary 
By accessing UAP’s web 

pages 

By accessing UAP’s web pages; 

Or by the client program 

Tracking Session 

Information 
Unnecessary 

By UAP; Unable to track 

un-submitted form fields 

By UAP; 

Un-submitted form fields tracked by client program 

Handoff Action 
Source saves to BSR repository and 

then target retrieves from UAP 
Target retrieves from UAP 

UAP retrieves un-submitted form fields from source; 

Target retrieves from UAP 

History Handoff Directly loaded into browser Sent as a list of web pages Sent as a list of web pages 

Web pages 

Handoff 

Content is directly loaded into 

browser 

UAP redirects browser to 

open URLs 

UAP sends URLs to client program and then browser 

opens the URLs 

Approach 

Item 
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6.4 Implementation and Example 

This section shows our implementation. We have implemented a UAP on a Microsoft’s 

Windows 2000 platform and client programs for performing session registration and handoff 

for Microsoft’s Windows PC and Pocket PC PDA. Besides, Our system has the flexibility that 

user devices without our client programs can perform session registration and handoff by 

accessing web pages on the UAP. 

The client program for Microsoft’s Windows PC is implemented as a plug- in in IE, 

which is the rectangle toolbar under the address bar in Figure 6-7. Using the program, users 

can perform session registration and handoff directly in IE’s main window. The configuration 

window of this program is shown in the center of Figure 6-7. This window enables a user to 

input his username, password, IP address of a UAP, port number on the UAP for accessing 

the UAP’s functionalities, basic user preferences for adaptive browsing (the options: 

ENGLISH, PICTURE, VIDEO, GRAY, SOUND, and Waiting-time), and URL of user 

profile. 

 

Figure 6-7. PC client program 
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Figure 6-8 shows the client program for Microsoft’s Pocket PC PDA. This program 

provides the same functionalities as a PC’s client program except that the PDA client program 

is a standalone one instead of a plug-in. 

 
Figure 6-8. Pocket PC client program 

 

The following demonstrates handing over a session for online shopping by using the  

implemented system. As shown in Figure 6-9, a user first uses a PC to visit an online shop, 

places his order, and inputs two form fields: Receiver and Address (the circled two fields).  

 

Figure 6-9. A session at a PC 
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Afterward, the user uses the client program on the PDA to hand over the session (Figure 

6-10(a)), and resume the session at the last-viewed page with user input in the Receiver and 

Address form fields (the circled two fields) also handed over (Figure 6-10(b)). The user then 

inputs another form field: TEL (Figure 6-10(c)).  

 

     

(a)        (b)        (c) 

Figure 6-10. Session handoff to PDA 

 

Finally, the session is handed over back to the PC with the user input in the TEL form field 
handed over (Figure 6-11). 

 

Figure 6-11. Session handoff back to the PC 
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6.5 Summary 
In this chapter, we propose a web session handoff system that adopts a proxy-based 

approach with optional assistant information from user devices and discusses ways to track 

and hand over a variety of session information in detail. Using proxy-based approaches for 

session tracking and handoff has several advantages over using client-based approaches or 

server-based approaches. The advantages include less modification to user devices, 

practicability, and fault tolerance. During handoff, a source device may be unreachable due to 

lack of battery or wireless connection. In this case, a proxy-based approach can hand over a 

session because this session is tracked by a proxy while the user browses. Besides, in order to 

hand over session information that cannot be tracked by a proxy, we let the less modified user 

devices collect session information for assisting the proxy in session tracking. We have 

implemented a special proxy – UAP and client programs for PC and PDA to fulfill the session 

handoff system. The implementation can successfully hand over not only stateless but also 

stateful sessions between homogeneous or heterogeneous user devices. 
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Chapter 7 Topology-and-Direction-aware Fast Handoff for 

802.11 Networks 

 

7.1. Overview of the proposed approach 

Observe that AP discovery procedure poses a significant delay in handoff and 

reassociation establishment does not dictate all of the parameters gleaned through AP 

discovery. Besides, candidate APs with which an MN pre-authenticates or to which an MN 

proactively distributes keys can usually exclude those APs opposite the movement direction 

of the MN. Therefore we propose a topology-and-direction-aware approach that resolves a 

smaller set of candidate AP before handoff. In the proposed approach, there is a location 

server that provides MNs with topology information, including positions of APs and 

parameters for AP (re)association, e.g., the timing and capability information [22]. With the 

topology information, an MN, being able to determine its moving trend and/or position, can 

resolve a reduced set of candidate APs when the MN is moving. With the reduced candidate 

AP set, the MN can pre-authenticate with or proactively distributes keys to less APs. Besides, 

the MN can in advance select a target AP from the candidate AP set. As a result, the MN can 

directly reassociate with an AP without performing time-consuming AP discovery since the 

parameters for AP (re)association, which are themselves mostly invariable, has been learned 

from the location server. 

 

7.1.1 Topology information and location server 

In the proposed approach, an MN should be aware of topology information in order to 

infer imminent handoff and re-solve candidate APs. In general, the topology information 

includes AP topology and information about other environment objects, e.g., stairs, walls, 

floors, and turning corners. Among the topology information, AP topology includes positions 

of APs, re-association relationship between APs, and parameters of APs. The positions of APs 

and re-association relationship between APs are used for resolving an MN’s nearby candidate 
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APs. The parameters of APs refer to information elements predefined in beacon frames for 

reassociation setup. As for information about other environment objects, it is used for helping 

confirm re-association relationship between APs. For example, an MN can include a nearby 

upstairs AP in candidate APs if the MN knows there are nearby stairs to the upstairs. Another 

example is a turning corner, which often causes a sudden drop or even a complete loss of 

radio signals. In this circumstance, an MN with foreknowledge of the topology information is 

aware of entering a lossy area, and selects (by default) certain APs around the corners. 

As for the way to represent positions of APs and other objects, it depends on the 

environment where an 802.11 network is deployed and on the way to derive the moving trend 

and/or position of an MN. For example in an indoor environment in which movement of an 

MN is regular and re-association relationship between APs is simple, though precise position 

of an MN cannot be obtained, the MN can still derive its moving trend and candidate APs 

according to the tendency of variation of signal strength between the MN and APs. Therefore, 

logical representation as simple as that used by Neighbor Graph [28-29,53] may afford. On 

the other hand, in an outdoor open space environment in which movement of an MN is 

irregular, physical location as precise as longitudinal and latitudinal coordinates may be 

necessary if the MN is equipped with a GPS device. 

The location server maintains information on neighbor APs manually or in an automated 

fashion as with [73]. Without loss of generality, we co-situate the location server at the  

domain authentication server. Therefore, the location server can perform pre-authentication, 

proactive key distribution [28], or context transfer [53] on behalf of an MN. The location 

server may respond to an MN’s request for topology information on demand. It is at the 

server’s discretion whether to notify an MN of all objects in a wireless network or only 

nearby objects. In the latter case, an MN should request for topology information when the 

MN enters the coverage of an AP for the first time. With knowledge of a larger number of 

objects, an MN demands more storage space but fewer network session start-ups and 

tear-downs for environment information transfer. 
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7.1.2. Measuring MN’s position and moving trend 

To resolve candidate APs for upcoming handoff, an MN measures its moving trend 

and/or position somehow, e.g. using GPS, sensor network, or other localization techniques. 

To reduce the load for the measurement, the measurement can be performed at a time interval 

if the MN’s received signal strength (RSS) from the current AP has dropped below some 

certain threshold. 

Figure 7-1. Deriving candidate APs based on movement behavior 

 

Similar to that stated in last subsection, the necessity of measuring an MN’s position and 

the representation of the MN’s position depend on the environment where an 802.11 network 

is deployed. If the MN can derive its moving trend and candidate APs without knowing its 

position, it is not necessary to measuring the MN’s precise position. For example, in an indoor 

environment with simple AP topology and reassociation relationship, an MN can still derive 

its moving trend according to the tendency of va riation of signal strength between the MN and 

MN’s neighbor APs. On the other hand, in an outdoor open space environment in which 

movement of an MN is irregular, precise physical location measured by GPS equipment may 

be necessary. For example, the displacement between two successive estimates of an MN’s 

positions, e.g. ),( 0101 yyxx −−  in Figure 7-1, gives a vector v
r
 representing the MN’s 

precise movement direction. Besides using two successive position estimates to find v
r

, we 

can use n (n > 2) estimates to find v
r
 instead. This can reduce the adverse effect of sudden or 

continuous change of moving direction, for example, an MN bouncing quickly beside the 

border between the coverage of two APs. Provided that an MN is successively positioned at 

APq

v

(x0 , y0)

(x1 , y1)
APl

(xq  , yq)

(xl , yl )

APi

(xi  , yi )
APk (xk , yk)
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),( 00 yx , ),( 11 yx ,… , and ),( 11 −− nn yx . A least-square line f can be employed to fit these data 

points. In consequence, v
r
 is represented as a vector from ))(,( 00 xfx  to head 

))(,( 11 −− nn xfx , reflecting the overall tendency of motion. 

 

7.1.3. Selection of candidate APs 

Figure 7-1 illustrates the concept of deriving candidate APs by using an MN’s 

movement trend. In this figure, an MN is moving off it current AP APi. With knowledge of 

topology information, including AP topology, the precise motion vector v
r

 or a rough 

movement trend suggests a set S of APs to which the station may likely roam in the near 

future. To tolerate mobile direction uncertainty, the MN may select S to encompass neighbor 

APs within the open area stretched by two rays originating from ),( 00 yx , either with angular 

displacementθfrom v
r

. For instance, APl and APq in Figure 7-1 form S. The value of θ

varies for different MNs since each MN may have its own mobility patterns. If a station tends 

to make rectilinear migration, small θ suffices. A larger θ up to °180  caters for an MN 

that roams randomly. 

Supposing that precise position is available and an MN is moving off its current APi. 

One way to generate a set S of candidate APs is formulated as follows: 

var S : set of APs init Ø ; 

var Nbrs: set of APs init neighbor APs of APi; 

begin for all j ? Nbrs do begin 

if θcos
)()(

),(
2

0
2

0

00 >
−+−

−−⋅

yyxxv

yyxxv

jj

jj
r

r
  

then { }jSS U=: ; 

end 

end 

Notice that the inner product of two vectors, say v
r

and w
r

, is mathematically defined as 

'cosθwvwv
rrrr

=⋅ , where 'θ  is the angle between the vectors. Here w
r
 denotes any vector 
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from point ),( 00 yx  to each of its neighbor APs. A geometric interpretation of a larger 

'cosθ  (than given θcos ) is that w
r

 conforms closer with v
r
 in terms of direction. Hence, 

for S we single out each APj such that θcos
)()(

),(
2

0
2

0

00 >
−+−

−−

yyxxv

yyxxv

jj

jj
r

r
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Figure 7-2. Determining candidate APs under different mobility condition 

 

Besides, the generation of S can consider the topology information and the RSS between 

an MN and an AP. For example, an MN can include a nearby upstairs AP in candidate APs if 

the MN knows from the topology information there are nearby stairs to the upstairs. Figure 

7-2 illustrates another example in which generation of S considers the distance and/or the RSS 

between an MN and an AP. In Figure 7-2, the MN moves along the arrowed curve to the 

position labeled with (o) and therefore uses an ordinary θ  to generate S which consists of 

APl and APq. However, since position (o) is close to the service area of APk and the RSS 

between the MN and APk is strong, S should include APk in case the MN suddenly turns to the 

direction labeled with (b). On the other hand, since position (o) is far from the service area of 

APq and the radio signal of APq cannot reach the MN, the MN, even turns to the direction 

labeled with (a), will not immediately enter the service area of APq and therefore S need not 

include APq. In the example shown in Figure 7-2, the MN can take leisure time to perform site 
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survey in order to obtain the RSS before or upon generating S. The consideration of RSS or 

distance also applies in case the MN reverses its direction to that labeled with (c). In this case, 

since APs is far from the MN and the RSS between the MN and its current AP may increase, S 

need not include APs. 

 

7.1.4 An example algorithm 

The main concept of the proposed Topology-and-Direction-aware approach is using 

topology information, MN’s moving trend, and MN’s position to resolve a set of candidate 

APs or a target AP. In reality, its implementation may vary depending on several factors, e.g., 

the environment where an 802.11 network is deployed and the way to derive the moving trend 

and/or position of an MN. Besides, operations such as measuring moving trend and 

generating candidate APs may be performed either by MNs or network hosts. In Figure 7-3(b), 

we show an example flow to illustrate how the proposed approach can be implemented in an 

indoor environment as that shown in Figure 7-3(a) which consists of three APs (APk, APq, APk) 

in passages, APi in a rooms, and APl in another rooms. In this environment, precise position 

and moving direction of an MN cannot be measured. However, the MN can measure its 

moving trend and candidate APs according to the tendency of variation of RSS between the 

MN and the APs. For example, an MN, moving along a passage, will find that the RSS 

between the MN and a first neighbor AP has an increasing tendency and the RSS between the 

MN and a second neighbor AP has a decreasing tendency and then knows that it is 

approaching the first neighbor AP and leaving the second AP. 

APi

APt

APq

APk

APl

 

Figure 7-3(a). Example indoor environment 
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A: Site Survey Criteria Satisfied B: Generate Candidate APs 
C: Pre-Authentication Criteria Satisfied D: Handoff Criteria Satisfied 

Figure 7-3(b). Protocol flow for an indoor environment 
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The protocol flow in Figure 7-3(b) is explained as follow: 

1. The MN gets powered in the room serviced by APi. The MN then performs AP 

discovery procedure and finds APi at a first channel, APl at a second channel, and APq 

and APt at a third channel. 

2 and 3. The MN selects APi as target AP, performs 802.11 open system authentication 

with APi, and then associates with APi. 

4. The MN performs 802.1X authentication with the AAA server. 

5. The MN obtains topology information from the location server, which is co-situated 

at the AAA server. According to the topology information, the MN knows which 

APs are neighbors. 

6. When Cite Survey Criteria are satisfied, e.g., RSS between the MN and current AP 

falls below a threshold, the MN takes leisure time to perform background site survey 

to obtain RSS between the MN and neighbor APs (may be all or subset of the MN’s 

neighbor APs). Afterward, the MN generates candidate APs according to the MN’s 

moving trend, RSSs between the MN and neighbor APs, and topology information. 

The performance of background site survey and the generation of candidate APs are 

repeated at a time interval as long as the Cite Survey Criteria are satisfied. 

7. When Pre-Authentication Criteria are satisfied, e.g., RSS between the MN and 

current AP further falls below another threshold, the MN requests the AAA to 

perform pre-authentication with candidate APs. As shown in Figure 7-3(a), the MN 

is moving from the room serviced by APi to the room serviced by APl and therefore 

the candidate APs are APl and APq. 

8. When Handoff Criteria are satisfied, the MN selects APl as target AP according to 

the MN’s moving trend, RSS between the MN and neighbor APs, and topology 

information. The MN then associates directly with APl. If direct association succeeds, 

the APl can start serving the MN since the MN has pre-authenticated via the AAA 

server with APl. If direct association fails, the MN performs AP discovery procedure 

and standard handoff procedure as that defined in 802.11. 
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After successful direct association, Steps 6 to 7 are repeated for preparing next handoff. Note 

that in this protocol flow only messages in Steps 5 and 7 are our proposed addenda while 

other messages are defined in 801.11 or 802.1X standard [25]. That is, the proposed approach 

can leverage the existing or proposed related protocols. 

 

7.2 Performance discussion 

This section compares our approach with the most recent schemes [28,73] in terms of 

handoff delay and load on APs. For demonstration purposes, we address the scenario applying 

our approach in Robust Security Networks where handover to a not-yet-authenticated AP can 

cause the MN to undergo IEEE 802.1X [25] operations. Such early handoff occurs when the 

station reassociates with a new AP before the due pre-authentication thereto has been 

completed. The scenario provides our baseline performance. 

Station moves and re-
associates with APj

TimeAuthentication
Server

Mobile station
(local to APi)

Pre-authentication
for APj

(Sideline)
tp

Time

 
Figure 7-4. A case of early handoff 

 

As shown in Figure 7-4, consider an MN of APi switching earlier to APj than the 

intended pre-authentication therein has completed. Let variable τ denote the elapsed time 

from the point when pre-authentication is initiated to the point when the MN disassociates its 

current APi. Let tp represent the pre-authentication duration. From network statistics, it is 

feasible to obtain the probability Pr[τ< tp] of early handoff. Given delays for reassociation, 

IEEE 802.1X, and four-way handshake average 2ms, 250ms, and 60ms, respectively [74], 

handoff in our architecture incurs a latency as follow: 

ms60ms250]Pr[ms2 +×<+= ptL τ           (1) 
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Regarding counterpart schemes, suppose that security contexts are available on APs wherever, 

i.e., these schemes never encounter early handoff (otherwise another term analogous to 

]Pr[ pt<τ  should be included hereinafter.) In that event, IEEE 802.1X operations are 

bypassed during handoff but AP discovery still demands 0 or 1000 ms, or a delay of 40 to 300 

ms, depending on the scanning mode in actual use. If such a delay takes a mean t , the 

average handoff latency amounts to 

 ms60ms2' ++= tL              (2) 

From Equations (1) and (2), our approach outperforms counterpart schemes when 

tt p <×< ms250]Pr[τ .  This condition very probably holds, since an IEEE 802.11 network, 

like a hotspot or office area, is likely to be well-planned and an MN’s roaming within the 

network is in general not speedy. Hence sudden, early handoff in the pre-authentication 

setting would occur rarely, say, at probability 0.1. In the case of ]Pr[ pt<τ  and t  

measuring 0.1 and (40+300)/2 ms, respectively, a handoff delay of 87 ms is required by our 

approach, as opposed to that of 232 ms by counterpart schemes. Handoff delay is curtailed to 

nearly one third, a marked improvement. Our performance gain follows similarly by 

examining other combinations of ]Pr[ pt<τ  and t . Furthermore, by setting 1]Pr[ =< ptτ , 

we can obtain the delay of the case where the new AP does not belong to S. 

Our approach mitigates the load on APs. For each MN, the process involves a limited 

set S of candidate APs rather than a broader set N of potential next APs. The inequality 

NS ≤ maintains S strictly smaller than N  in most cases, unless θ is set to °180  (then 

NS = .) The difference SN −  per MN reflects strength of our approach. The load is 

reduced significantly when the system accommodates larger numbers of stations performing 

frequent handoffs. The expected size of S is susceptible to network topology layout, station’s 

location, and θ. In particular, θ is quantifiable in line with the mobility paradigm of each 

MN. If a station tends to make rectilinear migration, small θ suffices. A larger θ up to 

°180  caters for an MN that roams randomly. For example in Figure 7-5, the MN may turns to 
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other directions after a move, as labeled with (a) and (b). In the former, S can be { APq, APl }, 

while in the latter { APl, APk }. This implies that S  may reasonably range from 1 to 3 in a 

cell-like hexagonal model. 

 

APi

APt

APq

APs

APr

APk

APl(a)

(b)

 

Figure 7-5. Determining S under random mobility 

 

The overhead of deploying the introduced location server resembles that of a network 

server in Pack’s schemes [27,51], which maintains a user’s profile and computes frequent  

handoff regions exploiting a Markov model. Compared with Mishra et al.’s schemes 

[28,29,53], the location server requires additional environment information. The obtaining of 

topology information is not necessarily steps such as the Step 5 in Figure 7-3(b) during each 

handoff. Since topology information is mostly invariable, APs and MNs allow for retaining 

the received information for long-term use. Concerning the computational overhead of 

generating candidate APs, because the number of APs is normally small, we believe that the 

incurred cost is acceptable for today’s machines if the criteria for activating positioning 

procedure, background site survey (Step 6 of Figure 7-3(b)), or pre-authentication (Step 7 of 

Figure 7-3(b)) is properly defined. Alternatively, the location server may derive the MN’s 
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locations and/or the neighboring APs on behalf of the MN if necessary. 

 

7.3 Summary 

Our proposal has three aspects: awareness of topology information, generating candidate 

APs along the moving trend, and direct reassociation. As stated in Section 7.1.4, the 

candidate-AP generation and positioning procedures can be shifted to the network side as well. 

Evaluation indicates that our approach considerably reduces handoff overhead. Besides, the 

proposed approach can leverage the existing or proposed mobility related protocols or 

systems, e.g., Robust Security Networks. Moreover, the topology-and-movement-aware 

candidate-AP generation scheme can work jointly with the existing fast-handoff schemes that 

leverage pre-authentication, proactive key distribution, or context transfer. We have 

implemented the direct association concept on an IEEE 802.11b adapter with a Realtek 

RTL8180L chipset. 



 107 

Chapter 8 Conclusions and Future work 

 

In this thesis, we propose a Dynamically Configurable NAT (DCNAT), a hybrid web 

cache replacement algorithm, a web session handoff mechanism, and a Topology- 

and-Direction-aware link layer fast handoff scheme to support continuous web access and 

real-time information pushing for mobile hosts that may visit private networks. These four 

approaches together provide convenient Internet access in mobile environments and NAT 

environments. 

For the NAT inbound session problem, we propose Dynamically Configurable NAT 

(DCNAT) so that a host situates in Internet can spontaneously establish inbound session and 

push instant information to hosts beneath NAT networks. DCNAT enables NAT inbound 

session by a Binding Entry Request procedure to create NAT binding entries. The dynamic 

creation of NAT binding entries makes DCNAT very flexible in supporting inbound accesses 

to the ports/services opened dynamically by the private nodes behind an NAT router. Besides, 

with DCNAT, a content service provider can push information contents spontaneously to 

subscribers that are widely spreading and beneath different private networks with NAT. With 

the dynamic creation of NAT binding entries, DCNAT provides lower blocking probability 

and better scalability by using just one or several public IP addresses. 

In order to improve web cache performance, we propose a hybrid web cache 

replacement algorithm that divides a cache space into two zones, a hot zone and a cold zone, 

and adopt a simple LRU replacement algorithm for the hot zone and a complex GD-Family 

replacement algorithm for the cold zone. This hybrid replacement algorithm combines the 

advantage of SLRU, LRU, and GD-Family algorithms but applies a complex GD-Family 

replacement algorithm only to a portion of the cache where strict object ordering is much 

significant to the overall cache performance. Therefore it can achieve a high DHR just slightly 

lower than that of GDSP and a high BHR just slightly lower than that of LRU while incurs 

much less maintenance cost, comparing with GD-Family algorithms. 

To resume a web browsing session after a user changes the device that he uses to browse 
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Internet, we propose a web session handoff system that can hand over not only stateless but 

also stateful sessions between homogenous or heterogeneous user devices to enable 

uninterrupted and seamless web accesses. Compared with client-based approaches, our design 

has several advantages, such as less modification to user devices, practicability, and fault 

tolerance. We have implemented a UAP on a PC and client programs for both PC and PDA. 

The implementation can successfully hand over between PC and PDA a stateful session for 

online shopping applications. 

To speed up the process of handoff between 802.11 APs, we propose a 

Topology-and-Direction-aware fast handoff scheme that resolves a reduced set of candidate 

APs according to AP topology, MN’s its moving trend and/or MN’s position. The proposed 

approach further benefits handoff by allowing 802.11 station reassociates directly with an AP 

without performing AP discovery during handoff. Besides, the topology-and-movement-aware 

candidate-AP generation scheme can work in conjunction with the existing fast-handoff 

schemes that leverage pre-authentication, proactive key distribution, or context transfer. 

In the future, we will evaluate more hybrid algorithms that combine algorithms other 

than LRU and GD-Family. Furthermore, we will study the applicability of hybrid policy in 

other applications, such as web cache on user devices with limited cache space and memory 

paging in computer system. 

There is still further improvement to the proposed web session handoff system. First, we 

will improve our client program to collect more assistant information so that the UAP can be 

more light-weighted and session information can be handed over completely. Besides, since 

session tracking generates additional processing and storage load to UAPs, we will perform a 

quantitative analysis on workload and storage space problem of UAPs. Furthermore, we will 

also apply and refer previous research in scalable hierarchical proxies to design a system that 

contains multiple cooperated UAPs. 

The practicability of the proposed Topology-and-Direction-aware fast handoff approach 

depends on the accuracy of measurement of MN’ moving trend and/or position, especially in 

indoor environments. Therefore, we will study and implement moving trend estimation 
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mechanism to verify the practicability of the Topology-and-Direction-aware fast handoff 

approach. 
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