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We study the synchronization of general chaotic systems which satisfy the Lipschitz condition only,
with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. The un-
certain parameters of a system vary with time due to aging, environment, and disturbances. A
sufficient condition is given for the asymptotical stability of common zero solution of error dynam-
ics and parameter update dynamics by the Ge–Yu–Chen pragmatical asymptotical stability theorem
based on equal probability assumption. Numerical results are studied for a Lorenz system and a
quantum cellular neural network oscillator to show the effectiveness of the proposed synchroniza-
tion strategy. © 2008 American Institute of Physics. �DOI: 10.1063/1.3049320�

Theoretical and experimental investigations have shown
that synchronization, in particular chaos synchroniza-
tion, has great potential in a large amount of application
areas ranging from secure communications to modeling
brain activity. In this paper, we introduce a synchroniza-
tion of chaotic systems with uncertain chaotic parameters
by linear coupling and pragmatical adaptive tracking.
Based on pragmatical stability theorem and Lipschitz
condition, some less conservative conditions for determin-
ing linear coupling synchronization of general chaotic
systems are obtained. Two examples are simulated to il-
lustrate the validity of the theoretical analysis.

I. INTRODUCTION

The idea of synchronizing two identical chaotic systems
with different initial conditions was introduced by Pecora
and Carroll.1 Since then there has been particular interest in
chaotic synchronization, due to many potential applications
in secure communication,2 chemical and biological
systems.3,4 There are many control methods to synchronize
chaotic systems, such as, linear coupling, for which the
implementation is rather easy, adaptive control, impulsive
control, sliding mode control, and other methods.5 Most of
them are based on the exact knowledge of the system struc-
ture and parameters. But in practice, some or all of the sys-
tem parameters are uncertain. Moreover these parameters
may change from time to time and become chaotic because
of chaotic disturbances. For uncertain parameters, a lot of
works have proceeded to solve this problem by adaptive
synchronization.6–12 In the current scheme of adaptive
synchronization,13–15 the traditional Lyapunov stability theo-
rem and Barbalat lemma are used to prove that the error
vector approaches zero as time approaches infinity. But the
question, why the estimated parameters also approach the
uncertain parameters, has remained without answer. From
the Ge–Yu–Chen �GYC� pragmatical asymptotical stability
theorem,16–18 the question is strictly answered. In this paper,

the synchronization of general chaotic systems which satisfy
the Lipschitz condition only, with unknown parameters
which are altered under some chaotic disturbances, by linear
coupling and pragmatical adaptive tracking, is studied first.

As numerical examples, the Lorenz system and recently
developed quantum cellular neural network �Quantum-CNN�
chaotic oscillator are used. Pragmatical adaptive tracking is
used to track chaotic parameters in unidirectional coupled
systems. Two Lorenz systems and two Quantum-CNN sys-
tems by pragmatical adaptive tracking are given as simula-
tion examples. Quantum-CNN oscillator equations are de-
rived from a Schrödinger equation taking into account
quantum dots cellular automata structures to which in the last
decade a wide interest has been devoted with particular at-
tention towards quantum computing.19–21

This paper is organized as follows: In Sec. II, by prag-
matical asymptotical stability theorem and by using Lips-
chitz conditions, theoretical analysis of synchronization is
given. In Sec. III linear feedback controllers are used. By
pragmatical adaptive tracking, chaos synchronization of two
Lorenz systems and of two Quantum-CNN oscillator systems
are achieved by numerical simulations. Conclusions are
given in Sec. IV. GYC pragmatical asymptotical stability
theorem is presented in the Appendix. Intuitively this theo-
rem is different from traditional Lyapunov stability theorem
at that when the points in the neighborhood of zero solution
initiating trajectories not approaching zero with time are “not
too many,” i.e., in a subset of Lebesque measure 0 in math-
ematical language,22 we can neglect their existence, i.e., the
zero solution is actually asymptotically stable.

II. STRATEGY OF THE CHAOTIC SYNCHRONIZATION

Consider a nonautonomous system in the form as
follows:

ẋ = F�t,x,B�t�� . �1�

The slave system is given by

CHAOS 18, 043129 �2008�

1054-1500/2008/18�4�/043129/11/$23.00 © 2008 American Institute of Physics18, 043129-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 22:49:03

http://dx.doi.org/10.1063/1.3049320
http://dx.doi.org/10.1063/1.3049320
http://dx.doi.org/10.1063/1.3049320


ẏ = F�t,y,B̂�t�� + K̂�x − y� , �2�

where x= �x1 ,x2 , . . . ,xn�T�Rn, y= �y1 ,y2 , . . . ,yn�T�Rn, and
B= �B1 ,B2 , . . . ,BM�T�RM is a vector of uncertain chaotic
coefficients in F, B̂= �B̂1 , B̂2 , . . . , B̂M�T�RM is a vector of
estimated coefficients in F, F :��R+�Rn�RM →Rn satis-
fies Lipschitz conditions �F�t ,xI ,B�−F�t ,xII ,B���G�xI−xII�,
where xI and xII are two neighbor state vectors, and

�F�t ,x ,B�−F�t ,x , B̂���G�B− B̂� in � with Lipschitz con-

stant G. K̂=diag�K̂1 , . . . , K̂i , . . . , K̂n� is a constant matrix.

K̂�x−y� is the estimated linear coupling term. � is the do-
main containing the origin. For given �t0 ,x0 ,y0 ,B0���, the
solutions �xT�t , t0 ,x0 ,B0� ,yT�t , t0 ,x0 ,y0 ,B0��T of Eqs. �1� and
�2� exist for t� t0.

If the synchronization can be accomplished when t→�,
the limit of the error vector e�t�= �e1 ,e2 , . . . ,en�T must ap-
proach zero,

lim
t→�

e = 0, �3�

where

e = x − y . �4�

From Eqs. �1�, �2�, and �4�, we have

ė = ẋ − ẏ , �5�

ė = F�t,x,B� − F�t,x − e,B̂� − K̂�x − y� . �6�

A Lyapunov function V�e , B̃ , G̃� is chosen as a positive
definite function

V�e,B̃,G̃� = 1
2eTe + 1

2 B̃TB̃ + 1
2G̃2, �7�

where G̃=G− Ĝ; Ĝ is the estimated Lipschitz constant, B̃

=B− B̂.
When M =n, the time derivative of V along any solution

of the differential equation system consisting of Eq. �6� and

update differential equations for B̃ and G̃ is

V̇�e,B̃,G̃� = eT�F�t,x,B� − F�t,x − e,B� + F�t,x − e,B�

− F�t,x − e,B̂� − K̂e� + B̃TḂ̃ + G̃Ġ̃

= eT�F�t,x,B� − F�t,x − e,B� − K̂e� + G̃Ġ̃

+ eT�F�t,x − e,B� − F�t,x − e,B̂�� + B̃TḂ̃ . �8�

From the Lipschitz condition,

V̇�e,B̃,G̃� � G�e�2 − eTK̂e + G̃Ġ̃ + eT�F�t,x − e,B�

− F�t,x − e,B̂�� + B̃TḂ̃ . �9�

Since

eT�F�t,x − e,B� − F�t,x − e,B̂��

� �e1� · �F1�t,x − e,B� − F1�t,x − e,B̂��

+ ¯ + �en� · �Fn�t,x − e,B� − Fn�t,x − e,B̂�� �10�

by Schwarz inequality and Lipschitz condition, it is obtained
that

�e1� · �F1�t,x − e,B� − F1�t,x − e,B̂��

+ ¯ + �en� · �Fn�t,x − e,B� − Fn�t,x − e,B̂��

� �e� · �F�t,x − e,B� − F�t,x − e,B̂�� � G�e� · �B̃� .

�11�

Therefore,

V̇�e,B̃,G̃� � G�e�2 − eTK̂e + G̃Ġ̃ + G�e� · �B̃� + B̃1Ḃ̃1

+ ¯ + B̃nḂ̃n. �12�

Choosing

Ġ̃ = − eTe, K̂ = diag�Ĝ + G� �13�

and choosing

Ḃ̃1 = − GB̃1�e�/�B̃�, ¯ , Ḃ̃n = − GB̃n�e�/�B̃� , �14�

we have

B̃TḂ̃ = − G�B̃1
2 + ¯ B̃n

2��e�/�B̃�

= − G�B̃�2 · �e�/�B̃�

= − G�e� · �B̃� . �15�

Introducing Eqs. �15� and �13� in Eq. �12�, we get

V̇�e,B̃,G̃� � G�e�2 − diag�Ĝ + G��e�2 − G̃�e�2

+ G�e� · �B̃� − G�e� · �B̃�

= − G�e�2

= − G�e1
2 + ¯ + en

2� , �16�

V̇ is a negative semidefinite function of e , B̃ , G̃. By GYC
pragmatical asymptotical stability theorem �see Appendix�,
the solution e=0, B̃=0, G̃=0 is asymptotically stable, which
means that the two coupled systems are synchronized even if
different initial conditions are used and the estimation of the
parameters is not exact.

When M �n, all the other terms in Eq. �9� are kept un-
changed, and only the last two terms will be reduced as
follows. When M �n, we put

eT = �e1, . . . ,en,en+1, . . . ,eM�T, �17�

where en+1=en+2= ¯ =eM =0. Then we have

043129-2 Z.-M. Ge and C.-H. Yang Chaos 18, 043129 �2008�
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eT�F�t,x − e,B� − F�t,x − e,B̂�� � �e1� · �F1�t,x − e,B� − F1�t,x − e,B̂�� + ¯ + �en� · �Fn�t,x − e,B� − Fn�t,x − e,B̂��

+ �en+1� · �Fn+1�t,x − e,B� − Fn+1�t,x − e,B̂�� + ¯ + �eM� · �FM�t,x − e,B� − FM�t,x − e,B̂��

� G�e� · �B̃� . �18�

In Eq. �18�, the last term is obtained by the Schwarz inequal-
ity. Similar to Eqs. �14� and �15� in which n is substituted by

M, we choose B̃1¯ B̃M, then

B̃TḂ̃ = − G�e� · �B̃� �19�

is obtained.
Introducing Eqs. �18� and �19� in Eq. �9�, we can also

get, lastly,

V̇�e,B̃,G̃� � − G�e1
2 + . . . + en

2� . �20�

By the same reasoning as when M =n, the solution e=0, B̃

=0, G̃=0 is asymptotically stable.
When M �n, we put

Fi�t,x − e,B� − Fi�t,x − e,B̂� = 0, i = M + 1, . . . ,n �21�

since BM+1 , ¯Bn does not exist,

B̃M+1 = ¯ = B̃n = 0, �22�

�B̃�2 = B̃1
2 + ¯ + B̃M

2 + B̃M+1
2 + ¯ + B̃n

2. �23�

Then by the Schwarz inequality, we can obtain the same
result as Eq. �18� except that n and M are exchanged. Simi-
larly, choose

Ḃ̃1 = − GB̃1�e�/�B̃�, . . . , Ḃ̃M = − GB̃M�e�/�B̃� ,

�24�

Ḃ̃M+1 = − GB̃M+1�e�/�B̃�, . . . , Ḃ̃n = − GB̃n�e�/�B̃� ,

B̃TḂ̃ = − G�B̃1
2 + ¯ B̃n

2��e�/�B̃�

= − G�B̃�2�e�/�B̃�

= − G�e� · �B̃� . �25�

Introducing Eq. �18� in which n and M are exchanged and
Eq. �25� in Eq. �9�, we can also get lastly

V̇�e,B̃,G̃� � − G�e1
2 + ¯ + en

2� = − GeTe . �26�

By the same reasoning as the case M =n, the solution e=0,

B̃=0, G̃=0 is asymptotically stable.
Remark. In the current scheme of adaptive

synchronization,13–15 traditional Lyapunov stability theorem
and Barbalat lemma are used to prove the error vector ap-
proaches zero, as time approaches infinity. But the question,
why the estimated parameters also approach uncertain pa-
rameters, remains no answer. By GYC pragmatical asymp-
totical stability theorem, the question can be answered

strictly. Moreover, the asymptotical stability is global, see the
Appendix.

III. NUMERICAL SIMULATIONS

Case I: Chaotic parameters for the Lorenz system, M
�n�2�3�.

The master Lorenz system with uncertain chaotic param-
eters is

ẋ1 = − A1�t��x1 − x2� ,

ẋ2 = A2�t�x1 − x2 − x1x3,

ẋ3 = x1x2 − A3�t�x3,

�27�

where A1�t� and A2�t� are uncertain parameters, A3�t� is the
given parameter. In simulation, we take

A1�t� = ��1 + d1z1� ,

A2�t� = 	�1 + d2z2� , �28�

A3�t� = b�1 + d3z3� ,

where d1, d2, and d3 are positive constants.
The chaotic signals z1 ,z2 ,z3, are the states of

ż1 = − �1�z1 − z2� ,

ż2 = 	1z1 − z2 − z1z3,

ż3 = z1z2 − b1z3,

�29�

where �1=8, 	1=27, b1=3.2, and �z0
T�T = �222�T.

From Eq. �2�, the slave Lorenz system is

ẏ1 = − Â1�t��y1 − y2� + �Ĝ + G��x1 − y1� ,

ẏ2 = Â2�t�y1 − y2 − y1y3 + �Ĝ + G��x2 − y2� ,

ẏ3 = y1y2 − A3�t�y3 + �Ĝ + G��x3 − y3� ,

�30�

where Â1�t� and Â2�t� are estimated parameters. The initial

condition be �x0
T y0

T Â0
T Ĝ0�T = �111 000 00 0�T.

Subtracting Eq. �30� from Eq. �27�, we obtain an error
dynamics,

ė1 = − A1�t��x1 − x2� + Â1�t��y1 − y2� − �Ĝ + G��x1 − y1� ,

ė2 = A2�t�x1 − x2 − x1x3 − Â2�t�y1 + y2 + y1y3

− �Ĝ + G��x2 − y2� , �31�

ė3 = x1x2 − A3�t�x3 − y1y2 + A3�t�y3 − �Ĝ + G��x3 − y3� ,

where e1=x1−y1, e2=x2−y2, e3=x3−y3.
Our aim is

043129-3 Pragmatical adaptive tracking Chaos 18, 043129 �2008�
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lim
t→�

ei = lim
t→�

�xi − yi� = 0, i = 1,2,3. �32�

Let the adaptive law be

Ġ̃ = Ġ − Ġ̂ = − Ġ̂ = − eTe . �33�

Since G is constant, Ġ=0. Define

Ã�t� = �Ã1�t�Ã2�t��T, �34�

Ã1�t� = A1�t� − Â1�t�, Ã2�t� = A2�t� − Â2�t� , �35�

then

Ȧ̃1�t� = �d1ż1 − Ȧ̂1�t�, Ȧ̃2�t� = 	d2ż2 − Ȧ̂2�t� . �36�

Choose Ȧ̃1�t� and Ȧ̃2�t� as

Ȧ̃1 = − GÃ1�e�/�Ã�, Ȧ̃2 = − GÃ2�e�/�Ã� . �37�

A Lyapunov function is given in the form of the positive
definite function,

V�e1,e2,e3,Ã1,Ã2,G̃� = 1
2 �e1

2 + e2
2 + e3

2 + Ã1
2 + Ã2

2 + G̃2� .

�38�

Its time derivative along any solution of Eqs. �31�, �32�, and
�37� is

V̇ = e1�− A1�t��x1 − x2� + Â1�t��y1 − y2� − �Ĝ + G��x1 − y1�� + e2�A2�t�x1 − x2 − x1x3 − Â2�t�y1 + y2 + y1y3 − �Ĝ + G��x2 − y2��

+ e3�x1x2 − A3�t�x3 − y1y2 + A3�t�y3 − �Ĝ + G��x3 − y3�� + Ã1Ȧ̃1 + Ã2Ȧ̃2 − G̃Ġ̂ ,

V̇ = e1�− A1�t��x1 − x2� + A1�t��y1 − y2� − �Ĝ + G��x1 − y1�� + e2�A2�t�x1 − x2 − x1x3 − A2�t�y1 + y2 + y1y3 − �Ĝ + G��x2 − y2��

+ e3�x1x2 − A3�t�x3 − y1y2 + A3�t�y3 − �Ĝ + G��x3 − y3�� + Ã1�y1 − y2�e1 − Ã2y1e2 − G�e��Ã1
2 + Ã2

2�/�Ã� − G̃Ġ̂ ,

V̇ � G�e�2 − �Ĝ + G��e�2 + G�e��Ã� − G�e��Ã�2/�Ã� − G̃Ġ̂ .

V̇ can be rewritten as

V̇�ei� � − G�e�2. �39�

V̇ is a negative semidefinite function of e , Ã , G̃. The
Lyapunov asymptotical stability theorem is not satisfied. We
cannot obtain that the common origin of error dynamics �31�,
adaptive laws �33�, and parameter dynamics �37� is asymp-
totically stable. Now, D is a 3-manifold, n=6 and the number

of error state variables p=3. When ei=0, �i=1,2 ,3� and Ãj,

G̃, �j=1,2� take arbitrary values, V̇=0, so X is a 3-manifold,
m=n− p=6−3=3. m+1�n is satisfied. By GYC pragmati-
cal asymptotical stability theorem, error vector e approaches
zero and the estimated parameters also approach the uncer-
tain parameters. The pragmatical generalized synchroniza-

tion is obtained. The equilibrium point ei= Ãj = G̃=0 �i
=1,2 ,3; j=1,2� is asymptotically stable. Moreover, the re-
sult is global asymptotically stable �see Appendix�. The nu-
merical results of the time series of states, state errors, pa-

rameters, and estimated Lipschitz constant Ĝ are shown in
Figs. 1 and 2. The chaos synchronization is accomplished at

0.6 s. Ĝ approaches constant near 0.5 s. The coupling
strength required is K=2G=39.34.

Case II: Chaotic parameters for the Quantum-CNN sys-
tem, M =n�4=4�.

For a two-cell Quantum-CNN, the following differential
equations are obtained:8–20

ẋ1 = − 2a1
�1 − x1

2 sin x2,

ẋ2 = − 
1�x1 − x3� + 2a1
x1

�1 − x1
2

cos x2,

ẋ3 = − 2a2
�1 − x3

2 sin x4,

ẋ4 = − 
2�x3 − x1� + 2a2
x3

�1 − x3
2

cos x4,

�40�

where x1, x3 are polarizations, x2, x4 are quantum phase dis-
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FIG. 1. �Color online� Phase portrait for the Lorenz system with �=10, 	
=28, b=8 /3.
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placements, a1 and a2 are proportional to the interdot energy
inside each cell and 
1 and 
2 are parameters that weigh
effects on the cell of the difference of the polarization of
neighboring cells, like the cloning templates in traditional

CNNs. When a1=6.8, a2=4.3, 
1=4.7, 
2=3.9, the system
is chaotic as shown in Fig. 3.

The master Quantum-CNN system with uncertain cha-
otic parameters is
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ẋ1 = − 2A1�t��1 − x1
2 sin x2,

ẋ2 = − A3�t��x1 − x3� + 2A1�t�
x1

�1 − x1
2

cos x2,

ẋ3 = − 2A2�t��1 − x3
2 sin x4,

ẋ4 = − A4�t��x3 − x1� + 2A2�t�
x3

�1 − x3
2

cos x4,

�41�

where A1�t�, A2�t�, A3�t�, and A4�t� are uncertain parameters
�see Fig. 4�. In simulation, we take

A1�t� = a1�1 + d1z1�, A2�t� = a2�1 + d2z2� ,

�42�
A3�t� = 
1�1 + d3z3�, A4�t� = 
2�1 + d4z4� ,

where d1, d2, and d3 are positive constants. Take d1=0.039,
d2=0.043, d3=0.045, and d4=0.038. This system is chaotic
as shown in Fig. 5.

The chaotic signals z1 ,z2 ,z3 ,z4 are the states of

ż1 = − 2a21
�1 − z1

2 sin z2,

ż2 = − 
21�z1 − z3� + 2a21
z1

�1 − z1
2

cos z2,

ż3 = − 2a22
�1 − z3

2 sin z4,

ż4 = − 
22�z3 − z1� + 2a22
z3

�1 − z3
2

cos z4,

�43�

where a21=5.2, a22=4.2, 
21=4.7, and 
22=3.5.
From Eq. �2�, the slave Quantum-CNN system is

ẏ1 = − 2â1
�1 − y1

2 sin y2 + �Ĝ + G��x1 − y1� ,

ẏ2 = − 
̂1�y1 − y3� + 2â1
y1

�1 − y1
2

cos y2 + �Ĝ + G��x2 − y2� ,

ẏ3 = − 2â2
�1 − y3

2 sin y4 + �Ĝ + G��x3 − y3� ,

ẏ4 = − 
̂2�y3 − y1� + 2â2
y3

�1 − y3
2

cos y4 + �Ĝ + G��x4 − y4� .

�44�

Subtracting Eq. �44� from Eq. �41�, we obtain an error dy-
namics. The initial values are taken as x1�0�=0.8, x2�0�=
−0.77, x3�0�=−0.72, x4�0�=0.57, y1�0�=−0.2, y2�0�=0.41,
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y3�0�=0.25, y4�0�=−0.81, z1�0�=0.5, z2�0�=−0.3, z3�0�
=0.1, z4�0�=0.2, and �â10â20
̂10
̂20Ĝ0�T= �00 00 0�T. The er-
ror dynamics is

ė1 = − 2A1�t��1 − x1
2 sin x2 + 2â1

�1 − y1
2 sin y2

− �Ĝ + G�e1,

ė2 = − A3�t��x1 − x3� + 2A1�t�
x1

�1 − x1
2

cos x2 + 
̂1�y1 − y3�

− 2â1
y1

�1 − y1
2

cos y2 − �Ĝ + G�e2,

�45�
ė3 = − 2A2�t��1 − x3

2 sin x4 + 2â2
�1 − y3

2 sin y4

− �Ĝ + G�e3,

ė4 = − A4�t��x3 − x1� + 2A2�t�
x3

�1 − x3
2

cos x4 + 
̂2�y3 − y1�

− 2â2
y3

�1 − y3
2

cos y4 − �Ĝ + G�e4,

where e1=x1−y1, e2=x2−y2, e3=x3−y3, e4−x4−y4.
Our aim is

lim
t→�

ei = lim
t→�

�xi − yi� = 0, i = 1,2,3,4. �46�

Let the adaptive law be

Ġ̃ = Ġ − Ġ̂ = − Ġ̂ = − eTe . �47�

Since G is constant, Ġ=0. Define

Ã�t� = �ã1�t� ã2�t� 
̃1�t� 
̃2�t��T, �48�

ã1 = A1�t� − â1, ã2 = A2�t� − â2,

�49�

̃1 = A3�t� − 
̂1, 
̃2 = A4�t� − 
̂2,

ȧ̃1 = a1d1ż1 − ȧ̂1, ȧ̃2 = a2d2ż2 − ȧ̂2,

�50�

̇̃1 = 
1d3ż3 − 
̇̂1, 
̇̃2 = 
2d4ż4 − 
̇̂2.

Choose ȧ̃1, ȧ̃2, 
̇̃1, and 
̇̃2 as

ȧ̃1 = − Gã1�e�/�Ã�t��, 
̇̃1 = − G
̃1�e�/�Ã�t�� ,

�51�
ȧ̃2 = − Gã2�e�/�Ã�t��, 
̇̃2 = − G
̃2�e�/�Ã�t�� .

A Lyapunov function is given in the form of a positive
definite function,

V�e1,e2,e3,e4, ã1, ã2,
̃1,
̃2,G̃�

= 1
2 �e1

2 + e2
2 + e3

2 + e4
2 + ã1

2 + ã2
2 + 
̃1

2 + 
̃2
2 + G̃2� . �52�

Its time derivative along any solution of Eqs. �45�, �47�, and
�51� is

V̇ = e1�− 2A1�t��1 − x1
2 sin x2 + 2â1

�1 − y1
2 sin y2 − �Ĝ + G�e1� + e2�− A3�t��x1 − x3� + 2A1�t� �

x1

�1 − x1
2

cos x2 + 
̂1�y1

− y3� − 2â1
y1

�1 − y1
2

cos y2 − �Ĝ + G�e2	 + e3�− 2A2�t��1 − x3
2 sin x4 + 2â2

�1 − y3
2 sin y4 − �Ĝ + G�e3�

+ e4�− A4�t��x3 − x1� + 2A2�t�
x3

�1 − x3
2

cos x4 + 
̂2�y3 − y1� − 2â2
y3

�1 − y3
2

cos y4 − �Ĝ + G�e4	 + ã1ȧ̃1 + ã2ȧ̃2 + 
̃1
̇̃1

+ 
̃2
̇̃2 − G̃Ġ̂ ,

V̇ = e1�− 2A1�t��1 − x1
2 sin x2 + 2A1�t��1 − y1

2 sin y2 − �Ĝ + G�e1� + e2�− A3�t��x1 − x3� + 2A1�t� �
x1

�1 − x1
2

cos x2 + A3�t��y1

− y3� − 2A1�t�
y1

�1 − y1
2

cos y2 − �Ĝ + G�e2	 + e3�− 2A2�t��1 − x3
2 sin x4 + 2A2�t��1 − y3

2 sin y4 − �Ĝ + G�e3�

+ e4�− A4�t��x3 − x1� + 2A2�t�
x3

�1 − x3
2

cos x4 + A4�t��y3 − y1� − 2A2�t�
y3

�1 − y3
2

cos y4 − �Ĝ + G�e4	
+ ã1�2�1 − y1

2 sin y2e1 −
2y1

�1 − y1
2

cos y2e2	 + 
̃1��y1 − y3�e2� + ã2�2�1 − y3
2 sin y4e3 −

2y3

�1 − y3
2

cos y4e4	
+ 
̃2��y3 − y1�e4� − G�e��ã1

2 + ã2
2 + 
̃1 + 
̃2�/�Ã� − G̃Ġ̂ ,

V̇ � G�e�2 − �Ĝ + G��e�2 + G�e��Ã� − G�e��Ã�2/�Ã� − G̃Ġ̂ .
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V̇ can be rewritten as

V̇ � − G�e1
2 + e2

2 + e3
2 + e4

2� . �53�

V̇ is a negative semidefinite function of e , ã , 
̃ , G̃. The
Lyapunov asymptotical stability theorem is not satisfied. We

cannot obtain that the common origin of error dynamics �45�,
adaptive laws �47�, and parameter dynamics �51� is asymp-
totically stable. Now, D is a 5-manifold, n=9 and the number
of error state variables p=4. When ei=0, �i=1,2 ,3 ,4�, and

ãj , 
̃ j , G̃, �i=1,2 ,3 ,4; j=1,2� take arbitrary values, V̇=0, so
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FIG. 6. �Color online� Time series of states, state errors, A1 ,A2 ,A3 ,A4 , â1 , â2 , ŵ1 , ŵ2 and estimated Lipschitz constant Ĝ for Case II.
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X is a 5-manifold, m=n− p=9−4=5. m+1�n is satisfied.
From the GYC pragmatical asymptotical stability theorem,
error vector e approaches zero and the estimated parameters
also approach the uncertain parameters. The equilibrium

point ei= ãj = 
̃ j = G̃=0 �i=1,2 ,3 ,4; j=1,2� is asymptoti-
cally stable. Moreover, the result is global asymptotically
stable �see Appendix�. The numerical results of the time se-
ries of states, state errors, parameters and estimated Lipschitz

constant Ĝ are shown in Fig. 6. The chaos synchronization is

accomplished near 3 s. Ĝ approaches constant also near 3 s.
The coupling strength required is K=2G=5.62.

IV. CONCLUSIONS

Using the Lipschitz condition, the synchronization of
Lorenz chaotic systems and of Quantum-CNN chaotic oscil-
lator systems with uncertain chaotic parameters by linear
coupling and pragmatical adaptive tracking are accomplished
by the GYC pragmatical asymptotical stability theorem.
Tracking uncertain chaotic parameters is first studied in this
paper. This is of practical interest, because system param-
eters may be varied chaotically due to aging, environment,
and disturbances. Two Lorenz systems are synchronized for
chaotic parameters M �n. Two Quantum-CNN systems are
synchronized for chaotic parameters M =n. The simulation
results imply that this scheme is very effective. By GYC
pragmatical asymptotical stability theorem, the question,
why the estimated parameters approach the uncertain param-
eters, has been strictly answered and verified by numerical
simulations.
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APPENDIX: GYC PRAGMATICAL ASYMPTOTICAL
STABILITY THEOREM

The stability for many problems in real dynamical sys-
tems is actual asymptotical stability, although it may not be
mathematical asymptotical stability. The mathematical as-
ymptotical stability demands that trajectories from all initial
states in the neighborhood of zero solution must approach
the origin as t→�. If there is only a small part or even a few
of the initial states from which the trajectories do not ap-
proach the origin as t→�, the zero solution is not math-
ematically asymptotically stable. If the probability of occur-
rence of the event that the trajectories from the initial states
are that they do not approach zero when t→�, i.e., these
trajectories are not asymptotical stable for zero solution, is
zero, the stability of zero solution is actual asymptotical sta-
bility though it is not mathematical asymptotical stability. In
order to analyze the asymptotical stability of the equilibrium
point of such systems, the pragmatical asymptotical stability
theorem is used. The conditions for pragmatical asymptotical

stability are more slack than that for traditional Lyapunov
asymptotical stability.

Let X and Y be two manifolds of dimensions m and n
�m�n�, respectively, and � be a differentiable map from X
to Y; then ��X� is a subset of the Lebesque measure 0 of Y.22

For an autonomous system

ẋ = f�x1, . . . ,xn� , �A1�

where x= �x1 , . . . ,xn�T is a state vector, the function f
= �f1 , . . . , fn�T is defined on D�Rn, an n-manifold.

Let x=0 be an equilibrium point for the system �A1�.
Then

f�0� = 0. �A2�

For a nonautonomous system,

ẋ = f�x1, . . . ,xn+1� , �A3�

where x= �x1 , . . . ,xn+1�T, the function f = �f1 , . . . , fn�T is de-
fined on D�Rn�R+, here t=xn+1�R+. The equilibrium
point is

f�0,xn+1� = 0. �A4�

Definition. The equilibrium point for the system is pragmati-
cally asymptotically stable provided that with initial points
on C which is a subset of the Lebesque measure 0 of D, the
behaviors of the corresponding trajectories cannot be deter-
mined, while with initial points on D−C, the corresponding
trajectories behave as those that agree with traditional as-
ymptotical stability.

Theorem: Let V= �x1 ,x2 , . . . ,xn�T: D→R+ be positive
definite and analytic on D, where x1 ,x2 , . . . ,xn are all space
coordinates such that the derivative of V through Eqs. �A1�
or �A3�, V̇, is negative semidefinite of �x1 ,x2 , . . . ,xn�T.

For an autonomous system, let X be the m-manifold con-

sisting of a point set for which ∀x�0, V̇�x�=0 and D is an
m-manifold. If m+1�n, then the equilibrium point of the
system is pragmatically asymptotically stable.

For a nonautonomous system, let X be the
m+1-manifold consisting of the point set for which ∀x�0,

V̇�x1 ,x2 , . . . ,xn�=0, and D is an n+1-manifold. If m+1+1
�n+1, i.e., m+1�n, then the equilibrium point of the sys-
tem is pragmatically asymptotically stable. Therefore, for
both autonomous and nonautonomous systems, the formula
m+1�n is universal. So the following proof is only for an
autonomous system. The proof for the nonautonomous sys-
tem is similar.

Proof: Since every point of X can be passed by a trajec-
tory of Eq. �A1�, which is one-dimensional, the collection of
these trajectories, C, is an �m+1�-manifold.16,17

If m+1�n, then the collection C is a subset of Lebesque
measure 0 of D. By the above definition, the equilibrium
point of the system is pragmatically asymptotically stable.

If an initial point is ergodicly chosen in D, the probabil-
ity of that the initial point falls on the collection C is zero.
Here, equal probability is assumed for every point chosen as
an initial point in the neighborhood of the equilibrium point.
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Hence, the event that the initial point is chosen from collec-
tion C does not actually occur. Therefore, under the equal
probability assumption, pragmatical asymptotical stability
becomes actual asymptotical stability. When the initial point

falls on D−C, V̇�x��0, the corresponding trajectories be-
have as that agree with traditional asymptotical stability be-
cause by the existence and uniqueness of the solution of the
initial-value problem, these trajectories never meet C.

The Lyapunov function is a positive definite function of
n variables, i.e., p error state variables and n− p=m differ-

ences between unknown and estimated parameters, while V̇
=eTCe is a negative semidefinite function of n variables.
Since the number of error state variables is always more than
one, p�1, m+1�n is always satisfied, by pragmatical as-
ymptotical stability theorem we have

lim
t→�

e = 0 �A5�

and the estimated parameters approach the uncertain param-
eters. Therefore, the equilibrium point of the system is prag-
matically asymptotically stable. Under the equal probability
assumption, it is actually asymptotically stable for both error
state variables and parameter variables.
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