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4.4 應力消除與電子束熱輸入量對旋形麻時效鋼銲件之影響 
 
4.4.1 試驗目的與流程 

 

經本論文4.2及4.3節研究實驗結果，C-250麻時效鋼經大量(79%)
旋形冷作加工(簡稱旋形麻時效鋼)及電子束銲接後，銲道為質軟之鑄

造組織，必須再以時效熱處理來強化材料的機械性質。然而，經一般

熱輸入量的電子束銲接後，直接施以時效強化熱處理，母材因加工硬

化及電子束銲道強化元素偏析作用，導致銲件的強度及延伸率嚴重降

低[11]，大幅限制了航太及國防科技的工程應用彈性。 
由研究文獻[2,8-11,15]及本論文 4.3 節的結果顯示，銲道強度降

低主要是強化合金元素的偏析作用所造成。吾推論可藉由減少電子束

銲接的熱輸入量來降低強化元素的偏析量，以提高銲道的強度。同時

也可應用消除加工應力的銲前製程，使原本大量旋形加工產生的內部

應力或結晶內的各種缺陷(空孔，格子間原子等)，因回復作用而消除

[86]。在以上雙重的作用效應下，同時獲得高強度及較佳的延展性。

因此，本節將規劃以高、低電子束能量進行銲接及銲前先消除加工應

力製程，經由實驗過程以獲得銲道內強化元素之偏析量及消除應力，

對旋形銲件的強度與延伸率的影響及關係，以研究解決延伸率嚴重不

足的瓶頸。 
實驗係將精密旋形(79%)無縫麻時效鋼管件置於1.3×10-2 Pa真空

環境，以不加填料的電子束銲接方式執行，其銲接條件設計區分為：

高熱輸入量(High thermal input, Hθ=66.5 J/mm)；低熱輸入量(Low 
thermal input, Lθ=50 J/mm)；銲前先對旋形管件施以 480℃/6h/AC 的

消除加工應力熱處理，再以低熱輸入量(Low thermal input, Lθ=49 
J/mm)之電子束銲接方式予以結合。隨後續對以上三種銲件施以

480℃/6h/AC 時效熱處理。其實驗程序如圖 4-35 所示。
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圖4-35 旋形麻時效鋼應力消除與不同電子束熱輸入量之實驗流程圖 
 
 
 
4.4.2 微硬度量測與顯微組織觀察  

 
圖 4-36 係旋形麻時效鋼經由電子束銲接後，量測其銲道與熱影

響區截面平均微硬度值分佈，曲線圖中顯示銲道呈現質軟之低碳麻田

散鐵，熱影響區硬度值則隨著接近母材而逐漸增高，原因係母材受到

銲接時熔融熱擴散影響，部份區域產生恢復與時效的作用。其中圖

4-36a 為高熱輸入量電子束銲接結果，圖 4-36b 為低熱輸入量電子束

銲接結果及圖 4-36c 為應力消除＋低熱輸入量電子束銲接結果。由於

高熱輸入量電子束銲接，導致銲道及熱影響區輸入過多的熱量而變寬

大。低熱輸入量電子束銲接及銲前應力消除＋低熱輸入量銲接結果，

銲道及熱影響區因熱輸入量較低，相對窄小許多。 
銲道部份：旋形件經不同條件電子束銲接後，銲道均呈現為鑄造

組織的顯微結構，且恢復至固溶退火處理的硬度值(如圖 4-36)。圖 4-37
～圖 4-40 為銲後銲道及熱影響區之 SEM。其中圖 4-37a 顯示，高熱

輸入量電子束銲道最大寬度約為 2.6 mm，高度約為 2.1 mm 比母材厚

度增加約 21%，這主要是過多的熱輸入量所導致。低熱輸入量電子束

銲道的最大寬度約為 2.0 mm，高度為 1.9 mm，如圖 4-39a 所示。應

力消除＋低熱輸入量電子束銲道的最大寬度約僅有 1.7 mm，高度亦為

1.9 mm 比母材厚度增加約 10%，如圖 4-40a 所示。由此可證，降低電
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子束的熱輸入量，對縮小銲道截面積有極大的貢獻。圖 4-37b、圖 4-39b
及圖 4-40b 顯示銲道呈柱狀與樹枝狀的麻田散鐵組織。圖 4-37c 及圖

4-37d 顯示為熔融銲道在冷卻時晶粒成長的前端，圖中為樹枝狀晶凸

端之顯微組織結構。圖 4-37e 顯示銲道在冷卻時具有不同的結晶方向

性顯微組織結構。 
粗晶區：熱影響區硬度值隨著尖峰溫度坡度降低而漸增，其緊鄰

銲道之低硬度熱影響區，因尖峰溫度接近熔點，使再結晶生成粗大的

麻田散鐵，如圖 4-38a、圖 4-39c 及圖 4-40c。此時冷作加工的殘留應

力已獲得釋放，如圖 2-19 所示，此區域銲接時受熱加溫至完全沃斯田

鐵相區，空冷後皆形成麻田散鐵組織，而為質軟且富有延性之特性。 
亮浸蝕區：此區的尖峰溫度比暗浸蝕帶高。然而，亮浸蝕區隨著

愈接近銲道，其尖峰溫度愈高，由於受到固溶溫度以上的溫度愈高及

時間愈長，再結晶晶粒會成長的非常迅速而粗大化。反之，愈接近暗

浸蝕帶區，則尖峰溫度愈低，漸漸有細微分散的逆變態沃斯田鐵相生

成，故此區域在經過腐蝕液之腐蝕後，可由顯微觀察到有空孔存在，

且愈來愈多，如圖 4-38b。 
暗浸蝕帶：熱影響區之暗浸蝕帶因銲接熱影響，其溫度範圍約為

600℃～730℃間的 α´+γ´雙相區內(圖 2-19)，主要為麻田散鐵組織及有

細微分散的沃斯田鐵相生成，經由浸蝕後此區域於金相觀察時，因凹

陷空孔處無反射光線而呈現黑色狀態，如圖 4-38c、圖 4-38d、圖 4-39d
及圖 4-40d 所示。暗浸蝕帶的寬窄及逆變態沃斯田鐵必須藉由擴散反

應方能完成，高熱輸入量的銲接過程在此一溫度區間停留的時間較

長，因此沃斯田鐵生成量較多及暗浸蝕帶亦較寬，如圖 4-37a 及圖

4-38d 所示，高熱輸入量電子束銲道熱影響區之暗浸蝕帶距離銲道中

心最大寬度約為 2.3 mm。低熱輸入量銲件的暗浸蝕帶距離銲道中心最

大寬度約為 1.5 mm，如圖 4-39a 所示。應力消除＋低熱輸入量的暗浸

蝕帶距離銲道中心最大寬度則僅有約 1.3 mm(圖 4-40a)，與高熱輸入

量銲件相比，暗浸蝕帶距離銲道中心最大寬度分別減少了 0.8 mm 及 1 
mm。這主要是低熱輸入量電子束銲接時所輸入的總熱量，比高熱輸

入量電子束銲接輸入總熱量減少約 26%所導致。
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圖4-36 旋形麻時效鋼電子束銲後硬度分佈：(a)高熱輸入量電子束銲接；

(b)低熱輸入量電子束銲接；(c)應力消除＋低熱輸入量電子束銲接
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圖4-37 旋形麻時效鋼高熱輸入量電子束銲道SEM：(a)銲道；(b)柱狀與樹枝

狀晶顯微組織結構；(c)樹枝狀晶凸端顯微組織結構；(d)樹枝狀晶

凸端放大之顯微組織結構；(e)銲道冷卻結晶之方向性顯微組織結構
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圖4-38 旋形麻時效鋼高熱輸入量電子束銲接熱影響區SEM。(a)粗晶區之粗

大板狀顯微組織結構；(b)亮浸蝕區(細晶區)顯微組織結構；(c)暗浸

蝕區之空孔顯微組織結構；(d)暗浸蝕區放大之空孔顯微組織結構
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圖4-39 旋形麻時效鋼低熱輸入量電子束銲件SEM：(a)銲道；(b)柱狀與樹枝

狀晶顯微組織結構；(c)粗晶區之板狀晶端顯微組織結構；(d)暗浸

蝕區顯微組織結構
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圖4-40 旋形麻時效鋼經應力消除＋低熱輸入量電子束銲件SEM：(a)銲道；

(b)柱狀與樹枝狀晶顯微組織結構；(c)粗晶區之板狀晶端顯微組織

結構；(d)暗浸蝕區顯微組織結構
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4.4.3 時效熱處理對不同熱輸入量銲件的影響 
 
旋形麻時效鋼分別經高熱輸入量、低熱輸入量及應力消除＋低熱

輸入量電子束銲接後，再施以480℃/6h/ AC時效熱處理，經量測微硬

度結果均已大幅提昇至50～55 HRC，而呈現非均勻水平的滴狀分

佈，如圖4-41所示。經以上三種不同銲接條件，其銲道量測硬度均明

顯低於母材約3～5 HRC，其主要原因是銲道之強化元素偏析及晶界

處有多量的逆變態沃斯田鐵池生成，以致銲道析出強化反應不完全。

熱影響區之各部位則有逆變態沃斯田鐵產生及過時效的因素所導

致，形成硬度微低於母材。母材則因先前加工硬化及析出強化的複合

效果下，其硬度達到最高值。 
麻時效鋼銲接後銲道內不會形成逆變態沃斯田鐵池(圖 4-42a)，但

銲後經 480℃時效熱處理之銲道組織，因 Ni、Mo 及 Ti 合金元素的偏

析，晶界處形成多量的逆變態沃斯田鐵池生成(圖 4-43)。在銲道凝固

過程中，溶質原子不斷地由成長中的樹枝狀晶端排出，所以在樹枝狀

晶端內區域偏析的情況最為嚴重，而沃斯田鐵池易於合金偏析處形成

[15]。因此旋形麻時效鋼銲後直接旋以時效熱處理，由於強化合金元

素的偏析作用，及沃斯田鐵池大量的奪取了基地的硬化元素，使銲道

的析出強化反應不完全，而導致銲道硬度降低約 4～5 HRC。經由 EDS
分析顯示銲道晶界間的逆變態沃斯田鐵池組織中，Ni、Mo 及 Ti 等合

金強化元素含量均高於銲道晶粒，如圖 4-42b 所示。銲道經 TEM 觀察，

內部組織主要為板條狀低碳麻田散鐵，在麻田散鐵板條晶界間有逆變

態沃斯田鐵生成。根據學者[15,65]對麻時效鋼銲道的 TEM 觀察研究，

此區域內含有較高的差排密度及少量的沃斯田鐵外，其餘皆與母材相

同之低碳麻田散鐵，如圖 4-44 所示。方法 
高熱輸入量電子束銲後再施以 480℃時效熱處理，經應用影像分

析輔助軟體(Image analysis method)計算結果，銲道內增加了 11%的逆變

態沃斯田鐵池，如圖 4-42b、圖 4-43a 及圖 4-43b 所示。此種時效硬化

的麻田散鐵包圍較軟的沃斯田鐵池對於銲件的靭性以及延性均有不

利的影響。圖 4-43c 為低熱輸入量電子束銲道時效後之 SEM。圖 4-43d
為應力消除＋低熱輸入量電子束銲道之時效後之 SEM，而且由實驗分

析結果顯示，銲道的柱狀與樹枝狀晶相對顯得小許多，銲道中的逆變

態沃斯田鐵池也已大幅減少約 55%，含量僅有約 5%。 
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圖4-41 旋形麻時效鋼電子束銲件時效熱處理後硬度分佈：(a)高熱輸入量

電子束銲接；(b)低熱輸入量電子束銲接；(c)應力消除＋低熱輸入

量電子束銲接
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圖 4-42 旋形麻時效鋼高熱輸入量電子束銲件及時效熱處理之銲道顯微組織

SEM；(a)未時效熱處理銲道；(b)時效熱處理銲道之逆變態沃斯田鐵池 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

圖4-43 旋形麻時效鋼電子束銲件經時效熱處理銲道之逆變態沃斯田鐵池

SEM：(a)高熱輸入量銲道；(b)高熱輸入量銲道內晶界間的逆變態

沃斯田鐵池；(c)低熱輸入量銲道；(d)應力消除＋低熱輸入量之

銲道

ba 
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圖4-44 麻時效鋼電子束銲件經480℃/6h/AC時效熱處理後銲道及晶界間逆

變態沃斯田鐵池之TEM：(a)銲道明視野；(b)銲道暗視野；(c)銲道

SADP；(d)晶界間逆變態沃斯田鐵池之明視野；(e)晶界間逆變態沃

斯田鐵池之暗視野(f)逆變態沃斯田鐵池之SADP
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4.4.4 機械性質測試結果與分析 
 
表 4-6 為旋形麻時效鋼經高熱輸入量、低熱輸入量及應力消除＋

低熱輸入量電子束銲接後之機械性質。高熱輸入量電子束銲件(FHθE)
之降伏強度(1000 MPa)與抗拉強度(1012 MPa)，平均延伸率為 2.3%。

低熱輸入量電子束銲件(FLθE)之降伏強度(995 MPa)與抗拉強度(1014 
MPa)，平均延伸率為 2.0 %。應力消除＋低熱輸入量電子束銲件(FSLθE)
之降伏強度(1237 MPa)與抗拉強度(1249 MPa)，平均延伸率為 2.5 %。

由以上結果得知，高熱輸入量銲件與低熱輸入量銲件的拉伸強度相

近，而應力消除＋低熱輸入量銲件的降伏及抗拉強度分別高出高熱輸

入量與低熱輸入量銲件約 24%及 25%，平均延伸率則分別高出約 9%
及 25%。 

以上三種不同電子束銲件經 480℃/6h/AC 時效熱處理後，其機械

性質如表 4-6 所示。經應力消除＋低熱輸入量電子束銲件(FSLθEA)
之降伏強度 (1947 MPa)與抗拉強度 (1996 MPa)，高於規範值約

14-15%，平均延伸率已大幅提升達 2.5%。與高熱輸入量銲件(FHθEA)
比較，其拉伸之降伏與抗拉強度分別提升 10%及 12%，平均延伸率更

大幅提升 108%。 
由以上研究實驗證明，高熱輸入量的電子束銲件因為過多的銲接

熱輸入量，導致銲道內強化合金元素的偏析作用，及過多的沃斯田鐵

池(11%)大量的奪取了基地的硬化元素，使銲道的析出強化反應不完

全，而導致銲道硬度降低。低熱輸入量的電子束銲件(FLθEA)雖然銲

道截面寬度比高熱輸入量銲道縮小約 13%，其拉伸之降伏與抗拉強度

分別提升 8%及 12%，但延伸率亦僅提高 8%。這主要是銲件的母材

原本為板條狀麻田散鐵組織，經大量旋形冷作加工作用下使晶粒纖維

化，以致在時效熱處理時，母材在旋形冷作的殘留應力、晶粒纖維化

及析出強化之複合作用下，強度大幅提升，以致旋形銲件在拉伸時，

相對較弱的銲道優先破斷，亦造成延伸率大幅下降。依據研究學者文

獻，麻時效鋼在標準時效溫度(480℃)，經過長時間的時效熱處理，

對硬度[2]及拉伸強度[43]仍然不會有負面的影響。特別是 K. V. 
Rajkumar 等學者研究[52]，C-250 級麻時效鋼經 482℃時效處理時，
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逆變態沃斯田鐵的數量在時效 40 小時以前呈現平坦的曲線，且硬度

則逐漸增加，在時效達 70 小時後才有 5%逆變態沃斯田鐵生成，如圖

2-17 所示。 
因此，高縮減率的旋形銲件，在銲前先施以應力消除的時效熱處

理製程，以消除銲件因大量旋形冷作加工，晶粒轉為緻密糾結的纖維

狀結構所產生的加工應力。使原本大量旋形加工產生的內部應力或結

晶內的各種缺陷(空孔，格子間原子等)，因回復而局部消除以獲得原

來的安定格子排列。並且利用降低熱輸入量電子束銲接，以減少銲道

內強化合金元素的偏析及減少逆變態沃斯田鐵池生成，以提升銲道的

析出強化反應。後續利用再時效熱處理對銲道及熱影響區進行強化處

理，在雙重的效應下同時獲得高強度及較佳的延伸率。 
此優異的結果可由實驗試片獲得證實，如圖 4-45 顯示，應力消

除＋低熱輸入量電子束銲件拉伸試片所殘留的頸縮(Necking)現象發

生在銲道兩側的母材。並由圖 4-46 所示，實驗之應力與應變曲線可

證明相對延伸性。由此可見，先行消除旋形加工應力的熱處理及降低

電子束銲接的熱輸入量，對旋形麻時效鋼電子束銲件之拉伸強度及延

伸率有極大的貢獻。 

 
 

表4-6 旋形麻時效鋼高熱輸入量、低熱輸入量及應力消除＋低熱輸入量電子

束銲件之機械性質 

Sample code Process (Fromed→) 
YS (MPa) 

(0.2% Offset) 
UTS (MPa) 

Elongation (%) 
(Gage 50.8 mm)

AMS 6520D 
FHθE 
FLθE 
FSLθE 
FHθEA 
FLθEA 
FSLθEA 

 
EBW(Hθ) 
EBW(Lθ) 
Stress relieving→EBW(Lθ) 
EBW(Hθ)→Aging 
EBW(Lθ)→Aging 
Stress relieving→EBW(Lθ)→Aging 

1689 
1000 
 995 
1237 
1777 
1917 
1947 

1758 
1012 
1014 
1249 
1781 
1918 
1996 

2.5* 
2.3 
2.0 
2.5 
1.2 
1.3 
2.5 

Note: * Nominal thickness 1.65 - 2.29 mm.
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圖 4-45 銲前應力消除＋低熱輸入量電子束銲件拉伸實驗試片頸縮之 SEM 
 
 
 
 
 
 
 
 
 
 
 
圖 4-46 高熱輸入量、低熱輸入量及應力消除＋低熱輸入量電子束銲件之

應力應變曲線 
 
 

4.4.5 拉伸破斷面觀察與分析 
 

圖 4-47～圖 4-49 為旋形麻時效鋼經高熱輸入量、低熱輸入量及

應力消除＋低熱輸入量電子束銲接後之拉伸試片破斷相。由於銲後尚

未時效熱處理，銲道為質軟富有延性之低碳麻田散鐵與少量沃斯田鐵

組織結構，在受到拉伸應力時由相對較弱的銲道開始破裂，如圖

4-47a、圖 4-48a 及圖 4-49a 所示。 
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圖 4-47a 左上角拉伸破斷相顯示，高熱輸入量的電子束銲接時因

過多熱輸入量，使熱影響區因持續長時間處在高溫的沃斯田鐵相區，

造成粗晶區更為寬大，其強度已下降僅微高於銲道(如圖 4-41a 所示)。
隣近的母材也受到熱擴散影響，已產生時效的現象，導致此處的強度

微高於母材。因此，銲件受到拉伸作用時，寬大的熱影響區亦同時發

生變形。同時也可由破斷的銲道 SEM 可證，均為粗大的延性旋渦狀

顯微組織結構。圖 4-48a 及圖 4-49a 左上角顯示，銲道均呈現大幅頸

縮的延性破斷形態，銲道兩側均呈現為明顯大的剪唇區(Shear-lip 
zone)，這主要是因為低熱輸入量的電子束銲接，使熱擴散影響降到

最低。熱影響區則受到銲接熔融熱擴散效應的影響，已產生輕微的時

效硬化作用，以及母材受到大量旋形冷作加工硬化，及銲前先施以

應力消除熱處理，兩者強度均相對比銲道高所導致。由 SEM 顯微觀

察狹窄細長的破斷表面，兩者均呈現漩渦狀之延性破斷相。 
圖 4-47b、圖 4-48b 及圖 4-49b 為旋形麻時效鋼經高熱輸入量、低

熱輸入量及應力消除＋低熱輸入量電子束銲接後，再施以時效熱處理

之拉伸試片巨觀破斷相與 SEM 顯微觀察。由銲件破斷的巨觀觀察顯

示，均呈現類似準劈裂面破斷形態。其中圖 4-49b 左上角顯示之箭頭

處，銲前消除應力＋低熱輸入量的電子束銲件拉伸破斷試片，有明顯

代表延性的頸縮變形現象，此結果同時也可由圖 4-45 可證。由 SEM
顯微破斷面觀察，均為延性的漩渦狀組織結構。其中圖 4-48b 的 SEM
顯微破斷面觀察顯示，漩渦狀均呈現比較淺的破斷形態，為低延性的

漩渦狀組織結構。相對代表延性破斷面的顯微組織顯示在圖 4-49b，
由 SEM 觀察可明顯的看到，均呈現為代表延性佳的漩渦狀顯微組織

之破斷形態，由此結果證明經銲前消除應力＋低熱輸入量的電子束銲

接製程，可有效的提升銲件強度，並同時可解決延伸率不足的瓶頸。
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圖 4-47 高熱輸入量電子束銲道 OM 及 SEM 破斷顯微組織結構：(a)銲接

後；(b)銲後時效熱處理 
 
 
 
 
 
 
 
 
 
圖 4-48 低熱輸入量電子束銲道 OM 及 SEM 破斷顯微組織結構：(a)銲接

後；(b)銲後時效熱處理 
 
 
 

 
 
 
 
 

圖 4-49 應力消除＋低熱輸入量電子束銲道 OM 及 SEM 破斷顯微組織結

構：(a)銲接後；(b)銲後時效熱處理
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4.4.6 本節結論 
 

1. C-250 麻時效鋼經高熱輸入量電子束銲接後，銲道內由於合金成份的

偏析，會使逆變態沃斯田鐵生成溫度降低，導致在正常的 480℃時效

熱處理後，經應用「影像分析輔助軟體」計算結果，在銲道晶界處生

成多量(11%)的逆變態沃斯田鐵池，使強度及延伸率降低，對銲件機

械性質造成負面的影響。 
2. 高熱輸入量電子束銲接之銲道因強化合金元素的偏析作用，及沃斯

田鐵池大量吸取基地的硬化元素，使銲道的析出強化反應不完全，

而導致銲道硬度降低約為 4～5 HRC。 
3. 79%旋形麻時效鋼經高熱輸入量電子束銲接及時效熱處理後，其降伏

強度與抗拉強度均滿足規範規格值，延伸率(1.2%)卻僅有規範值的

48％，與母材時效後(2.9%)相比降幅達 59%。 
4. 經降低電子束 26%熱輸入量，可有效的縮小銲道及熱影響區約 35%

及 44%的截面積。 
5. 銲前消除加工應力及減少電子束 26%熱輸入量，經時效熱處理後，

銲道內的逆變態沃斯田鐵池含量已下降至 5%以下，大幅減少約

55%。可提升拉伸強度約 10-12％，最值得關注的平均延伸率可大幅

提升 108％，符合規範值規格 2.5%。 
6. 銲前消除加工應力＋低熱輸入量的電子束銲接製程之拉伸破斷面，

由 SEM 觀察均呈現為代表延性佳的漩渦狀顯微組織之破斷形態。 
7. 在工程應用設計上建議，經高旋形加工量的麻時效鋼，可採用銲前

480℃消除加工應力＋低(49 J/mm)電子束銲接熱輸入量＋480℃時效

熱處理製程，以獲得最佳的機械性質與應用彈性。
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4.5 電子束預熱及續熱對旋形麻時效鋼銲件的影響  
 
4.5.1 試驗目的與流程  

 
經本論文4.3節研究結果，C-250麻時效鋼經大量(79%)旋形

冷作加工及電子束銲接後，直接施以時效熱處理，因加工硬化

及銲道合金元素偏析作用及多量逆變態沃斯田鐵池生成，導致

銲件的強度及延伸率嚴重降低。經4.4節的研究可利用消除加工

應力與低熱輸入量電子束銲接製程技術，解決延伸率不足的瓶

頸。然而，銲道因偏析及逆變態沃斯田鐵池而強化不完全，銲

件的破斷位置仍發生在銲道內。  
銲道強化元素的偏析是在銲道凝固過程中，溶質原子不斷

地由成長中的樹枝狀晶端排出，而沃斯田鐵池易於合金偏析處形

成。因此，推論藉由銲接前、後施以熱處理製程，以減緩凝固速率

來減少強化元素的偏析量或再溶回基地內，同時可產生再結晶作

用以增加銲道與熱影響區的機械性質。因此，本節設計規劃以消

除加工應力之79%旋形麻時效鋼，分別以三種不同電子束熱處

理及銲接製程進行研究：(1)銲前先以低熱量電子束在工件預定

銲接處施以預熱處理，隨後即進行電子束銲接；(2)電子束銲接

後，隨即以低熱量之電子束在銲道處施以續熱處理；(3)電子束

銲接前、後均以低熱量電子束在銲接處施以預、續熱處理。藉

由以上三種不同預、續熱銲接及時效熱處理製程，研究低熱量

電子束熱處理，對銲道與熱影響區之顯微組織及機械性質影響

進行研究，以解決C-250麻時效鋼經79%旋形冷作加工及電子束

銲接後延伸率嚴重偏低的窘境。 

實驗係將旋形麻時效鋼管件置於 1.3×10-2 Pa 真空環境中，

以不加填料的電子束銲接方式執行，其銲接條件設計區分為銲

接之熱輸入量 (θ=49 J/mm)、銲前預熱及銲後續熱之低熱量

(Lθ=19 J/mm)。接著後續再對以上銲件施以 480℃ /6h/AC 時效

熱處理。本試驗係以全尺寸實體試件進行研究實驗，以尋得最

適化之製程，其結果將可提供後續工程設計與研製之建議與參

考，實驗程序如圖 4-50 所示。  
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圖4-50 C-250旋形麻時效鋼之電子束預熱 /續熱銲接實驗流程圖 

 

 

 

4.5.2 微硬度量測與顯微組織觀察  
 

1. 電子束銲前預熱  
 

 
旋形麻時效鋼於電子束銲接前，先以低熱量之電子束在預

定銲接處施以預熱處理，隨後即進行電子束銲接。經量測銲道

與熱影響區截面平均微硬度值，呈現如碗狀的分佈形態，如圖

4-51所示。銲道由熔融冷卻為質軟之低碳麻田散鐵的鑄造組

織。熱影響區硬度值則隨著離開銲道間距之增加而逐漸增高，

且變的很寬大，最外側的暗浸蝕區距離銲道中心最大寬度約有7
～8 mm，如圖4-52所示。若與直接電子束銲接件相比寬大許多

(圖4-39)，其原因係母材受到銲前預熱之熱輸入，及銲接熔融熱

擴散作用所影響，部份區域已產生晶粒長大、再結晶、過時效、

時效之作用，形成不等的硬度分佈。  
銲道部份：旋形麻時效鋼雖然經過銲前預熱處理，在正式銲接

後，銲道仍呈現類似鑄造組織，銲道中間亦為不明顯的樹枝狀

與柱狀晶顯微組織結構(圖4-53a)，接近熔融線則為等軸晶之混

合組織。其銲道最大寬度約為2.1 mm，比一般銲接件微大。由

於銲前先行預熱處理所輸入的熱量，與後續銲接的熔融熱產生
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複合效應，無法即時有效的擴散冷卻，在銲道處停留過久，導

致銲道的晶粒有擴大與部份晶界不明顯的現象，並在晶界間已

有逆變態沃斯田鐵生成。然而，因銲接使銲道由熔融狀態再慢

慢冷卻，故恢復至未旋形加工前固溶退火處理的硬度值。  
粗晶區：此區域主要受到銲前預熱與銲道熔融熱之擴散效應影

響，使再結晶呈現較粗大的麻田散鐵顯微組織結構，且面積範

圍比一般電子束銲接件寬大許多。但受到先前預熱的影響，熔

融線呈現較不明顯的現象，如圖4-53b所示。母材受到先前預熱

溫度已逹再結晶溫度以上，原本受到高壁厚縮減率的旋形冷作

加工作用，所產生的纖維狀組織結構已再結晶及長大，在隨後

銲接時所輸入的溶融熱擴散作用影響，產生複合的作用，以致

晶粒成長比一般直接銲接件大，如圖4-53c所示。緊鄰著粗晶區

之次粗晶區亦因熱擴散輸入效應，使本區域變得寬大及明顯，如

圖4-53d所示。  
亮浸蝕區：此處為熱影響區最寬大的區域，主要是因先前預熱之熱輸

入及熔融熱擴散作用，使尖峰溫度坡度較緩和所導致。由於先前預

熱溫度的擴散作用，產生不同漸次的時效硬化效果，且有細微分散的

逆變態沃斯田鐵相生成，故此區域在經過腐蝕液之腐蝕後，可由顯微

觀察到等軸晶與晶界有空孔存在，如圖 4-53e 所示。 
暗浸蝕帶：由圖4-52觀察，此區域同樣受到先前預熱的影響作

用，距離銲道相當的遠，約有7～8 mm。因過多的熱量輸入及

滯留時間較長，使本區域變的比一般直接銲接件寬大許多。當

正式銲接時，原本正常會出現在銲道兩側附近(0.5～1 mm)的暗

浸蝕帶，因不及先前預熱的溫度而未能發生作用，如圖4-53f所
示。 
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圖4-51 旋形麻時效鋼電子束銲前預熱之微硬度分佈圖  
 
 

  
 

 
 

 
 

 
 

圖4-52 旋形麻時效鋼銲前預熱之銲道與熱影響區OM金相圖
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圖4-53 旋形麻時效鋼電子束預熱與銲接之銲道與熱影響區OM金相

圖：(a)銲道；(b)熔融線與粗晶區；(c)粗晶區；(d)次粗晶區；

(e)亮浸蝕區；(f)暗浸蝕區  
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2. 電子束銲後續熱處理  
 

旋形麻時效鋼經電子束銲接後，隨即以低熱量電子束在銲

道處施以續熱處理。經量測銲道與熱影響區截面平均微硬度

值，如圖4-54所示，銲道與熱影響區呈現如杯狀的分佈形態。

銲道最大寬度約為1.7 mm，熱影響區硬度值則受到銲後續熱之

熱擴散影響，隨著離開銲道間距之增加而逐漸增高，距離銲道

中心最大寬度約有3～4 mm(圖4-55)。若與銲前預熱(圖4-51)相
比較，熱影響區寬度約減少57%。  

由電子顯微鏡觀察，銲道與熱影響區比銲前預熱處理銲件

來的清楚，銲道中間大部份為樹枝狀與柱狀晶顯微組織結構(圖
4-56a及4-56b)。由於銲後續熱處理對材料有直接時效的作用，

原本為質軟的銲道組織經續熱後，已產生初期的時效，硬度值

已提高至約39～42 HRC之間(如圖4-54)。  
粗晶區同樣受到銲道熔融熱的影響，熔融線呈現較不明顯

的現象(圖4-56c)，晶粒有粗大化現象，面積範圍比一般電子束

銲接件微大。且因續熱的作用，在粗晶與細晶之部分區域有細

微分散的逆變態沃斯田鐵相生成(圖4-56d)。亮浸蝕區也因為銲後續

熱輸入作用，有多量的逆變態沃斯田鐵相生成(圖4-56e)。暗浸蝕帶

也受到過多的熱量輸入及停留時間較長，由電子顯微鏡觀察更

明顯，如圖4-56f所示。  
由圖4-57顯示，熱影響 (沃斯田鐵相區 )之析出相區，此區

域受到銲後續熱的影響，有分散的析出物產生，如圖4-57a所
示。圖4-57b為圖4-57a局部放大圖。由圖4-57c顯示，原本母材

基地之粗大板條狀晶粒，經高旋形冷作加工，晶粒變形為纖維

狀結構(圖4-3c及圖4-5)，已因銲後續熱之熱量輸入作用，產生

回復及再結晶，基地已形成均勻細小的晶粒。  
導致此現象主要形成的原因，是材料的開始再結晶溫度隨

著加工度愈大則愈低，且在退火後獲得較細的晶粒，反之加工

度小則需較高的溫度才開始再結晶，且於高溫退火時，其晶粒

變為粗大。因此，經由大量的冷作加工有助於晶粒細化及改善
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0.5 mm 

次 粗 晶 區  粗 晶 區亮浸蝕區  暗 浸 蝕 帶 銲 道  

其機械性質。圖4-57之SEM觀察顯示，經銲後再以低熱量的電

子束續熱作用，使銲件基地已產生再結晶的現象。圖4-57c中箭

頭1及2所指為析出晶粒的初期孕核相。圖4-57d為圖4-57c箭頭d
所指之析出晶粒，由圖4-57d之SEM 25k倍率放大圖如箭頭3所
指位置證明，析出晶粒是由基地析出成長而成。  

 
 
 
 

 

 

 

 

 

 

 

 

 

圖4-54 旋形麻時效鋼電子束銲後續熱之微硬度分佈圖  
 

 

 

 

 

 

 

 

 

圖4-55 旋形麻時效鋼電子束銲後續熱之銲道與熱影響區SEM
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圖4-56 旋形麻時效鋼電子束銲後續熱之銲道與熱影響區SEM金相

圖：(a)銲道中心；(b)柱狀與樹枝狀晶；(c)熔融線與粗晶區；

(d)細晶區；(e)亮浸蝕區；(f)暗浸蝕區
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圖4-57 順流旋形C-250後電子束銲後續熱之析出物SEM金相圖：(a)

熱影響區(沃斯田鐵相區)之析出相區；(b)局部放大圖；(c)基
地晶粒已細化、孕核、晶粒成長及析出物相；(d)晶粒由基地

析出相  
 
 
 
 

3. 電子束預熱與續熱處理  
 

旋形麻時效鋼銲接前，先以低熱量電子束在預定銲接處施

以預熱處理後，隨即進行銲接，隨後再以低熱量電子束在銲道

處施以續熱處理。經量測銲道與熱影響區截面平均微硬度值，

如圖4-58所示，銲道與熱影響區呈現如碗狀的分佈。銲道最大

寬度約為2.1 mm，熱影響區硬度值則隨著離開銲道間距之增加

而逐漸增高，距離銲道中心最大寬度約有8～9 mm(圖4-59)，與

預熱銲接件大致相同。  
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0.5 mm 

次 粗 晶 區 粗 晶 區亮浸蝕區暗 浸 蝕 帶 銲 道  

由於受到銲前與銲後過多的熱量輸入，導致銲道內的晶粒

變的比較粗大，但仍為鑄造組織形態 (圖4-60a)，銲道硬度維持

在約30.5～32.5 HRC之間 (圖4-58)。熔融線同樣也比較不明顯

(圖4-60b)。粗晶區同樣呈現為粗大化現象，面積範圍比銲前預

熱銲接件大一些，因為續熱的作用，部分區域有細微分散的逆變

態沃斯田鐵相生成。相鄰的細晶區因預熱與續熱之雙重熱擴散作用，

面積變的更寬大(圖4-60c)。亮浸蝕區與暗浸蝕帶也因為受到過多

的熱量輸入及停留時間較長，亦生成多量的逆變態沃斯田鐵(圖
4-60d及圖4-60e)。  

 
 

 

 

 

 

 

 

 

 

 

圖4-58 旋形麻時效鋼電子束預熱與續熱之微硬度分佈圖  
 

 

 

 

 

 

 

 

圖4-59 旋形麻時效鋼電子束預熱與續熱之銲道與熱影響區SEM
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圖4-60 旋形麻時效鋼電子束預熱與續熱之銲道與熱影響區SEM金相圖：(a)
銲道；(b)熔融線與粗晶區；(c)細晶區；(d)亮浸蝕區；(e)暗浸蝕區 
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4.5.3 時效熱處理對銲件微硬度與顯微組織的影響 
 

1. 旋形(電子束預熱)銲件時效熱處理 
 

旋形麻時效鋼經電子束銲接前，先以低熱量電子束在預定銲接處

施以預熱處理，隨後即進行電子束銲接，經480℃/6h/AC時效熱處理

後，量測微硬度結果顯示，銲道與原先寬大的熱影響區均已提升至50
～55 HRC，而呈現非均勻如「M」型的分佈，如圖4-61所示。銲道處

比熱影響區之粗晶與細晶區微低，然而硬度最低是落在熱影響區兩側

的暗浸蝕區。銲道硬度微低之原因，係銲道內強化元素偏析及晶界處

有多量的逆變態沃斯田鐵池生成所導致。最低硬度之暗浸蝕區是因為

在預熱時，過多的熱量輸入及停留的時間較長，使此α´+γ´雙相區域的

面積擴大，生成多量細微的逆變態沃斯田鐵。 
圖4-62為旋形麻時效鋼經電子束銲前預熱後，加以時效熱處理之

銲道與熱影響區OM金相圖。圖4-62a及圖4-62b為銲道中心之柱狀及樹

枝狀晶結構，晶界間因時效熱處理後，所形成之逆變態沃斯田鐵池。

由於預熱與銲接熱的複合作用，導致銲道、熱影響及亮浸蝕區在600℃
～730℃溫度區間停留過久，而有足够的時間進行α´+γ´雙相反應，在

時效後經由浸蝕之金相呈現分散細小的黑色空孔，主要為麻田散鐵組

織與細微分散的逆變態沃斯田鐵相(圖4-62a～圖4-62d)。圖4-62c為熔

融線及粗晶區，因緊鄰銲道處有較高的沃斯田鐵化溫度，導致晶粒為

粗大的麻田散鐵組織。 
 

 
 
 
 
 
 
 

 
圖4-61 旋形(電子束預熱)銲件時效熱處理之微硬度分佈圖
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圖4-62d為亮浸蝕區，此區域因先前預熱處理之熱量輸入影響，

晶粒細小但變得較寬長，是因為預熱時已加熱至沃斯田鐵化溫度，

導致纖維狀晶粒已再結晶及成長粗大化的麻田散鐵組織。經由浸蝕

後金相呈現有分散細小的黑色空孔，主要為麻田散鐵組織及有細微

分散的逆變態沃斯田鐵相。圖4-62e為暗浸蝕帶。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

圖 4-62 旋形(電子束預熱)銲件時效強化熱處理之銲道與熱影響區 OM 金

相圖：(a)銲道中心之柱狀與樹枝狀晶；(b)晶界間之逆變態沃斯田

鐵池；(c)熔融線與粗晶區；(d)亮浸蝕區；(e)暗浸蝕區
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2. 旋形(電子束續熱)銲件時效熱處理 
 

旋形麻時效鋼經電子束銲接後，隨即以低熱量電子束在銲道處

施以續熱處理，經時效熱處理後量測微硬度結果，銲道與熱影響區均

已提升至51～55 HRC，而呈現非均勻如「M」型的分佈，如圖4-63
所示。 

圖4-64為旋形麻時效鋼電子束銲後續熱，及時效熱處理之銲道與

熱影響區電子顯微鏡圖片。圖4-64a及圖4-64b顯示，銲道中心為柱狀

及樹枝狀晶顯微結構，晶界間因時效熱處理後形成之逆變態沃斯田鐵

池。圖4-64c顯示為銲道左下方靠近熔融線區域，呈現水平方向排列

如葉片之長軸晶粒，其形成原因是緊鄰母材急冷作用，及下方熔融熱

停留時間比表面久，導致散熱速率較慢而形成，這種現象也可由銲道

下方兩側的粗晶區，比上方來的寬大可證明。圖4-64d顯示，銲道中

心下方形成微下凹的樹枝狀晶排列，其所形成的原因是銲道在冷卻

時，下方除了散熱速率比較慢及熔融熱停留時間比表面久，銲道熔融

金屬受到電子束撞擊力及重力下沉所造成的。圖4-64e顯示為熔融線

及粗晶區。圖4-64f為暗浸蝕區。 
 
 

 
 
 
 
 

 
 
 

 
 

圖4-63 旋形(電子束續熱)銲件時效熱處理之微硬度分佈圖 
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圖 4-64 旋形(電子束續熱)銲件時效

強化熱處理之銲道與熱影響區顯微組

織 SEM：(a)銲道中心；(b)銲道晶界

間之逆變態沃斯田鐵池；(c)銲道下方

左側之長軸晶；(d)銲道正下方之樹枝

狀晶；(e)銲道左側熔融線與粗晶區；

(f)暗浸蝕區
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圖4-65顯示，銲件熔融線因銲接後隨即續以沃斯田鐵化(γ)溫度

續熱作用，在部份熔融線區的銲道組織與粗晶區之晶粒因熱擴散作

用，晶界已擴散結合長大。圖4-65b顯示為圖4-65a之電子顯微鏡微觀

放大圖，熔融線的細小晶界已漸消失。圖4-65a中箭頭C所指的區域

顯示熔融線已消失。 

 
 
 
 

 
 
 
 
 
 
 
 

圖 4-65 旋形(電子束續熱)銲件時效強化熱處理之銲道熔融線顯微組織

SEM；(a)熔融線；(b)熔融線放大圖 
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3. 旋形(電子束預熱、銲接與續熱)銲件時效硬化處理 
 

旋形麻時效鋼經電子束銲前預熱、銲後續熱處理後，施以時效

熱處理強化其機械性質。經微硬度量測結果顯示，銲道與熱影響區

均提昇至50～55 HRC，而呈現非均勻「M」型的分佈，如圖4-66所
示。由於銲道及熱影響區受到銲前預熱及銲後續熱處理，導致過多

的熱量輸入影響，微硬度比電子束銲後續熱條件微低。 
圖4-67a顯示，銲道中心為樹枝狀晶粒結構，晶界間因時效熱處

理後形成之逆變態沃斯田鐵池。圖4-67b顯示，銲道與粗晶區之熔融

線，由於預熱與續熱過多的熱量輸入與熔融熱擴散作用，熔融線之

部份晶粒已成長形成一體而不明顯。圖4-67c顯示，粗晶區因過多的

熱量輸入使晶粒成長變得更粗大。圖4-67d顯示，亮浸蝕區也因過多

的熱量輸入使晶粒成長且面積寬大。圖4-67e顯示，暗浸蝕區同樣因

過多熱量輸入影響，使此區域變得更寬大。 

 

 

 

 

 

 

 

 

 

 

 

 

圖4-66 旋形(電子束預熱與續熱)銲件時效熱處理之微硬度分佈圖 
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圖 4-67 旋形(電子束預熱與續熱)銲件時效熱處理之銲道與熱影響區顯微

組織 OM：(a)銲道晶界間逆變態沃斯田鐵池；(b)熔融線；(c)粗晶

區；(d)亮浸蝕區；(e)暗浸蝕區 
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4.5.4 機械性質測試結果與分析 
 

表4-7為旋形麻時效鋼之電子束預熱及續熱銲接之機械性質。實

驗結果顯示，經由電子束銲前預熱(FHE)及銲後續熱(FEH)之拉伸機械

性質相近，就降伏強度與抗拉強度而言，銲後續熱的強度比銲前預熱

條件僅高約1%，這主要是因為銲後續熱程序對銲道產生初期的時效作

用，硬度值已提高至約39～42 HRC之間(圖4-54)。相對的，銲後續熱

條件(2.4%)之延伸率比銲前預熱(2.7%)微低約11%。然而，經由電子束

銲前預熱及銲後續熱處理(FHEH)之降伏強度與抗拉強度，因在銲道輸

入過多的熱量，以致拉伸強度比較低，銲件的延伸率亦提升至(3.4%)。 
旋形麻時效鋼經電子束銲前預熱及銲後續熱不同製程後，再經標

準時效熱處理結果，拉伸強度均可滿足AMS 6520D規範規格。經實驗

結果顯示，電子束銲前預熱(FHEA)及銲接前、後熱處理(FHEHA)之時

效熱處理後，平均延伸率亦未達規範規格(2.2%)，為標準規範值的88
％，與先前研究結果(1.2％)相比較亦大幅提升77％。經由電子束銲後

續熱及時效熱處理(FEHA)，雖然延伸率未符合規範規格(2.5%)，但平

均值已逹2.4%，為標準規範值的96％。這主要是由於麻時效鋼經過大

量的旋形冷作加工，在銲後續熱處理時已因先前加工量，促使在較低

溫的續熱溫度，已開始產生再結晶細化現象，由圖4-57高倍率SEM顯

微觀察銲件熱影響區基地，均已再結晶為微小細晶粒的形態，且晶粒

平均尺寸約為0.2～0.4 μm。符合Hall-Petch理論[89]，以晶粒細化之尺

寸大小在0.3～400 μm之間的BCC金屬材料，作為提升材料的強度、塑

性和韌性的方法。並經由改變破斷位置於相對強度較低及已晶粒細化

的暗浸蝕區，同時獲得較佳的強度及延伸率。此結果亦可由圖4-68應
力與應變曲線圖證明其優異的延伸性。與先前研究[11]結果(1.2％)相
比較，大幅提升100％。 

對降伏強度與抗拉強度而言，各種不同製程之旋形銲件經時效熱

處理結果，均可滿足規範規格。若在工程應用上，以降伏與抗拉強度

需求值考量，則以電子束銲前預熱及時效熱處理製程為最高，其中降

伏與抗拉強度分別高於規範值14%及10%。若以旋形銲件之延伸率考

量，則以電子束銲後續熱及時效熱處理製程為最佳，其延伸率已逹標
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準規範值的96％，且降伏與抗拉強度分別高於規範值13%及9%。然

而，銲接前、後熱處理銲件因在銲接過程中，已輸入過多的熱量，使

熱在α´+γ´雙相區停留過久，導致強度下降。經以上之研究與實驗結

果，在工程應用設計上，吾建議以整體機械性質及銲件的熱影響區較

小為考量，以銲後續熱製程為主要選擇應用方法。 
 
 
 

表4-7 旋形(電子束預熱、續熱)銲件時效熱處理之機械性質 

Sample code Process (Fromed→Stress relieving →) 
YS (MPa) 

(0.2% Offset) 
UTS (MPa) 

Elongation (%) 
(Gage 50.8 mm) 

AMS 6520D 
FHE 
FEH 
FHEH 
FHEA 
FEHA 
FHEHA  

 
EB Heating→EBW 
EBW→EB Heating 
EB Heating→EBW→EB Heating 
EB Heating→EBW→Aging 
EBW→EB Heating→Aging 
EB Heating→EBW→EB Heating→Aging 

1689 
1234 
1249 
1196 
1926 
1900 
1795 

1758 
1255 
1267 
1238 
1941 
1917 
1850 

 2.5* 
2.7 
2.4 
3.4 
2.2 
2.4 
2.2 

Note: * Nominal thickness 1.65 - 2.29 mm. 
 

 

 

 

 

 

 
 
 
 

 

圖4-68 旋形(電子束預熱、續熱)銲件及時效熱處理之應力應變曲線圖
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4.5.5 拉伸破斷面觀察與分析 
 

1. 旋形(電子束預熱)銲件時效熱處理 
 

圖4-69 為旋形麻時效鋼經電子束銲前預熱及時效熱處理之拉伸

試片破斷面。圖4-69a 係經時效熱處理後之OM巨觀破斷面，其破斷

的位置距銲道中心約7～8 mm，顯示在銲前預熱時過量的熱輸入所影

響，在破斷處形成頸縮的延性破斷形態。圖4-69b 則為SEM的巨觀截

面破斷相，呈現類似準劈裂破斷面。圖4-69c 為不規則且有高、低落

差大的破斷現象，顯示在此區域預熱時有過時效的現象，而發生逆

變態沃斯田鐵相所影響。圖4-69d 為拉伸試驗時形成的二次裂縫。圖

4-69e 顯示空洞內之集中物，經EDS成份分析為Ti與Al元素含較多之

偏析物，在拉伸時因強度比較弱，形成破裂的啓始弱點，且留下孔

空。圖4-69f 為延性的漩渦狀組織，在此區域的漩渦內經SEM以30K
高倍率觀察發現，在延性破斷之晶界處均已有成核的發生，並經EDS
分析成份與母材相同，此表示，此區域的溫度已逹再結晶溫度。 

核的形成在再結晶過程中，形成了一組完全新的晶粒，新晶體

在高晶格應變能處成核，諸如滑移線的交叉處、形變雙晶的交叉處、

接近晶粒邊界的地方。不管在那一種情形都顯示出成核發生在大的

晶格曲率處。而且彎曲的或扭曲的單晶比已經扭曲的或未彎曲的、

未扭曲的晶體更易[98]再結晶化。J. E. Bailey等學者[99] 提出一個可

以用到多晶形晶體的典型機構，在一個冷加工金屬中，如果晶粒邊

界的兩邊有一個差排密度的差值，則在退火期間晶粒比較完美的這

個部份，將移向比較不完美的晶粒，這個驅使力就是來自跨於邊界

上的應變能差值。這個將由於晶界的向前移動形成一個凸出而完

成，如圖4-69f 所示。邊界的移動將掃掉在路徑上的差排，所以產生

了一個小的、沒有應變的晶體。
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圖4-69 旋形(電子束預熱)銲件時效熱處理之拉伸OM及SEM破斷面：(a)為

OM巨觀破斷面 ;(b)為SEM巨觀破斷面 ;(c)為過時效不規則破斷

相；(d)二次裂縫；(e) Ti與Al元素偏析之空洞；(f)漩渦晶界處之成

核相
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2. 旋形(電子束續熱)銲件時效熱處理 
 

圖4-70 為旋形C-250麻時效鋼經電子束銲後續熱及時效熱處理

之拉伸試片破斷面。圖4-70a 係經時效熱處理後之OM巨觀破斷面，

其破斷的位置距銲道中心約3～4 mm，顯示在銲後續熱時之熱輸入所

影響，在破斷處形成頸縮的現象，為延性破斷形態。與銲前預熱銲件

相比較，銲道中心至破斷處之距離約少4 mm，此顯示續熱製程對銲

道的影響較小。由表4-7 及圖4-68 顯示其延性之機械性質為最佳。圖

4-70b 則為SEM的巨觀截面破斷相，呈現類似準劈裂破斷面。圖4-70c 
顯示為α´+γ´雙相區內佈滿空孔之破斷相，顯示在此區域續熱時，因熱

量的輸入將熱影響區的暗浸蝕區已向外推移。 
就銲件結構強度而言，因銲道受到續熱時產生時效及後續時效之

複合作用，又因暗浸蝕區的顯微結構組織比較弱，導致低於銲道的強

度，在拉伸作用力下，由此處的微細空孔開始變形，進而推展至整體

材料截面積縮小形成縮頸，最終形成破斷(如圖4-71a)。圖4-70d 顯示

SEM以30K高倍率觀察為很深的空孔及延晶性的破斷方式。且觀察發

現在破斷之晶界處均已有成核的發生。 
圖4-71 顯示旋形銲後續熱及時效熱處理之拉伸銲件破裂形態

圖。圖4-71a 顯示為拉伸時暗浸蝕區先發生頸縮現象。圖4-71b 為暗

浸蝕區產生明顯頸縮與破斷相；圖4-71c 與圖4-71d 為暗浸蝕區產生

拉長之延性破斷相。 
圖4-72 顯示銲件熔融線右側銲道內，因拉伸產生穿晶的裂縫，

如圖4-72a 箭頭“1，2”所指處，圖4-72b 為SEM微觀放大圖，顯示在

熔融線(箭頭3)右側箭頭“1”所指處有一道微裂縫，此現象在銲道及粗

晶區均可由SEM觀察得到，顯示銲道及粗晶區的強度，比斷裂區的暗

浸蝕區還微高些，拉伸時在銲道熔融線附近產生微細的二次破裂。 
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圖4-70 旋形(電子束續熱)銲件時效熱處理之拉伸OM及SEM破斷面：(a)為

OM巨觀破斷面;(b)為SEM巨觀破斷面;(c)為α´+γ´雙相區內佈滿空

孔之破斷組織；(d)SEM以30K倍率觀察α´+γ´雙相區之多孔性破斷

組織及晶界處均已有成核的發生。
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圖4-71 旋形(電子束續熱)銲件時效熱處理之拉伸SEM破斷面：(a)拉伸時暗

浸蝕區之頸縮區;(b)暗浸蝕區產生明顯頸縮與破斷相;(c)暗浸蝕區

產生拉長之延性破斷相(一);(d)暗浸蝕區產生拉長之延性破斷相

(二) 
 

 

 

 

 

 

 
圖 4-72 旋形(電子束續熱)銲件時效熱處理之二次裂縫顯微組織 SEM；(a)

熔融線及二次裂縫指示圖；(b)熔融線及二次裂縫放大圖 
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2 

1 

a 
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3. 旋形(電子束預熱與續熱)銲件時效熱處理 

圖4-73 為旋形麻時效鋼經電子束預熱與續熱及時效熱處理之拉

伸試片破斷面。圖4-73a 係經時效熱處理後之OM巨觀破斷面，其破

斷的位置距離銲道中心與銲前預熱類似，約為8～9 mm，顯示在銲前

預熱及銲後續熱的熱輸入所影響，在破斷處形成頸縮的現象為延性

破斷形態。圖4-73b 則為SEM的巨觀截面破斷圖，呈現類似準劈裂

破斷面。圖4-73c 為不規則且有很多空孔及破碎物的破斷現象，顯示

在此區域有過時效的現象，由發生多量的逆變態沃斯田鐵所致，且

過時效的情形比預熱銲件來的嚴重，由於晶粒過大造成偏向脆性發

展。圖4-73d 顯示空洞之集中物經EDS成份分析為Ti及Al元素含量較

多之偏析物，在拉伸試驗時由於強度較弱形成破裂時之弱點，且殘

留在空孔內。圖4-73e 顯示經SEM以30K高倍率觀察均有微細的小空

孔，類似α´+γ´雙相區內佈滿空孔之破斷相，顯示此區域為暗浸蝕區。

且觀察發現在破斷之晶界處同樣已有成核的發生。圖4-73f 顯示空洞

內析出物經EDS成份分析，僅有少量的Al元素與母材共同組合而

成。
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圖4-73 旋形(電子束預熱與續熱)銲件時效熱處理之拉伸OM及SEM破斷

面：(a)為OM巨觀破斷面；(b)為SEM巨觀破斷面；(c)多空孔及破碎

物之過時效破斷相；(d)EDS分析為Ti及Al元素偏析物；(e)SEM以30K
倍率觀察為α´+γ´雙相區內佈滿空孔之破斷組織；(f) EDS分析為Al
與母材元素之析出物
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4.5.6 本節結論 
 

1. 旋形麻時效鋼經銲前電子束預熱及電子束預熱＋銲後電子束續熱

後，因過多的熱輸入量使銲道增大，而熱影響區受到預熱、續熱及銲

接熱擴散作用變得很寬大，其熱影響區外側之暗浸蝕區，距離銲道中

心最大寬度約有 7～9 mm。 
2. 經電子束銲後續熱處理製程，對原本質軟的銲道組織會產生初期的時

效作用。 
3. 經電子束銲後續熱及時效熱處理後，銲道及熱影響區產生複合時效作

用，使硬度微量提升，但仍無法有效的消除逆變態沃斯田鐵池的生成。 
4. 大量旋形冷作加工的麻時效鋼電子束銲件，經銲後電子束續熱作用，

熱影響區基地已產生再結晶細化的現象，且有析出晶粒由基地成長的

初期孕核相，並對銲件延伸率有正面的貢獻。 
5. 銲後電子束續熱受到熱量輸入的作用影響，其破斷的位置向外推移距

離銲道中心約 3～4 mm 的 α´+γ´雙相暗浸蝕區。 
6. 藉由銲後電子束續熱處理之再結晶的機制，及改變破斷位置於相對強

度較低及已晶粒細化的暗浸蝕區，而獲得較佳的強度及延伸率。 
7. 銲後電子束續熱及時效熱處理製程，可有效提升銲件的強度及延伸

率，其拉伸強度均高於 AMS 6520D 規範值的 13％，平均延伸率已達

2.4%，為標準規範值的 96％。與一般銲接後時效熱處理之降伏強度

與抗拉強度相比較，分別高出 7％及 8％，平均延伸率更大幅提升 100
％。 

8. 經本研究與實驗結果，在工程應用設計上，建議以整體機械性質及較

小的熱影響區為考量，以銲後電子束續熱製程為主要選擇應用方法。 
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4.6 旋形麻時效鋼及電子束銲件之高溫機械性質與顯微組織 
 
4.6.1 試驗目的與流程 

 

經由本論文 4.2～4.5 節的研究結果，麻時效鋼具有優異的常溫

機械性質。隨著航太及國防工業的發展，麻時效鋼應用在高溫環境

的需求與日俱增。航太及國防工業所應用的載具，在飛行時必須承受

燃燒與氣流摩擦所產生的高熱負荷，並對材料的機械性質造成嚴重的

影響。而且，固溶麻時效鋼必須藉由高溫的時效熱處理才能發揮其超

高的強度，因此溫度的高低左右了麻時效鋼的機械性質。以一般規範

而言，麻時效鋼的標準時效溫度是 480℃為最佳，若非必要，不建議

超過此溫度進行時效熱處理，當然也有學者建議[2]以過時效來獲得較

佳的延展性。雖然麻時效鋼具有優異的高溫機械性質，但由於對溫度

的敏感性，在長時間的標準時效及過時效溫度，均會產生析出粒子粗

大化及逆變態沃斯田鐵的生成[2,7,24,52]，導致嚴重影響了材料的機

械性質。 
然而，採用先進快速精密旋形加工及電子束銲接製程後，應用

在高溫環境下的機械性質與顯微組織之影響，尚無相關的研究與文

獻可依循。特別是以本製程所製造的麻時效鋼飛行載具，應用在高

溫環境的影響與負面效應更是在關鍵設計時必須嚴謹考慮的。 
本節將規劃以高旋形加工量的麻時效鋼及電子束銲件，進行不同

高溫環境的實驗，特別是在不足時效與過時效的溫度環境條件下，對

機械性質與顯微組織結構的影響。本研究以 79%旋形加工量之 C-250  
 

 
 
 
 
 
 

 
圖 4-74 旋形 C-250 麻時效鋼高溫實驗流程圖 
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麻時效鋼及電子束銲接後，施以 480℃/6h/AC 時效熱處理。其後，規

劃以 300℃～800℃為拉伸實驗環境溫度，以研究纖維狀顯微結構之旋

形件及銲道析出強化反應不完全的電子束銲件，在此溫度環境受到拉

應力時，其機械性質與顯微組織的影響，實驗流程如圖 4-74 所示。 
 
 
4.6.2 高溫對旋形麻時效鋼的影響 
 

1. 顯微組織觀察 
 
一般麻時效鋼在 600℃～730℃溫度時因為 α′+γ′雙相區[6,15]，經

由浸蝕後金相巨觀呈現灰黑色，主要是為麻田散鐵組織及有細微分散

的逆變態沃斯田鐵相生成。然而因大量的冷作加工效應，在 500℃的

高溫拉伸時，已有細微分散的逆變態沃斯田鐵相生成，如圖 4-75a 中

分散的黑點。在過時效高溫拉伸的同時，析出強化之合金化合物

Ni3Mo 開始產生溶解[38,49]，溶解的 Ni3Mo 和隨之形成的 Fe2Mo 析出

物，導致在先前的沃斯田鐵及麻田散鐵晶界產生質軟的逆變態沃斯田

鐵[65]。R. Kapoor 等學者[97]研究認為，麻田散鐵轉變為沃斯田鐵是

有兩種過程，首先是慢速加熱升溫率時是透過擴散作用；當在迅速加

熱升溫率時是經由切變(Shear)方式來完成。富 Ni 的麻田散鐵因顯微

偏析會降低 As[97]及 Ms 溫度，有利麻田散鐵形成逆變態沃斯田鐵。

此類較軟的沃斯田鐵不僅是麻時效鋼高溫及長時間時效軟化的原因

之一[15,46]，且會降低應力腐蝕破裂抵抗性及疲勞強度[15,46,54,55]。 
當溫度到 600℃時因過時效使析出粒子粗大化及麻田散鐵因擴散

作用[65,97]，產生大量的沃斯田鐵，根據[2]Fe、Ni 二元系統準安定

相圖關係，將大於 90%的麻田散鐵已形成逆變態沃斯田鐵，如圖 4-75b
顯示為白色的部份。一般未旋形 C-250 麻時效鋼的固溶熱處理溫度為

815℃，對 79%高冷作加工的旋形 C-250 麻時效鋼而言，因大量的旋

形加工效應，使再結晶溫度降低[100]及增加孕核率[8,11]，此現象已

發生在 600℃的拉伸試片中，如圖 4-75b 中顯示已產生再結晶的現象，

如分散細小的顆粒。因此，在 700℃拉伸時，使原來冷作加工所產生

的內部應力或結晶內的各種缺陷(空孔，格子間原子等)均已消除，經
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由顯微觀察破斷試片之斷面，已產生再結晶的細小晶粒，尤其是隨著

愈靠近破斷處晶粒也愈大及明顯，如圖 4-75c 所示。 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
圖 4-75 旋形 C-250 麻時效鋼高溫拉伸 OM 金相圖：(a)在 500℃時的巨觀

破斷及 α’+γ’相；(b)在 600℃時的巨觀破斷及部份區域已開始再結

晶；(c)在 700℃時的巨觀破斷及再結晶的細小晶粒 

10 μm 

0.5mm

a 

10 μm 
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c 
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2. 機械性質測試結果與分析 
 
旋形 C-250 麻時效鋼高溫拉伸試件經 480℃/6h/AC 時效熱處理之

降伏強度(2158 MPa)、抗拉強度(2182 MPa) 及延伸率(2.9%)均滿足

AMS 6520D 規範值，並分別高於規範值的 28%、24%及 15％。這主

要是受到 79%高縮減率的冷作加工作用，使晶粒發生畸變轉為纖維狀

結構。經標準時效熱處理時，加工硬化與時效析出之複合作用下，仍

可使強度大幅增加。 
表 4-8 及圖 4-76 為高溫拉伸試驗之機械性質，標準時效熱處理之

C-250 旋形試件，在 300℃～500℃溫度條件下的拉伸降伏強度與抗拉

強度均滿足規範值，但延伸率均低於規範值，且有減少的現象[2]，在

400℃時延伸率達到最低點，其值僅有 2.20%(圖 4-76)。導致此結果的

主要原因，是原本粗大質軟的板條狀麻田散鐵組織，因大量的旋形加

工作用，使晶粒發生畸變轉為緻密的纖維狀結構，經時效強化為高強

度的旋形麻時效鋼。其後，當拉伸試件置於不足時效熱處理的溫度環

境，以及短暫的拉伸試驗時間下，會使基地強化元素隨著溫度升高，

在原先旋形產生緻密糾結的差排間，產生再析出新的金屬間化合物，

以阻礙差排滑移，此結果與學者 S. Floreen [2]研究的結果趨勢相符。

當在 500℃延伸率已開始回升至 2.27%，過時效溫度使麻田散鐵因高

溫擴散作用，開始少量產生質軟的沃斯田鐵相。當溫度到 600℃時，

拉伸降伏強度(1587 MPa)與抗拉強度(1615 MPa)均大幅的降低，但仍

有規範值的 94%與 92%。而延伸率已提升至 2.76%，高於規範值 10%。
顯示旋形 C-250 麻時效鋼具有優異的高溫機械性質特性。溫度到

700℃時，拉伸降伏強度(1138 MPa)與抗拉強度(1158 MPa)降低至僅有

規範值的 67%與 66%。延伸率已提升至 4.51%，高於規範值 80%。與

600℃相比，拉伸強度約低了 40%，延伸率提高約 63%。如此大的差

異主要是拉伸試片處於沃斯田鐵化的高溫作用，使先前析出強化的合

金化合物大量的溶解，及麻田散鐵高溫擴散作用形成質軟的沃斯田鐵

相，使強度大幅衰減與固溶退火處理的母材相近。當溫度提升到 800℃
條件時，拉伸降伏強度(800 MPa)與抗拉強度(790 MPa)降低至僅有規

範值的 47%與 46%。延伸率已提升至 5.18%，高於規範值 107%。經
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由顯微觀察母材已形成再結晶現象。隨著拉伸時間的增加，沃斯田鐵

相的細小晶粒持續析出及漸漸成長，而拉伸強度也降至最低點。 
 
 
 

表 4-8 旋形 C-250 麻時效鋼高溫拉伸機械性質 

Sample code Heat treating 
Tensile 

temperature (℃)
YS (MPa) 

(0.2% Offset) 
UTS (MPa) 

Elongation (%) 
(Gage 50.8 mm)

AMS 6520D 
FA 
FA300C 
FA400C 
FA500C 
FA600C 
FA700C 
FA800C 

 
Aging480℃/6h/AC 
Aging480℃/6h/AC 
Aging480℃/6h/AC 
Aging480℃/6h/AC 
Aging480℃/6h/AC 
Aging480℃/6h/AC 
Aging480℃/6h/AC 

 
Normal 

300 
400 
500 
600 
700 
800 

1689 
2158 
2013 
1943 
1803 
1587 
1138 
 790 

1758 
2182 
2054 
1979 
1816 
1615 
1158 
 806 

 2.5* 
2.9 
2.4 
2.2 
2.3 
2.7 
4.5 
5.2 

Note: * Nominal thickness 1.65 - 2.29 mm. 

 
 
 
 
 
 
 
 
 
 
 

 
圖 4-76 旋形 C-250 麻時效鋼高溫拉伸機械性質比較 
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3. 拉伸破斷面觀察與分析 
 
圖 4-77～圖 4-79 為 300℃～500℃高溫拉伸破斷 SEM 相片。拉伸

溫度在 300℃～400℃時，如圖 4-77a～圖 4-78a 顯示拉伸破斷面均呈

現未頸縮及類似準劈裂面與明顯階梯狀的破壞形式，由顯微觀察為分

佈均勻的漩渦狀組織，呈現為延性的顯微結構。當在 500℃時如圖

4-79a 顯示已有微量的頸縮現象，同樣為類似準劈裂面破壞形式，及

分佈均勻的漩渦狀延性顯微結構。圖 4-77b～圖 4-79b 為高倍率顯微

組織觀察，300℃～500℃的漩渦狀延性顯微結構沒有明顯的變化。 
當溫度提升至 600℃高溫時，如圖 4-80a 呈現比較明顯的頸縮，

及分佈均勻的漩渦延性顯微結構表面已有些微的變化。圖 4-80b 顯示

在破斷的表面因沃斯田鐵化的高溫效應，已產生微細類似橘皮皺紋的

化合物層(藍色)。經以 EDS 進行破斷表面分析結果，在拉伸破斷時因

高溫作用，使 C 及 O 與母材組成之主要元素在表面形成化合物層，

其所含元素及重量比，如表 4-9 所示。且有 Ti 元素偏析集中形成破裂

的起始點，如圖 4-82a 箭頭處。 
當溫度提高到逆變態沃斯田鐵生成區的 700℃高溫時，如圖 4-81a

為大幅頸縮的破斷形態，在破斷表面與 600℃有明顯的不同，除了為

延性組織結構外，已有分散比較深的漩渦狀產生，同樣有 Ti 元素偏

析集中形成破裂的起始點，如圖 4-81b 箭頭處。其導致 Ti 元素偏析集

中的主要原因，是強化析出物隨時效溫度升高與時效時間加長，而逐

漸粗大化。當麻時效鋼過度時效熱處理後，析出物粗大化並進行型態

之轉換[38,99]，使 η-Ni3Ti 及(Fe,Ni)2(Mo,Ti)析出物開始溶解，而形成

Fe2 (Mo、Ti)、FeMo 或 Fe2Ti，使得 Ni、Mo 及 Ti 等元素在先前的沃

斯田鐵晶界和板條狀的麻田散鐵晶界偏析[38,99]。此結果在本實驗

700℃的拉伸破斷試片之 SEM 及 EDS 分析得到證實，如圖 4-82 所示。

圖 4-81b 破斷表面因沃斯田鐵化的高溫效應形成類似橘皮皺紋的化合

物層。 
當溫度提高至接近固溶的 800℃時，如圖 4-83a 為延性頸縮且未

斷裂的形態，經 SEM 觀察破斷面佈滿了許多較深的漩渦狀組織結構，

同樣也有 Ti 元素偏析的現象，如圖 4-84a 箭頭處，另亦有鋁的偏析物

出現，如圖 4-84b 右側箭頭處。且在破斷表面經 EDS 分析因高溫形成

類似皺紋的化合物層更為明顯，C 含量更高達 12.74 Weight %，如表

4-9 及圖 4-83b 所示。 
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400℃

5mm 

a b

300℃

5mm 

a 

NCTU

b

NCTU

 
表 4-9 旋形 C-250 麻時效鋼高溫拉伸破斷表面層分析 

Element (Weight %) 
Sample code Tensile temperature (℃) 

Fe Ni Co Mo C O 

FA600C 
FA700C 
FA800C 

600 
700 
800 

68.63 
66.08 
70.30 

 8.46 
11.45 
 5.85 

8.64 
7.84 
7.47 

0.85 
1.90 
1.41 

9.25 
2.42 
2.24 

 4.17 
10.31 
12.74 

 
 
 
 
 
 
 
 
 
 
 
圖 4-77 旋形 C-250 麻時效鋼在 300℃拉伸破斷 OM 及 SEM：(a)左上為破

斷形式及延性破斷面；(b)為漩渦狀延性顯微結構 
 
 
 
 
 
 
 
 
 
 
圖 4-78 旋形 C-250 麻時效鋼在 400℃拉伸破斷 OM 及 SEM：(a)左上為破

斷形式及延性破斷面；(b)為漩渦狀延性顯微結構 
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600℃

5mm 

a 

NCTU

b

NCTU

500℃

5mm 

a 

NCTU

b

NCTU

 
 
 
 
 
 
 
 
 
 
 
圖 4-79 旋形 C-250 麻時效鋼在 500℃拉伸破斷 OM 及 SEM：(a)左上為破

斷形式及均勻細小漩渦狀的延性破斷面；(b)為漩渦狀延性顯微結

構 
 
 
 
 
 
 
 
 
 
 
圖 4-80 旋形 C-250 麻時效鋼在 600℃拉伸破斷 OM 及 SEM：(a)左上為破

斷形式及大小較均勻的延性破斷面；(b)表面已產生微細類似橘皮

皺紋的化合物層(藍色)之 SEM 與 EDS
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a 

NCTU

b

NCTU

700℃

5mm 

a 

NCTU

b

NCTU

 
 
 
 
 
 
 
 
 
 
 
 
圖 4-81 旋形 C-250 麻時效鋼在 700℃拉伸破斷 OM 及 SEM：(a)左上為破

斷形式及高溫延性破斷面；(b)表面生成更多更明顯的橘皮皺紋層

的化合物之 SEM 與 EDS 
 
 
 
 
 
 
 
 
 
 
 
圖 4-82 旋形C-250麻時效鋼因Ti元素偏析造成破裂啓始點之 SEM及EDS

分析：(a)600℃；(b)700℃
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NCTU 800℃

5mm 

a 

NCTU

b

NCTU 

a 

NCTU

b 

 
 
 
 
 
 
 
 
圖 4-83 旋形 C-250 麻時效鋼在 800℃拉伸破斷 OM 及 SEM：(a)左上為破

斷形式及高溫延性破斷面；(b)表面生成更厚的化合物層之 SEM 與

EDS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
圖 4-84 旋形 C-250 麻時效鋼在 800℃偏析造成破裂啓始且形成孔洞之

SEM 及 EDS 分析：(a)Ti 元素(b)左側為 Ti 偏析，右側為鋁與 Ti 
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4.6.3 高溫對旋形麻時效鋼電子束銲件的影響 
 

1. 顯微組織觀察  
 

圖 4-85a 左上圖為時效強化之旋形麻時效鋼銲件的破斷

SEM，顯示破裂是由銲道左側熔融線上方至右側熔融線下方，

呈現約 45 度斜線貫穿銲道的破斷形態。其主要的破裂成因有：

(1)銲道強度因強化元素的偏析而偏低[11]；(2)銲道接近熔融線

處因急冷效應(Chill effect)[8]，晶粒大多形成細小的等軸晶；(3)
母材接近熔融線的粗晶區則因受到銲道熱擴散效應，形成粗大

的板條狀麻田散鐵組織結構，因高溫度形成均質化作用，幾乎

沒有強化元素偏析的現象，經時效熱處理後，粗晶區可以獲得

充分的強化作用 [11]。因此，在晶粒大小結構形態上形成頗大

的差異性及銲道強度偏低的複合作用下，銲道內兩側對角線形

成較弱的破裂起始線。此種破斷形態大都發生在高功率密度的

電子束銲接時效銲件，此破斷區域吾稱為「預斷區」，破斷方

式稱為左／右斜貫穿式破斷。  
時效的旋形銲件經由 300℃～500℃拉伸後，破斷同樣均發

生在銲道之貫穿式破斷形態，由光學顯微觀察在銲道晶界間仍

有逆變態沃斯田鐵池存在。其中 400℃的拉伸試片由光學顯微

觀察銲道之鑄造組織結構，在銲道左側發生類似滑移的現象，

這是因為受到拉應力的作用，銲道兩側較弱的預斷區同時產生

初期滑移作用(圖 4-85a)，在相對較弱的左斜貫穿式破斷後，而

殘留初期滑移的波浪帶(圖 4-85b)。  
當拉伸溫度到 600℃時，經拉伸後與前項不同的是破斷不

在銲道內，而發生在暗浸蝕區外側的母材(圖 4-86a)。麻時效鋼

於銲接前經過大量的旋形冷作加工，形成緻密的纖維狀結構。

銲接後，銲道內因重熔形成固溶退火的顯微組織結構。當銲件

經時效熱處理後，母材區因為冷作加工效應會使再結晶溫度及

逆變態生成溫度降低，同時因過時效溫度使基地的析出物粗大

化及麻田散鐵擴散作用產生大量的沃斯田鐵 [49]。然而，銲道



4.結果與討論                                                                       4-6 高溫對旋形 C-250 銲件之影響 

Maraging Steel C-250    - 146 -

0.25 mm

預 斷 區 之 初 期 滑 移

線

1 mm 

a b

25 μm 

尚無加工效應的影響，其軟化的程度不及母材快，以致形成由

暗浸蝕區外側強度較弱的母材區斷裂。此結果也可由圖 4-86a
之光學顯微觀察，銲道內的顯微結構沒有明顯的改變可證明，

但仍有微量的逆變態沃斯田鐵池在晶界生成。  
在 700℃拉伸時，使原來旋形加工所產生的內部應力或結

晶內的各種缺陷均已消除。在 800℃拉伸時，Ni3Mo 溶解的量

不斷增加，銲道內已產生變化，由顯微觀察銲道已產生大量分

散的逆變態沃斯田鐵，銲道中間晶粒及晶界漸漸開始擴散而不

完整，經化學浸蝕後呈現暗灰色(圖 4-86b)，且靠近銲道外側附

近均已產生再結晶，柱狀晶及晶界已不明顯。  
 
 
 

 
 

 
 
 
 
 
 
 

圖 4-85 旋形 C-250 麻時效鋼電子束銲件經時效熱處理之拉伸實驗

銲道破斷顯微觀察：(a)左上圖為常溫拉伸時右斜貫穿式破

斷形態 SEM 及 400℃條件拉伸時在預斷區殘留初期滑移線

OM 圖；(b)殘留初期滑移線之波浪帶 OM 放大圖  
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圖 4-86 旋形 C-250 麻時效鋼電子束銲件經時效熱處理之拉伸破斷

及銲道形態 OM 顯微觀察：(a)在 600℃條件；(b)在 800℃
條件時銲道中間晶粒及晶界漸漸開始擴散而不完整  

 

 

 
2. 機械性質測試結果與分析  

 
旋形 C-250 麻時效鋼經銲前應力消除及電子束銲接後，施

以標準時效熱處理之降伏強度(1947 MPa)、抗拉強度(1996 MPa) 
及延伸率(2.5%)均滿足 AMS 6520D 規範值。表 4-10 及圖 4-87
為高溫拉伸試驗之機械性質，經時效旋形銲件在 300℃～500℃
溫度條件下的拉伸降伏強度與抗拉強度均滿足規範值，但延伸

率均未逹規範值，在 400℃時延伸率達到最低點，僅有 1.2%(圖
4-87)。這主要是銲道之麻田散鐵基地內合金元素，隨著溫度升

高產生再析出新的金屬間化合物。此外，銲件的母材因原先旋

形產生緻密糾結的差排間，亦產生再析出新的金屬間化合物，

同時產生阻礙差排滑移作用，使銲件延伸率下降。此結果與學

者 S. Floreen [2]研究的結果趨勢相符。當在 500℃時延伸率已開始

回升至 1.5%，過時效溫度使析出強化粒子開始粗大化，及銲道

麻田散鐵因擴散作用，開始產生少量質軟的逆變態沃斯田鐵。 
當溫度在 600℃時，拉伸降伏強度(1454 MPa)與抗拉強度

(1502 MPa)均大幅的降低，僅有規範值的 86%與 85%。而延伸
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率已提升至 3.1%，高於規範值 28%。溫度在 700℃時，拉伸降

伏強度(1030 MPa)與抗拉強度(1045 MPa)降低至僅有規範值的

61%與 59%。延伸率已提升至 4.5%，高於規範值 81%。與 600℃
相比，拉伸強度約低了 42.5%，延伸率提高約 46%。如此大的

差異主要是拉伸試片處於沃斯田鐵化的高溫作用，使先前析出

強化的合金化合物大量的溶解，及麻田散鐵高溫擴散作用形成

質軟的沃斯田鐵相，使強度大幅衰減與固溶熱處理的母材相

近。當溫度提升到 800℃條件時，拉伸降伏強度(790 MPa)與抗

拉強度(802 MPa)降低至僅有規範值的 47%與 46%。延伸率已提

升至 5.1%，高於規範值 105%。經由光學顯微觀察母材已形成

再結晶現象。隨著拉伸時間的增加，沃斯田鐵相的細小晶粒持

續析出及漸漸成長，而拉伸強度也降至最低點。  
 
 

表 4-10 旋形 C-250 麻時效鋼電子束銲件高溫實驗之機械性質  

Sample code Heat treating 
Tensile 

temperature (℃ )
YS (MPa) 

(0.2% Offset)
UTS (MPa) 

Elongation (%)
(Gage 50.8 mm)

AMS 6520D 
FEA 
FEA300C 
FEA400C 
FEA500C 
FEA600C 
FEA700C 
FEA800C 

 
EBW→Aging480℃ /6h/AC
EBW→Aging480℃ /6h/AC
EBW→Aging480℃ /6h/AC
EBW→Aging480℃ /6h/AC
EBW→Aging480℃ /6h/AC
EBW→Aging480℃ /6h/AC
EBW→Aging480℃ /6h/AC

 
Normal 

300 
400 
500 
600 
700 
800 

1689 
1947 
1836 
1824 
1757 
1454 
1030 
 790 

1758 
1996 
1893 
1857 
1804 
1502 
1045 
 802 

 2.5* 
2.5 
1.6 
1.2 
1.5 
3.2 
4.5 
5.1 

Note: * Nominal thickness 1.65 - 2.29 mm. 

 

 

 

 

 
 
 
 
 
圖 4-87 旋形 C-250 麻時效鋼電子束銲件經時效熱處理之高溫機械性質
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3. 拉伸破斷面觀察與分析  
 

時效熱處理旋形銲件經 300℃～500℃高溫拉伸結果與常

溫拉伸的時效銲件相似，如圖 4-88a～圖 4-90a 顯示沒有頸縮及

呈現類似準劈裂破斷形式，且同樣為分佈均勻的漩渦狀組織之

延性的顯微結構。由圖 4-88b～圖 4-90b 銲道破斷的 SEM 高倍

率顯微組織觀察仍然沒有明顯的變化。  
當溫度提升至 600℃高溫時，破斷處已有明顯的頸縮現

象，與前者明顯不同的是破斷發生在暗浸蝕區外側的母材，為

非平整有段差及準劈線的準劈裂破斷面，如圖 4-91a 所示。其

所形成的原因有：就銲件整體結構而言，完整的銲道截面積相

對大於母材，此時，在高溫近似沃斯田鐵相區(γ)的母材，已產

生大量的逆變態沃斯田鐵，其強度顯得相對較弱。另銲道由熔

融冷却為鑄造組織結構，使原本冷作加工變形的纖維結構均已

消失，由於拉伸試片在 600℃溫度的時間不長，故來不及發生

再結晶。然而，受到大量冷作加工效應的母材，因為再結晶溫

度下降作用，在 600℃時已開始發生微量的再結晶效應，同時

也獲得相對較軟的機械性質。因此，在以上複合作用下由暗浸

蝕區外側開始變形至斷裂。圖 4-91b SEM 觀察顯示延性漩渦狀

顯微結構已有些微的變化，在表面已產生微細類似橘皮皺紋的

化合物層(藍色)。經以 EDS 進行破斷表面分析結果，在拉伸破

斷時因高溫作用，使 C 及 O 與母材組成之主要元素在表面形成

化合物層，其所含元素及重量比如表 4-11 所示。  
在更高溫的 700℃時，拉伸破斷處已呈現為大幅頸縮的破

斷形態，如圖 4-92a 顯示在破斷表面與 600℃有明顯的不同，

除了為延性組織結構外，已有分散比較深的漩渦狀產生，而且

在旋渦狀深孔處經 EDS 分析，有高純度多量的 Ti 元素偏析集

中形成破裂的起始點，如圖 4-93 箭頭處。在破斷表面因沃斯田

鐵化的高溫效應形成類似橘皮皺紋的化合物層，如圖 4-92b 所

示。當溫度提高到 800℃時，如圖 4-94 呈現為高斷面頸縮的延

性破斷相，及圖 4-95a 顯示為延性頸縮且未完全斷裂的形態，
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破斷面佈滿了許多較深的大小漩渦狀組織結構(圖 4-96)，且在

破斷表面生成更厚的皺紋層化合物，如圖 4-95b 及表 4-11 所示。 
 
 
 

表4-11 旋形C-250麻時效鋼電子束銲件高溫拉伸破斷表面層分析  
Element (Weight %) 

Sample code Tensile temperature (℃ )
Fe Ni Co Mo C O 

FA600C 
FA700C 
FA800C 

600 
700 
800 

51.34 
56.00 
76.16 

12.52 
13.82 
 7.65 

6.21 
6.87 
8.13 

2.93 
3.16 
0.85 

19.83 
 7.62 
 2.25 

 7.17 
12.54 
 4.95 

 
 
 
 

 
 
 
 
 
 
 

 

圖 4-88 旋形 C-250 麻時效鋼電子束銲件在 300℃拉伸銲道破斷相：

(a)左上為 OM 巨觀破斷形式及 SEM 延性破斷面；(b)為 SEM
漩渦狀延性顯微結構  

 

b

NCTU

5mm 

NCTU

a 

300C
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圖4-89 旋形C-250麻時效鋼電子束銲件在400℃拉伸銲道破斷相： 

(a)左上為OM巨觀破斷形式及SEM延性破斷面；(b)為SEM漩

渦狀延性顯微結構  
 
 
 
 

 

 

 

 

 

 

 
 
圖4-90 旋形C-250麻時效鋼電子束銲件在500℃拉伸銲道破斷相： 

(a)左上為OM巨觀破斷形式及SEM延性破斷面；(b)為SEM漩

渦狀延性顯微結構  

b

NCTU

5mm 

a 

NCTU 400C

b

NCTU

5mm 

a 

NCTU 500C
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圖4-91 旋形C-250麻時效鋼電子束銲件在600℃拉伸破斷相：(a)左上

為OM巨觀破斷形式及SEM延性破斷面；(b)表面已產生微細

類似橘皮皺紋的碳氧化層(藍色)之SEM與EDS 
 
 

 

 

 

 

 

 

 

 

 

圖4-92 旋形C-250 麻時效鋼電子束銲件在700℃拉伸銲件破斷相：

(a)為OM巨觀破斷形式與長大的漩渦狀SEM；(b)延性漩渦狀

表面生成更多更明顯的橘皮皺紋層的化合物 (主要化學元

素：Fe,Ni,Mo,Co,C,O)之SEM與EDS

700C

5mm 

a 

NCTU

b

b

NCTU 600C

5mm 

a 
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NCTU

 
 

 

 

 

 

 

 

 

 

 

 

圖 4-93 旋形 C-250 麻時效鋼電子束銲件在 700℃拉伸破斷時，因鈦

元素偏析集中造成破斷的啟始點，高純度的鈦元素殘留在孔

洞內之 SEM 與 EDS 

 

 

 

 

 

 

 

 

 

圖 4-94 旋形 C-250 麻時效鋼電子束銲件在 800℃高斷面頸縮之拉

伸破斷相  



4.結果與討論                                                                       4-6 高溫對旋形 C-250 銲件之影響 

Maraging Steel C-250    - 154 -

 

 

 

 

 

 

 

 

 

 

 

 

圖 4-95 旋形 C-250 麻時效鋼電子束銲件之 800℃拉伸銲件破斷

相：(a)為 OM 巨觀破斷形式，大幅頸縮的破斷截面及漩渦

被拉長成深孔之 SEM；(b)表面生成更厚的化合物層之 SEM
與 EDS  

 

 
 
 

 

 

 

 

 

 

 

圖4-96 旋形C-250 麻時效鋼電子束銲件之800℃拉伸破斷之大旋渦

狀SEM

800C

5mm 

a b
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4.6.4 本節結論  
 
1. 旋形麻時效鋼經高溫拉伸實驗，其降伏及抗拉強度，僅有

300℃～500℃均滿足 AMS 6520D 規範值。在 800℃時則僅有

規範值的 46%～47%為最低，延伸率則高於規範值 107%。在

400℃條件時延伸率為最低(2.2%)，僅有規範值的 88%。  
2. 在300℃～500℃高溫拉伸均呈現類似準劈裂破斷的形態。在

600℃以上時則為頸縮的破斷形式。  
3. 在 600℃～ 800℃條件時破斷表面有分散比較深的漩渦狀產

生，且有Ti元素偏析集中形成破裂的起始點，且在破斷表面的

類似皺紋化合物層更為明顯。  
4. 旋形麻時效鋼銲件經高溫拉伸實驗，其降伏及抗拉強度，僅有

300℃～500℃均滿足規範規格。在800℃僅有規範值的46%～

47%為最低，延伸率則高於規範值105%。在400℃時延伸率達

到最低點(1.16%)，僅有規範值的46%。  
5. 在 400℃拉伸破斷的銲道有殘留初期滑移之波浪帶。在 800℃

拉伸時，Ni3Mo 溶解的量不斷增加，銲道中間晶粒及晶界漸漸

開始擴散呈現暗灰色，且靠近上、下兩側附近均已產生再結

晶，柱狀晶及晶界已不明顯。  
6. 在 300℃～ 500℃的拉伸銲件之破斷處均發生在銲道內。在

600℃以上高溫拉伸時，則破斷處均發生在暗浸蝕區外側的母

材。  
7. 在700℃時在旋渦狀深孔處，有高純度Ti元素偏析集中形成破

裂的起始點。700℃～800℃破斷表面因沃斯田鐵化的高溫效

應，形成類似橘皮皺紋的化合物層。  
8. 旋形C-250麻時效鋼及電子束銲接後，經本研究實驗證明具有

優良的高溫機械性質。在工程應用設計上，若使用條件為長時

間性質，應避免處在標準時效溫度480℃以上的環境。若使用

時間條件為短暫的高溫過程，則可設計考慮應用在較高溫的環

境，或是在材料表面增加絶熱的複合材料層予以保護。
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4.7 熱處理溫度對旋形麻時效鋼機械性質與顯微組織之影響 
 
4.7.1 實驗目的與流程 
 

C-250 麻時效鋼經旋形加工為精密無縫管件，並以時效熱處理來

強化其機械性質。然而，由於高縮減量的旋形加工所產生的高緻密且

應力分佈均勻的纖維狀結構，在時效熱處理時因旋形加工硬化效應與

時效析出之複合作用下，使材料強度達到最高點。麻時效鋼因加工硬

化指數及伸長率均較小，因此在頸縮前依賴均勻拉伸應變所做的冷成

形僅限於中等程度之塑性變形。而且經大量冷作後施以時效熱處理將

使韌性降低。依據學者 S. Floreen 研究[2]，麻時效鋼經長時間保溫後，

組織漸漸回復至平衡相為肥粒鐵及沃斯田鐵(α+γ)。幸好導致硬化的析

出反應速率遠大於 α+γ之逆反應速率，因此在逆反應發生前可大增其

強度。當時效溫度增加或時效時間增長，則硬度達極大值後將會開始

下降，此軟化現象不但係由於過時效所引起的析出粒子粗化，亦是因

為逆變態沃斯田鐵反應所導致。然而，過時效不但產生的適量沃斯田

鐵，能有效的促進均勻伸長(Uniform elongation)及引長能力，而且過

時效的沃斯田鐵在冷作後可變態為麻田散鐵。 
由本論文 4.2 及 4.3 節的研究結果顯示，麻時效鋼經高旋形加工

及電子束銲接後，延伸率均大幅的下降。為了解決銲後延伸率不足的

問題，在 4.4 及 4.5 節中分別提出了解決的關鍵製程技術與方法。同

時經由前段的引述，麻時效鋼也可藉由時效溫度的控制來獲得質軟的

延展性。因此，本節將對高旋形加工的麻時效鋼進行不同過時效溫度

的熱處理，以獲得溫度與再結晶及延伸率的相互關係及影響。在日後

工程應用時可視實際需求，除了 4.4 及 4.5 節關鍵技術外，並可組合

不同時效條件，以獲得最佳及最適化的效果，使本論文更具週全性。 
因此，本階段研究以 C-250 麻時效鋼經 79%壁厚縮減率旋形加工

之全尺寸精密無縫管件，分別施以 450℃、480℃、510℃、540℃、570℃
及 600℃溫度 6 小時後，空冷至室溫之時效熱處理，以研究不足時效、

標準時效及更高溫的過時效熱處理對機械性質及顯微組織之影響，以

做為日後工程設計及應用時的參考。實驗流程如圖 4-97 所示。 
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圖 4-97 時效熱處理溫度對旋形 C-250 麻時效鋼影響之實驗流程圖 
 
 
4.7.2 微硬度量測與顯微組織觀察 

 
固溶退火處理之 C-250 麻時效鋼經 79%壁厚縮減率之旋形加工，

使原本粗大質軟的板條狀麻田散鐵，因大量的冷作加工作用使晶粒發

生畸變轉為纖維狀結構。經由 X-ray 繞射分析結果顯示(圖 4-98)，麻

時效鋼經固溶熱處理後為低碳麻田散鐵結構。經 79%壁厚縮減率之旋

形加工後，α 相的(110)峯值強度(Peak)已大幅縮減，(200)峰值強度亦

隨著加工量增加而大幅成長。相對的，(220) 峰值強度及(310)峰值強

度已消失，這主要是顯微組織受到塑性應力作用，粗大板條狀晶粒產

生變形所導致。麻時效鋼於固溶退火狀態下經傳統冷作的加工硬化性

甚微[2]，因此可以承受大量塑性加工。然而，經由 79%旋形冷作加工

後，如圖 4-99 顯示，徑向截面微硬度量測平均值由 33.8 HRC 升高至

38.9 HRC，平均硬度值提升了 15%。且呈現水平的分佈，顯示高縮減

量的旋形冷作加工應力分佈均勻，為優良的加工製程特性。 
在 570℃過時效溫度或長時間的時效作用下，溶解的 Ni3Mo 和隨

之形成的 Fe2Mo，導致局部產生質軟的逆變態沃斯田鐵(γ)相。如圖

4-98 顯示 γ 相的(111)及(220)峯值強度，而 α相的(110)、(200)、(211)
峰值強度相對減少。富 Ni 的麻田散鐵因顯微偏析會降低 As 及 Ms 溫
度[97]，有利麻田散鐵形成逆變態沃斯田鐵，且在先前的沃斯田鐵及
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板條狀晶界間生成。因此，冷作之麻時效鋼可利用過時效產生適量的

逆變態沃斯田鐵，獲得較佳的延伸性以提高在工程應用的適用性[2]。 
 

 

 

 

 

 

 

 

 

 

 

圖4-98 旋形C-250麻時效鋼經不同時效溫度熱處理之X-ray繞射分析 
 

 

 

 

 

 

 

 

 

 

 

圖4-99 C-250麻時效鋼經79%壁厚縮減率之旋形加工後管壁截面之徑向微硬

度分佈 
 

 

圖 4-100 顯示旋形麻時效鋼經 450℃、480℃、510℃、540℃、570℃
及 600℃不同時效溫度之微硬度量測值，均高於 AMS 6520D 規範值
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(＞48 HRC)。其中 480℃標準時效溫度獲得 55.3 HRC 為最高，600℃
過時效溫度之 48.1 HRC 為最低。由於旋形加工硬化效應與時效析出

之複合作用下，獲相當高的硬度值，使不足時效溫度(450 )℃ 與標準時

效溫度 (480 )℃ 及過時效溫度 (510℃及 540 )℃ 之硬度值均高於 50 
HRC。當溫度提升至 570℃及 600℃高過時效溫度時，因析出粒子粗

大化及麻田散鐵因擴散作用，產生大量的沃斯田鐵[49]及 Ni3Mo 開始

產生溶解而產生多量質軟的逆變態沃斯田鐵相[2,49,50,52]，如圖 4-98
顯示 γ 相的(111)及(220)峯值強度增加更為明顯，且產生 γ 相的(311)
峰值強度。另因大量的旋形加工效應，使再結晶溫度降低[100]，獲得

相對質軟已細化的新晶粒結構，在此複合作用下，使硬度值大幅下降。 
 

 

 

 

 

 

 

 

 

 

圖4-100 旋形C-250麻時效鋼經不同時效溫度熱處理後平均微硬度值 
 

 

由圖 4-101 光學顯微觀察顯示，固溶熱處理之板條狀(圖 4-101a)
麻時效鋼，經流旋形加工為纖維狀結構(圖 4-101b)，經時效後均呈現

為緻密的顯微結構(圖 4-101c 及圖 4-101d)，為獲得較佳的延伸性之過

時效處理後，纖維狀結構已比較不明顯，且微量的沃斯田鐵相生成(圖
4-101e 及圖 4-101f)。未冷作加工的麻時效鋼在正常的 540℃時效溫度

不會產生再結晶的現象，但由於大量的旋形冷作加工會使材料的再結

溫度降低，材料內部會產生新的結晶核，再從結晶核逐漸生長成新的

細化晶粒，如圖 4-102a 之 SEM 觀察顯示證明，材料基地已開始產生
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NCTU 

a 

NCTU 

b

再結晶的現象，並沿著原來纖維狀結構形成更細化的晶粒。隨著溫度

增加至 570℃及 600℃較高的過時效溫度時，然因冷塑加工硬化效果

增加了孕核率，由圖 4-101g 及圖 4-101h 中觀察顯示纖維狀結構已消

失且為細小的晶粒形態，顯示已完成再結晶之重新整合。這主要是經

由過時效溫度熱處理時，原本大量旋形加工產生的內部應力或結晶內

的各種缺陷(空孔，格子間原子等)，因回復而局部消除，如圖 4-102b
所示。結晶核所生長的晶粒形成與加工前無方向性結晶的類似組織，

其強度、硬度與內部應力降至最低。 
 

 

 

 

 

 

 

 

 

 

圖4-101 旋形C-250麻時效鋼經不同時效溫度熱處理後之光學顯微組織觀察 
 

 

 

 

 

 

 

 

 

 
 
圖4-102 旋形C-250麻時效鋼經過時效熱處理後之SEM顯微組織觀察：(a) 

540℃/6h/AC已開始再結晶；(b)600℃/6h/AC晶粒已細化及無方向
性結晶 

c
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a 
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b 

25μmAging 480℃/6h/AC
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25μm Aging 510℃/6h/AC 
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g
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4.7.3 機械性質測試結果與分析 
 
旋形C-250麻時效鋼經不同溫度時效熱處理之降伏強度及抗拉強

度，除了 570℃及 600℃外，其餘 450℃、480℃、510℃及 540℃與所

有延伸率均高於 AMS 6520D 規範值。其中拉伸降伏強度及抗拉強度

以標準時效溫度 480℃為最高，過時效溫度 600℃為最低。相對的，

延伸率以標準時效溫度 480℃為最低，過時效溫度 600℃為最佳。 
表 4-12 及圖 4-103 為不同時效溫度拉伸試驗之機械性質。不足時

效溫度 450℃、標準時效溫度 480℃、過時效溫度 510℃及 540℃之拉

伸降伏強度、抗拉強度及延伸率均滿足規範值。其中不足時效溫度

450℃之拉伸降伏強度(2102 MPa)、抗拉強度(2106 MPa)及延伸率

(3.0%)，分別高於規範值的 24%、20%及 20%。雖然時效溫度不足會

使析出強化不完全，然而受到 79%高縮減率的流旋形加工作用，使加

工硬化與時效析出之複合作用下，仍然使強度大幅增加。 
在標準時效溫度 480℃之拉伸降伏強度(2158 MPa)、抗拉強度

(2182 MPa)及延伸率(2.9%)，分別高於規範值的 28%、24%及 16%。

這主要是獲得充分的時效析出強化及加工硬化之複合作用，使強度達

到最大值(圖 4-103)。低過時效熱處理溫度 510℃之拉伸降伏強度(2053 
MPa)、抗拉強度(2098 MPa)及延伸率(3.4%)，分別高於規範值的

22%、19%及 36%。主要是因為低過時效溫度已開始發生析出物微量

長大，使強度下降及獲得較佳的延展性。過時效溫度 540℃之拉伸降

伏強度(1837 MPa)、抗拉強度(1906 MPa)及延伸率(4.4%)，分別高於

規範值的 9%、8%及 76%。 
麻時效鋼經過 79%大量旋形加工後，晶粒及晶界產生極大的畸

變以及大量緻密纏繞的差排，對材料強度貢獻頗大，即使在 540℃過

時效溫度熱處理後，仍然具有優異的機械性質。此現象也可由 TEM
的觀察可清楚發現，因大量加工作用在先前沃斯田鐵晶界間形成帶狀

的堆疊(Stacking faults)相，如圖 4-104 所示。同時因為過時效溫度使

析出粒子開始粗大化，絲狀析出物 Ni3Mo[31]開始分解為球狀

(Fe,Ni)2(Mo,Ti)[50]（圖 4-105），隨後形成的逆變態沃斯田鐵，首先

會在板條狀麻田散鐵上形成，而後在先前的沃斯田鐵晶界上產生

[60,65]。然而，大量旋形加工後緻密糾結的差排有助於維持材料的強

度及同時產生較佳的延性（圖 4-106）。 
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高過時效溫度 570℃之拉伸降伏強度(1583 MPa)及抗拉強度(1675 
MPa)，分別低於規範值的 6%、5%，延伸率(7.3%)則高於規範值的

192%。當高的過時效溫度 600℃之拉伸降伏強度(1455 MPa)及抗拉強

度(1537 MPa)，分別低於規範值的 16%、14%，延伸率(7.7%)則高於

規範值的 208%，為最佳之延伸率(圖 4-107)。主要是因為高過時效溫

度使析出粒子已粗大化，及 Ni3Mo 溶解使麻田散鐵因擴散作用，產生

大量質軟的逆變態沃斯田鐵。根據 Fe-Ni 二元系統準安定相圖關係(圖
2-13)[2]，將大於 90%的麻田散鐵已形成沃斯田鐵相。因此，冷作之

麻時效鋼在工程應用上，可利用過時效產生適量的沃斯田鐵，能有效

的促進均勻伸長及引長能力[2]。另因大量的旋形冷作加工效應已完全

產生再結晶作用，獲得相對質軟細化的新晶粒結構，在此複合作用

下，使拉伸強度下降，延伸率大幅提升。 
 
 

表 4-12 旋形 C-250 麻時效鋼經不同時效溫度熱處理後之拉伸機械性質 

Sample code Process (Fromed→) Hardness(HRC) YS (MPa) 
(0.2% Offset) 

UTS (MPa) 
Elongation (%) 

(Gage 50.8 mm) 

AMS 6520D 
F0 
FA450  
FA480  
FA510  
FA540  
FA570  
FA600 

 
As  
Aging 450℃/6h/AC 
Aging 480℃/6h/AC 
Aging 510℃/6h/AC 
Aging 540℃/6h/AC 
Aging 570℃/6h/AC 
Aging 600℃/6h/AC 

48.0 
38.9 
54.2 
55.3 
54.5 
53.6 
50.8 
48.1 

1689 
1235  
2102  
2158  
2053  
1837  
1583  
1455 

1758 
1298  
2106  
2182  
2098  
1906  
1675  
1537 

 2.5* 
5.3  
3.0  
2.9  
3.4  
4.4  
7.3  
7.7 

Note: * Nominal thickness 1.65 - 2.29 mm. 

 

 

 

 

 

 

 

 

 

圖4-103 旋形C-250麻時效鋼經不同時效溫度熱處理後之拉伸機械性質 
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b

110 nm 

a 

ba 

 
 
 
 
 
 
 
 
 
 
 
 
 
圖 4-104 79%旋形加工量 C-250 麻時效鋼經 540 /6h/AC℃ 時效處理後之顯

微組織結構 TEM：(a)晶界間之逆變態沃斯田鐵；(b)堆疊相 
 
 
 
 
 
 
 
 
 
 
 
 
 
圖 4-105 79%旋形加工量 C-250 麻時效鋼經 540 /6h/AC℃ 時效處理後之顯

微組織結構 TEM：(a)球狀及絲狀析出相；(b)球狀析出相 
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ba 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
圖 4-106 79%旋形加工量 C-250 麻時效鋼經 540 /6h/AC℃ 時效處理後之顯

微組織結構 TEM：(a)緻密糾結的差排；(b)先前沃斯田鐵晶界間

之析出相 
 

 
 

 

 

 

 

 

 

 

 

 

圖4-107 旋形C-250麻時效鋼經不同時效溫度熱處理後拉伸之應力應變曲線 
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4.7.4 拉伸破斷面觀察與分析 
 

圖 4-108～圖 4-114 為旋形麻時效鋼經不同時效溫度熱處理之拉伸

試片破斷面。固溶旋形麻時效鋼試片經拉伸呈現頸縮的破斷現象，由

SEM 破斷截面觀察，如圖 4-108a 呈現為佈滿延性的漩渦狀組織。經

破斷顯微觀察顯示為晶粒較粗大漩渦狀組織，為延性破斷的顯微結

構，如圖 4-108b 所示。經由 450℃不足時效及 480℃標準時效溫度熱

處理的拉伸試片，如圖 4-109a 及圖 4-110a 呈現未頸縮的破斷及類似準

劈裂面破斷形式。由破斷顯微觀察顯示未有明顯的變化，如圖 4-109b
及圖 4-110b 均呈現為延性漩渦狀組織形態。經由 510℃過時效溫度之

拉伸破斷面，呈現為分佈均勻相對較小的漩渦狀組織形態(圖 4-111a)，
為較佳延性的漩渦狀組織結構(圖 4-111b)。 

當溫度提高到 540℃過時效溫度之拉伸破斷時，為微量逆沃斯田

鐵的延性漩渦狀組織形態(圖 4-112a)。因大量的旋形冷作加工效應，

使再結晶溫度降低至 540℃以下，原纖維狀部分組織結構已產生再結

晶為更細化的晶粒，如圖 4-112b 呈現為更細小較佳延性漩渦狀組織形

態，且在旋渦內的表面已有新析出晶粒的初期孕核相。當更高 570℃
及 600℃時效溫度時，如圖 4-113a 及圖 4-114a 顯示頸縮及階梯狀的破

斷現象更為明顯，且為多量逆沃斯田鐵相的延性組織形態。由 SEM
圖4-113b及圖4-114b顯微觀察顯示已佈滿更細小晶粒被拔起的小漩渦

狀組織形態，使微硬度大幅下降及富延性的組織結構。尤其是在 600℃
高過時效的破斷相中可明顯觀察到，為比較細小且均勻的再結晶晶粒

之破斷顯微結構。
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圖 4-108 旋形 C-250 麻時效鋼之拉伸破斷面：(a)為較大的旋渦之 SEM 及

巨觀破斷形式；(b)大旋渦之破斷顯微結構 
 

 

 

 

 

 

 

 

 

 

 

圖 4-109 旋形 C-250 麻時效鋼經 450℃不足時效熱處理之拉伸破斷面：(a)
為大小不等旋渦之 SEM 及巨觀破斷形式；(b)旋渦之破斷顯微結構
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圖 4-110 旋形 C-250 麻時效鋼經 480℃標準時效熱處理之拉伸破斷面：(a)
為較小旋渦之 SEM 及巨觀破斷形式；(b)比較小的旋渦之破斷顯微

結構 
 

 

 

 

 

 

 

 

 

 

 

圖 4-111 旋形 C-250 麻時效鋼經 510℃低過時效熱處理之拉伸破斷面：(a)為
細小的旋渦之 SEM 及巨觀破斷形式；(b)延性比較好的旋渦之破斷

顯微結構
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圖 4-112 旋形 C-250 麻時效鋼經 540℃過時效熱處理之拉伸破斷面：(a)為少

量沃斯田鐵破斷相之 SEM 及巨觀破斷形式；(b)為較高延性的旋渦

及旋渦內表面已有新的成核生成之破斷顯微結構 
 

 

 

 

 

 

 

 

 

 

 

圖 4-113 旋形 C-250 麻時效鋼經 570℃高過時效熱處理之拉伸破斷面：(a)為
多量沃斯田鐵破斷相之 SEM 及巨觀破斷形式；(b)已再結晶為較細

小晶粒之破斷顯微結構
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圖 4-114 旋形 C-250 麻時效鋼經 600℃高過時效熱處理之拉伸破斷面：(a)
為大量沃斯田鐵破斷相之 SEM 及巨觀破斷形式；(b)為比較細小且

均勻的再結晶晶粒之破斷顯微結構 
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4.7.5 本節結論 
 

1. 旋形 C-250 麻時效鋼經不同時效溫度熱處理之微硬度量測值均高於

AMS 6520D 規範值。其中 480℃標準時效溫度為最高(55.3 HRC)，
600℃過時效溫度為最低(48.1 HRC)。 

2. 480℃時效熱處理因加工硬化及時效析出強化之複合作用下，使拉伸降

伏強度及抗拉強度為最大值，分別高於規範值的 28%及 24%，延伸率

2.9%為最低。 
3. 600℃高過時效熱處理因析出物粗大化、晶粒細化之再結晶及大量的逆

沃斯田鐵生成，使拉伸降伏強度及抗拉強度為最小值，延伸率 7.7%
高於規範值的 208%，為最佳之延伸率。 

4. 因大量的旋形冷作加工效應，使再結晶溫度降低至 540℃時即已發

生，且為更細小延性佳的漩渦狀組織形態，且在旋渦內的表面已有新

的成核生成。時效溫度為 570℃及 600℃之拉伸破斷顯示已佈滿細小晶

粒被拔起的小漩渦狀組織形態，使原纖維狀組織結構已再結晶為更細

化的晶粒，使強度大幅下降及富延性的組織結構。 
5. 經微硬度、拉伸、金相及 X-ray 實驗分析結果顯示，在 570℃過時效

溫度以上時，因析出物粗大化及生成多量的逆變態沃斯田鐵(γ)相，使

拉伸強度大幅下降，均低於規範值。 
6. 旋形麻時效鋼經不同時效熱處理後，均有優良的機械性質。由X-ray、

拉伸實驗及破斷面之結果顯示，在工程應用設計上，以480℃/6h/AC
時效熱處理為最佳選擇，若需求為較佳的延伸性時，則建議時效熱處

理溫度不要高於540℃為最佳。
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五、結論 
 

高強度 C-250 麻時效鋼經順流旋形冷作加工為精密無縫的薄形

管件，經電子束銲接與時效熱處理製程後延伸率嚴重不足。經本研究

規劃設計以不同旋形加工量、銲前消除加工應力、降低電子束熱輸入

量、低熱量電子束熱處理、不同時效溫度熱處理及高溫環境試驗等有

系統的實驗與分析，已獲得重大的突破，解決當前旋形麻時效鋼銲後

延伸率嚴重偏低的瓶頸。其重要關鍵實驗結果及建議摘要分述如下： 
 
5.1 旋形加工量  

 
1. 麻時效鋼的硬度與拉伸強度隨著旋形加工量而增加，延伸率

則相對下降。經 79%旋形加工後有 15%的加工硬化增益效果，

並可使降伏強度大幅提升 40%，延伸率則下降 28%。實驗結

果顯示，麻時效鋼在固溶狀態下適合應用順流旋形加工製

程，具有穩定及提升機械性質的優良特性。  
2. 不同旋形加工量經 480℃時效熱處理後，因加工硬化與析出強

化的複合作用，可使 79%旋形加工量的拉伸強度提高 12%，

延伸率則大幅下降 31%，雖然材料延伸率降至最低點，但仍

然符合 AMS 6520D 規範規格。  
 

5.2 旋形量與電子束銲接  
 

1. 麻時效鋼電子束銲件的拉伸強度隨著旋形加工量增加，延伸

率則相對下降。經 79%旋形加工的電子束銲件，可使拉伸降

伏強度提升 33%，延伸率則大幅下降 66%。  
2. 不同旋形加工電子束銲件，經 480℃時效熱處理後，拉伸強度

會隨著加工量而增加，且均高於規範值，但延伸率均未符合

規範規格，同時隨著加工量增加而大幅下降。79%旋形銲件經

時效熱處理後，延伸率僅有規範值的 48%。  
 



5.結論              

Maraging Steel C-250    - 172 -

5.3 銲前應力消除及低熱輸入量電子束銲接  
 

1. 旋形麻時效鋼經高熱輸入量電子束銲接後，銲道內由於合金成份的

偏析，會使逆變態沃斯田鐵生成溫度降低，導致在正常的 480℃時

效熱處理後，銲道晶界間生成多量(11%)的逆沃斯田鐵池，使強度

及延伸率降低，對銲件機械性質造成負面的影響。  
2. 降低電子束 26%熱輸入量，可有效的縮小銲道及熱影響區 35%

及 44%的截面積，同時可大幅減少銲道內 55%的逆變態沃斯田

鐵池生成。  
3. 銲前消除應力與低熱輸入量的電子束銲接製程，經 480℃時效

熱處理後，可有效提升拉伸強度 10-12％，最值得關注的平均

延伸率則可大幅提升 108％，符合規範值規格 2.5%。  
 

5.4 銲接前、後低熱量電子束熱處理  
 

1. 高旋形冷作加工量麻時效鋼，經以低熱輸入量電子束之銲前預熱

及銲後續熱製程，因過多的熱量輸入，熱影響區太寬及晶粒粗大

化，強度及延伸率(2.2%)受到限制。  
2. 大量旋形冷作加工的麻時效鋼電子束銲件，經銲後續熱作用，

熱影響區基地已產生再結晶細化的現象，且有析出晶粒由基

地成長的初期孕核相，並對銲件延伸率有正面的貢獻。  
3. 銲後續熱及 480℃時效熱處理後，銲道及熱影響區產生複合時

效作用，使硬度微量提升，但仍無法有效的消除逆變態沃斯田

鐵池的生成。  
4. 銲後續熱受到熱輸入的作用影響，其破斷的位置向外推移距

銲道中心約 3 mm～4 mm 的 α´+γ´雙相暗浸蝕區。  
5. 藉由銲後續熱處理之再結晶的機制及改變破斷位置於相對強

度較低及已晶粒細化的暗浸蝕區，而獲得較佳的強度及延伸

率。經 480℃時效熱處理後，拉伸強度高於規範值的 13％，平

均延伸率(2.4%)已達規範值的 96％，比一般銲件大幅提升 100％。 
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5.5 高溫機械性質  
 
1. 旋形麻時效鋼經高溫拉伸實驗，其降伏及抗拉強度僅有 300℃

～500℃均滿足規範規格。在 800℃時則僅有規範值的 46%～

47%為最低。在 400℃條件時延伸率為最低(2.2%)，僅有規範

值的 88%。  
2. 旋形麻時效鋼電子束銲件經高溫拉伸實驗，其降伏及抗拉強度

僅有300℃～500℃均滿足規範值。在800℃僅有規範值的46%
～47%為最低。在400℃時延伸率達到最低點(1.16%)，僅有規

範值的46%。  
3. 在300℃～500℃高溫拉伸均呈現類似準劈裂破斷的形態，銲件

的破斷處均發生在銲道內。在600℃以上時則為頸縮的破斷形

式，銲件的破斷處則發生在暗浸蝕區外側的母材。  
4. 在600℃～800℃之破斷表面有分散比較深的漩渦狀產生，且有

Ti元素偏析集中形成破裂的起始點，且在破斷表面的類似皺紋

化合物層。  
 
5.6 時效熱處理對延伸率的應用彈性  
 

1. 旋形麻時效鋼經不同時效溫度熱處理後，450℃～540℃範圍

之機械性質均符合規範規格，其中以 480℃時效熱處理為最

佳，因加工硬化及時效析出強化之複合作用，拉伸強度與延

伸率分別高於規範值的 24%～28%及 16%。  
2. 因大量的旋形冷作加工效應，使再結晶溫度降低至 540℃時即

已發生，且為更細小延性佳的漩渦組織破斷形態，在漩渦內

的表面已有新的成核生成。時效溫度為 570℃及 600℃之拉伸

破斷顯示，已佈滿細小晶粒被拔起的小漩渦狀組織形態，原

纖維狀組織結構已再結晶為更細化的晶粒，使強度大幅下降

及富延性的機械性質。  
3. 經微硬度、拉伸、金相及 X-ray 實驗分析結果顯示，在 570℃

過時效溫度以上時，因析出物粗大化及生成多量的逆變態沃

斯田鐵生成，使拉伸強度大幅下降，均低於規範值。  
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5.7 設計與製程建議  
 
1. 在工程應用設計上，考量製造的經濟性與易製性，建議採用

能符合規範要求及高效率的高旋形加工量的製程，以善用發

揮麻時效鋼的優越機械性質。  
2. 在工程應用設計上，若以直接銲接方式，則可考量採用固溶

管料、板料，經加工或以低變形量的捲筒製程後再加以銲接，

以獲得銲件強度及較好的延伸率。或是應用結構設計方式增

強銲接處的強度，以提升整體銲件的機械性質與應用價值。  
3. 經高旋形加工量的麻時效鋼，若直接施以電子束銲接，導致

延伸率偏低，不建議應用在高應變機構或高壓容器。  
4. 若以銲件的整體機械性質及使用的安全彈性，建議經高旋形

加工量的麻時效鋼，可採用銲前 480℃消除加工應力＋低(49 
J/mm)電子束銲接熱輸入量＋480℃時效熱處理製程，以獲得

最佳的機械性質與應用彈性。  
5. 在工程應用設計上，建議以銲件整體機械性質及較小的熱影

響區為考量，以銲後續熱製程為主要選擇應用方法。  
6. 旋形麻時效鋼及電子束銲件具有優良的高溫機械性質，在工

程應用設計上，若使用條件為長時間性質，應避免處在 480℃
以上的環境。若使用時間條件為短暫的高溫過程，則可設計

考慮應用在較高溫的環境，但材料所受到的實際操作溫度仍

然要避免在 540℃以上，或是在材料表面增加複合材料的絕熱

層予以限制溫度及保護。  
7. 在工程應用設計上，以 480℃ /6h/AC 時效熱處理為最佳選擇，

若需求為較好的延伸率時，則建議不要高於 540℃為最佳。  
 

綜合本研究，固溶 C-250 麻時效鋼適合應用順流旋形加工，

製造高縮減率之精密無縫薄形管件，經簡易時效熱處理後具有

超高強度及優異的常溫與高溫機械性質。但經高旋形加工量後

不宜直接施以電子束銲接。先前因高(79%)旋形加工及電子束銲

接後，造成延伸率嚴重不足的瓶頸已獲得突破解決，若考量銲

件於日後使用之機械性質與穩定性，建議優先採用「銲前施以

消除加工應力＋降低熱輸入量電子束銲接」，或以「銲後低熱量

電子束續熱」製程技術。本研究的重大突破成果，期能為航太

科技發展做重大的貢獻。
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六、未來研究與發展方向之建議 
 
 

1. C-250麻時效鋼經高旋形加工後，加工應力對顯微結構所造成的影響，如

晶粒纖維化、差排及堆疊之顯微現象及時效析出時的強化機構進行TEM
之研究分析，以掌握旋形加工與強化機構的關係。 

3. C-250麻時效鋼經高旋形加工量後，晶粒產生高畸變的纖維化及緻密的差

排效應，大幅降低材料的延性。建議進行不同溫度及不同時間480℃時效

研究分析，以建立與機械性質之關係。 
3. 旋形C-250麻時效鋼經降低熱輸入量之直接電子束銲接後，可有效降低銲

道內逆變態沃斯田鐵池生成量，但仍無法完全消除，致使銲道強度提升

有限。建議對不同熱輸入量電子束銲道進行合金成份偏析、逆變態沃斯

田鐵之顯微組織結構之TEM研究，以建立掌握銲道顯微組織結構變化與

強化機構及機械性質的關係。 
4. 旋形C-250麻時效鋼經消除加工應力及降低熱輸入量之電子束銲接後，可

有效提升銲道強度及延伸率，但仍然於銲道處斷裂，限制了工程上應用

延伸率的彈性。建議進行銲道截面積與整體銲件之強度分配最佳化的研

究，以透過直接銲接參數設計方式，以控制銲道的整體強度，同時提升

延伸率的應用彈性。 
5. C-250麻時效鋼經高旋形加工後，可使再結晶溫度下降及獲得更細化的晶

粒顯微組織，經本研究所得到的溫度是發生在540℃時效熱處理後。建議

對高旋形加工量的麻時效鋼進行溫度與晶粒細化及 α→γ 相變態的研

究，以獲得旋形量與晶粒細化顯微結構及相變化對機械性質的影響。 
6. 高旋形加工量C-250麻時效鋼，經低熱量的電子束在銲道施以熱處理製

程，經擴大熱影響區的面積來改變銲件破斷的位置，距離銲道中心約3
～4 mm的α´+γ´雙相暗浸蝕區。建議：(1) α´+γ´雙相暗浸蝕區對日後應用

環境條件的限制與影響；(2)銲後與續熱處理的時間間隔(沃斯田鐵～麻田

散鐵)對機械性質的影響；(3)續熱處理使銲道再結晶對機械性質影響及顯

微組織結構TEM研究分析。經由以上的再深入研究，以獲得最佳化的銲

接控制因子與機械性質，及α´+γ´析出區對日後銲件的負面影響與預防措

施。 
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7. 旋形麻時效鋼經高溫拉伸實驗，在 400℃條件時延伸率為最低，並隨著

過時效溫度增加而強度下降。建議進行 300℃～480℃之顯微組織 TEM
研究，以瞭解析出強化機構與機械性質的關係。進行 480℃於不同保持

時間對機械性質的影響，以研究高旋形加工之纖維化顯微組織結構在

480℃高溫的影響。
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