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Abstract

Generalized synchronization-of new chaotic systems by pure error dynamics and

elaborate Lyapunov function, chaos ‘of ‘nenholonomic systems, non-simultaneous
symplectic synchronization of different chaotic systems with variable scale time, and

double symplectic synchronization of different chaotic systems are studied in this

thesis.

Firstly, the new chaotic systems constructed by mutual linear coupling of two

non-identical nonlinear damped Mathieu systems are introduced, and the regular and

chaotic dynamics of the new chaotic systems are studied.

Then, by applying pure error dynamics, elaborate Lyapunov function, and

elaborate nondiagonal Lyapunov function, the generalized synchronization is obtained.

Instead of current mixed error dynamics in which master state variables and slave



state variables are presented, the generalized synchronization can be obtained by pure
error dynamics without auxiliary numerical simulation. The elaborate Lyapunov
function and the elaborate nondiagonal Lyapunov function are applied rather than the
current monotonous square sum Lyapunov function, deeply weakening the
powerfulness of Lyapunov direct method. New chaotic systems are used as examples
with numerical simulations.

Chaos of nonholonomic systems with external nonholonomic constraint, the
straightly oscillating target pursuit problem, or the circularly rotating target pursuit
problem, and chaos of nonlinear nonholonomic system with external nonlinear
nonholonomic constraint, the magnitude of velocity keeping constant, is completely
identified for the first time. The scope of chaos study is firstly extended to
nonholonomic systems and nonlinear—nonholonomic system. By applying the
fundamental nonholonomic form of Lagrange’s ‘equations and the nonlinear
nonholonomic form of Lagrange’s equations, the dynamic equations are expressed.
The existence of chaos ingsnonholonomic systems and nonlinear nonholonomic
systems are firstly completely identified by all numerical criteria of chaos, i.e. the
most reliable Lyapunov exponents, phase portraits, Poincaré maps and bifurcation
diagrams. Furthermore, it is found that the Feigenbaum number rule still holds for
nonlinear nonholonomic system.

We propose a new type of synchronization, “non-simultaneous symplectic
synchronization”, y(z) =F(x(z),y(¢),t), where z is a given function of time ¢,
so-called variable scale time. It is an extension of generalized synchronization and it
is called “non-simultaneous symplectic synchronization” due to y(z) plays the
“interwined” role and the synchronization is achieved at “different time” for x(r)
and y(z). When applying the non-simultaneous symplectic synchronization in secret

communication, since the functional relation of the non-simultaneous symplectic

iv



synchronization is more complex than that of the traditional generalized
synchronization, and cracking the variable scale time 7 is an extra task for the
attackers in addition to cracking the system model and cracking the functional relation,
the message is harder to be detected by applying the non-simultaneous symplectic
synchronization than by applying traditional generalized synchronization. Therefore,
the non-simultaneous symplectic synchronization may be applied to increase the
security of secret communication. Nonlinear control and adaptive control are applied
to obtain the non-simultaneous symplectic synchronization. The estimated Lipschitz
constant obtained by applying adaptive control is much less than the Lipschitz
constant obtained by applying nonlinear control. This result in the reduction of the
gain of the controller, i.e. the cest-of controller issreduced. The proposed scheme is
effective and feasible for hoth autonomous and nonautonomous chaotic systems,
whether the dimensions of “x(z) and y(#) systems are the same or not.

Furthermore, a new type ~of  synchronization, “double symplectic
synchronization”, G(x,y) =F(x,y,#)’, 1S proposed in'this thesis. It is an extension of
symplectic synchronization, y=TF(x,y;2)= Since the symplectic functions are
presented at both the right hand side and the left hand side of the equality, it is called
“double symplectic synchronization”. The double symplectic synchronization may be
applied to increase the security of secret communication due to the complexity of its
synchronization form. By applying active control, the scheme of double symplectic
synchronization is derived based on Barbalat’s lemma, and it is applied successfully

to both autonomous and nonautonomous chaotic systems.



WP

Blmr ol Brmad gLe e Ahip By S L &EF o R &
PROBIL OB AR, P EALFIR LT N T B s
TIRGEBe EE IFI T L A ET o NERENANP AL 2 L2 - 0
PEsk o Tt S EEFEA PR A BT TN R AL R A EAL R
BWF gy o S EFRFICE ORGSR RDLAT 3 A FER
oo AZLTHE L X EEFRMS AL 0 p YA G B &P R g
Ad s BAAA g R f oo N R L AR Lk 2 5 F e e
R e E R A RS e ) B OFE ORI I Sk S R R B R o v

WP EH A Lt ML F L B hE 4 2 0 { AR PR
BAOERPEAL o N ETRE > w o FAERA Aok F R R KR TSR o

EHT AR RRRR I o R 1 2 A R R A R e v T

WP RE R AR I R L R R BRI T R Y R e

PRI ERE AR AR P rFE RN OF T AL R HE T -
HEZa M2 PRI E > RENTRFEFT B HE £
FRLFLENHRTE > ~ B R o BEBIVEE BT EREZ LR R R 5T
NEBEZE S BADR ATy EAEY LA R e g RBHEFM P 3F
FEPIEZ--ANEEE S RP S FE G R et Ao pgl R e
Y BE

BH#ADRFR T > AN & o BHRY if o BiTiat i G
Heh- 2 e d P DRE - B P Z R BmiRFE B
AR RS ORH EHY EF R LT A Z i i
FRAP S RPN U RFE S 4 o B RF R L g JTer g 1
o inirEd AR TR A3 A S PR g R

Vi



ElErard R - FhELEDE LR '-g,m,rq\, 2 T I

L

\4-\

=B U A L St

EREOFATEARY I AR B R SN A R
kAL BESFEAL TG EPRCRFEDHNE FREF AN R
%gﬁﬁ**ﬁ&ﬁﬁﬁ°®ﬁﬂﬁ%%’%%%+ﬁ’ﬂéﬁﬁ%it$%ﬁ
B ARG Rt ek R 42 T P I A
A b ehf e e Ao F et £ ARERG £ o
Fora 1 AdF e RBEL AR T AN LBl Lo Pl e 55
TEE LT EEE L AN EE EEI S ETL EEC NS E CE TR EE

R R LA

vii



CONTENTS

L 2 R i
ABSTRACT ..cuiiiiiiiiiiiiiiiiiiiiiiiiiiettiiitteiiasteisscccsnsccssnsccnnnns il
ACKNOWLEDGEMENT....ciiitiiitiiiiiiiiiiieiiieiiiaecinecieciiacennn vi
CONTENTS. it iiiiiiiiiiiiittiiiiinnstttesisnsssssssnssssssssssssesssnnnsses viii
LIST OF FIGURES......c.uttiitiiiiiiiiiiiiiiiiiiiiiietiinteieeciecensscnmmne X
Chapter 1 Introduction........cceeeviiiiinniiiiiennriceienssiccssnsssccnnns 1

References....coviieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it crieeseeree s eteeane 7

Chapter 2 Regular and Chaotic Dynamics of New Chaotic

L1 1 11t 11
Figures..coceescecennccocnscoo s RN o . o oo vvoereennsssonssossonnnssssnnsssnnee 13
References..couviiiieiestieiiiiieiieeeerteeinsiosnstiorimenceosesssonmessscsssssscsnnnse 16

Chapter 3 Generalized Synchronization .of New Chaotic Systems by

Pure Error Dynamics: and Elaborate Lyapunov

Functiont.......o.alii i it 17
3.1  Preliminaries....oieseeesciotiiiieiieiieiieriterioneeccieciecieecsecsacinccnscens 17
3.2 Design of LyapunoViFunCtion.....sitieecieeeiiiiiiiniiinrnneiciarcsnescnnen 17
3.3 Example for New Autonomous Chaotic Systems........ccceeevreenniennnen. 20
3.4 Example for New Nonautonomous Chaotic Systems..........cc.ceuveee.n. 24
FigUIES.ccueniiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiitiiietiestotsimsesssessonsesenses 28
References....ccocviiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it e e eae 31

Chapter 4 Nonlinear Generalized Synchronization of New Chaotic

Systems by Pure Error Dynamics and Elaborate

Nondiagonal Lyapunov Function..........ccceeeviinnnninnnn 32
4.1 Preliminaries.......ccoveiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiieeneen 32
4.2 Design of Lyapunov Function........c.ccoeeeviiiiniiiiiniincineiciinreennns 32
4.3 Example for New Autonomous Chaotic Systems........cceceeeineinieneee. 36
4.4 Example for New Nonautonomous Chaotic Systems...........cc.eueueee. 40
FigUIES.ccueniiineiiiniiiiiiiiiiiiiieiiiniiieiiietitntsammecsestosssssnssssnsosnsssssens 47
L 5 4 1 T 49



Chapter 5 Complete Identification of Chaos of Nonholonomic

5.2 Straightly Oscillating Target Pursuit Problem.............ccc.ccvvueeeee.. 50
5.3 Circularly Rotating Target Pursuit Problem......cccccceccceevennvinnneee... 54
FIgUIES.ccueinniiiiiiiiiiiiiiiiiiiiiieiiiiintietinsresinsimnssenssssosmsssssnnssosnnssonnne 58

2 S 1 Q=) 1 LT 62

Chapter 6 Complete Identification of Chaos of Nonlinear

Nonholonomic SyStems.....cceuvvieeeeirennrreciinnnricnncencanse 63
6.1 Preliminaries.......ccooeiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiie e, 63
6.2 The Magnitude of Velocity Keeping Constant.........ccceeevviiiinniinnnen 63
) N 68
References....coeiieiieiiiiieiemntleiabeditionceeerineeeeerieccnesemesscescescsnccns 71

Chapter 7 Non-simultaneous Symplectic Synchronization of

Different Chaotic Systems with Variable Scale Time....72

7.1  PreliminarieS.s..ileceeeeeeeieneiainiioseeeeieiasiineieeeinrimeieccnecaesenennn 72
7.2 Synchronization Scheme. ...t itieeiieeniiniieniiiiiiiiieierieciieinenne 73
7.3 Examples for Ghaotic Systems with the Same Dimension............... 77

7.4 Examples for Chaetic. Systems with Different Dimensions...............80
FiguresS...oceeiverciencicesconns Bl BT B e ceerrtareacsenssorssssrscsnnssanassnsens 84

RS (53 =) 1 L 90

Chapter 8 Double Symplectic Synchronization of Different Chaotic

A1 1 11 91

8.1 Preliminaries.....cccevieiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiicitieiieeen 91

8.2 Synchronization Scheme.........ccccoiviimmmiiiiniiiniiiiereieiieiiicncinnn 91

8.3 Examples for Nonautonomous Chaotic Systems.........cceeeevvieiennrnnn 94

8.4 Examples for Autonomous Chaotic Systems.......ccccocevievieieineinnnnnn 95
FiUIES.ccueniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiitiiiettestetsissnsssessonnscsoonns 98
References.....oceveiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiceiees e e e 102
Chapter 9 ConcluSionS.......cocveeviiiiiineriiciieestscssensnsscsnmmnnsses 103
PAPER LIST...uiiiiiiiiiiiiiiiiiiiiiissnsssssssetcccssssssssssssssssssscns 106



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

2.1

2.2

2.3

2.4

2.5

2.6

3.1
3.2

3.3
3.4
3.5

3.6
4.1

4.2
4.3

4.4
5.1

5.2

List of Figures

Phase portraits and Poincaré maps of the new autonomous chaotic system:
(@) period 1 for =1.1, (b) period 4 for »=1.243, (c) period 8 for
b=1.246, (d) chaotic for b=1.24.......c.ccoiiiiiiiii i e e 13
Bifurcation diagram of the new autonomous chaotic system................. 13
Lyapunov exponents of the new autonomous chaotic system, where the
sum of Lyapunov exponents is represented as a doted line at -1............... 14
Phase portraits and Poincaré maps of the new nonautonomous chaotic
system: (a) period 1 for »=0.9, (b) period 2 for »=0.93, (c) period 4 for
b=0.934, (d) chaoticfor b=1......cccevvvviiiiiiiiiiiiiiiiiiiieene 14
Bifurcation diagram of the new nonautonomous chaotic system............ 15
Lyapunov exponents of the new nonautonomous chaotic system, where the
sum of Lyapunov exponents is representedas a doted line at -1............ 15
Phase portraits of the master new-autonemous:chaotic system.............. 28

Phase portraits. of x, to y. (i=41,---,4) for Section 3.3 when the

generalized synchronization.sobtained........cc.........c.ocoeeeennnnnnl.. .28
Time histories of the state-errors.for'Section 3.3...........cccvvviviinennn 29
Phase portraits of the master new nonautonomous chaotic system......... 29

Phase portraits of x, to"y . (i=1---,4) for Section 3.4 when the
generalized synchronization is obtained.................cooiiiiiiiii i, 30
Time histories of the state errors for Section 3.4............cccocvvvivvnnnnn 30
Phase portraits of x, to y, (i=1---,4) for Section 4.3 when the
generalized synchronization is obtained..............coooevie i nennn. 47
Time histories of the state errors for Section 4.3............cccoviiiiiiinnnnn 47
Phase portraits of x, to y, (i=1---,4) for Section 4.4 when the
generalized synchronization is obtained.................ccccooiiii i, 48
Time histories of the state errors for Section4.4............cccovovviiinnnn 48

A sketch of a pursuit problem of a straightly oscillating target in (x;, y,)

Phase portraits and Poincaré maps for straightly oscillating target pursuit
problem: (a) period 1 for 5=0.4, (b) period 1 for 5=0.7, (c) chaotic for

X



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

5.3
5.4
5.5

5.6

5.7
5.8
6.1

6.2

6.3

6.4

6.5

7.1
7.2

7.3

7.4
7.5

7.6
7.7

7.8

b=1.0, (d) chaotic for H=1.8......cccoiiriiiii i 58
Bifurcation diagram for straightly oscillating target pursuit problem........ 59
Lyapunov exponents for straightly oscillating target pursuit problem......59

A sketch of a pursuit problem of a circularly rotating target in (x;, »,)

Phase portraits and Poincaré maps for circularly rotating target pursuit
problem: (a) period 1 for »=0.2, (b) period 2 for 5=0.58, (c) chaotic

for 5=0.78, (d) chaoticfor 5 =0.81..........cciiiiiiiiiieas 60
Bifurcation diagram for circularly rotating target pursuit problem......... 61
Lyapunov exponents for circularly rotating target pursuit problem.........61

Phase portraits and Poincaré maps for nonlinear nonholonomic system
where the magnitude of velocity keeping constant: (a) period 1 for »=5.8,
(b) period 2 for b=25, (c) period 4 for b=4.1, (d) chaotic for
D=5.3 i R o 68
Lyapunov exponents  for nonlinear. nonholonomic system where the
magnitude of velocity keeping constant. ... oo e i i, 68
Largest Lyapunov exponent for nonlinear nonholonomic system where the
magnitude of velocity keeping'constant...... ... . ......ocoeviiieeiieeiiennn. 69
Bifurcation diagram for; nonlinear- nonholonomic system where the
magnitude of velocity keeping constant:...............c.oovviiiiiiieinnnnnn, 69
Period-doubling phenomenen for 'nonlinear nonholonomic system where
the magnitude of velocity keeping constant.....................cccoeeeieenn .. 70
The chaotic attractor of the van der Pol system for 7z =2¢+sin¢............84

The chaotic attractor of uncontrolled forced nonlinear damped Mathieu

Time histories of the state errors for Section 7.3 by applying method 1....85
Time histories of the state errors for Section 7.3 by applying method 2....86

Time histories of L For SECHON 7.3 vvveee oo, 85

The chaotic attractor of the forced nonlinear damped Mathieu system for

Xi



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

7.9
7.10
7.11

7.12
8.1
8.2

8.4
8.5
8.6
8.7
8.8

The chaotic attractor of the controlled Rdssler system....................... 88
Time histories of the state errors for Section 7.4 by applying method 1...88
Time histories of the state errors for Section 7.4 by applying method 2...89

Time histories of L for SECON 7.4u.........ccoveveeeeeeeeeeieeeieieenee .89
The chaotic attractor of the Duffing system....................................98
The chaotic attractor of uncontrolled forced nonlinear damped Mathieu
)] (=] 11 PP 98
The chaotic attractor of the controlled forced nonlinear damped Mathieu
)] (= 1 P 99
Time histories of the state errors for Section 8.3..................ccveee. .99
The chaotic attractor of the Lorenz system.............coooviiiiiiiiinenn .. 100
The chaotic attractor of uncontrolled Rossler system...............oooeeeee. 100
The chaotic attractor of the controlled Rossler system...................... 101
Time histories of the state errors for Seetion 8.4...............cccoeeveveienn, 101

Xii



Chapter 1

Introduction

Chaotic phenomena have been observed in physics, chemistry, physiology, and
many disciplines [1-3]. In contrast with the famous chaotic systems, such as Lorenz
system, Duffing system, and R0ssler system, nonlinear Mathieu system is less
mentioned [4-9]. However, nonlinear Mathieu system is important and can be applied
in analysis of the resonant micro electro mechanical systems [10-12]. In this thesis,
the new autonomous and new nonautonomous chaotic systems constructed by mutual
linear coupling of two non-identical nonlinear.damped Mathieu systems are studied.

Chaos synchronization has been widely applied«in secure communication [13,
14], biological systems [15, 16],-and many: other.fields [17, 18]. The generalized
synchronization is a complex type of .chaos synchronization and gives rise to
extensive investigations recently [19-26]. The mixed error dynamics and the plain
square sum Lyapunov function are currently applied in studying the generalized
synchronization, but there are some shortcomings and restrictions in them. The
auxiliary numerical simulation is unavoidable for current mixed error dynamics in
which master state variables and slave state variables are presented while their
maximum values must be determined by simulation [27-31]. However, the pure error

dynamics can be analyzed theoretically without additional numerical simulation.
. _ . 1
Besides, monotonous and self-limited square sum Lyapunov function, V' (e) = EeTe’

is always used in most literatures [32-37], but the Lyapunov function can be chosen in
a variety of elaborate and ingenious forms for different systems. Restricting Lyapunov
function to square sum makes a long river brooklike, deeply weakens the

powerfulness of Lyapunov direct method. Instead of current plain square sum



Lyapunov function, the elaborate Lyapunov function is applied in this thesis. A
systematic method of designing Lyapunov function is proposed based on the
Lyapunov direct method [38]. The generalized synchronization is achieved for both
new autonomous and nonautonomous chaotic systems by applying this technique.
Since Hertz [39] distinguished nonholonomic system from holonomic system in
1894, the study of nonholonomic system [40, 41] has been developed over one
hundred years. A great number of studies in this field are connected with the
extension of the developed analytical methods for holonomic system and for the
systems with nonholonomic constraints. At present the dynamics of nonholonomic
system has many applications in the problems of modern technology, such as the
pursuit problems, the motion of, automobiles, landing devices of airplanes, railway
wheels, etc. However, the complete study of chaos in'nenholonomic systems remains
deficient. As far as we know, the only paper:studies the chaos of nonholonomic
system with an external constraint is-Ref. [42],.in which the chaotic phenomena of
rattleback dynamics are studied: Butiin this paper, only Poincaré maps are given. As it
is well-known, the only Poincaré map can not identify the existence of chaos reliably.
The moving target pursuit problem [43] is a typical example of nonholonomic
system. In this thesis, chaos of nonholonomic systems with external nonholonomic
constraint for two types of pursuit problems, a straightly oscillating target, and a
circularly rotating target, is studied by applying the fundamental nonholonomic form
of Lagrange’s equations [44, 45]. Moreover, chaos of nonholonomic system with
external nonlinear nonholonomic constraint, the magnitude of velocity keeping
constant, is studied in this thesis by applying the nonlinear nonholonomic form of
Lagrange’s equations. All numerical criteria of chaos, i.e. the most reliable Lyapunov
exponents [46], phase portraits, Poincaré maps and bifurcation diagrams are firstly

wholly given to identify the existence of chaos of nonholonomic and nonlinear
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nonholonomic systems. Furthermore, it is found that the Feigenbaum number rule [47]
still holds for nonlinear nonholonomic system.

There are various types of synchronization, such as complete synchronization
[48], generalized synchronization [49], phase synchronization [50], lag
synchronization [51], and so on. Among these types of synchronization, generalized
synchronization is one of the most interesting topics. Generalized synchronization
refers to a functional relation between the state vectors of master and slave, i.e.
y =F(x,¢), where x and y are the state vectors of master and slave. In the work of
Ref. [52], the generalized synchronization is extended to a more general form,
y =F(x,y,?), where the “slave” y is not a traditional pure slave obeying the
“master” x completely but plays-a role to determine the final desired state of the
“slave”. Since the “slave” y. plays an “interwined” role, this type of synchronization

is called “symplectic synchironization*

, the master is called “partner A”, and the slave
is called “partner B”. 4n this_ thesis;” we propose two types of new chaos
synchronization, “non-simultaneous’ symplectic ..synchronization” and *“double
symplectic synchronization”.

We propose the “non-simultaneous symplectic synchronization”,
y(¢) =F(x(7),y(?),¢), where 7 is a given function of time z, so-called variable
scale time. The synchronization is achieved at “different time” for “partner A” x(r)
and “partner B” y(¢), therefore we call this type of synchronization
“non-simultaneous symplectic synchronization”. When 7 =¢, non-simultaneous
symplectic synchronization reduces to symplectic synchronization. When applying
the non-simultaneous symplectic synchronization in secret communication, since the

functional relation of the non-simultaneous symplectic synchronization is more

! The term “symplectic”” comes from the Greek for “interwined”. H. Weyl first introduced the term in 1939
in his book “The Classical Groups” (p. 165 in both the first edition, 1939, and second edition, 1946, Princeton
University Press).



complex than that of the traditional generalized synchronization, and cracking the
variable scale time 7 is an extra task for the attackers in addition to cracking the
system model and cracking the functional relation, the message is harder to be
detected by applying the non-simultaneous symplectic synchronization than by
applying traditional generalized synchronization. Therefore, the non-simultaneous
symplectic synchronization may be applied to increase the security of secret
communication. In order to achieve non-simultaneous symplectic synchronization,
nonlinear control [53] and adaptive control are applied. In the work of Ref. [53], the
induced matrix norm and the Lipschitz constant are obtained by auxiliary numerical
simulation. However, they can be estimated theoretically by using the property of
induced matrix norms [54a] and by applying adaptive control. Furthermore, in our
case, non-simultaneous symplectic-synchronization, the*complexity of the functional
relation F(x(z),y(¢),t) is_greater than that studied in Ref. [53], thus the Lipschitz
constant may be enormous., However, by applying adaptive control, the estimated
Lipschitz constant is much dess than the Lipschitz constant obtained by applying
nonlinear control. This result in the.reduction of the gain of the controller, i.e. the cost
of controller is reduced. The proposed scheme is effective and feasible for both
autonomous and nonautonomous chaotic systems, whether the dimensions of x(7)
and y(¢z) systems are the same or not.

Finally, the “double symplectic synchronization”, G(x,y)=F(x,y,?) , Is
proposed. Since the symplectic functions are presented at both the right hand side and
the left hand side of the equality, it is called “double symplectic synchronization”. It is
an extension of symplectic synchronization, y =F(x,y,?). When G(x,y)=y, the
double symplectic synchronization is reduced to the symplectic synchronization. Due
to the complexity of the form of the double symplectic synchronization, it may be

applied to increase the security of secret communication. The double symplectic
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synchronization is obtained by applying active control. A scheme of synchronization
is derived based on Barbalat’s lemma [54b], and it is effective and feasible for both
autonomous and nonautonomous chaotic systems.

The contents of this thesis are as follows. Chapter 2 contains the dynamics of
new autonomous and nonautonomous chaotic systems. The system models are
described and the numerical results of regular and chaotic behaviors are presented. In
Chapter 3, generalized synchronization of new chaotic systems is achieved by
applying pure error dynamics and elaborate Lyapunov function. The methods of
designing Lyapunov function are presented, and both new autonomous and new
nonautonomous chaotic systems are illustrated in examples. By applying pure error
dynamics and elaborate nondiagenal Lyapunovs function, nonlinear generalized
synchronization of new chaotic systems-is obtained  in* Chapter 4. We propose the
methods of designing Lyapunov function; and ‘illustrate them by both new
autonomous and new nonautonomous-chaotic systems in‘examples. In Chapter 5, the
dynamics of nonholonomic systems is studied:‘by applying the fundamental
nonholonomic form of Lagrange’s’equations. Two types of external nonholonomic
constraints are studied for moving target pursuit problems: a straightly oscillating
target and a circularly rotating target. Numerical results show that chaos exists in each
case. By applying the nonlinear nonholonomic form of Lagrange’s equations, the
dynamics of nonlinear nonholonomic system is studied in Chapter 6. We investigate
external nonlinear nonholonomic constraint: the magnitude of velocity keeping
constant. Chaos is proved to exist in each case by numerical results. Furthermore,
Feigenbaum number rule still holds for nonlinear nonholonomic system. In Chapter 7,
the non-simultaneous symplectic synchronization is proposed, and it is achieved by
applying adaptive control. The synchronization scheme is presented, and chaotic

systems with the same or different dimensions are illustrated in examples. We

5



investigate the double symplectic synchronization by applying active control in
Chapter 8. The synchronization scheme is derived, and both autonomous and
nonautonomous chaotic systems are illustrated in examples. Finally, the conclusions

of the whole thesis are drawn in Chapter 9.
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Chapter 2

Regular and Chaotic Dynamics of New Chaotic Systems

The nonlinear Mathieu system [1-6] is important and can be applied in analysis
of the resonant micro electro mechanical systems [7-9]. In this Chapter, we propose
new autonomous and new nonautonomous chaotic systems constructed by mutual
linear coupling of two non-identical nonlinear damped Mathieu systems.

Consider two non-identical nonlinear damped Mathieu systems [5, 6] described

by

)'cl =X, (2 1)
x, = —a(l+sin wt)x, — (1+sin @f)x, — ax,, |
X, =X, (2.2)

%, = —(L+sin wt)x, — a(l+sin wt)x; = ax,

where a and @ are constants.

A new autonomous chaotic system can be constructed by mutual linear coupling
of two non-identical nonlinear damped Mathieu systems, Eq. (2.1) and Eqg. (2.2). The
term sinwt of one Mathieu system is replaced by one state of the other Mathieu

system, and linear coupling terms are added to each other:

X, =Xy,

%, = —a(l+x,)x, — (L+x,)x’ — ax, + bx;,

(2.3)

X3 =X,

%, = —(L+x,)x; —a+x,)x; —ax, +bx,.

The parameters in simulation are a =0.5, b =1~1.254, and the initial condition is
x,(0)=0.1, x,(0) =0.1, x,(0) = 0.2, x,(0) = 0.2. The phase portraits, Poincaré maps,
bifurcation diagram, and Lyapunov exponents of the new autonomous chaotic system
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are shown in Fig. 2.1-2.3. It can be observed that the motion is period 1 for »=1.1,
period 4 for b =1.243, and period 8 for »h=1.246. For b=1.24, the motion is
chaotic.

A new nonautonomous chaotic system can also be constructed by mutual linear
coupling of two non-identical nonlinear damped Mathieu systems, Eq. (2.1) and Eq.
(2.2). The terms sinar of each Mathieu system are preserved, and linear coupling

terms are added to each other:

X=X,

%, =—a(l+sinwt)x, — (L+sin wt)x} —ax, + bx,, 2.4)

Xy =Xy,

%, = —(L+sin wt)x, — a(l+Sin wt)x] — ax ;b

The parameters in simulation:are a = 0:55=0:9 ~1,@ =1, and the initial condition
is x,(0)=0.1 x,(0) =0.1,x,(0) = 0.2, x,(0)=.0.2. - The.phase portraits, Poincaré
maps, bifurcation diagram, and Lyapunov exponents of the new nonautonomous
chaotic system are shown in‘Fig. 2.4-2.6. It .can-be observed that the motion is period
1 for »=0.9, period 2 for 5»=0.93, and period“4 for »=0.934. For b=1, the

motion is chaotic.
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Fig. 2.1 Phase portraits and Poincaré maps of the new-autonomous chaotic system: (a)

period 1 for »=1.1, (b) period 4 for-h=1.243, (c) period 8 for b =1.246, (d)
chaotic for »=1.24.
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Fig. 2.2 Bifurcation diagram of the new autonomous chaotic system.

13



@ =

OB .

Lyapunoy exponents

N8F -

_12 1 1 1
1 1.05 11 1.15 1.2 1.254

b

Fig. 2.3 Lyapunov exponents ‘of the new autonomousrchaotic system, where the sum
of Lyapunov exponents is represented-as a doted line at -1.
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Fig. 2.4 Phase portraits and Poincaré maps of the new nonautonomous chaotic system:
(@) period 1 for 5=0.9, (b) period 2 for »=0.93, (c) period 4 for »=0.934, (d)
chaotic for »=1.
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Fig 2.5 Bifurcation diagram of the new nonautenomous chaotic system.
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Fig. 2.6 Lyapunov exponents of the new nonautonomous chaotic system, where the
sum of Lyapunov exponents is represented as a doted line at -1.
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Chapter 3

Generalized Synchronization of New Chaotic Systems by

Pure Error Dynamics and Elaborate Lyapunov Function

3.1 Preliminaries

In this Chapter, the generalized synchronization is studied by applying pure error
dynamics and elaborate Lyapunov function. The pure error dynamics can be analyzed
theoretically without auxiliary numerical simulation, whereas the aid of additional
numerical simulation is unavoidable for current mixed error dynamics in which
master state variables and slave_ state variables are presented while their maximum
values must be determined by simulation [1:5]. Besides, the elaborate Lyapunov

function is applied rather than current plain square* sum Lyapunov function,

V(e) :%eTe, which is currently used“[6-11] for convenience. However, Lyapunov

function can be chosen in*a variety of forms for.different systems. Restricting
Lyapunov function to square sum makes a long river brooklike, deeply weakens the
powerfulness of Lyapunov direct method. Based on Lyapunov direct method [12], the
generalized synchronization is achieved and a systematic method of designing

Lyapunov function is proposed.

3.2 Design of Lyapunov Function

Consider the master and slave nonlinear dynamic systems described by
x=1(z,x), (3.1)

y=£(y)+u(t,x,y), (3.2)
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where x,y € R" are master and slave state vectors, f: R, xR" — R" is a nonlinear
vector function,and u: R, xR"xR" — R" is controller vector.

Generalized synchronization means that there is a functional relation y = g(¢,x)
between master and slave states as time goes to infinity, where g: R xR" —> R" isa
continuously differentiable vector function. Define e=y—g(z,x) as generalized

synchronization error vector, and the error dynamics can be obtained:

é:y_g(t’x)

_ . og(tx) . og(tx)

YT T (3:3)
(s, )—ag(”‘)f(z X)— ( )+u(txy)

Based on Lyapunov direct method?[12], the scheme of generalized synchronization
and the procedure of designing Lyapunov function are described as follows:

Step 1. Construct a Lyapungv function
V(te) _—eTA(t)e _—/111(t)e1 + /122 (yeZ+-r ;/1 (t)e?, (3.4)

where A(t) =[4,(1)]e R™ IS +an=unknown.-continuously differentiable positive

definite diagonal matrix to be designed. Its derivative is

V(€)= éTA(t)e+%eTA(t)e
= ﬂll(t)elél +/122 (t)ezéz +“.+2’nn (t)enén (3.5)

1. 1. 1.
+ =2, (€] + =2 ()€ +++ =4, (e
2 2 2
Step 2. Eq. (3.5) can be rewritten in the following form:

V(t e)=G (/111”111)31 +G (ﬂzzviz)ez +:+G,( nn’/ln)elf
HH (A i A Xy X, Ve, 3,0 0) + g Je
HLH, (Ao A X000, X, Vi, 3,0 0) + Ayt ey
oot [H (A Ay XX, 00000, 0,00 + A,u,]e,

(3.6)
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where G, (4;,4,) and H,(Ay,-- A, X, X, Vs v,t)  (=12,---,n) are

i

continuous differentiable functions, u, (i=12,---,n) are controllers to be

determined.

Step 3. Eqg. (3.6) may be classified as two general forms: (1) All G,(4 /i,-l-) depend

i

on A,(r) and 4,(t), (2) Some of G,(4,,4,) depend on A,(r) and A,(), the

i

remaining G, (4,,4,) dependonlyon A, ().

Form (1): All G,(4,,4,) dependon A,(t) and A,(t).

i

Step 4. Design the controllers u, such that
H (Ayyeeei Ay XX, Ve, Y, ) B AU =00(=1,2,--+, n) (3.7)

i.e. current mixed error dynamics has'been replaced by pure error dynamics. By Eq.

(3.7), we design the controllers u; such that 4

il

(t=12,---,n) are linear function
of each other with positive_coefficients.

Step 5. Design A, (¢), 4,, ()34, (f) such that

V>0, 0<A, <A()<A,, (=12""n), (3.8)

where 4 A, arepositive constants, and

mii !

V>0, G(A,A4)<0 (i=12,-,n), (3.9)

then the Lyapunov function can be obtained and the generalized synchronization is
achieved according to Lyapunov direct method.

Form (2): Some of G, (1,,4,) depend on A,(r) and A,(f), and the

g’
remaining G, (4,,4,) dependonlyon A, ().
Step 4. Assume
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Yk, A, () =1, (3.10)

Vi, H (A Ay, X X, v Y, 1) + Ay (Du, = —e (3.11)
vj’ Hj(/lll’.“’/’inn’xl’“.’xn’yl’“.’yn’t)—'_/ljj(t)uj:0) (3.12)

i.e. current mixed error dynamics has been replaced by pure error dynamics, and

appropriately design the controllers », (i=12,---,n) and 4,(z) such that

Vi20, 0<4,,<2,()<4,,, (3.13)
where 4, ., 4, ; are positive constants, and
Vi20, G,(4;,4,)<0, (3.14)

then the Lyapunov function can be obtained and the generalized synchronization is

achieved according to Lyapunoyv direct method:

3.3 Example for New Autonomous Chaotic Systems

In the following two Sections, the functional relation between master and slave
statesis y, =g, (t,x,)=a(®)x, + p(t) (=12,---,n).

The new autonomous chaotic system is constructed by mutual linear coupling of
two non-identical nonlinear damped Mathieu systems, and the master and slave new

autonomous chaotic systems can be described by
X, =Xy,
%, = —a(l+x,)x, — (L+x,)x’ — ax, + bx;,

X3 =X,

(3.15)

%, = —(1+x,)x, —a(l+x,)x; —ax, +bx,,
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=y, tu,
Y, =—a(+y)y, — A+ y,)y; —ay, + by, +u,,
V3 =Yy t+us,
Yy ==+ 1,) v, —all+y,)y; —ay, + by, +u,.

(3.16)

The parameters in simulation are a=0.5, »=1.24, and the initial condition is
x,(0)=0.1, x,(00=0.1, x,(00=02, x,(0)=02, »(0)=03, »,(0)=0.3,
¥5(0)=0.4, »,(0)=0.4. The phase portraits of the master new autonomous chaotic
system are shown in Fig. 3.1.
Let e, =y, —a(®)x,—-p() (=L---,4), then the error dynamics can be
obtained:
& =e,—a(t)x, + (1) - B(6) +uy,
e, =—ae, —ae, +be; —a(y,y, Half)x,x,) _[(1+y4)y13 _a(t)(1+x4)x13]
—a(0)x, +(b—2a) B(1)= P (1) + 1)
& = e, —a(t)x, + B(t) - S(8) + us;

¢, =—e;—ae, +be, — (y,ys=a(t)x,x;) = al(1+ yz)y33 ~a(f)d+ xz)xé?]
—a(t)x, + (b—a-1)flt) - p(e) g

(3.17)

Step 1. Construct a Lyapunov function
1 1 2, 1 2, 1 2, 1 2
Vit e) :Ee At)e= Eﬂ'll(t)el +Eﬂ'22 (t)e; +§ﬂ33(t)ea +§2“44(t)e4 . (3.18)

Its derivative is

V(t,6) = = A (068 + Ay (erds + = oy (06 + Ay (e
2 2 (3.19)

1. R .
+E/133 (t)e§ + Ay (t)esé, +Eﬁ“44 (t)ej + Ay (t)esé,.

Step 2. Eq. (3.19) can be rewritten in the following form
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V(te)=G (A /211)81 + G, (A, /122)82 + Gy (g, 133)63 + G, (Ay, /144)64
+[H (A Agg X0 X, Ve, Vo ) + A e
+H[H (A Aggs X0 Xy, Ve, Voo ) + Ayl (3.20)
H[H (Ao Aggs Xy, X0 Vit Voo ) + Ayt e
H[H (Ao gy X0 X, V1 Voo ) + Ayt Jey,

where

Gl(juvjn):%/in(t)_ﬂn(t) G, (4, 2'22)— 122(1) aly, (1),

Gs(ﬂayﬂ.ss):%jas(t)_ﬂss(t) G, (s 144) 44(t) Al (1),

H, (A1) = 2, ()= ()x, + B(0) - () + 61]+b/144 (e,

H,y (A1) = Ay (0)e + Ay, (1)[-ae, — a(y,y, — a)x,x) = (L+ v,) )]
—a(0)(L+x,)x) = & (1) (b3 20) B(6) = B(0)],

Hy (A, 1) = by ()€, + Ay D[ 2al0)x, + B(1) = BE)+ e,],

H (A1) = Aag (1) e + Ay (D)5 = (3o = @)%, 5,) = a((L+ ) 5
—a(0)(1+x)x) — &(D)xg £ (b=a-DB(1) = f1)].

(3.21)

Step 3. Since all G,(4,,4,) depend’on A () -and A.(r) (i=1---4), Eq. (3.20)
can be classified as form (1).

Step 4. Design the controllers

u, =—y,—by, +(a(t)+at)x, +ba(t)x, +bp(t)+ B(),
1, = a(yy, —a()xx,) + L+ y,)y5 —a(@)@L+x,)x
+a(t)x, —(b—2a)(t)+ B(1),
1y = by, — v, + (a(t) + a(t))x, + ba(t)x, + bB(E) + B(E), (3.22)
U, = v,9, — a(t)x,x, +all+ y,) v —a(t)1+ x,) x5

+1-Yy, -0 Y + a0y, - G-a-D)p0) + H0)
a a a

such that
H (A Ay Xy X, Yy Yy )+ A4,(0u, =0 (i=1,---,4), (3.23)

and 4, (i=1,---,4) are linear function of each other with positive coefficients:
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7@ =2us®, s =220, A0 = A1), (3:24)
Now, the mixed error dynamics is replaced by pure error dynamics:

V(t,€) = G,(Ay, A1)el + Gy (Aoy, Ay )€l + Gy (Aag, Agg) €2 + Gy (Aags Ags) el - (3.25)
Step 5. Design

1
ﬂn(OZErﬂ?z(t)_ (1 ) ﬂ?s()_ (_’_e,)’ 44() e (3-26)

such that

V20, 0<A,()== <ﬂu(t)<ﬂMn(t) 1,

m

V120, 0< 200 =5 < () ST =2
f (3.27)
Vit >0, O</1m33(t)_—</133(t)</1M33(t)——
a
V120, 0<,u(0) =2 <A (VS Ayual) =1
V120, G(huh) = 2 i) g,
2 2(l+e™)?
) 1. —2a+@0—2a)e”’ -1
Vt>0, G,(4,, =—A,(t)— 1= = <
2(Aas A) 5 2 (t) —ady(t) 2a(1+eit)2 (1+e,,)2
t , (3.28)
VI20, Gy deg) =3 Ag) A1) =5 o= 28 <
2 2a(l+e’)’ (l+e')°
1. —2a+(-2a)e™ -1
vt>20, G A) ==, = \
(44 44) 5 44() 44() (1+e_t)2 2(1+e_t)
then the Lyapunov function can be obtained
Vte)= ! —e’ + ! —el + ! — el + ! —e’ (3.29)
21+e™) 2a(l+e™) 2a(l+e™") 21+e™)
and
P(e)=-iot® @ 1 2 2te 1 2 (3.30)

2lre ) N @re P @re ) 2@re )t
Since Lyapunov global asymptotical stability theorem is satisfied, the global
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generalized synchronization is achieved. «a(¢) =sinwt, p[(t)=coswt, w=1 are

chosen in simulation, and the results are shown in Fig. 3.2-3.3.

3.4 Example for New Nonautonomous Chaotic Systems

The new nonautonomous chaotic system is constructed by mutual linear
coupling of two non-identical nonlinear damped Mathieu systems, and the master and

slave new nonautonomous chaotic systems can be described by

X, =X,

X%, = —a(l+sin wt)x, — (L+sin o) x} — ax, + bx,,

. (3.31)
X3 = x41

X, = —(L+sin wt)x, — a(l+sin ot)x; =ax, +bx,,

)./1 =Y, tu,

92 =a(l+sinor)y, — (13l qOdisdi. Ak (3.32)
V3 =Yy T,

3, = —(L+sin of) y, — a(L+8IN 1) 3= aygrbyp-itg,

The parameters in simulation are @=0.5, b=1, @ =1, and the initial condition is
x,(0)=01, x,(00=0.1, x,(00=02, x,(0)=02, »(0)=03, »,(0)=03,
»,(0)=0.4, y,(0)=0.4. The phase portraits of the master new nonautonomous

chaotic system are shown in Fig. 3.4.
Let e =y, —a()x,—p(t) (=1---4), then the error dynamics can be

obtained:

& = e, alt)x, + B0~ B0+,

¢, =—a(l+sinwt)e, — ae, +be, — (L+sin wt)(y! — a(t)x)) - a(t)x,
+ (—a(l+sin wt)—a+b)ﬂ(t)—,6’(t)+u2,

é;=e,—a(t)x; + p(t) _B(t)‘*‘us’

é, =—(L+sin wt)e, —ae, + be, —a(l+sin wt)(yS — a(t)x]) - a(t)x,
+(—(L+sinwt) —a+b) A1) - B(t) +u,,

(3.33)
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Step 1. Construct a Lyapunov function
1 1 2, 1 2, 1 2, 1 2
Vit e) :Ee At)e= Eill(t)el +Eﬂ'22 (t)e; +5133(t)63 +§ﬁ“44(t)e4 . (3.34)

Its derivative is

V(€)== A (06 + A0y (), + = Ay (062 + A (D)es,
2 2 (3.35)
+%233 (t)e§ + Ay (t)esés +%j“44 (t)ej + Ay (t)e4é4.

Step 2. Eq. (3.35) can be rewritten in the following form

V(e)=G 1 (A /111)‘31 +Gy(4y, 22)e22 +G3(233,ﬂ:33)e32 +G4(/144,/i44)ef
H[H (Ao g X000 X, Yy Voo ) + At e
HLH, (Agyeeey gy X0, X i S i) + Aot Je, (3.36)
+[H (Ao s Aggs X0 i %gn V1 Voo 1) + Aggligle,
+LH, (A s Aggr Xt X g Vi Vi ) F Ay, Jegs

where

Gl(ﬂll’ill):%ﬂ‘ll(t) G, (A, ﬂzz) 22(t) ary, (1),

Gs(ﬂasv/isa) = %jse(t)v G4(/144J“44) 25144(0 _0/144 (1),

H, (A1) = 24, ([ ()x, + B(0) = SO+ by, (e,

H,(Ay, 1) = Ay ()e, + A, (6)[-a(l+sin ot )e, — (1+sin wt) (3} — a(t)x))
—a(t)x, + (—a(l+sinot) —a+b) f(t) - B1)],

Hy(Ay,11) = by (0)e, + Ay ()= (1) xs + B(1) ~ B0,

H, (A, 1) = A (£)e; + A, () [(L+SiN wt)e, — a(L+sin wt)(v: — a(t)x3)
—a(t)x, + (~A+sinwt) —a+b) B(t) - B(1)].

(3.37)

Step 3. Since some of G,(4,, A.) depend on A;(t) and /1 () (j=2,4), the

VARSI
remaining G,(1,,4,) depend only on A, () (k=13), Eq. (3.37) can be

classified as form (2).

Step 4. Assume
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A, (0) =1, Au(r) =1, (3.38)

Hy (A Aggn X000 X Yy Yoo ) + Ay (Ouy = —e,

(3.39)
Hy(Ags oy Ay Xp0m 3 Xy Y1y Voo 1) + Agg (O = —e5,
Hy(Aysy Agy X0y Xy Vyao sy Vo ) + g ()u, =0, (3.40)
H, (A5 Agan X3 Xgs Yooy Vo ) + Ay (O, =0,
and appropriately design the controllers u, (i=1,---,4) and A,,(¢), A, ()
b . ba(t) bp(t) .
=—y,———y, +(a@) + a(t))x, + + + B(2),
WA sinet () e, 2isinar  2+sinwt A0
u, =—ay, +ac(t)x, + a(t)x, + (L+sin wt) (¥ — a(t)x))
+(asinwt +3a—b) () + B(2),
(asiner +3a=b) (1) + (1) - o 341
. (04 :
=—y,——y, +(a(t) + a(?))x, + + + (1),
BT T sinwe (D) +a()x, 24sinet 2 2+sinwt )
u, ==y, +a(t)x, + a(t)x, + a(L+sin wt)(y5 — a(t)x3)
+(sinwt +a—b+2)Bt) + B0,
1 1
)=—-—, A, () =—"", 3.42
#2z() a(2 +sin wt) 0 2-+sin et (3.42)
such that
1 1
vVt >0, O<1m22:3—§/122(t)s/1mz:—,
1“ 4 (3.43)
vVt =0, O<im44:§3/144(t)£2w4=1,
: 1.
Vi 20, Gz(ﬂ'zzlﬂ'zz)zi/izz(t)_aﬂ'zz([)
_—(4a+2asinwt+wcoswt)_—(2+sint+cost)<0
- 2a(2 +sin wt)? ~ (2+sin7)? ’
. a(2+sin wt) (2+sint) (3.44)
Vi >0, G4(/144'/144) 25/1440)_“&44(0
_ —(4a+2asinwt+wcoswt)  —(2+sint+cost)
2(2+sin wt)? 2(2+sint)?
Now, the mixed error dynamics is replaced by pure error dynamics:
V(t1e) :[Gl(ﬂil’ﬂ.ll)_ﬂll]elz +G, (1’221/1'”22)922 (3.45)

+[Gy (A, 233) - 233]832 +G, (A, /7‘“44)85-
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Then the Lyapunov function can be obtained

O =Y S SR NV SN S (3.46)
2 2a(2+sin wt) 2 2(2+sinwt)

and

V-(t’e):_elz_2+smt+cosz 2, 2+sinz+cost (3.47)

e e. e ———
(2+sin)> ¢ ° 2(2+sing)? ¢

Since Lyapunov global asymptotical stability theorem is satisfied, the global

generalized synchronization is achieved. «a(¢) =sinwt, p(t)=coswt, w=1 are

chosen in simulation, and the results are shown in Fig. 3.5-3.6.
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Fig. 3.2 Phase portraits of x, to y, (i=1---,4) for Section 3.3 when the
generalized synchronization is obtained.
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Fig. 3.3 Time histories of the state errors,for Section 3.3.

Fig. 3.4 Phase portraits of the master new nonautonomous chaotic system.
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Fig. 3.5 Phase portraits ofsx to y,
generalized synchronization.is obtained.
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Fig. 3.6 Time histories of the state errors for Section 3.4.

30



References

[1] G P. Jiang and W. K. S. Tang, “A Global Synchronization Criterion for Coupled
Chaotic Systems via Unidirectional Linear Error Feedback”, International Journal
of Bifurcation and Chaos, 2002, Vol. 12, pp. 2239-2253.

[2] G P. Jiang, G. R. Chen, and W. K. S. Tang, “A New Criterion for Chaos
Synchronization Using Linear State Feedback Control”, International Journal of
Bifurcation and Chaos, 2003, Vol. 13, pp. 2343-2351.

[3] G P. Jiang, W. K. S. Tang, and G. R. Chen, “A Simple Global Synchronization
Criterion for Coupled Chaotic Systems”, Chaos, Solitons and Fractals, 2003, Vol.
15, pp. 925-935.

[4] J. Sun and Y. Zhang, “Some Simple Global Synchronization Criterions for
Coupled Time-varying Chaotic Systems”, Chaos, Solitons and Fractals, 2004, \ol.
19, pp. 93-98.

[5] E. M. Elabbasy, H. N. Agiza and M. M. El-Dessoky, “Global Synchronization
Criterion and Adaptive. Synchronization® for New Chaotic System”, Chaos,
Solitons and Fractals, 2005, Vot.23; pp. 1299-13009.

[6] M. T. Yassen, “Controlling, Synchronization and Tracking Chaotic Liu System
Using Active Backstepping Design”, Physics Letters A, 2007, \Vol. 360, pp.
582-587.

[7] S. A. Lazzouni, S. Bowong, F.M. M. Kakmeni,:and B. Cherki, “An Adaptive
Feedback Control for Chaos ‘Synchronization of Nonlinear Systems with Different
Order”, Communications in Nonlinear Science and Numerical Simulation, 2007,
\ol. 12, pp. 568-583.

[8] W. W. Yu and J. D. Cao, “Adaptive Synchronization and Lag Synchronization of
Uncertain Dynamical System with Time Delay Based on Parameter Identification”,
Physica A, 2007, Vol. 375, pp. 467-482.

[9] E. M. Elabbasy, H. N. Agiza, and M. M. El-Dessoky, “Adaptive Synchronization
of a Hyperchaotic System with Uncertain Parameter”, Chaos, Solitons and
Fractals, 2006, Vol. 30, pp. 1133-1142.

[10] J. X. Wang, D. C. Lu, and L. X. Tian, “Global Synchronization for Time-Delay
of WINDMI System”, Chaos, Solitons and Fractals, 2006, Vol. 30, pp. 629-635.
[11] C. P. Li and J. P. Yan, “Generalized Projective Synchronization of Chaos: The
Cascade Synchronization Approach”, Chaos, Solitons and Fractals, 2006, Vol. 30,

pp. 140-146.

[12] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey,

1991.

31



Chapter 4

Nonlinear Generalized Synchronization of New Chaotic
Systems by Pure Error Dynamics and Elaborate

Nondiagonal Lyapunov Function

4.1 Preliminaries

By applying pure error dynamics and elaborate nondiagonal Lyapunov function,
the nonlinear generalized synchronization is studied in this Chapter. In stead of
current plain square sum Lyapunov function [1-6], the elaborate nondiagonal
Lyapunov function is applied .in “this study. A- systematic method of designing
Lyapunov function is proposed based on Lyapunov .direct method [7], and the

nonlinear generalized synchronization is achieved by applying this technique.

4.2 Design of Lyapunoy Function

Consider the master and slave nenlinear dynamic systems described by
x=1f(z,x), 4.2)
y =f(t,y) +u(s,x,y), 4.2)

where x,y € R" are master and slave state vectors, f: R, xR" — R" is a nonlinear
vector function,and u: R, xR"xR" — R" is controller vector.

Generalized synchronization means that there is a functional relation y =g(x)

between master and slave states as time goes to infinity, where g:R" —> R" is a

continuously differentiable nonlinear vector function. Define e=y-g(x) as

generalized synchronization error vector, and the error dynamics can be obtained:
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e=y-g(x)=y— ii") —£(z, )—di()f(z x)+u(t,x,y). (4.3)

Eqg. (4.3) can be rewritten in the following form:
e=p(t,e)+q(z,x,y)+u(z,x,y), (4.4)

where p:R xR" > R" and q:R, xR"xR"— R" are continuous vector functions

represent the error variable terms and the state variable terms in the error dynamics
respectively.
In order to transform current mixed error dynamics into pure error dynamics, the

controller vector is chosen as
u(t,x,y) =—q(z,x,y)+ v(z,e), (4.5)

where v:R, xR"— R" isacontinuous vector function:
Now the pure error dynamics'can be obtained:
e=p(e)+v(te), (4.6)

Based on Lyapunov direct ‘method [7], the sScheme of nonlinear generalized
synchronization and the procedure of designing elaborate nondiagonal Lyapunov
function are described as follows:

Step 1. Construct a Lyapunov function

n

V.6 =Y. 2l A (0,
=1 4.7)

S A0 + Aty R Q&+ 2, (06 + g5 A (06F],

/ A(t A
where e,-=[ X } (=121 , e {ﬂ , Ai(t):[ ) i }
€in € e A (0)

ﬂ’nn (t) ﬁ“nl

(i=12,---,n-1), An(t):{ i 2.(0)

} and A, (t)eR* (i=12,---,n) are
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unknown continuously differentiable positive definite matrices to be designed and
A, (t), A, (t) are nondiagonal. According to Sylvester’s criterion, A,(¢) have to be

chosen that

Vt>0 /1 (t) >0 /1 (t)2“+ll+l(t) 11+1 >0 (l .’n_l)’ (4 8)
4 (@)>0, 2, (04, ()- 23>0 (i= n), |

and
V>0, 0<A . <A ()<A, (=12,-n), (4.9)
where A ., 4,, are positive constants.
Step 2. The derivative of Lyapunov function is
(0,6 = LA (e, + el Ayl

i=1

. : 3 e 1.
=[4.(Deé + Aee, tA,e8, + 4, (0)ese, +Eﬂ11 (t)e12 + E/lzz (1)622] (4.10)

+o+[4,,(Dee, T A,.6,e HAee + A, (t)ee + j’nn (t)ej +%/1'11(l‘)€12],
Eq. (4.10) can be rewritten in the following form:
V(Z’e) = F(/iu’ﬂ'uv" Ar Az ﬂ“nﬂt)elz

+- +F( nn’ﬂ’ll’. nn’//ll2’ : ’/Inl’t)ej

+Gy (A, nn'ﬂ’12’ A t)ee, (4.11)

+ o4 Gm (/111, . rlﬂ I} ﬂjz y o ﬂ"nl’ t)en—lerl
+ (2,1Mvl + AV, + ﬂ Vi )é
+o+ (24, v, + A+ A, LV, )e,

Where F( ll’ﬂ'.l.l’.. nn’/112’ a //inl’t) (i:1’2’“.’n) ! Gj(/lll’“ rm’/l.l.Z’ a nl’ )

(j=12,---,m, m=@) are continuous differentiable functions, and

v, (i=1,2,---,n) are controllers to be determined.

Step 3. Appropriately design the controllers v, such that Eq. (4.11) can be reduced to
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I/'(t!e)_}’7\'(211’211’“ nn’112’“.'ﬂ’nl’l‘)el2
+- +F( nn’ﬂll’“ nn’%Z’“.’/lnl’t)ej
+G1(/1.|.1’“ nn'/?'lZ’ v nl’t)eleZ
++Gm(/7‘11’ nn7/?‘12’ ’ /Inl’t)en—le

(4.12)

Where F( 1172117.. nn’/112’ a //i’nl’t) (i:1’2’.”’n) and éj(/lll’“ nn’/’ifI.Z’...’/Inl’t)
) n(n-1) . . . .
(j=12,---,m, m= T) are continuous differentiable functions.

Step 4. Assume

Vi Gy A Ay A ) =0, (4.13)
then the relationship between 4, can be obtained.

Step 5. Use the results of Step,4 to check if

VE20, F(A, Ay A dagrs i 1) <0 (i =12, n). (4.14)

Step 6. If Eqg. (4.14) can be satisfied; the conditions derived from Eq. (4.14) can be

obtained. If Eq. (4.14) can not be satisfied, i.e.

Vt>0 F( ]]'ﬂ’ll" nn’ﬂ12' a ﬂnl’t)zoi
Ec(/lkk’/ln’” Ar Az A 1) <0,

(4.15)

return to Step 3 and modify the controllers v, by addition of ke, where &, are

constant gains to be determined. Repeat Step 4 and Step 5, then the conditions
guarantee the validity of Eq. (4.14) can be assured.

Step 7. Appropriately design &, and 4, (¢) such that each condition derived from
the above procedure holds. Finally the elaborate nondiagonal Lyapunov function can

be obtained and the generalized synchronization is achieved according to Lyapunov

direct method.
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4.3 Example for New Autonomous Chaotic Systems

In the following two Sections, the nonlinear functional relation between master
and slave states is y, =g,(x)=ax’+Bx+y (i=12,---,n). The master and slave

new autonomous chaotic systems can be described by Eq.(3.15) and Eq. (3.16),
respectively. The parameters and the initial conditions of the master and slave systems
are the same as shown in Section 3.3.

Let ¢ =y, —ax’—pBx,—y (i=1--,4), then the error dynamics can be
obtained:
e=p(e)+q(x,y)+u(x,y), (4.16)
where

pe)=[p(e) p,(e) @) wa@®]
qxy)=[a(xy) ¢,(x¥) ¢xy)  gxy)]
pi(e)=e, p,(e)=—ae —ae,+bey «ps(€)=e; p,(€)=—e; —ae, +be,,

q.(x,y) = axzz —2axx,+y,

il
)

2 2 2 (4.17)
q,(x,y) = —a(ax; —ax, —bx;) —a(y,yy=pxx) +(b—2a)y

_[(1"')’4))/13 —ﬂ(1+x4)xf]+Zaxz[a(1+x4)x1+(1+x4)x13 —bx],
43(X,y) = ax; —20x,%, + 7,
q4(x,y) = —a(x; —ax; —bx;) = (1,05 = Bx,x5) + (b—a -1y

—a[(L+ y,)y; — B+ x,)x3]+ 202, [(L+ x,) x5 + a(l+x, ) x5 —bx,].

In order to transform current mixed error dynamics into pure error dynamics, the

controller vector is chosen as
u(x,y) =-q(x,y) +v(e). (4.18)
Now the pure error dynamics can be obtained:

e=p(e)+v(e). (4.19)
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Step 1. Construct a Lyapunov function

i1 (4.20)

) A A
where el:[e’} (i=1---3) , e4={e4} , Ai:{ ! ”*1} (i=1---3) ,
€ € 4 %

i+l i+1i+1

Au A
A4:L44 2;”} and A, (i=1---,4) are unknown continuously differentiable
41 1

positive definite nondiagonal matrices to be designed. According to Sylvester’s

criterion, A, have to be chosen that

/111 >0, /111222 _/1122 >0,
/122 >0, 2’22133 _2723 >0,
/133 > O' 233/144 _/1324 > O'
2'44 >0, /7'44]11 - 2421 > 0.

(4.21)

Step 2. The derivative of Lyapunov functionis

4
Vie)=>Y & Ag,
i=1

=[A,ee + 4,66, + e, + 4,e,6,] (4.22)
+ -+ [Agel, + A 6.0 + A 0,6+ Aeé ]

EQ. (4.22) can be rewritten in the following form:

V(e) :Fi(ﬂu'"'1144'212""’/141)312 +Fz(ﬂni'"1/144’212’""/141)322
+F3(211’""144’&21""/141)‘3; +F;t(ﬂn’"'v2'44’/1121""ﬂ*41)e§
+ Gy (A Ay Ay e, + G (Ao Ay Aoy Ay s
+ Gy (Ao Agas A A )@y + Gy (Ao Ay Aoy Ay )y (4.23)
+ G (A Ay Aigr s A )esey + G (Aygs oy Ay A3 Ay ) g€
+ (24, + AV, + Agva)e + (25,9, + Aygvs + Apvi)e,
+(2A53v3 + Aygvy + Ay, )3 + (2A40v, + Ay + A34v3)e,

where
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F(Ay, i Ay) =—ak, +bhy,, F(4y, Ay) =4, — 204,
Fy(Ays i Agg) =02 — Aoy Fy( Ay, ooi Ayy) = Agy — 20y,

Gy (A, A) =24, —ak, —2aky,,  Gy(Ay, -+, Ay) = by —ady + b2y = Ay,

G3(ﬂll’.“’/14l) = 2b/’i“44 _aﬂﬂl’ G4(/1_|_1""1/141) = 2b122 —0123,
G (A A) = Aoy + Ay Gs(Aygieoe, Ayy) = 205 —alyy — 224,

Step 3. Design the controllers
Vv, =-€, V,=dae, V;=—€, V,=¢;,
such that Eq. (4.23) can be reduced to

V(€)= F(An s Augs Az )€ + By (Aags s Ay Ay, A ) €S
+ﬁ3(,311,...,,144,,112,...,,141)632 +E(ﬂ11""'/144’/1121"”/141)62
+G, (A s Agar Agr 2 241)@185 + Gy (s Agas Augs 2 Ay )€1
+Gy(As s Aggs Ay Ay )eiwk G+ Aas Appr 1 Ay ) €085
+Gy(Ay s Ags A s Aan )y, + G (Ay, s A A+ Auy) s,

where

F(Aiy s Ag) =g, By Aug) = =20y,
Ey(Ayy e Ag) =blys, (-, Ayg) ==2erAags
Gy Aay) ==k, Gy (agyiee, Auy) = bsy + blsgs

Gy (A, Agy) = 262y —ady, GAAysndi)=2bA,, —al,,

C35(2'11’“"]“41) =0, ée(ﬂil""’ﬁm) =—atky,.

Step 4. Assume
Vj, éj(ﬂll'“.’)%l) =0,
then the relationship between 4, can be obtained:

b b
/112:0’ 223:2_61/1221 /134:()’ 2“41:2_61/144-

Step 5. Use the results of Step 4 to check if

ﬁ:’(ﬂll"u’ﬂ“4l)<0 (i=l,---,4).
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(4.25)
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(4.27)

(4.28)

(4.29)

(4.30)



It can be obtained that

F,\i(ﬂll"“’ﬂﬂl) =bA, >0, ﬁz(ﬂu""’ﬂm) =—2al, <0,

; K (4.31)
173(1111""/141) =bAy >0, 5(2111""141) =-2al,, <0.
Step 6. Since Eq. (4.30) is not satisfied, i.e.
F.(A,A4,)=0 (j=13),

j (211 41) (Jj ) (4.32)

F (g1 2) <0 (k=2,4),
return to Step 3 and modify the controllers v, and v, by addition of ke and ke,
respectively, where &, and k, are constant gains to be determined. Because ¥ has

been modified, Eq. (4.27) becomes

F (A, Agg) = by + 2k g, By, Ayy) = —2ad,
Fy(Augse+, Aag) = bl + 2k gy Fy(up o lag) = —2a 4,

Gy (Ao Ay) = (b, — @) Ags Gyl Aag) =g + b, (4.33)
Gy(Ay, Ay) =264, + (g =a) A, G (A, A,) = 2b45, + (ky —a) A,

Gs Ay ) =0, Gy(Aymee, A) = (B =a) A

Repeat Step 4 and Step 5, then the relationship between 2, becomes

a—k a—k
A, =0, A, = 2h : Ay A =0, Ay :71/141' (4.34)
and Eq. (4.30) can be satisfied if
=2k =2k
/141 < Tl/ill’ 2'23 < b 2 /133- (4-35)

Step 7. The conditions derived from the above procedure can be summed up as

follows:

Ay, =0, 72, =0, (4.36)
a—k 2k

/111 >0, 144 >0, /144211 _/1421 >0, 144 = 71411 141 < Tlﬂ'n' (4-37)
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a—k -2k
ﬂzz >0, ﬂ33 >0, 122/133 _ﬂzz3 >0, /122 = 73123’ /123 < 73233 (4-38)

Design
ky=-a, ky;=-a,
a’ a’
Ay =b, 12225’233217’ /14425’ (4.39)

a

a
/112 =0, 223:_1/134:0: /141:—,
2 2

such that each condition holds. Then the elaborate nondiagonal Lyapunov function

can be obtained

2 2
a a a a
l“®2554+5@%+bé+§Eé+5qq+M£ (4.40)

and

. 3ab a 3ab a’
V(e) :_7612 —?622 —T€§ —?ej. (441)

Since Lyapunov global ~asymptotical stability theorem is satisfied, the global

generalized synchronization, is 'achieved:“e=1, /f=2, y=3 are chosen in

simulation, and the results are shown in Fig:4.1-4.2.

4.4 Example for New Nonautonomous Chaotic Systems

The master and slave new nonautonomous chaotic systems can be described by
Eg. (3.31) and Eq. (3.32), respectively. The parameters and the initial conditions of

the master and slave systems are the same as shown in Section 3.4.

Let e =y —ax’—pBx—y (i=1--,4), then the error dynamics can be
obtained:
e=p(t,e)+q(t,x,y) +u(t,x,y), (4.42)

where
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T
)

p(t,e)z[pl(t,e) po(t,€)  pslt,e) p4(t,e)]

qt.x,y) =[a.txy) ¢,6xY) ¢@6xy) q,0xYy)]
p(t.e)=e,, p,(t,e)=—a(l+sinwt)e —ae, +be,,

T
1

pi(t.e)=e,, p,(t.e)=—(1+sinwt)e,—ae, +be,,

q,(t,x,y) = ax; - 2axx, +y,

q,(t,x,y) = —ala@+sin wt)x? —ax5 —bx}]+ 2a(1+sin ot)x;x, (4.43)
+2afa(l+sin wt)x,x, — bx,x,] - (L+sin wt)(y; — px7)
—yla(l+sinwt)+a—-b],

q,(t,x,y) = axf —20x,%,+ ,

q,(t,x,y) = —a[(L+sin ot)x? —ax} —bx 1+ 2aa(l+sin o) xix,
+2a[(L+sin ot)x,x, —bx,x,]— a(l+sin ot)(y; — fx3)
—y[1+sinwt +a—-b].

In order to transform current mixedierror dynamics into pure error dynamics, the

controller vector is chosen as

u(z,x,y) =—q(z,x,y) + v(e). (4.44)
Now the pure error dynamics can be obtained:

e=p(,e)+v(e). (4.45)

Step 1. Construct a Lyapunov function

4

V(te)= Z%efAi (Ve
= (4.46)

1 1 1 1
= [E A (t)elz +Aee, +E/122 (t)ezz] teeet [E Aug (t)eé,2 + Ay e.e + 5/111 (t)elz]’

h |l e =1 3 ¢ A _ ﬂ“ii(t) /Iii-*—l 1 3
where e =| 1 (i=1--3) , e, = , A ()= A (0 (i=1---,3) ,

i+

/144 (t ) /141

A) { G ()

}, and A, (¢) (i=1---,4) are unknown continuously

differentiable positive definite nondiagonal matrices to be designed. According to

Sylvester’s criterion, A,(¢) have to be chosen that

41



Ay, () > 0, 2y, (£) A, (2) _2122 >0,
A (£) > 0, Ay (£) A5 (1) = A3 > 0,

. (4.47)
A3 () > 0, Agg (£) A4y (1) — 234 > O,
A4 (1) > 0, 2, (£) 4, (2) _/1421 >0,
and
0 < j’mll < /’J’ll(t) < /IMll’
O</ﬁ{’m22gﬂ’22(l‘)S2’M22’ (448)
0 < 2’m33 < 233(1‘) < /1M33’
0< /lm44 < /144(t) < /1M44v
where 4, ., 4,, (@@=1---,4) are positive constants.
Step 2. The derivative of Lyapunov function is
. 4
V(€)=Y e A, (0)e,
i=1
. : : P M 1 2
= [, (Deé + A eent A o6+ Ay H)ese, + Eﬂll(t)el + Eﬂzz (1)e;] (4.49)

) ' : = 1.
+-+[A, (e, FA,6,6 + Aneel + A4, (F)eé + 5/144 (t)ef + Eﬂn (t)ef].

EqQ. (4.49) can be rewritten in‘the following form:

V(t’e) :Fi(in’ﬂ'n""’144’112""’2'41’0612+Fz(/izzy/111""’/144’/112""’/141’t)e§

where

+1%(/§33,211,---,/144,212,-'-,/141,t)e§ +F4(£44’Aﬂ.l'""/1441112""’141't)e§

+ Gy (A Ay Ay A 0)ene, + Gy (Ao Ay Aoy Agg 1) s

+ Gy (A g Ao Agg ey + Gy (Ao Aggy A+ Ay )€z (4.50)
+ Gy (A Ay Ao Aags 1)€,8, + G (g Agg Ap o5 Agg 1) e

+ @A+ AV, + Agvy)e + (24,0, + Aygvs + v e,

+ (235v3 + gV, + AV )e + (2440v, + Ay + Ay s )ey,
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Fl(ﬂ.u""vt) = /1'11 —a(l+sinwt) A, +bA,,, F;_(/izz"”’t) = /izz —2ak, + Ay,
Fz(zss""vt) = 233 +bAy, —(A+sinwt) Ay, F;t(/i44""vt) = /144 —2a Ay + Ay,
G, (A, 1) =24, —aA, —2a(l+sinwt) 4,,,

] ) (4.51)
G, (A, -, t) =bA, —a(l+sinwt) Ay, +bA,, —(L+sinwt) 4,,,

Gy (A1) =262y, —aky,  Gy(Ay, 1) = 2bAy, —aly,

GS(le’“"t) = Ao + Ay, G6(ﬂ’11"“1t) =24y —aly - 2(1+sin wt)lu-

Step 3. Design the controllers

v, =ae, v,=-be,—ae, v,=ae,, v,=-be —e,, (4.52)

such that Eq. (4.50) can be reduced to

V(t,€) = F (g Auys s Aags A1 s €] + By (g Augs s Ay g, A 1)
+ By (g Aug s Aags g3 Aag 106 & FyGlags Aoy A g+ g €5
+ G Ay Augs Ay s Agi)€8, + Gy (Ragt s Aas s+ Aurs D) e (4.53)
+ Gy (A Aggs g 58 A DG HG (A Ay Ay Ay 1) 565
+ Gy (A Aaas At e+, A D) egent G (Aihese, Aoy Auy )58,

where
ﬁi(ﬂ‘ll’”"l‘) :211+2a/111_a(2+5ina’t)/1121 ﬁz(/i’zzv""t) :/122 —2ak, + Ay,

Ey(Agy,++,0) = Aoy + 200y, — (24SIN@N) Ay, Fy (g0 1) = Ay — 200 + Aoy,
G, (A, t) =24, — 2a(l+sin at) A,

. (4.54)
G, (A, t)=—a(2+sinwt)A,, — (2+sinwt) 4,,,

Gy 0) =0, Gy(Ay, 1) =0,

Gs(Ayy 1) = Ay + Ay, Go(Ayy, oo+, 1) = 205, = 2(2+siN 1) Ay

Step 4. Assume

Y, G,(hy1)=0, (4.55)
then the relationship between 4, can be obtained:

A, =a+sinwot) Ay, A,=0, A;=(2+sinwt)d,,, 4, =0. (4.56)

Step 5. Use the results of Step 4 to check if
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Vt20, F(A,-1)<0 (i=1--,4). (4.57)

Assume

G
a(2+sinwt)’

G

= (4.58)
2 +sin ot

Ai=c, Ay = A =Cyy Ay

where ¢, and ¢, are positive constants to be designed. Eq. (4.57) can be satisfied if
the following conditions hold:

E (A1) =2ac, —a(2+sinwt) A, <0,

. ~2¢ ¢, COS Wt (4.59)
F e t) = 1 17 + 4, <0,

o(Azonil) 2+sinat  a(2+sin wt)® ho

Fy(Agg, -+, 1) = 2ac, — (2+sin o) Ay, <0,
—2ac,  ¢,wCOS Wt (4.60)

F(Ay, 1) = LS G
o(Raaronil) 2+sinwt  (2+sinor)? &

However, both results of Eg. (4.59) and Eg. (4.60) show the contradiction: 13“1 <0
and F,<0 can not hold in the same time, neither can F,<0 and F, <0. To

simplify the following work; assume_ only 132 <0 and 13“4 <0 can hold.

Step 6. Since Eq. (4.57) is not satisfied,i.e.

Vit >0, ﬁvj(ﬂ’ll’.”’ﬂ%l)zo (j=1’3)’

. (4.61)
Ec(ﬂu""!ﬁm) <0 (k: 2’4),

return to Step 3 and modify the controllers v, and v, by addition of ke and ke,
respectively, where &, and k, are constant gains to be determined. Because 7 has

been modified, Eq. (4.54) becomes
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E, (A, 0) = A, +2(a+ k) A, —a+sin o),

Ey(Ay,-1) = Ay — 20, + Ay,

Fy(Aggy-1 ) = Ay + 2(a+ ky) Ay — (2+5in 1) Ay,

Fy (A e10) = Ay — 202, + Ay,

Gy (Ay1t) =22, +k Ay, — 2a(l+5sin wt) A,

G, (A, 1) =—a(2+Sin @) Ay — (2+5sin wt) A,y

G,(Ay, ) =k Ay, Gy(Ay0) = ko,

Go(Ayr 1) = Ay + Ayyy Go(Ayeoo1 1) = 225 + ky Ay — 2(2+5iN 1) Ay,

(4.62)

Repeat Step 4 and Step 5, then the relationship between 4, becomes

/111=a(2+sina)t)/122—%212, Ay =0, 333=(2+sina)t)/144—%/134, Ay =0. (4.63)

Assume
ky G ks )
=¢——c, - = - =¢ e, A, =—2—,
MEaTS G el P o e = (4.64)
Ay =¢3 Ay =cy,

where ¢, c,, c;, ¢, are constants to-be-designedsand ¢,,.¢c, are positive numbers. Eq.
(4.57) can be satisfied if

2(a+k)c, < (k' +ak,+2a+asin ot)c,,

(4a+2asin ot + wcos wt)c, > a(2+sin wt)’ c,, (4.65)
2(a+k;)c, < (k2 +ak, +2+sinwt)c,, '

(4a+2asin wt + wcos wt)c, > (2+sin wt)’c,.

Step 7. The conditions derived from the above procedure can be summed up as

follows:

Ay =0, 44 =0, (4.66)
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k.
¢ >0, ¢>2c,
2

2(a+k)c, < (k +ak,+2a+asin ot)c,, (4.67)
(4a+2asin ot + wcos wt)c, > a(2+sinwt)’c;,

(2¢c, —kic,)c, > c2(4a+2asin at),

k
¢, >0, ¢, >?Sc4,

2(a+ky)e, < (k2 +ak, +2+sin wr)c,, (4.68)
(4a+2asin ot + wcos wt)c, > (2+sinwt)’c,,

(2c, —k,c,)c, > ci(4+2sin wt).
Design

by =-0.4, k,=-0.4, 1,,=0, 4, =0,

20
=20,¢,=9 =>A1,=91,=218, = 4.69
G C3 A Ay A (2 +sin o) ( )
c,=950,¢,=11 = 4, =11, 4,3=52.2, 4 —i
2 e A T

such that each condition ¢an be- satisfied. Then.the elaborate nondiagonal Lyapunov

function can be obtained

V(t,€) = 21.8¢ + e, +— 20 02 152 267 1 1dbgel +— 202, w10
a(2+sin i) 2 +sin ot
and
. .
P (1,€) = —(4.64+ 4.5sin )¢z — 24+ 48N +40C0S1=9sin" 1
(2+sint)
56+ 6sin¢+50cost —11sin’ ¢ (4.71)
— (11,56 +11sin £)e? — 222N OO 7 &
(2+sint)

Since Lyapunov global asymptotical stability theorem is satisfied, the global

generalized synchronization is achieved. =1, =2, y=3 are chosen in

simulation, and the results are shown in Fig. 4.3-4.4.
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Chapter 5

Complete Identification of Chaos of Nonholonomic Systems

5.1 Preliminaries

The study of nonholonomic system [1, 2] has been developed over one hundred
years since Hertz [3] distinguished nonholonomic system from holonomic system in
1894. There are a great number of studies in this field connected with the extension of
the developed analytical methods for holonomic system and for the systems with
nonholonomic constraints. Many applications of the dynamics of nonholonomic
system can be found in the problems of modern technology, such as the pursuit
problems, the motion of automobiles, landing-devices of airplanes, railway wheels,
etc. However, it is still deficient for the complete study-of chaos in nonholonomic
systems. As far as we know, the only paper which studies the chaos of nonholonomic
system with an external linear nonholonomic-constraint is Ref. [4], the chaotic
phenomena of rattleback dynamics. But.only Poincaré maps are given in this paper. It
is well-known that only Poincaré map cannot identify the existence of chaos reliably.

Moving target pursuit problem [5] is a typical example of nonholonomic system.
By applying the fundamental nonholonomic form of Lagrange’s equations [6, 7],
chaos of nonholonomic systems with external nonholonomic constraint for two types
of pursuit problems, a straightly oscillating target, and a circularly rotating target, is
studied in this Chapter. The existence of chaos of nonholonomic system is firstly
completely identified by all numerical criteria of chaos, i.e. the most reliable

Lyapunov exponents [8], phase portraits, Poincaré maps and bifurcation diagrams.

5.2 Straightly Oscillating Target Pursuit Problem
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From Newton’s law, the dynamic equations of a free particle with unit mass

moving in a horizontal smooth (x,, »,) plane are
X =X,

%, =—a(l+sinwt)x, — (L+sin w?)x’ —ax, + by,,
Y=V

j}z = —(1+ Sin wt)yl — Cl(l‘l‘ Sln a)t)yf - ayz + bx]_;

(5.1)

where —a(l+sinwt)x, — (L+sinwt)x, —ax, + by, and —(1+sinwt)y, —a(l+sinwt)y; — ay, + bx,
are x, and y, components of the forces applied on the particle, respectively, and a,
b, o are constants. Eq. (5.1) consists of two linearly coupled nonlinear damped
Mathieu systems.

Now an external pursuit constraint
(f,+ fsint—y)x, —(f,—x)» =0 (5.2)
is added, the particle is 'no'more free but-a constrained particle. f, f,, f are
constants and  f,>x,, o+ fsineg>y,, f#0. The-constraint makes that the
direction of velocity of the” particle always points at the target oscillating in y,
direction as shown in Fig. 5.1. The Constraint can be expressed as a Pfaffian form:

A(x17y1’t)dx1 +B(x1! yl’t)dyl + C(xl’ yl’t)dt =0, (5.3)

where A= f,+ fsint—y, B=-(f—x), C=0.Itcanbe derived that

oB oC oC 04 0A OB

A—-—)+B(—-—")+C(——-—)= —X,)COS?. 5.4

(& ayl) (ax1 &) (ayl 6x1) S(fi=x) (5.4)

Since A(a_B_a_C)+B(8_C_8_A)+C(6_A_8_B) does not equal to zero identically
ot oy ox, Ot oy, Ox

[9], it is a nonholonomic constraint. Then the particle becomes a nonholonomic
pursuit system, of which the dynamic equations can be obtained as follows.

According to d’Alembert principle [6]
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S| d|oT | oT
Z{E(a_q[j_a_qi_gl}é‘q[ =0 (5.5)

i=1

with nonholonomic constraint equations

Zaﬂdql.=0 (j=1...,m), (5.6)
i=1

we can use Lagrange multiplier method to obtain the fundamental nonholonomic form

of Lagrange’s equations [7]:

d(oT | oT d
] — | ——=0. + A.a. ‘:l,..., y 5.7
dt(aqz} aq, © ; i { g 0

where ¢, is the generalized coordinate; 7' ,is the kinetic energy of the system, O,

is the generalized applied force, A, is the Lagrange multiplier, and a, is the

coefficient of the virtual constraint function In'_Eg.- (5.6). Together with m

nonholonomic constraint=equations, there are (m+ n)™equations solving for n

generalized coordinates and+m - Llagrange multipliers:

In our case, choose (g,,q,)= (X, »;)«=The Kinetic energy is T :%()‘cf +y7), the
generalized applied forces are Q@ =-a(l+sinwt)x, —(L+sin wt)x’ —ax, +by, ,

Q, =—(+sinwt)y, —a(l+sinwt)y? —ay, +bx,, and the coefficients of the virtual

constraint equation area,, = f, + fsint—y;,a, =—(f,—x,). Then the fundamental

nonholonomic form of Lagrange’s equations is obtained:
¥, = —a(l+sinot)x, — (L+sin o) x} — ax, + by, + A(f, + fsint—y,), (5.8)
$ = —(+sinwt)y, —a(@+sin ot)y? —ap, +bx, — A(f; — x,). (5.9)

Together with nonholonomic constraint equation

52



(fy+ fsint=y)x —(fi—x)3 =0, (5.10)

there are three equations solving two generalized coordinates and one Lagrange
multiplier.
In order to solve A, differentiate the nonholonomic constraint equation Eq.

(5.10) with respect to time and get
(f, + fsint—y)x —(f, —x)¥, +(f cost)x, =0. (5.11)
Substituting Eqg. (5.8) and Eq. (5.9) into Eq. (5.11), 4 can be solved:

A={(f, + fsint—y)[a@+sin wt)x, + (L+sin wt)x. —by,]
—(f; = x)[(L+sinot) y, + a(L+sin wt) y? —bx,] - (f cost)x, } (5.12)
/I =x)"+(fy + fsint=3)°].

Finally, the differential equations of nonholonomic system can be expressed as

X, =Xy,

h (X, X,, V1, Y5,1)
Cf.—x)2 4 (f, + fsint—y)*"

%, = —a(l+sin ot)x, — (L+Sin wt)x; —ax,+by, +

_ (5.13)
V1= Vo
7 = —(L+sin r) y, — a(L+Sin o)y Eay, + by + P _xf’;z(’il’()Z’fj’;V;i;]’t)_yl)z ,
where
h = (f, + fsint—y,)’[a(l+sin of)x, + (L+sin ot)x — by, ]
—(fi—x)(f, + fsint— y)[X+sin wt) y, +a(l+sin a)t)yl3 —bx;]
—(fcost)(f,+ fsint—y,)x,, (5.14)

hy, =—(f, —x)(f, + fsint—y,)[a(l+sin wt)x, + (1+sin a)t)xl3 —-by,]
+(f, —x)’[A+sinwt)y, +a(+sin wt) y? —bx,]
+(f c0sO)(f; —x)%
by (X, %5, 111 Y551)
WA _xl)z +(f; +f5int_y1)2

hy (X, %5, V1, V,,1)
(fl _xl)z + (fz +f5int_y1)2

the nonholonomic constraint force. The parameters in simulation are a=0.5,

The term

is the x, component of the nonholonomic

constraint force, and the term

is the y, component of
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b=03~2, w=1, f,=100, f,=100, f =5, and the initial condition is
x(0)=5, x,(00=0.1, »,(0)=5, »,(0)=0.1. The phase portraits, Poincaré maps,
bifurcation diagram and Lyapunov exponents, for nonholonomic system are shown in
Fig. 5.2-5.4. It can be observed that the motion is period 1 for »=0.4 and »=0.7.
For »=1.0 and b»=1.8, the motion is chaotic. All numerical criteria of chaos prove
that the chaotic phenomena exist in nonholonomic system for pursuit problem with a

straightly oscillating target.

5.3 Circularly Rotating Target Pursuit Problem

From Newton’s law, the dynamic equations of a free particle with unit mass

moving in a horizontal smooth.“(x;,y;,) plane are

X =Xy,

x, = —a(l+sin wt)x, — (1+Sin o)X’ — ax, + by, (5.15)

N=Ya

¥, =—(L+sinwt)y, —a(l+Sinwt) 5 —av, +bx;

where —a(L+sinwt)x, — (L+sin wt)x) —ax, i+ by, and =1 +sin wr)y, —a(l +sinwt) y, —ay, + bx,
are x, and y, components of the forces applied on the particle, respectively, and a,
b, w are constants. Eq. (5.15) consists of two linearly coupled nonlinear Mathieu
systems.

Now an external pursuit constraint
(f,+rsint—y)x, —(f,+rcost—x,)y =0 (5.16)
is added, the particle is no more free but a constrained particle. f, f,, r are
constants and f, +rcost>x,, f,+rsint>y,, r=0. The constraint makes that the
direction of the velocity of particle always points at the target rotating in (x;, »,)

plane as shown in Fig. 5.5. The constraint can be expressed as a Pfaffian form:
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A(xy, v, t)dx, + B(x,, v, t)dy, + C(x,, y,, t)dt =0, (5.17)

where A= f,+rsint—y,, B=—(f +rcost—x), C=0.Itcan be derived that

oB oC oC o4 0A OB
YR e e L
ot oy ox, Ot oy, Ox (5.18)

=r[(f, +rsint—y,)sint—(f, +rcost—ux,)cost].

Since A(g—f—a—c)+3(a—c—a—A)+C(a—A—a—B) does not equal zero identically [9],

o, ox, Ot oy, 0Ox

it is a nonholonomic constraint. Then the particle becomes a nonholonomic pursuit
system, of which the dynamic equations can be obtained as follows.

According to d’Alembert principle [6] and nonholonomic constraint equations,
we use Lagrange multiplier method to obtain the fundamental nonholonomic form of
Lagrange’s equations [7].

In our case, choose (gy,¢,) = (x./3) ! The Kinetic energy is T :%()’cf +37), the
generalized applied forces “are @ ==a(l+sSinwr)x— (1+sin wt)x. —ax, +by, ,

Q, =—(1+sinwt)y, —a(l+sinwt) ¥ —=ay, +bx;~and. the coefficients of the virtual

constraint equation are a, = f;+rsint=y, , a, =—(f,+rcost—x,) . Then the

fundamental nonholonomic form of Lagrange’s equations is obtained:

¥, = —a(l+sin ot)x, — (L+sin ot)x. — ax, + by, + A(f, +rsint—y,), (5.19)

P, =—(+sinwt)y, —a(l+sin ot)y} —ap, +bx, — A(f; +rcost —x,). (5.20)

Together with nonholonomic constraint equation
(f, +rsint—y)x, —(f,+rcost—x,)y =0, (5.21)
there are three equations solving two generalized coordinates and one Lagrange

multiplier.

In order to solve A, differentiate the nonholonomic constraint equation Eq.
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(5.21) with respect to time and get
(f, +rsint—y,)x, —(f, +rcost—x) i, +(rcost)x, + (rsint)x, =0. (5.22)
Substitute Eqg. (5.19) and Eq. (5.20) into Eg. (5.22), and A can be solved:

A={(f, +rsint—y)[a@+sinwt)x, + 1+sinwt)x] —by,]
—(f; +rcost—x,)[(L+sin wt)y, + a(L+sin o)y’ —bx,]
—(rcost)x, —(rsint)y,}

J[(f, +rcost—x,)* +(f, +rsint—y)*].

(5.23)

Finally, the differential equations of nonholonomic system can be expressed as

X, =X,,
%, = —a(l+sin or)x, — (1+sin or)x’ — ax, + by,
hl(xl’XZ’yl’yZ’t)
. (f, +rcost—x)° + (fukrsing—y,) (5.24)
N =DV
¥, =—(L+sin at) y, — a(1+5in @t)y; —ay, + bx,
By (%, Xy, V40 Y1)
(f; +rcost—x)? + (fy+ rsine= )%

where

h = (f, +rsint—y,)*[a(+sin ot)x, + (L+sin wt)x} —by,]
—(f, +rcost—x,)(f, +rsint—y,)[A+sin o)y, + a(l+sin wt)y; —bx,]
—r(f,+rsint—y,)(x, cost+ y,sint),

h, =—(f, +rcost—x,)(f, +rsint— y)[al+sin ot)x, + (L+sin ot)x} —by,]
+(f, +rcost—x)’[(L+sinwt)y, + a(L+sin o)y’ —bx, ]
+r(f, +rcost—x,)(x,cost+ y,sint).

(5.25)

The term (X0, X, Y1, Y20 )
(f,+rcost—x)* +(f, +rsint—y,)°

is the x, component of the

- - h 1 H 1 ’t H
nonholonomic constraint force, and the term 2 (% )262 T V2 )_ - s
(fi+rcost—x) +(f,+rsint—y,)

the y, component of the nonholonomic constraint force. The parameters in

simulation are «=0.5, 5=0.1~0.85, w=1, f =100, f,=100, »=5, and the
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initial condition is x,(0)=5, x,(0)=0.1, x,(0)=5, x,(0)=0.095. The phase
portraits, Poincaré maps, bifurcation diagram, and Lyapunov exponents for
nonholonomic system are shown in Fig. 5.6-5.8. It can be observed that the motion is
period 1 for »=0.2, and period 2 for »=0.58. For »=0.78 and »=0.81, the
motion is chaotic. All numerical criteria of chaos prove that the chaotic phenomena

exist in nonholonomic system for pursuit problem with a circularly rotating target.
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Fig. 5.1 A sketch of a pursuit problem of a straightly oscillating target in (x,, »,)
plane.
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Fig. 5.2 Phase portraits and Poincare maps for straightly oscillating target pursuit
problem: (a) period 1 for 5»=0.4, (b) period 1 for 5=0.7, (c) chaotic for »=1.0, (d)
chaotic for »=1.8.
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Fig. 5.4 Lyapunov exponents for straightly oscillating target pursuit problem.

59



N

(fi+rcost, f,+rsint)

v Target

Pursuer

(X 30)

Fig. 5.5 A sketch of a pursuit problem of a circularly rotating target in (x,, ;) plane.
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Fig. 5.6 Phase portraits and Poincaré maps for circularly rotating target pursuit
problem: (a) period 1 for »=0.2, (b) period 2 for »=0.58, (c) chaotic for »=0.78,
(d) chaotic for »=0.81.
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Fig. 5.8 Lyapunov exponents for circularly rotating target pursuit problem.
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Chapter 6

Complete Identification of Chaos of Nonlinear

Nonholonomic Systems

6.1 Preliminaries

By applying the nonlinear nonholonomic form of Lagrange’s equations, chaos of
nonholonomic systems with external nonlinear nonholonomic constraint, the
magnitude of velocity keeping constant, is studied in this Chapter. The existence of
chaos of nonlinear nonholonomic system is firstly completely identified by all
numerical criteria of chaos, i.e. the most reliable Lyapunov exponents [1], phase
portraits, Poincaré maps and bifurcation ¢iagrams. Furthermore, it is found that the

Feigenbaum number rule [2] still.holds for nonlinear nonholonomic system.

6.2 The Magnitude of Velocity Keeping Constant

From Newton’s law, the dynamic equations of a free particle with unit mass

moving in a horizontal smooth (x,, ;) plane are

X, =Xy,

%, = —a(l+sin wt)x, — (1+sin ot)x} —ax, +by,,

N =DVa
¥, =—(+sinwt)y, —a(l+sin wt)y —ay, +bx,.

(6.1)

where —a(l+sinwt)x, — (L+sinwt)x} —ax, + by, and —(L+sinwt)y, —all+sinwt)y, —ay, + bx,
are x, and y, components of the forces applied on the particle, respectively, and a,
b, o are constants. Eq. (6.1) consists of two linearly coupled nonlinear damped

Mathieu systems.
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Now an external nonlinear nonholonomic constraint
X +y=c (6.2)

is added, the particle is no more free but a constrained particle. ¢ is a constant, i.e.
the constraint makes the magnitude of the velocity constant. Since the constraint is
nonlinear nonholonomic, the particle becomes a nonlinear nonholonomic system, of
which the dynamic equations can be obtained as follows.

From the general nonlinear nonholonomic constraint equations
fi(4,6,0=0 (j=1...,mi=1...n), (6.3)
the constraint conditions of the virtuak velacities can be derived:

n of.
Z%&;[:o (j=1,...,m) (6.4)

i

According to Jourdain’s principle [3]

i=1l

[ 4(or) or -
Z{E(a—ql}—a—qi—g}&b =0 (6.5)

and the constraint conditions of the virtual velocities, Lagrange multiplier method is

used to obtain the nonlinear nonholonomic form of Lagrange’s equations:

d(eéer) or n o Of,
—_ — | ——=0. + l—l '21,..., ' 6.6
dt( 8q',-] o 0, /Z—;' 34, (i n) (6.6)

where ¢, is the generalized coordinate, 7 is the kinetic energy of the system, Q.
is the generalized applied force, A, is the Lagrange multiplier, and f, is the

nonholonomic constraint function in Eq. (6.3). Together with m nonholonomic

constraint equations, there are (m+n) equations solving for » generalized

coordinates and m Lagrange multipliers.
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L . 1
In our case, choose (¢;,9,) = (x;, ;). The kinetic energy is T :E(fcf +y7), the
generalized applied forces are Q@ =-a(l+sinwt)x, —(L+sin wt)x’ —ax, +by, ,
Q, =—(L+sinwt)y, —a(l+sinot)y} —aj, +bx, , and the nonholonomic constraint

equation is f =x’+ 37 —c. Then the nonlinear nonholonomic form of Lagrange’s

equations is obtained:

¥, = —a(l+sin ot)x, — (L+sin o) x} — ax, + by, + 21%,, (6.7)

P =—(+sinwt)y, —a(l+sin ot)y} —ap, +bx, + 217, (6.8)
Together with nonholonomic constraint equation
X+ =c, (6.9)

there are three equations  solving two generalized coordinates and one Lagrange
multiplier. In order to solve. A, differentiate thenonholonomic constraint equation Eq.

(6.9) with respect to time and get
X% + iy =0. (6.10)
Substituting Eq. (6.7) and Eq. (6.8) into Eq. (6.10), A can be solved:

A :%+{[a(1+ sin r)x, + (L+5sin wf)x® — by, I,

(6.11)
+[(@+sinwt)y, + a(l+sinwt) y? —bx, ]y, } 2c.
Finally, the differential equations of nonholonomic system can be expressed as
X, =X,,
%, = —a(l+sin or)x, — (L+ sin wr) + by, + AT Judnl)
. ‘ (6.12)

V1=V

hy (X, X5, V15 Yy, t)
C

¥, =—(Q+sinwt)y, —a(l+sinat)y; +bx, +
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where

B, = [a(@+sin wt)x, + (L+Sin wt)x} — by, |x

+[(@+sinwt)y, +a(l+sinwt) y} —bx,]1x,y,, (6.13)
hy, =[a(l+sin @r)x, + (1+sin @) x® — by, Ix,, '

+[@+sinwr)y, +a(@+sin wt) y —bx,]y?.
The parameters in simulation are ¢ =0.5, »=0.1~6, ¢=1, w=1, and the initial
condition is x(0)=0.1, x,(0)=0.1, »(0)=0.1, y,(0)=+0.99 . The phase

portraits, Poincaré maps, Lyapunov exponents, and bifurcation diagram for
nonholonomic system are shown in Fig. 6.1-6.4. It can be observed that the motion is
period 1 for »=5.8, period 2 for b=2.5, period 4 for b=4.1. For b=5.3, the
motion is chaotic. All numericalicriteria of chaos prove that the chaotic phenomena
exist in nonlinear nonholenomic system where the . magnitude of velocity of the
particle keeping constant.

From bifurcation diagram,. Fig.<“6.4,it- shows. that the period-doubling
phenomenon occurs from A'=6 to" »=5. Take enlargement of Fig. 6.4, we can
clearly observe the period-doubling: phenomenon as shown in Fig. 6.5. Then the

Feigenbaum number [2] can be calculated. Feigenbaum number o6 is defined as:

S = lim & " Hia (6.14)
k= g — 1y

where u, isthe kth bifurcation point. The results are shown in Table 6.1, it can be
found that the Feigenbaum number approaches the wuniversal number
0 =4.6692016091029909.... This means that the Feigenbaum number still holds for
nonlinear nonholonomic system where the magnitude of velocity keeping constant.

Table 6.1 Calculation of Feigenbaum number for system (6.12)

Period doubling Bifurcation point Feigenbaum number
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Period 1 to Period 2 5.519779

Period 2 to Period 4 5.495639 3.8986

Period 4 to Period 8 5.489447 4.5263
Period 8 to Period 16 5.488079 4.5600
Period 16 to Period 32 5.487779 4.6154

Period 32 to Period 64

5.487714
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Fig. 6.1 Phase portraits and Poincaré maps for nonlinear nonholonomic system where
the magnitude of velocity keeping.constant: (a) period 1 for »=5.8, (b) period 2 for
b=2.5, (c) period 4 for b =441, (d) chaotic for b =5:3.
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Fig. 6.2 Lyapunov exponents for nonlinear nonholonomic system where the
magnitude of velocity keeping constant.
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Fig. 6.3 Largest Lyapunov exponent for nonlinear nonholonomic system where the
magnitude of velocity keeping canstant.
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Fig. 6.4 Bifurcation diagram for nonlinear nonholonomic system where the magnitude
of velocity keeping constant.
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Fig. 6.5 Period-doubling phenomenon for nonlinear nonholonomic system where the
magnitude of velocity keeping canstant.
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Chapter 7

Non-simultaneous Symplectic Synchronization of Different

Chaotic Systems with Variable Scale Time

7.1 Preliminaries

There are various types of synchronization, such as complete synchronization [1],
generalized synchronization [2], phase synchronization [3], and lag synchronization
[4], and so on. Among these types of synchronization, the generalized synchronization
is one of the most interesting topics. Generalized synchronization refers to a
functional relation between the state vectors of master and slave, i.e. y=F(x,?),
where x and y are the stateqvectors of master and slave. In the work of Ref. [5],
the generalized synchronization is extended to a:more-general form, y=F(x,y,?),
where the “slave” y is not a traditional pure slave" obeying the “master” x
completely but plays a role to determine.the. final desired state of the “slave”. Since
the “slave” y plays an “interwined” role, this type of synchronization is called

“symplectic synchronization™

, the masteris called “partner A”, and the slave is called
“partner B”.

In this Chapter, we propose a new type of synchronization, y(z) = F(x(z),y(¢),7),
where 7 is a given function of time ¢, so-called variable scale time. The
synchronization is achieved at “different time” for “partner A” x(z) and “partner B”
y(¢), therefore we call this type of synchronization “non-simultaneous symplectic
synchronization”. When 7 =¢, non-simultaneous symplectic synchronization reduces
to symplectic synchronization. The non-simultaneous symplectic synchronization may

be applied to increase the security of secret communication since the functional

! The term “symplectic”” comes from the Greek for “interwined”. H. Weyl first introduced the term in 1939
in his book “The Classical Groups” (p. 165 in both the first edition, 1939, and second edition, 1946, Princeton
University Press).
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relation of non-simultaneous symplectic synchronization is more complex than that of
traditional generalized synchronization, and cracking the variable scale time z is an
extra task for the attackers in addition to cracking the system model and cracking the
functional relation. The aim of this Chapter is to achieve non-simultaneous symplectic
synchronization by applying nonlinear control [6] and by applying adaptive control.
In the work of Ref. [6], the induced matrix norm and the Lipschitz constant are
obtained by auxiliary numerical simulation. However, they can be estimated
theoretically by using the property of induced matrix norms [7a] and by applying
adaptive control. Furthermore, in our case, non-simultaneous symplectic
synchronization, the complexity of the functional relation F(x(z),y(¢),z) is greater
than that studied in Ref. [6], thus the Lipschitz constant may be enormous. However,
by applying adaptive control, the estimated Lipschitz constant is much less than the
Lipschitz constant obtained by applying nonlinear control.;This result in the reduction
of the gain of the controller, i.e. the“cost of controller: is reduced. The proposed
scheme is effective and feasible for'both autonomeus and nonautonomous chaotic

systems, whether the dimensions of! x(z)and y(#) systems are the same or not.

7.2 Non-simultaneous Symplectic Synchronization Scheme

Consider two different nonlinear chaotic systems, partner A and partner B,

described by

ax(z) =1(x(z),7), (7.1)
dr

W~ cy)+ PO O +u. (7.2)

where x=[x,x,,...,x,]' e R"and y=[y,,,...,»,]" €R" are the state vectors of

partner A and partner B, 7 is a given function of time ¢, so-called variable scale
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time, CeR™™ and DeR™™ are system matrices, f and g are continuous
nonlinear vector functions, and wu is the controller. Function g(y,?) is usually

globally Lipschitz continuous, i.e., function g(y,7) satisfies the inequality
leCy,.0)—g(y,.0)|<L|y,—y,| for y,.y,eR", teR". Our goal is to design the

controller w such that the state vector y(¢z) of partner B asymptotically approaches
F(x(7),y(¢),t), where F isa continuous nonlinear vector function.

Property 7.1 [7a]: An mxn matrix A of real elements defines a linear
mapping y=4A4x from R" into R", and the induced p-norm of A for

p=1 2, and « isgiven by
m " "
= max >Je |, ], = A (ATt = mx Y| 7.3)
i A 2

The useful property of induced matrix norms for real matrix A is as follow:

4], <4l 1. - (7.4)

Theorem 7.1 (nonlinear control*[6]): For chaotic systems “partner A” (7.1) and
“partner B” (7.2) that are globally Lipsehitz continuous, if the controller u is

designed as

u=(I1- DyF)’l[Dfo(x(T), 7) % +D,F(C(1)y + D(#)g(y,?)) + D, F (75)

—C())F -D(1)g(F,7)-K(y - F)],
where D F , DJF , DF are the Jacobian matrices of F(x(r),y(?),?) ,

K =diag(k,, k,,...,k,) , and satisfies

min(k,) o1
Llc|+pe)]|

(7.6)

then the non-simultaneous symplectic synchronization will be achieved.

Proof: Define the error vectors as
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e=y()-F(x(),y(1).1), (7.7)

then the following error dynamics can be obtained by introducing the designed

controller
4 e=y-ppPDIT by Dy
dt dr dt °
dr
=C(r)y + D(1)g(y, 1) - D,Ff (x(7), T)Z_ D F(C(r)y + D(t)g(y. 1)) (7.8)

~DF+(I-D F)u
=C(t)e+D(t)(g(y.1) - g(F,1)) - Ke.

Choose a non-negative Lyapunov function of the form
1,
V(t) =Ee e. (7.9)

Taking the time derivative of +J/(¢)- along the trajectory of Eq. (7.8) and applying the

Lipschitz condition, we have

V(t)=e"é
=e'C()e+e ' D(1)(g(y, 1) — g(F,7))—e Ke
<|lc@- el +le]-[pE)-ety. &y 2(F. )] - minge)e] (7.10)

<[c@)|-lel + L[] e =minge el
= (|C@)||+ L[D@)]| - min(k)) e[

Let M =min(k,)—||C()|-L|D()|>0, then V(1)< —M||e||2 =-2MV(t). Therefore,
it can be obtained that

V() <V (0)e 2 (7.11)
and !LTHV(SE)MSZ is bounded. Besides, V' (z) is uniformly continuous. According

to Barbalat’s lemma [7b], the conclusion can be drawn that limV(z)=0, i.e.

t—

lim|le(r)|=0. Thus, the non-simultaneous symplectic synchronization can be
t—0
achieved asymptotically.
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Theorem 7.2 (adaptive control). For chaotic systems “partner A” (7.1) and

“partner B” (7.2) that are globally Lipschitz continuous, if the controller u and the

updated law of L is designed as

u=(I- DyF)’l[Dfo(X(r), 7) % + D, F(C(?)y + D(1)g(y,?)) + D F (7.12)

—C(1)F - D()g(F, 1)~ (K + LD())(y — F)]

and
L=[p@)]-ly-¥". (7.13)

where D.F, D .F, DF are the Jacobian matrices of F(x(z),y(?),), L is the

estimate of Lipschitz constant L, K.=diag(k,k,,...,k, ), and satisfies

min(k,) ;. (7.14)
[l
then the non-simultaneous-symplectic synchronization will.be achieved.
Proof: Define the error vectors-as
e=y(0)-F(x(z),y().1), (7.15)

then the following error dynamics can be obtained by introducing the designed

controller
4 e—y pFp P09 gy pr
dt dr dt Y
dr
=C(0)y + D(O)g(y.))~DFE(x().0) =~ D, F(Cy +De(v.1)  (7.16)

~DF+(1-D,F)u
=C(1)e+D(1)(g(y.?) —g(F,1) - (K + LD(t))e.

Choose a positive definite Lyapunov function of the form

V(e L) =%eTe+%(i—L)2. (7.17)
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where L=L-L. Taking the time derivative of 7 (e,L) along the trajectory of Eq.

(7.16) and applying the updated law of L and the Lipschitz condition, we have

Viel)=e'e+(L—L)L
=e"C(t)e+e D(1)(g(y, 1)~ &(F,0)) e (K+ LD())e+ (L —L)[|D()|- e’
< [CO|-eff +lel- [Pt~ g0 -minge)ef* - L [p0)] Jef (718
<[[c@]-flell + L[]l ~minc) e - L [DE)]- el
= (|c@]-min(k ) [e]"

Let M =min(k,)—||C(z)]|>0, then V(e,L) is negative semidefinite. According to
Lyapunov stability theorem, lime(¢) =0. Therefore, the non-simultaneous symplectic

synchronization can be achieved‘asymptotically.

7.3 Synchronization ~of Different Chaotic Systems with the Same
Dimension

Consider the van der Pol systent as partner A described by

dx,(7) _ xl(r)_le(r)_xz (r)+ p+qcosQr,
ddr 3 (7.19)
XZ—(T):;/xl(r)Jra—ﬂxz(r),

dr

where =07, =08, =01, p=0, ¢=074, Q=1, and the initial
condition is x,(0)=1, x,(0)=1. Define z=ct+dsint, then Eq. (7.19) can be

rewritten as

dx, (7) _ dx(z) dr _ (C-|-dcos[)(xl(z')—%xf(f)—xz(‘[)+p+qCOS(CQt+dQSint)),

dt dr dt (7.20)
A (@) _ o) dT_ (o yoost)yx, (7) + a - B, (2)),
i dr di

where ¢=2 and d =1 are chosen in simulation. The chaotic attractor of the van
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der Pol system for 7 =2¢+sin¢ isshown in Fig. 7.1.
The controlled forced nonlinear damped Mathieu system is considered as partner

B described by

dy, (1)

=v,(t)+u,
ddtt (7.21)
y;_t() = —a(l+sin wr) y,(¢) — A+sin wr) y: () — ay, (1) + bsin ot +u,,

where a=0.3, b=1, w=1, u=[u,u,] is the controller, and the initial condition
is »(0)=0.01, y,(0)=0.01. The chaotic attractor of uncontrolled forced nonlinear

damped Mathieu system is shown in Fig. 7.2. Eq. (7.21) can be rewritten in the form

of Eq. (7.2), where

C(z):{ 0 1}, D(t)zpO O},and

—a(l+sinwt) —a 101

0
—(L+sin o)y (Y +bsin ot |

g(y,1)= [

By applying Property 7.1, it'can.be derived that |C(¢)|, =1+a, |C(z)|, =1, and
|C@)], <v1+a=+13.Then |C()|=1 and ||D()|=1 are obtained.

x; (2) = (sin® 1), (¢)

Define F(x(7),y(1),t) = Lzz (r) - (cos? 1) y, (1)

] and our goal is to achieve the

non-simultaneous simplectic synchronization y(¢) = F(x(z),y(¢),?).

Method 1:

min(k,)

According to Theorem 7.1, the inequality: o+ D@
+

>1 has to be

satisfied. It can be obtained by numerical simulation that the Lipschitz constant

k 0O 47 0
L =45, then min(k)>46. Thus we choose K=| ' = and design
0 & 0 48
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the controller as

u, = (L+cos’ ){—x: () + (cos® )y, + 2(c + d cost)x, (t)[x,(r) - x(z) | 3— x,(z) + p
+g¢0s(cQt +dQsint)] - 2(sint)(cost) y, — (sin® £) y, + k,[x? (z) — (L+sin® £) y, 1}
IT1+sin® ¢ +cos® ¢ + (sin £)(cos® 1)],

u, = (L+sin® £){2y(c + d cost)x, (7)[x,(z) + a — Bx, (z)] +alx’ (r) - (cos’ ) y, ]
+k,[x2 () — L+ cos’ £) y, ]+ 2(sin£)(cost) y, + (L+sin wt)[x{ (z) - (sin® £) y,]°
+a(l+sin wt)[x? () — (sin® £) y,]+ (cos’ £)[ay, + L+sin wt) y + a(L+sin ot)y,
—bsin wt]-bsin o}/ [1+sin® t +cos® ¢ + (sin” £)(cos® ¢)].

When the non-simultaneous simplectic synchronization is achieved, the chaotic
attractor of the controlled forced nonlinear damped Mathieu system and the time

histories of the state errors are shownrin Fig. 7.8 and Fig. 7.4, respectively.

Method 2:
min(k,)

€@

k0
be obtained that min(k)>1. Thus K:[O1 k}:[
2

According to Theorem 7.2, the inequahty >1 has to be satisfied. It can

2 0

is chosen, and the
0 3

updated law of L and the controller are designed as

i =[@+sin®£)y, = x7 (2)]? +[(L+cos® £) v, — x2 (7)),

u, = (L+cos? t){—x? (z) + (cos’ t) y, + 2(c +d cost)x,(7)[x,(z) — x> (z) | 3—x,(z) + p
+q cos(cQt +dQsint)]—2(sint)(cost) y, — (sin*¢)y, + k,[x’ () — L+sin’ 1) y,1}

IT1+sin? ¢t +cos® ¢ + (sin® £)(cos® ¢)],

u, = (L+sin® £){2y(c +d cost)x, (7)[x,(r) + & — Bx, ()] + a[x? (r) — (cos’ £) ,]
+(k, + L)[x2 () — (1+cos? 1) y, ] + 2(sin £)(cos £) y, + (L+sin wr)[x2 () - (5in? 1) y, |’
+a(L+sin wt)[x? () - (sin® £) y,]+ (cos’ ) [ay, + (L+sin o)y, +a(l+sin ot)y,
—bsin wt]—bsin o}/ [L+sin® t +cos® ¢ + (sin” t)(cos’ 1)],

where the initial condition of L is i(O) =0. When the non-simultaneous simplectic
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synchronization is achieved, the time histories of the state errors and the time histories
of L are shown in Fig. 7.5 and Fig. 7.6, respectively. It can be observed that L
approaches 0.4 asymptotically.

Compare the results between method 1 and method 2, it is found that the
estimated Lipschitz constant L=0.4 derived from method 2 is much less than the
Lipschitz constant L =45 derived from method 1. In other words, by applying
adaptive control, the gain of the controller is reduced, and the cost of controller is

reduced.

7.4 Synchronization of Different Chaotic Systems with Different
Dimensions

Consider the forced nonlinear-damped Mathieu system as partner A described by

dX1 (T) = xZ (T)!
Y (7.22)
dxa?_l(f) =—a(l+sin o7)x, () =(1+8sIn a)r)xf (z)=ax, () +bsin wr,
T

where ¢=0.3, b=1, w=1, and the initial condition is x,(0)=1, x,(0)=1. Define

r =ct, then Eq. (7.22) can be rewritten as

dx, (7) _ dx, (7) dr _

d g ce)
d t d f dt (7.23)
x;—gf) - ’Z—(”i = —ac(l+sin wct)x,(z) — c(L+sin wet)x(z) — acx, (z) + besin axt,
T

where ¢=5 is chosen in simulation. The chaotic attractor of the forced nonlinear
damped Mathieu system for z=5¢ isshown in Fig. 7.7.

The controlled Rossler system is considered as partner B described by
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dyal,ft) ==Y, (1) _ys(t) +u,

dy, (1)
dt

dy, (1)
dt

=3, (0) + ay, () +u,, (7.24)

= B+ y,() (0, () = 7) +ug,

where @ =015, =02, y=10, u=[u,u,u,] is the controller, and the initial

condition is ,(0)=0.01, y»,(0)=0.01, y,(0)=0.01. The chaotic attractor of
uncontrolled Réssler system is shown in Fig. 7.8. Eq. (7.24) can be rewritten in the

form of Eq. (7.2), where

0 -1 -1 0 00O 0
Ct)=|1 a O |,D@®)=|0 0 .0lsand g(y,?)= 0 .
0 0 -y 0401 n(@O)y;(0)+p

By applying Property 7.k it _can be derived.that |C(1)|, =1+, |C(®)|, =¥, and

|C@)], <Vy@+y) =v1102Then o [C@AHIf=10 and |[D(@)=1 are obtained.

=X (2) v, (1) - yi (1) +sint
Define F(x(r),y(¢),) =| —x; (7)), ()~ »; (¢)+cost |, and our goal is to achieve

—x2 (1), (1) - ¥3(r) +sint
the non-simultaneous simplectic synchronization y(¢) = F(x(z),y(2),?) .

Method 1:
min(k,)

>1 has to be
Lc@|+[p@)|

According to Theorem 7.1, the inequality

satisfied. It can be obtained by numerical simulation that the Lipschitz constant

L =1550 , then min(k,) >1560 : Thus we choose
kk 0 O 1570 O 0

K=|0 k O0|=| 0 1580 0 | and design the controller as
0 0 kK 0 0 1590
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uy ={=2cx,(7)x,(7) 1, _x12 (©)ys _xz2 (2)y, _yg _y33 +[x12 () +3J’12](yz +3)
—k[x () y, + yi + y, —sint]+sint + 2cos}/ (x7 (z) + 3y} +1),

u, ={x; (2)y, + 1 =[x () + 3y 10y + @,) =y [x5 (2) v, + y; + v, —cos1]
+2cx, (1) y,[(L+sin oct)x. () + a(L+sin wct)x, + ax, (r) — bsin oct]
+05[x22 (), +y§ —cost]—2sint}/ (xg‘ (7) +3y22 +1),

uy ={-2cx,(7)x,(7) y, _[x12 (7) +3y32](y1y3 —7¥s+p) _ka[xl2 @)y, + y; +y, —sint]

— I (0)y, + v3 —sint] =[x} (£)y, + 7 —sinA[x{ () y, + 5 —sin]+cost — f}

[ (x(z)+3y% +1).
When the non-simultaneous simplectic synchronization is achieved, the chaotic
attractor of the controlled Rdssler system and the time histories of the state errors are

shown in Fig. 7.9 and Fig. 7.10, respectively.

Method 2:
. = .. +min(k,) -
According to Theorem 7.2, the inequality ||C(t)i| >1 has to be satisfied. It can
k=0 0 12 0 0
be obtained that min(k,) >10. Thus K=| 0 k,- 0 |=/0 14 0 | is chosen,
07 0" A 0 0 16

and the updated law of L and the controller are designed as

L=[y? + @+ x2(2))y, —sin ] +[y} + L+ x2(c)), — cos T’
+[02 + (L4 22 (2) v, —sin T,

uy ={=2¢x,(2)x,(2) y, = x{ (7) 3= %5 (2) v, = y3 = 3 +[x (2) + 337 1(v, + »3)
—k [x (2)y, + yS + y, —sinf]+sint + 2cos Y (x7 (z) +3yf +1),

U, ={x12(z-)y1 +y13 _[xz2 (T)+3y22](y1 +ay2)_k2[x§(7)y2 +y§ +Y, —cos¢]

+2¢x, (7) y,[(L+sin oct)x] (7) + a(L+sin oct)x, + ax, (r) — bsin wct]
+a[x}(t)y, + y; —cost]-2sint}/ (X% (z) +3y% +1),
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y ={=2¢x,(7)x,(7) v, [ (2) + 3921y — 795 + B) — Uy + L)X (2) v, + 13 + v,
—sint]—yx! (z)y; + y; —sine]=[x{ (2)y, + 35 —sind1[x{ () y, + y; —sin{]
+cost— B} (xf (v) +3y% +1).

where the initial condition of L is i(O) =0. When the non-simultaneous simplectic

synchronization is achieved, the time histories of the state errors and the time histories
of L are shown in Fig. 7.11 and Fig. 7.12, respectively. It can be observed that L
approaches 0.035 asymptotically.

By comparing the results between method 1 and method 2, it is found that the
estimated Lipschitz constant L=0.035 derived from method 2 is much less than the
Lipschitz constant L =1550 derived from method 1. It means that the gain of the
controller is reduced, and the:cost of controller is reduced by applying adaptive

control.
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Fig. 7.2 The chaotic attractor of uncontrolled forced nonlinear damped Mathieu
system.
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Fig. 7.3 The chaotic attractor of the controlled forced nonlinear damped Mathieu
system.
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Fig. 7.4 Time histories of the state errors for Section 7.3 by applying method 1.
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Fig. 7.6 Time histories of L for Section 7.3.
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Fig. 7.7 The chaotic attractor of the forced nonlinear damped Mathieu system for
T=5¢.
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Fig. 7.8 The chaotic attractor of uncontrolled Rassler system.
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Fig. 7.9 The chaotic attractor of the controlled Rossler system.
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Fig. 7.10 Time histories of the state errors for Section 7.4 by applying method 1.
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Chapter 8
Double Symplectic Synchronization of Different Chaotic

Systems by Active Control

8.1 Preliminaries

In this Chapter, we propose a new type of synchronization, “double symplectic
synchronization”, G(x,y) =F(x,y,¢). Since the symplectic functions are presented at
both the right hand side and the left hand side of the equality, it is called “double
symplectic synchronization”. It is an extension of symplectic synchronization,
y =F(x,y,?). When G(x,y)=Yy, the double symplectic synchronization is reduced
to the symplectic synchronization. Due to the complexity of the double symplectic
synchronization, it may be*applied to increase the security of secret communication.
The double symplectic synchronization is‘obtained by .applying active control. A
scheme of synchronization is derived-based--on. Barbalat’s lemma [1a], and it is
effective and feasible for both-autonomous and nonautonomous chaotic systems.

8.2 Double Symplectic Synchronization Scheme

Consider two different nonlinear chaotic systems, partner A and partner B,

described by
x=1(x,7), (8.1)
y=C()y+g(y,0)+u, (8.2)

where x=[x,x,,....x,]' eR"and y=[y,»,,....»,]' €R" are the state vectors of

partner A and partner B, Ce R™ is the system matrix, f and g are continuous
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nonlinear vector functions, and u is the controller. Our goal is to design the
controller u such that G(x,y) approaches F(x,y,t) asymptotically, where G
and F are continuous vector functions. For simplicity, we take G(x,y)=x+y.
Property 8.1 [1b]: An mxn matrix A4 of real elements defines a linear
mapping y=A4Ax from R" into R", and the induced p-norm of A4 for

p=1 2, and « is given by
m ]/2 n

|4l = mf-’llel‘“if" 4], =[ A (AT [, |4, = m?x;‘ay‘. (8.3)
i= =

The useful property of induced matrix norms for réal matrix A4 is as follow:

4], <14l 141 - (8.4)

Theorem 8.1: For chaotic systems “partnerA” (8.1)-and “partner B” (8.2), if the

controller w is designed as

u=(I- DyF)_l[Dfo(x, 1)+D,F(C(r)y +g(y,1)) +D,F—1(x,2)—g(y,?)

(8.5)
+C()(x-F)-K(x+y-F)],

where DF , DJF , DF are the Jacobian matrices of F(x,y,?) ,

K =diag(k,,k,,...,k,) , and satisfies

min(k,)

) 8.6
GO (6

then the double symplectic synchronization will be achieved.

Proof: Define the error vectors as
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e=x+y-F(x,y,7), (8.7)

then the following error dynamics can be obtained by introducing the designed
controller

@:é:my—DXFX—DyFy—DtF

dt
=f(x,1) +C(1)y +g(y,t) - D,Ff(x,) -D F(C(s)y +g(y,)) - D,F (8.8)
+(I-D,F)u
= (C(1)-K)e.

Choose a non-negative Lyapunov function of the form
1
V)= Ee e. (8.9)

Taking the time derivative of 7 (¢) along the trajectory of Eq. (8.8), we have

V(t)=e'e
=e'C(t)e—e'Ke
<[[c)- e - min(k,)e]:

= (|c@)]| - min(k,)) e]".

(8.10)

Let M =min(k,)—|C(z)||>0, then ¥ (r) S—M||e||2 = —2MV (t). Therefore, it can be

obtained that
V(t) <V (0)e " (8.11)

and IimI;|V(§)|d§ is bounded. Besides, V' (¢) is uniformly continuous. According

to Barbalat’s lemma [la], the conclusion can be drawn that limV(z)=0, i.e.

t—o©

lim|le(r)|=0 . Thus, the double symplectic synchronization can be achieved
asymptotically.
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8.3 Synchronization of Different Nonautonomous Chaotic Systems

Consider the Duffing system as partner A described by

X, =Xy,

(8.12)

3
X, == PoX; — PaXy — P1X, +q C0SQ,

where p, =04, p,=-11, p,=1, ¢g=2.1, Q=1.8, and the initial condition is
x(0)=1, x,(0)=1. The chaotic attractor of the Duffing system is shown in Fig. 8.1.

Eg. (8.12) can be rewritten in the form of Eg. (8.1), where

X
f(x,t)= { s ? } :
— Py, — P3X; — PiX, +q COSQU
The controlled forced nonlinear damped Mathieu System is considered as partner

B described by

=Y, tu,

_ _ _ . _ (8.13)
v, =—a(l+sinwt) y, — (1+sinat)yy—ay, + bsin ot+us,

where a=0.3, b=1, w=1, u=[u,u,] is the controller, and the initial condition
is »(0)=0.01, y,(0)=0.01. The chaotic attractor of uncontrolled forced nonlinear

damped Mathieu system is shown in Fig. 82. Eq. (8.13) can be

0 1
rewritten in the form of Eq. (8.2), where C(z)= i and
—a(l+sinwt) -a

0
—(@+sinwt)y: (¢) + bsin wt

g(y,t):[ } By applying Property 8.1, it is derived that

@), =1+a , |C@)|, =1, and |C(®)|,<+1+a=+13 . Then ||C(t)|=1 is

estimated.
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—xlzy1 +x1y12 —yl3 +sin¢

Define F(x,y,t):[ } and our goal is to achieve the

—xzzy2 +x2y22 —y§’+sint

double simplectic synchronization x+y =F(x,y,?). According to Theorem 8.1, the

min(k;)
[c]

k 0 2 0 .
we choose K = = and design the controller as
0 & 0 3

inequality >1 has to be satisfied. It can be obtained that min(k,) >1. Thus

U :{yz(xzz —X ), +y§ _x12 +2x), _3y12)_x2(2x1y1 _y12)+COS[_Sin[
— k(o + v+ x =0 + yp =sine)H L+ x7 = 2x, 9, +3y7),

u, ={(x} —2x,y, +3y3)[a(L+sin wt) y, + L+ sinot) y; + ay, —bsin o]
+(2x,, = ¥; +D)(px + P # 1%, = 4 €05 Q1)
—a(@+sinwt)(x, + Xy, =505 + V. =sing)
—a(x, + X2y, —x,y5 + 35 ~sint) + (L £si0 @r)yS— bSin ot + Cost
—ky (%, + v, + X33, + < SINO}M (L X5 =220, #3)3):

When the double simplectic synchronization is-achieved, the chaotic attractor of the

controlled forced nonlinear damped Mathieu-system and the time histories of the state

errors are shown in Fig. 8.3 and Fig. 8.4, respectively.

8.4 Synchronization of Different Autonomous Chaotic Systems
Consider the Lorenz system as partner A described by

X =0o(x, —x),
Xo ==X, Xy +7X, — X, 8.14
2 1¥3 17X

X3 = x,x, —bx;,,
where o=10, r=28, »=8/3, and the initial condition is x,(0)=1, x,(0)=1,

x(0)=1. Eq. (8.14) can be rewritten in the form of Eq. (8.1), where
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o(x, —x;)
f(x,#) =| —x,x; + rx, —x, |. The chaotic attractor of the Lorenz system is shown in Fig.
x,x, —bx,

8.5.

The controlled Rossler system is considered as partner B described by
N==V,— Vst
Vo =y tay,+u,, (8.15)
Vs =B+ ys(n—)+ug,

where @ =0.15, £=02, y=10, u=[u,u,u,] is the controller, and the initial

condition is ,(0)=0.01, »,(0)=0.01, y,(0)=0.01. The chaotic attractor of

uncontrolled Rdssler system,is shown in.Fig. 8:6. Eg.4(8.15) can be rewritten in the

0 -1 -1 0

form of Eq. (8.2), where C(r)=11 e« 0| and g(y,t)= 0 . By applying
W = nys+p

Property 8.1, it is derived. that |C(@)|,=1+» ., |C®)| =» . and

IC()|, <7@+») =~110. Then ||C(:)||=10 is estimated.
—y,sin®¢/(@+x7)
Define F(x,y,f)=|—y,sin*t/(1+x2) |, and our goal is to achieve the double

—y,sin®¢/(L+x2)

simplectic synchronization x+y=F(x,y,) . According to Theorem 8.1, the

inequality min(k,) >1 has to be satisfied. It can be obtained that min(k,) >10. Thus

e
kk 0 0 11 0 ©
we choose K={0 %, O |=|0 12 0 | and design the controller as
0 0 ki 0 0 13
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O +y,)sin’t—2y sintcost  y,sin’t  y,sin’t
1+ 1+x; 1+x;

20x,(x, —x,)y,sin’ t y,sin’t sin’¢
+ —k(x, +y, +=2 1+ :
L+x7)° ot 1+x7 ) / 1+x7

1

u = {axl —(oc+Dx, —x;

- 2 - 2 -
sin“¢ +2 SIN“¢t+2y,SIN¢COS¢
u, :{(1—r)x1+(a +1)x, +x,x; + yi —— (0, +203,) 2

+x; 1+x2

2x, (1, — x, — x,x,) y, Sin° ¢ y,sin?t sin®¢
- —k,(x, +y, +=2 1+ :
@+x2)° 2%+, 1+ x2 ) / 1+x2

(2ry, =y, — B)sin®t—2y,sintcost
1+x7

23, (x,x, —bx;) y,sin* ¢ y,sin’t sint
+ — k(X + y, + 1+ .
@Q+x3)? 532 1+x7 ) / 1+x7

3

Uz = {_x1x2 +bx, = Yy, —B—yxs +

When the double simplectic'synchronization is achieved, the chaotic attractor of the
controlled Rdssler system-and the time histories of the state errors are shown in Fig.

8.7 and Fig. 8.8, respectively.
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Fig. 8.2 The chaotic attractor of uncontrolled forced nonlinear damped Mathieu

system.
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Fig. 8.3 The chaotic attractor of the controlled forced nonlinear damped Mathieu
system.
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Fig. 8.4 Time histories of the state errors for Section 8.3.
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Fig. 8.6 The chaotic attractor of uncontrolled Rassler system.
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Chapter 9

Conclusions

In this thesis, the generalized synchronization of new chaotic systems by pure
error dynamics and elaborate Lyapunov function, chaos of nonholonomic systems,
non-simultaneous symplectic synchronization of different chaotic systems with
variable scale time, and double symplectic synchronization of different chaotic
systems are studied.

Chapter 2 contains the dynamics of new autonomous and new nonautonomous
chaotic systems. The system model and-the numerical results of regular and chaotic
phenomena are presented.

In Chapter 3, the generalized-synehronization is studied by applying pure error
dynamics and elaborate kyapunov function: In Chapter“4, by applying pure error
dynamics and elaborate nondiagonal:-Lyapunov function, the nonlinear generalized
synchronization is achieved.“The.methods give-rigorous theories for generalized
synchronization and nonlinear generalized synchronization and greatly extend the use
of various forms of Lyapunov function while current method only gives
semi-simulation theory for generalized synchronization, in which the maximum
values of state variables must be given by simulation, and monotonous square sum
Lyapunov function is used. By the systematic procedures, the complexity of designing
suitable elaborate Lyapunov function and elaborate nondiagonal Lyapunov function is
reduced greatly. The proposed methods are effectively applied to both new
autonomous and new nonautonomous chaotic systems.

Complete identification of chaos in nonholonomic systems and nonlinear

nonholonomic systems is firstly presented in Chapter 5 and Chapter 6. The scope of
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chaos study has been extended to nonholonomic systems and nonlinear nonholonomic
system. By applying the fundamental nonholonomic form of Lagrange’s equations,
the chaos of two nonholonomic moving target pursuit systems is studied in Chapter 5,
in which nonholonomic pursuit system with a straightly oscillating target and
nonholonomic pursuit system with a circularly rotating target are investigated. In
Chapter 6, chaos of nonlinear nonholonomic problem, the magnitude of velocity
keeping constant, is studied by applying the nonlinear nonholonomic form of
Lagrange’s equations. Complete identification of chaotic phenomena is obtained in
nonlinear nonholonomic system by Lyapunov exponents, phase portraits, Poincaré
maps, and bifurcation diagrams. Futhermore, the Feigenbaum number rule still holds
for nonlinear nonholonomic system:

In Chapter 7, the non=simultaneous symplectic synchronization with variable
scale time, y(z)=F(x(r),y(#)t), Is studied: By applying adaptive control, the
non-simultaneous symplectic synchronization is achieved-and the estimated Lipschitz
constant is much less than'.the Lipschitz constant.obtained by applying nonlinear
control. This result in the reduction of the" gain of the controller, i.e. the cost of
controller is reduced. The simulation results show that the proposed scheme is
feasible for both autonomous and nonautonomous chaotic systems, whether the
dimensions of x(z) and y(¢z) are the same or not. Furthermore, when applying the
non-simultaneous symplectic synchronization in secret communication, since the
functional relation of the non-simultaneous symplectic synchronization is more
complex than that of traditional generalized synchronization, and cracking the
variable scale time 7 is an extra task for the attackers in addition to cracking the
system model and cracking the functional relation, the non-simultaneous symplectic
synchronization may be applied to increase the security of secret communication.

In Chapter 8, the double symplectic synchronization, G(x,y)=F(x,y,?), is
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studied. It is an extension of symplectic synchronization, y =F(x,y,?). By applying
active control, the double symplectic synchronization is achieved. By simulation
results, it is shown that the proposed scheme is effective and feasible for both
autonomous and nonautonomous chaotic systems. Furthermore, the double symplectic
synchronization may be applied to increase the security of secret communication due

to the complexity of its synchronization form.

105



*1.

*2.

*3.

*4,

*5.

*6.

10.

Paper List

Zheng-Ming Ge and Ching-Ming Chang, “Nonlinear  Generalized
Synchronization of Chaotic Systems by Pure Error Dynamics and Elaborate
Nondiagonal Lyapunov Function”, Chaos, Solitons and Fractals, 2009, \Vol. 39,
pp. 1959-1974. (SCI, Impact factor: 3.025).

Zheng-Ming Ge and Ching-Ming Chang, “Generalized Synchronization of
Chaotic Systems by Pure Error Dynamics and Elaborate Lyapunov Function”,
2009, accepted by Nonlinear Analysis: Theory, Methods, and Applications. (SCI,
Impact factor: 1.097).

Ching-Ming Chang and Zheng-Ming Ge, “Complete Identification of Chaos of
Nonholonomic Systems”, 2009, submitted to International Journal of Bifurcation
and Chaos. (SCI, Impact factor: 0.910).

Ching-Ming Chang and Zheng-Ming Ge, “Complete Identification of Chaos of
Nonlinear Nonholonomic Systems”, 2009, submitted to Nonlinear Dynamics.
(SCI, Impact factor: 1.045).

Ching-Ming Chang ,and Zheng-Ming Ge, “Non-simultaneous Symplectic
Synchronization of Different Chaotic Systems. with Variable Scale Time by
Adaptive Control”, 2009, submitted to'Chaos. (SCI, Impact factor: 2.188).
Ching-Ming Chang and Zheng-Ming Ge, “Double Symplectic Synchronization
of Different Chaotic Systems-by. Active Control”, 2009, submitted to Journal of
Sound and Vibration. (SCI; Impact factor: 1.024):

Zheng-Ming Ge, Ching-Ming Chang, and Yen-Sheng Chen, “Anti-control of
Chaos of Single Time Scale Brushless DC Motor”, Invited paper, Philosophical
Transactions of the Royal Society A, 2006, Vol. 364, pp. 2449-2462. (SCI,
Impact Factor: 1.520)

Zheng-Ming Ge, Ching-Ming Chang, and Yen-Sheng Chen, “Anti-Control of
Chaos of Single Time Scale Brushless DC Motor and Chaos Synchronization of
Different Order Systems”, Chaos, Solitons and Fractals, 2006, Vol. 27,
pp.1298-1315. (SCI, Impact Factor: 3.025)

Zheng-Ming Ge and Ching-Ming Chang, “Chaos Synchronization and
Parameters Identification of Single Time Scale Brushless DC Motors”, Chaos,
Solitons and Fractals, 2004, Vol. 20, pp.883-903. (SCI, Impact Factor: 3.025)
Zheng-Ming Ge, Chun-Lai Hsiao, Yen-Sheng Chen, and Ching-Ming Chang,
“Chaos and Chaos Control for a Two-Degree-of-Freedom Heavy Symmetric
Gyroscope”, International Journal of Nonlinear Sciences and Numerical
Simulation, 2007, Vol. 8, pp. 89-100. (SCI, Impact Factor: 5.099)

106



11.

12.

13.

14.

Zheng-Ming Ge, Shih-Chung Li, Shih-Yu Li and Ching-Ming Chang,
“Pragmatical Adaptive Chaos Control from a New Double Van der Pol System to
a New Double Duffing System”, 2008, accepted by Applied Mathematics and
Computation. (SCI, Impact factor: 0.821)

Zheng-Ming Ge, Chien-Hao Li, Shih-Yu Li and Ching-Ming Chang, “Chaos
Synchronization of Double Duffing Systems with Parameters Excited by a
Chaotic Signal”, Journal of Sound and Vibration, 2008, Vol. 317, pp. 449-455.
(SCI, Impact factor: 1.024)

Zheng-Ming Ge, Chun-Yen Ho, Shih-Yu Li and Ching-Ming Chang, “Chaos
Control of New Ikeda-Lorenz Systems by GYC Partial Region Stability Theory”,
2008, accepted by Mathematical Methods in the Applied Sciences. (SCI, Impact
factor: 0.594)

Cheng-Hsiung Yang, Zheng-Ming Ge, Ching-Ming Chang and Shih-Yu Li,
“Chaos Synchronization and Chaos Control of Quantum-CNN Chaotic System
by Variable Structure Control and Impulse Control”, 2009, accepted by
Nonlinear Analysis: Real World Applications:(SCI, Impact factor: 1.232).

* L R R

107



	摘要
	Abstract
	誌  謝
	中文摘要…………………………………………………………………. i
	ABSTRACT……………………………………………………………. iii
	ACKNOWLEDGEMENT…………………………………………….. vi
	CONTENTS…………………………………………………………... viii
	LIST OF FIGURES...………………………………………………....... x
	PAPER LIST…………………………………………………………. 106

