
國 立 交 通 大 學

電機與控制工程學系

博 士 論 文

自我組織特徵映射網路於最佳化問題及其應用

An SOM-Based Algorithm for Optimization

and Its Applications

研 究 生：陳一元

指導教授：楊谷洋 教授

中 華 民 國 九 十 七 年 七 月

自我組織特徵映射網路於最佳化問題及其應用

An SOM-Based Algorithm for Optimization
and Its Applications

研 究 生：陳一元 Student：Yi-Yuan Chen

指導教授：楊谷洋 Advisor：Kuu-Young Young

國 立 交 通 大 學
電 機 與 控 制 工 程 學 系

博 士 論 文

A Dissertation
Submitted to Department of Electrical and Control Engineering

College of Electrical and Computer Engineering
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Electrical and Control Engineering

July 2008

Hsinchu, Taiwan, Republic of China

中華民國九十七年七月

 i

自我組織特徵映射網路於最佳化問題及其應用

An SOM-Based Algorithm for Optimization

and Its Applications

研 究 生：陳一元 指導教授：楊谷洋 博士

國立交通大學電機與控制工程學系

摘要

自我組織特徵映射神經網路（SOM）已經廣泛地應用在靜態資料處理與動態資料的

分析，但利用 SOM 解決最佳化的問題的研究非常少。目前以 SOM 為基礎的最佳化演算法

對動態系統最佳化的效能還有待改進，所以在本論文中提出一自我組織特徵映射神經網

路最佳化演算法（SOMS）應用於靜態與動態最佳化問題。為了更進一步擴展它的收尋能

力，也提出一個新的鍵結值的調整規則以達到動態調整 SOM 的鄰域函數。在論文中我們

也利用 SOMS 演算法發展ㄧ智慧型雷達預估器，可在很短的時間週期內對於只有很少的

資料被雷達接收的情形下，估測目標物的運動軌跡。除此之外，當最佳化問題存在多個

最佳解時，利用一個新的 Niching 方法（即決策型競爭機制），我們也提出一個 Niching

型自我組織特徵映射神經網路最佳化演算法（NSOMS）。為了提高學習的效能且同時可以

讓最佳解的分佈結構顯現在二維的輸出空間，我們提出一新的神經元鍵結值與座標位置

的調整規則，由於新的調整規則的設計簡單而且只用到兩個學習參數分別於神經元鍵結

值與座標位置上，所以提出的 NSOMS 可以很容易地應用在不同的最佳化問題上。我們以

模擬的方式來驗證此方法的可行性，並與傳統的卡曼濾波器 (KF)，基因演算法（GA），

與其他 SOM 最佳化演算法進行比較。

 ii

An SOM-Based Algorithm for Optimization
and Its Applications

Student： Yi-Yuan Chen Advisor： Dr. Kuu-Young Young

Department of Electrical and Control Engineering
National Chiao Tung University

Abstract

The self-organizing map (SOM), as a kind of unsupervised neural network, has been used for

both static data management and dynamic data analysis. To further exploit its search abilities,

in this dissertation we propose an SOM-based search algorithm (SOMS) for optimization

problems involving both static and dynamic functions. Furthermore, a new SOM weight

updating rule is proposed to enhance the learning efficiency; this may dynamically adjust the

neighborhood function for the SOM in learning system parameters. Based on the SOMS, we

develop an intelligent radar predictor to achieve accurate trajectory estimation under the strict

time constraint due to only few data are available in every short time period. Moreover, when

an optimization problem has many different optimal solutions, a new niche method

(deterministic competition mechanism) to extend SOM-based search algorithm (NSOMS) has

been proposed for identification of multiple optimal solutions. The proposed NSOMS

network structure is able to find multiple different optimal solutions and visualize distribution

and structure of optimal solutions, allowing us to easily classify the optimal solutions into

clusters. As a demonstration, the proposed NSOMS is applied for function optimization in a

multimodal domain and also dynamic trajectory prediction involving multiple targets, with its

performance compared with the genetic algorithm (GA) and other SOM-based optimization

algorithms.

 iii

Acknowledgements

以最誠摯的心感謝我的指導教授楊谷洋博士，在我攻讀碩士及博士學位期間，在學

術研究領域上給予我最專業的指導與諄諄教誨，使我的博士論文得以順利完成。此外我

也從楊谷洋博士身上學習到對於研究應有的態度，懷抱著熱忱，加以認真、踏實、努力

的精神、持續不輟的耐心，才能在學術研究這條路上堅持理想，朝著目標邁進。也感謝

蘇木春教授、林進燈教授、周志成教授、林昇甫教授、陶金旭教授，以及黃士殷教授，

撥冗參與我的論文口試，你們的不吝指導與寶貴的建議，使我獲益良多，並不斷砥礪自

己精益求精。

感謝人與機器實驗室的學弟們，在論文研究上給予最佳的建議與討論，使我的研究

可以更加事半功倍。感謝我的父母、弟弟、太太、兒女，在我求學的路途上給予我最堅

定的支持與鼓勵，使我能堅持目標繼續奮鬥，因為你們的關懷與愛護，所以我能心無旁

騖的完成學業，也讓我感受到家人的關懷是支持我在求學路上最堅強、最溫暖的力量。

求學生涯告一段落，但這不代表學習的結束，而是另一階段的開始。感謝所有愛護

我的人對我的支持與鼓舞，我將帶著你們給我的信心，在學術研究的路上繼續努力！

謹以此論文獻給愛我的師長、家人、朋友們！謝謝大家。

 iv

Contents

Chinese Abstract i

English Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 Intelligent Radar Predictor 5

2.1 Dynamic Trajectory Prediction Based on Self-Organizing Map…………………9

2.2 SOM Implementation………………………………………………………12

2.3 Simulation…………………………………………………………………18

3 SOM-Based Algorithm for Optimization 28

3.1 Proposed SOM-Based Search Algorithm (SOMS)………………………………29

3.2 Proposed Weight Updating Rule………………………………………………31

3.3 Applications………………………………………………………………37

3.3.1 Function Optimization………….…………………………………………38

3.3.2 Dynamic Trajectory Prediction………………………………………………43

 v

4 Niching SOM-Based Search Algorithm (NSOMS) 52

4.1 Niching Method……………………………………………………………53

4.2 Proposed Niching SOMS Weight Updating Rule……………………………….57

4.3 Visualization of Distribution of Optimal Solutions………………………………62

4.4 Applications………………………………………………………………64

4.4.1 Function Optimization of a Multimodal Domain…………………………………64

4.4.2 Multiple Dynamic Trajectories Prediction………………………………………72

5 Conclusion 91

5.1 Future Research……………………………………………………………92

Bibliography 93

Vita 99

 vi

List of Tables

4.1 Comparison results for NSOMS and RCS-PSM on the 4 test functions…………….69

4.2 Comparison results for NSOMS, SOMSO-1, and SOMSO-2 on the dynamic

trajectory prediction…………………………………………………………..87

 vii

List of Figures

2.1 A conceptual diagram of an air-defense radar system...…………………………7

2.2 System organization of the proposed intelligent radar predictor.…………………11

2.3 The structure and operation in the SOM...……………………………………..11

2.4 The movement of the weight vector in the two-dimensional space: (a) * *ˆj j≠w w

and (b) * *ˆj j=w w .…………………………………………………..………13

2.5 Simulation results for trajectory prediction using the SOM and the Kalman filter

with good estimates of both the initial condition and noise distribution: (a) the ideal

and measured TBM trajectories, (b) the estimated position error by using the SOM

and Kalman filter, and (c) the movement of the weight vector jw during the SOM

 learning process.…………………………………………………………..21

2.6 Simulation results for trajectory prediction using the SOM and the Kalman filter

with a good estimate of the initial condition but bad estimate of the noise

distribution: (a) the ideal and measured TBM trajectories, (b) the estimated position

error by using the SOM and Kalman filter, and (c) the movement of the weight

vector jw during the SOM learning process.………………………………..23

2.7 Simulation results for trajectory prediction using the SOM and the Kalman filter

with a bad estimate of the initial condition but good estimate of the noise

distribution: (a) the ideal and measured TBM trajectories, (b) the estimated position

error by using the SOM and Kalman filter, and (c) the movement of the weight

vector jw during the SOM learning process.…………………….………….24

2.8 Simulation results for trajectory prediction using the SOM and the Kalman filter

with bad estimates of both the initial condition and the noise distribution: (a) the

 viii

ideal and measured TBM trajectories, (b) the estimated position error by using the

SOM and Kalman filter, and (c) the movement of the weight vector jw during the

SOM learning process.……………………………………………….……25

2.9 Results by applying the SOM to predict the actual TBM trajectory.……………..26

3.1 Conceptual diagram of the organized search in a 2-D SOM: the solution is (a)

within the estimated range and (b) outside of the estimated range.……………...30

3.2 Proposed SOM-based algorithm for optimization.……………………………..33

3.3 Structure and operation of the SOM in the SOMS. ……………………………..33

3.4 Center and width adjustment for the neighborhood function ,(())j iG w k , when (a)

()*

2
2

,
()ei ij i

w w k σ− ≥ , and (b). ()*

2
2

,
()ei ij i

w w k σ− < .………………………….36

3.5 Minimization of the 2-D Griewant function using the SOMS and GA with the

optimal solution outside of the estimated region: (a) minimal function values

*(())jO kw during the learning process, (b) weight vector movement in the SOM,

and (c) weight vector movement in the GA.……………………………………41

3.6 Minimal function values *(())jO kw during the learning process for the mini-

mization of the 30-D Rosenbrock function using the SOMS, GA, and SOMO.…….42

3.7 Simulation results for dynamic trajectory prediction using the SOMS, SOMSO, and

GA with a good estimate of the initial state: (a) the estimated position error in the

X-direction and (b) the variation of the neighborhood function (())jF kw during

 the SOMS learning process.…………………………………………………..50

3.8 Simulation results for dynamic trajectory prediction using the SOMS, SOMSO, and

 GA with a bad estimate of the initial state.………………………………………51

4.1 Optimization during learning process: (a) without the niching method, (b) with the

 niching method.………………………………………………………………55

 ix

4.2 Proposed Niching SOM-based search algorithm.…………………………………56

4.3 Structure and operation of the SOM in the NSOMS.………………………………56

4.4 Three multimodal functions. (a) F1: uniform sine function, (b) F2: nonuniform sine

function, and (c) F3: Shekel’s Foxholes function.………………………………..67

4.5 Convergence comparisons for F3 function: (a) the variation of the number of

maintained peaks and (b) the variation of the maximum peak ratio during the

NSOMS learning process.……………………………………………………..70

4.6 The results obtained by the NSOMS for F4 function: (a) projection result in the 2D

neuron space, and (b) final neighborhood function values.……………………….71

4.7 Simulation results for the multiple trajectories prediction using the NSOM,

SOMSO-1, and SOMSO-2 with a good estimate of the initial state: (a) the ideal

and measured TBM trajectories, (b)-(d) the estimated initial state error by using the

NSOM, SOMSO-1, and SOMSO-2.…………………………………………….77

4.8 Final results obtained by the NSOMS for the multiple trajectories prediction: (a)

 projection result in 2D neuron space and (b) finial neighborhood function values.…78

4.9 Simulation results for multiple trajectories prediction using the NSOM, SOMSO-1,

and SOMSO-2 with a bad estimate of the initial state: (a) the ideal and measured

TBM trajectories, (b)-(d) the estimated initial state error by using the NSOM,

SOMSO-1, and SOMSO-2.……………………………………………………81

4.10 Final results obtained by the NSOMS for the multiple trajectories prediction : (a)

projection result in 2D neuron space and (b) finial neighborhood function values.......82

4.11 Performance for different network sizes using the NSOMS, SOMSO-1, and

SOMSO-2.………………………………………………………………….84

4.12 Performance for different parameters using the NSOMS, SOMSO-1, and

SOMSO-2. ……………………………………………………………….86

4.13 Performance of 5 runs with the same initial weights using the NSOMS, OMSO-1,

 x

and SOMSO-2………………………………………………………………89

4.14 Performance of 5 runs with the different initial weights using the NSOMS,

SOMSO-1, and SOMSO-2.…………………………………………………...90

Chapter 1

Introduction

The self-organizing map (SOM), as a kind of unsupervised neural network, is performed in

a self-organized manner in that no external teacher or critic is required to guide synaptic

changes in the network [4, 22]. By contrast, for the other two basic learning paradigms

in neural networks, supervised learning is performed under the supervision of an external

teacher [14] and reinforcement learning involves the use of a critic that evolves through

a trial-and-error process [3]; these other two also demand the input-output pairs as the

training data. The appealing features of learning without needing the input-output pairs

makes the SOM very attractive when dealing with varying and uncertain data. In its many

applications, the SOM has been used for both static data management and dynamic data

analysis, such as data mining, knowledge discover, clustering, visualization, text archiving,

image retrieval, speaker recognition, mobile communication, robot control, identification

and control of dynamic systems, local dynamic modeling, nonlinear control, and tracking

moving objects [1, 2, 14, 22, 24, 31, 36, 37, 38, 42]. There have also been many approaches

proposed to improve or modify the original SOM algorithm for different purposes [2, 13,

19, 37, 43, 45, 47]. However, from our survey, its search abilities have not been adequately

1

exploited yet [7, 12, 16, 29, 30, 40]. This need thus motivates us to propose an SOM-based

search algorithm (SOMS) for both static and dynamic functions.

In recent years, some new research studies have turned to tackle the continuous opti-

mization problems based on the self-organizing map. Michele et al. proposed an optimiza-

tion method based on the Kohonen SOM evolution strategy (KSOM-ES) [29]. Su et al.

proposed the SOM-based optimization algorithm (SOMO) [40]. An self-organizing and

self-evolving agents (SOSENs) neural network that combines multiple simulated anneal-

ing algorithms (SAs) and SOM algorithm have also been proposed [44]. Our proposed

SOMS will extend the application further to optimization problems involving dynamic

functions. When searching for a dynamic function, the goal may be to look for a set

of optimal parameters that lead to the desired performance of the dynamic system from

limited measured data. In this dissertation we first apply the self-organizing map (SOM)

to develop an intelligent radar predictor. With the few radar data read into the predictor

in each time interval and a simplified dynamic model of the moving target, the SOM

learns to estimate the initial state of the target trajectory in each learning cycle, and

will gradually converge to the optimal initial state. To achieve high learning efficiency

under such widely varying parameters, we propose a new weight updating rule which may

dynamically adjust the shape and location of the neighborhood function for the SOM, in

an individual basis, in learning the system parameters. Thus, the proposed SOMS should

be able to execute both system performance evaluation and the subsequent search in a

real-time manner.

Many optimization problems often have more than one optimal solutions in the feasible

domain [15, 34, 41]. If more different optimal solutions can be found, it is advantageous

for us to have the right of choice. Although many global optimization techniques based

2

on population evolutionary have been successfully applied to find the global optimum

[12, 17, 21], they cannot be directly applied to search for multiple solutions through one

search process in a multimodal domain. Mahfoud proposed the niching methods to iden-

tify multiple optima in a multimodal domain [28]. When many optimal solutions are

obtained, how to classify the set of optimal solutions and select one useful solution is

difficult, and in particular depends on the number of the optimal solutions and the size

of dimension. Igarashi used GA to find many different optimal solutions repeatedly and

applied the SOM for visualization and clustering of optimal solutions in 2-D output spaces

[15]. The visualization of high-dimensional data is one of the well-known merits of the

SOM. However, the SOM algorithm proposed in [15] was not applied to optimization.

Although the SOM has been used to tackle the optimization problems [29, 40, 44] and

its performances have been manifested better than other search algorithms such as SA

[21], PSO [17], DE [25], and GA [12], their search abilities were still not well exploited

in finding multiple optimal solutions. Meanwhile, it did not simultaneously provide vi-

sualization of the distribution of optimal solutions, either. Thus, we further propose a

niching SOM-based search algorithm (NSOMS) for identification and visualization of the

multiple optimal solutions.

This new niching method is proposed to extend the SOMS by defining subpopulations

(subspaces) in a multimodal domain. With the proposed niching weight-updating rule,

the niche location located on the winning weight site will be moved to approach the real

peak location of a multimodal domain gradually. Thus, with many different niches set,

the NSOMS can be applied to searching for multiple optimal solutions. For visualization

of distribution of optimal solutions, the concept of the double SOM (DSOM) [39], which

updates the weight vectors together with the two-dimensional position vector of the neu-

ron, is employed in the proposed NSOMS. The optimal solutions in the parameter space

3

are mapped onto a two-dimensional (2-D) neuron space. Through this map it allows us to

classify the optimal solutions into clusters. We then apply proposed NSOMS to function

optimization in a multimodal domain and multitarget tracking problem simultaneously

with data sent from multiple sensors. The rest of this dissertation is organized as follows.

The proposed intelligent radar predictor including SOM and the performance of the SOM

compared with that of the Kalman filtering are discussed in Chapter 2. The proposed

SOMS with dynamic weight updating rules and also the performance of the SOM com-

pared with that of the SOMO and GA are presented in Chapter 3. The proposed NSOMS

with the new weight updating rules for multiple optimal solutions and visualization of dis-

tribution of optimal solutions are described in Chapter 4. Finally, conclusions and some

future works are given in Chapter 5.

4

Chapter 2

Intelligent Radar Predictor

Nowadays, the tactical ballistic missiles (TBM) can be as fast as 3-7 Mach. For successful

tracking of the TBM moving in so high a speed, the air-defense radar system should be

capable of trajectory prediction to catch up with the movement of the TBM. It is then

imperative to develop a radar predictor that can estimate the TBM trajectory using the

radar data. Due to the strict time constraint, only very few radar data are available for

each prediction during the tracking. In addition, the prediction needs to be executed in

real time. Under such circumstances, the radar predictor should possess certain degree

of intelligence to cope with the limited and possibly noisy radar data. The challenge of

developing an intelligent radar predictor for accurate trajectory estimation motivates the

study in this dissertation.

Before discussing the proposed intelligent radar predictor, we first briefly describe an

air-defense radar system, as shown in Figure 2.1 [23]. In Figure 2.1, a TBM is launched

from location A; the radar system then tracks its trajectory, in addition to predicting the

possible landing site, location B. Under successful tracking, the radar system can then

5

guide the intercepting missile to penetrate into the predicted trajectory of the incoming

TBM, and destroy it as early as possible. From the different launching site relative to

location B, location C or D, the intercepting missile may take different route to enter the

predicted TBM trajectory, as shown in Figure 2.1. To let the intercepting missile follow

the trajectory shown in Figure 2.1, missile guidance law is demanded. By commanding

the acceleration of the missile proportional to the angular rate of some desired direction,

the guidance law will turn the heading of the missile toward that direction as rapidly as

possible [23, 46]. As the intruding missile is in such a high speed and small volume, the

design of guidance law for the intercepting missile is very challenging.

Missile guidance can basically be divided into two stages: midway guidance and termi-

nal guidance. During the midway guidance stage, the information from the ground radar

is used to guide the intercepting missile. When the target trajectory can be precisely

predicted, the intercepting missile may not need to chase after an extremely fast target,

but just move toward the predicted target location. After the intercepting missile is led

close to the target, the seeker, as an active radar equipped on the missile, may then take

over and proceed with the terminal guidance. As the intruding TBM may be capable

of escaping, delicate guidance laws need to be installed in the seeker to provide more

complex maneuvering. It can be seen that control load for missile interception in both

stages of guidance can be tremendously alleviated, if the radar system is able to estimate

the TBM trajectory accurately. Meanwhile, trajectory prediction can also provide the

possible TBM landing location, and thus be helpful in determining a proper location and

direction to launch the intercepting missile.

One famous approach for trajectory prediction is the Kalman filtering, which has

been widely used in predicting the movements of the satellites, airplanes, ships, etc. [32].

6

Figure 2.1 A conceptual diagram of an air-defense radar system.

Ballistic missile

trajectory
Intercepting missile

trajectory

Terminal guidance

Radar

M idway guidance

CA B D

7

By knowing the dynamic model of the moving target, the Kalman filter in general yields

satisfactory performance when the statistics of the environmental noises and good guesses

of the initial conditions can be obtained in advance. However, the Kalman filtering may

not be suitable for unknown, noisy environments. To tackle the situation aforementioned,

researches have been dedicated to build mathematical models, perform statistical data

analysis, and make the Kalman filter more adaptive [5, 9, 27]. It is by no means an easy

task to cope with the complexity involved in modeling, though. As an alternative, the

learning mechanism has been used to assist the Kalman filter, since it is model-free and

computational efficient after training. Among them, Roberts et al. proposed a neurofuzzy

estimator to improve the Kalman filter initialization [33]. Chin proposed incorporating

the neural network into the Kalman filter configuration to deal with the multi-target

tracking problem [6].

The SOM, first introduced by Kohonen, transforms input vectors into a discrete map

(e.g., a 2-D grid of neurons) in a topological ordered fashion adaptively [22, 37]. During

each iteration of learning, the each neuron competes with each other to gain the oppor-

tunity to update its weight, and the vector that generates the output most close to the

desired value (vector) is chosen as a winner. Because the SOM allows local interaction

between neighboring neurons, the weights of the winner and also its neighbors are all

updated. Through repeated weight modification, a cluster (or clusters) may form and

become more and more compact until a final configuration develops. The SOM thus has

a structure very suitable for parallel processing. We further exploit this parallelism and

design an organized search accordingly. In other words, we take advantage of the SOM

in its distribution of the neurons in a grid pattern and the presence of local interaction in

between the grid.

8

The SOM in the proposed predictor is in fact used as a search mechanism, and the

simplified TBM dynamic model as a reference for the SOM to approach the neighborhood

of the TBM. The employment of the SOM in this way is different from those in most

of its previous applications, and well exploits it capability in searching. The proposed

intelligent radar predictor including SOM is described in next section.

2.1 Dynamic Trajectory Prediction Based on Self-

Organizing Map

Figure 2.2 shows the system organization of the proposed intelligent radar predictor. For

an incoming TBM, the predictor uses the measured position data sent from the radar to

predict the TBM trajectory. The main module in this predictor is the SOM [22]. We

may distribute the possible positions and velocities of the missile (as weight vectors) into

the network in an organized fashion. Under this arrangement, the searches among the

neurons are closely related through the grid, leading to a more rapid convergence. On

the other hand, when the estimation is inaccurate, the search, still organized, may take

longer time to converge to the optimal solution.

The adoption of the SOM to realize this intelligent radar predictor is that it does not

demand input-output pairs for on-line prediction when facing unknown environments.

Thus, the genetic algorithm (GA) may also be a possible alternative [12]. Genetic al-

gorithms are search algorithms based on the mechanics of natural selection and natural

genetics. It employs multiple concurrent search points called chromosomes and evaluates

the fitness of each chromosome. The search procedure uses random choice as a tool to

guide a highly exploitative search through a coding of a parameter space. We consider

9

the SOM is more suitable than the GA for this trajectory tracking problem. The rea-

son is that the connection among the possible initial states for missile launching is not

utterly random. The SOM better exploits the relationship between the initial state and

its resultant TBM trajectory, leading to a somewhat guided search. In addition, the GA

is in general more time-consuming. As the prediction needs to be accomplished within a

limited amount of time, the efficiency of the network is crucial.

In this TBM tracking application, the SOM is used to estimate the initial position,

velocity, and acceleration of the TBM using the measured position data from the radar.

Thus, if the dynamic model of the TBM is available, the entire TBM trajectory can be

derived using those estimated initial position, velocity, and acceleration as the initial state

for the dynamic model. Through a learning process, the SOM determines a most probable

initial state by comparing the measured position data with the predicted TBM position

trajectories derived from a number of possible initial states selected from a predicted

range. The process of how the SOM learns to estimate the initial state is as follows. First,

a number of vectors, each of which contains a possible initial state, are selected and stored

into the neurons of the SOM. During each time interval, the SOM sends these vectors to

the dynamic model of the TBM to compute the corresponding trajectories. By comparing

the predicted trajectories with the measured radar data, the vector corresponding to the

most accurate predicted trajectory is chosen as the winner. The weights of this winner and

its neighbors are updated, and the network will eventually converge to the optimal initial

state. To note that, even the optimal initial state is not within those vectors initially

selected from the predicted range, the SOM is able to move these vectors out of their

original locations and guide them to converge to the optimal initial state. Implementation

details of the SOM for trajectory prediction are given in next section.

10

Figure 2.2 System organization of the proposed intelligent radar predictor.

Figure 2.3 The structure and operation in the SOM.

*
j
s

j
p

2
p

1
p

*
j

w

j j
s !v p

j

j
*

v

j
w

2w

1w

11

2.2 SOM Implementation

For this TBM tracking application, the SOM needs to tackle the spatio-temporal data,

instead of the spatial data it usually deals with. Therefore, a dynamic model that describes

the behavior of the TBM is included in the intelligent radar predictor. By combining the

SOM with the dynamic model, the SOM is able to tackle the spatio-temporal radar

data. Figure 2.3 shows the structure and operation in the SOM. A 2D SOM is used for

illustration in Figure 2.3, and the SOM can also be three-dimensional or other according

to the applications. Each time a certain number of new measured position data v are sent

in from the radar system, the SOM is triggered to operate. And, it will gradually converge

to an optimal prediction along with the increase of the measurement data and learning

time. In Figure 2.3, for each neuron j in the SOM, it contains a vector of a possible

initial state wj and generates an output sj. By sending wj to the dynamic model, sj is

computed as the difference between v and the predicted trajectory p
j
. Of all the neurons,

the neuron j∗ with the smallest output sj∗ is chosen as the winner. When the weight of

this winning neuron j∗ differs from that of the previous winner ĵ∗ (i.e., wj∗ 6= wĵ∗), the

weights of ĵ∗ and its neighbors will be updated in a manner that moves these weight

vectors toward neuron j∗, as shown in Figure 2.4(a). When j∗ is the same as ĵ∗ (i.e.,

wj∗ = wĵ∗), the weights will then be updated so as to let the weight vectors form more

and more compact clusters centering at neuron j∗, as shown in Figure 2.4(b). Under

successful learning, the SOM will finally converge to a predicted optimal initial state.

Several parameters need to be determined in implementing this SOM, including the

learning rate, topological neighborhood function, and number of radar data used for sj

computation. The selection of the learning rate η depends on the closeness of wj∗(k) and

wĵ∗(k). When they are different from each other, we intend to speed up the learning

12

(a) * *�j j w w

(b) * *�j j w w

Figure 2.4 The movement of the weight vector in the two-dimensional

space: (a) * *�j j w w and (b) * *�j j w w .

*
jw

*�jw

*
jw

*�jw

13

process and choose η(k) in the kth stage of learning to be close to 1. And when they

almost coincide, we slow down the learning gradually and determine η(k) according to

Eq.(2.1):

η(k) =





η0(1− k/τ), for k ≤ τ0 < τ

η1(1− τ0/τ), for k > τ0

(2.1)

where η0 and η1 are constants smaller than 1, and τ and τ0 time constants. Other types

of functions can also be used, for instance,

η(k) = η1 · e−k/τ + η0 (2.2)

Because the weight updating also includes the neighbors of the winning neuron, the topo-

logical neighborhood function hj∗ needs to be chosen. We adopt the Gaussian neighbor-

hood function for hj∗(k) [17]:

hj∗(k) = exp(−d2
j,j∗

2σ2
) (2.3)

where dj,j∗ is a lateral connection distance between neural j and j∗, and σ the width. For

the sake of efficiency in computing sj, not all the accumulated measured radar data will be

used to compare with the predicted trajectory. Under such selection of the learning rate

and neighborhood function, they will force the minimization of the difference between

the weight of the winning neuron and those corresponding to every neuron within its

neighborhood in each learning cycle. The learning in the algorithm will thus converge

eventually.

14

Based on the discussions above, we developed the SOM learning algorithm. Before the

description of the algorithm, we first introduce a simplified dynamic model of the TBM.

With the model, the SOM can obtain p
j

by sending wj into it. This dynamic model is

formulated as

x(k + 1) = A(k)x(k) + Γ(k)ξ(k) (2.4)

v(k) = C(k)x(k) + µ(k) (2.5)

where

x(k) : n-dimensional state vector at the kth stage

A(k) : n× n transition matrix

Γ(k) : n× r input distribution matrix

ξ(k) : r-dimensional random input vector

v(k) : m-dimensional output vector

C(k) :m× n observation matrix

µ(k) : m-dimensional random disturbance vector

with ξ(k) and µ(k) assumed to be white Gaussian with the following properties:

E[ξ(k)] = 0 (2.6)

E[ξ(j)ξ(k)t] = Qδjk (2.7)

15

E[µ(k)] = 0 (2.8)

E[µ(j)µ(k)t] = Rδjk (2.9)

E[ξ(j)µ(k)t] = 0 (2.10)

where E[·] stands for the expectation function, Q and R the covariance matrix of the

input noise and output noise, respectively, and δjk the Kronecker delta function. In using

the dynamic model, the SOM is not necessarily aware of its statistical properties. By

contrast, the Kalman filter needs to know the noise distribution in the dynamic model

and also a guess on the system’s initial state for trajectory prediction. As the covariance

matrices Q and R may be uncertain and varying in noisy, unknown environments, their

estimated values are possibly imprecise, even incorrect. Thus, the Kalman filter may not

be that effective under such circumstances. The reason that the SOM is more robust to

the uncertainty of the dynamic model than the Kalman filter and why it does not require

a guess on the initial state may be because it contains a large number of self-organizing

neurons in the network. Via learning, these neurons provide many different directions to

search for the optimal initial state.

In responding to the three variables, the launching position, velocity, and acceleration

of the TBM, a 3D SOM is used for trajectory prediction. The SOM learning algorithm is

organized as follows:

SOM Learning Algorithm: Predict an optimal initial state for an incoming TBM in

a real-time manner using the measured position radar data.

Step 1: Set the stage of learning k = 0. Estimate the ranges of the possible initial

position, velocity, and acceleration of the TBM, and randomly store the possible initial

states wj(0) into the neurons, where j = 1, . . . , N3, N×N×N the total number of neurons

16

in the 3D space. Select neuron ĵ∗ in the center of the neuron space as the winning neuron.

Step 2: Send wj(k) into the dynamic model, described in Eqs.(2.4)-(2.5), to compute

p
j
(k).

Step 3: For each neuron j, compute its output sj as the difference between the measured

position data v(k) and p
j
(k):

sj(k) =
k∑

i=0

∥∥∥p
j
(i)− v(i)

∥∥∥ (2.11)

Find the winning neuron j∗ with the minimum sj∗(k):

sj∗(k) =
k∑

i=0

∥∥∥p
j∗(i)− v(i)

∥∥∥ = min
j

k∑

i=0

∥∥∥p
j
(i)− v(i)

∥∥∥ (2.12)

Step 4: Update the weights of the previous winning neuron ĵ∗ and its neighbors within

hĵ∗(k) using the following two rules:

If j∗ 6= ĵ∗, then wj(k + 1) = wj(k) + η(k)hĵ∗(k)(wj∗(k)−wĵ∗(k)) (2.13)

If j∗ = ĵ∗, then wj(k + 1) = wj(k) + η(k)hĵ∗(k)(wj∗(k)−wj(k)) (2.14)

where η(k) is the learning rate described in Eq.(2.1) and hĵ∗(k) the neighborhood function

in Eq.(2.3).

Step 5: Check whether the difference between wj∗(k) of the winning neuron j∗ and wj(k)

corresponding to every neuron j within hj∗(k) is smaller than a prespecified value ε:

max
j
‖wj(k)−wj∗(k)‖ < ε, j ∈ hj∗(k). (2.15)

17

If Eq.(2.15) does not hold, let k = k + 1, and when k is smaller than a prespecified

maximum value, go to Step 2; otherwise, the prediction process is completed and output

the optimal initial state to the dynamic model to derive the TBM trajectory. Note that

the value of ε is empirical according to the demanded resolution in learning, and we chose

it very close to zero.

2.3 Simulation

To demonstrate the effectiveness of the proposed intelligent radar predictor, we performed

a series of simulations based on using both the generated and real radar data. The results

were compared with those using the Kalman filtering. Via coordinate transformation, the

trajectory of the incoming TBM was described in a 2D (X×Y) space. Because simulation

results were similar for the motions in the X and Y directions, we only discussed the motion

in the X direction to simplify the illustration. Thus, according to Eq.(2.4), the dynamic

model for the TBM is formulated as

x(k + 1) = A(k)x(k) + ξ(k) (2.16)

with

x(k) =




x(k)

ẋ(k)

ẍ(k)


 , A(k) =




1 T T 2/2

0 1 T

0 0 1


 , ξ(k) =




0

0

ξ(k)


 (2.17)

where x(k), ẋ(k), and ẍ(k) stand for the position, velocity, and acceleration of the target

18

in the X direction, respectively, T the sampling time, and ξ(k) the noise and modeling

error that perturbs the target acceleration, with a zero mean and constant variance σ2
a.

And, according to Eq.(2.5), the measured radar position v(k) is formulated as

v(k) = x(k) + µ(k) (2.18)

where µ(k) is the measurement noise with a zero mean and constant variance σ2
m. The

ranges of the possible initial states wj(0) were predicted to be

−1000 m ≤ x(0) ≤ 1000 m

−2000 m/s ≤ ẋ(0) ≤ 2000 m/s(5.88Mach)

−50 m/s2 ≤ ẍ(0) ≤ 50 m/s2.

(2.19)

Within the ranges described in Eq.(2.19), the possible launching position, velocity, and

acceleration of the TBM were selected and stored into the 125 neurons of the 3D SOM.

The variances, σ2
a and σ2

m, described in Eqs.(2.17)-(2.18), are chosen to be (0.32m/s2)2

and (200m)2, respectively. The sampling time T was chosen to be 1s. The number of

learning is set to be 20 during each stage of learning.

We first applied the SOM and Kalman filter for trajectory prediction under the condi-

tion that good estimates of both the initial state and noise distribution were available. The

ideal initial state of the target was assumed to be (500m, 1000m/s(2.94Mach), −10m/s2),

which was within the predicted ranges. And the variance of the measurement noise was set

to be the same as the predicted (200m)2. The ideal and measured TBM trajectories were

shown in Figure 2.5(a). Both the SOM and Kalman filter predicted the (k + 1)th state

quite well, and thus resulted in very small estimated position errors, except in the initial

stage of the prediction, as shown in Figure 2.5(b). Figure 2.5(c) shows the movement

of the weight vector wj during the SOM learning process. In Figure 2.5(c), the weight

19

vectors of the neurons in the SOM continued to move closer and closer during learning,

and finally converged to a very small region, since the winning neuron was already within

the predicted region from the beginning.

In the second set of simulations, we intended to investigate the performances of the

SOM and Kalman filter under the following three situations: (1) good estimate of the

initial state, but bad estimate of the noise distribution, (2) bad estimate of the initial state,

but good estimate of the noise distribution, and (3) bad estimates of both the initial state

and noise distribution. For Case 1, the ideal initial state of the target was still set to be

(500m, 1000m/s(2.94Mach),−10m/s2), but the variance of the measurement noise was

enlarged to be (400m)2. The ideal and measured TBM trajectories were shown in Figure

2.6(a). With a bad estimate of the noise distribution, the performance of the Kalman filter

degraded, but the SOM still performed well, as shown in Figure 2.6(b). In Figure 2.6(c),

the neurons in the SOM exhibited similar behaviors as those shown in Figure 2.5(c). For

Case 2, the ideal initial state was assumed to be (5000m, 3000m/s(8.82Mach),−60m/s2),

which was outside the predicted ranges. The variance of the measurement noise was set to

be (200m)2. The ideal and measured TBM trajectories were shown in Figure 2.7(a). With

a bad estimate of the initial state, the performances of both the SOM and Kalman filter

degraded in the initial stage of the prediction, but the SOM achieved better prediction

later, as shown in Figure 2.7(b). Correspondingly, the weight vectors of the neurons in

the SOM moved from the original predicted region outward to the ideal initial state,

and finally converged to the desired location, as shown in Figure 2.7(c). For Case 3, the

ideal initial state was assumed to be (5000m, 3000m/s(8.82Mach),−60m/s2), and the

variance of the measurement noise set to be (400m)2. The ideal and measured TBM

trajectories were shown in Figure 2.8(a). With bad estimates of both the initial state

and noise distribution, the Kalman filter perform poorly, but the SOM still achieved

20

(a) Ideal and measured TBM trajectories (b) Estimated position error by using the

SOM and Kalman filter

(c) Movement of the weight vector j
w during the SOM learning process

Figure 2.5 Simulation results for trajectory prediction using the SOM and

the Kalman filter with good estimates of both the initial condition and noise

distribution: (a) the ideal and measured TBM trajectories, (b) the estimated

position error by using the SOM and Kalman filter, and (c) the movement

of the weight vector j
w during the SOM learning process.

()x m
(/)

x

m s

2(/)

x

m s

 : k 0

* : k 10

 : k 30

30k

10k

0k

21

satisfactory performance, as shown in Figure 2.8(b). In Figure 2.8(c), the neurons in the

SOM exhibited similar behaviors as those shown in Figure 2.7(c).

For further investigation, we performed simulations for input noises with the compo-

nents in both x and y directions and also the condition of a non-zero expectation for these

two components. The results show that when the expectation values were small, the in-

telligent radar predictor still worked quite well. We also performed simulations based on

using the genetic algorithm. During the simulations, we first randomly selected the initial

populations. When the optimal initial state did not fall within the selected ranges, the GA

converged very slowly. We then modified the population size and crossover and mutation

probabilities to speed up its convergence rate. However, it was not that straightforward

to determine these parameters properly, and the process was time-consuming. From the

simulation results, we conclude that the proposed intelligent predictor performed better

than the GA for this trajectory tracking problem.

From the results shown in Figures 2.6-2.8, we found that bad estimates of the initial

state and noise distribution much affected the performance of the Kalman filter. By

contrast, their influence on the SOM was mostly at the initial stage of the prediction.

After the transient, the SOM still managed to find the optimal initial state via learning.

With its robustness to uncertainty and efficiency in computation, we then used the SOM

to predict the TBM trajectory based on using real radar data. The radar data, provided

by the military research center, had been modified due to the security consideration. The

SOM used only a small number of radar data, marked by the ◦ sign in Figure 2.9, to

predict the TBM trajectory. In Figure 2.9, the predicted trajectory well approximated

the measured one, demonstrating the ability of the SOM to deal with real radar data.

As a summary, in this chapter, we have proposed an intelligent radar predictor for

22

(a) Ideal and measured TBM trajectories (b) Estimated position error by using

the SOM and Kalman filter

(c) Movement of the weight vector j
w during the SOM learning process

Figure 2.6 Simulation results for trajectory prediction using the SOM and

the Kalman filter with a good estimate of the initial condition but bad

estimate of the noise distribution: (a) the ideal and measured TBM

trajectories, (b) the estimated position error by using the SOM and Kalman

filter, and (c) the movement of the weight vector j
w during the SOM

learning process.

()x m(/)

x

m s

2(/)

x

m s

 : k 0

* : k 10

 : k 30

10k

0k

30k

23

(a) Ideal and measured TBM trajectories (b) Estimated position error by using the

SOM and Kalman filter

(c) Movement of the weight vector j
w during the SOM learning process

Figure 2.7 Simulation results for trajectory prediction using the SOM and

the Kalman filter with a bad estimate of the initial condition but good

estimate of the noise distribution: (a) the ideal and measured TBM

trajectories, (b) the estimated position error by using the SOM and Kalman

filter, and (c) the movement of the weight vector j
w during the SOM

learning process.

()x m

(/)

x

m s

2(/)

x

m s

: k 0

* : k 5

+ : k 10

 : k 30

0k

5k

10k

30k

24

(a) Ideal and measured TBM trajectories (b) Estimated position error by using

the SOM and Kalman filter

(c) Movement of the weight vector j
w during the SOM learning process

Figure 2.8 Simulation results for trajectory prediction using the SOM and

the Kalman filter with bad estimates of both the initial condition and the

noise distribution: (a) the ideal and measured TBM trajectories, (b) the

estimated position error by using the SOM and Kalman filter, and (c) the

movement of the weight vector jw during the SOM learning process.

()x m

(/)

x

m s

2(/)

x

m s

 : k 0

* : k 5

+ : k 10

 : k 30

0k

5k

10k
30k

25

Figure 2.9 Results by applying the SOM to predict the actual

TBM trajectory.

m

z

m

real-time radar data

measured trajectory

predicted trajectory

26

trajectory estimation. With a simplified target dynamic model, the unsupervised SOM

in the predictor can achieve salient prediction in the presence of noise, even with a bad

estimate of the initial state. The performance of the SOM has been compared with mainly

that of the Kalman filtering. The simplified TBM dynamic model used in the current

stage of the study may account for only the coarse behavior of the TBM. Nevertheless,

even with only the general information provided by this simplified model, the proposed

intelligent radar predictor has been able to catch up with the TBM, as demonstrated in

the simulations based on using the real radar data.

27

Chapter 3

SOM-Based Algorithm for

Optimization

Although the SOM has been widely used in many diverse tasks, few studies are available

for applying the SOM as a search mechanism. Recently, some researchers have exploited

its ability in search [7, 29, 40]. Michele et al. proposed a learning algorithm for optimiza-

tion based on the Kohonen SOM evolution strategy (KSOM-ES) [29]. In this KSOM-ES

algorithm, the adaptive grids are used to identify and exploit search space regions that

maximize the probability of generating points closer to the optima. Su et al. proposed an

SOM-based optimization algorithm (SOMO) [40]. Through the self-organizing process in

SOMO, solutions to a continuous optimization problem can be simultaneously explored

and exploited. The point about applying the SOM as a search mechanism is that each

weight vector represents a possible solution of the objective function. Through the fitness

function the winner will be determined with the largest fitness and updating the weights

of the winner and its neighbors, all the weights will be moved to explore and exploit the

optimization space for the searching process. A major drawback is that the SOMO and

28

KSOM-ES converge very slowly if the optimal solution falls outside the estimated range.

Because of the influence of noise the search direction is not correct probably. Meanwhile

the step size is reduced continually. Eventually the optimal solution is probably outside

the search range. In the dynamic optimization the search direction and step size are hard

to determine effectively in noisy and unknown environment. Thus, in this chapter a new

SOM weight updating rule based on a heuristic techniques is proposed to deals properly

with these problems and enhance the learning efficiency; this may dynamically adjust

the neighborhood function for the SOM in learning system parameters, discussed in next

Section.

3.1 Proposed SOM-Based Search Algorithm

Figure 3.1 shows the conceptual diagram of the organized search in a 2-D SOM. Note that

Figure 3.1 is slight different from Figure 2.4 in that the weight of the previous winner

replaced by the average of all weights. Figure 3.1(a) shows a case where the solution is

within the estimated range. In this case, the weights of the neurons are updated so as to

make the weight vectors converge to a compact cluster centering at the optimal solution.

Figure 3.1 (b) shows the case where the solution is outside the estimated range. The

winner will be located at the corner of the SOM initially. During the next learning epoch,

it is moved to the center of the SOM. The learning will continue until the solution falls

within the new estimated range. The search will then follow the process shown in Figure

3.1(a) to converge to the optimal solution.

Figure 3.2 shows the proposed SOMS, which consists of mainly the evaluation and

search mechanisms and the dynamic model stands for the target system. Initially, the

29

(a) Within the estimated range

(b) Outside of the estimated range

Figure 3.1 Conceptual diagram of the organized search in a 2-D SOM: the solution is

(a) within the estimated range and (b) outside of the estimated range.

30

function for performance evaluation is installed in the evaluation mechanism, and possible

solutions (e.g., vectors of dynamic parameters), selected from the estimated range, will

be distributed among the neurons of the SOM. During each time interval of the learning

process, each of all the possible solutions in the neurons is sent to the dynamic model

one by one. In other words, the dynamic model will be equipped with a possible set of

dynamic parameters repeatedly, when used to derive the output data corresponding to the

target system. The evaluation mechanism will then compute the difference between the

derived data and the incoming measured data. From the results, the search mechanism

chooses the solution leading to the most accurate derived data as the winner, and updates

the weights of this winner and its neighboring neurons. Note that this SOMS can also

be applied to continuous optimization problems, with the dynamic model replaced by the

objective function for a given optimization problem and the input by the reference data.

3.2 Proposed Weight Updating Rule

Figure 3.3 shows the structure and operation of the SOM in the SOMS. The SOM performs

two operations: evaluation and search. In Figure 3.3, each neuron j in the SOM contains

a vector of a possible solution set wj (the weight vector). Each time new measured data

v are sent into the scheme, the SOM is triggered to operate. All of the possible solution

sets in the neurons will then be sent to the dynamic model to derive their corresponding

data p
j
. The SOM evaluates the difference between v and each p

j
. Of all the neurons, it

chooses the neuron j∗, which corresponds to the smallest difference, as the winner. The

learning process then continues, and the network will eventually converge to the optimal

solution. And even when the optimal solution is not within the estimated range for some

cases, the search mechanism is still expected to move the possible candidates out of their

31

initial locations and guide them to converge to the optimal solution.

The main purpose of the proposed SOMS is how to explore and exploit the search space

and to obtain an optimal solution for the optimization problem and, furthermore, to make

the variations of the weights as organized movements. To this purpose, the SOMS learns

to organized and efficient search, but not random search. For effective weight updating

in the SOM, the topological neighborhood function and learning rate need to be properly

determined. Their determination may depend on the properties of the system parameters

to learn. As mentioned above, system parameters may operate in quite different working

ranges. To achieve high learning efficiency, the weight updating should be executed on an

individual basis, instead of using the same neighborhood function for all the parameters.

We thus propose a new SOM weight updating rule which can dynamically adjust the

center and width of their respective neighborhood function for the SOM in learning each

of the system parameters.

For the topological mapping, unlike in the traditional SOM applications, it is now our

aim to let the weight vectors form the uniform distribution like the pre-ordered lattice in

the neuron space. Generally the neuron space and weight vector space are with different

dimensions, so we have to transfer them into the same one. The Gaussian type function is

usually used as the neighborhood function, and it is differentiable and continuous. We also

used the Gaussian type functions as the neighborhood functions in the neuron space and

weight vector space. With the neighborhood functions, the magnitudes of their respective

distances in lattice space and in weight vector space can be normalized to be between

0 and 1. The proposed weight updating rule is designed to first let the weight vectors

approach the vicinity of the optimal solution set when it falls outside the coverage of the

SOM. The weight vector cluster is then moved to the center of the SOM. The process will

32

Dynamic model

Search

Evaluation
SOM

*
j

w

j
w

j
p

v

Figure 3.2 Proposed SOM-based algorithm for optimization.

Figure 3.3 Structure and operation of the SOM in the SOMS.

Evaluation

mechanism

Search

mechanism

Dynamic model

Optimal

solution

Possible

solutions

Computed

dynamic data

SOMS

Measured

dynamic data

33

continue until the solution set falls within the SOM. Later, the rule will make the weight

vectors converge to a more and more compact cluster centering at the optimal solution.

We then define two Gaussian neighborhood functions, Dj and F (wj(k)) in the kth stage

of learning as

Dj = exp(−
∥∥∥rj − rj∗

∥∥∥
2

2σ2
d

) (3.1)

F
(
wj(k)

)
= exp

(−1

q

q∑

i=1

(wj,i(k)− wj∗,i(k))2

2σ2
i

)
(3.2)

where rj and rj∗ stand for the coordinates of neuron j to entire network and j∗, respec-

tively, σd the standard deviation of the distribution for Dj, and σi the standard deviation

of the distribution for wj,i(k). Note that F
(
wj(k)

)
is defined by considering the effects

from all q elements in wj(k). Here, Dj is used as a reference distribution for F
(
wj(k)

)
.

In other words, We intend to map the magnitude difference of the parameter into the

neurons spaces. To make F (wj(k)) approach Dj, an error function Ej(k) is then defined

as

Ej(k) =
1

2
(Dj − F (wj(k)))2. (3.3)

During the learning, we can find that when wj∗,i(k) is much different from wei
(k), the

average of all wj,i(k), the optimal solution is possibly located far outside the estimated

range; contrarily, when wj∗,i(k) is close to wei
(k), the optimal solution is possibly within

the estimated range. Based on this observation, we proposed a method to speed up the

learning. For illustration, we define a Gaussian distribution function G(wj,i(k)) for each

element wj,i(k), ith element in wj(k)) in the kth stage of learning:

34

G(wj,i(k)) = exp(−(wj,i(k)− wei
(k))2

2σ2
i

) (3.4)

The strategy is to vary the mean and variance of G(wj,i(k)) by moving its center to where

wj∗,i(k) is located and enlarging (reducing) the variance σ2
i to be σ̃2

i = |wj∗,i(k)−wei
(k)|2,

where | · | stands for the absolute value, as illustrated in Figure 3.4. The new distribution

function G̃(w̃j,i(k)) is then formulated as

G̃(w̃j,i(k)) = exp(−(w̃j,i(k)− wj∗,i(k))2

2σ̃2
i

) = exp(−(wj,i(k)− wei
(k))2

2σ2
i

) = G(wj,i(k))

(3.5)

where w̃j,i(k) stands for the new wj,i(k) after the adjustment. As indicated in Figure

3.4, G̃(w̃j,i(k)) is equal to G(wj,i(k)) when wj,i(k) varies to w̃j,i(k). From Eq.(3.5), during

each iteration of learning, G(wj,i(k)) is dynamically centered at the location of the winning

neuron j∗, with a larger (smaller) width when wei
(k) is much (less) different from wj∗,i(k).

It thus covers a more fitting neighborhood region, and leads to a higher learning efficiency.

With G̃(w̃j,i(k)), the new weight w̃j,i(k) is derived as

w̃j,i(k) =
|wj∗,i(k)− wei

(k)|
σi

· (wj,i(k)− wei
(k)) + wj∗,i(k). (3.6)

And, with a desired new weight w̃j,i(k), the learning should also make wj(k) approach

w̃j(k), in addition to minimizing the error function Ej(k) in Eq.(3.3). A new error function

Ẽj(k) is thus defined as

35

(a) !*

2
2

,
()e

i ij i
k ! "w w

 (b) !*

2
2

,
()e

i ij i
k ! "w w

Figure 3.4 Center and width adjustment for the neighborhood function
,(())
j i

G kw ,

when (a) !*

2
2

,
()e

i ij i
k ! "w w and (b) !*

2
2

,
()e

i ij i
k ! "w w .

* ,
()

j i
kw

i

i

i

i

e
i

w

,(())
j i

G k w,(())
j i

G kw

* ,
()

j i
kw

,(())
j i

G k w
,(())
j i

G kw

e
i

w

36

Ẽj(k) =
1

2
[(Dj − F (wj(k)))2 +

∥∥∥wj(k)− w̃j(k)
∥∥∥
2
]. (3.7)

Based on Eq.(3.7) and the gradient-descent approach, the weight-updating rule is

derived as

wj,i(k + 1) = wj,i(k)− η(k)
∂Ẽj(k)

∂wj,i(k)

= wj,i(k)− η(k)[
∂Ej(k)

∂F (wj(k))
· ∂F (wj(k))

∂wj,i(k)
+ (wj,i(k)− w̃j,i(k))]

= wj,i(k)− η(k)[
(wj,i(k)− wj∗,i(k))

q · σ2
i

· F (wj(k)) · (Dj − F (wj(k)))

+(wj,i(k)− w̃j,i(k))] (3.8)

where η(k) stands for the learning rate in the kth stage of learning, described in chapter 1.

Together, the weight updating rule described in Eq.(3.8) and the learning rate in Eq.(2.2)

will force the minimization of the difference between the weight vector of the winning

neuron and those corresponding to every neuron in each learning cycle. The learning will

eventually converge.

3.3 Applications

To demonstrate its capability, the SOMS is applied for both function optimization and

dynamic trajectory prediction. Based on the SOMS, we first develop learning schemes

corresponding to each of the applications. Simulations are then executed for performance

evaluation. The results are especially compared with those of the genetic algorithm (GA)

for their resemblance in searching. Both the SOM and GA have the merit of parallel

processing. And, both of their searches are through the guidance of the evaluation func-

tion, while the SOM in our design adopts a somewhat organized search and the GA in

37

some sense a random approach. It implicates that the SOM may be more suitable for

applications with certain knowledge, especially when the distribution of the possible solu-

tions is not utterly random. On the contrary, for applications with no a priori knowledge

available, the GA may yield better performance.

3.3.1 Function Optimization

For a function optimization problem, the goal may be to maximize (minimize) an object

function O(·). Let O(wj(k)) be the function value for the weight vector wj(k), which rep-

resents a possible solution. The learning algorithm for function optimization is organized

as follows.

Algorithm for function optimization based on the SOMS: Maximize (minimize)

an object function using the SOMS.

Step 1: Set the stage of learning k = 0. Choose a reference value Pr. Estimate the

ranges of the possible parameter space and randomly store the possible parameters wj(0)

into the neurons, where j = 1, . . . , N ×N , N ×N the total number of neurons in the 2D

(N ×N) space.

Step 2: Compute O(wj(k)) for all wj(k).

Step 3: Among the neurons, find the one with the largest (smallest) value as the winning

neuron j∗ for the maximization (minimization) problem.

Step 4: Update the weight vectors of the winning neuron j∗ and its neighbors according

to the weight updating rule described in Eq.(3.8).

38

Step 5: Check whether the difference between wj∗(k) of the winning neuron j∗ and

wj(k) corresponding to every neuron j is smaller than a prespecified value Pr. If it is not,

let k = k + 1, and when k is smaller than a prespecified maximum value, go to Step 2;

otherwise, the learning process is completed and output the optimal value.

Two standard test functions are used to demonstrate the proposed algorithm, a 2-D

Griewant function

f(x1, x2) = 1 +
1

4000
[(x1 − 100)2 + (x2 − 100)2]− cos(x1 − 100) · cos(

x2 − 100√
2

) (3.9)

and a 30-D Rosenbrock function

f(x) =
29∑

i=1

[100(xi+1 − x2
i)

2 + (xi − 1)2]. (3.10)

These two test functions have also been used in [40]. The optimization here is to minimize

these two functions. Their global minimal values are known in advance: for the Griewant

function, it is 0 when (x1, x2) = (100, 100); for the Rosenbrock function, it is also 0 when

all xi are equal to 1. The SOM is chosen to be with 5× 5 neurons and the learning rate

as

η(k) = 0.7 · e−k/50 + 0.2 (3.11)

For comparison, we also use the GA for function minimization, which is with a population

size of 25 to match with that of the SOM, and the crossover and mutation probability of

0.6 and 0.0333, respectively.

We start with the learning for the 2-D Griewant function. The initial wj(0) for the

SOMS was randomly chosen within the ranges of (−3, 3)×(−3, 3), i.e., the optimal solution

was outside of the estimated region. Figure 3.5 shows the simulation results. In Figure

3.5(a), both SOMS and GA found the optimal minimal value successfully, while the SOMS

converged faster. Figures 3.5(b) and (c) show the weight vector movement (k = 0 ∼ 11)

39

for the SOMS and GA, respectively. From the figures, we observed that the search in the

SOMS was basically in grouping and more directional; by contrast, that of the GA was

in a more random manner. It indicates that the SOMS was more effective for this 2-D

Griewant function minimization, because the distribution of the possible solutions might

not be utterly random.

In the minimization of the 30-D Rosenbrock function, we simulated the case that the

optimal solution was within the estimated region. For its complexity, the size of the SOM

was enlarged to be with 25 × 25 neurons, and that of the GA also enlarged accordingly.

The learning rate for the SOMS and the crossover and mutation probabilities for the GA

were set to be the same. Each wj,i(0) of the initial wj(0) was randomly chosen within

the range of (−5, 5). In addition to the SOMS and GA, the SOMO proposed in [40]

was also applied for the minimization, with its parameters adjusted via a trial-and-error

process to yield salient performance. Figure 3.6 shows the simulation results. In Figure

3.6, all SOMS, GA, and SOMO found the optimal minimal value successfully, while the

SOMS still converged faster. It indicates that the SOMS was also effective for the 30-D

Rosenbrock function minimization.

40

(a) Minimal function values *(())
j

O kw during the learning process

(b) Weight vector movement in the SOM

(c) Weight vector movement in the GA

Figure 3.5 Minimization of the 2-D Griewant function using the SOMS and GA with

the optimal solution outside of the estimated region: (a) minimal function values

*(())jO kw during the learning process, (b) weight vector movement in the SOM, and

(c) weight vector movement in the GA.

time (ms)

1x

2x

*(())
j

O kw

1x

41

Figure 3.6 Minimal function values *(())
j

O kw during the learning process for the

minimization of the 30-D Rosenbrock function using the SOMS, GA, and SOMO.

time (s)

(log)

*(())
j

O kw

42

3.3.2 Dynamic Trajectory Prediction

For a dynamic trajectory prediction problem, the goal may be to estimate the launching

position and velocity of a moving object using the measured data. Through a learning

process, the SOMS may determine a most probable initial state through repeatedly com-

paring the measured data with the predicted trajectories derived from the possible initial

states stored in the neurons of the SOM. We consider the SOMS very suitable for this

application, because the relationship between the initial state and its resultant trajec-

tory is not utterly random. We can thus distribute the initial states into the SOM in an

organized fashion, and make it as a guided search.

In this application, the nonlinear dynamic equation describing the trajectory of the

moving object and the measurement equation are first formulated as

x(k + 1) = fk(x(k)) + ξ
k

(3.12)

v(k) = gk(x(k)) + ζ
k

(3.13)

where fk and gk are the vector-value function defined in Rq and Rl (q and l the dimension),

respectively, and their first-order partial derivatives with respect to all the elements of

x(k) continuous. ξ
k

and ζ
k

are the zero-mean Gaussian white noise sequence in Rq and

Rl, respectively, with

E[ξ
k
] = 0 (3.14)

E[ξ
j
ξt

k
] = Qδjk (3.15)

E[ζ
k
] = 0 (3.16)

E[ζ
j
ζt

k
] = Uδjk (3.17)

E[ξ
j
ζt

k
] = 0 (3.18)

43

where E[·] stands for the expectation function, Q and U the covariance matrix of the

input noise and output noise, respectively, and δjk the Dirac delta function. Q and U are

expected to be uncertain and varying in noisy, unknown environments, and their estimated

values possibly imprecise, even incorrect. Being unaware of the statistical properties of

the dynamic model, the SOMS is utilized to find the optimal initial state via learning.

The learning algorithm for dynamic trajectory prediction is organized as follows.

Algorithm for dynamic trajectory prediction based on the SOMS: Predict an

optimal initial state for the trajectory of a moving object using the measured position

data.

Step 1: Set the stage of learning k = 0. Estimate the ranges of the possible launching

position and velocity of the moving object, and randomly store the possible initial states

wj(0) into the neurons, where j = 1, . . . , m × n, m × n the total number of neurons in

the 2D (m× n) space.

Step 2: Send wj(k) into the dynamic model, described in Eq.(3.12) and Eq.(3.13), to

compute p
j
(k).

Step 3: For each neuron j, compute its output Oj(k) as the Euclidean distance between

the measured position data v(k) and p
j
(k):

Oj(k) =
k∑

i=0

∥∥∥p
j
(i)− v(i)

∥∥∥ (3.19)

Find the winning neuron j∗ with the minimum Oj∗(k):

44

Oj∗(k) =
k∑

i=0

∥∥∥p
j∗(i)− v(i)

∥∥∥ = min
j

k∑

i=0

∥∥∥p
j
(i)− v(i)

∥∥∥ (3.20)

Step 4: Update the weight vectors of the winning neuron j∗ and its neighbors.

Step 5: Check whether the minimum Oj∗(k) is smaller than a pre-specified value ε:

Oj∗(k) < ε (3.21)

If Eq.(3.21) does not hold, let k = k+1 and go to Step 2; otherwise, the prediction process

is completed and output the predicted optimal initial state to the dynamic model to derive

the object trajectory. Note that the value of ε is empirical according to the demanded

resolution in learning, and we chose it very close to zero. In addition, during each stage

of learning, we perform a number of learning to increase the SOM learning speed. This

number of learning is set to be a large number in the initial stage of the learning process,

such that the SOMS may converge faster at the price of more oscillations, and decreased

gradually to achieve smooth learning in the later stages of learning.

To demonstrate the effectiveness of the proposed SOMS and weight updating rule, we

performed a series of simulations for dynamic trajectory prediction based on using the

SOMS, the SOMS without the proposed center and width adjustment on the neighbor-

hood function (named as SOMSO), and GA. The trajectory to predict in the simulations

was designed to emulate that of a missile. Its governing equations of motion in the 3D

Cartesian coordinate system are described as

45

ẍ =
−gmx

(x2 + y2 + z2)3/2
+ 2ωẏ + ω2x + ξx (3.22)

ÿ =
−gmy

(x2 + y2 + z2)3/2
+ 2ωẋ + ω2y + ξy (3.23)

z̈ =
−gmz

(x2 + y2 + z2)3/2
+ ξz (3.24)

where gm and ω stand for the gravitational constant and the rotative velocity of the earth,

respectively, and set to be gm = 3.986×105km3/s2 and ω = 7.2722×10−5rad/s. (ξx, ξy, ξz)

are assumed to be continuous-time uncorrelated zero-mean Gaussian white noise pro-

cesses. Referring to Eq.(3.12) and letting x = (x, y, z, ẋ, ẏ, ż)T = (x1, x2, x3, x4, x5, x6)
T ,

we can obtain the discretized dynamic equation as

x(k + 1) = f(x(k)) + ξ
k

(3.25)

where

f(x(k)) =




x1(k) + tx4(k)

x2(k) + tx5(k)

x3(k) + tx6(k)

x4(k)− tgmx1(k)/(x1(k)2 + x2(k)2 + x3(k)2)3/2 + 2tωx5(k) + tω2x1(k)

x5(k)− tgmx2(k)/(x1(k)2 + x2(k)2 + x3(k)2)3/2 + 2tωx4(k) + tω2x2(k)

x6(k)− tgmx3(k)/(x1(k)2 + x2(k)2 + x3(k)2)3/2




(3.26)

and

ξ
k

= [0 0 0 ξx4 ξx5 ξx6]
T (3.27)

with t the sampling time. (ξx4 , ξx5 , ξx6) are assumed to be uncorrelated zero-mean Gaus-

sian white noise sequences with a constant variance σ2
f = (0.1m/s2)2. And, referring to

Eq.(3.13), the measurement equation is formulated as

v(k) =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


 x(k) + ζ

k
(3.28)

46

and

ζ
k

=
[

ζx1 ζx2 ζx3

]T
(3.29)

where (ζx1 , ζx2 , ζx3) are the measurement noise sequences with a zero mean and constant

variance σ2
m = (15m)2. The ranges of the possible initial states wj(0) were estimated to

be

68.6× 105m ≤ x1(0) ≤ 68.8× 105m

2.7× 105m ≤ x2(0) ≤ 2.8× 105m

4.8× 105m ≤ x3(0) ≤ 4.9× 105m

110m/s ≤ x4(0) ≤ 150m/s

810m/s ≤ x5(0) ≤ 850m/s

1360m/s ≤ x6(0) ≤ 1380m/s.

(3.30)

Within the ranges described in Eq.(3.30), the possible launching positions and velocities

of the missile were selected and stored into the 729 (27×27) neurons of the 2D SOM. And,

the learning rate for the SOMS was chosen to be

η(k) = 0.8 · e−k/50 + 0.2 (3.31)

The sampling time t was 0.5s. For the GA, the population size was selected to be 729

to match with the SOM, and the crossover and mutation probability 0.6 and 0.0333,

respectively. The number of learning is set to be 20 during each stage of learning.

We first applied the SOMS, SOMSO and GA for trajectory prediction with a good

estimate of the initial state. The ideal initial state of the missile was assumed to be

(68.7 × 105m, 2.7 × 105m, 4.8 × 105m, 130m/s, 820m/s, 1370m/s), which was within the

estimated range. And, the variance of the measurement noise was set to be (15m)2. Figure

3.7 shows the simulation results. All SOMS, SOMSO and GA predicted the initial state

quite well and thus resulted in very small estimated errors, except in the initial stage of

47

the prediction, as shown in Figure 3.7(a) (only the position error in the X-direction (x1)

is shown for illustration). Figure 3.7(b) shows how the neighborhood function F (wj(k)),

described in Eq.(3.2), varied during the SOM learning process. In Figure 3.7(b), from a

random distribution in the beginning of the learning, F (wj(k)) gradually approximated

the expected Gaussian distribution along with the stage of learning.

In the second set of simulations, we investigated their performances for the condition

of a bad estimate of the initial state. In this simulation, the ideal initial state was

assumed to be (64×105m, 4.8×105m, 2.4×105m, 215m/s, 2130m/s, 1030m/s), which was

outside the estimated range. And, the variance of the measurement noise was enlarged

to be (30m)2. From the simulation results shown in Fig. 3.8, the influence of the bad

estimate on the SOMS and SOMSO was mostly at the initial stage of the prediction.

After the transient, the SOMS and SOMSO still managed to find the optimal initial state.

Meanwhile, we also observed that the SOMS converged faster than the SOMSO. As for the

GA, it converged very slowly as the optimal initial state did not fall within the estimated

range. We thus conclude that the SOMS performed better than the GA for this dynamic

trajectory prediction application, and the proposed dynamic weight updating rule was

effective. In this chapter we have proposed an SOM-based algorithm for optimization

problems, which can be used for both static and dynamic functions in real time. To

achieve high learning efficiency for system parameters in different working ranges, we

have also proposed a new SOM weight updating rule. The applications of the proposed

SOMS on both function optimization problems and dynamic trajectory predictions have

clearly proven its effectiveness.

48

(a) Estimated position error in the X-direction

Figure 3.7 Simulation results for dynamic trajectory prediction using the SOMS,

SOMSO, and GA with a good estimate of the initial state: (a) the estimated position

error in the X-direction and (b) the variation of the neighborhood function (())jF kw

during the SOMS learning process. (Cont.)

Position

error

(m)

time (s)

49

0

10

20

30

0

10

20

30

0

0.2

0.4

0.6

0.8

1

0k

0

10

20

30

0

10

20

30

0.2

0.4

0.6

0.8

1

25k

0

10

20

30

0

10

20

30

0

0.2

0.4

0.6

0.8

1

50k

(b) Variation of the neighborhood function (())
j

F kw

Figure 3.7 Simulation results for dynamic trajectory prediction using the SOMS,

SOMSO, and GA with a good estimate of the initial state: (a) the estimated position

error in the X-direction and (b) the variation of the neighborhood function (())
j

F kw

during the SOMS learning process.

(())
j

F kw

(())
j

F kw

(())
j

F kw

50

 Estimated position error in the X-direction

Figure 3.8 Simulation results for dynamic trajectory prediction using the SOMS,

SOMSO, and GA with a bad estimate of the initial state.

Position

error

(m)

time (s)

51

Chapter 4

Niching SOM-Based Search

Algorithm

Many global optimization techniques based on population evolution have been successfully

applied for finding a global optimum [17, 12, 21], while they cannot cope with optimization

with multiple optimal solutions. To tackle this problem, usually the approach employed

is to repeat executing the optimization process with different initial populations. Mean-

while, it is possible that the same optimal solution was found even with different initial

populations and still several solutions were remained to be found. Consequently, it may

require a considerable amount of computational time for finding all the solutions. Thus,

a niching method is proposed to extend the ability SOMS, discussed below.

52

4.1 Niching Method

In the optimization process looking for one single solution, the global search can be

achieved under with similar individuals corresponding to similar fitness values. However,

in multiple solutions optimization, the dissimilar individuals also correspond to the similar

fitness values. If all of the populations are moved toward the one best solution, the

remaining optimal solutions will be missed. How to overcome this problem is an interesting

topic. It motivates us to propose the SOMS based on niching method (NSOMS), which

is able to identify multiple optima in a multimodal domain.

Among previous researches, Eldridge and Gould proposed the punctuated equilibrium

(PE) theory [10]. They mentioned that an appearance of new species is a branching mech-

anism through time. An isolated individual is developed with mutations or differences

of gene pool and then some similar individuals with similar features rapidly grow into

a larger and larger group. Subsequently, the isolated population evolves into a separate

species. Mahfoud proposed a niching method also from such a concept to improve GA

by promoting the formation of subpopulations and preserving stably around the optimal

solutions. With the niche method, the separate subpopulations parallel convergence into

multiple optimal solutions in the search space [28]. A restricted competition selection

(RCS) method combined with the pattern search method (PSM) has been proposed and

demonstrated that it performed better than two general niching methods (Sharing and

Deterministic Crowding [11, 28]) for identifying multiple solutions [18]. Through the RCS

restricts competition only the best individual per one niche is maintained. Therefore, the

PSM assists GA due to the GA is not suitable for searching with the small population size

reduced by the RCS. More niching GAs have been proposed and shown to find multiple

solutions efficiently [8, 18, 35].

53

Based on the niche method, the deterministic competition, instead of the coercive

competition, is proposed to restructure SOM by defining subpopulations (subspaces) in

a multimodal domain, so as to avoid convergence of the population to a single solution.

In the proposed NSOMS, each niche may represent a possible peak in a multimodal

domain. A number of similar individuals populating the same niche area is defined as

a subpopulation. To preserve a stable subpopulation, every subpopulation has its own

living condition, that is, the neurons have their own individual weight-updating rule for

each of the niches. In accordance with the proposed NSOMS algorithm, the niche location

located on the winning weight site will be moved to approach the real peak location of

a multimodal domain gradually. Thus, with many different niches, the NSOMS can be

applied to search for multiple optimal solutions. Figure 4.1 shows the influence of niches

during the learning process. If the optimization is executed without the niching method,

it is possible that the certain solutions will be missed due to the compulsory competition,

as shown in Figure 4.1(a). If the optimization is executed by SOMS with nichting method

(deterministic competition), multiple solutions will be found, as shown in Figure 4.1(b).

Figure 4.2 shows the conceptual diagram of the proposed NSOMS. Compared with the

SOMS described in chapter 3, the NSOMS includes a new mechanism, the deterministic

competition mechanism, in which the proposed niching method is installed. Every niche

represents a possible range where the optimal solution is possibly located and possesses a

subpopulation with a number of similar individuals. In every niche the solution leading

to the most accurate derived data is chosen as a winner. From the results, the search

mechanism updates the weights of these winners and their neighboring neurons. The

learning process then continues, and the network will eventually converge to the multiple

optimal solutions.

54

(a) without niching

(b) with niching

 Figure 4.1 Optimization during learning process: (a) without the niching

method, (b) with the niching method.

Second

First

Niche
Niche

Second

First

55

h

j
p

M
v

Dynamic model

Search

Evaluation

SOM

h

j
w1v

2v

*

1

j
w

*

2

j
w

*

h

j
w

*

H

j
w

Deterministic

competition

 Figure 4.2 Proposed Niching SOM-based search algorithm.

Figure 4.3 Structure and operation of the SOM in the NSOMS.

Evaluation

mechanism

Search

mechanism

Dynamic model

Optimal

solutions

Possible

solutions

Computed

dynamic data

NSOMS

Deterministic

competition

mechanism

Measured

dynamic data

56

4.2 Proposed Niching SOMS Weight Updating Rule

Figure 4.3 shows the structure and operation of the SOM in the NSOMS. The SOM

performs three operations: evaluation, deterministic competition, and search. In Figure

4.3, initially, we divide the whole SOM network into H subnetworks (niches), each niche

comprises N neurons, and each neuron j in the hth niche (j ∈ Λh) contains a vector of

a possible solution set wh
j (the weight vector). So the total number of neurons equals

H × N in the whole network. The initial center location of the hth niche is set on the

we
h the average of all wh

j . Take the missile interception application as an example and

let the number of incoming missiles be M. Each time new measured data [v1,v2, · · · ,vM]

are sent into the scheme, the SOM is triggered to operate. All of the possible solution

sets in the neurons will then be sent to the dynamic model to derive their corresponding

data ph
j
. The SOM evaluates the product of all terms of

∥∥∥vm − ph
j

∥∥∥ for m = 1, · · · ,M .

Of all the neurons for the hth niche, it chooses the neuron j∗, which corresponds to the

smallest value, as the winner. The learning process then continues, and each niche will

eventually converge to the nearest optimal solution.

The search strategy of the population-based optimization algorithm is to find the best

individual and move other individuals to approach to the optimal solution. However, one

drawback of the SOM-based optimization algorithms is that the network size increases

exponentially along with the dimension (r) of the search space. The network needs least 2r

neurons to ensure that each dimension can be considered during the search. To overcome

this difficulty, an additional random term, such as random noise and random search

methods, is added to raise the optimization efficiency. It might then use few neurons and

randomly explore to each coordinate direction during the search. In [40], a small amount of

random noise and also a narrowing down method are included in the weight updating rules

57

to improve its performance. In [29], Michele et al. also derive an alternative optimization

algorithm based on neural gas networks (NG-ES) to overcome the bad scaling problem of

the KSOM-ES by introducing a mechanism for generating trial points randomly. Wu and

Chow proposed a self-organizing and self-evolving agents (SOSENs) neural network that

combines multiple simulated annealing algorithms (SAs) and SOM algorithm [44]. Each

neuron of SOSENs has its own updating rules (self-evolving) with an SA, and learns from

other neurons by the SOM algorithm (self-organizing) after some time. However, when

the distance between the best current solution and the real optimal solution is very large,

the search process of these methods do not achieve good performance with only small

random changes.

From the discussions above, the SOMS weight updating rule previously proposed may

not be suitable for optimization in a multimodal domain. Thus, we made several modi-

fications so as to reduce the number of neurons to raise the optimization efficiency. We

similarly define a Gaussian distribution function G(wh
j,i(k)) as distribution function for

each element wh
j,i(k), the ith element in wh

j (k) in the kth stage of learning:

G(wh
j,i(k)) = exp(−(wh

j,i(k)− wh
ei
(k))2

2σh
i (k)2

) (4.1)

where wh
ei
(k) stands for the ith element in wh

e (k) average of all wh
j (k), and σh

i (k) is the

standard deviation of the distribution for wh
j,i(k). From the same concept to speed up the

learning, described in chapter 3, the strategy is to vary the mean and standard deviation

of G(wh
j,i(k)) by moving its center toward wh

j∗,i(k) and enlarging (reducing) the standard

deviation σh
i (k) according to the double distance between wh

j∗,i(k) and wh
ei
(k). The new

distribution function G̃(w̃h
j,i(k)) is then formulated as

58

G̃(w̃h
j,i(k)) = exp(−(w̃h

j,i(k)− w̃h
ei
(k))2

2σ̃h
i (k)

2) (4.2)

where w̃h
j,i(k) stands for the new wh

j,i(k), w̃h
ei
(k) the new wh

ei
(k), and σ̃h

i (k) the new σh
i (k)

after the adjustment. Based on the same strategy in the SOMS, during each iteration

of learning, G(wh
j,i(k)) is dynamically centered at the location of the winning neuron j∗,

with a larger (smaller) width when wh
ei
(k) is much (less) different from wh

j∗,i(k). It thus

covers a more fitting neighborhood region, and leads to a higher learning efficiency.

In order to reduce the network size greatly for dealing with the optimization of a

multimodal domain, we make the adjustment in weight updating rule of the SOMS.

From the mapping property of the SOM, we understand that the SOM cannot obtain

a good feature maps with a small network size. Therefore, let the weight vectors form

the uniform distribution like the pre-ordered lattice in the neuron space becomes not so

meaningful. So far a more fitting search range is already well-defined with the determined

mean and standard deviation of the Gaussian distribution function. Thus, we propose a

deterministic neighborhood to design the NSOMS weight updating rules. Based on the

proposed concept, the new w̃h
ei
(k) and σ̃h

i (k) are then formulated as

w̃h
ei
(k) = wh

ei
(k) + ηw(k) · (wh

j∗,i(k)− wh
ei
(k)) (4.3)

σ̃h
i (k) = σh

i (k) + ηw(k) · (2|wh
j∗,i(k)− wh

ei
(k)| − σh

i (k)) + ε (4.4)

where ηw(k), (0 < ηw(k) ≤ 1) stands for the learning rate in the kth stage of learning

and ε the a small value added to avoid that σh
i (k) rapidly converges to zero. We can

set a large value of ηw(k) to speed up convergence. However, if ηw(k) set to be 1, it

59

may probably converges to the local optimum. Thus, the premature convergence can

be avoided through introduction of the additional adaptation term. From Eqs.(4.3) and

(4.4), we can regenerate the new weight w̃h
j,i(k) from a Gaussian distribution with mean

w̃h
ei
(k) and standard deviation σ̃h

i (k). With the new weight w̃h
j,i(k), the weight-updating

rule is derived as





wh
j,i(k + 1) = w̃h

j,i(k), j ∈ Λh and j 6= j∗

wh
j,i(k + 1) = wh

j,i(k), j ∈ Λh and j = j∗
(4.5)

Under this learning process,the network will gradually converge to a very small region

with σh
i (k) continuing to decrease.

Sometimes more than two niches eventually converge to the same location of the

optimal solution, or several optimal solutions have not been found yet. To overcome this

difficulty, a technique for automatically determining the number of niches is introduced

into the NSOMS to find as many solutions as possible. First, we use Eqs.(4.3) and (4.4) to

detect a searched optimal solution when the standard deviation σ̃h
i (k) for every element

is less than preset value and to determine an effective optimal solution with duplicate

optimal solutions excluded when the mean values w̃i
e(k) and w̃j

e(k) are very close. If

more than two niches are similar, only one is reserved and the others eliminated from the

competition. If the number of niches is equal to the number of effective optimal solutions,

a new niche is generated randomly. In other words, we intend to make the niche set size

H(k) vary depending on the effective optimal solutions set size Es(k). We thus define a

specific relation between the niche set size H(k) and the effective optimal solutions set

size Es(k).

60

H(k) = n1 · Es(k) + n0 (4.6)

where n0 and n1 are positive integers which can be either constants or variables decaying

along with time. Of course, other types of functions can also be used. During the searching

process, in order to prevent that the new niches regenerated converge on the locations of

searched optimal solutions repeatedly, the initial center location of the regenerate niche

should be far away from the initial center locations of all previous niches as much as

possible. Hence, we define an evaluation criterion as

DWi∗ = min
i

∥∥∥w̃R
h −wC

i
∥∥∥ ≥ λ(k) (4.7)

where w̃R
h stands for the initial center location of the regenerated niche, wC

i the ith

location included in the set <C of the initial center locations of all previous niches, and

λ(k) the distance evaluation parameter. If the minimum distance DWi∗ less then λ(k),

this new niche will be regenerated randomly again. In the initial stage of the learning,

λ(k) can be set larger to prevent that the similar niches converge to the same optimal

solution repeatedly. Later, λ(k) may be decreased gradually to let some optimal solutions

that are possibly very close can found. Thus, a function for λ(k) that satisfies the demand

can be formulated as

λ(k) =
λ(0)

2
· e−k/τ (4.8)

where the initial value λ(0) is the average of all ‖wi(0)−we(0)‖ and τ time constant. Of

course, other types of functions can also be used. Under this design, the searching efficacy

61

of the NSOMS will become faster and more efficiently.

4.3 Visualization Of the Distribution Of Optimal So-

lutions

Different optimal solutions can now be found by the NSOMS. The next significant task is

how to select the most useful solutions from the set of the optimal solutions. Visualization

and clustering of high-dimensional data are well-known successes in SOM. We employ the

basic principle of the double self-organizing map (DSOM), which updates the weight

vectors together with the two-dimensional position vector of the neuron, to achieve the

visualization of distribution of optimal solutions. In other words, the positions of the

optimal solutions within the parameter space are mapped onto a two-dimensional (2-D)

space. Through this map, it allows us to classify the optimal solutions into clusters easily,

yielding useful information for solution selection.

The NSOMS is different from the DSOM in that the position updating rules of the

neurons in the DSOM cannot be applied directly to optimization due to the system

parameters operate in quite different ranges. We thus proposed a new adaptive mapping

model to visualize the distribution of the optimal solutions. First, we know that the neuron

space and weight vector spaces are with different dimensions, so we have to transform them

into the same dimension. We define two Gaussian type functions as the neighborhood

functions in the neuron space and the weight vector space, Di and F (wi(k)) in the kth

stage of learning as

62

Di = exp(−
∥∥∥ri − rh

j∗
∥∥∥
2

2σd

) (4.9)

F (wi(k)) = exp



−

∥∥∥wi(k)−wh
j∗(k)

∥∥∥
2

2σc


 (4.10)

where ri and rh
j∗ stand for the coordinates of neuron i to entire network and j∗ to hth

niche, respectively, wi(k) the weight vector of neuron i to entire network, σd the average

of all
∥∥∥ri − rh

j∗
∥∥∥
2
, and σc the average of all

∥∥∥wi(k)−wh
j∗(k)

∥∥∥
2
. The Gaussian type function

is frequently used as the neighborhood function, and it is differentiable and continuous.

With the neighborhood functions, the magnitudes of their distances in the neuron space

and weight vector space, respectively, can be normalized to be between 0 and 1. The new

learning model in the SOM is designed to let nearby neurons of a feature map correspond

to nearby weights. From this mapping, a cost function Ei(k) is then defined as

Ei(k) =
1

2
(Di − F (wi(k)))2. (4.11)

Based on the gradient-descent approach, the position updating rule of the neurons is

derived as

ri(k + 1) = ri(k)− ηp(k)
∂Ei(k)

∂ri(k)
.
= ri(k) + ηp(k)(Di · (Di − F (wi(k))) · (ri(k)− rh

j∗(k))) (4.12)

where ηp(k) stands for the learning rate in the kth stage of learning.

It is evident that only two learning parameters ηw(k) and ηp(k) need to be deter-

mined. It is then straightforward to determine the learning parameters for the diverse

optimization problems. Through the weight and position updating rules of the neurons

63

synchronously, the NSOMS can be applied to optimization, in particular, identification

and visualization of multiple optimal solutions on the 2D neuron space.

4.4 Applications

To demonstrate its capability, the NSOMS is applied to both function optimization and

dynamic trajectory prediction. A PC with 3GHz and MATLAB software were used for all

the simulations. Based on the NSOMS, we first develop learning schemes corresponding

to each of the applications. Simulations are then executed for performance evaluation.

The results are especially compared with the RCS-PSM [18] for their similar searching

abilities. To compare their performances, the maximum ratio of the searched peak values

to the real peak values (MPR), which denotes the sum of the fitness of the searched

optima divided by that of the fitness of the actual optima and the effective number of

maintained peaks (NMP), are selected as the performance criteria [18]. A searched peak

is detected with the best fitness value at least 80% of the real peak value.

4.4.1 Function Optimization of a Multimodal Domain

For a function optimization problem, the goal may be to maximize (minimize) an object

function O(·). Let O(wh
j (k)) be the function value for the weight vector wh

j (k), which

represents a possible solution. During the learning process, Pr is a reference value of the

performance evaluation for optimization. Note that the value of Pr is empirical according

to the demanded resolution in learning, and we chose it very close to zero. The learning

algorithm for function optimization is organized as follows.

64

Algorithm for function optimization based on the NSOMS: Maximize (minimize)

an object function using the NSOMS.

Step 1: Set the stage of learning k = 0. Choose H number of niches, N number of

neurons within each niche, and reference value Pr. Estimate the ranges of the possible

parameter space and randomly store the possible parameters wh
j (0) into the neurons,

where j = 1, . . . , N , h = 1, . . . , H.

Step 2: Compute O(wh
j (k)) for all wh

j (k).

Step 3: Among the neurons to every niche, find the one with the largest (smallest) value

as the winning neuron j∗ for the maximization (minimization) problem.

Step 4: Update the weight vectors of the winning neuron j∗ and its neighbors to every

niche, and update the positions of neurons to entire network according to the position

and weight updating rules described in Eqs.(4.3)-(4.5) and Eq.(4.12).

Step 5: If
q∑

i=1
σ̃h

i (k) < Pr to every niche, wh
j∗(k) is determined to be as an effective

optimal solution with duplicate optimal solutions excluded. From Eqs.(4.6) and (4.7),

the new wh
j (k) will be randomly regenerated and then added to the set <c.

Step 6: Check whether the number of iterations is smaller than a pre-specified maximum

number of iterations. If it is not, let k = k + 1, and go to Step 2; otherwise, the learning

process is completed and output all optimal values. The final network mapping is ready

for visualizing the distribution and structure of the optimal solutions.

Four multimodal functions are used to demonstrate the proposed algorithm. These

functions are defined as follows:

65

F1(x) = sin6(5πx), where 0 ≤ x ≤ 1 (4.13)

F2(x) = exp

[
−2(ln 2)

(
x− 0.08

0.854

)2
]
· sin6(5π[x0.75 − 0.05]) (4.14)

F3(x, y) = 500− 1

0.002 +
24∑
i=0

1
1+i+(x−a(i))6+(y−b(i))6

(4.15)

F4(x) =
4∑

i=1

10

1 +
∣∣∣x− y

i

∣∣∣
2 (4.16)

These four test functions have also been used in [15, 18]. The optimization here is to

maximize these four functions. The first function, F1, has five peaks with the same

height for x = 0.1, 0.3, 0.5, 0.7, and 0.9. The F2 function has five unequally spaced peaks

with different heights. In F3, a(i) = 16[(i mod 5)−2] and b(i) = 16([i/5]−2). F3 is a two-

dimensional function with 25 peaks of different heights in the interval [476.191, 499.002]

and the highest peak is located at (32,32). The 2D test functions F1-F3 are shown in

Figure 4.4. F4 is a four-dimensional function with 4 peaks of the same height, where y
i

is a constant vector obtained by permuting the components of the vector (8,2,2,2).

The initial number of the neurons was set to be 1 × 10 (H = 1, N = 10) and the pa-

rameters n1, n0, ηw(k) and ηp(k) were set to be constants, 2, 1, 0.4, and 0.4, respectively

for all function optimization. For comparison, we also use the RCS-PSM for function

minimization, which is with an initial population size of 10 to match with that of the

SOM, and the crossover and mutation probability of 0.6 and 0.0333 for the GA opera-

tion, respectively. To automatically determining the number of niches, we use the same

condition described in Eq.(4.6) to RCS-PSM for simulations.

For each test functions, each algorithm is repeated 30 times and carried out after 30

iterations each time. The comparison results of average are listed in Table 4.1. As shown

in Table 4.1, NSOMS and RCS-PSM perform quite well in terms of the number and quality

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
u
n
c
ti
o
n
 F
1
(x
)

(a) uniform sine function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
u
n
c
ti
o
n
 F
2
(x
)

(b) nonuniform sine function

(c) Shekel�s Foxholes function

Figure 4.4 Three multimodal functions. (a) F1: uniform sine

function, (b) F2: nonuniform sine function, and (c) F3: Shekel�s

Foxholes function.

F
u
n

ct
io

n
 F

3
(x

,y
)

F
u
n

ct
io

n
 F

2
(x

)
F

u
n

ct
io

n
 F

1
(x

)

67

of peaks obtained. But, NSOMS works better than RCS-PSM for the computational time.

Figure 4.5 shows the variations of NMP and MPR according to the increase of time for

F3 test function. We observed that the NSOMS converged faster than the RCS-PSM.

Figure 4.6 shows the variation of the network structure on the SOM using the NSOMS

for F4 test function. In Figure 4.6(a), we only show the variation of the best four niches.

It shows clearly that the positions of neurons on the SOM reveal the distribution and

structure of the optimal solutions. Figure 4.6(b) shows the neighboring relationship of

the neurons of the best four niches, and we can observe that the neighborhood functions

of neurons and weights, described in Eqs.(4.9) and (4.10), varied during the NSOMS

learning process, and eventually they are very close to each other. From these results,

the NSOMS demonstrates the identification and visualization of the optimal solutions of

high dimension.

68

Table 4.1: Comparison results for NSOMS and RCS-PSM on the 4 test functions.

Function Method NMP MPR Time (s)

NSOMS 5 1 0.1213 F1

RCS-PSM 5 1 0.2154

NSOMS 5 1 0.1436 F2

RCS-PSM 5 1 0.2417

NSOMS 25 1 2.0301 F3

RCS-PSM 25 1 5.5171

NSOMS 4 1 0.1337 F4

RCS-PSM 4 1 0.7265

69

(a) Number of maintained peaks

(b) Maximum peak ratio

Figure 4.5 Convergence comparisons for F3 function: (a) the variation of

the number of maintained peaks and (b) the variation of the maximum

peak ratio during the NSOMS learning process.

70

(a) Projection result in 2D neuron space

(b) Final neighborhood function values

Figure 4.6 The results obtained by the NSOMS for F4 function: (a)

projection result in the 2D neuron space, and (b) final neighborhood

function values.

:
i
D

: (())
i

F kw

*:
i
D

71

4.4.2 Multiple Dynamic Trajectories Prediction

For a dynamic trajectory prediction problem, the goal may be to estimate the initial

position and velocity of a moving object using the measured data. For the trajectory

prediction of multiple targets, here we assume that the target detection has been carried

out in advance, and we focus on the estimation of the initial states of multiple moving

objects. Through a learning process, the NSOMS may determine a most probable initial

state of each target through repeatedly comparing the measured data with the predicted

trajectories derived from the possible initial states stored in the neurons of the SOM.

In this application, the nonlinear dynamic equation describing the trajectory of the

moving object and the measurement equation are as those described in Chapter 3. The

learning algorithm for multiple trajectories prediction is organized as follows.

Algorithm for multiple trajectory prediction based on the SOMS: Predict an

optimal initial state for the trajectory of every moving target using the measured position

data.

Step 1: Set the stage of learning k = 0. Choose H number of niches, N number of

neurons within each niche, and reference value Pr. Estimate the ranges of the possible

position and velocity of the moving object, and randomly store the possible initial states

wh
j (0) into the neurons, where j = 1, . . . , N , h = 1, . . . , H.

Step 2: Send wh
j (k) into the dynamic model, described in Eqs.(3.25) and (3.28), to

compute ph
j
(k).

Step 3: For each neuron j of every niche, compute its output Oh
j (k):

72

Oh
j (k) =

∏M

m=1

[
k∑

i=o

∥∥∥vm(i)− ph
j
(i)

∥∥∥
]

(4.17)

where M is the number of the objects detected.

Find the winning neuron j∗ with the minimum Oh
j∗(k):

Oh
j∗(k) = min

j
Oh

j (k) (4.18)

Step 4: Update the weight vectors of the winning neuron j∗ and its neighbors to every

niche, and update the positions of neurons of the entire network.

Step 5: If
q∑

i=1
σ̃h

i (k) < Pr for every niche, wh
j∗(k) is determined to be as an effective

optimal solution with the duplicate optimal solutions excluded. The prediction process

outputs the predicted optimal initial states to the dynamic model to derive the object

trajectories. From Eqs.(4.6) and (4.7), the new wh
j (k) will be randomly regenerated and

then added into the set <c.

Step 6: Check whether the number of iterations is smaller than a pre-specified maximum

number of iterations. If it is not, let k = k + 1, and go to Step 2; otherwise, the

prediction process is completed and output optimal states of all objects. The final network

mapping provides the visualization of the distribution of the optimal states. In addition,

during each stage of learning, we perform a number of learning to increase the SOM

learning speed. This number of learning is set to be a large number in the initial stage

of the learning process, such that the NSOMS may converge faster at the price of more

oscillations, and decreased gradually to achieve smooth learning in later stages of learning.

73

To demonstrate the effectiveness of the proposed NSOMS and weight updating rule,

we performed a series of simulations for dynamic trajectory prediction based on using

the proposed NSOMS and two NSOMS without the proposed dynamic weight updating

rule (named as SOMSO-1 and SOMSO-2 by using the SOMO’s and SOSENs’s weight

updating rules, respectively, in place of that of the NSOMS). The trajectory to predict

in the simulations was designed to emulate that of a missile. Its governing equations of

motion in the 3D Cartesian coordinate system are as those described in Chapter 3. The

ranges of the possible initial states wj(0) were estimated to be

1.14× 106m ≤ x1(0) ≤ 2.14× 106m

25.75× 106m ≤ x2(0) ≤ 26.75× 106m

15.9× 106m ≤ x3(0) ≤ 16.9× 106m

1785m/s ≤ x4(0) ≤ 2285m/s

−180m/s ≤ x5(0) ≤ 820m/s

−2000m/s ≤ x6(0) ≤ 1000m/s.

(4.19)

Within the ranges described in Eq.(4.19), the possible initial positions and velocities of

the missile were selected and stored into the 1125 (5×225) neurons of the 2D SOM. We

consider three targets to be detected in the following simulations. The parameters of

NSOMS were set to be n1 = 2, n0 = 1, respectively. The additional adaptation term ε,

described in Eq.(4.4), was set to be 0.1. For comparison, we set the same learning rate

as those in the NSOMS described in Sect. 4.4,1, and several parameters of the SOMSO-1

and SOMSO-2 were adjusted via a trial-and-error process to yield salient performance.

The number of learning is set to be 20 during each stage of learning.

We first applied the SOMS, SOMSO-1, and SOMSO-2 for trajectory prediction with

a good estimate of the initial state. Three ideal initial states of the missiles were assumed

to be within the estimated range. The variance of the measurement noise was set to be

74

(15m)2. Figure 4.7 shows the simulation results. The ideal and measured trajectories are

shown in Figure 4.7(a). These three methods predicted the initial state quite well and

thus resulted in very small estimated errors, except in the initial stage of the prediction,

as shown in Figure 4.7(b)-(d) (the estimated initial state error is shown for illustration).

We observed that the NSOMS converged faster than the other methods did. Figure 4.8

shows the neighboring relationship of neurons of the best three niches using the NSOMS.

In Figure 4.8(a), from a random distribution of neurons in the beginning of the learning,

the mapping structure gradually form three clusters along with the stage of learning.

Figure 4.8(b) shows how the neighborhood function Di and F (wi(k)) varied during the

SOM learning process, and eventually they are very close to each other.

In the second set of simulations, we investigated their performances for the condition

of a bad estimate of the initial state. The ranges of the possible initial states wj(0) were

estimated to be

1.94× 106m ≤ x1(0) ≤ 2.94× 106m

27.75× 106m ≤ x2(0) ≤ 28.75× 106m

16.9× 106m ≤ x3(0) ≤ 17.9× 106m

2285m/s ≤ x4(0) ≤ 2785m/s

500m/s ≤ x5(0) ≤ 1500m/s

0m/s ≤ x6(0) ≤ 3000m/s.

(4.20)

In this simulation, three ideal initial states were assumed to be outside of the estimated

range. The variance of the measurement noise was enlarged to be (50m)2. The setting of

all parameters was set to be the same as them in first simulation. Figure 4.9(a) shows the

ideal and measured trajectories and Figure 4.9(b)-(d) the estimated initial error. From

the results, the influence of the bad estimate on these methods was mostly at the initial

stage of the prediction. After the transient, the NSOMS still managed to find the optimal

75

(a) Ideal and measured TBM trajectories

Figure 4.7 Simulation results for the multiple trajectories prediction using

the NSOM, SOMSO-1, and SOMSO-2 with a good estimate of the initial

state: (a) the ideal and measured TBM trajectories, (b)-(d) the estimated

initial state error by using the NSOM, SOMSO-1, and SOMSO-2.

(Cont.)

76

(b) NSOMS

(c) SOMSO-1

(d) SOMSO-2

Figure 4.7 Simulation results for the multiple trajectories prediction using

the NSOM, SOMSO-1, and SOMSO-2 with a good estimate of the initial

state: (a) the ideal and measured TBM trajectories, (b)-(d) the estimated

initial state error by using the NSOM, SOMSO-1, and SOMSO-2.

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)

77

(a) Projection result in 2D neuron space

(b) Final neighborhood function values

Figure 4.8 Final results obtained by the NSOMS for the multiple

trajectories prediction: (a) projection result in 2D neuron space and (b)

finial neighborhood function values.

:
i
D

: (())
i

F kw

*:
i
D

78

initial states of all targets. Meanwhile, we also observed that the NSOMS converged very

faster than the other methods did. As for the SOMSO-1 and SOMSO-2, they converged

very slowly as the optimal initial state did not fall within the estimated range. In Figure

4.10(a), from a random distribution of neurons in the beginning of the learning, the

mapping structure gradually form three clusters along with the stage of learning. Figure

4.10(b) shows how the neighborhood function Di and F (wi(k)) varied during the SOM

learning process, and eventually they are very close to each other.

To further demonstrate the NSOMS search ability, we used four different network sizes

and learning parameters to run these optimization algorithms for the dynamic trajectory

prediction. We only consider one target for comparison. The ideal initial state of the

missile was assumed to be within the estimated range, described in Eq.(4.19). Figure

4.11 shows how the population size affects for these algorithms. We observed that the

NSOMS performs better than the SOMSO-1 and SOMSO-2. As Figure 4.11 shows, the

SOMSO-1 and SOMSO-2 did not converge to the optimal state when the network size was

very small. Figure 4.12 show the performance with the different learning parameters for

the influence of the these algorithms under a fixed network size (1× 225). As Figure 4.12

illustrates, we observed that the large learning parameter may speed up the learning of the

NSOMS. Although a small learning parameter made the NSOMS converge slight slowly,

it still converged faster than the SOMSO-1 and SOMSO-2 did. Table 4.2 shows that

the different network (population) size and learning parameter affect the learning result

for the NSOMS, SOMSO-1 and SOMSO-2 in detail. We calculated the RMS (Root-

Mean-Square) value of the error between the ideal and predicted trajectories at k = 100

to evaluate their performance. The comparison results of average of repeated 30 times

are listed in Table 4.2. We observed that the NSOMS performed better than the other

methods did. Figure 4.13 shows the performance of 5 runs with the same initial weights

79

(a) Ideal and measured TBM trajectories

Figure 4.9 Simulation results for multiple trajectories prediction using the

NSOM, SOMSO-1, and SOMSO-2 with a bad estimate of the initial state:

(a) the ideal and measured TBM trajectories, (b)-(d) the estimated initial

state error by using the NSOM, SOMSO-1, and SOMSO-2. (Cont.)

80

(b) NSOMS

(c) SOMSO-1

(d) SOMSO-2

Figure 4.9 Simulation results for multiple trajectories prediction using the

NSOM, SOMSO-1, and SOMSO-2 with a bad estimate of the initial state:

(a) the ideal and measured TBM trajectories, (b)-(d) the estimated initial

state error by using the NSOM, SOMSO-1, and SOMSO-2.

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)

81

(a) Projection result in 2D neuron space

(b) Final neighborhood function values

Figure 4.10 Final results obtained by the NSOMS for the multiple

trajectories prediction : (a) projection result in 2D neuron space and (b)

finial neighborhood function values.

:
i
D

: (())
i

F kw

*:
i
D

82

(a) 1, 3 3H N !

(b) 1, 5 5H N !

Figure 4.11 Performance for different network sizes using the NSOMS,

SOMSO-1, and SOMSO-2. (Cont.)

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

83

(c) 1, 10 10H N !

(d) 1, 20 20H N !

Figure 4.11 Performance for different network sizes using the NSOMS,

SOMSO-1, and SOMSO-2.

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

84

(a) () 0.2
w
k !

(b) () 0.4
w
k !

Figure 4.12 Performance for different parameters using the NSOMS,

SOMSO-1, and SOMSO-2. (Cont.)

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

85

(c) () 0.6
w
k !

(d) () 0.8
w
k !

Figure 4.12 Performance for different parameters using the NSOMS,

SOMSO-1, and SOMSO-2.

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

86

Table 4.2: Comparison results for NSOMS, SOMSO-1, and SOMSO-2

on the dynamic trajectory prediction.

Mean and Standard Deviation of RMS Values (m) Network

size

1H

Learning

rate

()
w
k

NSOMS SOMSO-1 SOMSO-2

2 2N !

0.2

0.5

0.8

30.991 6.008
6 66.161 10 1.697 10 !

3 39.423 10 4.346 10 !

30.088 1.385
4 46.811 10 5.189 10 !

3 36.067 10 2.913 10 !

26.325 1.047
4 46.152 10 5.016 10 !

3 36.034 10 2.162 10 !

5 5N !

0.2

0.5

0.8

25.861 1.324
3 31.445 10 1.476 10 !

2 22.571 10 3.421 10 !

25.641 0.906
2 21.645 10 2.201 10 !

2 21.502 10 1.239 10 !

25.985 0.937
2 21.391 10 1.248 10 !

2 21.165 10 1.124 10 !

10 10N !

0.2

0.5

0.8

25.981 1.233
2 21.056 10 1.016 10 ! 44.012 35.543

25.711 0.786 25.838 0.752 25.834 0.761

25.775 1.075 25.834 1.258 25.845 1.281

87

for the influence of three algorithms under a quite small network size (H = 1, N = 2× 2).

Figure 4.14 shows the performance of 5 runs with the different initial weights. From

the results shown in Table 4.2 and Figures 4.11-4.14, the NSOMS was more robust and

converged faster than the other two algorithms did.

We also performed simulations based on using the RCS-PSM. We modified the in-

ternal parameters of the PSM method to enhance its search abilities. However, it was

not that straightforward to determine its parameters properly, and the process was time-

consuming. The SOMSO-1, SOMSO-2, and RCS-PSM might not be that effective under

such circumstances that the ranges of the possible initial states may be uncertain and

varying in noisy, unknown environments. We thus conclude that the NSOMS performed

better than the SOMSO-1, SOMSO-2, and RCS-PSM for this dynamic trajectory predic-

tion application, and the proposed dynamic weight updating rule was effective.

As a summary, in this chapter, a niching SOM-based search algorithm has been pro-

posed for identification and visualization of multiple optimal solutions. Through reducing

the network size greatly for search in the high-dimensional space, we have also proposed

a niche weight updating rule to raise the learning efficiency. The final network struc-

ture allows us to easily classify the optimal solutions into clusters, thus yielding useful

information for solution selection.

88

(a) SOMSO-1

(b) SOMSO-2

(c) NSOMS

Figure 4.13 Performance of 5 runs with the same initial weights using the

NSOMS, SOMSO-1, and SOMSO-2.

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)

89

(a) SOMSO-1

(b) SOMSO-2

(c) NSOMS

Figure 4.14 Performance of 5 runs with the different initial weights using

the NSOMS, SOMSO-1, and SOMSO-2.

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)
E

st
im

at
ed

 p
o

si
ti

o
n

 e
rr

o
r

(m
)

E
st

im
at

ed
 p

o
si

ti
o

n
 e

rr
o

r
(m

)

90

Chapter 5

Conclusion

In this dissertation, we have proposed an SOM-based search algorithm (SOMS), which

can be used for both static and dynamic functions in real time. To achieve high learn-

ing efficiency for system parameters in different working ranges, we have also proposed a

new SOM weight updating rule. An intelligent radar predictor for trajectory estimation is

first developed for application. With a simplified target dynamic model, the unsupervised

SOM in the predictor can achieve salient prediction in noisy, unknown environments. The

SOM is more robust to the uncertainty of the dynamic model than Kalman filter and GA.

Furthermore, the SOM’s search abilities have been adequately exploited in a multimodal

domain. A new niche method (deterministic competition) to extend the ability of the

SOM-based search algorithm has been proposed for identification of multiple optimal so-

lutions. In order to reduce the network size, another new SOM weight updating rule

is proposed to enhance the learning efficiency. With the dynamic weight updating, the

NSOMS converges faster than other algorithms such as SOMO, KSOM-ES, SOSENs and

RCS-PSM. Moreover, a new adaptive mapping model is proposed to visualize the distri-

bution and structure of the optimal solutions into the 2D neuron space. In our proposed

91

NSOMS, only two learning parameters need to be determined in the weight and position

updating rules. The applications of the proposed NSOMS on both function optimization

in a multimodal domain and dynamic trajectory predictions involving multiple targets

have clearly demonstrated its effectiveness.

5.1 Future Research

In this dissertation, by combining the SOM with the dynamic model, the SOM is able to

tackle the spatiotemporal data. The SOM has been applied to search optimal parameters

for dynamic systems. To further exploit its search ability, in one of the future works,

we will apply the NSOMS for system identification and control problems. Because the

current searching process includes the weight updating rules and the parameters of learn-

ing, it is not easy to appropriate the learning rate, number of neurons, and termination

criteria. Although these parameters can be selected through a trial-and-error process, the

time response of the learning affects the performance of the dynamic systems for system

identification and control problems. Thus, we will also discuss the convergence issue in

details. As the SOM also possesses an appealing feature in responding to distinct proper-

ties exhibited by the input data through forming several corresponding clusters, another

worthwhile future work will be to extend the proposed NSOMS for a wide application

such as image processing, speaker recognition, machine learning, and others.

92

Bibliography

[1] A. P. Azcarraga, T. N. Yap, Jr., J. Tan, and T. S. Chua, “Evaluating Keyword

Selection Methods for WEBSOM Text Archives,” IEEE Trans. on Knowledge and

Data Engineering, Vol. 16(3), pp. 380-383, 2004.

[2] G. A. Barreto and A. F. R. Araujo, “Identification and Control of Dynamical Systems

Using the Self-Organizing Map,” IEEE Trans. on Neural Networks, Vol. 15(5), pp.

1244-1259, 2004.

[3] A. G. Barto, “Reinforcement Learning and Adaptive Critic Methods,” Handbook of

Intelligent Control, White and Sofge, eds., Van Nostrand-Reinhold, New York, pp.

469-491, 1992.

[4] G. A. Carpenter and S. Grossberg, “The ART of Adaptive Pattern Recognition by

a Self-Organizing Neural Network,” IEEE Computer, Vol. 21(3), pp. 77-88, 1988.

[5] C.B. Chang and J. A. Tabaczynski, “Application of State Estimation to Target Track-

ing,” IEEE Trans. on Automatic Control, Vol. 29(2), pp. 98-109, 1984.

[6] L. Chin, “Application of Neural Networks in Target Tracking Data Fusion,” IEEE

Trans. on Aerospace and Electronic Systems, Vol. 30(1), pp. 281-287, 1994.

[7] Y. Y. Chen and K. Y. Young, “An Intelligent Radar Predictor for Hight-speed

Moving-target Tracking,” International J. Fuzzy Systems, Vol. 6(2), pp. 90-99, 2004.

93

[8] A. D. Cioppa, C. D. Stefano, and A. Marcelli, “On the Role of Population Size and

Niche Radius in Fitness Sharing,” IEEE Trans. on Evolutionary Computation, Vol.

8(6), pp. 580-592, 2004.

[9] M. Efe and D. P. Atherton, “Maneuvering Target Tracking with an Adaptive Kalman

Filter,” IEEE Conference on Decision and Control, pp. 737-742, 1998.

[10] N. Eldredge and S. J. Gould, “Punctuated equilibria: an alternative to phyletic

gradualism”, Models in Paleobiology, pp. 82-115, 1972.

[11] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal

function optimization,” Proceedings of 2nd ICGA, pp. 41-49, 1987.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison Wesley, New York, 1989.

[13] M. Hagenbuchner and A. C. Tsoi, “A Supervised Self-Organizing Map for Struc-

tures,” IEEE Conference on Neural Networks, pp. 1923-1928, 2004.

[14] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York,

1994.

[15] H. Igarashi, “Visualization of Optimal Solutions Using Self-Organizing Maps in Com-

putational Electromagnetism,” IEEE Trans. on Magnetics, Vol. 41(5), pp. 1816-1819,

2005.

[16] H.-D. Jin, K.-S. Leung, M.-L. Wong, and Z.-B. Xu,“An Efficient Self-Organization

Map Designed by Genetic Algorithms for the Traveling Salesman Problem,” IEEE

Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 33(6), pp. 877-

888, 2003.

94

[17] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” IEEE Int. Confer-

ence on Neural Networks, pp. 1942-1948, 1995.

[18] J. K. Kim, D. H. Cho, H. K. jung, and C. G. Lee, “Niching Genetic Algorithm

Adopting Restricted Competition Selection Combined with Pattern Search Method”,

IEEE Trans. on Magnetics, vol. 38(2), pp. 1001-1004, 2002.

[19] K. J. Kim and S. B. Cho, “Fusion of Structure Adaptive Self-Organizing Maps Using

Fuzzy Integral,” IEEE Conference on Neural Networks, pp. 28-33, 2003.

[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-

ing,” Science, Vol. 220, pp. 671-680, 1983.

[21] T. Kirubarajan, H. Wang, Y. Bar-Shalom, and K. R. Pattipati, “Efficient Multisensor

Fusion Using Multidimensional Data Association,” IEEE Trans. on Aerospace and

Electronic Systems, Vol. 37(2), pp. 386-400, 2001.

[22] T. Kohonen, Self-Organizing Map, Springer, Berlin, Germany, 1997.

[23] D.-C. Liaw, Y.-W Liang, and C.-C. Cheng, “Nonlinear Control for Missile Terminal

Guidance,” ASME J. Dynamic Systems, Measurement, and Control, Vol. 122(4), pp.

663-668, 2000.

[24] J. Laaksonen, M. Koskela, and E. Oja, “PicSOM — Self-Organizing Image Retrieval

with MPEG-7 Content Descriptors,” IEEE Trans. on Neural Networks, Vol. 13(4),

pp. 841-853, 2002.

[25] R. Storn and K. Price, “Differential Evolution - A simple and efficient global optimiza-

tion over continuous spaces,” Journal of Global Optimization, Vol 11. pp 341-359,

1997.

95

[26] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-Dimensional Neural Net

for Learning Visuomotor Coordination of a Robot Arm,” IEEE Trans. on Neural

Networks, Vol. 1(1), pp. 131-136, 1990.

[27] R. L. Moose, H. F. Vanlandingham, and D. H. McCabe, “Modeling and Estima-

tion for Tracking Maneuvering Targets,” IEEE Trans. on Aerospace and Electronic

Systems, Vol. 15(3), pp. 448-456, 1979.

[28] S. W. Mahfoud, “Niching Methods for Genetic Algorithms,” PhD thesis, University

of Illinois at Urbana Champaign, 1995.

[29] M. Milano, P. Koumoutsakos, and J. Schmidhuber, “Self-Organizing Nets for Opti-

mization,” IEEE Trans. on Neural Networks, Vol. 15(3), pp. 758-765, 2004.

[30] K. Obermayer and T. J. Sejnowski, ed., Self-Organizing Map Formation: Foundation

of Neural Computation, MIT Press, Cambridge, 2001.

[31] J. C. Principe, L. Wang, and M. A. Motter, “Local Dynamic Modeling with Self-

Organizing Maps and Applications to Nonlinear System Identification and Control,”

Proceedings of the IEEE, Vol. 86(11), pp. 2240-2258, 1998.

[32] K. V. Ramachandra, “A Kalman Tracking Filter for Estimating Position, Velocity

and Acceleration from Noisy Measurements of a 3-D Radar,” Electro Technology,

Vol. 33, pp. 66-76, 1989.

[33] J. M. Roberts, D. J. Mills, D. Charnley, and C. J. Harris, “Improved Kalman Filter

Initialisation Using Neurofuzzy Estimation,” International Conference on Artificial

Neural Networks, pp. 329-334, 1995.

96

[34] B. Sareni, L. Krahenbuhl, and A. Nicolas, “Niching genetic algorithm for optimization

in electromagnetics I. Fundamentals,” IEEE Trans. on Magnetics, Vol. 34(5), pp.

2984-2991, 1998.

[35] B. Sareni and L. Krahenbuhl, “Fitness Sharing and Niching Methods Revisited,”

IEEE Trans. on Evolutionary Computation, Vol. 2(3), pp. 97-106, 1998.

[36] D. Sbarbaro and D. Bassi, “A Nonlinear Controller Based on Self-Organizing Maps,”

IEEE Int. Conference on Systems, Man and Cybernetics, pp. 1774-1777, 1995.

[37] H. Shah-Hosseini and R. Safabakhsh, “TASOM: a New Adaptive Self-Organization

Map,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.

33(2), pp. 271-282, 2003.

[38] M. C. Su and H. T. Chang, “Fast Self-Organizing Feature Map Algorithm,” IEEE

Trans. on Neural Networks, Vol. 11(3), pp. 721-733, 2000.

[39] M. C. Su and H. T. Chang, “A New Model of Self-Organizing Neural Networks and

its Application in Data Projection,” IEEE Trans. on Neural Networks, Vol. 12(1),

pp. 153-158, 2001.

[40] M. C. Su, Y. X. Zhao, and J. Lee, “SOM-Based Optimization,” IEEE Int. Conference

on Neural Networks, pp. 781-786, 2004.

[41] J.A. Vasconcelos, R. R. Saldanha, L. Krahenbiihl, A. Nicolas, “Genetic Algorithm

Coupled with a Deterministic Method for Optimization In Electromagnetics,” IEEE

Trans. on Magnetics, VOl.33(2), pp. 1860-1863, 1997.

[42] J. A. Walter and K. I. Schulten, “Implementation of Self-Organizing Neural Networks

for Visuo-Motor Control of an Industrial Robot,” IEEE Trans. on Neural Networks,

Vol. 4(1), pp. 86-96, 1993.

97

[43] S. Wu and T. W. S. Chow, “PRSOM: a New Visualization Method by Hybridizing

Multidimensional Scaling and Self-Organizing Map,” IEEE Trans. on Neural Net-

works, Vol. 16(6), pp. 1362-1380, 2005.

[44] S. Wu and T. W. S. Chow, “Self-Organizing and Self-Evolving Neurons: A New

Neural Network for Optimization,” IEEE Trans. on Neural Networks, Vol. 18(2), pp.

385-396, 2007.

[45] P. Xu, C. H. Chang, and A. Paplinski, “Self-Organizing Topological Tree for On-

line Vector Quantization and Data clustering,” IEEE Trans. on Systems, Man and

Cybernetics, Part B: Cybernetics, Vol. 35(3), pp. 515-526, 2005.

[46] C.-D. Yang, F.-B. Hsiao, and F.-B. Yeh, “Generalized Guidance Law for Homing

Missles,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 25(2), pp. 197-

212, 1989.

[47] H. Yin, “ViSOM - a Novel Method for Multivariate Data Projection and Structure

Visualization,” IEEE Trans. on Neural Networks, Vol. 13(1), pp. 237-243, 2002.

98

 99

Vita

姓名：陳一元 (Yi-Yuan Chen)
研究方向：類神經網路，模糊系統，機器學習演算法，機器人控制.

出生地：台灣南投縣.

戶籍地址：桃園縣楊梅鎮三民北路 163 巷 2 弄 1 號.

電子郵件：yiyuan.ece90g@.nctu.edu.tw

學經歷：
1. 81 年 9 月～84 年 6 月 國立彰化師大附屬高級工業學校

2. 84 年 9 月～88 年 6 月 私立淡江大學電機工程學系

3. 88 年 9 月～90 年 6 月 國立交通大學電機與控制工程研究所

4. 90 年 9 月～97 年 7 月 國立交通大學電機與控制工程學系博士學位
5. 97 年 3 月～ now 工業技術研究院 辨識中心 工程師

發表著作：

期刊論文
[1] Y.Y. Chen and K.Y. Young, “An SOM-Based Algorithm for Optimization with

Dynamic Weight Updating,” International Journal of Neural Systems, Vol. 17(3),
pp. 171-181, 2007.

[2] Y.Y. Chen and K.Y. Young, “An Intelligent Radar Predictor for High-Speed
Moving-Target Tracking,” International Journal of Fuzzy Systems, Vol. 6(2), pp.
90-99, 2004.

國際會議論文
[1] Y.Y. Chen and K.Y. Young, “An SOM-Based Search Algorithm for Dynamic

Systems,” 9th Joint Conference on Information Sciences, pp. 1212-1215, 2006.
[2] Y.Y. Chen and K.Y. Young, “Applying SOM as a Search Mechanism for Dynamic

System,” pp. 4111-4116, IEEE Conference on Decision and Control, 2005.
[3] Y.Y. Chen and K.Y. Young, “An Intelligent Radar Predictor for High-Speed

Moving-Target Tracking,” IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering Proceedings, pp. 1638-1641,
2002.

國內會議論文
[1] Y.Y. Chen and K.Y. Young, “智慧型雷達預估器於追蹤高速運動目標之研究,”

Ninth National Conference on Fuzzy Theory and its Applications, pp. 598-603,
2001.

[2] Y.Y. Chen and K.Y. Young, “智慧型雷達預估器於高速多目標之追蹤,” Tenth
National Conference on Fuzzy Theory and its Applications, pp. 5-10, 2002.

	論文封面
	元表目錄1_電字
	Phdpaper080717_4.pdf
	博 士 生

