B o sk ek S e BT B T R RE S B

An SOM-Based Algorithm for Optimization

and Its Applications

SR T

TR SR RTINS

Hr & X e q = F = k]

B e SR e S R B TR AR

An SOM-Based Algorithm for Optimization
and Its Applications

ISR S Student : Yi-Yuan Chen

hERE G EF Advisor : Kuu-Young Young

A Dissertation
Submitted to Department of Electrical and Control Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Electrical and Control Engineering

July 2008

Hsinchu, Taiwan, Republic of China

B e P SR R T R AR H R

An SOM—Based Algorithm for Optimization
and [ts Applications

BopoAim- A hREREHEE HEL

&y
\ \

B2 e S A A B (SOM) = SR M e r A TR RS &G TR S
Adg o] SOM fRid-B & b R AL 3 2 5 o powi iz SOM & A derk ik 1 B 2
$HE Sk i AR B B i AR ¢ R A e SR i e
Bedoff 52 (SONS) Ml o0# i gr 6o fidh i (AT 5 1 Lit- HBE Y e i
3o - AT B A BRI E BIF e B SO RS i e Bk oA
< AU SOMS i 3 i 5 *?%?J?é?ﬁf ST -3 R S TR e R S
TR T EEATPEAT 0 BRI P RS i B L o VT‘LLL 2otk F B RAEG AS B
B i f#pF > f1% - BATHNiching 2 (A28 841 2+ & - ® Niching
A f S G AP S T e R B i 1 B2 (NSOMS) o 5 T 4R B B Y drkil 2 e pET
BB RS R RRR A BB A PR - AT AR Y R g
FIAREARR] o SPRTERERRI AR E A 2 R 3R B Y SR WA g ety
o AR g Lo T L NSOMS T i E B R T B bl B RATE o A
HER e Y ks 2k T A K et § R E (KP) » AT EE (GA)
2136 SOM & i 11w B % ie 7 00 g o

I

‘\

x
‘?“‘ W

An SOM-Based Algorithm for Optimization
and Its Applications

Student : Yi-Yuan Chen Advisor : Dr. Kuu-Young Young

Department of Electrical and Control Engineering
National Chiao Tung University

Abstract

The self-organizing map (SOM), as a kind of unsupervised neural network, has been used for
both static data management and dynamic data analysis. To further exploit its search abilities,
in this dissertation we propose an SOM-based search algorithm (SOMS) for optimization
problems involving both static and dynamic functions. Furthermore, a new SOM weight
updating rule is proposed to enhance the learning efficiency; this may dynamically adjust the
neighborhood function for the SOM in learning system parameters. Based on the SOMS, we
develop an intelligent radar predictor to achieve accurate trajectory estimation under the strict
time constraint due to only few data are available in every short time period. Moreover, when
an optimization problem has many different optimal solutions, a new niche method
(deterministic competition mechanism) to extend SOM-based search algorithm (NSOMS) has
been proposed for identification of multiple optimal solutions. The proposed NSOMS
network structure is able to find multiple different optimal solutions and visualize distribution
and structure of optimal solutions, allowing us to easily classify the optimal solutions into
clusters. As a demonstration, the proposed NSOMS is applied for function optimization in a
multimodal domain and also dynamic trajectory prediction involving multiple targets, with its
performance compared with the genetic algorithm (GA) and other SOM-based optimization
algorithms.

Acknowledgements

MBFROCE AN ERBY FER L AL IR LE YR b F
WA ARRE L S AR E ek BRI R R A L WrOE R A o gt bR
SR EEBE L L P EYIEYE L RT ORR IR FR O o URE B Y
A~ R w0 o R RF T R TR P F P IREE o 0 R
FRAF R HREERE PRI RE CHRBF R -BEBRE 2L RER
BREENGE2 v F GRS L EeFR R RAELE LS > T 7 RS p

L E M

E#HALPERRZ DT P b~ A7 85 R RAH > AT Y
FULAFERR cRFADRAE - F 5~ 53 024 AARFIRR PES AET
iﬁi%?ﬁ&’@ﬂﬁﬁﬁﬂﬁﬁﬁgﬁyﬂéﬁﬁﬁﬁﬁ?%%’%uﬂﬁwﬁ%

T s 84 P EAR LI RA ORI FALRFR T &%5% - Sofwad £ o
FHEARL-BE LR R AEY EE A EY - BEROBR B ET

A A AL FaER > ABFFRPLEADT e AEFET R BEY 4

BRSO }gk{; § A FEFE ~ RA B AP | B oo

Contents

Chinese Abstract [
English Abstract I
Acknowledgements i
Contents v
List of Tables vi
List of Figures vii
1 Introduction 1
2 Intelligent Radar Predictor 5
2.1 Dynamic Trajectory Prediction Based on Self-Organizing Map..................... 9
2.2 SOM IMPIeMENTAtION. . vt e et e e e et e et ch e eae e e e e e e e e e 12
P28 T 441V 4o 18
3 SOM-Based Algorithm for Optimization 28
3.1 Proposed SOM-Based Search Algorithm (SOMS).....c.vvviiviir i iiieiaeae 29
3.2 Proposed Weight Updating RUIE.uuuir it i e s e i v ee e 31

TR AN o] o7 14 4 ¥ 4
3.3.1 Function Optimization. .. vus vesvnenesern saraen enn s e snnnnsasnsnnnnsasnsnsnnsnss 38

3.3.2 Dynamic Trajectory PrediCtion.vuevosvesonrarnirnsnn s snnsnnnnsnnsassnssssnnss 43

4 Niching SOM-Based Search Algorithm (NSOMS) 52
4 O N o T T 1Y = 1 T T 53
4.2 Proposed Niching SOMS Weight Updating RUle.........ccovvuviiiiiniii i iiiaeanns 57
4.3 Visualization of Distribution of Optimal Solutions..........cccevveiivriin i i, 62
AN o o] o7 14 4P o 7

4.4.1 Function Optimization of a Multimodal DOMaiN. .. «.vvvseesursvrneerneeninerreeennsnns 64
4.4.2 Multiple Dynamic Trajectories PrediCtion ... «vuvseusverersnnevnnerseeennserneeraeenns 12

5 Conclusion 91
5.1 FULUIE RESBAICN. ..t tuitvus vue dae e che e e e et e th et st et e e aee eeeeaeneen e 92

Bibliography 93

Vita 99

List of Tables

4.1 Comparison results for NSOMS and RCS-PSM on the 4 test functions................

4.2 Comparison results for NSOMS, SOMSO-1, and SOMSO-2 on the dynamic

L0V [=103 (0] Y/ o f=To [o3 § o] o PSP

Vi

87

List of Figures

2.1 A conceptual diagram of an air-defense radar System.............cooveriiiiiiinnennn.. 7
2.2 System organization of the proposed intelligent radar predictor...................... 11
2.3 The structure and operation in the SOM........ccoviiiiiiiiii i i i e e 11

2.4 The movement of the weight vector in the two-dimensional space: (a) w; #w;

and (D) Wi =W e 13

2.5 Simulation results for trajectory prediction using the SOM and the Kalman filter
with good estimates of both the initial condition and noise distribution: (a) the ideal

and measured TBM trajectories, (b) the estimated position error by using the SOM

and Kalman filter, and (c) the movement of the weight vector w; during the SOM

[AINING PrOCESS. « e vttt tin e et cee et ea e e et een e eei e e eenannannann a2l
2.6 Simulation results for trajectory prediction using the SOM and the Kalman filter

with a good estimate of the initial condition but bad estimate of the noise

distribution: (a) the ideal and measured TBM trajectories, (b) the estimated position

error by using the SOM and Kalman filter, and (c) the movement of the weight

vector w; during the SOM learning Process...........oeeuvueevnsernnenineennnnn, 23

2.7 Simulation results for trajectory prediction using the SOM and the Kalman filter
with a bad estimate of the initial condition but good estimate of the noise
distribution: (a) the ideal and measured TBM trajectories, (b) the estimated position

error by using the SOM and Kalman filter, and (c) the movement of the weight
vector w; during the SOM learning ProCess...........o.vvuveineneniennennnnnnn, 24
2.8 Simulation results for trajectory prediction using the SOM and the Kalman filter

with bad estimates of both the initial condition and the noise distribution: (a) the

vii

2.9

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

ideal and measured TBM trajectories, (b) the estimated position error by using the

SOM and Kalman filter, and (c) the movement of the weight vector w; during the

SOM 1€arNING PrOCESS. ..t tte eee tee et eee e e e s s e e s e e aaeeeeeaes

Results by applying the SOM to predict the actual TBM trajectory.................

Conceptual diagram of the organized search in a 2-D SOM: the solution is (a)

within the estimated range and (b) outside of the estimated range.................
Proposed SOM-based algorithm for optimization.................coiviiiiiin i

Structure and operation of the SOM in the SOMS.cciiiiiiiiiieee i, 33

Center and width adjustment for the neighborhood function G(w;;(k)), when (a)

(we,~w, () 207, and (0). (We, =W, (K)) <07 eesoenee e

Minimization of the 2-D Griewant function using the SOMS and GA with the

optimal solution outside of the estimated region: (a) minimal function values

O(w ;- (k)) during the learning process, (b) weight vector movement in the SOM,

and (c) weight vector movement in the GA.over ittt iiiii i aaeee s

Minimal function values O(w - (k)) during the learning process for the mini-

mization of the 30-D Rosenbrock function using the SOMS, GA, and SOMO......

Simulation results for dynamic trajectory prediction using the SOMS, SOMSO, and

GA with a good estimate of the initial state: (a) the estimated position error in the

X-direction and (b) the variation of the neighborhood function F(w;(k)) during

the SOMS [€arNING PrOCESS. ... eee teeaae et e e e et e eeaas i eee eeeaaeenans

Simulation results for dynamic trajectory prediction using the SOMS, SOMSO, and

GA with a bad estimate of the initial State........ovvr it e e e e e e e es

Optimization during learning process: (a) without the niching method, (b) with the

NIChING MELNOM. ... o e e e e i e i eee s

.36

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Proposed Niching SOM-based search algorithm...........cccovviiiiiii i, 56
Structure and operation of the SOM inthe NSOMS........coviiiiiiiiiiiieeeeeens, 56
Three multimodal functions. (a) F1: uniform sine function, (b) F2: nonuniform sine
function, and (c) F3: Shekel’s Foxholes function...........ccoeovviiii i, 67
Convergence comparisons for F3 function: (a) the variation of the number of
maintained peaks and (b) the variation of the maximum peak ratio during the
NSOMS 18AINING PrOCESS. + e vt ven et et taeireee e eenern et eneareneeseseenernansanens 70
The results obtained by the NSOMS for F4 function: (a) projection result in the 2D
neuron space, and (b) final neighborhood function values..............c.covvvienn..n. 71
Simulation results for the multiple trajectories prediction using the NSOM,
SOMSO-1, and SOMSO-2 with a good estimate of the initial state: (a) the ideal
and measured TBM trajectories, (b)-(d) the estimated initial state error by using the
NSOM, SOMSO-1, and SOMSO-2..t ueetneeneneen e et e e ee e eenennanns 77
Final results obtained by the NSOMS for the multiple trajectories prediction: (a)
projection result in 2D neuron space and (b) finial neighborhood function values....78
Simulation results for multiple trajectories prediction using the NSOM, SOMSO-1,
and SOMSO-2 with a bad estimate of the initial state: (a) the ideal and measured
TBM trajectories, (b)-(d) the estimated initial state error by using the NSOM,
SOMSO-1, aNd SOMSO-2. ... ottt eie e e et e e e et e e et e eeee e ans 81
Final results obtained by the NSOMS for the multiple trajectories prediction : (a)
projection result in 2D neuron space and (b) finial neighborhood function values....... 82
Performance for different network sizes using the NSOMS, SOMSO-1, and
SOM SO, . s et et e et et e e e e e e e 84
Performance for different parameters using the NSOMS, SOMSO-1, and
Performance of 5 runs with the same initial weights using the NSOMS, OMSO-1,

iX

ANA SOMSO-2. .. et e e et e e e e e e e e e e e
4.14 Performance of 5 runs with the different initial weights using the NSOMS,

SOMSO-1, and SOMSO-2. ... ot it it e i e i e s

Chapter 1

Introduction

The self-organizing map (SOM), as a kind of unsupervised neural network, is performed in
a self-organized manner in that no external teacher or critic is required to guide synaptic
changes in the network [4, 22]. By contrast, for the other two basic learning paradigms
in neural networks, supervised learning is performed under the supervision of an external
teacher [14] and reinforcement learning involves the use of a critic that evolves through
a trial-and-error process [3]; these other two also demand the input-output pairs as the
training data. The appealing features of learning without needing the input-output pairs
makes the SOM very attractive when dealing with varying and uncertain data. In its many
applications, the SOM has been used for both static data management and dynamic data
analysis, such as data mining, knowledge discover, clustering, visualization, text archiving,
image retrieval, speaker recognition, mobile communication, robot control, identification
and control of dynamic systems, local dynamic modeling, nonlinear control, and tracking
moving objects [1, 2, 14, 22, 24, 31, 36, 37, 38, 42]. There have also been many approaches
proposed to improve or modify the original SOM algorithm for different purposes [2, 13,

19, 37, 43, 45, 47]. However, from our survey, its search abilities have not been adequately

exploited yet [7, 12, 16, 29, 30, 40]. This need thus motivates us to propose an SOM-based

search algorithm (SOMS) for both static and dynamic functions.

In recent years, some new research studies have turned to tackle the continuous opti-
mization problems based on the self-organizing map. Michele et al. proposed an optimiza-
tion method based on the Kohonen SOM evolution strategy (KSOM-ES) [29]. Su et al.
proposed the SOM-based optimization algorithm (SOMO) [40]. An self-organizing and
self-evolving agents (SOSENSs) neural network that combines multiple simulated anneal-
ing algorithms (SAs) and SOM algorithm have also been proposed [44]. Our proposed
SOMS will extend the application further to optimization problems involving dynamic
functions. When searching for a dynamic function, the goal may be to look for a set
of optimal parameters that lead to the desired performance of the dynamic system from
limited measured data. In this dissertation we first apply the self-organizing map (SOM)
to develop an intelligent radar predictor. With the few radar data read into the predictor
in each time interval and a simplified dynamic model of the moving target, the SOM
learns to estimate the initial state of the target trajectory in each learning cycle, and
will gradually converge to the optimal initial state. To achieve high learning efficiency
under such widely varying parameters, we propose a new weight updating rule which may
dynamically adjust the shape and location of the neighborhood function for the SOM, in
an individual basis, in learning the system parameters. Thus, the proposed SOMS should
be able to execute both system performance evaluation and the subsequent search in a

real-time manner.

Many optimization problems often have more than one optimal solutions in the feasible
domain [15, 34, 41]. If more different optimal solutions can be found, it is advantageous

for us to have the right of choice. Although many global optimization techniques based

on population evolutionary have been successfully applied to find the global optimum
[12, 17, 21], they cannot be directly applied to search for multiple solutions through one
search process in a multimodal domain. Mahfoud proposed the niching methods to iden-
tify multiple optima in a multimodal domain [28]. When many optimal solutions are
obtained, how to classify the set of optimal solutions and select one useful solution is
difficult, and in particular depends on the number of the optimal solutions and the size
of dimension. Igarashi used GA to find many different optimal solutions repeatedly and
applied the SOM for visualization and clustering of optimal solutions in 2-D output spaces
[15]. The visualization of high-dimensional data is one of the well-known merits of the
SOM. However, the SOM algorithm proposed in [15] was not applied to optimization.
Although the SOM has been used to tackle the optimization problems [29, 40, 44] and
its performances have been manifested better than other search algorithms such as SA
[21], PSO [17], DE [25], and GA [12], their search abilities were still not well exploited
in finding multiple optimal solutions. Meanwhile, it did not simultaneously provide vi-
sualization of the distribution of optimal solutions, either. Thus, we further propose a
niching SOM-based search algorithm (NSOMS) for identification and visualization of the

multiple optimal solutions.

This new niching method is proposed to extend the SOMS by defining subpopulations
(subspaces) in a multimodal domain. With the proposed niching weight-updating rule,
the niche location located on the winning weight site will be moved to approach the real
peak location of a multimodal domain gradually. Thus, with many different niches set,
the NSOMS can be applied to searching for multiple optimal solutions. For visualization
of distribution of optimal solutions, the concept of the double SOM (DSOM) [39], which
updates the weight vectors together with the two-dimensional position vector of the neu-

ron, is employed in the proposed NSOMS. The optimal solutions in the parameter space

are mapped onto a two-dimensional (2-D) neuron space. Through this map it allows us to
classify the optimal solutions into clusters. We then apply proposed NSOMS to function
optimization in a multimodal domain and multitarget tracking problem simultaneously
with data sent from multiple sensors. The rest of this dissertation is organized as follows.
The proposed intelligent radar predictor including SOM and the performance of the SOM
compared with that of the Kalman filtering are discussed in Chapter 2. The proposed
SOMS with dynamic weight updating rules and also the performance of the SOM com-
pared with that of the SOMO and GA are presented in Chapter 3. The proposed NSOMS
with the new weight updating rules for multiple optimal solutions and visualization of dis-
tribution of optimal solutions are described in Chapter 4. Finally, conclusions and some

future works are given in Chapter 5.

Chapter 2

Intelligent Radar Predictor

Nowadays, the tactical ballistic missiles (TBM) can be as fast as 3-7 Mach. For successful
tracking of the TBM moving in so high a speed, the air-defense radar system should be
capable of trajectory prediction to catch up with the movement of the TBM. It is then
imperative to develop a radar predictor that can estimate the TBM trajectory using the
radar data. Due to the strict time constraint, only very few radar data are available for
each prediction during the tracking. In addition, the prediction needs to be executed in
real time. Under such circumstances, the radar predictor should possess certain degree
of intelligence to cope with the limited and possibly noisy radar data. The challenge of
developing an intelligent radar predictor for accurate trajectory estimation motivates the

study in this dissertation.

Before discussing the proposed intelligent radar predictor, we first briefly describe an
air-defense radar system, as shown in Figure 2.1 [23]. In Figure 2.1, a TBM is launched
from location A; the radar system then tracks its trajectory, in addition to predicting the

possible landing site, location B. Under successful tracking, the radar system can then

guide the intercepting missile to penetrate into the predicted trajectory of the incoming
TBM, and destroy it as early as possible. From the different launching site relative to
location B, location C or D, the intercepting missile may take different route to enter the
predicted TBM trajectory, as shown in Figure 2.1. To let the intercepting missile follow
the trajectory shown in Figure 2.1, missile guidance law is demanded. By commanding
the acceleration of the missile proportional to the angular rate of some desired direction,
the guidance law will turn the heading of the missile toward that direction as rapidly as
possible [23, 46]. As the intruding missile is in such a high speed and small volume, the

design of guidance law for the intercepting missile is very challenging.

Missile guidance can basically be divided into two stages: midway guidance and termi-
nal guidance. During the midway guidance stage, the information from the ground radar
is used to guide the intercepting missile. When the target trajectory can be precisely
predicted, the intercepting missile may not need to chase after an extremely fast target,
but just move toward the predicted target location. After the intercepting missile is led
close to the target, the seeker, as an active radar equipped on the missile, may then take
over and proceed with the terminal guidance. As the intruding TBM may be capable
of escaping, delicate guidance laws need to be installed in the seeker to provide more
complex maneuvering. It can be seen that control load for missile interception in both
stages of guidance can be tremendously alleviated, if the radar system is able to estimate
the TBM trajectory accurately. Meanwhile, trajectory prediction can also provide the
possible TBM landing location, and thus be helpful in determining a proper location and

direction to launch the intercepting missile.

One famous approach for trajectory prediction is the Kalman filtering, which has

been widely used in predicting the movements of the satellites, airplanes, ships, etc. [32].

jTerminal guidance
A ~

Ballistic missile

trajectory i . L.
; s Intercepting missile
’
/ 4 trajectory
/ 7
/ 4
/ g
/ I4
7 s
/ //
H
f //
Radar
A C B D

Figure 2.1 A conceptual diagram of an air-defense radar system.

By knowing the dynamic model of the moving target, the Kalman filter in general yields
satisfactory performance when the statistics of the environmental noises and good guesses
of the initial conditions can be obtained in advance. However, the Kalman filtering may
not be suitable for unknown, noisy environments. To tackle the situation aforementioned,
researches have been dedicated to build mathematical models, perform statistical data
analysis, and make the Kalman filter more adaptive [5, 9, 27]. It is by no means an easy
task to cope with the complexity involved in modeling, though. As an alternative, the
learning mechanism has been used to assist the Kalman filter, since it is model-free and
computational efficient after training. Among them, Roberts et al. proposed a neurofuzzy
estimator to improve the Kalman filter initialization [33]. Chin proposed incorporating
the neural network into the Kalman filter configuration to deal with the multi-target

tracking problem [6].

The SOM, first introduced by Kohonen, transforms input vectors into a discrete map
(e.g., a 2-D grid of neurons) in a topological ordered fashion adaptively [22, 37]. During
each iteration of learning, the each neuron competes with each other to gain the oppor-
tunity to update its weight, and the vector that generates the output most close to the
desired value (vector) is chosen as a winner. Because the SOM allows local interaction
between neighboring neurons, the weights of the winner and also its neighbors are all
updated. Through repeated weight modification, a cluster (or clusters) may form and
become more and more compact until a final configuration develops. The SOM thus has
a structure very suitable for parallel processing. We further exploit this parallelism and
design an organized search accordingly. In other words, we take advantage of the SOM
in its distribution of the neurons in a grid pattern and the presence of local interaction in

between the grid.

The SOM in the proposed predictor is in fact used as a search mechanism, and the
simplified TBM dynamic model as a reference for the SOM to approach the neighborhood
of the TBM. The employment of the SOM in this way is different from those in most
of its previous applications, and well exploits it capability in searching. The proposed

intelligent radar predictor including SOM is described in next section.

2.1 Dynamic Trajectory Prediction Based on Self-
Organizing Map

Figure 2.2 shows the system organization of the proposed intelligent radar predictor. For
an incoming TBM, the predictor uses the measured position data sent from the radar to
predict the TBM trajectory. The main module in this predictor is the SOM [22]. We
may distribute the possible positions and velocities of the missile (as weight vectors) into
the network in an organized fashion. Under this arrangement, the searches among the
neurons are closely related through the grid, leading to a more rapid convergence. On
the other hand, when the estimation is inaccurate, the search, still organized, may take

longer time to converge to the optimal solution.

The adoption of the SOM to realize this intelligent radar predictor is that it does not
demand input-output pairs for on-line prediction when facing unknown environments.
Thus, the genetic algorithm (GA) may also be a possible alternative [12]. Genetic al-
gorithms are search algorithms based on the mechanics of natural selection and natural
genetics. It employs multiple concurrent search points called chromosomes and evaluates
the fitness of each chromosome. The search procedure uses random choice as a tool to

guide a highly exploitative search through a coding of a parameter space. We consider

the SOM is more suitable than the GA for this trajectory tracking problem. The rea-
son is that the connection among the possible initial states for missile launching is not
utterly random. The SOM better exploits the relationship between the initial state and
its resultant TBM trajectory, leading to a somewhat guided search. In addition, the GA
is in general more time-consuming. As the prediction needs to be accomplished within a

limited amount of time, the efficiency of the network is crucial.

In this TBM tracking application, the SOM is used to estimate the initial position,
velocity, and acceleration of the TBM using the measured position data from the radar.
Thus, if the dynamic model of the TBM is available, the entire TBM trajectory can be
derived using those estimated initial position, velocity, and acceleration as the initial state
for the dynamic model. Through a learning process, the SOM determines a most probable
initial state by comparing the measured position data with the predicted TBM position
trajectories derived from a number of possible initial states selected from a predicted
range. The process of how the SOM learns to estimate the initial state is as follows. First,
a number of vectors, each of which contains a possible initial state, are selected and stored
into the neurons of the SOM. During each time interval, the SOM sends these vectors to
the dynamic model of the TBM to compute the corresponding trajectories. By comparing
the predicted trajectories with the measured radar data, the vector corresponding to the
most accurate predicted trajectory is chosen as the winner. The weights of this winner and
its neighbors are updated, and the network will eventually converge to the optimal initial
state. To note that, even the optimal initial state is not within those vectors initially
selected from the predicted range, the SOM is able to move these vectors out of their
original locations and guide them to converge to the optimal initial state. Implementation

details of the SOM for trajectory prediction are given in next section.

10

TBM

Radar
system

Predicted TBM

Position

SOM

Winner

Dynamic
model

trajectory
>

Position

A

A

Position
Velocity
Acceleration

Dynamic
model

Figure 2.2 System organization of the proposed intelligent radar predictor.

Radar
system

F

Predicted TBM

®o—C
O

D
DO

. %
1

Y

(@)

(ON@)

ONeX &
OOOO(%
00000 l'w
B/T'. .‘. L

Dynamic
model

trajectory
>

Dynamic model

11

Figure 2.3 The structure and operation in the SOM.

2.2 SOM Implementation

For this TBM tracking application, the SOM needs to tackle the spatio-temporal data,
instead of the spatial data it usually deals with. Therefore, a dynamic model that describes
the behavior of the TBM is included in the intelligent radar predictor. By combining the
SOM with the dynamic model, the SOM is able to tackle the spatio-temporal radar
data. Figure 2.3 shows the structure and operation in the SOM. A 2D SOM is used for
illustration in Figure 2.3, and the SOM can also be three-dimensional or other according
to the applications. Each time a certain number of new measured position data v are sent
in from the radar system, the SOM is triggered to operate. And, it will gradually converge
to an optimal prediction along with the increase of the measurement data and learning
time. In Figure 2.3, for each neuron j in the SOM, it contains a vector of a possible
initial state w; and generates an output s;. By sending w; to the dynamic model, s; is
computed as the difference between v and the predicted trajectory D, Of all the neurons,
the neuron j* with the smallest output s;- is chosen as the winner. When the weight of
this winning neuron j* differs from that of the previous winner ;* (ie., wj. # Ej*), the
weights of 7* and its neighbors will be updated in a manner that moves these weight
vectors toward neuron j*, as shown in Figure 2.4(a). When j* is the same as j* (i.e.,
We = Ej*), the weights will then be updated so as to let the weight vectors form more

and more compact clusters centering at neuron j*, as shown in Figure 2.4(b). Under

successful learning, the SOM will finally converge to a predicted optimal initial state.

Several parameters need to be determined in implementing this SOM, including the
learning rate, topological neighborhood function, and number of radar data used for s;
computation. The selection of the learning rate 7 depends on the closeness of w;. (k) and

ﬂj*(l{). When they are different from each other, we intend to speed up the learning

12

O OO0 0O
OO@OQ
O(DQCDO
OOOOO
0 000 O

Figure 2.4 The movement of the weight vector in the two-dimensional

space: (a) W #W:and(b) Wy =W,

13

process and choose n(k) in the kth stage of learning to be close to 1. And when they
almost coincide, we slow down the learning gradually and determine n(k) according to

Eq.(2.1):

(2.1)

U(k):{ no(l —k/7), for k<m<T

m(l— 7'0/7'>» for k>

where 79 and n; are constants smaller than 1, and 7 and 7y time constants. Other types

of functions can also be used, for instance,

n(k) =m - Rt o (2.2)

Because the weight updating also includes the neighbors of the winning neuron, the topo-

logical neighborhood function h;« needs to be chosen. We adopt the Gaussian neighbor-

hood function for hj«(k) [17]:

g () = eap(—22) 23)

202
where d; j« is a lateral connection distance between neural j and j*, and o the width. For
the sake of efficiency in computing s;, not all the accumulated measured radar data will be
used to compare with the predicted trajectory. Under such selection of the learning rate
and neighborhood function, they will force the minimization of the difference between
the weight of the winning neuron and those corresponding to every neuron within its
neighborhood in each learning cycle. The learning in the algorithm will thus converge

eventually.

14

Based on the discussions above, we developed the SOM learning algorithm. Before the

description of the algorithm, we first introduce a simplified dynamic model of the TBM.

With the model, the SOM can obtain p; by sending w; into it. This dynamic model is

formulated as

where

(k) : n-dimensional state vector at the kth stage

A(k) : n x n transition matrix

I'(k) : n x r input distribution matrix

&(k) : r-dimensional random input vector

v(k) : m-dimensional output vector

C (k) :m X n observation matrix

wp(k) : m-dimensional random disturbance vector

with £(k) and p(k) assumed to be white Gaussian with the following properties:

(2.4)

(2.5)

(2.6)

(2.7)

Elp(k)] =0 (2.8)

Elp()p(k)"] = R (2.9)

E[§()p(k)] =0 (2.10)

where E[-| stands for the expectation function,) and R the covariance matrix of the
input noise and output noise, respectively, and ¢;; the Kronecker delta function. In using
the dynamic model, the SOM is not necessarily aware of its statistical properties. By
contrast, the Kalman filter needs to know the noise distribution in the dynamic model
and also a guess on the system’s initial state for trajectory prediction. As the covariance
matrices () and R may be uncertain and varying in noisy, unknown environments, their
estimated values are possibly imprecise, even incorrect. Thus, the Kalman filter may not
be that effective under such circumstances. The reason that the SOM is more robust to
the uncertainty of the dynamic model than the Kalman filter and why it does not require
a guess on the initial state may be because it contains a large number of self-organizing
neurons in the network. Via learning, these neurons provide many different directions to

search for the optimal initial state.

In responding to the three variables, the launching position, velocity, and acceleration
of the TBM, a 3D SOM is used for trajectory prediction. The SOM learning algorithm is

organized as follows:

SOM Learning Algorithm: Predict an optimal initial state for an incoming TBM in

a real-time manner using the measured position radar data.

Step 1: Set the stage of learning & = 0. Estimate the ranges of the possible initial
position, velocity, and acceleration of the TBM, and randomly store the possible initial

states w;(0) into the neurons, where j = 1,.. ., N3, NxN x N the total number of neurons

16

in the 3D space. Select neuron j* in the center of the neuron space as the winning neuron.

Step 2: Send w;(k) into the dynamic model, described in Eqgs.(2.4)-(2.5), to compute
p,(k).

=J

Step 3: For each neuron j, compute its output s; as the difference between the measured

position data v(k) and Ej(k):

g Ip, (1) = (i) (2.11)

Find the winning neuron j* with the minimum s;«(k):

3t (k) = X2y) = w(@)]} = min 3 [, (&) — x(0)] (2.12)

Step 4: Update the weights of the previous winning neuron j* and its neighbors within

h;. (k) using the following two rules:

If 5° # 5 then wylk+ 1) = wy(k) + n(k)hs. (k) (w,. (k) — w;. (k) (2.13)

If 7 = j*, then w;(k+1)=w;(k)+n(k)h. (k) (w;-(k) — w;(k)) (2.14)

where (k) is the learning rate described in Eq.(2.1) and h;. (k) the neighborhood function

in Eq.(2.3).

Step 5: Check whether the difference between w . (k) of the winning neuron j* and w; (k)

corresponding to every neuron j within hj- (k) is smaller than a prespecified value e:
max |lw;(k) —w;. (k)| <€, je€hu(k). (2.15)

17

If Eq.(2.15) does not hold, let k¥ = k + 1, and when k is smaller than a prespecified
maximum value, go to Step 2; otherwise, the prediction process is completed and output
the optimal initial state to the dynamic model to derive the TBM trajectory. Note that
the value of € is empirical according to the demanded resolution in learning, and we chose

it very close to zero.

2.3 Simulation

To demonstrate the effectiveness of the proposed intelligent radar predictor, we performed
a series of simulations based on using both the generated and real radar data. The results
were compared with those using the Kalman filtering. Via coordinate transformation, the
trajectory of the incoming TBM was described in a 2D (X X Y') space. Because simulation
results were similar for the motions in the X and Y directions, we only discussed the motion
in the X direction to simplify the illustration. Thus, according to Eq.(2.4), the dynamic

model for the TBM is formulated as

z(k+1) = A(K)a(k) + &(k) (2.16)
with
(k) 1 T T?/2 0
k)= | ak) |, Ak)=|0 1 T |, &k)=| 0 (2.17)
i (k) 00 1 ¢(k)

where z(k), 2(k), and (k) stand for the position, velocity, and acceleration of the target

18

in the X direction, respectively, T' the sampling time, and £(k) the noise and modeling

2

a*

error that perturbs the target acceleration, with a zero mean and constant variance o

And, according to Eq.(2.5), the measured radar position v(k) is formulated as

v(k) = z(k) + p(k) (2.18)

where p(k) is the measurement noise with a zero mean and constant variance o2,. The

m:*

ranges of the possible initial states w;(0) were predicted to be

—1000 m < z(0) < 1000 m
—2000 m/s < £(0) < 2000 m/s(5.88Mach) (2.19)
—50 m/s* < #(0) < 50 m/s>.

Within the ranges described in Eq.(2.19), the possible launching position, velocity, and
acceleration of the TBM were selected and stored into the 125 neurons of the 3D SOM.
The variances, o2 and o2,, described in Eqgs.(2.17)-(2.18), are chosen to be (0.32m/s?)?
and (200m)?, respectively. The sampling time T' was chosen to be 1s. The number of

learning is set to be 20 during each stage of learning.

We first applied the SOM and Kalman filter for trajectory prediction under the condi-
tion that good estimates of both the initial state and noise distribution were available. The
ideal initial state of the target was assumed to be (500m, 1000m/s(2.94Mach), —10m/s?),
which was within the predicted ranges. And the variance of the measurement noise was set
to be the same as the predicted (200m)?. The ideal and measured TBM trajectories were
shown in Figure 2.5(a). Both the SOM and Kalman filter predicted the (k + 1)th state
quite well, and thus resulted in very small estimated position errors, except in the initial
stage of the prediction, as shown in Figure 2.5(b). Figure 2.5(c) shows the movement

of the weight vector w; during the SOM learning process. In Figure 2.5(c), the weight

19

vectors of the neurons in the SOM continued to move closer and closer during learning,
and finally converged to a very small region, since the winning neuron was already within

the predicted region from the beginning.

In the second set of simulations, we intended to investigate the performances of the
SOM and Kalman filter under the following three situations: (1) good estimate of the
initial state, but bad estimate of the noise distribution, (2) bad estimate of the initial state,
but good estimate of the noise distribution, and (3) bad estimates of both the initial state
and noise distribution. For Case 1, the ideal initial state of the target was still set to be
(500m, 1000m/s(2.94Mach), —10m/s?), but the variance of the measurement noise was
enlarged to be (400m)?. The ideal and measured TBM trajectories were shown in Figure
2.6(a). With a bad estimate of the noise distribution, the performance of the Kalman filter
degraded, but the SOM still performed well, as shown in Figure 2.6(b). In Figure 2.6(c),
the neurons in the SOM exhibited similar behaviors as those shown in Figure 2.5(c). For
Case 2, the ideal initial state was assumed to be (5000m, 3000m /s(8.82Mach), —60m /s?),
which was outside the predicted ranges. The variance of the measurement noise was set to
be (200m)?. The ideal and measured TBM trajectories were shown in Figure 2.7(a). With
a bad estimate of the initial state, the performances of both the SOM and Kalman filter
degraded in the initial stage of the prediction, but the SOM achieved better prediction
later, as shown in Figure 2.7(b). Correspondingly, the weight vectors of the neurons in
the SOM moved from the original predicted region outward to the ideal initial state,
and finally converged to the desired location, as shown in Figure 2.7(c). For Case 3, the
ideal initial state was assumed to be (5000m,3000m/s(8.82Mach), —60m/s?), and the
variance of the measurement noise set to be (400m)?. The ideal and measured TBM
trajectories were shown in Figure 2.8(a). With bad estimates of both the initial state

and noise distribution, the Kalman filter perform poorly, but the SOM still achieved

20

- - - - 2000 - - - - - - - - - -
-~ Kalman filter
-~ ideal sl — s0M |

1000 -

&00 -

position ()
w
pasition error (m)

1800}

. 0
a 10 20 a0 A0 50 B0 70 80 a0 100 0 10 20 30 40 50 1] 70 80 80 100
time (s times ()

(a) Ideal and measured TBM trajectories (b) Estimated position error by using the
SOM and Kalman filter

1500

(m/s) : 1500 x (m)

(c) Movement of the weight vector W ; during the SOM learning process

Figure 2.5 Simulation results for trajectory prediction using the SOM and
the Kalman filter with good estimates of both the initial condition and noise
distribution: (a) the ideal and measured TBM trajectories, (b) the estimated
position error by using the SOM and Kalman filter, and (c) the movement
of the weight vector w, during the SOM learning process.

21

satisfactory performance, as shown in Figure 2.8(b). In Figure 2.8(c), the neurons in the

SOM exhibited similar behaviors as those shown in Figure 2.7(c).

For further investigation, we performed simulations for input noises with the compo-
nents in both x and y directions and also the condition of a non-zero expectation for these
two components. The results show that when the expectation values were small, the in-
telligent radar predictor still worked quite well. We also performed simulations based on
using the genetic algorithm. During the simulations, we first randomly selected the initial
populations. When the optimal initial state did not fall within the selected ranges, the GA
converged very slowly. We then modified the population size and crossover and mutation
probabilities to speed up its convergence rate. However, it was not that straightforward
to determine these parameters properly, and the process was time-consuming. From the
simulation results, we conclude that the proposed intelligent predictor performed better

than the GA for this trajectory tracking problem.

From the results shown in Figures 2.6-2.8, we found that bad estimates of the initial
state and noise distribution much affected the performance of the Kalman filter. By
contrast, their influence on the SOM was mostly at the initial stage of the prediction.
After the transient, the SOM still managed to find the optimal initial state via learning.
With its robustness to uncertainty and efficiency in computation, we then used the SOM
to predict the TBM trajectory based on using real radar data. The radar data, provided
by the military research center, had been modified due to the security consideration. The
SOM used only a small number of radar data, marked by the o sign in Figure 2.9, to
predict the TBM trajectory. In Figure 2.9, the predicted trajectory well approximated

the measured one, demonstrating the ability of the SOM to deal with real radar data.

As a summary, in this chapter, we have proposed an intelligent radar predictor for

22

e 2000 | ! ! ! ! : _—
s
- ideal L — s0M I

1000+

pasitian (m)
w
position errar (m)

. \ \ . . \
0 10 20 30 a0 50 B0 70 80 80 100 0 10 i 30 A0 50 B0 70 80 90 100
times (5) times ()

(a) Ideal and measured TBM trajectories (b) Estimated position error by using
the SOM and Kalman filter

1500

(c) Movement of the weight vector W ;

during the SOM learning process

Figure 2.6 Simulation results for trajectory prediction using the SOM and
the Kalman filter with a good estimate of the initial condition but bad
estimate of the noise distribution: (a) the ideal and measured TBM
trajectories, (b) the estimated position error by using the SOM and Kalman
filter, and (c) the movement of the weight vector w, during the SOM

learning process.

23

— measured ||
--- ideal

psition ()

.
i} 10 20 30 40 50 B0 70 80 90 100
times (s)

(a) Ideal and measured TBM trajectories

O: k=0
150, *: k=5
+: k=10
100
. k:30
50
5
(m/s*) © k=0
&0 O o C'o C'o OO
R S A oo
OOOOOO oo o o
100 Ooog@og@og@oggoo
2 i o
BO0N o g
4000 &
2000
X
(m/5s)

(c) Movement of the weight vector W ;

1000

2000 T T T - : : : : -
~-- Kalman filter

1500 H 1 =i g

1o |

500

position erar (m)

-500 H

1000

-1500 1

2000 L I I I L L L L 1 1 1
o 10 20 30 A0 50 B0 70 80 a0 100
times ()

(b) Estimated position error by using the
SOM and Kalman filter

B000

a000

2000 3000 4000

x (m)

during the SOM learning process

Figure 2.7 Simulation results for trajectory prediction using the SOM and
the Kalman filter with a bad estimate of the initial condition but good
estimate of the noise distribution: (a) the ideal and measured TBM
trajectories, (b) the estimated position error by using the SOM and Kalman
filter, and (c) the movement of the weight vector w, during the SOM

learning process.

24

2000~
, 4 “o- Kalman fiter
-~ ideal s — S0M i

1000+

S0

o

off

position ()
pesition erroe (m)

-500H

o}

1500

. . . . L L ool . L L L L .
0 10 2 30 40 S B0 70 60 90 1m0 0 10 20 I 40 5 60 /0 80 W 100
time () time ()

(a) Ideal and measured TBM trajectories (b) Estimated position error by using
the SOM and Kalman filter

O : k=0
1o, ¢ k=5 ******
+ k=10 " *************
& I ****;**#**f*f £ 4 4
=5 " 3y Lo+
! k5 ***ii*i#**i*ii**i+++ ++++
f + 4t e
(m/ S2) o]6 *OO 5 *'** #*****i**i *_i +_|_'__:t+ :t+ N
0 0 0 "yt o AT
o 0 OOOOOOOOOO Ooo i e JJF**_EF j‘.jz ﬂ: 4
0008808808808800 Sk iﬂj ++¢++¢+ o
1
000 O~ S YN k=10
4000
2000
X
(m / S) Ss000 BO00
-2000 oo O 1000 2000 3000 4000

X (m)

(c) Movement of the weight vector W ; during the SOM learning process

Figure 2.8 Simulation results for trajectory prediction using the SOM and
the Kalman filter with bad estimates of both the initial condition and the
noise distribution: (a) the ideal and measured TBM trajectories, (b) the
estimated position error by using the SOM and Kalman filter, and (c) the

movement of the weight vector w, during the SOM learning process.

25

O real-time radar data
0r i —measured trajectory -
predicted trajectory

-1 o 1 2 3 4 5 o 7

X s10m

Figure 2.9 Results by applying the SOM to predict the actual
TBM trajectory.

26

trajectory estimation. With a simplified target dynamic model, the unsupervised SOM
in the predictor can achieve salient prediction in the presence of noise, even with a bad
estimate of the initial state. The performance of the SOM has been compared with mainly
that of the Kalman filtering. The simplified TBM dynamic model used in the current
stage of the study may account for only the coarse behavior of the TBM. Nevertheless,
even with only the general information provided by this simplified model, the proposed
intelligent radar predictor has been able to catch up with the TBM, as demonstrated in

the simulations based on using the real radar data.

27

Chapter 3

SOM-Based Algorithm for

Optimization

Although the SOM has been widely used in many diverse tasks, few studies are available
for applying the SOM as a search mechanism. Recently, some researchers have exploited
its ability in search [7, 29, 40]. Michele et al. proposed a learning algorithm for optimiza-
tion based on the Kohonen SOM evolution strategy (KSOM-ES) [29]. In this KSOM-ES
algorithm, the adaptive grids are used to identify and exploit search space regions that
maximize the probability of generating points closer to the optima. Su et al. proposed an
SOM-based optimization algorithm (SOMO) [40]. Through the self-organizing process in
SOMO, solutions to a continuous optimization problem can be simultaneously explored
and exploited. The point about applying the SOM as a search mechanism is that each
weight vector represents a possible solution of the objective function. Through the fitness
function the winner will be determined with the largest fitness and updating the weights
of the winner and its neighbors, all the weights will be moved to explore and exploit the

optimization space for the searching process. A major drawback is that the SOMO and

28

KSOM-ES converge very slowly if the optimal solution falls outside the estimated range.
Because of the influence of noise the search direction is not correct probably. Meanwhile
the step size is reduced continually. Eventually the optimal solution is probably outside
the search range. In the dynamic optimization the search direction and step size are hard
to determine effectively in noisy and unknown environment. Thus, in this chapter a new
SOM weight updating rule based on a heuristic techniques is proposed to deals properly
with these problems and enhance the learning efficiency; this may dynamically adjust
the neighborhood function for the SOM in learning system parameters, discussed in next

Section.

3.1 Proposed SOM-Based Search Algorithm

Figure 3.1 shows the conceptual diagram of the organized search in a 2-D SOM. Note that
Figure 3.1 is slight different from Figure 2.4 in that the weight of the previous winner
replaced by the average of all weights. Figure 3.1(a) shows a case where the solution is
within the estimated range. In this case, the weights of the neurons are updated so as to
make the weight vectors converge to a compact cluster centering at the optimal solution.
Figure 3.1 (b) shows the case where the solution is outside the estimated range. The
winner will be located at the corner of the SOM initially. During the next learning epoch,
it is moved to the center of the SOM. The learning will continue until the solution falls
within the new estimated range. The search will then follow the process shown in Figure

3.1(a) to converge to the optimal solution.

Figure 3.2 shows the proposed SOMS, which consists of mainly the evaluation and

search mechanisms and the dynamic model stands for the target system. Initially, the

29

: =

N

| =71

Y

i -

iy

: j O ‘O O ‘ O [/ i
N J

i A

N N AN] RN
R | | NN

. AN N Nt N P!
=< -~ -~ i -~ ~

i \ \!

/ Ji

(b) Outside of the estimated range

Figure 3.1 Conceptual diagram of the organized search in a 2-D SOM: the solution is
(a) within the estimated range and (b) outside of the estimated range.

30

function for performance evaluation is installed in the evaluation mechanism, and possible
solutions (e.g., vectors of dynamic parameters), selected from the estimated range, will
be distributed among the neurons of the SOM. During each time interval of the learning
process, each of all the possible solutions in the neurons is sent to the dynamic model
one by one. In other words, the dynamic model will be equipped with a possible set of
dynamic parameters repeatedly, when used to derive the output data corresponding to the
target system. The evaluation mechanism will then compute the difference between the
derived data and the incoming measured data. From the results, the search mechanism
chooses the solution leading to the most accurate derived data as the winner, and updates
the weights of this winner and its neighboring neurons. Note that this SOMS can also
be applied to continuous optimization problems, with the dynamic model replaced by the

objective function for a given optimization problem and the input by the reference data.

3.2 Proposed Weight Updating Rule

Figure 3.3 shows the structure and operation of the SOM in the SOMS. The SOM performs
two operations: evaluation and search. In Figure 3.3, each neuron j in the SOM contains
a vector of a possible solution set w; (the weight vector). Each time new measured data
v are sent into the scheme, the SOM is triggered to operate. All of the possible solution
sets in the neurons will then be sent to the dynamic model to derive their corresponding
data P, The SOM evaluates the difference between v and each p; Of all the neurons, it
chooses the neuron j*, which corresponds to the smallest difference, as the winner. The
learning process then continues, and the network will eventually converge to the optimal
solution. And even when the optimal solution is not within the estimated range for some

cases, the search mechanism is still expected to move the possible candidates out of their

31

initial locations and guide them to converge to the optimal solution.

The main purpose of the proposed SOMS is how to explore and exploit the search space
and to obtain an optimal solution for the optimization problem and, furthermore, to make
the variations of the weights as organized movements. To this purpose, the SOMS learns
to organized and efficient search, but not random search. For effective weight updating
in the SOM, the topological neighborhood function and learning rate need to be properly
determined. Their determination may depend on the properties of the system parameters
to learn. As mentioned above, system parameters may operate in quite different working
ranges. To achieve high learning efficiency, the weight updating should be executed on an
individual basis, instead of using the same neighborhood function for all the parameters.
We thus propose a new SOM weight updating rule which can dynamically adjust the
center and width of their respective neighborhood function for the SOM in learning each

of the system parameters.

For the topological mapping, unlike in the traditional SOM applications, it is now our
aim to let the weight vectors form the uniform distribution like the pre-ordered lattice in
the neuron space. Generally the neuron space and weight vector space are with different
dimensions, so we have to transfer them into the same one. The Gaussian type function is
usually used as the neighborhood function, and it is differentiable and continuous. We also
used the Gaussian type functions as the neighborhood functions in the neuron space and
weight vector space. With the neighborhood functions, the magnitudes of their respective
distances in lattice space and in weight vector space can be normalized to be between
0 and 1. The proposed weight updating rule is designed to first let the weight vectors
approach the vicinity of the optimal solution set when it falls outside the coverage of the

SOM. The weight vector cluster is then moved to the center of the SOM. The process will

32

SOMS

Optimal
Measured pHn
. . solution
dynamic data Evaluation Search .
mechanism mechanism -
) .
Computed Possible
dynamic data solutions
Y.

Dynamic model

Figure 3.2 Proposed SOM-based algorithm for optimization.

Ej*
o—
=+ |F
i Search
il g@
ZT;— 2;3?% Evaluation
SOM /@% gl val
| I: D @
e ey T [
v oo 88"
— = o

—
h
2

P,

J

Dynamic model

Figure 3.3 Structure and operation of the SOM in the SOMS.

33

continue until the solution set falls within the SOM. Later, the rule will make the weight
vectors converge to a more and more compact cluster centering at the optimal solution.
We then define two Gaussian neighborhood functions, D; and F'(w,;(k)) in the kth stage

of learning as

D; = eXp(—Hrj ;ggj* (3.1)
F(wy(k)) = exp (-712(%;(@ ;O_;Vj*’i(k))> (3.2)

where r; and r;. stand for the coordinates of neuron j to entire network and j*, respec-
tively, o4 the standard deviation of the distribution for D;, and o; the standard deviation
of the distribution for w;;(k). Note that F (ﬂ](k‘)) is defined by considering the effects
from all ¢ elements in w;(k). Here, D; is used as a reference distribution for F' (ﬂ](kD
In other words, We intend to map the magnitude difference of the parameter into the

neurons spaces. To make F'(w,(k)) approach Dj, an error function E;(k) is then defined

as

Ej(k) = (D~ Flw, (k)" (33

During the learning, we can find that when w;« ;(k) is much different from we, (k), the
average of all w;;(k), the optimal solution is possibly located far outside the estimated
range; contrarily, when w;- ;(k) is close to we,(k), the optimal solution is possibly within
the estimated range. Based on this observation, we proposed a method to speed up the
learning. For illustration, we define a Gaussian distribution function G(w,,(k)) for each

element w;;(k), ith element in w,(k)) in the kth stage of learning:

34

) (3.4)

The strategy is to vary the mean and variance of G(w;;(k)) by moving its center to where

2

I

w;+ (k) is located and enlarging (reducing) the variance o7 to be 7 = |wjs ;(k) — we, (k)|
where |- | stands for the absolute value, as illustrated in Figure 3.4. The new distribution

function G(W;(k)) is then formulated as

G(W;i(k)) = exp(=

2572

where Ww,;(k) stands for the new w;;(k) after the adjustment. As indicated in Figure
3.4, G(%;,(k)) is equal to G (w;,(k)) when w; (k) varies to W, (k). From Eq.(3.5), during
each iteration of learning, G(w;(k)) is dynamically centered at the location of the winning
neuron j*, with a larger (smaller) width when w,, (k) is much (less) different from w« ;(k).
It thus covers a more fitting neighborhood region, and leads to a higher learning efficiency.

With G(%;,(k)), the new weight W;,(k) is derived as

(wyi(k) = we, (k) + wj (k). (3.6)

And, with a desired new weight W;;(k), the learning should also make w;(k) approach

w;(k), in addition to minimizing the error function E;(k) in Eq.(3.3). A new error function

E;(k) is thus defined as

35

) i
'f
)f
08+ ’ i
’
£
06 . 2
£
L4 ~
o4k G(w, (k)# G(w,,(K)) T
_______________ p._____________
,
02k s i
o
-I'”J
o k= i

(b) (ng —wf‘i(k))z <o’

Figure 3.4 Center and width adjustment for the neighborhood function G(w,.(k)),
when (a) (w,~w . (0) 207 and (b) (w.~w . (k) <o?.

36

~ 1

Ej(k) = 5[(D; = Fay(k)))* + [[w; (k) — 5, (8)]). (3.7)

Based on Eq.(3.7) and the gradient-descent approach, the weight-updating rule is

derived as

wii(k+1) = wii(k) —n(k)

aWjJ' (k)

—) =) s - O B s 4) =)

= wya ()R) =N BD) e 1y (D, — F(w (k)

q- 0}
+(wi(k) — W;i(k))] (3.8)

where 7)(k) stands for the learning rate in the kth stage of learning, described in chapter 1.
Together, the weight updating rule described in Eq.(3.8) and the learning rate in Eq.(2.2)
will force the minimization of the difference between the weight vector of the winning
neuron and those corresponding to every neuron in each learning cycle. The learning will

eventually converge.

3.3 Applications

To demonstrate its capability, the SOMS is applied for both function optimization and
dynamic trajectory prediction. Based on the SOMS, we first develop learning schemes
corresponding to each of the applications. Simulations are then executed for performance
evaluation. The results are especially compared with those of the genetic algorithm (GA)
for their resemblance in searching. Both the SOM and GA have the merit of parallel
processing. And, both of their searches are through the guidance of the evaluation func-

tion, while the SOM in our design adopts a somewhat organized search and the GA in

37

some sense a random approach. It implicates that the SOM may be more suitable for
applications with certain knowledge, especially when the distribution of the possible solu-
tions is not utterly random. On the contrary, for applications with no a priori knowledge

available, the GA may yield better performance.

3.3.1 Function Optimization

For a function optimization problem, the goal may be to maximize (minimize) an object
function O(-). Let O(w;(k)) be the function value for the weight vector w;(k), which rep-
resents a possible solution. The learning algorithm for function optimization is organized

as follows.

Algorithm for function optimization based on the SOMS: Maximize (minimize)

an object function using the SOMS.

Step 1: Set the stage of learning & = 0. Choose a reference value P.. Estimate the
ranges of the possible parameter space and randomly store the possible parameters w;(0)
into the neurons, where 7 =1,..., N x N, N x N the total number of neurons in the 2D

(N x N) space.

Step 2: Compute O(w;(k)) for all w;(k).

Step 3: Among the neurons, find the one with the largest (smallest) value as the winning

neuron j* for the maximization (minimization) problem.

Step 4: Update the weight vectors of the winning neuron j* and its neighbors according

to the weight updating rule described in Eq.(3.8).

38

Step 5: Check whether the difference between w;.(k) of the winning neuron j* and
w (k) corresponding to every neuron j is smaller than a prespecified value P,. If it is not,

let K =k + 1, and when k is smaller than a prespecified maximum value, go to Step 2;

otherwise, the learning process is completed and output the optimal value.

Two standard test functions are used to demonstrate the proposed algorithm, a 2-D

Griewant function

1
flz1,20) =1+ m[(xl —100)% + (25 — 100)?] — cos(z; — 100) - cos(——=—

and a 30-D Rosenbrock function
29
f(z) =D [100(wig1 — x7)* + (2; — 1)%). (3.10)
i=1
These two test functions have also been used in [40]. The optimization here is to minimize
these two functions. Their global minimal values are known in advance: for the Griewant
function, it is 0 when (21, z9) = (100, 100); for the Rosenbrock function, it is also 0 when

all x; are equal to 1. The SOM is chosen to be with 5 x 5 neurons and the learning rate

as

n(k) = 0.7- "% 1.0.2 (3.11)

For comparison, we also use the GA for function minimization, which is with a population
size of 25 to match with that of the SOM, and the crossover and mutation probability of

0.6 and 0.0333, respectively.

We start with the learning for the 2-D Griewant function. The initial w;(0) for the
SOMS was randomly chosen within the ranges of (=3, 3)x(—3, 3), i.e., the optimal solution
was outside of the estimated region. Figure 3.5 shows the simulation results. In Figure
3.5(a), both SOMS and GA found the optimal minimal value successfully, while the SOMS

converged faster. Figures 3.5(b) and (c) show the weight vector movement (k =0 ~ 11)

39

for the SOMS and GA, respectively. From the figures, we observed that the search in the
SOMS was basically in grouping and more directional; by contrast, that of the GA was
in a more random manner. It indicates that the SOMS was more effective for this 2-D
Griewant function minimization, because the distribution of the possible solutions might

not be utterly random.

In the minimization of the 30-D Rosenbrock function, we simulated the case that the
optimal solution was within the estimated region. For its complexity, the size of the SOM
was enlarged to be with 25 x 25 neurons, and that of the GA also enlarged accordingly.
The learning rate for the SOMS and the crossover and mutation probabilities for the GA
were set to be the same. Each w;;(0) of the initial w;(0) was randomly chosen within
the range of (—5,5). In addition to the SOMS and GA, the SOMO proposed in [40]
was also applied for the minimization, with its parameters adjusted via a trial-and-error
process to yield salient performance. Figure 3.6 shows the simulation results. In Figure
3.6, all SOMS, GA, and SOMO found the optimal minimal value successfully, while the
SOMS still converged faster. It indicates that the SOMS was also effective for the 30-D

Rosenbrock function minimization.

40

Ow ;- (k))

L EELELE) L L L
30 40 50 BO 70 a0 an 100

time (ms)

(a) Minimal function values O(w - (k)) during the learning process

180 T T
B=
180+ A k=4 |
=
o o k=11
120 s © @ * B
* * i
L e e]
4 *
s + i * 4
+
*
&0 N Lt
L . i
* * N "
af AR 4
N
0- & ﬁA & B
Si%e
o A
ob AW .
m . | | | | . |
0 i o 10 50 80 100 120 140
X1

15 : :
o] . =
1 =0 | J
@ A k=4
+ k=7
a
12+ * g o k=11]
* +
o= + oo B
N %
al A4 @ . 2 il
* o
A O &
* A ©
BR iy + —
a +
X2 A @* * % o
s Lk A S o il
Fiy - © °
2t g S B
- o
ok 5 ° 4
<L .
al o o i
4 | | | . .
5 0 B 10 15 20
X1

(c) Weight vector movement in the GA

Figure 3.5 Minimization of the 2-D Griewant function using the SOMS and GA with
the optimal solution outside of the estimated region: (a) minimal function values
O(w ;- (k)) during the learning process, (b) weight vector movement in the SOM, and

(c) weight vector movement in the GA.

41

O(w (k)

time (s)

Figure 3.6 Minimal function values O(w (k)) during the learning process for the
minimization of the 30-D Rosenbrock function using the SOMS, GA, and SOMO.

42

3.3.2 Dynamic Trajectory Prediction

For a dynamic trajectory prediction problem, the goal may be to estimate the launching
position and velocity of a moving object using the measured data. Through a learning
process, the SOMS may determine a most probable initial state through repeatedly com-
paring the measured data with the predicted trajectories derived from the possible initial
states stored in the neurons of the SOM. We consider the SOMS very suitable for this
application, because the relationship between the initial state and its resultant trajec-
tory is not utterly random. We can thus distribute the initial states into the SOM in an

organized fashion, and make it as a guided search.

In this application, the nonlinear dynamic equation describing the trajectory of the

moving object and the measurement equation are first formulated as

z(k+1) = fulz(k)) +§, (3.12)

v(k) = g(z(k)) +¢, (3.13)

where f;, and g, are the vector-value function defined in R? and R' (¢ and [the dimension),
respectively, and their first-order partial derivatives with respect to all the elements of
z(k) continuous. §, and ¢, are the zero-mean Gaussian white noise sequence in R? and

R', respectively, with

EE] =0 (3.14)
Elg&) = Qi (3.15)
E,] = 0 (3.16)
ElC.C) = Udj (3.17)
EEC) = 0 (3.18)

43

where E|-] stands for the expectation function, @ and U the covariance matrix of the
input noise and output noise, respectively, and d,; the Dirac delta function. @) and U are
expected to be uncertain and varying in noisy, unknown environments, and their estimated
values possibly imprecise, even incorrect. Being unaware of the statistical properties of
the dynamic model, the SOMS is utilized to find the optimal initial state via learning.

The learning algorithm for dynamic trajectory prediction is organized as follows.

Algorithm for dynamic trajectory prediction based on the SOMS: Predict an
optimal initial state for the trajectory of a moving object using the measured position

data.

Step 1: Set the stage of learning £ = 0. Estimate the ranges of the possible launching
position and velocity of the moving object, and randomly store the possible initial states
w;(0) into the neurons, where j = 1,...,m X n, m X n the total number of neurons in

the 2D (m x n) space.

Step 2: Send w;(k) into the dynamic model, described in Eq.(3.12) and Eq.(3.13), to

compute Ej(k).

Step 3: For each neuron j, compute its output O;(k) as the Euclidean distance between

the measured position data v(k) and Ej(k):

O;(k) =>_|lp, (1) = v(0)| (3.19)

1=0

Find the winning neuron j* with the minimum O;-(k):

44

k k
0 (k) = 3 [, () = w(D)| = min}_ |lp, (i) — v(i) (3.20)
i=0 =0
Step 4: Update the weight vectors of the winning neuron j* and its neighbors.

Step 5: Check whether the minimum O;-(k) is smaller than a pre-specified value e:

O; (k) <'e (3.21)

If Eq.(3.21) does not hold, let k£ = k+1 and go to Step 2; otherwise, the prediction process
is completed and output the predicted optimal initial state to the dynamic model to derive
the object trajectory. Note that the value of € is empirical according to the demanded
resolution in learning, and we chose it very close to zero. In addition, during each stage
of learning, we perform a number of learning to increase the SOM learning speed. This
number of learning is set to be a large number in the initial stage of the learning process,
such that the SOMS may converge faster at the price of more oscillations, and decreased

gradually to achieve smooth learning in the later stages of learning.

To demonstrate the effectiveness of the proposed SOMS and weight updating rule, we
performed a series of simulations for dynamic trajectory prediction based on using the
SOMS, the SOMS without the proposed center and width adjustment on the neighbor-
hood function (named as SOMSO), and GA. The trajectory to predict in the simulations
was designed to emulate that of a missile. Its governing equations of motion in the 3D

Cartesian coordinate system are described as

45

. —GmT . 2
i = (2 1 g2 1 2237 + 2wy +wr+ &, (3.22)

—gm¥Y

L : 2
j = GRS + 2wt + w7y + &, (3.23)
. —gm~<

T 20

where g,, and w stand for the gravitational constant and the rotative velocity of the earth,
respectively, and set to be g, = 3.986x 10°km®/s? and w = 7.2722x 10 °rad/s. (&,,&,,&.)
are assumed to be continuous-time uncorrelated zero-mean Gaussian white noise pro-
cesses. Referring to Eq.(3.12) and letting & = (x,v, 2,2,9, 2)L = (z1, 29, T3, 24, 5, T6) ",

we can obtain the discretized dynamic equation as

z(k+1) = f(z(k)) + &, (3.25)
where
[21 (k) + tzy(k)]
x(k)) =
f(k) z4(k) = tgmay (k) /(21 (k)? + 2o(k)? + 25(k)2)%/2 + 2twas (k) + tw?z (k)
z5(k) — tgmTa(k)/ (21 (k)% + 22(k)? + 23(k)%)%/2 + 2twry(k) + twlzo (k)
I 26(k) — tgmas(k) /(@1 (k)? + za(k)? + z3(k)?)%/> |
(3.26)
and
£, =1000&, &, &' (3.27)

with ¢ the sampling time. (&, &, &) are assumed to be uncorrelated zero-mean Gaus-
sian white noise sequences with a constant variance o7 = (0.1m/s*)>. And, referring to

Eq.(3.13), the measurement equation is formulated as

100000
vik)=10 100 0 0 |z(k) +¢, (3.28)
001000

46

and
(T [Cor Can Cag }T (3.29)

where ((s,, sy, Czs) are the measurement noise sequences with a zero mean and constant
variance o, = (15m)?. The ranges of the possible initial states w;(0) were estimated to

be

68.6 x 10°m < x1(0) < 68.8 x 10°m
2.7 x 10°m < 25(0) < 2.8 x 105m
4.8 x 105m < x3(0) < 4.9 x 10°m
110m/s < x4(0) < 150m/s

810m/s < z5(0) < 850m/s
1360m/s < x(0) < 1380m/s.

~—_— ~—

(3.30)

Within the ranges described in Eq.(3.30), the possible launching positions and velocities
of the missile were selected and stored into the 729 (27x27) neurons of the 2D SOM. And,

the learning rate for the SOMS was chosen to be
n(k) =0.8-e /% 4.0.2 (3.31)

The sampling time ¢ was 0.5s. For the GA, the population size was selected to be 729
to match with the SOM, and the crossover and mutation probability 0.6 and 0.0333,

respectively. The number of learning is set to be 20 during each stage of learning.

We first applied the SOMS, SOMSO and GA for trajectory prediction with a good
estimate of the initial state. The ideal initial state of the missile was assumed to be
(68.7 x 105m, 2.7 x 105m, 4.8 x 105m, 130m/s,820m /s, 1370m/s), which was within the
estimated range. And, the variance of the measurement noise was set to be (15m)?. Figure
3.7 shows the simulation results. All SOMS, SOMSO and GA predicted the initial state

quite well and thus resulted in very small estimated errors, except in the initial stage of

47

the prediction, as shown in Figure 3.7(a) (only the position error in the X-direction ()
is shown for illustration). Figure 3.7(b) shows how the neighborhood function F(w;(k)),
described in Eq.(3.2), varied during the SOM learning process. In Figure 3.7(b), from a
random distribution in the beginning of the learning, F'(w;(k)) gradually approximated

the expected Gaussian distribution along with the stage of learning.

In the second set of simulations, we investigated their performances for the condition
of a bad estimate of the initial state. In this simulation, the ideal initial state was
assumed to be (64 x 105m, 4.8 x 10°m, 2.4 x 10°m, 215m /s, 2130m /s, 1030m /s), which was
outside the estimated range. And, the variance of the measurement noise was enlarged
to be (30m)?. From the simulation results shown in Fig. 3.8, the influence of the bad
estimate on the SOMS and SOMSO was mostly at the initial stage of the prediction.
After the transient, the SOMS and SOMSO still managed to find the optimal initial state.
Meanwhile, we also observed that the SOMS converged faster than the SOMSO. As for the
GA, it converged very slowly as the optimal initial state did not fall within the estimated
range. We thus conclude that the SOMS performed better than the GA for this dynamic
trajectory prediction application, and the proposed dynamic weight updating rule was
effective. In this chapter we have proposed an SOM-based algorithm for optimization
problems, which can be used for both static and dynamic functions in real time. To
achieve high learning efficiency for system parameters in different working ranges, we
have also proposed a new SOM weight updating rule. The applications of the proposed
SOMS on both function optimization problems and dynamic trajectory predictions have

clearly proven its effectiveness.

48

500 T T T T T T T T T

—— SOMS3
400 - .
—-—-SOMS0
e i GA -
0F .

Position 100 &
error

(m)

00 - W -
200 -
a0 -

-400 - e

time (s)

(a) Estimated position error in the X-direction

Figure 3.7 Simulation results for dynamic trajectory prediction using the SOMS,
SOMSO, and GA with a good estimate of the initial state: (a) the estimated position
error in the X-direction and (b) the variation of the neighborhood function F(w (k))

during the SOMS learning process. (Cont.)

49

F(w,; (k)

F(w, (k)

SN
0
SN

N
00105 «%’.«\\\\
S

F(w, (k)

(b) Variation of the neighborhood function F(w ;(k))

Figure 3.7 Simulation results for dynamic trajectory prediction using the SOMS,
SOMSO, and GA with a good estimate of the initial state: (a) the estimated position
error in the X-direction and (b) the variation of the neighborhood function F(w (k))

during the SOMS learning process.

50

7000 T T T T T T T

G000 b —-— - S0MS0O ||

5000 [

Position 4000
error

(m)

3000
2000

1000

-1000 ! ' ! !
] 5 10 15 20 2

time ()

Estimated position error in the X-direction

Figure 3.8 Simulation results for dynamic trajectory prediction using the SOMS,
SOMSO, and GA with a bad estimate of the initial state.

51

Chapter 4

Niching SOM-Based Search
Algorithm

Many global optimization techniques based on population evolution have been successfully
applied for finding a global optimum [17, 12, 21}, while they cannot cope with optimization
with multiple optimal solutions. To tackle this problem, usually the approach employed
is to repeat executing the optimization process with different initial populations. Mean-
while, it is possible that the same optimal solution was found even with different initial
populations and still several solutions were remained to be found. Consequently, it may
require a considerable amount of computational time for finding all the solutions. Thus,

a niching method is proposed to extend the ability SOMS, discussed below.

52

4.1 Niching Method

In the optimization process looking for one single solution, the global search can be
achieved under with similar individuals corresponding to similar fitness values. However,
in multiple solutions optimization, the dissimilar individuals also correspond to the similar
fitness values. If all of the populations are moved toward the one best solution, the
remaining optimal solutions will be missed. How to overcome this problem is an interesting
topic. It motivates us to propose the SOMS based on niching method (NSOMS), which

is able to identify multiple optima in a multimodal domain.

Among previous researches, Eldridge and Gould proposed the punctuated equilibrium
(PE) theory [10]. They mentioned that an appearance of new species is a branching mech-
anism through time. An isolated individual is developed with mutations or differences
of gene pool and then some similar individuals with similar features rapidly grow into
a larger and larger group. Subsequently, the isolated population evolves into a separate
species. Mahfoud proposed a niching method also from such a concept to improve GA
by promoting the formation of subpopulations and preserving stably around the optimal
solutions. With the niche method, the separate subpopulations parallel convergence into
multiple optimal solutions in the search space [28]. A restricted competition selection
(RCS) method combined with the pattern search method (PSM) has been proposed and
demonstrated that it performed better than two general niching methods (Sharing and
Deterministic Crowding [11, 28]) for identifying multiple solutions [18]. Through the RCS
restricts competition only the best individual per one niche is maintained. Therefore, the
PSM assists GA due to the GA is not suitable for searching with the small population size
reduced by the RCS. More niching GAs have been proposed and shown to find multiple

solutions efficiently [8, 18, 35].

93

Based on the niche method, the deterministic competition, instead of the coercive
competition, is proposed to restructure SOM by defining subpopulations (subspaces) in
a multimodal domain, so as to avoid convergence of the population to a single solution.
In the proposed NSOMS, each niche may represent a possible peak in a multimodal
domain. A number of similar individuals populating the same niche area is defined as
a subpopulation. To preserve a stable subpopulation, every subpopulation has its own
living condition, that is, the neurons have their own individual weight-updating rule for
each of the niches. In accordance with the proposed NSOMS algorithm, the niche location
located on the winning weight site will be moved to approach the real peak location of
a multimodal domain gradually. Thus, with many different niches, the NSOMS can be
applied to search for multiple optimal solutions. Figure 4.1 shows the influence of niches
during the learning process. If the optimization is executed without the niching method,
it is possible that the certain solutions will be missed due to the compulsory competition,
as shown in Figure 4.1(a). If the optimization is executed by SOMS with nichting method

(deterministic competition), multiple solutions will be found, as shown in Figure 4.1(b).

Figure 4.2 shows the conceptual diagram of the proposed NSOMS. Compared with the
SOMS described in chapter 3, the NSOMS includes a new mechanism, the deterministic
competition mechanism, in which the proposed niching method is installed. Every niche
represents a possible range where the optimal solution is possibly located and possesses a
subpopulation with a number of similar individuals. In every niche the solution leading
to the most accurate derived data is chosen as a winner. From the results, the search
mechanism updates the weights of these winners and their neighboring neurons. The
learning process then continues, and the network will eventually converge to the multiple

optimal solutions.

o4

(a) without niching

(b) with niching

Figure 4.1 Optimization during learning process: (a) without the niching
method, (b) with the niching method.

95

NSOMS

Measured Optimal
dynamic data solutions
Evaluation Deterministic Search
|:> mechanism competition mechanism :>
mechanism

Computed Possible
dynamic data solutions

Dynamic model

Figure 4.2 Proposed Niching SOM-based search algorithm.

Search

#" Deterministic
competition

Evaluation

3 h
—_ P W,

_/ A 4

Dynamic model

Figure 4.3 Structure and operation of the SOM in the NSOMS.

o6

4.2 Proposed Niching SOMS Weight Updating Rule

Figure 4.3 shows the structure and operation of the SOM in the NSOMS. The SOM
performs three operations: evaluation, deterministic competition, and search. In Figure
4.3, initially, we divide the whole SOM network into H subnetworks (niches), each niche
comprises N neurons, and each neuron j in the hth niche (j € A") contains a vector of
a possible solution set ﬂ? (the weight vector). So the total number of neurons equals
H x N in the whole network. The initial center location of the hth niche is set on the
w." the average of all w”."Take the missile interception application as an example and
let the number of incoming missiles be M. Each time new measured data [v;, vy, -+, v/]
are sent into the scheme, the SOM is triggered to operate. All of the possible solution
sets in the neurons will then be sent to the dynamic model to derive their corresponding
data E;-L' The SOM evaluates the product of all terms of Hym - B;LH form=1,---, M.
Of all the neurons for the hth niche, it chooses the neuron j*, which corresponds to the
smallest value, as the winner. The learning process then continues, and each niche will

eventually converge to the nearest optimal solution.

The search strategy of the population-based optimization algorithm is to find the best
individual and move other individuals to approach to the optimal solution. However, one
drawback of the SOM-based optimization algorithms is that the network size increases
exponentially along with the dimension () of the search space. The network needs least 2"
neurons to ensure that each dimension can be considered during the search. To overcome
this difficulty, an additional random term, such as random noise and random search
methods, is added to raise the optimization efficiency. It might then use few neurons and
randomly explore to each coordinate direction during the search. In [40], a small amount of

random noise and also a narrowing down method are included in the weight updating rules

o7

to improve its performance. In [29], Michele et al. also derive an alternative optimization
algorithm based on neural gas networks (NG-ES) to overcome the bad scaling problem of
the KSOM-ES by introducing a mechanism for generating trial points randomly. Wu and
Chow proposed a self-organizing and self-evolving agents (SOSENs) neural network that
combines multiple simulated annealing algorithms (SAs) and SOM algorithm [44]. Each
neuron of SOSENSs has its own updating rules (self-evolving) with an SA, and learns from
other neurons by the SOM algorithm (self-organizing) after some time. However, when
the distance between the best current solution and the real optimal solution is very large,
the search process of these methods do not achieve good performance with only small

random changes.

From the discussions above, the SOMS weight updating rule previously proposed may
not be suitable for optimization in a multimodal domain. Thus, we made several modi-
fications so as to reduce the number of neurons to raise the optimization efficiency. We
similarly define a Gaussian distribution function G(w”,(k)) as distribution function for

each element w”;(k), the ith element in w”(k) in the kth stage of learning:

SR ER (4.1

where w (k) stands for the ith element in w (k) average of all w/(k), and of'(k) is the

standard deviation of the distribution for W?l(k‘) From the same concept to speed up the
learning, described in chapter 3, the strategy is to vary the mean and standard deviation

of G(w},(k)) by moving its center toward w’. ;(k) and enlarging (reducing) the standard

h

deviation ¢}'(k) according to the double distance between w'. ;(k) and w” (k). The new

distribution function é(\if?l(k» is then formulated as

o8

) (4.2)

where W”; (k) stands for the new w”;(k), W/ (k) the new w! (k), and 57 (k) the new o}'(k)

Jrt Jii €; i
after the adjustment. Based on the same strategy in the SOMS, during each iteration
h

of learning, G(w7},(k)) is dynamically centered at the location of the winning neuron j*,

with a larger (smaller) width when w” (k) is much (less) different from w? (k). It thus

€ j*ai

covers a more fitting neighborhood region, and leads to a higher learning efficiency.

In order to reduce the network size greatly for dealing with the optimization of a
multimodal domain; we make the adjustment in weight updating rule of the SOMS.
From the mapping property of the SOM, we understand that the SOM cannot obtain
a good feature maps with a small network size. Therefore, let the weight vectors form
the uniform distribution like the pre-ordered lattice in the neuron space becomes not so
meaningful. So far a more fitting search range is already well-defined with the determined
mean and standard deviation of the Gaussian distribution function. Thus, we propose a
deterministic neighborhood to design the NSOMS weight updating rules. Based on the

proposed concept, the new W (k) and 5% (k) are then formulated as

€

we, (k) = we (k) + nu(k) - (W (k) = we (k) (4.3)

€

oi (k) = of(k) +nu(k) - 2lwf. (k) — w (k)] = o' (k) + € (4.4)

where 71,,(k), (0 < n,(k) < 1) stands for the learning rate in the kth stage of learning
and e the a small value added to avoid that (k) rapidly converges to zero. We can

set a large value of 7, (k) to speed up convergence. However, if n,(k) set to be 1, it

99

may probably converges to the local optimum. Thus, the premature convergence can
be avoided through introduction of the additional adaptation term. From Egs.(4.3) and
(4.4), we can regenerate the new weight w/;(k) from a Gaussian distribution with mean
W (k) and standard deviation 67 (k). With the new weight W”,(k), the weight-updating

rule is derived as

{ whik+1)=wt(k), jeA" and j+#j* (4.5)

whik+1) =whi(k), jeA" and j=j*

Under this learning process,the network will gradually converge to a very small region

with of(k) continuing to decrease.

Sometimes more than two niches eventually converge to the same location of the
optimal solution, or several optimal solutions have not been found yet. To overcome this
difficulty, a technique for automatically determining the number of niches is introduced
into the NSOMS to find as many solutions as possible. First, we use Eqs.(4.3) and (4.4) to
detect a searched optimal solution when the standard deviation &7 (k) for every element
is less than preset value and to determine an effective optimal solution with duplicate
optimal solutions excluded when the mean values W' (k) and W’ (k) are very close. If
more than two niches are similar, only one is reserved and the others eliminated from the
competition. If the number of niches is equal to the number of effective optimal solutions,
a new niche is generated randomly. In other words, we intend to make the niche set size
H (k) vary depending on the effective optimal solutions set size E's(k). We thus define a
specific relation between the niche set size H(k) and the effective optimal solutions set

size Es(k).

60

H(k) =ny - Es(k)+no (4.6)

where ny and n, are positive integers which can be either constants or variables decaying
along with time. Of course, other types of functions can also be used. During the searching
process, in order to prevent that the new niches regenerated converge on the locations of
searched optimal solutions repeatedly, the initial center location of the regenerate niche
should be far away from the initial center locations of all previous niches as much as

possible. Hence, we define an evaluation criterion as

> A(K) (4.7)

DWi* = IIliiIl Hth o WC2

where Wg" stands for the initial center location of the regenerated niche, w¢’ the ith

location included in the set RC of the initial center locations of all previous niches, and
A(k) the distance evaluation parameter. If the minimum distance Dy, less then A(k),
this new niche will be regenerated randomly again. In the initial stage of the learning,
A(k) can be set larger to prevent that the similar niches converge to the same optimal
solution repeatedly. Later, A(k) may be decreased gradually to let some optimal solutions
that are possibly very close can found. Thus, a function for A(k) that satisfies the demand

can be formulated as

A(k) = =5 - e kT (4.8)

where the initial value A(0) is the average of all ||w;(0) — w.(0)|| and 7 time constant. Of

course, other types of functions can also be used. Under this design, the searching efficacy

61

of the NSOMS will become faster and more efficiently.

4.3 Visualization Of the Distribution Of Optimal So-

lutions

Different optimal solutions can now be found by the NSOMS. The next significant task is
how to select the most useful solutions from the set of the optimal solutions. Visualization
and clustering of high-dimensional data are well-known successes in SOM. We employ the
basic principle of the double self-organizing map (DSOM), which updates the weight
vectors together with the two-dimensional position vector of the neuron, to achieve the
visualization of distribution of optimal solutions. In other words, the positions of the
optimal solutions within the parameter space are mapped onto a two-dimensional (2-D)
space. Through this map, it allows us to classify the optimal solutions into clusters easily,

yielding useful information for solution selection.

The NSOMS is different from the DSOM in that the position updating rules of the
neurons in the DSOM cannot be applied directly to optimization due to the system
parameters operate in quite different ranges. We thus proposed a new adaptive mapping
model to visualize the distribution of the optimal solutions. First, we know that the neuron
space and weight vector spaces are with different dimensions, so we have to transform them
into the same dimension. We define two Gaussian type functions as the neighborhood
functions in the neuron space and the weight vector space, D; and F(w;(k)) in the kth

stage of learning as

62

2
h
L, — I«

20’d
—[fwi(k) = wh (k)|

20,

D; = exp(— (4.9)

F(w;(k)) = exp (4.10)

where r; and g?* stand for the coordinates of neuron ¢ to entire network and j* to hth

niche, respectively, w,(k) the weight vector of neuron i to entire network, o, the average

2, and o, the average of all Hﬂz(k}) — wh (k) H2 The Gaussian type function

of all ;

h
Ly — I«

is frequently used as the neighborhood function, and it is differentiable and continuous.
With the neighborhood functions, the magnitudes of their distances in the neuron space
and weight vector space, respectively, can be normalized to be between 0 and 1. The new
learning model in the SOM is designed to let nearby neurons of a feature map correspond

to nearby weights. From this mapping, a cost function E;(k) is then defined as

Bi(k) = 3(D: = F(us(R)" (4.11)

Based on the gradient-descent approach, the position updating rule of the neurons is

derived as

where 7, (k) stands for the learning rate in the kth stage of learning.

It is evident that only two learning parameters 7,,(k) and 7,(k) need to be deter-
mined. It is then straightforward to determine the learning parameters for the diverse

optimization problems. Through the weight and position updating rules of the neurons

63

synchronously, the NSOMS can be applied to optimization, in particular, identification

and visualization of multiple optimal solutions on the 2D neuron space.

4.4 Applications

To demonstrate its capability, the NSOMS is applied to both function optimization and
dynamic trajectory prediction. A PC with 3GHz and MATLARB software were used for all
the simulations. Based on the NSOMS, we first develop learning schemes corresponding
to each of the applications. Simulations are then executed for performance evaluation.
The results are especially compared with the RCS-PSM [18] for their similar searching
abilities. To compare their performances, the maximum ratio of the searched peak values
to the real peak values (MPR), which denotes the sum of the fitness of the searched
optima divided by that of the fitness of the actual optima and the effective number of
maintained peaks (NMP), are selected as the performance criteria [18]. A searched peak

is detected with the best fitness value at least 80% of the real peak value.

4.4.1 Function Optimization of a Multimodal Domain

For a function optimization problem, the goal may be to maximize (minimize) an object
function O(-). Let O(w}(k)) be the function value for the weight vector w”(k), which
represents a possible solution. During the learning process, P, is a reference value of the
performance evaluation for optimization. Note that the value of P, is empirical according
to the demanded resolution in learning, and we chose it very close to zero. The learning

algorithm for function optimization is organized as follows.

64

Algorithm for function optimization based on the NSOMS: Maximize (minimize)

an object function using the NSOMS.

Step 1: Set the stage of learning £ = 0. Choose H number of niches, N number of
neurons within each niche, and reference value P,. Estimate the ranges of the possible
h

parameter space and randomly store the possible parameters w'

7(0) into the neurons,

where j=1,...,.N,h=1,...,H.

Step 2: Compute O(w/(k)) for all w/(k).

Step 3: Among the neurons to every niche, find the one with the largest (smallest) value

as the winning neuron j* for the maximization (minimization) problem.

Step 4: Update the weight vectors of the winning neuron j* and its neighbors to every
niche, and update the positions of neurons to entire network according to the position

and weight updating rules described in Eqs.(4.3)-(4.5) and Eq.(4.12).

q

Step 5: If 3 6/'(k) < P, to every niche, w'. (k) is determined to be as an effective
i=1

optimal solution with duplicate optimal solutions excluded. From Egs.(4.6) and (4.7),

the new w/ (k) will be randomly regenerated and then added to the set R°.

Step 6: Check whether the number of iterations is smaller than a pre-specified maximum
number of iterations. If it is not, let £ = k + 1, and go to Step 2; otherwise, the learning
process is completed and output all optimal values. The final network mapping is ready

for visualizing the distribution and structure of the optimal solutions.

Four multimodal functions are used to demonstrate the proposed algorithm. These

functions are defined as follows:

65

Fl(x) = sin®(5rr), where 0<z <1 (4.13)

_ _ T = 008\ o075
F2(x) = exp|—2(In2) 0a5d sin® (5r[z 0.05]) (4.14)
1
F3(z,y) = 500 — 1 (4.15)
1
0.002 + EO Tt @—a())P+ G=b())°
. 10
Fiz) = Y ———— (4.16)
i=1 1+ ‘g -y,

These four test functions have also been used in [15, 18]. The optimization here is to
maximize these four functions.” The first function, F1, has five peaks with the same
height for = 0.1,0.3,0.5,0.7, and 0.9. The F2 function has five unequally spaced peaks
with different heights. In F3, a(i) = 16[(¢ mod 5)—2] and b(i) = 16([i/5] —2). F3is a two-
dimensional function with 25 peaks of different heights in the interval [476.191, 499.002]
and the highest peak is located at (32,32). The 2D test functions F1-F3 are shown in
Figure 4.4. F4 is a four-dimensional function with 4 peaks of the same height, where y.

is a constant vector obtained by permuting the components of the vector (8,2,2,2).

The initial number of the neurons was set to be 1 x 10 (H = 1, N = 10) and the pa-
rameters ny, ng, Ny (k) and 7,(k) were set to be constants, 2, 1, 0.4, and 0.4, respectively
for all function optimization. For comparison, we also use the RCS-PSM for function
minimization, which is with an initial population size of 10 to match with that of the
SOM, and the crossover and mutation probability of 0.6 and 0.0333 for the GA opera-
tion, respectively. To automatically determining the number of niches, we use the same

condition described in Eq.(4.6) to RCS-PSM for simulations.

For each test functions, each algorithm is repeated 30 times and carried out after 30
iterations each time. The comparison results of average are listed in Table 4.1. As shown

in Table 4.1, NSOMS and RCS-PSM perform quite well in terms of the number and quality

66

Function F1(x)

(a) uniform sine function

Function F2(x)

(b) nonuniform sine function

Function F3(x,y)

(c) Shekel’s Foxholes function

Figure 4.4 Three multimodal functions. (a) F1: uniform sine

function, (b) F2: nonuniform sine function, and (c) F3: Shekel’s
Foxholes function.

67

of peaks obtained. But, NSOMS works better than RCS-PSM for the computational time.
Figure 4.5 shows the variations of NMP and MPR according to the increase of time for
F3 test function. We observed that the NSOMS converged faster than the RCS-PSM.
Figure 4.6 shows the variation of the network structure on the SOM using the NSOMS
for F4 test function. In Figure 4.6(a), we only show the variation of the best four niches.
It shows clearly that the positions of neurons on the SOM reveal the distribution and
structure of the optimal solutions. Figure 4.6(b) shows the neighboring relationship of
the neurons of the best four niches, and we can observe that the neighborhood functions
of neurons and weights, described in Eqs.(4.9) and (4.10), varied during the NSOMS
learning process, and eventually they are very close to each other. From these results,
the NSOMS demonstrates the identification and visualization of the optimal solutions of

high dimension.

68

Table 4.1: Comparison results for NSOMS and RCS-PSM on the 4 test functions.

Function Method NMP MPR Time (s)
Fl1 NSOMS 5 1 0.1213
RCS-PSM 5 1 0.2154
) NSOMS 5 1 0.1436
RCS-PSM 5 1 0.2417
EF3 NSOMS 25 1 2.0301
RCS-PSM 25 1 5.5171
F4 NSOMS 4 1 0.1337
RCS-PSM 4 1 0.7265

69

“‘10 T T T T T T T
-l —&— NSOMS
—8— RC5-PSM
0} .
25 = = == £t £t =
= o} |
=
15 .
1o .
5 -
Wt | | 1 1 1 1 1 | |
1] 0z 0.4 06 0e 1 12 1.4 16 18 2
tirme ()
(a) Number of maintained peaks
145 T T T T T
—&— NE0ME
—E— RCS-PEM
1 = =) =5 <5 <5 =
o
o
=
05k .
¢! | | | | | | | | |
g 02 04 06 08 1 12 14 16 18 2
time (s}

(b) Maximum peak ratio
Figure 4.5 Convergence comparisons for F3 function: (a) the variation of

the number of maintained peaks and (b) the variation of the maximum
peak ratio during the NSOMS learning process.

70

T T T T T
® Final neurons
141 < Initial neurons ||
®
12k g
0 o g
o
B o] _
o
o
Bl & g
&) o]
11_ -
o]
2_ -
o o
o]
D_ -
) 1 1 1 1 1 1
7 il 2 B] il 12 14
(a) Projection result in 2D neuron space
13 T T T T T T
:D,
121 g
@ F(w, (k)
11k O:D,. .
1+ CICECRoToToT YoRoRC) g
nar g
naF g
07k g
PERREEODE®®
lEresseseeons T
05+ g
0 PEOVHOBOE S 7
| | | | | | | |
0 5 10 15 20 25 30 35 40 45

(b) Final neighborhood function values

Figure 4.6 The results obtained by the NSOMS for F4 function: (a)
projection result in the 2D neuron space, and (b) final neighborhood

function values.

71

4.4.2 Multiple Dynamic Trajectories Prediction

For a dynamic trajectory prediction problem, the goal may be to estimate the initial
position and velocity of a moving object using the measured data. For the trajectory
prediction of multiple targets, here we assume that the target detection has been carried
out in advance, and we focus on the estimation of the initial states of multiple moving
objects. Through a learning process, the NSOMS may determine a most probable initial
state of each target through repeatedly comparing the measured data with the predicted

trajectories derived from the possible initial states stored in the neurons of the SOM.

In this application, the nonlinear dynamic equation describing the trajectory of the
moving object and the measurement equation are as those described in Chapter 3. The

learning algorithm for multiple trajectories prediction is organized as follows.

Algorithm for multiple trajectory prediction based on the SOMS: Predict an
optimal initial state for the trajectory of every moving target using the measured position

data.

Step 1: Set the stage of learning & = 0. Choose H number of niches, N number of
neurons within each niche, and reference value P,. Estimate the ranges of the possible
position and velocity of the moving object, and randomly store the possible initial states

w”(0) into the neurons, where j =1,...,N, h=1,... H.

Step 2: Send w’(k) into the dynamic model, described in Egs.(3.25) and (3.28), to

compute E;-l (k).

Step 3: For each neuron j of every niche, compute its output O;l(k:)

72

otk =11, [Z v (3) — p?(l’)M (4.17)

where M is the number of the objects detected.

Find the winning neuron j7* with the minimum O;Z (k):

O (k) = min Oh (k) (4.18)
Step 4: Update the weight vectors of the winning neuron j* and its neighbors to every

niche, and update the positions of neurons of the entire network.

q
Step 5: If 3 d'(k) < P, for every niche, w’.(k) is determined to be as an effective
i=1
optimal solution with the duplicate optimal solutions excluded. The prediction process
outputs the predicted optimal initial states to the dynamic model to derive the object
h

trajectories. From Egs.(4.6) and (4.7), the new w (k) will be randomly regenerated and

then added into the set J°.

Step 6: Check whether the number of iterations is smaller than a pre-specified maximum
number of iterations. If it is not, let £ = k 4+ 1, and go to Step 2; otherwise, the
prediction process is completed and output optimal states of all objects. The final network
mapping provides the visualization of the distribution of the optimal states. In addition,
during each stage of learning, we perform a number of learning to increase the SOM
learning speed. This number of learning is set to be a large number in the initial stage
of the learning process, such that the NSOMS may converge faster at the price of more

oscillations, and decreased gradually to achieve smooth learning in later stages of learning.

73

To demonstrate the effectiveness of the proposed NSOMS and weight updating rule,
we performed a series of simulations for dynamic trajectory prediction based on using
the proposed NSOMS and two NSOMS without the proposed dynamic weight updating
rule (named as SOMSO-1 and SOMSO-2 by using the SOMO’s and SOSENSs’s weight
updating rules, respectively, in place of that of the NSOMS). The trajectory to predict
in the simulations was designed to emulate that of a missile. Its governing equations of
motion in the 3D Cartesian coordinate system are as those described in Chapter 3. The

ranges of the possible initial states w;(0) were estimated to be

1.14 x 105m < a1(0) < 2.14'x 10°m
25.75 x 105m < 25(0) < 26.75 x 10°m
15.9 x 105m < 23(0) < 16.9 x 10%n
1785m/s < x4(0) < 2285m/s
—180m/s < x5(0) < 820m/s
—2000m/s < xg(0) < 1000m/s.

(4.19)

Within the ranges described in Eq.(4.19), the possible initial positions and velocities of
the missile were selected and stored into the 1125 (5x225) neurons of the 2D SOM. We
consider three targets to be detected in the following simulations. The parameters of
NSOMS were set to be ny = 2, ng = 1, respectively. The additional adaptation term e,
described in Eq.(4.4), was set to be 0.1. For comparison, we set the same learning rate
as those in the NSOMS described in Sect. 4.4,1, and several parameters of the SOMSO-1
and SOMSO-2 were adjusted via a trial-and-error process to yield salient performance.

The number of learning is set to be 20 during each stage of learning.

We first applied the SOMS, SOMSO-1, and SOMSO-2 for trajectory prediction with
a good estimate of the initial state. Three ideal initial states of the missiles were assumed

to be within the estimated range. The variance of the measurement noise was set to be

74

(15m)?. Figure 4.7 shows the simulation results. The ideal and measured trajectories are
shown in Figure 4.7(a). These three methods predicted the initial state quite well and
thus resulted in very small estimated errors, except in the initial stage of the prediction,
as shown in Figure 4.7(b)-(d) (the estimated initial state error is shown for illustration).
We observed that the NSOMS converged faster than the other methods did. Figure 4.8
shows the neighboring relationship of neurons of the best three niches using the NSOMS.
In Figure 4.8(a), from a random distribution of neurons in the beginning of the learning,
the mapping structure gradually form three clusters along with the stage of learning.
Figure 4.8(b) shows how the neighborhood function D; and F(w;(k)) varied during the

SOM learning process, and eventually they are very close to each other.

In the second set of simulations, we investigated their performances for the condition
of a bad estimate of the initial state. The ranges of the possible initial states w;(0) were

estimated to be

1.94 x 105m < 2;(0) < 2.94 x 10°m
97.75 x 10°m < 25(0) < 28.75 x 10°m
16.9 x 10%m < 23(0) < 17.9 x 10%m
2285m /s < x4(0) < 2785m/s

500m/s < z5(0) < 1500m/s

0m/s < x6(0) < 3000m/s.

(4.20)

In this simulation, three ideal initial states were assumed to be outside of the estimated
range. The variance of the measurement noise was enlarged to be (50m)2. The setting of
all parameters was set to be the same as them in first simulation. Figure 4.9(a) shows the
ideal and measured trajectories and Figure 4.9(b)-(d) the estimated initial error. From
the results, the influence of the bad estimate on these methods was mostly at the initial

stage of the prediction. After the transient, the NSOMS still managed to find the optimal

75

10" m

5005 — measured
=l | ideal
4985
L]
4.839
4985 Target 1
4.58 Target 3 Target 2

(a) Ideal and measured TBM trajectories

Figure 4.7 Simulation results for the multiple trajectories prediction using
the NSOM, SOMSO-1, and SOMSO-2 with a good estimate of the initial
state: (a) the ideal and measured TBM trajectories, (b)-(d) the estimated
initial state error by using the NSOM, SOMSO-1, and SOMSO-2.
(Cont.)

76

12000

10000

000 -
6000 H

4000]

Estimated position error (m)

2000 |

Estimated position error (m)

Estimated position error (m)

(d) SOMSO-2

Figure 4.7 Simulation results for the multiple trajectories prediction using
the NSOM, SOMSO-1, and SOMSO-2 with a good estimate of the initial
state: (a) the ideal and measured TBM trajectories, (b)-(d) the estimated
initial state error by using the NSOM, SOMSO-1, and SOMSO-2.

77

Initial neurons
@ Final neurons

"

« £k
o i
e
#
x
W&xﬁw ;B R
et B ixawf %
o o R
3 kel
. g F o

30
8-

25
700

Sty

o F(w, (k)
H:p.
BO0

20

500

15

400

300
78

10

200
(b) Final neighborhood function values

(a) Projection result in 2D neuron space

100

143

Tad
08
08
07
06
[IR=R
0.4

Figure 4.8 Final results obtained by the NSOMS for the multiple
trajectories prediction: (a) projection result in 2D neuron space and (b)

finial neighborhood function values.

initial states of all targets. Meanwhile, we also observed that the NSOMS converged very
faster than the other methods did. As for the SOMSO-1 and SOMSO-2, they converged
very slowly as the optimal initial state did not fall within the estimated range. In Figure
4.10(a), from a random distribution of neurons in the beginning of the learning, the
mapping structure gradually form three clusters along with the stage of learning. Figure
4.10(b) shows how the neighborhood function D; and F(w;(k)) varied during the SOM

learning process, and eventually they are very close to each other.

To further demonstrate the NSOMS search ability, we used four different network sizes
and learning parameters to run these optimization algorithms for the dynamic trajectory
prediction. We only consider one target for comparison. The ideal initial state of the
missile was assumed to be within the estimated range, described in Eq.(4.19). Figure
4.11 shows how the population size affects for these algorithms. We observed that the
NSOMS performs better than the SOMSO-1 and SOMSO-2. As Figure 4.11 shows, the
SOMSO-1 and SOMSO-2 did not converge to the optimal state when the network size was
very small. Figure 4.12 show the performance with the different learning parameters for
the influence of the these algorithms under a fixed network size (1 x 225). As Figure 4.12
illustrates, we observed that the large learning parameter may speed up the learning of the
NSOMS. Although a small learning parameter made the NSOMS converge slight slowly,
it still converged faster than the SOMSO-1 and SOMSO-2 did. Table 4.2 shows that
the different network (population) size and learning parameter affect the learning result
for the NSOMS, SOMSO-1 and SOMSO-2 in detail. We calculated the RMS (Root-
Mean-Square) value of the error between the ideal and predicted trajectories at k = 100
to evaluate their performance. The comparison results of average of repeated 30 times
are listed in Table 4.2. We observed that the NSOMS performed better than the other

methods did. Figure 4.13 shows the performance of 5 runs with the same initial weights

79

«10°m

5.005
— measured

N ideal

4995

]

4589
4.985 Target 1
498 Target 3 Target 2

.01

(a) Ideal and measured TBM trajectories

Figure 4.9 Simulation results for multiple trajectories prediction using the
NSOM, SOMSO-1, and SOMSO-2 with a bad estimate of the initial state:
(a) the ideal and measured TBM trajectories, (b)-(d) the estimated initial
state error by using the NSOM, SOMSO-1, and SOMSO-2. (Cont.)

80

18000 -

16000 (4
14000
12000
10000
000
000

4000

Estimated position error (m)

2000

(b) NSOMS

Estimated position error (m)

(c) SOMSO-1

Estimated position error (m)

(d) SOMSO-2

Figure 4.9 Simulation results for multiple trajectories prediction using the
NSOM, SOMSO-1, and SOMSO-2 with a bad estimate of the initial state:
(a) the ideal and measured TBM trajectories, (b)-(d) the estimated initial
state error by using the NSOM, SOMSO-1, and SOMSO-2.

81

30

T T T
* Initial neurons
@ Final neurons
251 .
ES P e 3 # = kS o,
i%%?&xggwmx%ﬁ R Rt TR Sy
H x i
el g}% Lty T %{%%&x“ g 1
* Fols “’ig%;:‘x oo 1t WA §x)0g&>§%%;ﬁ;>&)§ e
e e B g T R e e e
3 E 3 it i B w i e 3
i v o AR S B B
15;§>< X)gﬁ(&);gtxxxgk %gﬁ‘x - %’@&%‘ x;f P x:‘s& XX)S?Q;;MW :&X& i&ﬁ .
i G v ﬁﬁ;x %;éx"xx Er 5k , . &xig@‘x
;;};‘ %%%%%{é%ﬁ E%gg?;f%ﬁ;%xgéﬁ % §xx§)?%x fx %&x ’Sg:x xg:x
« : e o 2 g K
e e T Rt g Koot %x
LA g x%’&»&‘ % ok e %(«x &fxxxg st e -
U A ol 5 S %ﬂ%f%g S e : o mﬁggx F
¥ ép; o w s §{)§’§§x%x§§§x x;;gxx CARCRRLY shmSal
SRR R R L e
E i %3 e B X s W B
Rt S S B S S ey i
R R KRR ool B0 5% ROF P g
A R e e
o .. 5 FUE s bl
1] % xxx @;&X & xxxxx%)?& % A% %wwﬁ % x\&*xxr >><<:><
0 5 10 15 20 25
(a) Projection result in 2D neuron space
143 T T T I
= D,
12+ ' H
O F(w, (k)
11k m.D i
1+ i — 3
LELS .
08+ 8
07+ .
0B+ .
n&r .
[—————————
[0, —— I I \ I
0 100 200 300 400 500 800 700

(b) Final neighborhood function values

Figure 4.10 Final results obtained by the NSOMS for the multiple
trajectories prediction : (a) projection result in 2D neuron space and (b)
finial neighborhood function values.

82

120
—— NEOMS
------- SOMS0-1
' - t
L SOMS0-2
|
g i
= i
S :
= |
2 6,
o
5] ‘
5
£
z
20 30 40] B0 70 &0 90 100
k
(a) H=1, N=3x3
x10°
B=
NSOMS
------- SOMS0-1
ik — - = 20MS0-2
|
s &
b
=
S
2 &
=
Q
5
E
4 4l
i
i e T e L e enetnd ieletilttfiend |
20 30 40 &0 B0 70 &0 50 100

k

(b) H=1, N=5x%5

Figure 4.11 Performance for different network sizes using the NSOMS,
SOMSO-1, and SOMSO-2. (Cont.)

83

w10

12
——nSOMS
------- SOMS0-1
ol - -~ 30MSO2
£ gl
5
£
)
=
kS
a B -
=}
(="
el
jo)
g
E ol
Z
m
20 30 40 50 T 70 0 50 100
k
(c) H=1, N=10x10
x10°
12
NSOMS
------- SOMS0-1
ol - -~ 30MS0-2
O
g
L)
& B
z
{="
=
2
< -
I
@
: : : : : : : : .
20 30 40 50 B0 70 80 a0 100

(d) H=1, N=20x20

Figure 4.11 Performance for different network sizes using the NSOMS,
SOMSO-1, and SOMSO-2.

84

11_
———N30MS
------- S0MS0-1
351 ——— 50MS02
E 4
5
£
o [\
g 2sH
z
o
T 2t
g
E
4 1s5f
1,
osh
. . . ‘ ‘ .
i T 70 0 50 100
(@ n,(k)=0.2
xi0”
4,
NSOMS
------- S0MS0-1
350 ——— 50MS0-2
E 9
g
5
S 25H
8
2
a 2H
=
j5)
=
£
2 15k
m K
1_
nst
D L i m— I L L L L L]
i 10 20 30 40 50 B0 70 80 a0 100

(b) 1,(k)=0.4

Figure 4.12 Performance for different parameters using the NSOMS,
SOMSO-1, and SOMSO-2. (Cont.)

85

11 —
———N30MS
------- S0MS0-1
350 ——— 50MS02
z
5
=
5 a5
g
Z
o 2H
=
j2]
g
S 15K
m
1 -
osh
q ;
i 20 30 40 50 T 70 a0 50 100
k
(¢) n,(k)=0.6
w10
4 —
——— N30MS
------- S0MS0-1
350 ——— S0MS0-2
3 H
£ s
=}
£
L)
g 2H
2
o
B 15fF
<
£
45
et . . : : : .
30 40 =0 &0 70 80 a0 100

(d) n,(k)=0.38

Figure 4.12 Performance for different parameters using the NSOMS,
SOMSO-1, and SOMSO-2.

36

Table 4.2: Comparison results for NSOMS, SOMSO-1, and SOMSO-2

on the dynamic trajectory prediction.

Network | Learning Mean and Standard Deviation of RMS Values (m)
size rate
H=1 7.(k) NSOMS SOMSO-1 SOMSO-2

0.2 30.991+6.008 6.161x10° £1.697x10° 9.423x10° +4.346x10°

N=2x2 0.5 30.088+1.385 6.811x10* £5.189x10* 6.067x10° +2.913x10’
0.8 26.325+1.047 6.152x10* £5.016x10* 6.034x10° +2.162x10°
0.2 25.861+1.324 1.445x10° £1.476x10° 2.571x10% £3.421x10?

N=5x5 0.5 25.641+0.906 1.645%10° £2.201x10> 1.502x10* +1.239x10°
0.8 25.985+0.937 1.391x10° £1.248x10> 1.165x10% +1.124x10?
0.2 25.981+1.233 1.056x10> £1.016x10> 44.012+35.543

N =10x10 0.5 25.711+0.786 25.838+0.752 25.834+0.761
0.8 25.775+1.075 25.834+1.258 25.845+1.281

87

for the influence of three algorithms under a quite small network size (H = 1, N = 2 x 2).
Figure 4.14 shows the performance of 5 runs with the different initial weights. From
the results shown in Table 4.2 and Figures 4.11-4.14, the NSOMS was more robust and

converged faster than the other two algorithms did.

We also performed simulations based on using the RCS-PSM. We modified the in-
ternal parameters of the PSM method to enhance its search abilities. However, it was
not that straightforward to determine its parameters properly, and the process was time-
consuming. The SOMSO-1, SOMSO-2, and RCS-PSM might not be that effective under
such circumstances that the ranges of the possible initial states may be uncertain and
varying in noisy, unknown environments. We thus conclude that the NSOMS performed
better than the SOMSO-1, SOMSO-2, and RCS-PSM for this dynamic trajectory predic-

tion application, and the proposed dynamic weight updating rule was effective.

As a summary, in this chapter, a niching SOM-based search algorithm has been pro-
posed for identification and visualization of multiple optimal solutions. Through reducing
the network size greatly for search in the high-dimensional space, we have also proposed
a niche weight updating rule to raise the learning efficiency. The final network struc-
ture allows us to easily classify the optimal solutions into clusters, thus yielding useful

information for solution selection.

38

Estimated position error (m)

(a) SOMSO-1

Estimated position error (m)

30 40 S0 B0 o a0 20 100

(b) SOMSO-2

Estimated position error (m)

L |
10 20 30 40 a0 B0 0 a0 20 100

(¢) NSOMS

Figure 4.13 Performance of 5 runs with the same initial weights using the
NSOMS, SOMSO-1, and SOMSO-2.

89

Estimated position error (m)

s0 B0 70 a0 a0 100
kK
(2) SOMSO-1
g
g
o)
=]
L
Q.
=
L
<
E
53
T
S0 BO 7o 20 S0 100
k
(b) SOMSO-2
g
5
=
[5)
=
2
[="
=
3
<
E
@
m
N
DD 10 20 30 40 S0 E]:' 7:3 Ei::l SID # I‘lll:l
kK
(c) NSOMS

Figure 4.14 Performance of 5 runs with the different initial weights using
the NSOMS, SOMSO-1, and SOMSO-2.

90

Chapter 5

Conclusion

In this dissertation, we have proposed an SOM-based search algorithm (SOMS), which
can be used for both static and dynamic functions in real time. To achieve high learn-
ing efficiency for system parameters in different working ranges, we have also proposed a
new SOM weight updating rule. An intelligent radar predictor for trajectory estimation is
first developed for application. With a simplified target dynamic model, the unsupervised
SOM in the predictor can achieve salient prediction in noisy, unknown environments. The
SOM is more robust to the uncertainty of the dynamic model than Kalman filter and GA.
Furthermore, the SOM’s search abilities have been adequately exploited in a multimodal
domain. A new niche method (deterministic competition) to extend the ability of the
SOM-based search algorithm has been proposed for identification of multiple optimal so-
lutions. In order to reduce the network size, another new SOM weight updating rule
is proposed to enhance the learning efficiency. With the dynamic weight updating, the
NSOMS converges faster than other algorithms such as SOMO, KSOM-ES, SOSENs and
RCS-PSM. Moreover, a new adaptive mapping model is proposed to visualize the distri-

bution and structure of the optimal solutions into the 2D neuron space. In our proposed

91

NSOMS, only two learning parameters need to be determined in the weight and position
updating rules. The applications of the proposed NSOMS on both function optimization
in a multimodal domain and dynamic trajectory predictions involving multiple targets

have clearly demonstrated its effectiveness.

5.1 Future Research

In this dissertation, by combining the SOM with the dynamic model, the SOM is able to
tackle the spatiotemporal data. The SOM has been applied to search optimal parameters
for dynamic systems. To further exploit its search ability, in one of the future works,
we will apply the NSOMS for system identification and control problems. Because the
current searching process includes the weight updating rules and the parameters of learn-
ing, it is not easy to appropriate the learning rate, number of neurons, and termination
criteria. Although these parameters can be selected through a trial-and-error process, the
time response of the learning affects the performance of the dynamic systems for system
identification and control problems. Thus, we will also discuss the convergence issue in
details. As the SOM also possesses an appealing feature in responding to distinct proper-
ties exhibited by the input data through forming several corresponding clusters, another
worthwhile future work will be to extend the proposed NSOMS for a wide application

such as image processing, speaker recognition, machine learning, and others.

92

Bibliography

1]

[7]

A. P. Azcarraga, T. N. Yap, Jr., J. Tan, and T. S. Chua, “Evaluating Keyword
Selection Methods for WEBSOM Text Archives,” IEEE Trans. on Knowledge and

Data Engineering, Vol. 16(3), pp. 380-383, 2004.

G. A. Barreto and A. F. R. Araujo, “Identification and Control of Dynamical Systems
Using the Self-Organizing Map,” IEEE Trans. on Neural Networks, Vol. 15(5), pp.

1244-1259, 2004.

A. G. Barto, “Reinforcement Learning and Adaptive Critic Methods,” Handbook of
Intelligent Control, White and Sofge, eds., Van Nostrand-Reinhold, New York, pp.

469-491, 1992.

G. A. Carpenter and S. Grossberg, “The ART of Adaptive Pattern Recognition by

a Self-Organizing Neural Network,” IEEE Computer, Vol. 21(3), pp. 77-88, 1988.

C.B. Chang and J. A. Tabaczynski, “Application of State Estimation to Target Track-

ing,” IEEE Trans. on Automatic Control, Vol. 29(2), pp. 98-109, 1984.

L. Chin, “Application of Neural Networks in Target Tracking Data Fusion,” IEEE

Trans. on Aerospace and Electronic Systems, Vol. 30(1), pp. 281-287, 1994.

Y. Y. Chen and K. Y. Young, “An Intelligent Radar Predictor for Hight-speed

Moving-target Tracking,” International J. Fuzzy Systems, Vol. 6(2), pp. 90-99, 2004.

93

[8] A. D. Cioppa, C. D. Stefano, and A. Marcelli, “On the Role of Population Size and
Niche Radius in Fitness Sharing,” IEEE Trans. on Evolutionary Computation, Vol.

8(6), pp. 580-592, 2004.

[9] M. Efe and D. P. Atherton, “Maneuvering Target Tracking with an Adaptive Kalman

Filter,” IEEE Conference on Decision and Control, pp. 737-742, 1998.

[10] N. Eldredge and S. J. Gould, “Punctuated equilibria: an alternative to phyletic

gradualism”, Models in Paleobiology, pp. 82-115, 1972.

[11] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal

function optimization,” Proceedings of 2nd ICGA, pp. 41-49, 1987.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison Wesley, New York, 1989.

[13] M. Hagenbuchner and A. C. Tsoi, “A Supervised Self-Organizing Map for Struc-

tures,” IEEE Conference on Neural Networks, pp. 1923-1928, 2004.

[14] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New York,

1994.

[15] H. Igarashi, “Visualization of Optimal Solutions Using Self-Organizing Maps in Com-
putational Electromagnetism,” IEEE Trans. on Magnetics, Vol. 41(5), pp. 1816-1819,

2005.

[16] H.-D. Jin, K.-S. Leung, M.-L. Wong, and Z.-B. Xu,“An Efficient Self-Organization
Map Designed by Genetic Algorithms for the Traveling Salesman Problem,” IEEE
Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 33(6), pp. 877-

888, 2003.

94

[17]

[19]

[20]

[21]

[22]

23]

[24]

[25]

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” IEEE Int. Confer-

ence on Neural Networks, pp. 1942-1948, 1995.

J. K. Kim, D. H. Cho, H. K. jung, and C. G. Lee, “Niching Genetic Algorithm
Adopting Restricted Competition Selection Combined with Pattern Search Method”,

IEEE Trans. on Magnetics, vol. 38(2), pp. 1001-1004, 2002.

K. J. Kim and S. B. Cho, “Fusion of Structure Adaptive Self-Organizing Maps Using

Fuzzy Integral,” IEEE Conference on Neural Networks, pp. 28-33, 2003.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-

ing,” Science, Vol. 220, pp. 671-680, 1983.

T. Kirubarajan, H. Wang, Y. Bar-Shalom, and K. R. Pattipati, “Efficient Multisensor
Fusion Using Multidimensional Data Association,” IEEE Trans. on Aerospace and

Electronic Systems, Vol. 37(2), pp. 386-400, 2001.
T. Kohonen, Self-Organizing Map, Springer, Berlin, Germany, 1997.

D.-C. Liaw, Y.-W Liang, and C.-C. Cheng, “Nonlinear Control for Missile Terminal
Guidance,” ASME J. Dynamic Systems, Measurement, and Control, Vol. 122(4), pp.

663-668, 2000.

J. Laaksonen, M. Koskela, and E. Oja, “PicSOM — Self-Organizing Image Retrieval
with MPEG-7 Content Descriptors,” IEEE Trans. on Neural Networks, Vol. 13(4),

pp. 841-853, 2002.

R. Storn and K. Price, “Differential Evolution - A simple and efficient global optimiza-
tion over continuous spaces,” Journal of Global Optimization, Vol 11. pp 341-359,

1997.

95

[26] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-Dimensional Neural Net

[27]

28]

[29]

[31]

32]

[33]

for Learning Visuomotor Coordination of a Robot Arm,” IEEE Trans. on Neural

Networks, Vol. 1(1), pp. 131-136, 1990.

R. L. Moose, H. F. Vanlandingham, and D. H. McCabe, “Modeling and Estima-
tion for Tracking Maneuvering Targets,” IEEE Trans. on Aerospace and Electronic

Systems, Vol. 15(3), pp. 448-456, 1979.

S. W. Mahfoud, “Niching Methods for Genetic Algorithms,” PhD thesis, University

of Illinois at Urbana Champaign, 1995.

M. Milano, P. Koumoutsakos, and J. Schmidhuber, “Self-Organizing Nets for Opti-

mization,” IEEE Trans. on Neural Networks, Vol. 15(3), pp. 758-765, 2004.

K. Obermayer and T. J. Sejnowski, ed., Self-Organizing Map Formation: Foundation

of Neural Computation, MIT Press, Cambridge, 2001.

J. C. Principe, L. Wang, and M. A. Motter, “Local Dynamic Modeling with Self-
Organizing Maps and Applications to Nonlinear System Identification and Control,”

Proceedings of the IEEE, Vol. 86(11), pp. 2240-2258, 1998.

K. V. Ramachandra, “A Kalman Tracking Filter for Estimating Position, Velocity
and Acceleration from Noisy Measurements of a 3-D Radar,” Electro Technology,

Vol. 33, pp. 66-76, 1989.

J. M. Roberts, D. J. Mills, D. Charnley, and C. J. Harris, “Improved Kalman Filter
Initialisation Using Neurofuzzy Estimation,” International Conference on Artificial

Neural Networks, pp. 329-334, 1995.

96

[34]

[35]

[36]

[39]

[40]

B. Sareni, L. Krahenbuhl, and A. Nicolas, “Niching genetic algorithm for optimization
in electromagnetics I. Fundamentals,” IEEE Trans. on Magnetics, Vol. 34(5), pp.

2984-2991, 1998.

B. Sareni and L. Krahenbuhl, “Fitness Sharing and Niching Methods Revisited,”

IEEE Trans. on Evolutionary Computation, Vol. 2(3), pp. 97-106, 1998.

D. Sbarbaro and D. Bassi, “A Nonlinear Controller Based on Self-Organizing Maps,”

IEEE Int. Conference on Systems, Man and Cybernetics, pp. 1774-1777, 1995.

H. Shah-Hosseini and R. Safabakhsh, “TASOM: a New Adaptive Self-Organization
Map,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.

33(2), pp. 271282, 2003.

M. C. Su and H. T. Chang, “Fast Self-Organizing Feature Map Algorithm,” IEEE

Trans. on Neural Networks, Vol. 11(3), pp. 721-733, 2000.

M. C. Su and H. T. Chang, “A New Model of Self-Organizing Neural Networks and
its Application in Data Projection,” IEEE Trans. on Neural Networks, Vol. 12(1),

pp- 153-158, 2001.

M. C. Su, Y. X. Zhao, and J. Lee, “SOM-Based Optimization,” IEEE Int. Conference

on Neural Networks, pp. 781-786, 2004.

J.A. Vasconcelos, R. R. Saldanha, L. Krahenbiihl, A. Nicolas, “Genetic Algorithm
Coupled with a Deterministic Method for Optimization In Electromagnetics,” IEEE

Trans. on Magnetics, VO1.33(2), pp. 1860-1863, 1997.

J. A. Walter and K. I. Schulten, “Implementation of Self-Organizing Neural Networks
for Visuo-Motor Control of an Industrial Robot,” IEEE Trans. on Neural Networks,

Vol. 4(1), pp. 86-96, 1993.

97

[43]

[44]

[45]

[46]

[47]

S. Wu and T. W. S. Chow, “PRSOM: a New Visualization Method by Hybridizing
Multidimensional Scaling and Self-Organizing Map,” IEEE Trans. on Neural Net-

works, Vol. 16(6), pp. 1362-1380, 2005.

S. Wu and T. W. S. Chow, “Self-Organizing and Self-Evolving Neurons: A New
Neural Network for Optimization,” IEEE Trans. on Neural Networks, Vol. 18(2), pp.

385-396, 2007.

P. Xu, C. H. Chang, and A. Paplinski, “Self-Organizing Topological Tree for On-
line Vector Quantization and Data clustering,” IEEE Trans. on Systems, Man and

Cybernetics, Part B: Cybernetics, Vol. 35(3), pp. 515-526, 2005.

C.-D. Yang, F.-B. Hsiao, and F.-B. Yeh, “Generalized Guidance Law for Homing
Missles,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 25(2), pp. 197-

212, 1989.

H. Yin, “ViSOM - a Novel Method for Multivariate Data Projection and Structure

Visualization,” IEEE Trans. on Neural Networks, Vol. 13(1), pp. 237-243, 2002.

98

Z - = (Yi-Yuan Chen)

vl A SRR B A BEE Y IREZ B E AL
iﬁié?éﬁﬁ

1A FIFciptr4E= A1 EL 163 & 2 5 1 5L

@i 1y1yuan. ece90g@. nctu. edu. tw

U

1. 81 # 97 ~84 & 6 * Bzt hd el $8K1

2. 84 % 9" ~88 & 6 * PRI A BT RE)

3. 88# 9% ~90 & 6 * Bz <~ FF & ird|a e gt

4, 90 &# 9 ~97 & 7 2 =2 B a1 a8 (18
5. 97 # 3 * ~ now 1 EHMF Y B PR o 1 fRfE

w4 Fiv

BT~

[1] Y.Y. Chen and K.Y. Young, “An SOM-Based Algorithm for Optimization with
Dynamic Weight Updating,” International Journal of Neural Systems, Vol. 17(3),
pp. 171-181, 2007.

[2] Y.Y. Chen and K.Y. Young, “An Intelligent Radar Predictor for High-Speed
Moving-Target Tracking,” International Journal of Fuzzy Systems, \ol. 6(2), pp.
90-99, 2004.

A= R

[1] Y.Y. Chen and K.Y. Young, “An SOM-Based Search Algorithm for Dynamic
Systems,” 9th Joint Conference on Information Sciences, pp. 1212-1215, 2006.

[2] Y.Y. Chen and K.Y. Young, “Applying SOM as a Search Mechanism for Dynamic
System,” pp. 4111-4116, IEEE Conference on Decision and Control, 2005.

[3] Y.Y. Chen and K.Y. Young, “An Intelligent Radar Predictor for High-Speed
Moving-Target Tracking,” IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering Proceedings, pp. 1638-1641,
2002.

BN € R v

[1] Y.Y. Chen and K.Y. Young, “F &4 § E7p s BNEHFEEFH P L2277
Ninth National Conference on Fuzzy Theory and its Applications, pp. 598-603,
2001.

[2] Y.Y. Chen and K.Y. Young, “F 4|5 &5 & B3 % 5 P £2 ¢ 5" Tenth
National Conference on Fuzzy Theory and its Applications, pp. 5-10, 2002.

99

	論文封面
	元表目錄1_電字
	Phdpaper080717_4.pdf
	博 士 生

