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Long-Range Prediction for Real-Time MPEG Video Traffic:
An H; Filter Approach
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Abstract—A novel prediction scheme is proposed for real-time
MPEG video to predict the burst and long-range dependent
traffic. The trend and periodic characteristics of MPEG video
traffic are fully captured by a proposed stochastic state-space
dynamic model. Then a recursive H., filtering algorithm is
proposed to estimate traffic for long-range prediction. Simulation
results based on real MPEG traffic data show that the proposed
scheme has superior performance and lower complexity than
some adaptive neural network methods, such as TDNN, NARX,
and Elman neural networks.

Index Terms— H ., filter, long-range dependence, MPEG video,
state-space method.

1. INTRODUCTION

N future broad-band communication networks, video ap-

plications are expected to be the major source of traffic
data. The characteristics of video data for different applications
have been the subject of many performance studies [1]. It has
been shown recently [2] that most long video sequences exhibit
long-range dependence. Furthermore, variable-bit-rate (VBR)
video traffic can be nonstationary [3]. Due to the properties of
long-term dependence and nonstationarity, it is still not easy to
develop an effective prediction scheme for long-range predic-
tion of VBR traffic.

Various prediction-based techniques have been proposed in
recent years, for examples, recursive least square (RLS) [4],
time delay neural network (TDNN) [4], [5], pipelined recur-
rent neural network (PRNN) [6], adaptive linear prediction [7],
adaptive LMS algorithm for scene change detect [8], and re-
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current neural network [9]. Comparison of various neural net-
work architectures on prediction of MPEG traffic was made in
[10]. Note that for the works in [5]-[10], oft-line training of the
neural networks is required in order to perform traffic predic-
tion. Also, these techniques in [4]-[10] mostly decompose an
MPEG trace into I, P, and B frame sequences and then predict
these sequences separately. MPEG traffic representation using
an I — P — B composite statistical model was studied in [8],
[11].

In this paper, by the periodic property of the MPEG encoded
sequence, a composite MPEG traffic data is considered as a se-
quence consisting of a trend component, two periodic compo-
nents, and a residual term, which can be fitted by a state-space
model with these components being included in the state vector.
Therefore, the traffic prediction problem becomes a state esti-
mation problem. Since the statistics of the noises in the state-
space model are usually unknown or uncertain, the trend and pe-
riodic components will be estimated by the robust H ., filtering
method [12] for long-range prediction of the MPEG traffic.

The paper is organized as follows. In Section I, we shall show
the characteristics of a MPEG video trace can be fully captured
by a stochastic dynamic state-space model with traffic param-
eters in the state vector. With this model, traffic prediction is
then transformed into a state estimation problem. In Section III,
an H filter approach is presented to estimate the traffic pa-
rameters and predict the traffic. Simulation study is made in
Section IV. Conclusions are given in Section V.

II. STATE-SPACE SIGNAL MODEL FOR MPEG-ENCODED VIDEO
SEQUENCE AND THE PREDICTION PROBLEM

An MPEG video stream is divided into the units called
group of picture (GOP) which contain intraframe-coded frames
(I-frames), interframe-coded frames (P-frames), and interpola-
tive frames (B-frames). An example of the coding modes of a
video sequence could be [1]

IBBPBBPBBPBB IBBPBBP...... 1)

in which the period of the coding mode is N = 12. Hence,
an MPEG video sequence y(n) is dominated by a long-term
periodic component (I frames) with a period N = 12 and a
short-term periodic component (P frames) with a period K =
3. The remainder can be characterized by a local trend and a
noise. Therefore, the £;-step ahead video traffic consists of the
following four components

y(n+ta) = a(n+ta)+c(ntta)+d(n+ta)+w(ntts) (2)

where y(n + t4) denotes the number of bits of the (n + t4)-th
frame, a(n +t4) the local linear trend component, ¢(n +t4) the
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long-term periodic component, d(n+t,) the short-term periodic
component, and w(n + t4) the residual modeling error or noise.
The prediction step t; depends on application conditions such as
the structure of the video, the transmission delay, and the delay
in negotiating the rate with the network.

The local linear trend can be modeled as [13]

a(n +tqg) = a(n) + b(n)tq + v(n) 3)

where a(n) denotes the trend at frame index n, b(n) the trend
slope, and v(n) the driving noise. Since the trend slope b(n) is
random in practical video sequences, it can be modeled by the
following random walk

b(n+1)="b(n)+u(n) 4)

where u(n) is an i.i.d. process with zero mean. Next, we con-
sider the periodic components ¢(n + t4) and d(n + t4) in (2).
From the long-term periodic component of an MPEG-encoded
video sequence in (1), we have the following [13]

n+N

Y oelt+ta)=0 (5

t=n+1

cn+tq) =c(n+ts— N),

where N denotes the long-term period. Similarly, the short-term
periodic component can be described by

n+K

> dt+ta)=0 (6)

t=n+1

d(n—l—td) = d(n—l—td — K),

where K denotes the short-term period.
For simplicity of analysis, the one-step ahead prediction
model with ¢; = 1 is discussed at first, i.e., we consider

yin+1)=an+1)+ec(n+1)+dn+1)+wn+1). (7)
With (3)—(7), a state-space model for y(n) is given as

X(n+1)=FX(n)+ BV(n)
y(n) =GX(n) +w(n) (®)

where

F = diag{F\, s, Fy}, Fy = [1 1}

0 1
[ =11 (v—2) -1 ]
Fy =
2 In_» O(n—2)x1
[ —11 (5 -1
F. = X(K—2) :|
ST Ik O(r—2)x1
- T
p=| Is Osxv-2) O3 03><(K—2)}
101x3 Oix(v—2)y 1 Oixx-2

X(n) = la(n) b(n) c(n) c(n—1) -+ ¢(n — N +2)
d(n)d(n—1) --- dn — K +2)]"
V(n) = [v(n) u(n) r(n) m(n)]"
G=1[10101(n-2 1014k 2)] - )

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 12, DECEMBER 2008

In the above equation, I is the m x m identity matrix, 11y
is the 1 X m vector with each entry being 1, and Oz x5 is the
m X p matrix with all zero entries. Note that to allow ¢(n) and
d(n) for random deviations from strict periodicity, noises 1 (n)
and r(n) are added, respectively.

The next problem is to estimate the traffic parameters X (n)
from the video sequence {y(n)} in (8). Once the estimate

X(n) = [a(n) B(n)en)en—1) - &n - N +2)

~

dm) dn—1) - dn - K +2)]

is obtained, from (3), we can obtain the ¢,4-step ahead prediction
of the local linear trend as

a(n + tg) = a(n) + tab(n) (10)
and from the periodicity in (5) and (6), we get

én+tqg) =é(n+tq—N)

d(n +tq) =d(n +ty — K) (11)

Therefore, from (2), we can get (n + t4) as follows:

G(n+tq) = a(n) +tgb(n) + é(n+tg — N) + d(n+t4 — K).
(12)

Now it remains to estimate X (n) from the received sequence
y(n) based on the state-space model in (8).

III. LONG-RANGE TRAFFIC PREDICTION BASED ON H ., FILTER

The covariance matrices of V(n) and w(n) are usually un-
known beforehand. In this situation, a new approach based on
the H, filtering [12] is presented for state estimation without
a priori knowledge of noise statistics. The measure of the H,
estimation performance is then given by

My 9
2 le(n)ll
J = n=0

k@ -xo + X (V@I + )

(13)

A

where e(n) = X (n)— X (n), X (0)— X (0) represents the initial
estimation error, and M, is thAe data size. The H, filter will
search the optimal estimation X (n) of X (n) so that

min
X(n)

max
V(n),w(n)
X(0)eRN+K

J<r? (14)

where > 0 is a prescribed level of noise attenuation. The H
filtering algorithm to solve our problem is given by [12]

Re(n):[l 02}+[G]P(n—1)[GT LT a5

0 —r L
H(n)=P(n—1)G" (1+GP(n—1)G")"
P(n)=FP(n—-1)F'+8°BBY—FP(n—1)

e
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X(n) = FX(n—1)+H(n) (y(n)—GFf((n—l)) (18)

} P(n—-1)FT (17)

where H(n) is the gain of the H., filter, Xo = 0,
L =110 - 0]1x(n+K). and (3% is a free design param-
eter. For the existence of the H, filter, P(n) needs to satisfy

P'n)=P ' (n-1)+G"G—r"2L"L >0. (19

After the video parameter estimate X (n) is calculated by the
H. filter, we can get the ¢4-step ahead traffic prediction y(n +
tq) from (12).

IV. SIMULATION STUDY

In the simulation study, we shall demonstrate the superior pre-
diction ability of the proposed H filtering algorithm by com-
parison with some adaptive prediction schemes based on dif-
ferent neural networks. The prediction performance of these al-
gorithms are examined through comparison by simulation using
various real MPEG-1 and MPEG-4 video traces, being available
in the public domains! [14]. These chosen traces contain quite a
diverse mixture of materials ranging from low complexity mo-
tion scenes to those with very high action. Before presenting
simulation results, some prediction schemes based on dynamic
neural networks are briefly described in the following.

A. Prediction by Using Dynamic Neural Networks

The dynamic neural networks [15], which are used for per-
formance comparison, are briefly described in the following.

1) The focused time-delay neural network (FTDNN): We
use an FTDNN with one input, 12 delay taps at the input,
24 neurons at the first layer, and one neuron at the output
layer. The number of tuning parameters in the consid-
ered FTDNN is 360 including 312 weights and 48 bias
constants.

2) The nonlinear autoregressive network with exogenous
inputs (NARX): Here we use an NARX network with
one input, 12 delay taps for the input, 12 delay taps for
the output, 24 neurons at the first layer, and one neuron at
the output layer. The number of tuning parameters in the
considered NARX network is 648 including 600 weights
and 48 bias constants.

3) The Elman network: We adopt an Elman network with
12 inputs, 24 neurons at the first layer, and one neuron at
the output layer. The number of tuning parameters in the
considered Elman network is 936 including 888 weights
and 48 bias constants.

For the three networks, the nonlinear activation function at
the first layer is the hyperbolic tangent sigmoid function and the
activation function at the output layer is linear. In general, the
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nonlinear function between the input y(n) and the output g(n)
of the considered neural networks can be defined as

g(n) :f(qsg(n - 1)¢y(n - 1)7VV7b)
bg(n—1)=[g(n —1),9(n—2),...,9(n —ny)]
py(n—1) = [y(n —1),y(n —2),...,y(n —ny)]

where n,, = 12, W denotes the set of weights, and b is the set
of bias constants. For the NARX network, we have n, = 12;
while for the other two networks, n, = 0. Note that the settings
of n, and n, are due to the fact that the period of the considered
GOP structure is 12. The weights W and biases b are tuned in
an adaptive manner. For a new arrival y(n) of the MPEG traffic,
W and b are tuned with one pass by using the scaled conjugate
gradient backpropagation training method [15] to obtain W (n)
and b(n) so that

[y(n) = f (dg(n—1),¢y(n — 1), W,b))?

is minimized. After tuning the weights and biases, the neural
network can be used to recursively construct ¢4-step ahead pre-
diction of the MPEG\ traffic y(n) by

g(n + td) = f (()ng(TL - 1)7 QS;(’I”L + td - 1)7 W(TL) b(n))

and ¢, (n +tq —1)issetas [y(n),...,y(n+1—mn,)], [G(n +
td_l): st 7g(n+1)>y(n) st 7y(n+td_nll)]’ and [g(n—i—td_

and n, < tg4, respectively.

B. Comparisons of Prediction Performance

The parameters in the H, filter are set as N = 12, K =
3,2 = 3 x 1073, and r = 10°. To evaluate the prediction
performance, the performance index SNR !, defined by

st = T () = )"
Srty ()

is used where Lg is the number of frames in a trace. We shall
compare the prediction performance index SNR™! under dif-
ferent prediction steps ¢4 ranged from 1 to 30 frames. Compar-
isons using the traces encoded by MPEG-1 and MPEG-4 are
shown in Figs. 1 and 2, respectively.

The main computation burden of the H, filter is due to the
calculation of the covariance matrix P(n). Let the number of
entries in P(n) be N, where N, = (K + N)? = 225 in
our setting. Roughly speaking, the complexity of the H filter
is O(Ng’c{ 2) at each adaptation step, while, in general, for the
considered neural networks, the complexity is O(N.2) with N,,
being the number of parameters to be tuned in the network.
Note that N,, is equal to 360, 648, and 936 for the FTDNN,
the NARX neural network, and the Elman neural network, re-
spectively. Actually, computation time for a neural network may
further vary with parameter learning methods and possible line
search methods. To make a fair comparison, the predictors based
on the three neural networks are implemented by the standard
function calls in the Matlab neural network toolbox [15] and the
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Fig. 1. SNR™! prediction performance of the FTDNN (‘x’), Elman (‘*°),
NARX (‘+4), and the proposed H .. filter algorithm (‘0’) with respect to traces
(a) dino, (b) star, (c) mr.bean, (d) soccer, (e) race, and (f) atp encoded by
MPEG-1.!

X
ee
RO X OOOR0OIDDID
0.8,

0 10 20 30

()

Fig. 2. SNR~*' prediction performance of the FTDNN (‘x’), Elman (‘*),
NARX (‘4’), and the proposed H . filter algorithm (‘0’) with respect to traces
(a) aladdin, (b) dusk, (c) contact, (d) Jurassic, (e) soccer, and (f) star4 encoded
by MPEG-4 [14].

TABLE I
COMPARISON OF AVERAGE COMPUTATION TIME 7. IN SECONDS OF THE
FOUR ALGORITHM AT EACH ADAPTIVE STEP WHERE R IS THE RATIO OF
COMPUTATION TIME BASED ON THE H ., FILTER

FTDNN | NARX | Elmam Heo
Te 0.6197 0.6295 | 0.1334 | 9.222x1075
Rt 6719 6826 1446 1

complexity is evaluated by the computation time at each adap-
tation step. Complexity of these algorithm for making a predic-
tion with t; = 30 at each adaptation step are evaluated based on
CPU execution time and are compared in Table I.
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TABLE II
COMPUTATION TIME 1. OF A PREDICTION STEP UNDER VARIOUS PREDICTION
HORIZONS
ty 1 3 6 9 12
T. (us) | 83.03 | 83.66 | 84.61 | 85.56 | 86.52

We also evaluate on-line computation time of the H, filter by
using the MATLAB software working on a personal computer
with an Intel Core2 E6600 CPU. The average computation time
of a prediction step under various prediction horizons is shown
in Table II. For t; = 12, the computation time at each time
step is 86.52 ps which implies that to predict 100 MPEG video
traces, it takes around 8.7 ms which is much shorter than a frame
time interval (1/30 second).

From Figs. 1 and 2, it is obvious that the NARX neural net-
work and the H, filter have superior prediction performance
to the other two algorithms. The SNR™! value for the FTDNN
scheme can be kept almost as low as that of the proposed H,
filter algorithm for ¢t; < 10 for most of the traces. On the con-
trary, as the prediction step ¢4 increases, the FTDNN scheme has
a trend to diverge for a half of the considered traces. The pro-
posed H . filter and the NARX neural network are more robust
in the sense that their SNR ™! performance indexes are more in-
sensitive to the prediction step ¢4 than the other two algorithms.

For prediction of the MPEG traces encoded by the MPEG-1
technique as shown in Fig. 1, the H, filter has the best perfor-
mance. On the other hand, for those encoded by the MPEG-4
technique, the NARX prediction scheme is slightly better than
the H,, filter for several traces. However, by comparing the
computation time as shown in Table I, due to its simpler struc-
ture and lower computation burden, the H, filter is better than
the NARX scheme for real-time network traffic prediction with
long-range delay to prevent traffic congestion in the multimedia
transmission channel.

Remark 1: Normally, large prediction error comes from scene
change. A recent algorithm to detect scene change can be re-
ferred to [16] and MPEG traffic prediction based on detection
of scene change has been explored in [8]. However, this topic is
more complicated and will be studied in the future.

Remark 2: Actually, a neural network with enough com-
plexity can perform very good long-range prediction if a
suitable off-line training procedure is carried out [5]-[10].
However, for bandwidth allocation at a network node, on-line
adaptive prediction of the incoming MPEG traffic is required.
Therefore, neural network should be in adaptive forms, in
stead of being under the batch training mode. Moreover, to
reduce computation time at each adaptation step, the learning
epochs should not be large. These are the main reasons why
some neural networks have unsatisfactory adaptive prediction
performance.

V. CONCLUSION

In this study, based on the local linear trend, periodic com-
ponents, and noise residue, a stochastic state-space model for
MPEG video sequences is developed with traffic parameters in-
cluded in its state vector for long-range prediction. The long-
range prediction problem is thus changed to a state estimation
problem. Then a robust H, prediction algorithm is proposed
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without requiring statistical knowledge of the noises to achieve
a precise long-range prediction of MPEG-encoded video traffic
to compensate for long transmission delay. From simulation
using real MPEG video traffic, the performance of the proposed
scheme is verified by evaluating the prediction accuracy and the
computation complexity.
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