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1. INTRODUCTION

Multiwavelength fiber-ring lasers are very impor-
tant due to their potential applications in fiber sensor,
optical spectroscopy, microwave fiber access networks,
wavelength division-multiplexed (WDM) communica-
tions, etc. The main issue to achieve a multiwavelength
operation at room temperature with a single piece of an
erbium-doped fiber (EDF) is the reduced stability at
narrower lasing wavelength intervals due to homoge-
neous broadening [1, 2]. Various techniques have been
proposed to meet this challenge [3–5], and to reduce
wavelength competition in order to achieve stable mul-
tiwavelength oscillations. Many researchers have
focused on the technique by inserting the optical filter
into the cavity loop [6–13] and using the dual-ring filter
method [9] for multiwavelength oscillations. In addi-
tion, the effective amplification bandwidths are distrib-
uted at the S-(1480–1530 nm), C-(1530–1560 nm), and
L-bands (1560–1620 nm); and in such arrangements,
the cavity losses corresponding to the different wave-
lengths must be balanced with the cavity gains simulta-
neously. Therefore, the multiple lasing wavelengths are
not easily controlled. In addition, using the fiber-Bragg
gratings (FBG) and Fabry–Perot (FP) laser to obtain the
tunable-multiwavelength short pulses were also ana-
lyzed and reported [14, 15].

In this study, we propose and experimentally dem-
onstrate a simple configuration for an S-band continu-
ous-wave (CW) dual-wavelength fiber-ring laser with
different coupling ratios inside the loop cavity. The
compound-ring filter (CRF) technique is also used.
Compared with the previous laser schemes, the pro-

posed laser is not only easy to construct, but is also cost
effective. Using the CRF laser, the dual-wavelength
laser does not need any optical filter into the cavity for
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—We propose and demonstrate an S-band CW dual-wavelength erbium-doped fiber (EDF) dual-ring
laser using a compound-ring filter (CRF) with various coupling losses inside the gain cavity. Employing a ring
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tively, when the coupling loss is 30% inside the cavity. In addition, the output stabilities of the dual-wavelength
laser have also been analyzed.
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Fig. 1.

 

 Experimental setup for a stabilized S-band dual-
wavelength EDF ring laser.
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generating a multiwavelength. Moreover, the output
stabilities of the fiber laser have also been measured
and discussed.

2. EXPERIMENTS AND RESULTS

Figure 1 shows the schematic of the experimental
setup for the stable S-band dual-wavelength EDF ring
laser. The proposed S-band fiber laser consisted of an
S-band erbium-doped fiber amplifier (EDFA), a 2 

 

×

 

 2
optical coupler (CP), a 1 

 

×

 

 2 CP with variable coupling
ratios, and a polarization controller (PC). The 1 

 

× 

 

2 CP
at point “a” has the coupling ratios of 10, 30, 50, 70,
and 90%, respectively, as shown in Fig. 1. The S-band
EDF inside an EDFA module has a depressed-cladding
design in order to provide a sharp, high-attenuation,
long-wavelength cutoff filter into active fibers. The
EDF in the first and second stages have different char-
acteristics. The fiber (20 m) in the first stage can pro-
vide a low noise figure and medium gain by forward
pumping. The fiber (30 m) in the second stage can pro-
duce a large output power by backward pumping [10].
In addition, the optical isolator between these two
stages can reduce the backward amplified spontaneous
emission (ASE) and improve the noise figure perfor-
mance. The total pump power of this amplifier module
can be up to 280 mW, while the bias current is operated
at 356 mA.

As shown in Fig. 1, the two cavities of the proposed
S-band fiber-ring laser have different free-spectral
ranges (FSRs), FSR = 

 

c

 

/

 

nL

 

, where 

 

c

 

 is the speed of light

in a vacuum, 

 

n

 

 is the average refractive index of the sin-
gle-mode fiber (

 

n

 

 = 1.468), and 

 

L

 

 is the total cavity
length. The proposed CRP structure can be used as a
mode filter. Th maximum selectivity occurs when the
cavity lengths of 

 

L

 

1

 

 (ring 1) and 

 

L

 

2

 

 (ring 2) are incom-
mensurate produced by the Vernier effect. In each ring,
the FSR can also be defined as FSR

 

L

 

 = 

 

ν

 

/

 

L

 

 (

 

ν

 

 is the
fiber-mode group velocity). In the proposed CRF
method, the fiber laser can lase a dual wavelength
simultaneously. Due to the Vernier effect, the effective
FSR becomes the least common multiple number of
both the FSR

 

L

 

1

 

 and FSR

 

L

 

2

 

. As a result, the mode sup-
pression can be achieved and controlled by the lengths
of ring 1 and ring 2. In the experiment, ring 2 is 8 m,
which gives a FSR of 25.5 MHz. The total length of
ring 1 is about 62 m, corresponding to a passive cavity
mode spacing of 3.3 MHz. By optimizing the cavity
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Fig. 2.

 

 Different S-band dual-wavelength lasing spectra in
the EDF CRF laser when the pumping current operates at
356 mA and the different coupling ratio at point a is 10, 30,
50, 70, and 90%, respectively.
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Fig. 3.

 

 (a) SMSR, (b) output power, and (c) output wave-
length of the proposed S-band dual-wavelength erbium-
fiber laser under the coupling ratio of 10, 30, 50, 70, and
90%, respectively.
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lengths of the two fiber rings, the dual wavelength can
be lased in the proposed laser without using any active
or passive component inside the cavities. In addition,
the two in-line PCs are used to control and maintain the
intracavity polarization states. We used an optical spec-
trum analyzer (OSA) with a 0.05-nm resolution to mea-
sure the output power and wavelength of the proposed
dual-ring laser.

Figure 2 shows the S-band dual-wavelength output
spectra of the CRF laser at different coupling ratios at
point a (10, 30, 50, 70, and 90%) when the pumping
current is 356 mA. The corresponding mode spacings
(

 

∆λ

 

) are 0.90, 0.85, 0.90, and 0.6 nm, respectively. Fig-
ure 2 also shows that the best output power is at a cou-
pling ratio of 30% and the best SMSR is at a coupling
ratio of 50%. When the coupling ratio is 90%, the fiber
laser shows the worst optical output power. The wave-
lengths of the lasing modes nearly overlap.

Figure 3 shows the (a) SMSR, (b) the output power,
and (c) an output wavelength for the dual-wavelength
fiber laser under the coupling ratios of 10, 30, 50, 70,
and 90%, respectively. Figure 3a presents the SMSR of
>30 dB at ratios of 30 and 50%. By increasing the cou-
pling ratio, the SMSR will increase gradually to a max-
imum value and, then, decrease. Figure 3b shows a
maximum output power of >–9.6 dBm at a 30% cou-
pling ratio. The dual-wavelength output powers are

 

−

 

9.6 (P

 

1

 

) and –9.3 dBm (P

 

2

 

) at a wavelength of
1505.58 (

 

λ

 

1

 

) and 1506.43 nm (

 

λ

 

2

 

), respectively. Fig-
ure 3b also presents the maximum and minimum power
differences (

 

∆

 

P) of the lasing dual wavelength are 1.1
and 0.1 dB with coupling ratios of 90 and 70%, respec-
tively. When the ratio is 50%, the lasing dual wave-
length shifts to a shorter wavelength as shown in
Fig. 3c. In addition, by decreasing the coupling ratio,
the lasing wavelength will shift to a longer wavelength
range. Hence, the lasing wavelength is tunable by

adjusting the coupling ratios, with a maximum wave-
length tuning range of 2.8 nm as illustrated in Fig. 3c.

To evaluate the output stabilities of the proposed
laser, a short-term stability measurement of the dual-
wavelength laser at the coupling ratio of 30% is per-
formed as shown in Fig. 4. The lasing wavelengths are
1505.58 (

 

λ

 

1

 

) and 1506.43 nm (

 

λ

 

2

 

) initially and the
observation time is over 20 min for the stability mea-
surement. The output wavelength variations and the
output power fluctuations of the two lasing wavelengths
are smaller than 0.1 and 0.1 nm and 0.20 and 0.25 dB,
respectively, as shown in Fig. 4. After a 40-min obser-
vation, the stabilized output of the ring laser is still
maintained. We can see that the proposed laser shows a
good stability for the output wavelength and power.

3. CONCLUSIONS

We have proposed and demonstrated a stable S-band
dual-wavelength EDF dual-ring laser using a CRF
method with various coupling ratios inside the ring cav-
ities. The CRF simplifies the laser architecture and
allows a dual-wavelength output. The dual-wavelength
output exhibits a good performance, having the optical
SMSRs of 31.6 and 31.8 dB and output powers of –9.6
and –9.3 dBm at 1505.58 and 1506.43 nm, respectively,
when the coupling ratio is 30%. In addition, the optical
output power is stable over an observation time of
40 min.
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