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於通道偏差下單載波及多載波區塊式傳輸系統之 

強健式接收機設計 

學生：林志遠               指導教授：李大嵩 博士 

國立交通大學電信工程學系 

摘要 

多輸入多輸出正交分頻多工（MIMO-OFDM）系統及多輸入多輸出單載波迴旋前綴

（MIMO SC-CP）系統能非常有效地補償頻率選擇性衰減及支援高資料傳輸率，因此已獲得

許多系統設計者的注意，在本篇論文中，吾人將分別針對上述兩種系統在特定的通訊環境中

設計接收機架構。在 MIMO-OFDM 系統部分，吾人考慮 CP 長度比通道階數（Channel Order）

短的通訊環境，首先針對單輸入多出輸出（SIMO）模式進行設計，吾人聯合利用接收端的空

間及頻率資源提出一個能有效地消除 CP 不足所造成之內符碼干擾（ISI）及內載波干擾（ICI）

的強制最佳化（Constrained Optimization）線性等化器，其最佳化問題在等效的無強制

（Unconstrained）廣義旁波帶消除（GSC）機制下進行求解，之後吾人再將所提出之 GSC 等

化器架構推廣至 MIMO 模式。除此之外，吾人進一步假設接收端無法得知精確之通道參數而

需採用最小平方（LS）技術進行估測，並提出利用擾動分析（Perturbation Analysis）技術將

通道估計錯誤之效應明確地併入 GSC 系統模型，這使得 LS 通道誤差之特性能被應用，藉以

推導出一個能對抗通道估計錯誤的封閉（Closed-Form）強健解。吾人亦推導出此強健式等化

器的近似輸出訊號干擾雜訊比（SINR），由此結果可看出相較於非強解健解的一些優點。 

在 MIMO SC-CP 系統部分，吾人考慮一個時變通道環境，同時假設通道參數亦採用 LS

技術估測而得。因為通道在時間上的變化會破壞頻域訊號間的正交性，使得低複雜度之各頻

（Per-Tone）等化機制無法實現，所以在頻域處理訊號將不再具有優勢。因此，吾人提出直接

於時域中處理訊號，於時域中，吾人發現訊號特徵矩陣能夠被分為數個擁有正交元素的群組，

能自然地被用來設計群組式（Group-Wise）訊號偵測技術，為了實現此特性吾人提出一個 GSC

接收機，其能同時抑制通道時間變化與通道估計錯誤所產生之通道偏差效應。由驗證顯示吾

人於 MIMO-OFDM 系統中針對 GSC 所設計的擾動分析數學架構亦能將本部分所考慮的通道

偏差併入系統方程式中，基於通道時間變化與通道估計錯誤的統計假設吾人亦可推導出一個

封閉（Closed-Form）強健解。透過一些數值範例可證實吾人所提出之接收機架構在所考慮的

通訊環境中效能明顯優於現存的方法。
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Robust Receiver Design for Single- and Multi-Carrier 
Block Transmission Systems Under Channel Mismatch 

Student: Chih-Yuan Lin         Advisor: Dr. Ta-Sung Lee 

Department of Communication Engineering 
National Chiao Tung University 

Abstract 

MIMO orthogonal frequency division multiplexing (MIMO-OFDM) and MIMO single-carrier 

with cyclic prefix (MIMO SC-CP) have drawn a lot of attention since they can effectively 

compensate frequency selective channels and can support high data rates. In this dissertation, we 

will design receiver architectures for both of them, each under a specific communication 

environment. For MIMO-OFDM systems, we consider a scenario that the adopted CP length is 

shorter than the channel order. By jointly exploiting the receiver spatial and frequency resources, we 

first propose a constrained optimization based linear equalizer, which can mitigate the resultant 

inter-symbol interference and inter-carrier interference (ICI) incurred by the insufficient CP 

insertion, for the SIMO case. The optimization problem is solved under an equivalent unconstrained 

generalized sidelobe canceller (GSC) setup. Then the proposed GSC-based equalization framework 

is generalized to the MIMO case. Moreover, in this case we further assume that the channel 

parameters are not exactly known but are estimated using the least-squares (LS) training technique. 

We propose to apply the perturbation analysis technique to explicitly incorporate the channel 

parameter error into the GSC system model; this allows us to exploit the presumed LS channel error 

properties for deriving a closed-form robust solution against the net detrimental effects caused by 

the channel estimation errors. A closed-form approximate output SINR expression of the proposed 

robust equalizer is also derived, based on which some appealing advantages over the non-robust 

counterpart can be inferred. 

For MIMO SC-CP systems, we consider a communication environment that the channel is 

time-varying, under the assumption that the channel parameters are also estimated via the LS 

training technique. Since the channel temporal variation destroys the orthogonality between signal 

components in frequency domain, low-complexity per-tone based equalizations can no longer be 

realized. As a result, there are no specific advantages of processing signals in frequency domain, 
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and we propose to directly process signals in time domain. By this way, it is observed that in time 

domain the signal signatures can be arranged into groups of orthogonal components, leading to a 

very natural group-wise symbol recovery scheme. To realize this figure of merit, we propose a 

GSC-based receiver, which also takes into account the mitigation of channel mismatch effects 

caused by the channel temporal variation and the imperfect estimation. It is shown that the proposed 

perturbation analysis framework as well enables us to model the channel mismatch effects into the 

system equation and, in turn, to further exploit the statistical assumptions on the channel temporal 

variation and the estimation error for deriving a closed-form robust solution. By some numerical 

examples, it is confirmed that the proposed receiver architectures outperform the existing methods 

under the respectively considered communication environments. 
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Chapter 1 

Introduction 

In this introductory chapter, some background materials about block transmission schemes and 

multi-antenna systems are presented. What follow up are the literature survey, dissertation 

contributions and an overview of this dissertation. 

1.1 Basics of OFDM and SC-CP 

Orthogonal frequency division multiplexing (OFDM) [49], [71] is a kind of multicarrier 

modulation (MCM) scheme. Unlike the classical MCM, in which guard bands are required to 

separate the different subcarriers (see Figure 1.1(a)), the orthogonality nature of the OFDM 

subcarriers allows their sidebands to overlap (see Figure 1.2(b)). This makes OFDM the most 

spectrally efficient among the MCM schemes. 

(a) (b)(a) (b)  

Figure 1.1. (a) Classical MCM, and (b) OFDM modulation. 

In practical applications of the OFDM modulation, the transmitter segments the signal streams 

into blocks, which are block-wise fed into the IFFT device. Prior to transmission, a cyclic prefix 

(CP) is inserted in front of each post-IFFT signal block [71]. At the receiver the CP portion should 

be discarded before any signal processing starts. As long as CP length is longer than the channel 

order, the inter-symbol interference (ISI) coming from the previous block is removed, and, 

moreover, the delayed replicas of an OFDM block are ensured to always have an integer number of 

cycles within the FFT interval, such that orthogonality between subcarriers is preserved. The 
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receiver then can only use the FFT device followed by the per-tone one-tap equalizers to recover the 

transmitted OFDM block [71] (the overall transceiver architecture is shown in Figure 1.2). Due to 

its simplicity and robustness against frequency selective channels, the OFDM modulation recently 

has been adopted in a lot of commercial communication systems, such as DAB, DVB and 802.11a/g 

WLAN. Furthermore, the lately established IEEE 802.16 standard [66], [81] also adopts OFDM in 

its PHY layer. The main advantage of OFDM comes from the insertion of CP, but, however, the 

presence of CP could greatly decrease the effective data rate; for example, in the IEEE 802.11a 

standard, 25% spectral resource is wasted due to the CP insertion. In addition, another fundamental 

drawback of OFDM is high peak-to-average ratio (PAR) of the transmitted signal, which would 

incur high clipping rate: each signal sample that is beyond the saturation limit of the power 

amplifier suffers clipping to this limit value. This leads to non-linear signal distortion and creates 

additional bit errors at the receive end [49]. 

OFDM 
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Input data 
symbols

…
.. IFFTIFFT P/SP/S CPCP

…
..

Transmitter using IDFT

Output data 
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S/PS/P
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…
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Per-tone one-tap equalization

Channel
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…
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CP

…
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Per-tone one-tap equalization
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Figure 1.2. Block diagram of the OFDM transceiver. 

An alternative block transmission scheme is called as single-carrier with cyclic prefix (SC-CP) 

[19], [20] (see Figure 1.3). With the CP length longer than the channel delay spread, it allows to use 

the low-complexity one-tap frequency-domain equalization (FDE) to compensate the negative 

effects caused by frequency-selective channels. Furthermore, since SC-CP system alleviates the 

IFFT operation (and hence avoids the coherent superposition of the signal samples) at the 

transmitter, the PAR of SC-CP signals is essentially much lower than that of OFDM signals. In 

summary, SC-CP has similar performance, bandwidth efficiency, and low signal processing 

complexity as OFDM, but with much lower signal PAR. The next-generation wireless 

communication standard, like 3GPP-LTE [17], [45], has considered the coexistence of OFDM and 

SC-CP in a system: OFDM is used in the downlink transmission and SC-CP accounts for the uplink 
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counterpart (see Figure 1.4) [45]. Such a deployment leads to two advantages: 1) shifts most signal 

processing complexity to the base station (two IFFTs and one FFT at the base station, but only one 

FFT at the mobile station), and 2) allows the power amplifier at the battery-driven mobile station to 

work more efficiently (since SC-CP has relatively lower signal PAR). 

SC 
symbol

Input data 
symbols CPCP Output data 

symbolsS/PS/P
Received 
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…
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…
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Channel
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…
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Per-tone one-tap equalization

Channel

FFTFFT
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Figure 1.3. Block diagram of the SC-CP transceiver. 

IFFTIFFT CPCP FFTFFT Invert
channel
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channel DetectDetect

IFFTIFFTDetectDetect Invert
Channel
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Channel FFTFFT CPCP
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Channel
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Channel

Channel
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Uplink SC Rx at BS Uplink SC Tx at MS  

Figure 1.4. Coexistence of the OFDM and SC-CP modulations. 

1.2 Basics of Multi-Antenna Systems 
Multiple antennas, as is widely known, can offer an additional antenna gain for various 

specific tasks. If a multiuser system is equipped with an antenna array at the base station, user 

terminals can transmit and receive with a smaller gain, leading to lower system interference level 

and thus larger system capacity. Moreover, multi-antenna array can also offer a much larger 

degrees-of-freedom for interference suppression. This certainly results in a better system output 

SINR performance compared with the single-antenna system. Recent theoretical results show that if 

transmit and receive ends are respectively with M and N antennas, a.k.a., multiple-input 

multiple-output (MIMO) systems (see Figure 1.5), the point-to-point system capacity can linearly 

increase with min(M, N) [10]. As a result, the MIMO transmission method has been recognized as 

one promising solution to achieve high spectral efficiency and link quality, which are believed to be 
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two major requirements of the next-generation wireless networks. The MIMO research topics are 

generally categorized into two types: 1) spatial multiplexing (SM) and 2) diversity techniques. A 

well established SM scheme is known as Bell Laboratories layered Space-Time (BLAST) [82]. At 

the transmitter multiple independent data streams are simultaneously transmitted via different 

antenna branches and are detected at the receiver based on their unique spatial signatures. 

Intuitively, SM technique creates several parallel spatial transmission links so as to increase data 

rate. Such a system setup can significantly increase system spectral efficiency without the need of 

increasing transmit power and system bandwidth. On the other hand, the well-known diversity 

techniques are the space-time coding (STC) schemes [4], [29], [70], in which the transmitted 

symbols are appropriately mapped into multiple transmit antennas. The receiver then can exploit the 

artificially induced signal redundancy to obtain diversity gain. Recently, MIMO schemes are 

usually combined with the OFDM or the SC-CP modulation, a.k.a., MIMO-OFDM [51] or MIMO 

SC-CP [15], [85], such that the system has a two-fold advantage (coming from MIMO and OFDM 

(or SC-CP)). MIMO-OFDM and MIMO SC-CP are widely believed to play important roles in the 

next-generation wireless communication systems, since they can efficiently combat 

frequency-selective channels and can support high data rates. The next-generation wireless 

standards, like IEEE 802.16 [66], [81] and 3GPP-LTE [17], [45], have also respectively included 

them into the specifications. 
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Figure 1.5. Illustration of a MIMO system. 
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1.3 Related Literature Review 
The conventional OFDM systems rely on the insertion of CP to remove the channel-induced 

ISI, leading to a very simple one-tap equalization implementation [71]. To further boost the 

effective data rate, a natural strategy is to reduce CP overhead and design a receiver to compensate 

the resultant negative effects. The time-domain equalization (TEQ) techniques have been 

extensively studied for discrete multi-tone systems. In these approaches, a time-domain equalizer is 

employed to properly squeeze the channel impulse response (CIR) to be a prescribed target impulse 

response (TIR) such that the CP length can be reduced to be the TIR order. In [2] and [65], 

minimum mean square error (MMSE) based TEQ are proposed to obtain a composite CIR, which is 

best close to the desired TIR. In [5] and [46], the maximum shortening-SNR method is proposed to 

maximize the ratio of the energies of the CIR inside and outside a target window; by properly 

choosing the window size the undesired ISI can be largely suppressed. A lot of researchers are also 

based on the so-called bit rate maximization criterion to design TEQ [39], [76]. However, such 

methods should usually exploit the nonlinear optimization techniques to search the optimal TEQ 

solution, and thus a globally optimal solution is not always guaranteed. In [37], a semiblind TEQ 

method, which does not require the CIR and channel noise statistics, is proposed for VDSL systems 

to maximize the frequency-domain signal-to-interference ratio (SIR). The above described methods 

are usually based on the offline designs: using the derived equalizer coefficients at the beginning of 

the communication link once and for all during the whole transmission period. However, such 

approaches are unable to work well if the channel varies with time. In [77], several adaptive TEQ 

methods are proposed to track the channel variation, so as to be able to maximize the bit rate as high 

as possible all the time. For MIMO systems, [1] proposes to design TEQ based on minimizing the 

average energy of the error sequence between the equalized MIMO CIR and a desired MIMO TIR 

with shorter memory. As an alternative to the TEQ approach, the per-tone equalization (PTEQ) [33] 

transfers the equalization problem from time domain to frequency domain and has better 

performance than the TEQ methods at the expense of computation complexity. 

One particularly attractive feature unique to the block transmission systems is the 
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low-complexity per-tone FDE scheme. Such a figure of merit, however, hinges crucially on the 

time-invariant assumption on the background channels. When the channel is otherwise subject to 

fast temporal variation, the orthogonality among the signal components in frequency domain will no 

longer be preserved, and tone-by-tone signal recovery is then rendered impossible. To design 

communication architectures for block transmission systems under time-varying channels is a hot 

research topic in recent years. In [59] and [86], a method called intercarrier interference (ICI) self 

cancellation scheme is proposed for OFDM systems. Based on the observation that the ICI 

components at the adjacent subcarriers are highly similar, at the transmitter one data symbol is 

assigned, with judiciously designed weights, to multiple subcarriers, and then at the receiver by 

linear combination of the signals at those subcarriers the ICI components in the received signal can 

be mutually cancelled. Such approaches are quite simple but, however, the spectral efficiency is low 

since multiple subcarriers only carry one data symbol. In [55], a simple MMSE-based linear 

receiver is proposed, in which a banded approximation to the frequency-domain channel matrix is 

adopted such that the computation of the MMSE weight matrix can be substantially conserved. The 

linear receiver can also be combined with the parallel interference cancellation (PIC) mechanism to 

further improve the system performance [28]. In [68], a two-stage receiver is proposed for OFDM 

systems: in the first stage a max-SINR filter is exploited to suppress ICI and in the second stage an 

iterative MMSE detector is used to estimate transmitted source symbols; the two-stage receiver 

architecture also can be further extended for SC-CP systems [67]. It is noted that, to the best of our 

knowledge, the receiver design under time-varying channels for MIMO block transmission systems 

remains scarce in the literature. 

Receiver designs are in general based on a crucial assumption that the channel state 

information is perfectly known at the receiver end. However, it is impossible to achieve this in 

practice, under either time-invariant channels or time-varying channels. As a result, when channel 

estimation error appears, the derived solutions are rendered suboptimal. Robust linear receiver 

design against channel estimation errors has been addressed in the context of multiuser 

communication [52], [53], [54], [84]. By modeling the channel mismatch as a random variable with 
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known statistical characteristics, the probability-constrained optimization approach [52], [53] 

exploits the Gaussianality assumption on the estimation error, and the solution is obtained through 

linear [52] or nonlinear [53] programming. In [54] and [84], the channel error is, on the other hand, 

treated as a “deterministic” perturbation. Based on a min-max type formulation, the optimization 

problem in [54] is solved by using the convex programming technique; the solution in [86] admits a 

diagonal loading form, with the optimal loading factor determined via an iterative procedure. We 

note that the deterministic formulation of model error is also used in robust beamformer design [35], 

[42], [64], [75], in which exact statistical characterization of model uncertainty due to, e.g., array 

calibration error, unknown antenna coupling effect, etc., is difficult (or even impossible) to track. 

1.4 Main Contributions 

The contributions of this dissertation are summarized as follows: 

1. A generalized sidelobe canceller (GSC) based channel equalization framework is proposed for 

MIMO-OFDM systems with insufficient CP. By jointly exploiting spatial and frequency 

resources and based on the block signal representation, the desired signal and the ISI/ICI 

components in the received signal are respectively characterized by the specific signatures, 

which allows us to leverage the constrained-optimization technique to suppress the 

interference part and then extract the desired one. It is shown that the proposed method is able 

to completely suppress the channel-induced distortion via the space-frequency processing, 

leading to comparable BER performance to the idea case (with sufficient CP insertion). 

2. By exploiting the perturbation analysis technique, we incorporate the detrimental effect caused 

by channel estimation error into the proposed GSC-based MIMO-OFDM architecture to derive 

a closed-form robust version against channel mismatch. It is shown that the proposed 

framework merely requires the knowledge of the first- and second-order error statistics but, 

unlike [52] and [53], is free from any priori assumptions on the error distributions. An 

analytical expression of the SINR performance for the robust method is derived, based on 

which the proposed robust method is theoretically proven to yield higher output SINR than the 

non-robust counterpart. 
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3. A new constrained-optimization based receiver architecture for MIMO SC-CP systems under 

time-varying channels is proposed. By exploiting the imbedded cyclic-shift structure of the 

channel matrix, we can realize a low-complexity group-wise symbol detection setup. Moreover, 

based on the proposed perturbation analysis framework the channel mismatch caused by the 

channel temporal variation and the estimation error is also considered into the solution 

equation, leading to a closed-form robust solution. In comparison with the existing methods, it 

is shown that the proposed method has better BER performance, but only with comparable 

computation complexity. 

1.5 Organization of Dissertation 

The remaining of this dissertation is organized as follows. 

In Chapter 2, a GSC based equalizer for ISI/ICI suppression is proposed for uplink SIMO 

OFDM systems without CP. Based on the block representation of the CP-free OFDM system, there 

is a natural formulation of the ISI/ICI suppression problem under the GSC framework. By further 

exploiting the signal and ISI/ICI signature matrix structures, a computationally efficient partially 

adaptive (PA) implementation of the GSC-based equalizer is proposed for complexity reduction. 

The proposed scheme can be extended for the design of a pre-equalizer, which pre-suppresses the 

ISI/ICI and realizes CP-free downlink transmission to ease the computational burden of the mobile 

unit, which is assumed to be equipped with only one antenna. 

Chapter 3 generalizes the ISI/ICI suppression scheme proposed in Chapter 2 for MIMO-OFDM 

systems with variable CP length (shorter than the channel order) and derives an associated robust 

version against channel estimation error, assuming that the channel parameters are estimated via the 

commonly used least-squares (LS) training technique. The channel parameter error is explicitly 

incorporated into the constraint-free GSC system model through the perturbation analysis technique; 

this allows us to exploit the presumed LS channel error properties for deriving a closed-form 

solution, and can also facilitate an associated analytic performance analysis. A closed-form 

approximate SINR expression for the proposed robust scheme is given, and an appealing formula of 

the achievable SINR improvement over the non-robust counterpart is further specified. Our analytic 
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results bring out several intrinsic features of the proposed solution. 

In Chapter 4, we consider MIMO SC-CP block transmissions over time-varying multipath 

channels, under the assumption that the channel parameters are not exactly known but are estimated 

via the LS training technique. While the channel temporal variation is known to negate the 

tone-by-tone frequency-domain equalization facility, it is otherwise shown that in the time domain 

the signal signatures can be arranged into groups of orthogonal components, leading to a very 

natural yet efficient group-by-group symbol recovery scheme. To realize this figure of merit we 

propose a GSC based receiver which also takes into account the mitigation of channel mismatch 

effects caused by the channel temporal variation and the imperfect estimation. Based on the 

robustness analysis framework proposed in Chapter 3, the channel mismatch is directly modeled 

into the system equations. Then a closed-form solution can be obtained by further exploiting the 

statistical assumptions on the channel mismatch. Within the considered framework the proposed 

robust equalizer can be further combined with the successive interference cancellation (SIC) 

mechanism for further performance enhancement. 

Finally, Chapter 5 concludes this dissertation and discusses future extensions of this research. 
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Chapter 2 
 

Low-Complexity Transceiver for CP-Free 
Multi-Antenna OFDM Systems 

2.1 Overview 

Conventional OFDM transmission relies on the insertion of CP to remove the channel induced 

ISI and ICI, leading to a very simple one-tap equalization implementation [71]. The presence of CP, 

however, greatly decreases the effective data rate; for example, in the IEEE 802.11a standard, 25 % 

spectral resource is wasted due to the CP insertion. In recently proposed WLAN systems, multiple 

antennas are suggested to be employed at the access point (AP) to provide the receive diversity or 

beamforming gain for enhancing the link quality. Multiple receive antennas, as is widely known, 

can offer an additional antenna gain for interference suppression. As a result, a natural approach to 

improving the spectral efficiency in OFDM systems would be to consider CP-free transmission and 

exploit the multi-antenna resource for combating the channel-induced distortion. 

In this chapter, we will propose a multi-antenna transceiver architecture for the CP-free OFDM 

systems to jointly suppress ISI and ICI. We consider that multiple antennas are equipped at the AP 

and a single antenna at the mobile unit (MU). In the uplink stage, the degrees-of-freedom offered by 

multiple receive antennas and their associated subcarriers are exploited for ISI and ICI suppression 

based on the constrained-optimization technique. The optimization problem is reformulated into an 

unconstrained one via the GSC principle. The proposed CP-free GSC-based solution can 

compensate the channel distortion and enhance the data rate, at the expense of increased receiver 

complexity as compared with the conventional CP-based systems. To mend this penalty, we propose 

a partial adaptivity (PA) GSC scheme, which involves a series of reduced rank processing [22], [25], 

for complexity reduction. In time division duplex OFDM systems over slowly time-varying channel, 

the AP can pre-equalize the ISI/ICI based on the channel knowledge estimated in the uplink stage so 

as to relieve the MU's computational burden. Since the downlink stage is the dual operation of the 
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uplink stage, the GSC method is again a natural candidate for the pre-equalizer design based on the 

block transmission system model. The proposed GSC-based pre-equalizer, which enjoys the same 

figure of merits as in the uplink counterpart, is shown to effectively pre-suppress the ISI/ICI. 

2.2 Uplink Signal Model 

We consider the discrete-time baseband model of a multi-antenna CP-free OFDM system with 

Q  subcarriers and M  receive antennas. The source symbol sequence ( )s n  is segmented to 

obtain consecutive 1Q×  symbol blocks. The kth one among them is 0 1( ) ( ),..., ( )
T

Qs k s k s k−
⎡ ⎤= ⎢ ⎥⎣ ⎦ , 

where ( ) ( )js k s kQ j= + , 0 1j Q≤ ≤ − . After the inverse fast Fourier transform (IFFT), we 

obtain the 1Q×  OFDM symbol 
1( ) ( )k k−=x F s , (2.1) 

where 0 1( ) ( ),..., ( )
T

Qk x k x k−
⎡ ⎤= ⎢ ⎥⎣ ⎦x , with ( ) ( )jx k x kQ j= + , 0 1j Q≤ ≤ − , and F  is the 

Q-point FFT matrix [79]. The signal ( )kx  is then transmitted through the composite channel 
( )( )mh l , including the response of the cascade connection of the transmitter filter, the channel, and 

the receive filter, to the mth receive antenna, 1 m M≤ ≤ . We assume that the channel orders of 
( )( )mh l 's are all L, which is reasonable since we can always choose L as the largest one among them. 

Assuming that the transmitter is synchronized with the receiver, the 1Q×  received data vector of 

the mth antenna branch, in terms of the block data model [79], is 

( ) ( ) 1 ( ) 1 ( )
0 1( ) ( ) ( 1) ( )m m m mk k k k− −= + − +r H F s H F s n , (2.2) 

in which ( )
0
m Q Q×∈H ^   is a lower triangular Toeplitz matrix with 

( ) ( )(0),..., ( ), 0,..., 0
Tm mh h L⎡ ⎤⎢ ⎥⎣ ⎦  (2.3) 

as its first column, ( )
1
m Q Q×∈H ^   is an upper triangular Toeplitz matrix with 

( ) ( )0,..., 0, ( ),..., (1)m mh L h⎡ ⎤⎢ ⎥⎣ ⎦  (2.4) 

as its first row, and ( )( )m kn  is the noise vector. The following assumptions are made in the sequel: 

1. The source symbols ( )s n  are zero mean, uncorrelated, and { } ( )*
1 2 1 2( ) ( )E s n s n n nδ= − , 
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where { }E y  denotes the expectation of the random variable y , and (.)δ  is the Kronecker 

delta function. 

2. The channel taps ( )( )mh l  are modelded as i.i.d. zero-mean complex Gaussian random 

variables with variance 2
lσ  over m and l. 

3. The elements of ( )( )m kn 's are modeled as AWGN, for 1 m M≤ ≤ , with the same power 
2
vσ . 

4. Perfect channel knowledge is available at the AP. 

2.3 Channel-Induced Distortion 

Based on the block system model, this section characterizes the channel-induced interference 

for a CP-free OFDM system. From  (2.3) and (2.4), it is easy to verify that the matrix 

( ) ( )
0 1
m m Q Q×+ ∈H H ^  is a circulant matrix with the first row equal to 

( ) ( ) ( )(0),..., 0, ( ),..., (1)m m mh h L h⎡ ⎤⎢ ⎥⎣ ⎦ . This suggests that we can rewrite the block signal model (2.2) as 

( ) ( )( ) ( ) ( ) 1 ( ) 1 ( )
0 1 1( ) ( ) ( 1) ( ) ( )m m m m mk k k k k− −= + + − − +r H H F s H F s s n . (2.5) 

The first term on the right-hand-side of (2.5), which depends entirely on the currently transmitted 

OFDM symbol, has the appealing property that the signature matrix is circulant. The second term, 

on the other hand, shows a penalty of removing CP: it accounts for the multipath induced distortion 

and can cause loss of the orthogonality among subcarriers. From (2.5), we directly obtain the 

corresponding frequency-domain description 

( ) ( ) ( ) ( ) 1 ( ) 1 ( )
0 1 1( ) ( ) ( ) ( ) ( ( 1) ( )) ( )m m m m m mk k k k k k− −= = + + − − +z Fr F H H F s FH F s s Fn . (2.6) 

Since ( ) ( )
0 1
m m+H H  is circulant, the model (2.6) reduces to 

( ) ( ) ( ) 1 ( )
1( ) ( ) ( ) ( )m m m mk k k k−= + +z D s FH F e Fn , (2.7) 

where ( )m Q Q×∈D ^  is the diagonal matrix with the qth diagonal entry being the channel frequency 

response evaluated at the qth subcarrier of the mth receive antenna and ( ) ( 1) ( )k k k= − −e s s  

induces the ISI/ICI perturbation. Compared with the time-domain expression (2.5) (or (2.2)), the 
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frequency-domain model (2.7) has two appealing properties. First, the desired signals are decoupled. 

In particular, the diagonal nature of the signal signature ( )mD  will impose certain structure that can 

simplify the computation of the GSC equalizer parameters. Second, the frequency-domain 

perturbation is specified by the interference signature matrix ( ) 1
1
m −FH F  (see (2.7)). This in turn 

implies that the interference subspace is spanned by some columns of the FFT matrix F . This fact 

can be further exploited for deriving a closed-form PA implementation of the proposed GSC 

equalizer for complexity reduction. Hence, instead of relying on the time-domain counterpart, we 

will focus on the frequency-domain model (2.7) in the following discussions. 

2.4 Proposed GSC-Based Equalizer 

In this section, we collect the data from multiple receive antennas to form a multi-channel 

system model. By exploiting a special structure inherent in the interference signature matrix, we 

propose a GSC-based equalizer scheme as well as an associated reduced complexity 

implementation 

2.4.1 Multi-Channel Signal Model 

Stacking ( )( )m kz  (see (2.7)), 1 m M≤ ≤ , from all the receive antennas gives the following 

1MQ×  post-FFT multi-channel model 

(1) ( ) 1
1

( )
( ) ,..., ( ) ( ) ( ) ( ),

( )
I

TT M T
M I

k
k k k k k

k
−

⎡ ⎤
⎢ ⎥⎡ ⎤⎡ ⎤= = + + = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦H

s
z z z Ds F H F e v D H v

e����	���
  (2.8) 

in which 

(1) ( ) TT M T MQ Q×⎡ ⎤= ⋅ ⋅ ⋅ ∈⎢ ⎥⎣ ⎦D D D ^  (2.9) 

and 

(1) ( )
1 1 1

TT M T MQ Q×⎡ ⎤= ⋅ ⋅ ⋅ ∈⎢ ⎥⎣ ⎦H H H ^  (2.10) 

are respectively the concatenated multi-channel signal signature matrix and ISI/ICI inducing 

channel matrix, MF  is an 1MQ×  matrix given by M M= ⊗F I F , with ⊗  denoting the 

Kronecker product, and ( )kv  is the noise component. From (2.4), it can be seen that the nonzero 
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entries of the upper triangular Toeplitz matrix ( )
1
mH  occur only in the last L columns. Since 1H  is 

obtained by stacking ( )
1
mH , 1 m M≤ ≤ , one on top of another and both MF  and 1−F  are 

unitary, the block Toeplitz structure of 1H  immediately implies that the overall ISI/ICI signature 

matrix, namely, IH , is of rank L. Let ( )MQ MQ L× −∈V ^  be the matrix whose columns form an 

orthonormal basis of the left null space of IH . Then, from (2.8) and the fact that H
I =V H O , the 

( ) 1MQ L− ×  ISI-free data model is obtained as 

( ) ( ) ( ) ( )H H H
v k k k k= = +z V z V Ds V v , (2.11) 

where (.)H  denotes the Hermitian transpose. It is readily observed that if MQ Q L≥ + , one can 

completely extract the Q -dimensional desired signal from (2.11). Since the number of subcarriers 

is typically much larger than the channel order, i.e., Q L� , the choice of 2M ≥  will satisfy the 

condition. 

2.4.2 Equalization Based on ISI Suppression 

Based on the ISI-free data model (2.11), one can use various equalization approaches to 

recover the desired symbols. Since the columns of the matrix ( )H MQ L Q− ×∈V D ^  are in general 

not orthogonal (i.e., H H
Q≠D VV D I , where nI  denotes an n n×  identity matrix), the ISI 

nulling operation in (2.11) induces ICI and so an additional signal separation procedure is required 

for recovering the transmitted symbol on each subcarrier. To this end, a linear equalizer 
( )MQ L Q

v
− ×∈W ^  of the form ( ) ( )H

v v vk k=y W z  can be applied. One typical solution for vW  is 

the linear zero-forcing (ZF) [24] or minimum mean square error (MMSE) [60] equalizer with the 

following ( )MQ L Q− ×  weight matrix: 

1( ) ,H H H
zf

−=W V D D VV D  (2.12) 

or 

( ) 12 .H H H
mmse v MN Lσ

−

−= +W V DD V I V D  (2.13) 

In case that the channel frequency response undergoes severe fading near some of the FFT grids, 

and hence some diagonal entries of D  are very close to zero, the ZF solution in (2.12) tends to 
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amplify the noise effect, even if the SNR is high. The MMSE solution (2.13), on the other hand, can 

attenuate the noise effect but, as compared with the ZF solution (2.12), involves the larger size 

matrix inversion ( ) 12 ( ) ( )H H MQ L MQ L
v MN Lσ

− − × −
−+ ∈V DD V I ^ . It is noted that this “two-stage” 

method completely nulls the ISI, but requires extra degrees-of-freedom to suppress the nulling 

induced ICI. The equalization performance can be further improved if one resorts to other nonlinear 

method such as the joint maximum likelihood (ML) search [61]. However, the additional 

performance gain offered by this nonlinear equalizers is obtained at the expense of higher 

computational complexity. In the next subsection, we propose a GSC-based equalizer for joint ISI 

and ICI suppression. This method is linear in nature and, by incorporating a PA implementation, the 

main computations required boil down to inverting an L L×  matrix. Moreover, as one will see, 

numerical simulations show that it can perform better than the above scheme involving ISI nulling 

followed by ZF or MMSE ICI suppression. 

2.4.3 GSC-Based Equalizer 

To exploit the extra degrees-of-freedom in model (2.8) for interference suppression, a 

commonly used approach is via constrained optimization [18], [56], [72]. Specifically, we will seek 

for a linear weighting matrix CMQ Q×∈W  which satisfies 

H H=W D D D ,  (2.14) 

and minimizes the average output interference-plus-noise power, i.e., { }2( ( ) ( ))H
IE k k+W H e v . 

With constraint (2.14), the optimal weight W  will linearly combine the desired signal in the 

maximal-ratio sense (channel matched filtering), and suppress ISI/ICI via minimizing the total 

output interference energy; the equalized signal will then be approximate to 

( ) ( )H Hk k≈W z D Ds , (2.15) 

which can further low-complexity tone-by-tone signal separation. To solve for the optimal W , an 

efficient approach is to transform the constrained optimization problem into an unconstrained one 

via the GSC principle [23], [74]. This amounts to decomposing the weighting matrix into 

= −W D BU , (2.16) 

where the signal signature D  represents the non-adaptive component for verifying constraint 
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(2.14), C ( 1)MQ M Q× −∈B  is the signal blocking matrix with H =B D O , and C( 1)M Q Q− ×∈U  

forms the remaining free parameters to be determined. A schematic description of the GSC is shown 

in Figure 2.1(a). 

 

Figure 2.1. Illustration of (a) fully adaptive GSC equalizer (b) partially adaptive GSC equalizer. 

With (2.16) and (2.8), the equalized output becomes 

( ) ( ) ( )H H
d bk k k= −W z z U z ,  (2.17) 

where 

( ) : ( ) ( ) ( ) ( )H H H H
d Ik k k k k= = + +z D z D Ds D H e D v , (2.18) 

and 
( ) : ( ) ( ) ( )H H H

b Ik k k k= = +z B z B H e B v . (2.19) 

Since the matched filtered branch ( )d kz  is contaminated by 

( ) : ( ) ( )H H
Ik k k= +i D H e D v , (2.20) 

to effectively suppress interference equation (2.17) suggests that the matrix U  should be chosen to 

render ( )H
b kU z  as close to ( )ki  as possible; more precisely, we can determine U  by 

minimizing the following cost function 

{ }2: ( ) ( )H
bJ E k k= −i U z . (2.21) 
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With (2.19) and (2.20) and by following the standard procedures [9], the optimal weight, denoted by 

optU , can be shown to satisfy the linear equation 

H H
in in

⎡ ⎤ =⎢ ⎥⎣ ⎦B R B U B R D ,  (2.22) 

where 

2: 2 H MQ MQ
in I I v MQσ ×= + ∈R H H I C . (2.23) 

With (2.22), we have 

( ) 1H H
opt in in

−
=U B R B B R D , (2.24) 

and the optimal GSC weight is thus 

( )( )1H H
opt MQ in in

−
= − = −W D BU I B B R B B R D , (2.25) 

which is commonly referred to as the fully adaptive (FA) GSC equalizer. 

2.5 Reduced-Complexity Equalizer Implementation 

To obtain the GSC weight matrix W  in (2.25), one has to compute the blocking matrix B  

and to invert the ( 1) ( 1)M Q M Q− × −  matrix H
inB R B . This section proposes a 

reduced-complexity implementation of the proposed GSC equalizer. In particular, by respectively 

exploiting the structures of the signal and ISI/ICI signatures D  and IH , we will show a very 

simple approach to computing the blocking matrix B  and deriving a low-complexity PA 

implementation of W . 

2.5.1 Computation of Blocking Matrix B 

The columns of the blocking matrix B  form an orthonormal basis for the left null space of the 

signal signature D . One typical approach for obtaining B  is to perform the SVD on D . Since 

D  is MQ Q× , the computational burden of the SVD based approach could be prohibitive for a 

large Q . From (2.9), the matrix D  is a concatenation of M diagonal matrices. There is a very 

simple way of computing B  if one can further exploit the block diagonal and sparse structures of 

D . To see this, we denote by jd  the jth column of D , 1 j Q≤ ≤ . From (2.9), it can be easily 
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checked that 
1j

d  and 
2j

d  are mutually orthogonal whenever 1 2j j≠ . This observation suggests 

that we can choose B  to be of the form 

(1) ( 1)M−⎡ ⎤= ⎢ ⎥⎣ ⎦B B B" , (2.26) 

with ( ) ( ) ( )
1

Tm m T m T MQ Q
M

′ ′ ′ ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦B B B" ^ , 1 1m M′≤ ≤ − , where ( )m
m

′B , 1 m M≤ ≤ , is 

diagonal. Denote by ( )m
j

′b  the jth column of ( )m ′B , 1 j Q≤ ≤ . Then the columns of ( )m ′B  are 

mutually orthogonal. Moreover, it can be directly checked that 1 2( ) ( ) 0m H m
j k =b b , for 1 2m m≠ , 

and ( ) 0m H
j k

′ =b d  when j k≠ . As a result, the ( 1)M Q−  columns of the matrix B  

constructed as in (2.26) form an orthonormal basis for the left null space of D  if we choose ( )m
j

′b , 

with ( ) 1m
j

′ =b , to satisfy the orthogonality condition 

1 2

( )

( ) ( )

0

0

m H
j j

m H m
j j

′⎧⎪ =⎪⎪⎨⎪ =⎪⎪⎩

b d

b b
, 1 1m M′≤ ≤ − , 1 21 1m m M≤ ≠ ≤ − , 1 j Q≤ ≤ . (2.27) 

We note that, for a fixed j, only the (( 1) )m Q j− + -th entries, 1 m M≤ ≤ , in ( )m
j

′b  (and hence 

jd ) are nonzero. This implies that (2.27) can be simplified as 

( ) ( )

( ) ( )1 2

( )*

1

( )* ( )

1

( 1) ( 1) 0

( 1) ( 1) 0

M
m
j j

m
M

m m
j j

m

m Q j m Q j

m Q j m Q j

′

=

=

⎧⎪⎪ − + − + =⎪⎪⎪⎪⎨⎪⎪ − + − + =⎪⎪⎪⎪⎩

∑

∑

b d

b b
, (2.28) 

with ( )
2( )

1 ( 1) 1M m
jm m Q j′

= − + =∑ b , 1 1m M′≤ ≤ − , 1 21 1m m M≤ ≠ ≤ − , 1 j Q≤ ≤ , 

where ( )( )m
j n′b  denotes the nth entry of ( )m

j
′b . Hence, by exploiting the structure of the signal 

signature matrix D , we can develop B as in (2.26). Instead of performing SVD on D, all we have 

to do is to pick up the 1M −  M-dimensional solutions (i.e., ( ) ( )( ) ( ){ ,..., ( 1) }m m
j jj M Q j′ ′ − +b b , 

1 1m M′≤ ≤ − ) based on the orthogonality condition in (2.28) for each 1 j Q≤ ≤ . 

2.5.2 PA Implementation 

The computation of the adaptive weight matrix optU  involves the inversion of the 

( 1) ( 1)M Q M Q− × −  matrix H
inB R B . This would lead to a high computational load and poor 

convergence for real-time implementation whenever Q is large. To resolve this problem, PA GSC 
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can be incorporated to reduce the size of the adaptive weight matrix as shown as follows. Since IH  

is of rank L (see Section 2.4.1) and B  has orthonormal columns, the post-blocking ISI/ICI 

signature matrix ( 1) ( 1)H M Q M Q
I

− × −∈B H ^  is at most of rank L only. This implies that there are 

certain redundant components in H
IB H  that are irrelevant to the post-blocking ISI/ICI 

information. As a result, it would be plausible to seek for a more compact representation, e.g., 

through an observation space of dimension L, of the post-blocking ISI/ICI signal. Indeed, if 
( 1)M Q L− ×∈T ^  is a basis for the range space of H

IB H  [22], [25], then a “refined” post-blocking 

ISI/ICI signal can be obtained by passing the blocked output ( )b kz  through HT , leading to the 

following L-dimensional data vector ( ) ( ) ( )H H H H
b Ik k k= +z T B H e T B v . The reduction in signal 

dimension via the matrix filtering HT  can extract the minimal possible information essential for 

describing the L-dimensional post-blocking interference subspace. The major advantage of such a 

data refinement is to allow for the use of a reduced size adaptive weight matrix. In fact, based on 

( )b kz , it only requires to choose an L Q×  weight matrix U  to minimize the cost function 

{ }min  
2

( ) ( )H H HE k k−
U

i U T B z , (2.29) 

which yields the solution 

( ) 1H H H H
in in

−
=U T B R BT T B R D . (2.30) 

Based on (2.30), the optimal MQ Q×  GSC weight matrix is thus 

( ) 1H H H H
in inMQ

−⎡ ⎤= − = −⎢ ⎥⎣ ⎦
W D BTU I BT T B R BT T B R D . (2.31) 

Compared with (2.25), in which an ( 1) ( 1)M Q M Q− × −  matrix inversion is needed, the weight 

matrix defined in (2.31) involves only an L L×  matrix inversion. This can significantly reduce the 

computational complexity since, in practice, the channel order L  is quite small as compared with 

the number of subcarriers Q . The W  in (2.31) is often referred to as the PA implementation of 

the GSC weight (see Figure 2.1(b) for a schematic description). 

The remaining task is to find the dimension reducing matrix T , whose columns consist of a 

basis for the range space of H
IB H , namely, the interference subspace. The rest of this section will 
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show that there is a simple closed-form candidate for such a T . To proceed, the term H
IB H  is 

first expanded into 

( )(1) 1
1

1

( )( 1) 1
1

1

M
mH

m
m

H
I

M
mM H

m
m

−

=

− −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∑

B FH F

B H

B FH F

# , (2.32) 

where we use (2.8) and (2.26). Define Q Q
l

×∈J ^ , 1 l L≤ ≤ , to be the matrix with zero entries 

except that those on the ( 1)Q l− + -th upper diagonal are equal to one. Then we can express 
( ) ( )( )
1 1

Lm m
ll h l==∑H J  for 1 m M≤ ≤ , such that 

  1

1

H
N

H
LI b L

H
N L− +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥= ⋅ ⋅ ⋅ =⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

f

B H f f T F

f

� � # , (2.33) 

where 

( ) ( )( ) (1) ( ) ( 1) 1
1 1

1 1 1 1
( ) ,..., ( )

T
M L M LT Tm H m M H MQ

l m j l m j l
m j m j

h j h j − ×
− + − +

= = = =

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑f B f B f� ^ , (2.34) 

qf , 1 q Q≤ ≤ , are the columns of the FFT matrix F ,  1
MQ L

Lb
×⎡ ⎤= ∈⎢ ⎥⎣ ⎦T f f� �" ^ , and 

 1

H L Q
L Q Q L

×
− +

⎡ ⎤= ∈⎢ ⎥⎣ ⎦F f f" ^ . Based on (2.33), bT  should form a basis for the range space of 
H

ISIB H . As a result, a natural and immediate choice for the dimension-reducing matrix T is 

b=T T .  

2.5.3 Computational Complexity 

This subsection compares the computational complexity (measured in terms of the number of 

complex multiplications (CM)) of the FA GSC-based equalizer, PA GSC-based equalizer, and 

MMSE receiver. To obtain the two GSC-based solutions, one shall first compute the matrix 
MQ MQ

in
×∈R ^   (cf. (2.24) and (2.30)). Based on (2.23) and by definition of IH  in (2.8), we can 

express inR  as 
2

1 12 H H
nin M M MQσ= +R F H H F I , (2.35) 
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where 1H  is defined in (2.10). Equation (2.35) implies that the computation of inR  can be 

implemented using FFT. By further exploiting the sparse structure of 1H  (recalling that the 

nonzero entries in each submatrix of 1H  all cluster in the upper right corner), the number of flops 

for computing inR  is determined as 2 2 2 3
22 logQM L M L+ . Based on (2.25) and (2.31), the total 

approximate flop counts required to compute FA and PA GSC-based solutions are respectively 

summarized as below: 

3 2 2 3 2 2
2

1 54 2 ( 2 log )
3 2

Q
FACM Q M M Q M L M L Q⎛ ⎞⎟⎜= + + + + +⎟⎜ ⎟⎜⎝ ⎠ , (2.36) 

and 

2 2 3 2 2
2

5(4 2 ) 2 1 log
2 2

Q
PA

LCM M M Q M L M L Q
⎞⎛ ⎛ ⎞⎛ ⎞ ⎟⎟⎜ ⎟ ⎜⎜= + + + + + + ⎟⎟⎟⎜ ⎜⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. (2.37) 

For comparison, the total flop count required to obtain the MMSE solution in (2.13) is given as 

( ) ( )3 21 2 2 ( ).
3MMSECM MQ L Q MQ L MQ MQ L= − + − + −  (2.38) 

From (2.36), (2.37) and (2.38), it can be seen that the PA scheme can save about one order of 

computational load over the FA GSC and MMSE solutions. 

2.6 Downlink GSC-Based Pre-Equalization 

To relieve the MU complexity, one can resort to the pre-equalization technique. Based on the 

block system model, this section derives a GSC-based pre-equalizer, which serves as the downlink 

counterpart of the previous work. 

2.6.1 Downlink Signal Model 

In the downlink stage, the OFDM symbol ( )ks  is first weighted by ( ) ( )1 , , MG G… , respectively 

for the M transmit antenna branches, and is then transmitted though the ISI channel. Similar to the 

synchronous block signal model in (2.8), the 1Q×  frequency-domain noise-free received data at 

the MU is expressed as 
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(1) (1)

(1) ( )(1) ( ) 1 1
1 1 ,

( ) ( )

( ) ( ) ( ) ( ) ( ),MM
d d d I

M M

k k k k k− −

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G G

z D D s FH F FH F e D Gs H Ge

G G

#" " #

 (2.39) 

in which ( ) ( ) 1 M Q MQ
d

×⎡ ⎤= ∈⎢ ⎥⎣ ⎦D D D" ^ , ( ) ( ) 1 TT M T MQ Q×⎡ ⎤= ∈⎢ ⎥⎣ ⎦G G G" ^ , and 
( ) ( )1 1 1

, 1 1
M Q MQ

d I
− − ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦H FH F FH F" ^ . 

2.6.2 GSC-Based Pre-Equalization Weight Matrix 

Based on (2.39), this subsection demonstrates how to appropriately choose G  to pre-equalize 

the ISI/ICI effect characterized by ,d IH . To see this, let us take the Hermitian transpose on both 

side of (2.39) to obtain 

,( ) ( ) ( ) .H H H H H H H
d d d Ik k k= +z s G D e G H  (2.40) 

By following the GSC principle, we divide the pre-equalization weight matrix G  into two 

orthogonal parts, H
d d d= −G D B U , where (1) ( 1) ( 1),..., M MQ M Q

d d d
− × −⎡ ⎤= ∈⎢ ⎥⎣ ⎦B B B ^ , with 

( ) ( ) ( )
,1 ,,...,

Tm m T m T MQ Q
d d d M

′ ′ ′ ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦B B B ^ , 1 1m M′≤ ≤ − , is a blocking matrix whose columns are 

chosen from an orthonormal basis for the left null space of H
dD  and dU  is the adaptive weight 

matrix. The schematic description of G  is shown in Figure 2.2(a).  

 

Figure 2.2. Illustration of (a) fully adaptive GSC pre-equalizer (b) partially adaptive GSC 

pre-equalizer. 
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Substituting G  in (2.40), we obtain 

,( ) ( ) ( ) .H H H H H H H
d d d d d d d Ik k k ⎡ ⎤= + −⎢ ⎥⎣ ⎦z s D D e D U B H  (2.41) 

The weight matrix for the downlink stage is determined by minimizing the ISI/ICI power in the 

received signal at the MU, that is, 

( ){ }min  
2

, ( ) .
d

H
d ISI d d dE k−

U
H D B U e  (2.42) 

After some manipulations, it can be shown that dU  must satisfy the following linear equation 

, , ,H H H
d d i d d d d i d=B R B U B R D  (2.43) 

where , , ,
H

d i d I e d I=R H R H . It is easy to check that ( 1) ( 1)
,

H M Q M Q
d d i d

− × −∈B R B ^  is at most of rank 

L  only (see (2.4) and Section 2.5.2), and the optimal solution cannot be determined from (2.43). A 

suboptimal solution can instead be obtained based on the diagonal loading technique [11], that is, 

adding a real value α  to the diagonal entries of ,
H
d d i dB R B  to improve the matrix condition. In 

this way, the suboptimal solution of dU  is immediately computed as 

1 ( 1)
, ,( ) ,H H H M Q Q

d d d in d d d i d
− − ×= ∈U B R B B R D ^  (2.44) 

where , ,d in d i MNα= +R R I . The FA pre-equalization weight matrix MQ Q×∈G ^  is thus 

1
, ,( ) .H H H

MQ d d d in d d d i d
−⎡ ⎤= −⎢ ⎥⎣ ⎦G I B B R B B R D  (2.45) 

If we choose α  too large, the ISI/ICI cancellation capability of the pre-equalizer drops, and if too 

small, the matrix ,d inR  remains ill-conditioned [11]. That is, the choice of α  is a trade-off 

between the interference cancellation capability and accuracy of the solution. Referring to the 

uplink solution (2.25), the diagonal loading value α  could be chosen as 2
vσ  (noise power), which 

can be estimated in the uplink stage 

It is necessary to normalize the norm of each column of G  to be 1 in order to keep the 

instantaneous transmitted power constant. It will be shown in the simulation results that the 
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pre-equalization performance of the suboptimal weight matrix G   is almost identical to that of the 

CP-based pre-maximal ratio combining (pre-MRC) scheme [16]. 

2.6.3 Reduced-Complexity Implementation 

To obtain G , we need to compute dB  and invert the ( 1) ( 1)M Q M Q− × −  matrix 

,
H
d d in dB R B . The proposed low-complexity implementation for the uplink stage suggests an 

immediate solution for the corresponding downlink part. Specifically, since ( ) ( )1  M
d

⎡ ⎤= ⎣ ⎦D D D  is 

the horizontal concatenation of M diagonal matrices, the matrix dB , which is the solution to 

d d =D B O , can be computed in an analogue way as in Section 2.5.1 without performing an SVD of 

dD . On the other hand, to avoid the direct computation of ( ) 1

,
H
d d in d

−
B R B , we can resort to the PA 

scheme as in the uplink stage. From (2.41), ,
H H
d d IB H  appears to be at most of rank L only (see (2.4) 

and Section 2.5.2), and we can find a dimension reducing matrix dT  inserted in front of dB  to 

reduce the pre-processing dimension. By following the same procedure as in Section 2.5.2, we find 

that dT  can be chosen as  ( 1)
,1 ,

M Q L
d d d L

− ×⎡ ⎤= ∈⎢ ⎥⎣ ⎦T f f" ^ , where 

( ) ( )( ) ( )( )(1) ( 1)( ) 1
, , ,1 1 1 1,...,

TT TM L M LH M Hm m MQ
d l N l j N l jd m d mm j m jh j h j −∗ ∗ ×

+ − + −= = = =
⎡ ⎤= ∈⎢ ⎥⎣ ⎦∑ ∑ ∑ ∑f B f B f ^ . 

Substituting d d dB T U  for d dB U  in (2.42) and after some manipulations, the reduced size weight 

matrix dU  must satisfy the following linear equation 

, , .H H H H H
d d d i d d d d d d i d=T B R B T U T B R D  (2.46) 

Similarly, dU  can be obtained as 

1
, ,( ) .H H H H H

d d d d i d d d d d i d
−=U T B R B T T B R D  (2.47) 

Accordingly, the PA pre-equalization weight matrix H MQ Q
d d d d C ×= − ∈G D B T U  is obtained as 

( ) 1
, , .H H H H H

MQ d d d d d i d d d d d i d
−⎡ ⎤= −⎢ ⎥⎣ ⎦

G I B T T B R B T T B R D  (2.48) 

The schematic description is shown in Figure 2.2(b). To maintain equal transmit power on each 

subcarrier, the norm of each column of G  should be normalized to be 1. 
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2.7 Output SINR Performance 

This section derives the output signal to interference-plus-noise ratio (SINR) on each subcarrier 

at the AP end. In the uplink stage, from (2.25), the 1MQ×  equalization weight vector associated 

with the qth subcarrier is 

( ) 1
.H H

q q qin in

−
= −w d B B R B B R d  (2.49) 

Then, the equalized output at the qth subcarrier is obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ),H H H H H H H
q q q q I q q q q q I qk k k k s k k k= = + + = + +y w z w Ds w H e w v d d w H e w v  

 (2.50) 

where we have used 
1 2

0H
j j =d d  when 1 2j j≠  (see Section 2.5.1) and H =B D O  (blocking 

matrix removes the desired signal). The output SINR of the qth subcarrier at the AP end is thus 

given by 

2

,

( )
.

H
q q

HAP q
q qin

SINR =
d d

w R w
 (2.51) 

Assuming that the GSC equalizer effectively suppress ISI/ICI, i.e., H
I ≈W H O , then by definition 

of inR  in (2.23), we have 
2

2,
2

( )
,

1

H H
q q q q

HAP q H
v q q q u q

v H
q q

SINR
σ

σ
≈ = ⎛ ⎞Λ ⎟⎜ ⎟⎜ + ⎟⎜ ⎟⎟⎜⎝ ⎠

d d d d
w w d d

d d

 (2.52) 

where the last equality follows from (2.49) with ( ) 2H H MQ MQ
u in in in

− ×Λ = ∈R B B R B B R ^ . 

Since ( )( )21 1MH
q q qm m Q q== − +∑d d d , Equation (2.52) roughly confirms that an M-fold 

diversity gain is achieved. Also, the result in (2.52) tends to indicate that the GSC equalizer first 

tackles ISI/ICI to yield ( ) ( ) ( )q qq qk s k k≈ +z d v� � , where ( )q kv�  is the effective noise with variance 

2 2(1 )H H
v v q u q q qσ σ= + Λd d d d� , (2.53) 

and then perform a maximum-ratio combining (MRC) over all receive antenna branches to 

maximize the output SNR, leading to 
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( ) ( ) ( ) ( )H H H
q q q q q q qk k s k k= ≈ +y d z d d d v� � � . (2.54) 

We note that, essentially, the same results can be obtained for the downlink stage. 

2.8 Impacts of Channel Correlation 

 Toward an analytically tractable approach to investigating the channel correlation effect, we will 

focus on the M=2 case. We consider the two correlated channels modeled by the following 

equations [40] 
1 2(1) (1)

*(2) (2)

1( ) ( )

1( ) ( )

h l h l

h l h l

ρ

ρ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
, (2.55) 

where ( ) ( )1h l  and ( ) ( )2h l  are modeled as i.i.d. zero-mean Gaussian random variables with 

variance 2
lσ  and 

( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

1 2

2 21 2

E h l h l

E h l E h l
ρ

∗

= . 

Based on the definition of D in (2.9), the associated frequency-domain signal signature matrix is 

, with 1 2 2
*

Q Q
Q Q

Q Q

C
ρ

ρ
×

⎡ ⎤
⎢ ⎥= ϒ ∈ ϒ = ⎢ ⎥
⎢ ⎥⎣ ⎦

I I
D D

I I
� . (2.56) 

From (2.56), the channel frequency responses of the qth subcarriers associated with the two channel 

branches can be expressed as 
1/2

*

1( ) ( )

( )1( )

q q

qq

q q

Q qQ q

ρ

ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥+ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

d d

dd

�

� , 

in which ( )q id�  is the ith entry of the qth column of D� . Since the channel taps ( ) ( )1h l  and 
( ) ( )2h l  are i.i.d. zero-mean Gaussian random variables with variance 2

lσ , 0 l L≤ ≤ , so are the 

corresponding channel frequency responses ( )q qd  and ( )q Q q+d , 1 q Q≤ ≤ , with variance 
2 2

0
L

d llσ σ==∑ , such that 

, with 2
*

1( )
(0, )

1( )

q
c d

q

q
N

Q q

ρ
σ

ρ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥Ψ Ψ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦⎣ ⎦

d

d

�
∼� , (2.57) 
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i.e., complex Gaussian distribution with mean 0 and covariance 2
dσ Ψ . To further pin down the 

impacts of channel correlation on system performance, in the sequel, we will consider the effective 

system model (2.54). Assume that the source symbols are drawn from the QPSK constellation. 

2.8.1 0 1ρ≤ <  case 

We note from (2.53) that the variance of the effective noise depends on qd  also. In fact, as Q 

is large, it can be shown that 0H H
q u q q qΛ ≈d d d d  for a wide range of SNR, and hence 2 2

v vσ σ≈� . 

According to [32], the approximate BER of the qth subcarrier at the AP end, averaged over ( )q qd�  

and ( )q Q q+d� , is upper-bounded by 

( )2 2

, 2 2

2 ( ) ( ) 1
r

q q

AP q
v v

q Q q
P E Q G

ρ

ρσ σ

−
⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜ + + ⎟⎪ ⎜ ⎪ ⎛ ⎞⎟⎜⎪ ⎪ ⎟⎪ ⎪⎟ ⎜⎜ ⎟= ≤⎟ ⎜⎨ ⎬⎜ ⎟⎟ ⎜ ⎟⎜⎪ ⎪⎜ ⎟ ⎝ ⎠⎪ ⎪⎜ ⎟⎟⎜⎪ ⎪⎟⎜ ⎟⎝ ⎠⎜⎪ ⎪⎪ ⎪⎩ ⎭

d d� �
, (2.58) 

where 1
1

r
mmG ρ

ρ ε−==∏ , in which the integer rρ  is the rank of Ψ , mε , 1 m rρ≤ ≤ , are the 

nonzero eigenvalues of 2
dσ Ψ , and the quantity rρ  is the available diversity gain. Given Ψ  in 

(2.57), it is easy to show that ( )( ) 124 1dGρ σ ρ
−

= −  and 2rρ = . As a result, even though a 

two-fold diversity adavantage can be attained for 0 1ρ< < , the nonzero correlation index ρ  

will enlarge Gρ , as compared with the 0ρ =  case. The increase in Gρ  tends to shift the BER 

curve to the right, incurring a larger error level. 

2.8.2 1ρ =  case 

Now, we consider the extreme case of 1ρ = , i.e., je θρ = , in which θ  is a real constant. 

To evaluate the resultant BER, we shall first examine the overall system model given the complete 

channel dependency. Substituting D  in (2.56) with its definition in (2.9), the correlated signal 

signature matrix becomes 
1 2 (1)

(2)

j
NN N

cjj
NN N

e

ee

θ

θθ −−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

II I D
D D

II I D
� , (2.59) 

where ( ) ( )1 22 2 2 2j
c e θ= +D D D . Similarly, from (2.8) and (2.10), we have 
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1,

N
H

I cj
Ne θ−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I
H FH F

I
� , (2.60) 

where ( ) ( )1 2
1, 1 12 2 2 2j

c e θ= +H H H . Equations (2.59) and (2.60) imply that the column spaces 

of the signal and interference signature matrices coincide. As a result, the blocking matrix B , 

which by definition must satisfy H =B D O , will also null the ISI/ICI component. The interference 

cancellation mechanism of the GSC solution thus breaks down in this case since ISI/ICI is no 

longer retained in the second branch. Substituting inR  in (2.23) into (2.25) and using H
I =B H O , 

the GSC solution is seen to reduce to =W D� : the receiver only coherently combines the desired 

signals from the two receive antennas without ISI/ICI suppression. With q q=w d�  in (2.50), the 

output data of the qth subcarrier can be immediately obtained as 

( ) ( ) ( ) ( ).H H H
q q q q q I qk s k k k= + +y d d d H e d v� � � � �  (2.61) 

Assume that the effective noise term in (2.61) can be approximately modeled as a Gaussian random 

variable. Following the same manner as (2.58), the approximate BER upper bound of the qth 

subcarrier, averaged over ( )q qd�  and ( )q Q q+d� , is thus obtained as 

1

2 2,
,

1 1
2AP q

c qd

P
σ σ

−⎛ ⎞⎟⎜ ⎟⎜≤ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
, (2.62) 

where 2 2 2
, ,c q isi q vσ σ σ= + , in which { }2

, 2 H H
isi q q I I qEσ = d H H d� � � � , averaged over ( ) ( )mh l , 

1 2m≤ ≤ , 0 l L≤ ≤ , is the ISI/ICI power; in deriving (2.62), we have neglected the correlation 

between the signal and ICI, as suggested in [5]. As 2
vσ  approaches zero, the upper bound in (2.62) 

converges to a constant, so that 
1

, 2 2
,

1 1 .
2AP q

d isi q
P

σ σ

−⎛ ⎞⎟⎜ ⎟⎜≤ ⎟⎜ ⎟⎟⎜⎜⎝ ⎠
 (2.63) 

Hence, as full channel correlation occurs, the proposed system loses the diversity gain and its BER 

performance is dominated by the un-cancelled ISI/ICI: significant error floor would occur even in 

the high SNR regime. The performance tendency of the downlink case is the same as in the uplink 

case, and is not repeated for brevity. 
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2.9 Simulation Results 

 A system platform similar to the IEEE 802.11a standard is considered: 64Q =  subcarriers, 

and the length of CP is set to be 16 for the CP-based transmission. The OFDM symbol lengths are 

 4 sµ  and 3.2 sµ  for the CP-based and CP-free systems, respectively. The source symbols are 

drawn from the QPSK constellation. The background channel characteristics is the standard 

wireless exponential decay model [50], in which the lth tap of the channel impulse response is 

modeled as a complex Gaussian random variable with variance ( )2 1 rms rmsT T lT T
l e eσ − −= − , where 

T  and rmsT  are the source symbol duration and root mean square delay spread of the channel, 

respectively. The channel impulse response is normalized such that 
2( )

0 ( ) 1L m
l h l= =∑ . The input 

SNR at the mth receive antenna is defined as 
2( )

0
2 2

( ) 1
L m
l

v v

h l
SNR

σ σ
== =

∑
. 

Unless otherwise mentioned, we set s40rmsT n= , which corresponds to a channel order 8L =  

(it can be seen from [50]). The following two assumptions are made: perfect channel information is 

available at the AP, and the tap gains are constant over one OFDM symbol (quasi-static fading). For 

fair comparison, in the CP-based system, the average transmit power of each OFDM symbol (of 

length Q+16) is normalized to Q (this accounts for the power loss factor due to the CP redundancy 

[80]). The case of CP-based transmission without power normalization, in which each information 

symbol shares the same amount of power as in the CP-free case, is also included as the performance 

bound. 

A. System BER Performance 

This subsection shows the BER performance of the GSC-based equalizers and pre-equalizers as 

a function of the input SNR. Figure 2.3 compares the BER performances at the AP end in a CP-free 

OFDM system obtained by the following schemes: linear ZF and MMSE equalizers based on the 

ISI-free model (2.11), and the proposed FA and PA GSC equalizers with 2M =  and 4M = . 

The BER curves resulting from the CP-based transmissions, for 2M =  and 4M =  (using the 

MRC scheme to maximize SNR at the receiver), are included as the benchmark performances. As 



 30

can be seen from the figure, the performance of the FA GSC-based equalizer is best; the PA version 

of the GSC method reduces complexity at the cost of a slight SNR degradation. The ZF equalizer 

performs poorly due to noise enhancement, as stated in Section 2.4.2. On other hand, the MMSE 

equalizer performs worse than the proposed GSC-based equalizer, confirming that the two-stage 

method consumes extra degrees-of-freedom for suppressing the nulling induced ICI, which in turm 

degrades the diversity gain (see Section 2.4.2). Also, with either 2M =  or 4M = , the 

performance of the proposed solution (both FA and PA versions) is almost identical to that of the 

CP-based OFDM system. Therefore, it can be concluded that, for ISI/ICI suppression, the choice of 

2M =  typically satisfies the performance requirement. Figure 2.4 compares the BER 

performances of the proposed GSC pre-equalizers and CP-based pre-MRC scheme [16] in the 

downlink stage. The pre-MRC scheme is known to provide the maximum SNR at the receiver, and 

can serve as a benchmark for the proposed pre-equalizer. The simulation results show that both the 

FA and PA GSC pre-equalizers, with either 2M =  or 4M = , have almost the same 

performance as the CP-based pre-MRC scheme. From the results, both in the uplink and downlink 

cases, the performances of the PA and FA implementations are very close. For clearer presentation, 

we will only show the BER curves of the PA versions of the proposed methods in the following 

figures. 

B. Effect of Channel Estimation Error 

In this subsection, the effect of channel estimation error on the proposed systems is demostrated. 

We consider the case of 2M =  and the estimated channel impulse responses 
( )

( ) ( ) ( ) ( ) ( )m m m
hh l h l h lσ= + ∆� , where ( ) ( )mh l∆  is a complex Gaussian random variable with the 

same variance of ( ) ( )mh l , 1 2m≤ ≤ , 0 8l≤ ≤ , and hσ  is a measure of the relative channel 

estimation error. Figures 2.5 and 2.6 show that the BER performances of the proposed GSC-based 

equalizer and pre-equalizer for hσ = 0, 0.1, 0.3 and 0.5. Compared with the error-free case, the 

performances of all methods are seen to degrade. For a fixed hσ  (excluding the case of 0hσ = ), 

the BER curves of the proposed GSC methods still closely match that of the CP-based method in 

the low-to-medium SNR region (SNR 15<  dB), but deteriorates for high SNR. This is because, 
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when channel estimation error occurs, the computed blocking matrix deviates from the actual 

solution. As a result, the desired signal cannot be completely blocked and thus leaks to the second 

branch. This leads to mutual cancellation of the desired signal at the receiver output and decreases 

the effective SINR. 

C. Impacts of Channel Correlation on BER Performance 

In this subsection, we address the impacts of channel correlation on the performance of the 

proposed schemes. For simplicity, we consider the case of 2M = ; similar performance tendencies 

are observed for 2M > . The following three channel conditions are considered: 

1. Medium correlation: 0.35ρ = . 

2. High correlation: 0.9ρ = . 

3. Full correlation: 1ρ = . 

Figure 2.7 shows that, as the correlation of the two channel branches raises, the performances of all 

considered methods become worse. Moreover, the BER curve of the proposed GSC-based equalizer 

still well tracks that of the CP-based system even when ρ  is as large as 0.9. However, the 

performance of the GSC solution degrades when full channel correlation occurs: the proposed 

interference cancellation mechanism breaks down. This confirms the results in Section 2.8. Figure 

2.8 shows the results of the downlink case, whose tendencies are the same as in the uplink case. 

From the results, it can be concluded that the proposed ISI/ICI cancellation method is quite 

insensitive to channel correlation. 

D. Resistance to Channel Delay Spread 

This subsection shows the resistance of the GSC-based equalizers and pre-equalizers against 

channel delay spread. We fix 2M =  and SNR 15=  dB, and increase rmsT  from 10 to 80 ns 

(this amounts to increasing the discrete-time channel order L from 2 to 16, which is the maximal 

tolerable channel order for the length of the inserted CP (=16). Figure 2.9 compares robustness of 

the various considered ISI/ICI suppression schemes against the increase in the channel delay spread. 

The simulation results show that the proposed GSC-based equalizer is quite resistant to a large 

channel delay spread: its BER curve maintains a small deviation from that of the CP-based system. 
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Figure 2.10 compares the proposed GSC-based pre-equalizer with the CP-based pre-MRC downlink 

transmission. As in the uplink case, the results show that the proposed GSC-based pre-equalizer 

exhibits a negligible degradation in performance compared to the CP-based pre-MRC scheme. This 

shows that the proposed pre-equalizer is also very resistant to a large channel delay spread. 

2.10 Summary 

CP-free OFDM transmission can dramatically increase the spectral efficiency, provided that the 

ISI/ICI induced by the channel delay spread can be effectively suppressed. In this chapter, we 

exploit the multi-antenna resource for ISI/ICI suppression based on the block OFDM system model. 

This naturally leads to a GSC-based framework for equalizer design in the uplink transmission of 

multi-antenna CP-free OFDM systems, as well as the pre-equalizer design in the corresponding 

downlink stage. Low-complexity PA implementations for both links are also derived, and the 

resultant simulated performances are seen to be comparable to the original FA realizations. To 

further access the performance of the proposed system, the output SINR at the AP and MU ends are 

also provided. The analysis shows that, with the proposed method for ISI/ICI suppression, M-fold 

receive and transmit diversity gains in the uplink and downlink stages are restored. Simulation 

results show that the proposed GSC-based transceiver compares favorably with the conventional 

CP-based ISI-free schemes and are highly resistant to a large channel delay spread. 



 33

SNRSNR
 

Figure 2.3. System BER performances at the AP end (uplink) versus receiver input SNR. 

SNRSNR
 

Figure 2.4. System BER performances at the MU end (downlink) versus receiver input SNR. 
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SNRSNR  
Figure 2.5. System BER performances under various channel estimation errors at the AP end 

(uplink) versus receiver input SNR. 

SNRSNR  

Figure 2.6. System BER performances under various channel estimation errors at the MU end 

(downlink) versus receiver input SNR. 
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SNRSNR
 

Figure 2.7. System BER performances under various channel correlation conditions at the AP end 

(uplink) versus receiver input SNR. 

SNRSNR  

Figure 2.8. System BER performances under various channel correlation conditions at the MU end 

(downlink) versus receiver input SNR. 
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Figure 2.9. System BER performances at the AP end (uplink) versus rmsT , with 2M =  and 

SNR 15=  dB. 

 

Figure 2.10. System BER performances at the MU end (downlink) versus rmsT , with 2M =  and 

SNR 15=  dB. 
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Chapter 3 
 

Robust Receiver Design for MIMO-OFDM Under 
Channel Estimation Errors 
 
3.1 Overview 

  This chapter generalizes the CP-free SIMO-OFDM framework proposed in Chapter 2 for 

MIMO-OFDM systems with variable CP length (shorter than the channel order), assuming that the 

channel parameters are not exactly known but are estimated via the commonly used LS training 

technique [6], [43]. To tackle the impact of channel estimation errors, one natural strategy in the 

considered scenario is to model the channel mismatch as a random variable and exploit the 

presumed LS channel error characteristic to derive a solution. The constraint-free GSC setup allows 

us to explicitly track each corrupted signal component resulting from imperfect channel estimation, 

and in turn leads to a very natural cost function for joint interference and channel error mitigation. 

We further leverage the perturbation technique [36], [83] to incorporate the channel parameter 

deviation into the solution equation; the optimal weighting matrix is then obtained by invoking the 

error characteristics of the LS channel estimate. The proposed optimal solution can mitigate the 

aggregate impacts due to channel estimation errors like signal leakage and other background 

parameter perturbation effects. Further analysis reveals that signal leakage turns out to be a 

dominant factor and a suboptimal solution, in the form of diagonal loading (DL), can attain a 

near-optimal performance. Also relying on the perturbation technique, we then derive a closed-form 

SINR expression associated with the suboptimal DL scheme; due to the near-optimal nature of the 

DL solution, the established result can well predict the actual SINR tendency attained by the 

optimal one. Our analytic formula can further quantify the achievable average SINR improvement 

over the non-robust GSC weight (i.e., the one derived under exact channel knowledge). In particular, 

we provide a closed-form expression of the SINR increment, and based on which several key 

features regarding the proposed robust solution can be inferred. 
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3.2 Preliminary 

3.2.1 System Model and Basic Assumptions 

We consider the discrete-time baseband model of a MIMO-OFDM system with Q subcarriers, N 

transmit antennas, and M receive antennas. At time k , the time-domain symbol to be sent from the 

nth transmit antenna is expressed as [79] 

−= 1( ) ( )n nk ks GF s , 1 n N≤ ≤ , (3.1) 

where ( ) Q
n ks ∈  is the frequency-domain OFDM symbol of the nth transmit antenna, 

Q Q×∈F C  is the DFT matrix, ( ): [ ]T T G Q Q
GG QG I I + ×= ∈ , with ×∈ G Q

GI  being the last G rows 

of QI , accounts for the insertion of a CP with length G . Let ( , )( )m nh ⋅  be the impulse response of 

the channel between the nth transmit antenna and the mth receive antenna; we assume without loss 

of generality that all the MN channels are of the same order L. Then the received 

+ ×( ) 1G Q  time-domain data vector from the mth antenna branch is [79] 

( , )( , )
0 11 1( ) ( ) ( 1) ( )N N m nm n

m n n mn nk k k kr H s H s v= == + − +∑ ∑ ,  (3.2) 

where + × +∈( , ) ( ) ( )
0
m n G Q G QH  is lower triangular Toeplitz with ( , ) ( , )[ (0) ( ) 0 0]m n m n Th h L  as 

the first column, + × +∈( , ) ( ) ( )
1
m n G Q G QH  is upper triangular Toeplitz with 

( , ) ( , )[0 0 ( ) (1)]m n m nh L h  as the first row, and ( )( ) G Q
m kv +∈  is the noise vector. To process 

the received data ( )m kr , the G leading guard samples is first discarded; this corresponds to 

post-multiplying ( )m kr  by the CP-removal matrix ( ): [ ]T Q G Q
Q G QM O I + ×

×= ∈ C  to get 

  ( ) : ( )T
m mk kr M r= ( , )( , ) 1 1

0 11 1
( , ) ( , )
0 1: :

( ) ( 1) ( )N N m nT m n T T
n n mn n

m n m n

k k k

H H

M H GF s M H GF s M v− −
= =

= =

= + − +∑ ∑ . 

 (3.3) 

When the length of CP is no less than the channel order, i.e., ≥G L , the received signal ( )m kr  is 

free from ISI and ICI, so that ( , )
1
m n

QH 0=  and ( , )
0
m nH ( , ): m n= H , which is a circulant matrix with 

( , ) ( , ) ( , )(0) 0 0 ( ) (1)m n m n m nh h L h⎡ ⎤⎣ ⎦  (3.4) 

as the first row. We will focus on the case G L< ; as such direct manipulation shows ( , )
1
m nH  

becomes upper triangular Toeplitz with ( , ) ( , )[0 0 ( ) ( 1)]m n m nh L h G +  as the first row, and 
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( , )
0
m nH  is instead obtained from ( , )m nH  by setting ( , )

,[ ] 0m n
i jH =  for 1 i L G≤ ≤ −  and 

Q L i j Q G− + ≤ ≤ − . With (3.3), the received signal in the frequency domain reads 

− −
= =

=

= = + − +∑ ∑( , ) 1 ( , ) 1
01 1 1

:

( ) : ( ) ( ) ( 1) ( )
( )

N Nm n m n T
m m n n mn n

m

k k k k k
k

z Fr FH F s FH F s FM v
v

. (3.5) 

We note that, on the right-hand-side (RHS) of (3.5), the second term is the ISI, whereas the first 

term is a mixture of the desired tone-by-tone signals and ICI. To realize low-complexity per-tone 

based signal recovery, which is one main advantage of MIMO-OFDM [51], a natural approach is to 

treat ISI and ICI as an overall composite interference and devise efficient schemes for joint ISI-ICI 

suppression [13]. For this it requires to further split ICI from the signal-ICI mixture in (3.5); since 

ICI is characterized via the deviation of ( , )
0
m nH  from the circulant matrix ( , )m nH  [13], the 

splitting can be done according to the following decomposition 

( , )
2

( , )( , ) ( , )
0 1

: m n

m nm n m n G

=

= −

H

H H H J ,  (3.6) 

where 
( , ) ( , )
2 1:m n m n GH H J= ,  (3.7) 

with ×∈ Q QJ  denoting the circulant permutation matrix with 1[0 0 1] Q×∈  as the first row 

(see Figure 3.1 for schematic descriptions of (3.6) and (3.7)). 

(a)

( , )m nH
( , )
0
m nH

( , )
2
m n

H

+=

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

1L +

L G L G−

( , )
1
m nH

L G−

(b)

( , )
2
m n

H

L G−

= ×

J
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Figure 3.1. Schematic descriptions of (a) the decomposition (3.6) and (b) the relation (3.7). 
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From (3.6), we can rewrite ( )m kz  in (3.5) as 

( , ) ( , )( , ) 1 1 1
1 21 1 1

( , ):

( ) ( ) ( 1) ( ) ( )N N Nm n m nm n
m n n n mn n n

m n

k k k k k− − −
= = =

=

= + − − +∑ ∑ ∑
D

z FH F s FH F s FH F s v ,            

  (3.8) 

where ×∈( , )m n Q QD  is diagonal with ( , ) ( , ) 2 ( 1)/

0
[ ] ( )

L
m n m n j l i Q

ii
l

h l eD π− −

=
= ∑ . The first term on the 

RHS of (2.8), which is composed of parallel tone-by-tone symbol streams from all transmit 

antennas, serves as the signal of interest. Since G L< , the symbols in each tone are contaminated 

by both ISI from the previously transmitted block (the second term in (3.8)) as well as ICI due to 

the loss of channel cyclicity (the third term in (3.8)). Based on (3.8), we propose a method for 

jointly suppressing ISI and ICI in the presence of channel mismatch. The following assumptions are 

made in the sequel. 

1. The number of receive antennas is greater than the number of transmit antennas, i.e., >M N . 

2. The source symbols of each transmit antenna ( )ns k  is zero mean, unit-variance, and 

δ δ= − −
1 2

*
1 2 1 2 1 2{ ( ) ( ) } ( ) ( )n nE s k s k n n k k , where ( )δ ⋅  is the Kronecker delta. 

3. The elements of ( )m kv ’s are i.i.d. complex circular Gaussian with zero mean and variance 

σ 2
v . 

3.2.2 Least-Squares Channel Estimation 

We assume that ≥G L  during the training phase and the channels are estimated based on the 

LS training technique; see [6], [43] for detailed treatments. Let 
( , ) ( , ) ( , ): (0) ( )

Tm n m n m nh h L⎡ ⎤= ⎢ ⎥⎣ ⎦h 1L+∈ C , and ( , ) ( , ) ( , )ˆ :m n m n m n= +∆h h h  be the corresponding 

optimal LS estimate, with ( , )m nh∆  modeling the estimation error. With 
( ) ( ,1) ( , ) ( 1):

T T T
m m m N N L+⎡ ⎤∆ = ∆ ∆ ∈⎢ ⎥⎣ ⎦

h h h C , 1 m M≤ ≤ , it is known that [6] 

{ }
2

( ) ( ) ( )
( 1):

Hm m m v
N LE

P
σ

+= ∆ ∆ =hR h h I , (3.9) 

where P  is the transmit power dedicated to channel estimation; also, since the noises between 

different receive antennas are independent, we have 

{ }1 2 1 2( , ) ( ) ( )
( 1):

Hm m m m
N LE += ∆ ∆ =hR h h 0 , for 1 2m m≠ . (3.10) 

The channel error properties (3.9) and (3.10) will be used in our robust equalizer design. 
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3.3 ISI-ICI Mitigation 

This section shows how the receive diversity can be exploited for ISI-ICI suppression in the 

considered scenario. We will first collect all the M received signal branches to form a multi-channel 

system model, with which the interference subspace can be characterized; it will be seen that under 

quite mild conditions there will be sufficient inherent spatial and frequency degrees-of-freedom for 

combating ISI and ICI. Then, based on Section 2.4.3, we will show a GSC-based ISI-ICI 

suppression scheme under perfect channel knowledge assumption. 

3.3.1 Multi-Channel System Representation 

Let 1( ) : [ ( ) ( )]T T T NQ
Nk k ks s s= ∈  be the vector containing all the N  transmitted OFDM 

symbol blocks. By stacking ( )m kz , ≤ ≤1 m M , in (3.8) into a vector, we can form the 

MQ -dimensional multi-channel model: 

1( ) ( )  ( )
TT T

Mk k kz z z⎡ ⎤= ⎣ ⎦
− −

= =

= + − − +1 1
1 2

: :

( ) ( 1) ( ) ( )

ISI ICI

M N M Nk k k k
H H

Ds F H F s F H F s v , (3.11) 

where 

(1) ( ): [ ]N MQ NQ
i i iH H H ×= ∈ , 1 2i≤ ≤ , (3.12) 

with 

( ) (1, ) ( , ): [ ]n n T M n T T MQ Q
i i iH H H ×= ∈ , ≤ ≤1 n N ,  (3.13) 

×= ∈(1) ( ): [ ]N MQ NQD D D , with ( ) (1, ) ( , ): [ ]n n T M n T T MQ QD D D ×= ∈ , ≤ ≤1 n N , (3.14) 

: pQ pQ
p pF I F ×= ⊗ ∈ , for { , }p M N∈ , and 1( ) : [ ( ) ( )]T T T MQ

Mk k kv v v= ∈ . Since M>N, we 

may assume without loss of generality that the channel tone matrix D  is of full column rank NQ ; 

this assumption is valid whenever the MN  subchannels between all transmit and receive antennas 

are uncorrelated. Since ( , )
1
m nH  is upper triangular with all the nonzero entries clustering in the last 

L−G columns, the matrix ( )
1
nH  in (3.13) will have the last L−G columns nonzero; by definition, 

the “big” 1H  in (3.12) then has only −( )N L G  nonzero columns, and is of rank at most 

−( )N L G . From (3.7) and (3.13), it is easy to check =( ) ( )
2 1
n n GH H J , and hence we have from (3.12) 
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that 

(1) (2) ( ) (1) (2) ( )
2 2 2 2 1 1 1 1( )N NG G G G

N⎡ ⎤ ⎡ ⎤= = = ⊗⎣ ⎦ ⎣ ⎦H H H H H J H J H J H I J ,  (3.15) 

where the last equality follows by the definition of Kronecker product. This asserts that the rank of 

2H  does not exceed −( )N L G  either since it is obtained by permuting the columns of 1H . The 

relation (3.15) also implies the interference subspace, spanned by the columns of ISIH  and ICIH , 

is of dimension no larger than −( )N L G . Indeed, from (3.15) and (3.11) it follows 

1 1
2 1( )G

ICI M N M N NH F H F F H I J F− −= = ⊗ . (3.16) 

With (3.16) and since 1
1ISI M NH F H F−=  (see (3.11)), the column spaces of both ISIH  and ICIH  

coincide with that of 1MF H , whose rank is at most −( )N L G  (as MF  is orthonormal). Hence, if i) 

the NQ -dimensional range space of the channel tone matrix D does not overlap with the ISI-ICI 

subspace and ii) ( ) ( )M N Q N L G− ≥ − , it is plausible to exploit the extra degrees-of-freedom 

provided by the multi-channel space-frequency model (3.11) for ISI-ICI suppression. We note that 

condition i) can be verified to hold unless all the MN  subchannels lapse into the same direction, 

viz., ( , ) ( , )m n m nh hβ=  for some 1Lh +∈ C  and ( , )m nβ ∈ C ; condition ii) is typically true since the 

number of subcarriers Q  is often substantially larger than the channel order L . 

3.3.2 GSC Based Interference Suppression: Perfect Channel Knowledge Case 

It is assumed for the moment that the channel is perfectly known at the receiver. In what follows, 

we aim to seek for a linear weighting matrix MQ NQ×∈W C  which satisfies 

HHW D D D= , (3.17) 

and minimizes the mean power of the filtered ISI-ICI, i.e., 

( ){ }2( 1) ( ) ( )H
ISI ICIE k k k− − +W H s H s v . With constraint (3.17), the optimal weight W  will 

linearly combine the desired signal in the maximal-ratio sense (channel matched filtering), and 

suppress ISI-ICI via minimizes the total output interference-plus-noise power; the equalized signal 

then approximates 
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( ) ( )HH k kW z D Ds≈ , (3.18) 

which can facilitate low-complexity tone-by-tone signal separation. Such a 

constrained-optimization can be transformed into an unconstrained one via the GSC principle, i.e., 

the weight matrix W   is decomposed into 

W D BU= − , (3.19) 

where the signal signature D  denotes the non-adaptive component for verifying constraint (3.17), 
( )MQ M N Q× −∈B C  is the signal blocking matrix determined by HB D 0= , and ( )M N Q NQU C − ×∈  

forms the remaining free parameters to be determined. Following the same procedures presented in 

Section 2.4.3, the optimal solution of the adaptive portion U  can be derived as 

( ) 1H H
g I I

−
=U B R B B R D , (3.20) 

where 2: H H MQ MQ
I ISI ISI ICI ICI v MQσ ×= + + ∈R H H H H I C , and the optimal GSC weight is thus 

( ) 1H H
g g I I

−
= − = −W D BU D B B R B B R D . (3.21) 

We note that the matrix gW  in (3.21) is obtained based on the crucial perfect channel knowledge 

assumption; when channel parameter mismatch occurs due to imperfect estimation, the performance 

of solution (3.21) will degrade since it does not take into account channel error mitigation. 

3.4 Proposed Robust Solution Against Channel Estimation Error 

This section studies the problem of robust equalizer design against channel estimation error. We 

will first introduce the design formulation, and point out the challenge toward a solution. Then we 

will characterize the estimated blocking matrix via a perturbation analysis; this is crucial for 

solution derivation and subsequent performance analysis. Based on the established results and 

assuming the channel is estimated via the LS criterion, a closed-form optimal weighting matrix is 

obtained and the related discussions are given. 

3.4.1 Problem Formulation 

Our exposure will directly rely on the GSC setup. We first observe that, when only an estimated 
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D D≠  is available, exact maximal-ratio combining of the desired signal ( )kDs  is impossible; the 

best we can do, however, is to linearly combine ( )kDs  through D  to get the approximation 

( )
H

kD Ds . This suggests us to fix D  as the non-adaptive portion of the GSC solution, and 

decompose the weighting matrix into 

W D BU= − ,  (3.22) 

where B  is the blocking matrix associated with D , that is, 
H

B D 0= , and ( )M N Q NQU C − ×∈  is 

to be determined. With (3.22), the equalized output is instead 

( ) ( ) ( )
H H

d bk k k= −W z z U z ,  (3.23) 

where 

( ) : ( )
H

d k k=z D z ( )
H

kD Ds= ( 1)
H

ISI kD H s+ − ( )
H

ICI kD H s− ( )
H

kD v+ .  (3.24) 

and 

( ) : ( )
H

b k k=z B z ( )
H

k= B Ds ( 1)
H

ISI kB H s+ − ( )
H

ICI kB H s− ( )
H

kB v+ .  (3.25) 

Due to inexact channel knowledge, the desired signal in the matched filtered branch ( )d kz  is 

non-coherently combined and the contaminating interference becomes 

( ) : ( 1) ( ) ( )
H H H

ISI ICIk k k ki D H s D H s D v= − − + .  (3.26) 

The channel estimation error also modifies the blocked signal characteristics in (3.25). In particular, 

since the estimated B  is otherwise determined via 
H

B D 0=  (and hence 
H

B D 0≠  in general), 

there is a signal leakage ( )
H

kB Ds  into the blocking branch ( )b kz . To mitigate the aggregate 

impacts due to channel errors, a natural approach is to treat ( )b kz  as a composite interference, and 

to design U  by minimizing 

{ }2: ( ) ( )H
bJ E k k= −i U z ,  (3.27) 

where the expectation is taken with respect to the source signal, channel estimation error, and 

background noise (assuming all are mutually independent). Based on (3.25), (3.26) and (3.27), and 

by averaging the cost function J  over the source signal and noise, we have 
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⎛ ⎞− − +⎜ ⎟
⎝ ⎠

= { ( ) }
H H HH H

I ICI ICIJ Tr EU B R DH H D DD B U ⎛ ⎞− −⎜ ⎟
⎝ ⎠

{ ( ) }
H

H H
I ICITr EU B R DH D  

⎛ ⎞ ⎛ ⎞− − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

{( ( ) } {( }
H HH

I ICI ITr E Tr ED R H D B U D R D . (3.28) 

Since, for a given A we have 1  ( )( )/
TH HTr U AU U U A∂ ∂ = , ( )/ TTr AU U A∂ ∂ = , and 

( )( )/H
M N Q NQTr U A U 0 − ×∂ ∂ = , the derivative of J  with respect to U  is thus 

∂ ⎛ ⎞ ⎛ ⎞− − + − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
= { ( ) } {( ( ) }

T TH HH H HH H
I ICI ICI I ICIJ E EU B R DH H D DD B D R H D B

U
.(3.29) 

With (3.29) and by setting ( )/ M N Q NQJ − ×∂ ∂ =U 0 , the first-order necessary condition reads 

⎡ ⎤+ − − =⎢ ⎥⎣ ⎦
{ )} { ( ) }

H HH HH
I ICI ICIE EB DD B B R DH H D B U −{ ( ) }

H
H

I ICIE B R DH D .  (3.30) 

To determine the optimal U  from (3.30), it is necessary to explicitly evaluate all the involved 

expectation terms. This can be done if we can establish an expression linking the estimated blocking 

matrix B  with the channel matrix perturbation D∆ . Since B  is constructed as a basis of the left 

null space associated with D  through SVD (recalling that 
H

B D 0= ), an exact relation between 

B  and D∆  appears highly intractable. In the next subsection, we will resort to the perturbation 

technique for developing an analytic (but approximate) expression. 

3.4.2 Estimated Blocking Matrix: A Perturbation Analysis 

Let us express the estimated channel tone matrix as 

= +∆D D D ,  (3.31) 

where MQ NQ×∆ ∈D  models the estimation error and is defined similarly as D  in (3.14), except 

that the ( , )m n th Q Q×  submatrix is 

{ }( , ) ( , ):m n m n
Ldiag Q∆ = ∆D F h ,                      (3.32) 

where ( 1)Q L
LF × +∈ C  contains the first 1L +  columns of the DFT matrix. Write an SVD of the 

exact signal matrix D  as 

                                                 
1 These equalities follow immediately from the definition of the derivative of a real valued function with respect to a 
matrix, e.g., [78, Appendix A], together with some straightforward manipulations. 
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H
DD

D B H
B

⎡ ⎤⎡ ⎤Σ ⎢ ⎥⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

V0
D U U

0 0 V
,  (3.33) 

and likewise for D , 

⎡ ⎤⎡ ⎤Σ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

[ ]

H
DD

D B H
B

V0
D U U

0 0 V
.  (3.34) 

We note that each component matrix in (3.34) is of the same dimension as the corresponding 

noise-free counterpart in (3.33); the blocking matrices with, and without, channel parameter error 

are respectively B=B U  and B=B U , both of dimension ( )MQ M N Q× − . Let us further 

express B  as 

= +∆B B B ,  (3.35) 

with B∆  modeling the deviation. When ∆D  is small, we have the following linear first-order 

approximation of B . 

Lemma 3.1 [62]: The perturbed blocking matrix B  can be approximated by 

D≈ +B B U P ,  (3.36) 

where ( )NQ M N QP × −∈ C  is such that = ∆( )OP D .                                   

To completely specify B  in the form (3.36), it remains to determine P . This can be done by 

further taking into account the equality 
H
=B D 0 , which together with (3.31) and (3.36) implies 

( ) ( )
H H

D= + +∆ =B D B U P D D 0 .  (3.37) 

Since =HB D 0  and = ΣH H
D D DU D V  (see (3.33)), equation (3.37) can be rearranged into 

Σ + ∆ = −∆H H
D D DV P D U P D B .  (3.38) 

To determine P  from (3.38), we further observe that 

∆ ≤ ∆ ⋅ = ∆ ⋅ ∝ ∆
2

( )H
D D OD U P D U P D P D , (3.39) 

where the equality follows from the orthonormality of DU . Since = ∆( )OP D , inequality (3.39) 

asserts that ∆ H
DD U P  is bounded from above by some quantity quadratic in ∆D , which is 
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small with small ∆D . We may thus neglect ∆ H
DD U P  in (3.38) so that 

Σ ≈ −∆ H
D DV P D B ; (3.40) 

this technique is used in [36] for determining the first-order perturbation. With (3.40), the matrix P  

can thus be approximated by 

−= −Σ ∆1 HH
D DP V D B .  (3.41) 

This immediately implies −∆ = = − Σ ∆1 HH
D D D DB U P U V D B , and 

1

:

HH
D D DB B U V D B

B

−

=∆

= − Σ ∆ .  (3.42) 

Equation (3.42) provides a closed-form expression of B  linear in the estimation error ∆D . The 

linearity nature can considerably simplify the derivation of the optimal solution, and will also lead 

to tractable procedures of performance analysis. We note that, instead of (3.36), more accurate 

approximation of B  can be obtained by incorporating higher order components [83]. Although this 

can improve the solution accuracy, the resultant analysis would however become intractable. 

3.4.3 Optimal Solution 

Based on (3.42) and assuming that the channel is estimated in the optimal LS sense, we can 

explicitly determine the expectation quantities involved in (3.30); these are summarized in the next 

lemma (see Appendix A for a proof), and will be used for deriving an optimal weighting matrix. 

Lemma 3.2: The following results hold. 

(1) { }− =( )
H H

I ICIE B R DH D H
IB R D . 

(2) { } σ
−

+
=

2

( )
( 1)H H v

M N Q
N LE

P
B DD B I . 

(3) Define the matrix 

 ( ) ( )− −
= − −

1 1
: ( )H H H HH

I ICI ICIK D D D R DH H D D D D .  (3.43) 

Then we have 
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{ }− − = +( ) ( )
H H HH

cI ICI ICI IE B R DH H D B B R R B ,           (3.44) 

in which cR MQ MQ×∈C  is block diagonal, with the m th Q Q×  block diagonal submatrix 
( )m
cR  given by 

 
2

( ) ( )

1

N
m H nv

c L L
n

Q
P
σ

=
= ∑R F F K ,  (3.45) 

and ( )nK  denotes the nth Q Q×  diagonal block of K .                              

Based on (3.30) and Lemma 3.2, the optimal optU  can be obtained as 

12

( )
( 1) ( )H Hv

opt M N Q I c I
N L

P
U I B R R B B R Dσ

−

−
⎛ ⎞+

= + +⎜ ⎟
⎝ ⎠

, (3.46) 

where IR  and cR  are respectively defined in (3.15) and (3.45). Note that solution (3.46) is on 

average the optimal choice for ISI-ICI suppression under (white) LS channel estimation error 

assumption. In practical implementation when only an estimated channel is available, the 

sampled-version of the robust GSC weight is thus  

σ
−

−

⎛ ⎞+
= − = − + +⎜ ⎟

⎝ ⎠

12

( )
( 1) ( )

H H
v

opt opt I c IM N Q
N L

P
W D BU D B I B R R B B R D , (3.47) 

in which IR  and cR  are respectively the estimates of IR  and cR . 

Discussions: 

1. The proposed approach explicitly incorporates the channel mismatch effect into the GSC 

formulation; it aims for joint mitigation of ISI-ICI and the net parameter mismatch effects 

induced by channel estimation errors. The optimal optU  differs from gU  in (3.20) in 

additional two terms, namely, 
2

( )
( 1) v

M N Q
N L

P
Iσ

−
+  and H

cB R B , involved in matrix inversion; 

the former accounts for the signal leakage effect driven by the white-noise like LS channel 

estimation error (cf. (3.9) and (3.10)), whereas the latter is due to the parameter perturbation in 

the ISI-ICI signature matrices. 

2. We should note that our design formulation is not exclusive to the case with LS channel 
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estimation (which produces a white channel estimation error); it does provide a unified 

framework for robust GSC filter design regardless of the adopted channel acquisition techniques. 

Indeed, as long as the channel error (with known covariance matrix) is independent of the 

source signal and noise, equation (3.30) remains true and the proposed approach will yield a 

solution of the form (3.46), except that all the involved matrices are accordingly modified based 

on the actual channel error characteristics. 

3. Since HD D  is the coherently combined signal signature, the magnitude of its non-zero entries 

would in general be substantially larger than those of IR  and H
ICIDH . This implies the entries 

of the matrix K  in (3.43), and H
cB R B  as well, could be relatively small as compared with 

1 2( 1) vP N L σ− +  (through simulations it is found that the entries of H
cB R B  are two-order less 

in magnitude in the medium-to-high SNR region). As a result, the achievable performance of 

optU  in (3.46) can remain largely intact if we ignore the term H
cB R B , which reflects the 

ISI-ICI signature perturbation, and consider the sampled DL solution 

= −:dl dlW D BU ,  (3.48) 

with 

σ
−

−

⎛ ⎞+
= +⎜ ⎟

⎝ ⎠

12

( )
( 1):

H H
v

dl I IM N Q
N L

P
U I B R B B R D .  (3.49) 

This would indicate that the signal leakage, on the other hand, is the dominant effect incurred by 

channel estimation errors. An intuitive reason for this is that, the leaking signal component into 

the blocking branch (3.25) will cause undesirable signal cancellation via the two-branch GSC 

interference-rejection mechanism, leading to a loss of the effective SINR. 

4. Robust constrained-optimization based beamformer design with background parameter error 

modeled as a white noise is addressed in [12]. The solution approach reported therein is to 

impose certain quadratic constraint on the beamforming weight so as to potentially keep down 

the white-noise amplification gain [12, pp. 1366-1367]. In light of this point, another plausible 

approach to robust GSC filter design in our context is thus 
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{ }2min ( ) ( )H
bE k k−

U
i U z , subject to U δ=  for some 0δ > ; (3.50) 

the expectation in (3.50) is taken with respect to the source signal and measurement noise. The 

solution to (3.50) is known to be 

( )γ γ
−

−
= +

1

( )
H H

I IM N QU I B R B B R D , for some 0γ ≥ . (3.51) 

The performance of solution (3.51) depends crucially on the selection of γ  [12], [42], [72], 

[75]; however, there are in general no tractable rules for explicitly determining an optimal γ , 

even when the uncertainty level δ  is known [42]. We note that the suboptimal alternative (4.28) 

is exactly the sampled-version of the DL solution (3.51), with γ  set to be 

2: ( 1) /vN L Pγ σ= + .  (3.52) 

It is thus conjectured that, under white channel error assumption, γ  derived based on the 

presented perturbation analysis is the best choice with respect to the design criterion (3.50). Our 

simulation results (see Simulation D) tend to confirm this postulation. 

3.5 Performance Analysis 

This section investigates the SINR performance of the proposed robust filter (3.47). We will 

first derive an approximate average SINR expression in closed-form. Then we will show the 

proposed solution can yield an improved SINR gain over gW  in (3.21); in particular, the 

achievable SINR increment will be quantified, and based on which several key features regarding 

the optimal solution can be inferred. 

3.5.1 SINR Evaluation 

To evaluate the average SINR attained by (3.47), we will resort to the perturbation based 

technique. Specifically, we will explicitly link the estimated solution with channel mismatch ∆D , 

and then invoke the LS channel error property for mean SINR evaluation. To facilitate the 

underlying analysis, we will neglect the term 
H

cB R B  in (3.47) and consider the diagonal loading 

solution (3.48); through simulation tests the derived results based on the simplified solution form 
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are seen to well predict the actual SINR tendency attained by the optimal one (3.47). 
To proceed, let 

dl dl dl= +∆W W W ,  (3.53) 

where dlW  is the exact solution of dlW  (by substituting the true parameters D , B  and IR  in 

(3.48)) and dl∆W  models the deviation. With (3.53), the output from the robust GSC filter is 

= = + − − +( ) : ( ) ( ) ( 1) ( ) ( )
H H H H H
dl dl dl dl dldl ISI ICIk k k k k kz W z W Ds W H s W H s W v  

                   = + ∆ + − − +
( ) ( )

( ) ( ( ) ( 1) ( ) ( ))

dl dl

H H HH H
dl dl dldl dl ISI ICI

k k

k k k k k
s i

W Ds W Ds W H s W H s W v ,   

 (3.54) 

were ( )dl ks  is the desired signal component and ( )dl ki  is the overall interference and noise. With 

(3.54), the average SINR is thus [34] 

{ }
{ }

2

2

( )
SINR :

( )

dl
dl

dl

E k

E k
=

s

i
,  (3.55) 

where the expectation is taken with respect to the source signal, noise, and channel estimation errors. 

The signal power { }2( )dlE ks  can be directly computed by 

{ } { } ( ) 222
( ) ( ) H HH H

dl dl dl dlE k E k Tr= = =s W Ds W DD W D D ,  (3.56) 

where the last equality in (3.56) follows from the definition of dlW  in (3.53) and HB D 0= . The 

crucial step is to determine the composite interference power { }2( )dlE ki . Based on further 

perturbation analysis, we have (see Appendix B for detailed derivations) 

{ }= = + ∆ ∆ + ∆ ∆
2

, ,: ( ) ( ) ( { }) ( { })HH H H
I dl dl dl I dl dl dl dl I c dlP E k Tr Tr E Tr Ei W R W W DD W W R W ,  

 (3.57) 
where 

= − −, : HH
I c I ICI ICIR R DH H D ;  (3.58) 

the expectation involved on the RHS on (3.57) is with respect to the channel errors. The quantity 

( )H
dl I dlTr W R W  in ,I dlP  is the filtered interference power under perfect channel knowledge; the 
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remaining two arise due to channel mismatch and can be further computed as (see Appendix C for 

detailed derivations) 

 
( ) ( ){ } ( ){ } ( ){ }γ

=

∆ ∆ + ∆ ∆

= + − − −∑

,

62

7 8 9
1

( { }) ( { })

          2Re 2Re 2Re ,

HH H
dl dl dl I c dl

idl
i

Tr E Tr E

Tr Tr Tr Tr

W DD W W R W

U X X X X
 (3.59) 

where the matrices iX , 1 9i≤ ≤ , are provided in Table 3.1. It is noted that (3.59) keeps only the 

dominant terms. The average SINR attained by dlW  can then be evaluated based on (5.56), (5.57), 

and (5.59). 

3.5.2 Achievable Performance Advantage 

Based on (3.57), the proposed scheme can be shown to yield an SINR advantage over gW  in 

(3.21). To see this, let us write g g g= +∆W W W  as an estimate of gW . By splitting the filtered 

output ( ) : ( )
H
gg k kz W z=  in the form (3.54), it is straightforward to check that the signal power is 

{ } ( ) 22
( ) H HH H

g g gE k Tr= =W Ds W DD W D D , (3.60) 

where the last equality follows from (3.21). Also, by going through essentially the same 

perturbation analysis as in Appendix B, the filtered interference power is verified to be 

{ } ( )= = + ∆ ∆ + ∆ ∆
2

, ,: ( ) ( { }) ( { })HH H H
g g g g g g gI g I I cP E k Tr Tr E Tr Ei W R W W DD W W R W .

 (3.61) 

From (3.56) and (3.60), we can see that the average signal levels sustained by dlW  and gW  are 

identical; the SINR are thus completely determined by the respective interference powers ,I dlP  and 

,I gP . When 2
vσ  is small, it can be shown that , ,I dl I gP P< . More precisely, we have the following 

result (see Appendix D for a proof). 

Theorem 3.3: For small 2
vσ , 

( )γ γ
−⎛ ⎞− ≈ +⎜ ⎟

⎝ ⎠

1
2

, ,
HH

g gI g I dl IP P Tr U I B R B U .  (3.62) 
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Equation (3.62) shows that, in the high SNR regime, the proposed robust solution can provide an 

SINR increment: 

( ) 122 2 2

g
, , , ,

SINR:=SINR SINR

H HHH H
g gI

dl
I dl I g I dl I g

Tr

P P P P

γ γ
−⎛ ⎞⎟⎜ + ⎟⎜ ⎟⎜⎝ ⎠∆ − ≈ − =

D D U I B R B UD D D D
;  

 (3.63) 

our simulation results show that (3.63) does remain valid for a wide range of SNR. The analytic 

SINR increment (3.63) not only quantifies the performance advantage of the robust scheme (3.47), 

but can also reveal several associated intrinsic features. To see this, we note that 

( ) ( )
( ) ( )

2
1

max max( ) ( )

H
g gH gH

g gI H H
I I

Tr
Tr γ

γ λ γ λ

−⎛ ⎞⎟⎜ + ≥ =⎟⎜ ⎟⎜⎝ ⎠ + +

U U U
U I B R B U

B R B B R B
.  (3.64) 

With (3.64), we can infer from (3.63) the inequality relation: 

222

max , ,

SINR
( )

H
g

H
I I dl I gP P

γ

λ γ

⋅
∆ ≥ ⎡ ⎤+⎢ ⎥⎣ ⎦

U D D

B R B
,  (3.65) 

where λmax( )H
IB R B  denotes the maximal eigenvalue associated with H

IB R B . The lower bound 

(3.65) leads to the following observations. 

1. Let 2
vσ  be small and fixed. Through manipulation it can be shown that the incremental SINR 

lower bound (3.65) will increase as P  decreases. Hence, when P  is small and incurs severe 

channel mismatch, the proposed robust equalizer (3.47) would yield significant performance 

gain over solution (3.21). As P  increases, and hence the estimation accuracy improves, the 

performance gain would however become negligible (this is also seen in our simulation). 

2. We can also see from (3.65) that, for fixed P  and 2
vσ , the performance improvement would 

be limited when λmax( )H
IB R B , which reflects the maximal power of ISI and ICI with perfect 

channel knowledge, is large. This is intuitively reasonable since, under severe ISI and ICI, the 

equalizer will largely aim for interference suppression, rather than combating the channel 

mismatch effects. 
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3.6 Complexity Comparison  

This section compares the algorithm complexity of the GSC solution (3.21) with that of the 

time-domain channel shortening/equalization (TEQ) approach [1] and the frequency-domain 

per-tone equalizer (PTEQ) [33]; we note that the complexity of the proposed robust solution (3.47) 

is essentially the same with that of (3.21). 

The computational cost of solution (3.21) is in solving for the blocking matrix via H =B D 0  

and inverting the ( ) ( )M N Q M N Q− × −  matrix H
IB R B . A low-complexity scheme for 

obtaining B  which exploits the block diagonal structure of D  can be found in Section 2.5.1. As 

such, the total number of flop counts for computing the GSC solution (3.21) (in terms of the number 

of complex multiplications) is approximately 

( ) ( )

( ) ( ) ( )

3 23 2 2 2
GSC 2

22 2 2 3

1 5CM 2 log
3 2

1 12 ( 1) 2 1 .
6 6

QM N Q MN M M N M Q

M N M N N MN M N N Q

⎡ ⎤⎛ ⎞= − + + + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞+ − − − − − − +⎜ ⎟
⎝ ⎠

 (3.66) 

It is noted that the computational burden of the matrix inversion involved in (3.21) can be further 

alleviated by resorting to the partial adaptivity (PA) implementation (see Section 2.5.2); this instead 

calls for inverting an ( ) ( )N L G N L G− × −  matrix, and can limit the flop cost to 

( )2 2 2 2
GSC,PA 2CM 2 ( ) ( ) logMN M N L G M N M Q Q⎡ ⎤= + + − − +⎣ ⎦  

( ) ( ) ( )22 2 2 3 2 2
2

1 12 ( 1) 2 1 ( ) ( ) log
6 6

QM N M N N MN M N M M N N Q MN L G⎡ ⎤+ − − − − − − + − + + −⎢ ⎥⎣ ⎦  
 (3.67) 
The numbers of flop counts for TEQ [1] and PTEQ [33], respectively, are obtained as 

3 2 3 3 2 2 2 2
TEQ

1 7 1CM ( 1)( ) ( 1) ( 1) ( 1)
3 2 6t tN Q NM M L L L N G N G N G= + + + + + + + + + , (3.68) 

and 

2 3 2
PEQ

1 5 1CM 2( 1)( 2 1) ( 1) ( 1) ( 1)
3 2 6p p p p pL L L L L N L L N N L L Q⎧ ⎫⎡ ⎤= + + + + + + + + + + + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 (3.69) 

where tL  and pL  are respectively the TEQ and PTEQ filter orders. From (3.66), (3.68) and 

(3.69), we have the following observations: i) TEQ method calls for the least algorithm complexity 
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among the three, ii) the complexities of the GSC and PTEQ methods are comparable for moderate 

numbers of subcarriers Q, iii) the GSC solution entails the highest computational cost when Q is 

large. As we will see in the simulation section, the proposed GSC approach, although incurring 

more algorithm complexity, does yield significant performance improvement over the other two 

comparative methods, even when perfect channel parameters are used for equalizer design. 

3.7 Synchronization Issues 

 The synchronization issues of MIMO-OFDM systems are well discussed in the literature [63], 

[69]. This section will introduce a typical preamble-based method for an example. Assume that each 

transmit antenna transmits two identical preambles (all preambles are assumed the same) prior to a 

data burst, and the CP length in the synchronization phase, i.e., Gs , is larger than the channel order 

L. In general, a synchronization flow includes timing and frequency synchronizations, which 

contain the following four steps [63]. 

(1) Coarse timing synchronization: Coarse timing synchronization aims to roughly detect the start 

of an OFDM frame within only several samples away from the actual frame start point. Since 

the two transmitted preambles are identical, their CP portions are the same. When an OFDM 

frame arrives, the current Gs-sample block in the received sample sequence is highly correlated 

to the one at a distance of Q samples away. As a result, timing acquisition is usually performed 

via 

1
*

0
argmax

sG

c q Q q
q

r r
−

Φ+ Φ+ +Φ =
Φ = ∑ , (3.70) 

where qr , 0q ≥ , represents the time-domain received sample sequence. If cΦ  is larger than a 

prescribed threshold value, cΦ  is treated as the start instant of an OFDM frame. 

(2) Time-domain frequency offset estimation: The frequency offset between the transmitter and 

receiver oscillator leads to a progressive phase shift 2θ π= ∆  imposed on the time-domain 

received sample sequence, where ∆  denotes the frequency offset. Given cΦ , the coarse 

frequency offset can be estimated via 
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To compensate the frequency offset, each sample of the time-domain received sample sequence 

is multiplied by exp( 2 / )cj q Qπ− ∆ . 

(3) Residual frequency offset correction: Since the range of the time-domain frequency offset 

estimation in step 2 might be insufficient, residual frequency offset is left and has to be further 

compensated. Denote 0 1[ ,..., ]TQp p −=p  as the frequency-domain preamble sequence. The 

residual frequency offset can be estimated based on cyclically cross correlating the foreknown 

preamble sequence with the frequency-corrected OFDM symbol 0 1[ ,..., ]TQz z −=z  (the DFT 

of 1[ exp( 2 / ),..., exp( 2 ( 1) / )]
c c

T
c c Q c cr j Q r j Q Qπ πΦ Φ + −− Φ ∆ − Φ + − ∆ ), i.e., 

1
*
( )

0
argmax

Q

Q

f q q
q

p z
−

∆+∆ =
∆ = ∑ , 0 1Q≤ ∆ ≤ − . (3.72) 

With f∆ , the residual phase rotation can be removed by further multiplying the time-domain 

sample sequence with exp( 2 / )fj q Qπ− ∆ . 

(4) Fine timing synchronization: After frequency offset is removed, the fine timing synchronization 

follows. The fine timing metric can be obtained by cross correlating the frequency-corrected 

time-domain sample sequence from step 3 ( , exp( 2 ( )/ )c q q c fr r j q Qπ= − ∆ +∆ , 0q ≥ ) with 

the time-domain preamble sequence ,0 , 1[ ,..., ]Tt t t Qp p −=p  (the IDFT of p ), i.e., 

12
*
, , ( 1)

1 0
argmax

Q

f t q c u Q q
u q

p r
−

Φ+ − +Φ = =
Φ = ∑∑ . (3.73) 

In general, the coarse timing synchronization can estimate a timing metric close to the actual 

frame start instant. As a result, the fine timing synchronization is usually performed within a 

window centered around cΦ  to save computational burden. 

3.8 Simulation Results 

This section uses several numerical examples to illustrate the performance of the proposed 

method. We consider a MIMO-OFDM system with 2N =  transmit antennas, 3M =  receive 
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antennas, and 64Q =  subcarriers; the source symbols are drawn from the QPSK constellation. 

The background channel characteristics follow the standard wireless exponential decay model [50]: 

the channel impulse response is normalized such that 
2( , )

1 0 ( ) 1N L m n
n l h l= = =∑ ∑ . The input SNR 

at the mth receive antenna is defined as 
2( , )

1 0
2 2

( ) 1
N L m n
n l

v v

h l
SNR

σ σ
= == =

∑ ∑
. 

We consider the quasi-static environment, in which the channels are assumed to remain constant 

during per coherent interval of 300 OFDM symbol periods, and can vary independently between 

different intervals. In each data burst the training pilots are placed in the entire heading OFDM 

symbol, and are designed according to [6]. The outputs of both TEQ and GSC filters are fed into an 

MMSE-VBLAST detector [29], [82] for further separating the multi-antenna transmitted signals on 

each tone. All the simulations results are averaged over 800 trials. 

A. Comparison with Previous Works 

We first compare the bit-error-rate (BER) performance of the proposed GSC based receiver with 

that of the TEQ [1] and PTEQ [33] approaches. For a given channel order L, the performances of 

TEQ and PTEQ depend crucially on the equalizer order and the allowable decision delay. The TEQ 

is implemented using an ( 20)L + -tap filter to shorten the composite channel order to the 

prescribed CP length G (through simulation it is found that further increase in the filter order does 

not seem to be able to improve performance); also, the resultant delay choice yielding the lowest 

BER is determined through exhaustive search and is then used in simulation. The order of PTEQ, 

and the associated decision delay, are both set to be L G− , as suggested in [33]. In the first 

simulation we consider the case when the channel is perfectly known at the receiver (the GSC 

equalizer (3.21) is adopted). For channel order 13L =  and CP length 2G = , Figure 3.2 shows 

the BER results of the three methods at different SNR levels. We can see that, among the three 

ISI-ICI mitigation schemes, the GSC equalizer (3.21) yields the best performance: it incurs no more 

than 1 dB penalty as compared with the ISI-free benchmark result, and even the associated 

low-complexity PA implementation can outperform TEQ and PTEQ. The performance advantage of 
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the GSC approach would lie in the exploitation of the joint space-frequency degrees-of-freedom for 

interference suppression. With SNR=20 dB, Figure 3.3 compares the respective BER as the CP 

length fixed at 2G =  and channel order L increases from 4 to 21; on the other hand, Figure 3.4 

shows the BER results with L fixed at 13  and CP length G varying from 2 to 10. As we can see, 

the GSC filter in both cases yields the lowest BER. In the second simulation, we repeat the above 

three experiments but instead use the LS channel estimate for equalizer design; the results are 

shown in Figures 3.5, 3.6 and 3.7 (the power dedicated for training is 14P = , which is equally 

distributed to the pilot tones of the N = 2 transmit antennas). Compared with Figures 3.2, 3.3 and 

3.4, we can see that TEQ, PTEQ, and the non-robust GSC filter (3.21) all suffer performance 

degradation due to imperfect channel estimation. The proposed robust solution (3.47) is seen to 

improve the performance over the one (3.21); still, it maintains less than 1 dB SNR gap with respect 

to the ISI-free case, and can also relieve the BER penalty against long delay spread channels and 

short CP lengths. Finally, we demonstrate the BER performances of the three comparative methods 

under distinct subchannel orders: 1,1 1,2 13L L= = , 2,1 2,2 5L L= = , and 3,1 3,2 11L L= = , where 

,m nL  denotes the order of the subchannel between the nth transmit and mth receive antennas, 

1 3m≤ ≤ , 1 2n≤ ≤ . In implementing the three methods we thus set 13L =  (for the 

subchannels with orders smaller than 13, ,m nL L−  zeros are padded in the respective impulse 

response tails). For 2G = , Figures 3.8 and 3.9 show the BER performances at different SNR 

under perfect and imperfect channel estimates, respectively; as we can see, the BER tendencies are 

essentially the same with those in the common subchannel order case (cf. Figures 3.2 and 3.5). 

B. Performance of the Suboptimal Diagonal Loading Scheme (3.48) 

  This simulation illustrates the achievable performance of the suboptimal diagonal loading 

solution (3.48). For 13L = , 2G = , and two distinct transmit powers during the training phase 

14P =  and 64 , Figure 3.10 compares solution (3.48) with the optimal weighting matrix (3.47) in 

terms of SINR. The results show that the respective performances are almost identical. Since the 

diagonal loading weight aims exclusively for signal leakage reduction, this simulated results would 

imply that the leakage effect is the prime negative factor induced by channel mismatch. 
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C. Corroboration of the Analytic SINR Result 

This simulation validates the predicted SINR results in Section 3.5.1. We consider two different 

transmit powers in the training phase 14P =  and 64P = . For 13L =  and 2G = , Figure 3.11 

shows the theoretical SINR, computed using the formulas in Table 3.1, and the corresponding 

simulated outcomes. It can be seen that our analytic formula based on perturbation analysis well 

predicts the actual SINR tendency, even if the channel would be poorly estimated using a small 

transmit power. Figure 3.12 shows the SINR gain, in terms of difference in dB, attained by the 

proposed robust solution (3.47) over the one (3.21); the theoretical solution is computed based on 

(3.63). As we can see, although the theoretical solution is derived based on the high SNR 

assumption, it appears very close to the experimental results over the medium-to-high SNR region 

(>10 dB). It is also observed that, for a fixed SNR, the SINR gain is larger for smaller P (hence a 

less accurate channel estimate). This confirms the effectiveness of proposed robust GSC filter 

against severe parameter uncertainty; such a tendency has been deduced based on the lower bound 

relation (3.65) (see the first discussion following (3.65)). 

D. On Selection of Regularization Factor 

This simulation investigates the performance of the regularization based design (3.51) at 

different γ  factors; the channel order, CP length and noise variance are respectively set to be 

13L = , 2G =  and 2 0.003162vσ =  (this corresponds to SNR = 25 dB). We consider two 

different transmit powers 2P =  and 14P =  in the training phase; the respective conjectured 

optimal γ  computed using (3.52) are 0.044268  and 0.006324 . Figures 3.13 and 3.14 show the 

respective SINR performances of the regularized solution 

γ
−

−
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

1

( ):
H H

r I IM N QW D B I B R B B R D .  (3.74) 

at different values of γ . It can be seen that the SINR peaks attain at 0.044268γ =  for the 

2P =  case, and at 0.006324γ =  when 14P = : this tends to indicate that γ  in (3.52) is 

optimal with respect to the regularization based design under a (stochastic) white estimation error 

assumption (however, γ  will no longer be optimal when different channel error models and design 

criteria are considered). 
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3.9 Summary 

This chapter proposes a robust constrained-optimization based ISI-ICI mitigation scheme for 

supporting high-rate MIMO-OFDM transmission when the channels are not exactly known but are 

estimated via the LS training technique. The proposed constraint-free GSC design formulation 

yields a very natural cost function, and can facilitate the exploitation of the presumed LS channel 

error property toward a solution through simple first-order perturbation analysis. The proposed 

robust GSC filter can jointly mitigate ISI-ICI and the net detrimental factors caused by channel 

estimation errors. Numerical study reveals that the signal leakage is the dominant impairment and a 

suboptimal diagonal loading solution can attain almost all the performance gain. Based on 

perturbation techniques, we further derive a closed-form mean approximate SINR expression for 

the proposed robust scheme, and also an informative formula for quantifying the achievable SINR 

increment over the non-robust solution. The analytic SINR gain reveals that prominent performance 

advantage can be attained by the robust solution under severe channel mismatch. Simulation results 

confirm the effectiveness of the proposed GSC based equalizer: it outperforms existing methods 

under either perfect or imperfect channel assumption (at the cost of complexity) and, in both cases, 

yields a performance very close to the ISI-ICI free benchmark. 
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Figure 3.2. BER performances of the three methods (perfect channel knowledge). 
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Figure 3.3. BER performances of the three methods at various channel orders with SNR 20=  dB 

(perfect channel knowledge). 
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Figure 3.4. BER performances of the three methods at various CP lengths with SNR 20=  dB 

(perfect channel knowledge). 
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Figure 3.5. BER performances of the three methods (LS channel estimate). 
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Figure 3.6. BER performances of the three methods at various channel orders with SNR 20=  dB 

(LS channel estimate). 
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Figure 3.7. BER performances of the three methods at various CP lengths with SNR 20=  dB (LS 

channel estimate). 
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Figure 3.8. BER performances of the three methods with distinct subchannel orders (perfect channel 

knowledge). 
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Figure 3.9. BER performances of the three methods with distinct subchannel orders (LS channel 

estimate). 
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Figure 3.10. SINR performances of the optimal and suboptimal DL solutions. 
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Figure 3.11. Output SINR at different transmit powers in the training phase. 
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Figure 3.12. SINR gain at different transmit powers in the training phase. 
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Figure 3.13. Output SINR at different regularization factors γ  ( 2P = ). 
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Figure 3.14. Output SINR at different regularization factors γ  ( 14P = ). 
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Chapter 4 

Robust Receiver Design for MIMO SC-CP over 
Time-Varying Dispersive Channels Under 
Imperfect Channel Knowledge 

4.1 Overview 

Channel temporal variation is also known to be a vital detrimental factor to the block 

transmission systems. Even with sufficient CP insertion to avoid ISI, additional ICI is also induced 

due to loss of orthogonality among signals in frequency domain. This chapter proposes a robust 

receiver design scheme for MIMO SC-CP systems when the multipath channels undergo time 

selectivity, and are not exactly known but estimated via the LS training technique [6], [14]. In lieu 

of relying on signal recovery in the frequency domain, we exploit the constrained optimization 

formulation [56], [72], based on the orthogonality structure of the time-domain channel matrix, to 

design an associated group-wise detection framework. To further take into account the mitigation of 

channel mismatch due to the channel temporal variation and the estimation errors, we leverage the 

GSC principle [23], [56], [74] to transform the constrained optimization problem into an equivalent 

unconstrained setup. It will be also shown that the perturbation analysis framework for the GSC 

filter proposed in Chapter 3 allows us 1) to explicitly model the channel mismatch effect into the 

system equations and 2) to exploit the underlying statistical assumptions on the channel mismatch 

to derive an analytic solution. The proposed scheme also can be combined with the SIC mechanism 

for further performance enhancement. 
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4.2 Preliminary 

4.2.1 System Model and Basic Assumptions 

Consider the discrete-time baseband model of a MIMO SC-CP system with N transmit antennas, 

M receive antennas, CP length G, and symbol block size Q. Let , ( , )m nh k l , 0 l L≤ ≤ , be the lth 

tap of the channel between the nth and mth transmit-receive antenna pair at time instant k, where L 

denotes the delay spread assumed common to all MN subchannels. Assuming G L≥ , after CP 

removal the received symbol block at the mth receive antenna can be expressed as 

,
1

( ) ( ) ( ) ( )
N

m m n n m
n

t t t t
=

= +∑r H s v , (4.1) 

where ,1 ,( ) : [ ( ),..., ( )]T Q
n n n Qt s t s t= ∈s  is the tth symbol block sent from the nth transmit 

antenna, ( ) Q
m t ∈v  is the channel noise vector, and , ( ) Q Q

m n t ×∈H  is the channel matrix 

whose ith column, denoted by ( )
, ( )i

m n tc , is 
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In case that the channel is time-invariant, i.e., , ,( , ) ( )m n m nh k l h l=  for some , ( )m nh l , , ( )m n tH  is a 

circulant matrix and symbol recovery can be done via the tone-by-tone FDE technique [15], [85]. In 

the considered time-varying channel environment, , ( )m n tH  is no longer circulant and the FDE 

facility is negated. Since there are no specific advantages of processing the data in the frequency 

domain, we will instead focus on the time-domain signal model (4.1) for receiver design; as will be 

shown next this can lead to an effective framework for addressing the robust signal recovery 

problem against imperfect channel knowledge. The following assumptions are made in the sequel. 

(1) The number of receive antennas is equal to or greater than the number of transmit antennas, i.e., 

M N≥ . 

(2) The source symbols of each transmit antenna , ( )n qs t  is zero mean, unit-variance, and 
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, 1 , 2 1 2 1 2 1 2{ ( ) ( ) } ( ) ( ) ( )n q n qE s t s t n n t t q qδ δ δ= − − − , where ( )δ ⋅  is the Kronecker delta. 

(3) The elements of ( )m tv ’s are i.i.d. complex circular Gaussian with zero mean and variance σ 2
v . 

4.2.2 Time-Varying Channel Estimation & Equalization 

The burst-by-burst transmission is considered such that 1) each data burst consists of T symbol 

blocks, 2) the leading block per burst serves as the training symbol for channel estimation, and 3) 

the resultant channel estimate is used for receiver design to recover the subsequent T−1 source 

symbol blocks. Since channel estimation and equalization is done on a burst-wise basis, in the 

sequel we shall focus on the initial burst. The time-varying channel estimation scheme adopted in 

this chapter is briefly reviewed as below; the robust equalizer design which exploits the channel 

error characteristics will be discussed in Section 4.4. 

We assume that the MIMO channel is estimated by using the LS training technique [6], [14], 

which, in a time-varying environment, is known to yield the optimal estimate of the “averaged” 

channel impulse response within one symbol duration [44], namely, 

 1 1( )
, , ,0 0: [(1/ ) ( , 0) (1/ ) ( , )]Q Qav T

m n m n m nq qQ h G q Q h G q L− −
= == + +∑ ∑h . (4.4) 

Associated with each 1 m M≤ ≤  let us define ( ) ( )( )
,1 ,[ ]av T av Tav T

m m m N=h h h , the resultant channel 

estimate is given by [44] 

            
( ) ( ) ( 1) 1

:
( )

m

av av N L
m m m m

+ + ×

=∆
= + + ∈

h
h h A i v , 1 m M≤ ≤ ,                  (4.5) 

where ( 1)
1[ { } ,..., { } ] Q N L

L N Ldiag diag × += ∈A t F t F  with /L QF  being the first L+1 columns 

of the Q Q×  FFT matrix, +A  denotes the pseudoinverse of A , Q
n ∈t  is the 

frequency-domain training sequence for the nth transmit antenna, and ,1
N Q

m m nn== ∈∑i i  with 

the qth entry [44] 

( ) [ ]( )
1 1 2

11 2

1 1 1 2 ( ) / 2 /
, , 21 0 0[ ] (1/ ) ( , )

Q

Q L Q j q q l Q j q q Q
m n q m n n q qq l qQ h G q l e eπ π− + − − − −

−= = =
⎡ ⎤= +⎢ ⎥⎣ ⎦∑ ∑ ∑i t ,1 q Q≤ ≤ . 

 (4.6) 

Assuming that the channel variation is piecewise linear in time, 
( )

,
av
m nh  can also be treated as the 
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optimal estimate of the channel parameters in the middle instant of the training period, i.e., 

, ( /2, )m nh G Q l+ , 0 l L≤ ≤  [44]. For fixed 1 m M≤ ≤  and 1 q Q≤ ≤  we assume that 

, ( , )m nh q l , ,n l∀ , are independent circular complex Gaussian variables with zero-mean and variance 
2
lσ . Then the channel estimation error m∆h  in (4.5) is zero mean with covariance matrix 

( )( )2 ( 1) ( 1)
, ( 1): { }

HH N L N L
m m m v N LE σ+ + + × +

∆ += + ∈hR A i i I A , in which the ( , ')q q th entry of 

{ }H
m mE i i , 1 ,q q Q′≤ ≤ , can be directly computed from (4.6) as 

[ ] [ ]
1 2 1 2

1 2
1 2 3 4
1 2

2 ( ) ( ) 2 ( )1 1
*

2 3 4 ( ) ( ),
1 0, 0 0 , 0

,

1{ } ( , )
Q Q

j q q q q l j q q lQ QN L
H Q Q

m m n nh q q q qq q
n q q l q q

q q q q

E q q l e e
Q

π π⎡ ⎤′− − − − − −⎢ ⎥− − ⎣ ⎦

′− −′
= = = = =

′≠ ≠

⎡ ⎤ = −⎢ ⎥⎣ ⎦ ∑ ∑ ∑ ∑i i R t t ,  

 (4.7) 

where * 2
, , 0( , ) { ( , ) ( , )} (2 )h m n m n l d sq l E h k l h k q l J f qTσ π= + =R , with 0J , df , and sT  respectively 

denoting the zeroth-order Bessel function, Doppler frequency, and sampling period. Moreover, 

assuming i) the taps among subchannels are mutually independent, and ii) the noise is spatially 

uncorrelated, we have 
                     

1 2 1 2, , ( 1): { }H
m m m m N LE∆ += ∆ ∆ =hR h h 0 .                      (4.8) 

The results (4.7) and (4.8) will be used for robust equalizer design in Section 4.4. 

4.3 Group-Wise Symbol Detection: Perfect Channel Knowledge 

4.3.1 Motivation 

This subsection highlights the motivation behind the proposed approach. Particularly, we will 

show that the time-domain channel matrix , ( )m n tH  in (4.2) is imbedded with certain column-wise 

orthogonality structure; such an appealing feature will naturally lead to an inter-group interference 

cancellation framework followed by a low-complexity intra-group symbol recovery scheme. We 

shall first focus on the ideal case that the channel is perfectly known at the receiver, and will discuss 

more realistic situations in Section 4.4. 

To proceed, we first observe from (4.2) that, for 2 i Q≤ ≤ , the ith column ( )
, ( )i

m n tc  of the 

channel matrix , ( )m n tH  is simply an ( 1)i − -step down-shifted version of the zero-padded 

channel impulse response vector  ( )
,[ ( ) 0 0]i T T

m n th . As a result, if the symbol block size Q is chosen 
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to be an integer multiple of 1L + , i.e., ( 1)Q P L= +  for some positive integer P, then for each 

fixed 1 1i L≤ ≤ +  we have 

                1 2( ( 1)) ( ( 1))
, ,( ) ( ) 0i p L H i p L

m n m nt t+ + + + =c c  for 1 20 1p p P≤ ≠ ≤ − ,           (4.9) 

since the locations of the respective nonzero entries never overlap; a schematic description of such 

an orthogonality relation is depicted in Figure 4.1. 
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Figure 4.1. A schematic description of the orthogonality condition (4.9) with L = 3. 

Equation (4.9) suggests that the Q columns of , ( )m n tH  can be divided into 1L +  groups of 

orthogonal vectors as follows 

       ( ) ( ) ( ( 1)) ( ( 1)( 1))
, , , ,( ) : ( )  ( )  ( )

Q Pi i i L i P L
m n m n m n m nt t t t

×+ + + − +⎡ ⎤= ∈⎢ ⎥⎣ ⎦H c c c C , 1 1i L≤ ≤ + .     (4.10) 

To further exploit the benefit from the orthogonality condition (4.9), for each fixed 1 1i L≤ ≤ +  

let us stack ( )
, ( )i

m n tH  for all 1 m M≤ ≤  and 1 n N≤ ≤  to form 

( ) ( ) ( ) ( )
1, 2, ,( ) : ( )   ( )   ( )

MQ PTi i T i T i T
n n n M nt t t t

×⎡ ⎤= ∈⎢ ⎥⎣ ⎦H H H H C , 

and 

                 ( ) ( ) ( ) ( )
1 2( ) : ( )  ( )  ( )

MQ NPi i i i
Nt t t t

×⎡ ⎤= ∈⎢ ⎥⎣ ⎦H H H H C , 1 1i L≤ ≤ + .     (4.11) 

Collecting the M  received signal blocks mr ’s in (4.1) into a vector, the overall input-output 

relation can be rearranged as 
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1
( ) ( )

1 1
1

( ) : ( ) ( ) ( ) ( ) [ ( ) ( ) ]
: ( )

LTT T i i T T T
M M

i
t t t t t t t

t

+

=

⎡ ⎤= = +⎢ ⎥⎣ ⎦
=

∑r r r H s v v
v

, (4.12) 

where  ( ) ( )( )
1( ) : ( ) ( )

Ti ii T T NP
Nt t t⎡ ⎤= ∈⎢ ⎥⎣ ⎦s s s , 

  ( )
, , ( 1) , ( 1)( 1)( ) : ( ) ( ) ( )

Ti P
n n i n i L n i L Pt s t s t s t+ + + + −

⎡ ⎤= ∈⎢ ⎥⎣ ⎦s . Toward symbol extraction based on (4.12) 

we propose to first design an inter-group interference suppression matrix ( )( )j MQ NQt ×∈W C  such 

that 

( ) ( ) ( ) ( )
1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )

( ) : ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j j jH H
N

j j H j H j j j

j j j jH H
N N N

t t t t

t t t t t t t

t t t t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ≈ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

H H H H

r W r H H s s

H H H H

, (4.13) 

where the last equality in (4.13) follows directly from (4.11), and then recover ( )( )j ts  via the 

signal model (4.13). Benefiting from the orthogonality condition (4.9), the matched-filtered channel 

matrix ( ) ( )( ) ( )j H jt tH H  in (4.13) exhibits an appealing structure. Indeed, since the nonzero entries 

among the P  columns of ( )
, ( )i

m n tH  in (4.10) do not overlap and, for each 1 1i L≤ ≤ + , ( )( )i
n tH  

is obtained by stacking ( )
, ( )i

m n tH  over all 1 m M≤ ≤ , it is easy to check that 

1 2 1 2
( ) ( ) ( )( ) ( ) ( )i H i i
n n n nt t t=H H D , where 

1 2
( ) ( )i P P
n n t ×∈D C  is diagonal, 1 21 ,n n N≤ ≤ . (4.14) 

Equation (4.14) implies that, for subsequent intra-group symbol recovery through separating the 

NP  coupled streams in (4.13), the problem is reduced to solving a set of P  independent linear 

equations, each with dimension N N× . Such a decoupled nature reduces computations, especially 

when the block length Q  (and hence /( 1)P Q L= + ) is large; it can also limit the error 

propagation effect in the symbol recovery stage. The key challenge of the proposed two-stage 

equalization scheme is the design of the interference suppression matrix ( )( )j tW  for fulfilling 

(4.13); the underlying mathematical formulation is discussed next. 

4.3.2 Solution Based on Constrained Optimization Technique 

Based on (4.13), the linear weighting matrix ( )( )j tW  for recovering the jth symbol group 

should be designed to minimize the inter-group interference power, and then extract the desired 
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signal component through space-time matched filtering. A typical technique toward fulfilling such a 

two-fold task is through constrained optimization [56], [72]; more precisely, we shall design 
( )( )j tW  by solving the following problem 

,  s.t.
( )

2
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 1,
min ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j

L
j H i i j H j j H j

t i i j
E t t t t t t t t

+

= ≠

⎧ ⎫⎪ ⎪⎛ ⎞⎪ ⎪⎟⎜⎪ ⎪⎟+ =⎜⎨ ⎬⎟⎜ ⎟⎪ ⎪⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑

W
W H s v W H H H ; (4.15) 

the recovery of the entire symbol vector ( )ts  is then done group-wise via repeatedly solving (4.15) 

for 1 1j L≤ ≤ + . By using the standard Lagrangian multiplier technique [8, p-215], the solution 

to (4.15) is given by 

( ) 
1( ) ( )( ) 1 ( ) ( ) 1 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j jj j j H j j H j

I It t t t t t t t
−− −=W R H H R H H H , (4.16) 

where 1( ) ( ) ( ) 2
1,( ) : ( ) ( )Lj i i H

n MQI i i jt t t σ+
= ≠= +∑R H H I . An alternative approach to solving (4.15) lies 

in transforming the constrained optimization formulation into an equivalent unconstrained setup via 

the GSC principle [23]. This relies on the following decomposition of ( )( )j tW : 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )j j j jt t t t= −W H B U , (4.17) 

where ( )( )j MQ NPt ×∈H C  represents the non-adaptive portion which verifies the desired 

space-time matched filtering constraint, ( ) ( )( )j MQ MQ NPt × −∈B  is the signal blocking matrix with 
( ) ( )

( )( ) ( )j H j
MQ NP NPt t − ×=B H 0 , and ( ) ( )( )j MQ NP NPt − ×∈U  is the adaptive component which 

forms the remaining free parameters to be determined. By following the standard procedures 

presented in Section 2.4.3, the solution of ( )( )j tU  is given by 

( ) 1( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )j jj j H j j H j
opt I It t t t t t t

−
=U B R B B R H ; (4.18) 

the resultant optimal GSC weight is thus 

( ) 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j j j j H j j j j j
opt opt I It t t t t t t t t t t t

−
= − = −W H B U H B B R B B R H . 

 (4.19) 

We note that i) solutions (4.16) and (4.19) are obtained based on the crucial perfect channel 

knowledge assumption; when channel parameter mismatch occurs due to imperfect estimation and 

time variation, they are only suboptimal because the formulations do not take into account channel 

error mitigation, ii) as will be seen in the next section, the GSC framework is advantageous in that it 
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allows us to directly model the channel mismatch effect into the system equations for facilitating 

robust equalizer design. 

4.4 Proposed Robust GSC Equalizer Against Channel Mismatch 

Given only the channel estimate 
( )i
avH , 1 1i L≤ ≤ + , which is acquired through training at 

1t = , one may simply choose to modify solution (4.16) via replacing ( )( )i tH  by 
( )i
avH  to get the 

time-invariant equalizer 

( ) 1( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 1 1( ) ( )
j j j H j j j H jj

I av av I av av av

−
− −=W R H H R H H H ,  (4.20) 

where 
( ) ( ) ( )1 2

1,

j i i HL
I av av n MQi i j σ+

= ≠= +∑R H H I , and use (4.20) once and for all toward subsequent 

symbol recovery. Such a strategy, even though quite simple, fails to combat channel mismatch and 

could incur very poor equalization performance. The GSC principle, on the contrary, provides a 

very natural and effective framework for robust time-varying equalizer design, as is shown in this 

section. We will first introduce the problem formulation in Section 4.4.1, and then derive the 

solution in Section 4.4.2. Some discussions regarding the proposed robust scheme are given in 

Section 4.4.3. 

4.4.1 Problem Formulation 

Recall that the mechanism of GSC filter (4.17) basically involves space-time signal matched 

filtering and signal blocking followed by interference suppression. While the signal combining and 

nulling components ( ( )( )j tH  and ( )( )j tB , respectively) are immediately fixed upon the (possibly 

imperfect) knowledge of ( )( )j tH , the adaptive portion ( )( )j tU  can nonetheless be allowed to be 

time-varying, and is then designed to tackle the channel parameter mismatch effects caused by time 

variation and estimation error. It is such inherent channel tracking capability that makes GSC 

principle a promising approach in the considered scenario. 

Specifically, when only a channel estimate 
( )j
avH  is available, exact signal matched filtering 

over 2 t T≤ ≤  is impossible; the best one can do, however, is to linearly combine ( ) ( )( ) ( )j jt tH s  

just with 
( )j
avH  to get the approximation 

( ) ( ) ( )( ) ( )
j H j j

av t tH H s . This implies that the non-adaptive 

portion of the GSC weight should be set as 
( )j
avH  throughout 2 t T≤ ≤  and, in turn, the blocking 
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matrix is likewise fixed according to the relation 
( )( )

( )
jj H

av av MQ NP NP− ×=B H 0 . Hence, given the 

channel knowledge 
( )j
avH  only, the signal matching and blocking matrices are restricted to be 

time-invariant. Nevertheless, to reliably recover the desired signal against background time-varying 

interference, the adaptive component must account for the temporal variation. This thus suggests 

the following modified GSC decomposition 

( )( ) ( ) ( )( ) ( )
jj j j

av avt t= −W H B U .  (4.21) 

With (4.21), the equalized output instead reads 

( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
j jj jH Hj

d bt t t t t t= = −z W r z U z , (4.22) 

where 
1( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1,

( )

( ) : ( ) ( ) ( ) ( ) ( )

: ( )

Lj H j H j Hj j j i i
av av avd

i i j

j
d

t t t t t t

t

+

= ≠
= + +

=

∑z H H s H H s H v

i

, (4.23) 

is the (approximate) space-time matched filtered signal, and 

1( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1,
( ) : ( ) ( ) ( ) ( ) ( )

Lj H j H j Hj j j i i
av av avb

i i j
t t t t t t

+

= ≠
= + +∑z B H s B H s B v  (4.24) 

is the corresponding blocking component. Due to the out-of-date channel knowledge, the signal of 

interest in the ( )( )j
d tz  is non-coherently combined and is corrupted by the interference ( )( )j

d ti ;          

also, since the blocking matrix is determined via 
( )( )

( )
jj H

av av MQ NP NP− ×=B H 0 , and hence 
( ) ( )

( )( )
j H j

av MQ NP NPt − ×≠B H 0  in general, there is a signal leakage term 
( ) ( ) ( )( ) ( )
j H j j

av t tB H s  into the 

blocking branch ( )( )j
b tz . Toward signal recovery against interference, a natural strategy as 

suggested by the GSC principle is to treat ( )( )j
b tz  in (4.24) as an aggregate interference and to 

design ( )( )j tU  such that ( ) ( )( ) ( )j jH
bt tU z  is best close to ( )( )j

d ti . 

For this we shall first note that in (4.23) and (4.24) only the channel estimate 
( )i
avH ’s (acquired 

through training at 1t = ) are available but the true channel matrices ( )( )i tH ’s are unknown: the 

mismatches between 
( )i
avH ’s and ( )( )i tH ’s are due to time variation as well as channel estimation 

errors. To facilitate subsequent analysis we must seek for explicit rules linking the unknown 
( )( )i tH  to the channel estimate 

( )i
avH . A commonly used model which specifies such channel 
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parameter deviation can be found in [31] and [47], and in terms of the current matrix formulation it 

reads 
( )( ) ( ) ( )( ) ( ) ( )
ii i i

avct t tδ= +H D H H , 1 1i L≤ ≤ + , (4.25) 

where ( )( )i
c tD  is an MQ MQ×  diagonal matrix depending on the time-varying channel 

characteristics, and ( )( )i tδH  models the temporal channel variation whose entries are assumed to 

be zero-mean Gaussian random variables (explicit formulae for ( )( )i
c tD  and the covariance of 

( )( )i tδH  are given in Appendix E). By using (4.25) we can rewrite (4.23) and (4.24) as 

1 1( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1, 1

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

: ( )

L Lj H j j H i j H j Hj j j i i i i
av av av av av avc cd

i i j i

j

t t t t t t t t

t

δ
+ +

= ≠ =
= + + +

=

∑ ∑z H D H s H D H s H H s H v

i

,

 (4.26) 

and 

1 1( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1, 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

L Lj ij H j H j H j Hj j j i i i i
av av av av av avc cb

i i j i
t t t t t t t tδ

+ +

= ≠ =
= + + +∑ ∑z B D H s B D H s B H s B v .

 (4.27) 

Based on (4.26) and (4.27), we specifically propose to design ( )( )j tU  by minimizing the following 

cost function 

                       { }2( ) ( ) ( )( ) ( ) ( ) ( )j j jH
bJ t E t t t= −i U z ,                     (4.28) 

where the expectation is taken with respect to the source symbol, background noise, channel 

estimation error, and channel temporal variation (assuming all are mutually independent). 

4.4.2 Optimal Solution 

Let us expand (4.28) into 

         { } { }( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j jj j jH H H H
b b bJ t t E t t t t E t t= −U z z U U z i  

                    { } { }( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )j j j jj H H
bE t t t E t t− +i z U i i .                 (4.29) 

As in Section 3.4.1, taking the first-order partial derivative of ( )J t  with respect to ( )( )j tU  yields 

{ } { }( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )j jj j jH H
b b bE t t t E t t=z z U z i . (4.30) 

The optimal ( )( )j tU  can then be obtained by solving the matrix equation (4.30), provided that the 
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covariance matrices { }( ) ( )( ) ( )j j H
b bE t tz z  and { }( )( )( ) ( )jj H

bE t tz i  are available. With (4.26), (4.27), 

and by taking expectation with respect to source symbols, channel noise, and channel temporal 

variation characterized via (4.25), we can reach the following intermediate expressions (see 

Appendix E for detailed proof): 

{ } l l l l
1( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 2

1
( ) ( ) ( ) ( ) ( )

Lj H i i H jj j H i i H
av av av ave c c M Q v MQb b

i
E t t E t t N t

+

=

⎧ ⎫⎛ ⎞
= + ⊗ +⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑z z B D H H D I D I Bσ , (4.31) 

and 

{ } l l l l
1( ) ( ) ( ) ( )( )( ) ( ) ( ) 2

1,
( ) ( ) ( ) ( ) ( )

Lj H i i H jjj H i i H
av av av ave c c M Q v MQb

i i j
E t t E t t N t

+

= ≠

⎧ ⎫⎛ ⎞⎪ ⎪= + ⊗ +⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

∑z i B D H H D I D I Hσ ,  

 (4.32) 

where σ ρ σ ρ
= =

⎧ ⎫
= − − + −⎨ ⎬

⎩ ⎭
∑ ∑

2 22 2

0 0
( ) : (1 ( , )) ),..., (1 ( 1, )) )

L L

Q l l
l l

t diag t l t Q lD , with 
1( , ) : ( , )( )lh lk l k lρ σ σ −= R , 2 2

, ( 1)( 1) 1,( 1)( 1) 1[ ]l m n L l n L llσ σ ∆ − + + + − + + += + hR , 

: ( 1)( ) /2t t G Q Q= − + − , and {}eE ⋅  denotes the expectation involving channel estimation error 

yet to be carried out. To explicitly determine the expectations in (4.31) and (4.32) we must further 

seek for tractable relations linking the channel estimates ( l
( )i
avH  for 1 1i L≤ ≤ +  and l

( )j
avB ) and 

the background estimation errors. While l
( )i
avH  can be directly modeled as the actual channel 

parameter corrupted by the errors, namely, 

                         l
( ) ( ) ( )i i i
av av avH H H= + ∆ , 1 1i L≤ ≤ + ,                    (4.33) 

an exact expression of the blocking component l
( )j
avB  in terms of ( )j

avH∆  remains formidable to 

characterize, since it is determined through l l( ) ( )
( )

j H i
av av MQ NP NPB H 0 − ×=  and, thus, is obtained as an 

orthonormal basis of the left null space of l
( )i
avH . To resolve this difficulty, we will leverage the 

perturbation analysis technique [36] to get an approximate, but analytic, relation among l
( )j
avB  and 

the channel estimation error ( )j
avH∆ . Let ( ) ( ) ( )( ) j j j Hj

av h h h= ΣH U V  be a singular value decomposition 

of the actual channel matrix ( )j
avH . From (3.42), the blocking matrix l

( )j
avB  can be approximated by 

                     
( )

( ) ( ) ( ) ( ) 1 ( ) ( ) ( )

: j
av

Hj j j j j H j j
av av av avh h h

−

=∆

≈ − Σ ∆
B

B B U V H B .                    (4.34) 
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By substituting 
( )j
avB  in (4.34) into (4.31) and (4.32), we have the following main results (see 

Appendix F for detailed derivations). 

Proposition 4.1: The covariance matrices involved in (4.30) can be expressed as 

{ } ( )( )( ) ( ) ( ) ( )( ) ( )
,1( ) ( ) ( ) ( ) ( ) ( )jj j j jH j H j

av e M Q avb b L IE t t t t t N tz z B R R R I D B= + + + ⊗ , (4.35) 

{ } ( )( ) ( )( ) ( )( ) ( )
,2( ) ( ) ( ) ( ) ( )j jj jH j H j

av e M Q avb IE t t t t N tz i B R R I D H= + + ⊗ , (4.36) 

where 
( ) ( ) ( ) ( ) ( )( ) : ( ) ( )j j j j H j H

c av av cL t t tR D H H D= , (4.37) 

( ) 1 ( ) ( ) ( ) ( ) 2
1,( ) : ( ) ( )j L i i i H i H

c av av c v MQI i i jt t t+
= ≠= +∑R D H H D Iσ , (4.38) 

and 4( )
,1 1( ) : ( )j

e iit t== ∑R X  and == ∑3( )
1,2( ) : ( )j

ke kt tR Y , in which the component matrices ( )i tX ’s 

and ( )k tY ’s are defined in Table 4.1.   

  Based on (4.30), (4.35), and (4.36), the robust solution of ( )( )j tU , which is on average optimal 

for mitigating channel temporal variation and estimation error, is thus 

( ) 1( ) ( )( ) ( )( ) ( )
,1( ) ( ) ( ) ( ) ( )j jj jj H j

opt av e M Q avL It t t t N tU B R R R I D B
−

⎡ ⎤= + + + ⊗ ×⎢ ⎥⎣ ⎦
 

( )( ) ( )( ) ( )
,2( ) ( ) ( )j jj H j

av e M Q avI t t N tB R R I D H+ + ⊗ . (4.39) 

In the practical situation when only a channel estimate is available, the sampled-version of the 

overall robust GSC weighting matrix is accordingly given by 

                         
( )( )( ) ( )

( ) ( )
jjj j

r av av optt t= −W H B U .                          (4.40) 

4.4.3 Associated Discussions 

1. The proposed design formulation aims for joint mitigation of channel temporal variation and 

estimation error. Compared with (4.18) obtained under exact channel knowledge, the main 

distinctive feature of the proposed robust scheme (4.39) lies in replacing the two ( )( )j
I tR ’s in 

(4.18) respectively by the “composite” interference covariance matrices 
( )( ) ( )

,1( ) ( ) ( ) ( )jj j
e M QL It t t N tR R R I D+ + + ⊗  and ( ) ( )

,2( ) ( ) ( )j j
e M QI t t N tR R I D+ + ⊗ . We should 
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note that (i) the common term ( )( )j
I tR  can be regarded as the analogue of ( )( )j

I tR  with the 

availability of ( )i
avH ’s only (rather than the exact ( )( )j tH ), (ii) the term ( )( )j

L tR  arises from 

signal leakage into the blocking branch due to channel mismatch, (iii) the matrices ( )
,1( )j

e tR  and 
( )
,2( )j

e tR  are due to the aggregate impacts caused by channel estimation errors, and (iv) the 

quantity ⊗ ( )M QN tI D  accounts for the background channel temporal variation. 

2. Another scheme for estimating time-varying channels is to treat the channel estimates for two 

consecutive data bursts as the end points, and further leverage linear interpolation for acquiring 

the channel information within the entire time frame [44]; this approach applies whenever the 

channel varies linearly with respect to time. In such a scenario, the impacts due to channel 

temporal variation would be largely reduced and channel estimation error, instead, becomes the 

dominant adverse factor to be combated. The proposed design strategy can be used for 

constructing an associated error-resistant GSC equalizer. Indeed, the cost function (4.28) instead 

involves only the averages with respect to source, noise, and channel estimation errors; by 

following the procedures shown in Section 4.4.2, the sampled-version of the resultant robust 

GSC weight can be obtained by (the derivations are highlighted in Appendix G) 

( ) 1( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j j j jj j j jH H
a I e It t t t t t t t t

−⎛ ⎞⎟⎜= − + ⎟⎜ ⎟⎜⎝ ⎠W H B R R B B R H , (4.41)          

where 
( )

( )
j

tH  and 
( )

( )
j

I tR  respectively denote the estimates of ( )( )j tH  and ( )( )j
I tR  

(through linear interpolation), and ( )e tR  is the estimated version of ( )e tR  defined in Table 

4.1. 

3. The proposed group-wise symbol recovery scheme can be directly combined with the SIC 

mechanism for further performance improvement; the resultant solutions in each processing 

layer is essentially of the form (4.40), except that in ( )( )j
I tR , ( )

,1( )j
e tR , and ( )

,2( )j
e tR  the 

signature matrices corresponding to the previously detected signal components are removed. 

Through simulation, the SIC-based implementation is observed to yield up to a 5 dB SNR gain. 

4.5 Algorithm Complexity 

The computation of the proposed GSC weighting matrix basically involves solving 
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( ) ( )
( )

ˆj H j
av av MQ NP NP− ×=B H 0  for the blocking matrix 

( )j
avB  followed by inverting an 

( ) ( )MQ NP MQ NP− × −  matrix. The complexity for matrix inversion can be further reduced by 

leveraging the conjugate gradient [24] based reduced-rank (RR) implementation [27]. Table 4.2 

summarizes the flop counts (measured in terms of the number of complex-valued additions and 

multiplications) of the GSC method, GSC with RR implementation as well as two comparative 

receivers, namely, the layered space-frequency equalization (LSFE) scheme [85] and the 

group-wise V-BLAST detector [73]. From the table we observe that the complexity of the three 

methods is roughly comparable. For the system parameters 

( , , , , , , ) (2,2,64,7,1,2,10)b bN M Q L L N I =  adopted in the simulation section the flop counts are, 

respectively, ≈ × 64.8 10GSCFC , ≈( ) 610RR
GSCFC , 62 10LSFEFC ≈ × , and 66.8 10GBFC ≈ ×  ( bL  

and bN  respectively denote the tap order of feedback filter and the number of decision stages for 

the LSFE detector, and I the number of iterations involved in the RR implementation). 

4.6 Channel Order Determination 

To implement the proposed group-wise detection scheme, the information of channel order L 

is required. Since the conventional information theoretic criteria based channel order determination 

method [38] is based on the static assumption of the channel, they are no longer able to determine L 

under time-varying channels. In such a case, one feasible manner is to rely on the typical 

correlation-based method, which will be introduced in what follows. Since the orders of all 

subchannels are assumed common (see Section 4.2.1), we only require to estimate the order of a 

subchannel between one of the transmit-receive antenna pairs. Suppose that the nth transmit branch 

transmits a pseudo-random training sequence 1
0 1[ ,..., ]T Q

Qp p ×
−= ∈p  prior to each SC burst. 

After passing through the channel, the received version of p  at the mth receive branch is written 

as 
,m m n m= +r H p v , (4.42) 

where ( ) 1Q L
m

+ ×∈v  denotes the noise vector, and ( )
,

Q L Q
m n

+ ×∈H  the convolution matrix 

with the ith column defined as 

1( ) ( )
, , 0 0

Tii i
m n m n

− ⎡ ⎤= ⎢ ⎥⎣ ⎦c J h , 1 i Q≤ ≤ ,  (4.43) 



 82

in which ( )
, , ,[ ( 1, 0),..., ( 1, )]i T

m n m n m nh i h i L L= − + −h  and 

1 ( 1)

1 ( 1) 1

1Q L

Q L Q L

× + −

+ − + − ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0
J

I 0
. 

To determine L, mr  is fed into a sliding correlator, which is matched to the foreknown training 

sequence p. The sliding correlator then outputs L  peak correlation values 

1
2

, 1, 2,
0

( , ) (1 ( )) (1 ( )) , 0
Q

l i m n l l l
i

p h l i l I l I l L n l Lτ δ δ
−

=
= + + − + − − + ≤ ≤∑ ,   (4.44) 

where ln  is the noise component, 

( )
1

1 1 1
1 1

11
*

1, ( ) , 1 1
0 0

,
Q l ul

l i i l u m n
u i

I p p h u i l
− + −−

+ −
= =

= +∑ ∑ ,  (4.45) 

( )
2

2 2
2 2

1
*

2, ( ) , 2 2 2
0 0

,
Q uL l

l i L l i m n
u i

I p p h l u i l u
− −−

+ −
= =

= + + +∑ ∑ .  (4.46) 

Note that , ( , ) 0m nh i l = , i∀ , if l L> . If the noise level is moderately low, the sliding correlator is 

able to resolve all of the 1L +  channel taps, i.e., 1L L= + , and the channel order is 

immediately 1L L= − . 

4.7 Simulation Results 

This section illustrates the simulated performance of the proposed scheme. We consider a 

MIMO SC-CP system with carrier frequency 5  GHz, transmission bandwidth 20  MHz, 2N =  

transmit antennas, 2M =  receive antennas, symbol block size 64Q = , and CP length 7G = . 

The velocity of the moving transmitter is set to be 120  Km/h. The source symbols are drawn from 

the QPSK constellation. The channels are characterized by the Jakes’s model [30] with order 

7L =  and the impulse response is normalized such that { }22 7 ( , )
1 0 ( , ) 1m n

n l E h k l= = =∑ ∑  for 

each 1 2m≤ ≤  and 0k ≥ . The input SNR at the mth receive antenna is defined as  

{ }22 7 ( , )
1 0

2 2

( , ) 1
m n

n l

v v

E h k l
SNR

σ σ
= =

= =
∑ ∑

, 

and the data burst length is set to be 15T = . The number of iterations involved in the RR 
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implementation is set to be 10I = . After inter-group interference suppression the MMSE 

V-BLAST detector [82] is used for symbol recovery. 

A. Impacts of SIC Based Implementation 

  We first compare the performances of the proposed GSC equalizers with and without the SIC 

implementation. Figures 4.2 and 4.3, respectively, show the simulated bit-error-rate (BER) with 

perfect and imperfect channel knowledge (for the latter the channels are estimated via the LS 

training technique [6] with training power 32P = ). We note that, when channel is perfectly 

known, the robust GSC solution (4.40) reduces to (4.19). The results show that the proposed 

method combined with the SIC mechanism yields about a 2~3 dB gain with exact channel 

knowledge, and a 4~5 dB gain with LS channel estimate. This would benefit from the increased 

receive diversity attained by the SIC mechanism. 

B. Comparison with Existing Works 

  We compare the BER performance of the proposed method (combined with SIC) with the two 

alternative solutions group-wise V-BLAST [73] and LSFE [85]. The group size of the group-wise 

V-BLAST is set to be 16  (this is the same as the group size in our scheme 2 8 16NP = × = ). 

For the LSFE detector, the number of decision stages and the tap order of the feedback filter are 

respectively 2bN =  and 1bL =  ( 2bN =  is the suggested optimal choice [85] for two transmit 

antennas, and through simulation further increasing bL  does not seem to improve performance). 

Figures 4.4 and 4.5, respectively, show the results with perfect and imperfect channel knowledges. 

As we can see, even in the ideal case the proposed approach can outperform the two comparative 

choices. When only a channel estimate is available, the performances of all equalizers degrade, but 

the robust solution (4.40) remains to yield the lowest BER. The reason behind is that in the step of 

intra-group symbol recovery the proposed approach can obtain further diversity gain through the 

V-BLAST processing (with moderately low additional complexity due to the symbol decoupling 

nature (see Section 4.3.1)). With a fixed SNR level (25 dB) Figure 4.6 illustrates the BER of all 

methods when the burst duration T increases from 13 to 25. The results show that the proposed 
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robust equalizer (4.40) can significantly limit the BER penalty and is thus quite resistant to the 

increase of T. 

C. Channel Estimation with Linear Interpolation 

  Figure 4.7 further depicts the simulated BER when the channel information at each time instant is 

acquired through the linear interpolation technique [44]; in this case the proposed robust scheme is 

given by (4.41). Compared with Figure 4.5, for each receiver the incurred performance loss with 

respect to the exact channel knowledge case is less severe due to the availability of timely channel 

information; the proposed robust solution (4.41), as expected, achieves the best performance since it 

is capable of combating channel estimation errors. 

4.8 Summary 

This chapter studies the robust receiver design problem for MIMO SC-CP systems when the 

multipath channels are time-varying and are estimated through the LS training technique. By 

exploiting certain group-wise orthogonality structure imbedded in the time-domain channel matrix, 

the proposed receiver aims for inter-group interference suppression followed by a low-complexity 

intra-group symbol recovery scheme. The design of the interference rejection matrix is 

mathematically formulated via constrained optimization technique. To further tackle the adverse 

effects due to imperfect channel knowledge we leverage the GSC principle to reformulate the 

problem into an equivalent unconstrained setup. The constraint-free GSC formulation resorts to 

proper weighting matrix decomposition and has several unique advantages: 1) it provides a simple 

yet efficient channel tracking mechanism by setting the adaptive component to be time-varying, 2) 

it allows for a very natural cost function for weighting matrix design against channel uncertainty 

due to time variation and estimation errors, 3) it enables us to directly model the channel mismatch 

effect into the filtered signal model via the perturbation analysis and, accordingly, we can then 

exploit the channel error statistics to derive a closed-form solution. The proposed approach can be 

further implemented in an SIC fashion for performance enhancement; it can also be used for 

estimation-error resistant receiver design when the channel estimate at each time instant is acquired 
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via linear interpolation. Compared with the existing works the proposed scheme yields significantly 

improved simulated BER, with comparable algorithm complexity. 
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Table 4.1. Formulae of ( )( )j tX , ( , )( )i j tX , 1( )tX ~ 4( )tX , 1( )tY ~ 3( )tY , and ( )e tR . 

( )( )j tX

( , )( )i j tX

1( )tX

2( )tX

3( )tX

4( )tX

2( )tY

( )( ) ( ) 1 ( ) ( )
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j j j H
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Figure 4.2. BER performances of the proposed method with and without the SIC mechanism 

(perfect channel knowledge). 
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Figure 4.3. BER performances of the proposed method with and without the SIC mechanism (LS 

channel estimate). 
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Figure 4.4. BER performances of the three methods (perfect channel knowledge). 
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Figure 4.5. BER performances of the three methods (LS channel estimate). 



 89

14 16 18 20 22 24

10-3

10-2

T

B
E

R

LSFE [32]
Group-wise VBLAST [27]
RR-GSC
GSC
Robust RR-GSC
Robust GSC

[32][85][32][85][85]
[27][73][27][73][73]

14 16 18 20 22 24

10-3

10-2

T

B
E

R

LSFE [32]
Group-wise VBLAST [27]
RR-GSC
GSC
Robust RR-GSC
Robust GSC

[32][85][32][85][85]
[27][73][27][73][73]

 
Figure 4.6. BER performances of the three method with respect to various burst length (LS channel 

estimate). 
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Figure 4.7. BER performances of the three methods (interpolation-based channel estimate). 
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Chapter 5 

Conclusions and Future Works 

5.1 Summary of Dissertation 

This dissertation mainly addresses the robust receiver designs for MIMO-OFDM and MIMO 

SC-CP systems against channel mismatch. The main contribution lies in that we propose to exploit 

the perturbation analysis technique to incorporate the negative effects of channel mismatch into the 

considered problem formulations; to derive the tractable closed-form solutions only requires the 

first- and second-order statistical characteristics of the channel mismatch. 

The introductory chapter includes the background overview, literature review, and contributions 

of this dissertation. In Chapter 2, a GSC-based equalization framework for the CP-free SIMO 

OFDM systems is proposed for ISI/ICI suppression. Low-complexity PA implementation is also 

derived based on the interference signature characteristics, and the resultant simulated performances 

are seen to be comparable to the original FA realizations. 

In Chapter 3, we extend the equalizer proposed in Chapter 2 to develop a robust ISI/ICI 

mitigation scheme for supporting high-rate MIMO-OFDM transmission, under the assumption that 

the channels are not exactly known but are estimated via the LS training technique. Combined with 

the perturbation analysis technique, the negative effects caused by channel estimation error can be 

explicitly characterized and be considered in the GSC-based framework. Accordingly, we can then 

exploit the statistical characteristics of the estimation error to derive a closed-form robust solution. 

Another important contribution is to derive a closed-form mean SINR expression for the proposed 

robust scheme, and also an informative formula for quantifying the achievable SINR increment over 

the non-robust solution. 

In Chapter 4, we study the robust receiver design problem for MIMO SC-CP systems when the 
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multipath channels are instead time-varying and are estimated through the LS training technique. 

By exploiting certain group-wise orthogonality structure imbedded in the time-domain channel 

matrix, the proposed receiver aims for inter-group interference suppression followed by a 

low-complexity intra-group symbol recovery scheme. The design of the interference suppression 

mechanism is also based on the GSC-based framework. It is shown that the robustness analysis 

method proposed in Chapter 3 enables us to take the channel mismatch, jointly caused by the 

channel temporal variation and the channel estimation error, in the cost function. By incorporating 

the channel error statistics, a closed-form robust solution against the channel variation and the 

channel estimation error is derived. 

5.2 Future Works 

Cooperative communication [41], [48] is a generalized MIMO system and has been widely 

recognized to be effective for improving system performance. Various research activities about 

cooperative communication are like wildfire proceeding; some related techniques are considered to 

be adopted in the next-generation wireless communication standards (e.g., 802.16j). To realize 

cooperative communication the destination end generally requires 1) to synchronize all cooperative 

users and 2) to estimate the channel impulse response of each cooperative link. However, it is 

impossible to perfectly perform the both tasks due to the existence of channel noise (or interference). 

As a result, the parameter estimation errors are expected to result in serious system performance 

degradation. In order to have more reliable cooperative links, the developments of the robustness 

techniques are currently believed to be one of the most important works for implementing 

cooperative communication. The following are some future research steps: 

1. Analysis of the detrimental effects, caused by the system parameter estimation errors, on 

cooperative communication systems. 

2. Developments of the robust receiver architectures based on the statistical (or deterministic) 

characteristics of the parameter errors. 
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Appendix 

A  Proof of Lemma 3.2  

[Proof of (1)]: With D D D= + ∆  and B  defined in (3.42), we have 

 { ( ) }
H

H
I ICIE B R DH D− = { }( ) ( )H HH H

I ICI I ICI EB R DH D B R DH D− + − ∆  

        { } { }1 1( ) ( )HH H H H H
D D D I ICI D D D I ICIE EB D V U R DH D B DV U R DH D− −− ∆ Σ − − ∆ Σ − ∆ . (A.1) 

Since the elements of the noise ( )mv ⋅  is circular Gaussian, the entries of the LS channel estimation 

error vector ( )m∆h  are i.i.d. circular Gaussian (see (3.9)). By definitions of D∆  (see (3.32)) and 

B∆  (see (3.42)) and with the circularity condition of ( )m∆h , the last three terms on the RHS of 

(A.1) is identically zero. Also, since ( )mv ⋅  is zero-mean, so are ( )m∆h  and D∆ . Equation (A.1) 

thus reduces to 

{ ( ) } ( )
H H HH H

I ICI I ICI IE B R DH D B R DH D B R D− = − = ,  (A.2) 

where the last equality follows since HB D 0= . 

[Proof of (2)]: With B  given in (3.42), we have { } { }
H H H HE EB DD B B D D B= ∆ ∆ , where the 

equality follows by definition of ∆B  in (3.42) and since H
D D DD U V= Σ . Denote by 

( , )m n Q QD C ×∆ ∈  the ( , )m n th Q Q×  block submatrix of D∆ , for 1 m M≤ ≤  and 1 n N≤ ≤ ; 

then we have 

{ }( , )( , ) m nm n diagD g∆ = , where = ∆ ∈( , ) ( , ):m n m n Q
LQg F h C .  (A.3) 

For m m×∈X C , let { }Diag X  be the diagonal matrix obtained by keeping only the diagonal 

entries of X . With (A.3), it follows 

{ }{ } { }{ }1 21 2 1 2( , ) ( , )( , ) ( , ) ( , ) ( , ){ }
Hm n m n Hm n m n H m n m n H

L LE E Diag Diag Q ED D g g F h h F∆ ∆ = = ∆ ∆ .  (A.4) 

Equations (3.9) and (3.10) together imply { }1 2
2

( , ) ( , )
1 1 2( )m n m n H v

LE m m
P

h h Iσ δ+∆ ∆ = − , and (A.4) 

thus becomes 
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{ }1 2
2 2

( , ) ( , )
1 2 1 2

( 1){ } ( ) ( )m n m n H Hv v
L L Q

Q LE Diag m m m m
P P

D D F F Iσ σδ δ+
∆ ∆ = − = − ,  (A.5) 

where the last equality follows due to { } 1( 1)H
L L QDiag Q LF F I−= + . Based on (A.5), the ( , )p q th 

Q Q×  block submatrix of { }HE D D∆ ∆  is given by 

2

( , ) ( , )
1

( 1) ,  ,
{ }

, if .

v
N Qp n q n H
n

Q

N L p q
E P

p q

I
D D

0

σ

=

⎧ +
=⎪∆ ∆ = ⎨

⎪ ≠⎩

∑  (A.6) 

The result follows directly from (A.6) and since ( )
H

M N QB B I −= .  

[Proof of (3)]: With B  given in (3.42) and since HB D 0= , direct manipulation shows 

{ ( ) }
H H HH

I ICI ICI IE B R DH H D B B R B− − = + { }HH

c

E

R

B DK D B

=

∆ ∆ ,  (A.7) 

where the matrix K  is defined in (3.43). We note that the 1 2( , )m m th block submatrix of cR  

equals { }1 2 1 1 1 2 2 2
1 2

( , ) ( , ) ( , ) ( , )
1 1

N Nm m m n n n m n H
c n n E= == ∆ ∆∑ ∑R D K D , ≤ ≤1 21 ,m m M . Since the 

channel estimation errors between different receive antennas are independent (From (3.9) and 

(3.10)), we have { }1 1 1 2 2 2( , ) ( , ) ( , )
1 2,m n n n m n H

QE m mD K D 0∆ ∆ = ≠ , 1 2n n≠ , which implies 

{ }1 1
1 2

( , ) ( , ) ( , )
1 2( , )

1
,

, otherwise.

N
m n n n m n H

m m
nc

Q

E m mD K D
R

0
=

⎧ ∆ ∆ =⎪= ⎨
⎪
⎩

∑
  (A.8) 

Equation (A.8) shows cR  is a block diagonal matrix, and (3.44) follows by expanding the block 

diagonal terms in (A.8) and using { }( , ) ( , )m n m n
Ldiag Q∆ = ∆D F h .  

B  Derivation of Equation (3.57) 
To derive (3.57), we need the following lemma. 

Lemma B.1: Let IR  be defined in (3.20) and dlU  be the exact solution of dlU  defined in (3.49). 

Also, let an SVD of the channel tone matrix D  be given in (3.33). Then the first-order 

approximation to dl∆W  is 

1 1 1
,( ) ( )H H H HH H

dl D D D dl I dl I D D D I dlW D U V D BU B B R B B R D B DV U R D RU− − −∆ = ∆ + Σ ∆ − ∆ − ∆ Σ + ∆ , 

 (B.1) 
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with 
, :I dl I MQγ= +R R I ,  (B.2) 

and 
1 1

, ,: H H HH H
I dl D D D D D D I dlR B R U V D B B DV U R B− −∆ = Σ ∆ + ∆ Σ . (B.3)          

  

[Proof]: By definition, the estimated dlW  can be expressed as 

( ) 1
, , ,( ) ( ) ( ) ( )( ) ( ) ( )( )H H

dl I dl I dl I I dlW D D B B B B R R B B B B R R D D
−

= + ∆ − + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ , 

 (B.4) 
where 

, : H H H
I dl ISI ISI ISI ISI ISI ISIR H H H H H H∆ = ∆ + ∆ + ∆ ∆ H H H

ICI ICI ICI ICI ICI ICIH H H H H H+∆ + ∆ + ∆ ∆ .  (B.5) 

We note that 

, , , , , , ,( ) ( )( ) H H H H HH
I dl I dl I dl I dl I dl I dl I dlB B R R B B B R B B R B B R B B R B B R B+ ∆ + ∆ + ∆ = + ∆ ∆ + ∆ + ∆ + ∆

, , ,
H H H

I dl I dl I dlB R B B R B B R B+∆ ∆ + ∆ ∆ + ∆ ∆ ∆ . (B.6) 

For small channel estimation error, ISIH∆  and ICIH∆  are small, and ,I dlR∆  will be close to a 

zero matrix. This implies equation (B.6) can be well approximated by 

, , , , ,( ) ( )( ) H H HH
I dl I dl I dl I dl I dlB B R R B B B R B B R B B R B+ ∆ + ∆ + ∆ ≈ + ∆ + ∆ .  (B.7) 

From (B.7) and since 1 1 1 1( )A A A A AA− − − −+ ∆ ≈ − ∆  for small A∆  , we have 

( ) 1 1
, , , , ,( ) ( )( ) ( )H H HH

I dl I dl I dl I dl I dlB B R R B B B R B B R B B R B
− −+ ∆ + ∆ + ∆ ≈ + ∆ + ∆  

  1 1 1
, , , , ,( ) ( ) ( )( )H H H H H

I dl I dl I dl I dl I dlB R B B R B B R B B R B B R B− − −= − ∆ + ∆ .  (B.8) 

Substituting (B.8) into (B.4) and using (3.42), the result follows by keeping only the first order 
terms.             

[Derivation of (3.57)]: By definitions of D∆  (see (3.32)), it is easy to verify from (B.1) that 

{ }dlE ∆ =W 0 ; equation (3.57) can be obtained via substituting dl∆W  into ( )dl ki  in (3.54) 

followed by some direct manipulations.             
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C  Derivation of Equation (3.59) 

With dl∆W  given in (B.1), we can expand 

1

2
2

,
( 1)( { }) ( { }) { }H H HH H v

dl dl dl I c dl dl
N LTr E Tr E Tr E

P
X

W DD W W R W U D DD Dσ ⎛ ⎞+ ⎜ ⎟∆ ∆ + ∆ ∆ = + ∆ ∆
⎜ ⎟
⎝ ⎠

    

2

1 1
,( { } )H HH H H

dl D D D I c D D D dlTr E
X

U B DV U R U V D BU− −+ ∆ Σ Σ ∆  

  
3

1 1
, , , ,( { ( ( ) ( )( ) ) })H H H H H

I c I I dl I c I dl ITr E
X

D R R B B R B B R B B R B B R D− −+ ∆ + ∆  

  
4

1 1 1 1
, , ,( { ( ) ( )( ) } )H H H H H HH H

I D D D I dl I c I dl D D D ITr E
X

D R U V D B B R B B R B B R B B D V U R D− − − −+ Σ ∆ ∆ Σ  

5

1 1 1 1
, , , , ,( { ( ) ( )( ) } )H H H H H HH H H

dl I dl D D D I dl I c I dl D D D I dl dlTr E
X

U B R U V D B B R B B R B B R B B D V U R BU− − − −+ Σ ∆ ∆ Σ

6

1 1 1 1
, , , , ,( { ( ) ( )( ) } )H H H H H HH H H

dl D D D I dl I dl I c I dl I dl D D D dlTr E
X

U B DV U R B B R B B R B B R B B R U V D BU− − − −+ ∆ Σ Σ ∆

7

1 1 1
, , ,2Re ( { ( ) } )H H H HH H H

dl D D D I c I dl I dl D D D dlTr E
X

U B DV U R B B R B B R U V D BU− − −
⎧ ⎫
⎪ ⎪− ∆ ∑ ∑ ∆⎨ ⎬
⎪ ⎪⎩ ⎭

 

8

1 1
, , ,2Re ( { ( ) } )H H H H

I c I dl D D D I dl dlTr E
X

D R B B R B B D V U R W− −
⎧ ⎫
⎪ ⎪− − ∆ ∆ Σ⎨ ⎬
⎪ ⎪⎩ ⎭

 

9

1 1 1 1
, , , ,2Re ( { ( ) ( )( ) } )H H H H HH H H

I D D D B I dl I c I dl B D D D I dl dlTr E
X

D R U V D U B R B B R B B R B U D V U R BU− − − −
⎧ ⎫
⎪ ⎪− Σ ∆ ∆ Σ⎨ ⎬
⎪ ⎪⎩ ⎭

                                                                         (C.1) 

We note that (C.1) only shows the dominant terms. To explicitly evaluate the RHS of (C.1), we 

observe that the involved expectations are either of the form 1{ }HE DZ D∆ ∆  or 2{ }HE D Z D∆ ∆ , 

for some given matrix 1
NQ NQZ ×∈  and 2

MQ MQZ ×∈ . By following the same procedures in the 

third part in Appendix A (see [Proof of (3)]), it can be verified that both 1{ }H MQ MQE DZ D ×∆ ∆ ∈  

and 2{ }H NQ NQE D Z D ×∆ ∆ ∈  are block diagonal. More precisely, let ( )
1
nZ  and ( )

2
nZ  be the nth 

Q Q×  block diagonal submatrix of 1Z  and 2Z . Then the jth Q Q×  block diagonal submatrix 

of 1{ }HE DZ D∆ ∆  and 2{ }HE D Z D∆ ∆  can be respectively obtained as 

                  { } ( )

1

jHE DZ D⎡ ⎤∆ ∆ =⎢ ⎥⎣ ⎦

2
( )
1

1

N
nHv

L L
n

Q
P

F F Zσ
=
∑ ,                     (C.2) 
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and 

                   { } ( )

2

jHE D Z D⎡ ⎤∆ ∆ =⎢ ⎥⎣ ⎦

2
( )*
2

1

M
mTv

L L
m

Q
P

F F Zσ
=
∑ .                    (C.3) 

Based on (C.2) and (C.3), the matrices 1 9~X X  are then explicitly computed in Table 3.1.   

D  Proof of Theorem 3.3 

We shall note that the matrix ,I cR  will be sparse for small 2
vσ  (cf. (3.58) and (3.20)). This 

implies that, as dlW∆  and gW∆  are small, both ,( { })H
dl I c dlTr E W R W∆ ∆  and 

,( { })H
g I c gTr E W R W∆ ∆  are close to zero in the high SNR region, and hence 

( ), , ( { }) ( ) ( { })H HH H H H
I g I dl g I g g g dl I dl dl dlP P Tr Tr E Tr Tr EW R W W DD W W R W W DD W− ≈ + ∆ ∆ − − ∆ ∆ .  

 (D.1) 

With dlW∆  in (B.1) and since HB D 0= , we have H HH H
dl dlW D D D U B D∆ = ∆ − ∆ , and similarly 

H HH H
g gW D D D U B D∆ = ∆ − ∆ . This implies 

( ) ( ) ( )
( ) ( )

{ } { } { }

                               { } { }

H H H H HH H
dl dl dl dl

H H H HH
dl dl

Tr E Tr E Tr E

Tr E Tr E

W DD W D DD D U B D D BU

D D D BU U B DD D

∆ ∆ = ∆ ∆ + ∆ ∆

+ ∆ ∆ + ∆ ∆
    (D.2) 

and 

  
( ) ( ) ( )

( ) ( )
{ } { } { }

                               { } { }

H H H H HH H
g g g g

H H H HH
g g

Tr E Tr E Tr E

Tr E Tr E

W DD W D DD D U B D D BU

D D D BU U B DD D

∆ ∆ = ∆ ∆ + ∆ ∆

+ ∆ ∆ + ∆ ∆
.     (D.3) 

The circularity condition of ( )m∆h  implies the last two terms on the RHS of both (D.2) and (D.3) 

are identically zero. From (D.2), (D.3), and since { }HHEB D D B γ∆ ∆ =  (see (A.3) and (A.6)), we 

have 

( ) ( ) ( ) ( ){ }{ } { }H HH H H H
g g dl dl g g dl dlTr E Tr E Tr TrW DD W W DD W U U U Uγ∆ ∆ − ∆ ∆ = − . (D.4)     

With (D.1) and (D.4), it follows 

       ( ) ( ) ( ) ( ){ }, ,
H H H H

I g I dl g I g dl I dl g g dl dlP P Tr Tr Tr TrW R W W R W U U U Uγ− ≈ − + − .   (D.5) 

According to the matrix inversion lemma [58], we have 

( ) ( ) ( ) ( ) ( )
11 1 1 1 11

( ) ( )
H H H H H

I M N Q I I M N Q I IB R B I B R B B R B I B R B B R Bγ γ
−− − − − −−

− −
⎡ ⎤+ = − +⎢ ⎥⎣ ⎦

.  

  (D.6) 
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Using (D.6) and by definitions of dlU  and gU  (see Lemma B.1 and (3.20)), it can be verified that 

                         ( ) 1
1

( )
H

dl g M N Q I gU U I B R B Uγ
−

−
−= − + ,                (D.7) 

and hence 

             dl dlW D BU= − ( ) 1
1

( )

g

H
g M N Q I g

W

D BU B I B R B Uγ
−

−
−= − + + .           (D.8) 

Substituting (D.7) and (D.8) into (D.5), we have 

( ) ( )1 2
1 1

, , ( ) ( )2 H HH H
I g I dl g M N Q I g g M N Q I gP P Tr TrU I B R B U U I B R B Uγ γ γ γ

− −
− −

− −
⎛ ⎞ ⎛ ⎞− = + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       ( ) ( )1 1
1 1

( ) ( )
H H HH

g M N Q I I M N Q I gTr U I B R B B R B I B R B Uγ γ
− −

− −
− −

⎛ ⎞− + +⎜ ⎟
⎝ ⎠

; (D.9) 

We observe that the second and the third terms on the RHS of (D.9) can be further combined into 

 ( ) 2
1

( )
HH

g M N Q I gTr U I B R B Uγ γ
−

−
−

⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

      ( ) ( )1 1
1 1

( ) ( )
H H HH

g M N Q I I M N Q I gTr U I B R B B R B I B R B Uγ γ
− −

− −
− −

⎛ ⎞− + +⎜ ⎟
⎝ ⎠

 

      ( ) 1
1

( )
HH

g M N Q I gTr U I B R B Uγ γ
−

−
−

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

.  (D.10) 

With (D.9) and (D.10), it follows that 

( ) ( )
( ) ( )

1 1
1 1

, , ( ) ( )

1 1
1 2

( ) ( )

2

           .

H HH H
I g I dl g M N Q I g g M N Q I g

H HH H
g M N Q I g g M N Q I g

P P Tr Tr

Tr Tr

U I B R B U U I B R B U

U I B R B U U I B R B U

γ γ γ γ

γ γ γ γ

− −
− −

− −

− −
−

− −

⎛ ⎞ ⎛ ⎞− ≈ + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      

E  Derivations of (4.31) and (4.32) 

With (4.26), (4.27) and by averaging over source symbols and channel noises, we have 

{ }
1 ( ) ( )( ) ( )( ) ( ) ( ) ( ) 2

1
( ) ( ) ( ) ( ) { ( )}

L i i Hj H jj j H i i H
av av av ave c c v MQ hb b

i
E t t E t t E tδσ

+

=

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜= + + ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎜⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭
∑ Hz z B D H H D I R B , (E.1) 

and 

{ } 1 ( ) ( ) ( )( )( )( ) ( )( ) ( ) 2

1,
( ) ( ) ( ) ( ) { ( )}

L i i H jj Hjj jH i i H
av av av ave c c v MQ hb

i i j
E t t E t t E tδσ

+

= ≠

⎧ ⎫⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜⎪ ⎪⎟= + +⎜⎨ ⎬⎟⎜ ⎟⎪ ⎪⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑ Hz i B D H H D I R H , (E.2) 
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where {}eE ⋅  and {}hE ⋅  denote the expectations taken with respect to the channel estimation 

error and channel temporal variation, respectively, 

δ δ δ δ δ+ + +
= = == + +∑ ∑ ∑

( ) ( )1 1 1( ) ( ) ( ) ( ) ( ) ( )
1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

Hi iL L Li i H i i H i i H
av avc ci i it t t t t t tHR H H D D H H H H , (E.3) 

and 
( ) ( )1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

1, 1, 1( ) ( ) ( ) ( ) ( ) ( ) ( )
i H iL L Lj i i H i i H i i H

av avc ci i j i i j it t t t t t tHR H H D D H H H Hδ δ δ δ δ+ + +
= ≠ = ≠ == + +∑ ∑ ∑ ,

 (E.4) 

in which 

{ }( ) 1
1( ) : [ ( ) ( )]i i T MQ MQ

c P Mt diag t t− ×= ⊗ ∈D J a a I  , (E.5) 
with 

( )( ) ( )( ) 1 ( 1)0

0
( ) ( 1)( 1) 1 , 0 ,..., ( 1)( 1) 1 , LL

p Q Q
L

t t p L i t p L L i Lσ σρ ρ
σ σ

× +⎡ ⎤
= + − + + − + − + + + − ∈⎢ ⎥

⎢ ⎥⎣ ⎦
a , 

1( , ) ( , )( )lh lt l t lρ σ σ −= R , 2 2
, ( 1)( 1) 1,( 1)( 1) 1[ ]l m n L l n L llσ σ ∆ − + + + − + + += + hR , and ( )( )i MQ NPtδ ×∈H  

has the ( , )m n th Q P×  block submatrix whose pth column ( , )
, ( )i p Q

m n tδ ∈c  is given by 

( , )
, ( )i p

m n tδc  

( , )
,

( 1)( 1) 1
, ,

:

[ ( (( 1)( 1) 1) ,0),..., ( (( 1)( 1) 1) , ), 0,..., 0]
i p T

m n

i p L T
m n m nQ Qh t p L i h t p L i L L

δ

δ δ+ − + −

=

= + − + + − + − + + + −

h

J

 (E.6) 

where, for a fixed t, , ( , )m nh t lδ , 0 l L≤ ≤ , are zero-mean Gaussian random variables with 

variance ( )22 1 ( , )l t lσ ρ− . We claim that 

{ } { }( )( ) ( ) ( )j
h h M QE t E t N tH HR R I Dδ δ= = ⊗ , (E.7) 

the result then follows from (E.1), (E.2), and (E.7). 

[Proof of (E.7)]: Since the nonzero entries of ( )( )i tδH  are zero-mean Gaussian random variables, 

we have ( ){ ( )}i
h MQ NPE t ×=H 0δ , for 1 1i L≤ ≤ + , and from (E.3) and (E.4) we have 

{ } { } { }1( ) ( ) ( )
1( ) ( ) ( ) ( )Lj i i H

h h h iE t E t E t tH HR R H Hδ δ δ δ+
== = ∑ . (E.8) 

Let 1{ ,..., } mn mn
mDiag ×∈C C  be the block diagonal matrix with the diagonal block submatrices 

n n
p

×∈C , 1 p m≤ ≤ . By the definition of ( )( )i MQ NPtHδ ×∈  in (E.6), the 1 2( , )m m th 

Q Q×  block submatrix of 1 ( ) ( )
1 ( ) ( )L i i H MQ MQ

i t t+ ×
= ∈∑ H Hδ δ , 1 21 ,m m M≤ ≤ , is given by 
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1 2
1 2

( , )1 1 ( , ) ( , )( ) ( ) ( ) ( )

1 1 1
( ) ( ) ( ) ( )

m mL L N m n m n Hi i H i i

i i n
t t t tδ δ δ δ

+ +

= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
∑ ∑ ∑H H H H  

( )( )1 2

1
( 1)( 1) 1 ( , ) ( , ) ( 1)( 1) 1

, , 1 1
1 1 1

( ) ( ) , ,...,
L N P Ti p L i p i p H i p L

m n m n L L
i n p

Diag t tδ δ
+

+ − + − + − + −
+ +

= = =
= ∑∑∑ J h h 0 0 J .  

 (E.9) 

Since the elements of ( , )
, ( )i p

m n tδh , ,m n∀ , are independent (see (E.6)), we have 

{ }1 2

( )
1 2( , ) ( , )

, ,
1 21

( ),
( ) ( )

,

i
pi p i p H

m n m nh
L

t m m
E t t

m m
δ δ

+

⎧⎪ =⎪⎪= ⎨⎪ ≠⎪⎪⎩

D
h h

0
, (E.10) 

( ) ( 1) ( 1)( )i L L
p t + × +∈D  is a diagonal matrix with the lth diagonal element 

2( ) 2
, 1[ ( )] (1 ( ( ( 1)( 1) 2) , 1) )i

p l l l Qt t i p L l lσ ρ−= − + + − + + − −D  for 1 1l L≤ ≤ + . Equation 

(E.10) directly implies that { }1 ( ) ( )
1 ( ) ( )L i i H

h iE t t+
=∑ H Hδ δ  is a diagonal matrix with the mth Q Q×  

diagonal block given by 

( )
( , )1 1

( ) ( ) ( 1)( 1) 1 ( ) ( 1)( 1) 1
1 1

1 1 1
( ) ( ) { ( ), ,..., }

m mL L P Ti i H i p L i i p L
ph L L

i i p
E t t N Diag tδ δ

+ +
+ − + − + − + −

+ +
= = =

⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥ =⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑H H J D 0 0 J .  

 (E.11) 

By some direct rearrangements and since Q=P(L+1), (E.11) becomes 

( , )1
( ) ( )

1
( ) ( ) ( )

m mL
i i H

h Q
i

E t t N tδ δ
+

=

⎧ ⎫⎪ ⎪⎡ ⎤⎪ ⎪⎪ ⎪⎢ ⎥ =⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ H H D , (E.12) 

where ( ) ( ){ }σ ρ σ ρ ×
= == − − + − ∈∑ ∑

2 22 2
0 0( ) : 1 ( , )) ,..., 1 ( 1, ))L L MQ MQ

l lQ l lt diag t l t Q lD .  

Equation (E.7) directly follows from (E.12).   

F  Derivations of (4.35) and (4.36) 

To derive (4.35) and (4.36), we have to determine the expectation quantities associated with 

the channel estimation error in (4.31) and (4.32). Based on (4.2), the ( , )m n th block submatrices of 
( )i MQ NP
av

×∈H  and ( )i MQ NP
av

×∆ ∈H  are respectively defined as 

( )( , )( ) ( )
, , 0,..., 0

m n Ti av T Q P
iav m n P

×⎡ ⎤ ⎡ ⎤= ⊗ ∈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦H J h I , (F.1) 

and 
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( )( , )( )
, , 0,..., 0

m n Ti T Q P
iav m n P

×⎡ ⎤ ⎡ ⎤∆ = ∆ ⊗ ∈⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦H J h I , 1 n N≤ ≤ , 1 m M≤ ≤ , (F.2) 

where 1
,

L
m n

+∆ ∈h  is the nth subvector of m∆h  (see (4.5)) and Q PQ
i

×∈J  denotes a 

matrix with the pth Q Q×  block submatrix given by 
(1, ) ( 1)( 1) 1p i p L

i
+ − + −⎡ ⎤ =⎣ ⎦J J  ( J  is defined in 

(4.3)). Assuming that the channel is slowly varying and SNR is high, the channel estimation error is 

thus small and ( )i
av∆H  and ( )j

av∆B  (see (4.34)) are close to zero matrices. Substituting (4.34) into 

(4.31) and using the fact that ( )
( ){ }j H

e av MQ MQ NPE × −∆ =B 0  (cf. (4.34)) and the circularity 

condition of ( )
,

av
m n∆h , by keeping only the first- and second-order terms of estimation error (4.31) 

can be expanded as 

{ } ( ) { }( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )jj j jH j H j j H j j j H j
av M Q av av e av av avb b L IE t t t t N t E t= + + ⊗ + ∆ ∆z z B R R I D B B H X H B

{ } { }
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( )

1 1
( ) ( ) ( ) ( )

L L
j H i i i H i H j j H i i i j j H j

av c e av av c av av c e av av av
i i

t E t t E t
+ +

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜+ ∆ ∆ + ∆ ∆⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∑ ∑B D H H D B B D H X H B

{ }
1

( ) ( ) ( , ) ( ) ( ) ( )

1
( ) ( )

L
j H j i j H i H i H j

av e av av c av
i

E t t
+

=

⎛ ⎞⎟⎜+ ∆ ∆ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑B H X H D B , (F.3) 

where ( )( )j
L tR  and ( )( )j

I tR  are defined in (4.37) and (4.38), respectively, and the matrices ( )( )j tX  

and ( , )( )i j tX  are defined in Table 4.1. Similarly, (4.32) also can be expanded as 

{ } ( ) { }
1( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1,
( ) ( ) ( ) ( ) ( ) ( )

Lj jj H j H j j H i i i H i j
av M Q av av c e av av c avb I

i i j
E t t t N t t E t

+

= ≠

⎛ ⎞⎟⎜ ⎟= + ⊗ + ∆ ∆⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑z i B R I D H B D H H D H

{ } { }
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )

1, 1,
( ) ( ) ( ) ( )

L L
j H i i i H i H j j H j i j H i H i H j

av c av e av c av av e av av c av
i i j i i j

t E t E t t
+ +

= ≠ = ≠

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟+ ∆ ∆ + ∆ ∆⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
∑ ∑B D H H D H B H X H D H

 (F.4) 

We observe that, in (F.3) and (F.4), each of the involved expectations admit one of the following 

forms: ( ) ( ){ }i i H
e av avE ∆ ∆H H , ( ) ( )

1{ }i j H
e av avE ∆ ∆H Z H  and ( ) ( )

2{ }i H j
e av avE ∆ ∆H Z H , for some given matrices 

×∈1
NP NPZ  and 2

MQ MQ×∈Z . To proceed, we require the following lemma. 

Lemma F.1: The following results hold. 

(F1) { } ×= ∆ ∆ ∈( ) ( ) ( ):i i i H MQ MQ
e av avH ED H H  is a block diagonal matrix with the mth Q Q×  diagonal 

block defined as 

{ }( , )( ) ( , )( 1)( 1) 1 ( 1)( 1) 1
1 1,1 1: , ,..., [ ]

Tm m N Pi n ni p L i p L
L LH mn p Diag hD J R 0 0 J+ − + − + − + −
+ +∆= =

⎡ ⎤ =⎣ ⎦ ∑ ∑ , (F.5) 
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in which ( , ) ( 1) ( 1)
,

n n L L
mhR + × +

∆ ∈  denotes the nth diagonal block submatrix of 
( 1) ( 1)

,
N L N L

m
+ × +

∆ ∈hR  (see Section 4.2.2). 

(F2) { }( ) ( )
, 1 1( ) : i j H MQ MQ

i j e av avE ×= ∆ ∆ ∈D Z H Z H  is a block diagonal matrix with the mth Q Q×  

diagonal block given by 

{ }( )1 2 1 2

1 2

( , ) ( , ) ( , )
, 1 1 1 1,

1 1
( ) ,

N Nm m Tn n n n
i ji j L Lm

n n
Diag hD Z J Z R 0 0 J+ +∆

= =
⎡ ⎤ = ⊗⎣ ⎦ ∑ ∑ . (F.6) 

(F3) { }( ) ( )
, 2 2( ) : i H j NP NP

i j e av avE ×= ∆ ∆ ∈K Z H Z H  is a matrix with the 1 2( , )n n th P P×  block 

submatrix whose 1 2( , )p p th entry given by 

( )1 21 2 1 2

1 2

( , ) *( , ) ( , ) ( , )
, 2 2 ,, 11
( )

TM p pn n T m m n n
i ji j mp p

m
vec vec hK Z J Z J R∆

=

⎛ ⎞⎡ ⎤⎡ ⎤ = ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ , (F.7) 

where (.)vec  stacks a matrix into a vector columnwise and 1 2( , ) ( , )
2 1[ ]T m m p p

i jJ Z J  denotes the 

first ( 1) ( 1)L L+ × +  diagonal block submatrix of the 1 2( , )p p th Q Q×  block submatrix of 
( , )
2

T m m PQ PQ
i jJ Z J ×∈ .  

[Proof of (F1)]: By the definition of ( )i
av∆H  in (F.2), the 1 2( , )m m th ×Q Q  submatrix of 

{ }( ) ( )i i H
e av avE ∆ ∆H H  is given by 

{ } { }{ }1 2

1 2

( , )( ) ( ) ( 1)( 1) 1 ( 1)( 1) 1
, , 1 1

1 1
, ,...,

N Pm m Ti i H i p L H i p L
av av m n m n L L

n p
E Diag E+ − + − + − + −

+ +
= =

⎡ ⎤ ⎡ ⎤∆ ∆ = ∆ ∆ ⎣ ⎦⎣ ⎦ ∑ ∑H H J h h 0 0 J .

 (F.8) 
Based on (4.7) and (4.8), we have 

{ } 1
1 2

( , )
1 2,

, ,
1 1 2

,

,

n n
mH

m n m n
L

if m m
E

if m m
hR

h h
0

∆

+

⎧ =⎪∆ ∆ = ⎨
≠⎪⎩

, (F.9) 

Equation (F.9) implies that { }( ) ( )i i H
e av avE ∆ ∆H H  is a block diagonal and (F.5) can be directly 

obtained by back substitution of (F.9) into (F.8). 

[Proof of (F2)]: The 1 2( , )m m th ×Q Q  block submatrix of , 1( )i jD Z  is expressed as 

{ }1 1 2 21 2 1 2

1 2

( , ) ( , )( , ) ( , )( ) ( )
, 1 1

1 1
( )

N N m n m n Hm m n ni j
i j e av av

n n
ED Z H Z H

= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ = ∆ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ , (F.10) 

where 1 2( , )
1
n n P PZ ×∈  denotes the ( 1 2,n n )th block submatrix of 1Z . Since the channel estimation 

errors between different receive antennas are independent (see (4.8)), we have 

{ }1 1 2 21 2
( , ) ( , )( , )( ) ( )

1
m n m n Hn ni j

e av av MQE H Z H 0⎡ ⎤ ⎡ ⎤∆ ∆ =⎣ ⎦ ⎣ ⎦  for 1 2m m≠ , which implies 
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{ }1 1 1 21 2
1 2

1 2

( , ) ( , )( , )( ) ( )
1 1 2( , )

1 1, 1

1 2

,
( )

,

N N m n m n Hn ni j
e av avm m

n ni j

MQ

E m m

m m

H Z H
D Z

0
= =

⎧ ⎡ ⎤ ⎡ ⎤∆ ∆ =⎪ ⎣ ⎦ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪ ≠⎩

∑ ∑
. (F.11) 

From (F.11), , 1( )i jD Z  is seen to be a block diagonal matrix. Furthermore, with (F.2), we have 

{ }1 21 2
( , ) ( , )( , )( ) ( )

1 1 2( , )
m n m n H Tn ni j

i je av av mE n nH Z H J R J⎡ ⎤ ⎡ ⎤∆ ∆ =⎣ ⎦ ⎣ ⎦ , (F.12) 

in which the 1 2( , )p p th ×Q Q  block submatrix of 1 2( , ) PQ PQ
m n n ×∈R , 1 21 ,p p P≤ ≤ , is 

given by 

[ ] { }1 2 1 2 1 2

1 2

( , ) ( , ) ( , )
1 2 1 1 1,,

( , ) , ,...,p p n n n n
m L Lmp p

n n Diag hR Z R 0 0+ +∆⎡ ⎤= ⎣ ⎦ . (F.13) 

By back substitution of (F.12) and (F.13) into (F.11), (F.6) can be obtained via some rearrangements. 

[Proof of (F3)]: With ( )i
av∆H  given in (F.2), the 1 2( , )n n th ×P P  block submatrix of , 2( )i jK Z , 

1 21 ,p p P≤ ≤ , is expressed as 

{ }1 1 2 21 2 1 2

1 2

( , ) ( , )( , ) ( , )( ) ( )
, 2 2

1 1
( )

M M m n H m nn n m mi j
i j e av av

m m
EK Z H Z H

= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ = ∆ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ . (F.14) 

Since the channel estimation errors between different receive antennas are independent (see (4.8)), 

we have { }1 21 1 2 2( , )( ) ( , ) ( ) ( , )
2[ ] [ ]m mi m n H j m n

e av av PE H Z H 0∆ ∆ =  for 1 2m m≠ , which implies 

{ }1 21 2 ( , ) ( , )( , ) ( , )( ) ( )
, 2 2

1
( )

M m n H m nn n m mi j
i j e av av

m
EK Z H Z H

=

⎡ ⎤ ⎡ ⎤⎡ ⎤ = ∆ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ . (F.15) 

Furthermore, based on (F.2), direct expansion results in 

{ } { }1 2
1 2

( , ) ( , )( ) ( , ) ( ) ( , )
2 , 2 ,[ ] [ ] [ , 0,..., 0] [ , 0,..., 0]Tm m m mi m n H j m n H T

i je av av e m n P m n PE EH Z H h I J Z J h I⎡ ⎤ ⎡ ⎤∆ ∆ = ∆ ⊗ ∆ ⊗⎣ ⎦ ⎣ ⎦

 (F.16) 

By some direct manipulations on the RHS of (F.16), the 1 2( , )p p th entry of 

{ }1 2( , )( ) ( , ) ( ) ( , )
2[ ] [ ]m mi m n H j m n

e av avE H Z H∆ ∆  , 1 21 ,p p P≤ ≤ , is given by 

{ } ( )1 2
1 21 2

1 2

( , ) *( , ) ( , ) ( , )( ) ( , ) ( ) ( , )
2 2 ,

, 1
[ ] [ ]

Tp pTm m m m n ni m n H j m n
i je av av m

p p
E vec vec hH Z H J Z J R∆

⎛ ⎞⎡ ⎤⎡ ⎤∆ ∆ = ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
. (F.17) 

Back substitution of (F.17) into (F.15) leads to (F.7).  

With (F3), (F.4), and lemma F.1, direct rearrangements lead to (4.35) and (4.36). 
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G  Derivation of (4.41) 

Assuming that the channel temporal variation is piecewise linear in time, the channel estimate 

at each time instant k (within one burst) can be acquired via the following relation [44] 

( )
,. ( , ) ( ) ( ( /2))

av
m n lm nh k l h l k G Qα= + − + , ( ) 1G Q k T G Q+ ≤ ≤ + − , (G.1) 

where 
( )

, ( )
av
m nh l  denotes the LS estimate of the lth channel tap, 

( , ) ( )
, ,( ( ) ( ))/ ( )

av next av
l m n m nh l h l T G Qα = − +  is the estimated variation slope with 

( , )
, ( )

av next
m nh l  being the 

channel estimate obtained in the next burst. Substituting 
( ) ( )

, , ,( ) ( ) ( )
av av
m n m n m nh l h l h l= +∆  and 

( , ) ( , ) ( )
, , ,( ) ( ) ( )

av next av next next
m n m n m nh l h l h l= +∆ , where , ( )m nh l∆  and ( )

, ( )next
m nh l∆  represent the estimation 

errors, into (G.1), we have 

. . .( , ) ( , ) ( , )m n m n m nh k l h k l h k l= +∆ , ( ) 1G Q k T G Q+ ≤ ≤ + − , (G.2) 

in which . ,( , ) ( ) ( ( /2))m n m n lh k l h l k G Qα∆ = ∆ +∆ − +  is the composite channel estimation 

error with  ( )( )
, ,( ) ( ) / ( )next

l m n m nh l h l T G Qα∆ = ∆ −∆ + . Based on (G.2) and (4.11), the 

corresponding estimated signature matrix is then expressed as 

( ) ( ) ( )( ) ( ) ( )
i i it t t= +∆H H H , 1 1i L≤ ≤ + , (G.3) 

where ( )( ) ( ) ( ) ( )
,( ) ( )i i i i

av T av next avt t∆ = ∆ + ∆ −∆H H D H H , 

( ) 1( ) ( ) { ,..., 1}T Mt T G Q diag t t Q−= + ⊗ + −D I  and ( )
,

i
av next∆H  can be formed by simply 

replacing ,m n∆h  with ( ) ( ) ( )
, , ,( ),..., ( )

Tnext next next
m n m n m nh l h L⎡ ⎤∆ = ∆ ∆⎢ ⎥⎣ ⎦h  in the definition of ( )i

av∆H  (see 

(F.2)). By following the same procedure in Appendix F, the optimal robust GSC weight for the jth 

group is given by ( ) ( ) ( ) ( )( ) ( ) ( ) ( )j j j j
a at t t t= −W H B U  with 

( )( ) 1( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j H j j j H j j
a eI It t t t t t t t

−
= +U B R R B B R H , (G.4) 

where ( ) MQ MQ
e t ×∈R  is defined in Table 4.1. Based on (G.4), the sampled version of the overall 

GSC weight is shown in (4.41). 
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