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Abstract A mathematical model is developed for simu-
lating the thermal energy transfer in a confined aquifer
with different geological properties in the underlying and
overlying rocks. The solutions for temperature distribu-
tions in the aquifer, underlying rock, and overlying rock
are derived by the Laplace transforms and their
corresponding time-domain solutions are evaluated by
the modified Crump method. Field data adopted from the
literature are used as examples to demonstrate the
applicability of the solutions in modeling the heat transfer
in an aquifer thermal energy storage (ATES) system. The
results show that the aquifer temperature increases with
time, injection flow rate, and water temperature. However,
the temperature decreases with increasing radial and
vertical distances. The heat transfer in the rocks is slow
and has an effect on the aquifer temperature only after a
long period of injection time. The influence distance
depends on the aquifer physical and thermal properties,
injection flow rate, and injected water temperature. A
larger value of thermal diffusivity or injection flow rate
will result in a longer influence distance. The present
solution can be used as a tool for designing the heat
injection facilities for an ATES system.

Keywords Thermal energy storage . Groundwater flow .
Analytical solution . Laplace transform . Heat transfer

Introduction

The global climate change is a worldwide and growing
concern at the present time. Green energies have been
considered as alternatives for reducing the discharge of the
carbon dioxide (CO2) and heat emission into the atmo-
sphere. Geothermal energy is one of the natural resources
and has been utilized in several forms for a long time, e.g.,
hot spring, thermal spring, warm spring, hot vapor, etc.
The use of geothermal energy is currently limited to a
small number of the conventional geothermal steam and
hot water reservoirs. The aquifer thermal energy storage
(ATES) is one of the techniques dealing with the waste
heat. This technique involves storing the excess waste heat
in an aquifer and recovering it as needed. In other words,
the ATES system can store the waste heat produced from
industrial activities as a hot water source for future use.

For the problem of heat exchanger, Carslaw and Jaeger
(1959) considered a case of a moving hot fluid over a
semi-infinite solid with the surface temperature of the
solid equaling to the temperature of the fluid at any point.
They gave the solutions of the temperature in the fluid and
solid in the Cartesian coordinate system. Cheng and
Teckchandani (1977) studied the transient heating and
fluid withdrawal in a liquid-dominated geothermal reser-
voir of an island aquifer. They demonstrated the contrac-
tion of the isotherms in a reservoir due to fluid withdrawal
from both a line and a plan sink. Bodvarsson et al. (1982)
developed a two-dimensional model of the vertical fault-
charged hydrothermal systems including the effects of
heat losses to the confining layers. Their model was used
in theoretical studies and applied to estimate the temper-
ature distribution at Susanville, California. Ziagos and
Blackwell (1986) developed a mathematical model for the
transient temperature effects of horizontal fluid flow in
geothermal systems. An approximate analytical solution
was derived using the Laplace transforms and compared
to a Fourier transform solution. Their solution reduces to
the solution of Bodvarsson et al. (1982) when the lower
rock has a finite thickness and a fixed temperature
specified as a boundary condition.

Bodvarsson and Tsang (1982) considered the problem
of cold-water injection into a geothermal reservoir with a
number of equally spaced horizontal fractures. The Lap-
lace-domain solutions for the fracture and rock temper-
atures are derived by the Laplace transforms and
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calculated via a numerical inverter of Stehfest (1970).
Chen and Reddell (1983) developed analytical solutions
describing steady and transient temperature distributions
for thermal injection into a radial confined aquifer. The
thermal injection system was assumed symmetrical with
respect to the mid-plane of the aquifer with the same
thickness of the caprock and bedrock. A graphical
technique was provided for evaluating the thermal
properties of the aquifer. Palmer et al. (1992) conducted
a thermal energy injection and storage experiment in an
unconfined aquifer to provide the field data of numerical
simulation at the Canadian Force Base Borden site.
Molson et al. (1992) presented a three-dimensional finite
element model for describing the coupled density-depen-
dent groundwater flow and the thermal energy transport.
Their model can simulate the low-temperature thermal
energy transport system that arises in connection with the
ATES and heat-extraction systems. Chevalier and Banton
(1999a) developed a random walk model for heat transfer
for a single injection well in a confined aquifer system.
Their results were compared with the analytical solution
given by Avdonine and Rubinstein in Noyer (1977) and
finite difference model. Chevalier and Banton (1999b)
also applied the random walk method to thermal energy
storage in fractured aquifers. Nagano et al. (2002)
investigated the influence of natural convection on forced
horizontal flow in saturated media for an ATES system
using both the experiments and computer simulations.
They stated that both natural convection and temperature
dependence of water viscosity are required in the
simulation of an ATES. Paksoy et al. (2004) compared
the performance of heat, ventilation and air-conditioning
(HVAC) system integrated with ATES for a supermarket
in Turkey with a conventional system. The result shows
that the HVAC system with ATES has almost 60% higher
operating efficiency than a conventional one. Stopa and
Wojnarowski (2006) developed an analytical model of cold
water front movement in a geothermal reservoir by assum-
ing that the rock density and heat capacity are functions of
temperature. The method of characteristics was used to find
the discontinuous solutions. In addition, they also presented
a velocity equation of thermal front in a cold-water
injection system; however, the equation did not apply to
the case of hot water injection into a colder reservoir.

The objective of this study is to propose a mathemat-
ical model for describing the heat transfer in a confined
aquifer which has different geological properties in the
underlying and overlying rocks. The Laplace-domain
solutions of the temperature distribution are derived by
the Laplace transforms and their corresponding time-
domain solutions are obtained using the modified Crump
method (de Hoog et al. 1982). The solutions can be used
to predict the temperature distribution in an ATES system.

Mathematical model

An idealized representation of an injection well in a
confined aquifer is shown in Fig. 1. The hot water is

injected into the confined aquifer through the well and
flows between the underlying and overlying rocks. Heat is
transferred from water to the rocks and is stored in the
confined aquifer. The assumptions made in the mathemat-
ical model are:

1. The aquifer is homogeneous, isotropic, infinite in
horizontal extent, and of a constant thickness. In
addition, the temperature in the aquifer is considered
well-mixed over the entire thickness.

2. The overlying and underlying rocks are homogeneous,
isotropic, impermeable, and of constant thicknesses.

3. The mass flow is assumed to be steady and the hot
water is injected at a constant rate into the aquifer
through a fully penetrating well.

4. The physical density, specific heat, and thermal conduc-
tivity of the aquifer, overlying rock, and underlying rock
are assumed constants. This assumption is applicable
when the change of temperatures in the rocks and water
flow is not very large (Stopa and Wojnarowski 2006).

5. The heat transfer by horizontal convection occurs along
the radial direction and by vertical thermal conduction
in the overlying and underlying rocks.

6. The temperatures of the aquifer, underlying rock, and
overlying rock are initially constant. Assuming that the
injection well is insulated, i.e., the heat loss of the
injection water to the overlying rock is negligible;
therefore, the temperature of injection water is main-
tained constant.

7. The lower boundary of underlying rock and the upper
boundary of overlying rock are fractures and the fluid
temperatures in the fractures are maintained constant.

Under a typical laminar flow condition, the heat
transfer is dominated by advection in the aquifer and by
diffusion in the confining rocks (Cheng et al. 2001). Thus,
the effects of heat dispersion in the aquifer are neglected
in this study. For the aquifer, the governing equation
describing the steady-state temperature distribution in a

Fig. 1 Schematic diagram of the thermal energy storage in a
porous aquifer
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radial confined aquifer system can be formulated by
applying the energy balance law as (

��
Qzisik 1993)

�r2b
� �

�AcA v
@TA r; tð Þ

@r

� �

¼ �r2
� � �KR1

@TR1 r; z; tð Þ
@z

����
z¼0

þKR2
@TR2 r; z; tð Þ

@z

����
z¼b

� �

ð1Þ

where TA(r, t) is the temperature of aquifer; TR1(r, z, t) and
TR2(r, z, t) are the temperatures of the underlying and
overlying rocks, respectively; KR1 and KR2 are the thermal
conductivities of the underlying and overlying rocks,
respectively; b is the thickness of the confined aquifer;
ρA is the density of fluid-saturated aquifer; cA is the
specific heat of the fluid-saturated aquifer; r is the radial
distance from the injection well; z is the vertical distance
along the injection well; and t is the time. The flow
velocity, v, is Q/(2πrb) where Q is the constant volumetric
injection rate.

The initial temperature of the aquifer TA0 is assumed
constant, that is

TA r; 0ð Þ ¼ TA0 ð2Þ
The boundary condition for the temperature at the well

screen is

TA rw; tð Þ ¼ TW0 ð3Þ

where TW0 is the temperature of the injected water.
The conduction equation for the temperature distribu-

tion in the underlying rock can be written as

@2TR1 r; z; tð Þ
@z2

¼ rR1cR1
KR1

@TR1 r; z; tð Þ
@t

ð4Þ

where ρR1 and cR1 are the density and specific heat of the
underlying rock, respectively.

Neglecting the geothermal gradient, the initial temper-
ature of the underlying rock TR10 can be expressed as

TR1 r; z; 0ð Þ ¼ TR10 ð5Þ
The boundary conditions for the underlying rock are

TR1 r; 0; tð Þ ¼ TA r; tð Þ; for the upper boundary ð6Þ

and

TR1 r;�b1; tð Þ ¼ TR10; for the lower boundary ð7Þ
Similarly, the conduction equation for the temperature

distribution in the overlying rock can be written as

@2TR2 r; z; tð Þ
@z2

¼ rR2
cR2

KR2

@TR2 r; z; tð Þ
@t

ð8Þ

where ρR2 and cR2 are the density and specific heat of the
overlying rock, respectively.

The initial temperature of the overlying rock TR20 when
neglecting the geothermal gradient is

TR2 r; z; 0ð Þ ¼ TR20 ð9Þ
The boundary conditions for the overlying rock are

TR2 r; b; tð Þ ¼ TA r; tð Þ; for the lower boundary ð10Þ

and

TR2 r; bþ b2; tð Þ ¼ TR20; for the upper boundary ð11Þ
The detailed derivations for the Laplace transform

solutions to Eqs. (1)–(11) are given at the end (see
Appendix). The dimensionless parameters used hereinafter
are defined as

TAD r; tð Þ ¼ TA r;tð Þ�TA0
TW0�TA0

; �R1 ¼ KR1
�R1cR1

; �R2 ¼ KR2
�R2cR2

;

TR1D r; z; tð Þ ¼ TR1 r;z;tð Þ�TA0
TW0�TA0

; T
0
R1D r; z; tð Þ ¼ TR1D r; z; tð Þ � TR10D;

TR10D ¼ TR10�TA0
TW0�TA0

TR2D r; z; tð Þ ¼ TR2 r;z;tð Þ�TA0
TW0�TA0

; T
0
R2D r; z; tð Þ ¼ TR2D r; z; tð Þ � TR20D;

TR20D ¼ TR20�TA0
TW0�TA0

ð12Þ

Based on Eq. (12), Eqs. (1)–(11) can be expressed in
dimensionless forms. The solution for the dimensionless
temperature of the aquifer is

TAD r; sð Þ ¼ 1

s
� A2 sð Þ

sA1 sð Þ
� �

exp
��

�AcAQ

� �
A1 sð Þ r2 � r2w

� �� 	
þ A2 sð Þ

sA1 sð Þ
ð13Þ

with

A1 sð Þ ¼ KR1q1 coth q1b1ð Þ þ KR2q2 coth q2b2ð Þ ð14Þ

and

A2 sð Þ ¼ KR1q1 coth q1b1ð ÞTR10D þ KR2q2 coth q2b2ð ÞTR20D
ð15Þ

where s is the Laplace variable (Spiegel 1965), q21 ¼
s=�R1, and q22 ¼ s=�R2. In addition, the Laplace-domain
solutions for the dimensionless temperature are

TR1D r; z; sð Þ ¼ sinh q1 b1 þ zð Þð Þ
sinh q1b1ð Þ TAD r; sð Þ � TR10D

s

� �
þ TR10D

s

ð16Þ
for the underlying rock and

TR2D r; z; sð Þ ¼ sinh q2 bþ b2 � zð Þð Þ
sinh q2b2ð Þ TAD r; sð Þ � TR20D

s

� �
þ TR20D

s

ð17Þfor the overlying rock.
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In order to express Eqs. (13)–(17) in dimensionless
forms, following dimensionless variables are introduced:

rD ¼ r
b ; rwD ¼ rw

b ; zD ¼ z
b ; b1D ¼ b1

b ; b2D ¼ b2
b ; � ¼ KR2

KR1
;

�D ¼ �R2
�R1

; qD ¼ �AcAQ
2�bKr1

; tD ¼ �R1t
b2

ð18Þ
The Laplace-domain solutions of Eqs. (13), (16), and

(17) in dimensionless form are respectively

TAD rD; sð Þ¼ 1

s
� A2D sð Þ

sA1D sð Þ
� �

exp
�1

2qD

� �
A1D sð Þ r2D�r2wD

� �� 	
þ A2D sð Þ
sA1D sð Þ
ð19Þ

TR1D rD; zD;s
� � ¼ sinh q1D b1D þ zDð Þð Þ

sinh q1Db1Dð Þ TAD rD; sð Þ � TR10D
s

� �
þ TR10D

s

ð20Þ
and

TR2D rD; zD; sð Þ ¼ sinh q2D 1þ b2D � zDð Þð Þ
sinh q2Db2Dð Þ TAD rD; sð Þ � TR20D

s

� �
þ TR20D

s

ð21Þ

with

A1D sð Þ ¼ q1Dcoth q1Db1Dð Þ þ �q2Dcoth q2Db2Dð Þ ð22Þ

and

A2D sð Þ ¼ q1Dcoth q1Db1Dð ÞTR10D þ �q2Dcoth q2Db2Dð ÞTR20D
ð23Þ

where q21D ¼ s and q22D ¼ s=�D.
When TA0=TR10=TR20, there is no geothermal gradient

in the reservoir. Thus, one can obtain TR10D=TR20D=0 and
A2 (s)=0. The Laplace-domain solutions of Eqs. (13), (16),
and (17) are then reduced to

TAD r; sð Þ ¼ 1

s
exp

��

�AcAQ

� �
A1 sð Þ r2 � r2w

� �� 	
ð24Þ

TR1D r; z; sð Þ ¼ sinh q1 b1 þ zð Þð Þ
sinh q1b1ð Þ TAD r; sð Þ ð25Þ

and

TR2D r; z; sð Þ ¼ sinh q2 bþ b2 � zð Þð Þ
sinh q2b2ð Þ TAD r; sð Þ ð26Þ

If the underlying and overlying rocks have the same
finite thickness, bR, and physical and thermal properties,
then TR1=TR2=TR, �R1 ¼ �R2 ¼ KR

�RcR
, q1=q2=q, and

A1 sð Þ ¼ 2KRqcoth qbRð Þ. Accordingly, Eq. (24) becomes

TAD r; sð Þ ¼ 1

s
exp

��

�AcAQ

� �
2KRq coth qbRð Þð Þ r2 � r2w

� �� 	

ð27Þ

which is similar to the solution of Bodvarsson and Tsang
(1982) derived based on the assumption that there is no
heat flow at the upper and lower boundaries.

If the thicknesses of the underlying and overlying rocks
is very large and considered as infinite, then coth(qbR) is
equal to one. Under this circumstance, Eq. (27) can be
simplified as

TAD r; sð Þ ¼ 1

s
exp

��

�AcAQ

� �
2KRqð Þ r2 � r2w

� �� 	
ð28Þ

Numerical evaluations

Equation (13) is a function of the hyperbolic cotangent
and is rather complicated. Thus, its analytical solution in
time domain may not be tractable. Similarly, the analytical
solutions of Eqs. (16) and (17) may not be available either.
Equations (13), (16), and (17) are therefore numerically
inverted by the routine INLAP of IMSL (1997) with an
accuracy to four significant figures. This routine was
developed based on a numerical algorithm originally
proposed by Crump (1976) and modified by de Hoog et
al. (1982). This algorithm approximates the Laplace
inversion by expressing the inverted function in a Fourier
series and accelerates the evaluation by the Shanks
method (Shanks 1955; Peng et al. 2002).

Equations (16) and (17) include the functions of
hyperbolic sine, sinh(z), and hyperbolic cotangent, coth(z).
The sinh(z) becomes infinite as z approaches infinity. The
numerical evaluation for sinh(z1)/sinh(z2) may diverge
when z1 and/or z2 become very large. Using the series
representations for sinh(z1) and sinh(z2) (Abramowitz and
Stegun 1964, p. 85), the term sinh(z1)/sinh(z2) after taking
long division becomes

sinh z1ð Þ
sinh z2ð Þ ¼

X1
i¼1

ez1� 2i�1ð Þz2 � e�z1� 2i�1ð Þz2
h i

ð29Þ

Equation (29) converges if z1≤z2. The infinite sum on
the right-hand side of Eq. (29) can be evaluated by the
Shanks method to accelerate convergence. This method
has been successfully applied to efficiently solve many
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problems in the groundwater area (see, e.g., Yang and Yeh
2002; Yeh et al. 2003).

Results and discussions

The effects of the well radius, reservoir thickness, and
pumping flow rate on the aquifer temperature are
examined hereinafter. The data used in the following
simulations are �AcA ¼ 2:5� 106J



m3 �� C, b=20 m,

�R1cR1 ¼ 2:7� 106J


m3 �� C, KR1=2.5 W/m°C, b1=20 m,

�R2cR2 ¼ 2:3� 106J


m3 �� C, KR2=1.5 W/m°C, and

b2=50 m. The injection well is fully penetrating with a
radius rw of 0.05 m. Assume that the initial temperatures
are TA0=33°C for the aquifer, TR10=34°C for the underly-
ing rock, and TR20=32°C for the overlying rock. The tem-
perature of the injected water is maintained at Tw0=50°C
and the injection rate is Q=10−4 m3/s or 5×10−4 m3/s.

Figure 2 shows the effects of the radial distance,
injected time, and injected flow rate on the aquifer
temperature. In Fig. 2 the solid and dotted lines denote
the aquifer temperature for the cases of injection rate Q ¼
1� 10�4m3



s and 5×10−4 m3/s, respectively. This figure

shows that the aquifer temperature decreases significantly
with increasing radial distance for a fixed time and flow
rate. On the other hand, the aquifer temperature increases
significantly with the flow rate if the radial distance and
time are kept constant. For fixed flow rates, the aquifer
temperature increases significantly with time at a small
radial distance and slowly at a large radial distance. The
aquifer temperature approaches the initial aquifer temper-

ature (TA0) at a very large distance and/or after a long
period of injection. The effect of the injected hot water on
the aquifer temperature at a large distance is negligible
and the radius of influence of the ATES system is about
30 m when Q ¼ 1� 10�4m3



s and 60 m when

Q ¼ 5� 10�4m3


s.

Figure 3 shows the temperature distribution contour for
the ATES system with Q ¼ 5� 10�4m3



s at t=30, 60 or

90 days. Note those irregularities in the contour lines
shown in Fig. 3 are mainly caused by the surface mapping
software Surfer (Golden Software 1999), not by the
behavior of the temperature distributions. The radius of
influence is defined as a distance from the injection well to
the location where the temperature increase is equal to
0.5°C. Figure 3a indicates the radius of influence for the
aquifer is about 26 m when t=30 days. In addition, the
temperature radiuses of influence within the rocks are z1=
−8 m for the underlying rock and z2=26 m for the
overlying rock. The radius of influence for the aquifer is
about 29 m when t=60 days as shown in Fig. 3b. The
temperature radiuses of influence within the rocks are z1=
−10 m for the underlying rock and z2=28 m for the
overlying rock. Figure 3c indicates the radius of influence
for the aquifer is about 20 m when t=90 days. This
distance is significantly smaller than that when t=60 days
due to the water flow velocity is very small at this distance
and the heat transfer replaces the heat migration exerting
the temperature distribution at the interface. The temper-
ature radiuses of influence are z1=−8 m for the underlying
rock and z2=28 m for the overlying rock. The temperature
radiuses of influence compared with those when t=60 days
for the rocks are not changed in the radius of influence. In
addition, the effects of the rocks on the temperature
distribution increase with time at large radial distance.
Those results show that the effect of the hot water
injection on the temperature distribution is significant for
the aquifer and is very minor for the rocks at a short
period of time. It indicates that the migration of hot
water in the aquifer is quick and the heat transfer in the
rock is slow. In addition, the heat transfer in the aquifer
and rocks increases with time and decreases with in-
creasing r and z.

Figure 4 shows the radius of influence versus temper-
ature for an ATES system with Q ¼ 5� 10�4m3



s for t

ranging from 1 to 1,000 days. The results show that the
radius of influence increases dramatically at small time
and slowly at large time. The radius of influence in the
aquifer is larger than those in the overlying and underlying
rocks at all test times. In addition, the radius of influence
in the underlying rock is larger than that in the overlying
rock. It illustrates that a larger thermal diffusivity of the
rock results in a longer radius of influence. These results
also show that the influence of the injection of hot water
on the formation temperature distribution is more signif-
icant in the aquifer than that in the overlying/underlying
rocks. It indicates that the heat transfer is faster in the
aquifer than in the overlying/underlying rocks. In addition,
the heat transfers in the aquifer and rocks increases with

Fig. 2 Plots of aquifer temperature TA versus radial distance r for
Q ¼ 1� 10�4 and 5� 10�4m3



s when t=1, 30, 60, 90 or 1,000 days.

The solid and dotted lines denote the aquifer temperature for the
cases of the injection flow rate Q ¼ 1� 10�4m3



s and 5×10−4 m3/s,

respectively
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time and decreases with increasing horizontal and vertical
distances.

The field data of the geothermal system at Susanville,
California (Bodvarsson et al. 1982) is adopted to demon-
strate the application of the present model. The parameters
used in their simulation were �AcA ¼ 2:989� 106J



m3 �� C,

b=35 m, �R1cR1 ¼ �R2cR2 ¼ 2: 7� 106J


m3 �� C, and

KR1=KR2=1.5 W/m°C. In simulating an ATES system, the
temperature of injection water is fixed at Tw0=80°C and the
thicknesses of the underlying and overlying rocks are
b1=50 m and b2=40 m, respectively. Assume that the initial
temperatures are TA0=40°C for the aquifer and TR10=41°C
and TR20=39°C for the underlying and overlying rocks,
respectively. Note that the geothermal gradients in both the

underlying and overlying rocks are neglected since the
thicknesses of the rocks are not large. The flow rate of
recharge is Q=0.035 m3/s in this ATES system. Figure 5
shows the radius-temperature curve when the recharging
time t=0.1, 1, 10, 100 years. It shows that the aquifer
temperature decreases significantly with increasing radial
distance and approaches the initial aquifer temperature at a
very large distance. If the limiting temperature is taken as
60°C, the radiuses of influence are 200, 300, 400, and
600 m after 0.1, 1, 10 or 100 years, respectively. This result
can be used to predict the area extent and amount of
hydrothermal energy for the ATES system.

Those results demonstrate that the present model can
be used to assess the effects of the injection of hot water

Fig. 3 Contour plots of the temperature distribution in an ATES system forQ ¼ 5� 10�4m3


s when a t=30 days, b t=60 days, and c t=90 days
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on the temperature distribution in an ATES system. This
model has practical use for designing the ATES system.

Conclusions

A mathematical model describing the thermal energy
transport in a confined aquifer in an ATES system is
presented. The Laplace-domain solutions for the temper-
ature distribution are derived by the Laplace transforms
and the corresponding solutions in time domain are
evaluated using the modified Crump method. The con-
clusions of this study can be stated as follows:

1. The present model can be used to estimate the effects
of hot water injection on the temperature distribution in
an ATES system for various radial distances, injection
times, and injection flow rates. It is useful in the design
of efficient ATES facilities when injecting hot water
into a confined aquifer for the storage or the disposal of
waste heat energy.

2. The effect of hot water injection on the temperature
distribution in the aquifer is significant during a short
period of injection time. In contrast, the temperature
distributions in overlying and underlying the rocks are
affected only after a long period of injection time.

3. The temperatures in the aquifer and the underlying and
overlying rocks increase with time and decrease with
increasing radial and vertical distances. The effect of
hot water injection on the temperature distribution
increases with injection flow rate and water temperature.

4. The radius of influence in an ATES system depends on
the physical and thermal properties, injection flow rate,

and injection water temperature. The radius of influ-
ence increases dramatically for small injection times
and slowly for long periods of injection time. In
addition, a larger value of the thermal diffusivity or
injection flow rate gives a longer radius of influence.
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Appendix

The coupled boundary value problem represented by Eqs.
(1)–(11) can be expressed in a dimensionless form based
on the dimensionless groupings of Eq. (12). For the
aquifer, the governing equation for the steady-state heat
conduction is

brAcAð Þ Q

2prb

� �
@TAD r; tð Þ

@r

¼ �KR1
@TR1D r; z; tð Þ

@z

����
z¼0

þKR2
@TR2D r; z; tð Þ

@z

����
z¼b

ð30Þ

The initial condition is

TAD r; 0ð Þ ¼ 0 ð31Þ
The boundary condition at the rim of wellbore is

TAD rw; tð Þ ¼ 1 ð32Þ
Fig. 4 Radius of influence in the aquifer, underlying rock, and
overlying rock for Q ¼ 5� 10�4m3



s when t ranges from 1 to

1,000 days

Fig. 5 Plots of aquifer temperature TA versus radial distance r for
�AcA ¼ 2:989� 106J



m3 �� C, b=35 m, �R1cR1 ¼ �R2cR2 ¼ 2: 7�

106J


m3 �� C, KR1=KR2=1.5 W/m°C, b1=b2=125 m, Tw0=80°C,

TA0=40°C, TR10=41°C, TR20=39°C, and Q=0.035 m3/s in a hydro-
thermal system when t=0.1, 1, 10 or 100 years
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For the underlying rock, the heat conduction equation is

@2T
0
R1D r; z; tð Þ
@z2

¼ 1

aR1

@T
0
R1D r; z; tð Þ

@t
; aR1 ¼ KR1

rR1cR1
ð33Þ

The initial condition is

T
0
R1D r; z; 0ð Þ ¼ 0 ð34Þ

The boundary conditions are

T
0
R1D r; 0; tð Þ ¼ TAD r; tð Þ � TR10D ð35Þ

and

T
0
R1D r;�b1; tð Þ ¼ 0 ð36Þ

For the overlying rock, the heat conduction equation
for the temperature distribution can be written as

@2T
0
R2D r; z; tð Þ
@z2

¼ 1

aR2

@T
0
R2D r; z; tð Þ

@t
; aR2 ¼ KR2

rR2cR2
ð37Þ

The initial condition is

T
0
R2D r; z; 0ð Þ ¼ 0 ð38Þ

The boundary conditions are

T
0
R2D r; b; tð Þ ¼ TAD r; tð Þ � TR20D ð39Þ

and

T
0
R2D r; bþ b2; tð Þ ¼ 0 ð40Þ

Applying Laplace transforms to Eqs. (30)–(40), the
governing equation for the aquifer becomes

�AcAQ

2�

� �
1

r

dTAD r; sð Þ
dr

� �

¼ �KR1
dTR1D r; z; sð Þ

dz

����
z¼0

þKR2
dTR2D r; z; sð Þ

dz

����
z¼b

ð41Þ
and the boundary condition becomes

TAD rw; sð Þ ¼ 1

s
ð42Þ

The heat conduction equation for the underlying rock
results in

d2T
0

R1D r; z; sð Þ
dz2

¼ q21T
0

R1D r; z; sð Þ; q21 ¼
s

�R1
ð43Þ

and the related boundary conditions are

T
0

R1D r; 0; sð Þ ¼ TAD r; sð Þ � TR10D
s

ð44Þ
and

T
0

R1D r;�b1; sð Þ ¼ 0 ð45Þ
The heat conduction equation for the overlying rock

becomes

d2T
0

R2D r; z; sð Þ
dz2

¼ q21T
0

R2D r; z; sð Þ; q22 ¼
s

�R2
ð46Þ

and the related boundary conditions are

T
0

R2D r; b; sð Þ ¼ TAD r; sð Þ � TR20D
s

ð47Þ
and

T
0

R2D r; bþ b2; sð Þ ¼ 0 ð48Þ

Substituting Eqs. (44) and (45) into Eq. (43) yields

T
0

R1D r; z; sð Þ ¼ sinh q1 b1 þ zð Þð Þ
sinh q1b1ð Þ TAD r; sð Þ � TR10D

s

� �

ð49Þ
Based on Eq. (12), Eq. (49) can be rewritten as

TR1D r; z; sð Þ ¼ sinh q1 b1 þ zð Þð Þ
sinh q1b1ð Þ TAD r; sð Þ � TR10D

s

� �
þ TR10D

s

ð50Þ
Similarly, the Laplace-domain solution for the under-

lying rock can be obtained by substituting Eqs. (47) and
(48) into Eq. (46) as

T
0

R2D r; z; sð Þ ¼ sinh q2 bþ b2 � zð Þð Þ
sinh q2b2ð Þ TAD r; sð Þ � TR0D

s

� �

ð51Þ
The above equation can be rewritten by the use of Eq.

(12) as

TR2D r; z; sð Þ ¼ sinh q2 bþ b2 � zð Þð Þ
sinh q2b2ð Þ TAD r; sð Þ � TR0D

s

� �
þ TR0D

s

ð52Þ
The substitution of Eqs. (50) and (52) into Eq. (41)

yields

�AcAQ

2�

� �
1

r

dTAD r; sð Þ
dr

� �
¼�KR1q1 coth q1b1ð Þ TAD r; sð Þ � TR10D

s

� �

�KR2q2 coth q2b2ð Þ TAD r; sð Þ � TR20D
s

� �

ð53Þ
After substituting Eq. (42) into Eq. (53), the Laplace-

domain solution, Eq. (13), can then be obtained.
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