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Reverse logistics networks often consist of several tiers with independent members

competing at each tier. This paper develops a methodology to examine the individual

entity behavior in reverse production systems. We consider two tiers in the network,

collectors and processors. The collectors determine individual flow functions that relate

the flow they provide each processor to the overall vector of prices that the processors

determine. Because the exact final prices are unknown, each collector solves a robust

optimization formulation where the prices paid by the processors are assumed to be

within given ranges. The processors compete for the flow from the collectors until the

Nash equilibrium is reached in this competitive tier, which sets the vector of prices to be

offered to the collectors. To demonstrate the approach, a numerical example is given for

a prototypical recycling network.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Maximizing the efficiency of recycled material flows is
growing in urgency due to high demands in many raw
material markets and the increasing concern for environ-
mental impact of disposal. Supply chains are evolving
from ‘‘open loop’’ unidirectional flows of materials, parts,
and products from suppliers to end customers into more
complex ‘‘closed loop’’-linked forward and reverse arcs
(Fleischmann et al., 2000; Guide and Harrison, 2003;
Realff et al., 2004; de la Fuente et al., 2008). Forward
production systems are being expanded to incorporate
reverse production systems (RPS) that include sorting,
demanufacturing and/or refurbished processes in reverse
logistics systems.

Most of the research on RPS design views the system in
a centralized way; the key assumption is that one planner
ll rights reserved.
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g).
has the requisite information about all the participating
entities and seeks the optimal solution for the entire
system (see Ammons et al., 2001; Shih, 2001; Barros et al.,
1998; Assavapokee et al., 2008). Wang et al. (2004)
remark upon the three major drawbacks of centralized
supply chain optimization models: (1) By ignoring the
independence of the supply chain members, the compe-
titive behavior between entities may lower the system
efficiency and hence a centralized model may not capture
the appropriate bargaining mechanisms that can mitigate
the competitive behavior; (2) The cost of information
processing may be expensive and the central decision
maker must gather all the information from every entity;
and (3) The computation of solutions to centralized
optimization models can be very challenging.

Many emerging RPS structures consist of several
independent entities where individual entrepreneurs have
their own profit functions and often are unwilling to
reveal their own information to each other or the public.
This type of system behavior is decentralized. Often the
decision variables for each entity in a decentralized
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system are also influenced by other entities’ decisions,
coupling prices between members of the same tier, and
flows between supply chain tiers. In this paper, we focus
on decentralized decision-making and protocol design for
the RPS with two tiers. The two tiers represent the
collectors, who interact directly with the source of
recycled items, and the processors who purchase the
items from the collectors and convert them into more
fungible commodities that are sold to customers.

The concept of equilibrium has been widely applied in
many fields: traffic network equilibrium (Sheffi, 1985) and
economic models (Cournot, 1838; Bertrand, 1883; Stack-
elberg, 1934). The Cournot- (see Hobbs, 2001) and the
Stackelberg-type (Savaskan et al., 2004) models are two
commonly used equilibrium models in decentralized
systems. However, in practice the Cournot-type model
may incur information divulgence problems because it
requires the collection of optimality conditions from
different entities in order to establish the equilibrium
solution. Conceptually, the solution procedure implies
that entities need to pass the information of their
optimality conditions to some invisible hand in the
system, which requires the willingness to share informa-
tion among participants with a centralized body in order
to obtain the equilibrium solution. Furthermore, the
Stackelberg-type model (a leader–follower problem)
may have implicit solution problems in a multiple-entity
case since the leader considers the follower’s optimal
response to its decision under the Stackelberg model
framework. Technically, this means the leader substitutes
the follower’s optimal response function into its problem,
and hence must have knowledge of it. This type of models
is solved by the backward induction (Fudenberg and
Tirole, 1991). Nevertheless, an implicit solution may be
reached in a multiple-entity case due to the property of
substitution for optimal responses. In addition, we doubt
whether the leader will have knowledge of the follower’s
optimal response in real-world decentralized systems.
Instead, to avoid the problems of information divulgence
and implicit solutions, we develop an explicit decision-
making mechanism for calculating the optimal (self-
interest) acquisition prices and the independent optimal
flow determination for recycled materials in a decentra-
lized RPS.

While forward and reverse supply chains share many
similarities, there are significant differences. For forward
supply chain systems, the material flow volumes are
usually assumed to be functions of all prices in the final
market (Nicholson, 2002; Corbett and Karmarkar, 2001).
Once the historical data of demand and prices are
available, the quantity and price relationship can be
predicted since retailers face a considerable number of
customers and perfect market assumptions are not
unreasonable. However, for the RPS, the number of
entities in the network is relatively small compared with
a forward supply chain network. The relationship of the
quantity and price in certain parts of the supply chain
cannot been derived due to the lack of data. Instead, we
present a robust approach to determine the relationship
between the material flow volume and price between the
collection and processing tier of the supply chain.
The remainder of the paper is organized as follows. In
Section 2, we give a brief literature review. In Section 3,
we provide the formal definition of our two-tier problem:
the upstream and downstream entities and their connec-
tion. In Sections 4 and 5, we develop mathematical
models for upstream and downstream entities to deter-
mine the price and flow decisions in a decentralized RPS.
In Section 6, we apply the algorithm to a numerical
example to determine the equilibrium product prices and
resulting flows, and also provide a discussion of the model
and results. Section 7 presents conclusions and also
suggests directions for future research.

2. Literature review

The past decade has seen an enormous increase in
research on reverse logistics management issues. Flapper
(1995, 1996), Fleischmann et al. (2000), and Guide and
Harrison (2003) give systematic overviews and challenges
of the logistic aspects of reuse and recycling in closed loop
supply chains. Much of the research in RPS tends to be
product, or system, specific due to the various features
and complexities needed to handle the different recycling
and reuse scenarios. Research on recycling and resource
recovery for specific materials such as paper, plastics and
sand include Pohlen and Farris (1992), Wang et al. (1995),
Huttunen (1996) and Barros et al. (1998). Examples of
product recovery and reuse include copy machines
(Thierry et al., 1995; Thierry, 1997; Krikke, 1998), compu-
ters and electronics equipment (Jayaraman et al., 1997;
Hong et al., 2006), and reusable transportation containers
(Kroon and Vrijens, 1995). Chung and Wee (2008)
investigate the impact of the green product design.
The basic underlying assumption in these papers is that
the planning of reverse logistics operations is done by a
single decision maker to optimize the total system
performance.

There are a growing number of research papers on
forward or reverse supply chains that model the indepen-
dent decision-making process of each supply chain entity,
specifically the interaction between pricing decisions
and material flow volume transacted in the network.
Majumder and Groenevelt (2001) examine the competi-
tion behavior between an original equipment manufac-
turer (OEM) and the third-party local remanufacturer
when the recycled products affect the demand of the
original products. Guide et al. (2003) present an economic
analysis for calculating the optimal acquisition prices and
the optimal selling price for remanufactured products
with different quality classes in one single remanufactur-
ing firm. Savaskan et al. (2004) model three options for
collecting used products, subcontracting with retailers,
outsourcing to a third-party firm, and collecting by
themselves, as decentralized decision-making systems
with the manufacturer being the Stackelberg leader.
Savaskan and Van Wassenhove (2006) analyze different
reverse channel designs of direct and indirect product
collection systems where the manufacturer collects used
products directly from the consumers or collects via
retailers. The models presented in the above papers are
limited in the number of supply chain entities and their
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coordination. Several researchers have presented compe-
tition models with the scope of multiple entities (Corbett
and Karmarkar, 2001; Nagurney and Toyasaki, 2005).
Corbett and Karmarkar (2001) develop a model that
considers entry decisions and post-entry competition in
multi-tier serial supply chains. Nagurney and Toyasaki
(2005) use a variational inequality solution approach to
solve for the equilibrium network flow and endogenous

prices of recycled materials. In this paper, instead, we
consider a general RPS network structure with two tiers
and multiple entities and propose an algorithm to solve
independently for the explicit equilibrium acquisition
prices and resulting network flows within the network.

3. A two-tier RPS problem: upstream and downstream

A RPS to reuse or recycle end-of-life products is a
network of transportation logistics and processing func-
tions that collect, refurbish, and demanufacture. In
general, several entities in different tiers compose a
network of collection and processing steps, connected by
a transportation logistics system. In this paper, for
simplicity, we assume a basic RPS consisting of two tiers
of multiple facilities, one collection and one processing,
facing sources and demand markets. Material flow
allocation and product acquisition are common challenges
for the reverse logistics network, where the network may
be geographically dispersed. Our experience with firms or
non-profit recycling organizations in scrap electronics
(e-scrap) reveals several specific questions that go beyond
the current reverse logistics models either in the strategic
or operational level.
�

U
(C

Do
(P

F

What is the end-of-life product transaction mechanism
between collectors and processors when they negoti-
ate the price-flow contract?

�
 How do the collectors allocate their collected items to

the processors if both of them are run by independent
individuals?

�
 How do the processors determine their price offers if

they bid for the collected items from collectors?

We first illustrate a two-tier network problem consist-
ing of upstream and downstream tiers for a RPS depicted
in Fig. 1. In general, the RPS is a network of several entities
with functions that include collection and processing
1
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Demand markets
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ig. 1. A two-tier RPS network with collection and processing sites.
phases. The upstream tier represents the collection phase
relating to sorting/consolidation processes and the down-
stream tier denotes the processing phase including
refurbish/demanufacturing processes. Upstream entities
collect end-of-life items from the residential or business
sectors, and then independent downstream entities bid
exchange prices for collected items from upstream
entities. Upstream entities usually collect in distinct
market segments (business or residential) or distinct
geographic locations. Thus, there is no competition among
the upstream entities in our model. A successful upstream
entity must carefully manage its material flow allocation
of collected items, i.e., design an effective, fair and
transparent price-flow contracts between itself and down-
stream entities, to pursue its self-interest and ensure it
meets the demand for material. Independent downstream
entities compete for collected items from upstream
entities with other members in the downstream tier.
There are several value-added refurbishing/demanufac-
turing processes involved in the downstream entities and
items are transformed to refurbished items, sub-compo-
nents, or materials (e.g., used products, or raw materials)
which are sold in several specific demand markets. An
important issue for independent downstream entities is
how to determine the optimal acquisition price, which is
used to acquire the items from upstream entities.

We focus on the transaction between upstream and
downstream tiers on material flow allocation and asso-
ciated price decisions. Upstream entities collect end-of-
life products from residential or business sectors, which
may hold positive- or negative-value recycled items. In
the e-scrap industry, residential or business sources may
need to pay a collection fee to collectors for discarding the
obsolete e-scrap items (Hong et al., 2006). We assume
that the collection amount in upstream entities is a
function of the collection fee that the upstream entity
charges from end-of-life product sources: the higher the
fee, the lower the potential amount collected from
sources. We let the source supply function denote this
function. Downstream entities convert end-of-life pro-
ducts into several valuable raw materials and used
products as well as trash after refurbish/demanufacturing
processes. Since the transportation cost for the recycled
item is paid by the downstream entity, downstream
entities have less incentive to acquire homogenous
collected items from further away upstream entities than
near sites. It is reasonable to assume that the valuation of
homogenous items collected in different upstream enti-
ties is identical and downstream entities will compensate
for transportation costs. Consequently, the net unit reward
received by an upstream entity is assumed to be the
acquisition price minus the unit transportation cost. In
this paper, we specifically focus on the transaction of
valuable items between upstream and downstream tiers
and, as a result, we assume that the acquisition prices to
be offered by downstream entities are positive. We also
argue that the amount of raw materials resulting from the
decomposition of end-of-life products and used products
is relatively small compared with the quantity in the
virgin raw material and brand-new product markets. This
observation leads to the assumption that the selling prices
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Upstream sites
design the price-
flow contract.

Upstream sites
know source
supply functions.

Downstream sites know
the final market price
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contract.

GAME TIMELINE

Upstream sites
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Market clears.

Downstream sites
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offered to upstream sites.

Upstream sites know
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downstream sites.
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Action
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Flow
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Fig. 2. The decision timeline for a two-tier problem.
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of raw materials or used products in demand markets are
fixed amounts, not affected by the sales quantities.

We focus on two issues: the equilibrium acquisition
prices to be offered by downstream entities and the
optimal price-flow contract between upstream and down-
stream tiers. The price-flow contract is a mechanism
describing the correspondence between the acquisition
prices offered by downstream entities and the flow
amount supplied by the upstream entity to its subsequent
downstream entities. The decision timeline for a two-tier
problem is shown in Fig. 2 where the upper arrows
indicate the tasks of upstream or downstream entities,
and the lower arrows state information disclosure time-
line. The steps of the solution algorithm are illustrated by
the number in the rectangle box in Fig. 2. Upstream
entities first determine the price-flow contracts and
communicate them to the associated downstream enti-
ties. We assume that upstream entities are unable to
change the price-flow contracts after communication.
Then, downstream entities compete with other entities
within the same tier for the flow from upstream entities
on the basis of the price they offer for the recycled items.
The downstream tier gives a single vector of prices that
apply to all the upstream tier members. The decisions of
downstream entities are the acquisition prices to be
offered to the upstream tier. Downstream entities simul-
taneously choose their respective price decisions based on
the price-flow contracts given by the associated upstream
entities. Finally, upstream entities determine the collec-
tion fee to acquire the corresponding amount of recycled
items from the source. We present our modeling for
independent upstream and downstream entities in the
following subsequent sections.
4. The upstream model: price-flow contract

In this section, we present a robust optimization model
for the independent upstream entity to determine the
robust price-flow contract between upstream and down-
stream tiers. For simplicity, we refer to the price-flow
contract as the flow function. We depict the upstream and
downstream sites as nodes and the material flows as links
in Fig. 1. Specifically, we consider m upstream sites who
are involved in the collection of end-of-life products,
which can then be acquired by n downstream sites.
A typical upstream site is denoted by i, and a typical
downstream site by j. We first discuss the robust approach
and scenario setting in the upstream model followed
by the description of flow functions determined by
the independent upstream site and the upstream model
itself.
4.1. The robust approach and scenario setting

The goal of the upstream model for any particular site i,
i ¼ 1,2,y, m, is to design a ‘‘good’’ price-flow contract, or
flow function. Due to the assumption of no information
sharing in our decentralized model, upstream entities do
not know the exact final acquisition prices to be offered by
downstream entities. Each upstream entity predicts the
possible range of acquisition prices as input information
for determining flow functions. One way to forecast lower
and upper bounds of acquisition prices is based upon the
information of transportation costs and market prices.
A possible lower bound on the price is the transportation
cost between upstream and downstream tiers; otherwise,
the upstream sites obtain a negative price offer since the
net unit reward received by an upstream entity is the
acquisition price minus the unit transportation cost.
A negative unit reward is not in their interest. Therefore,
we assume that the forecast acquisition prices are at least
as much as the associated transportation costs in the
model. Another possible lower bound is the market
price if upstream sites are unwilling to sell for less than
the market price. However, if downstream sites own
the bargaining power, the highest market price may
be a potential upper bound of the acquisition price
since downstream sites are unwilling to pay more than
the market price for acquiring colleted items from
upstream sites.
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A particular price combination, (P1o,y,Pjo,y,Pno), of
downstream entities refers to one scenario oAO, where
Pjo is the unit material price downstream site j willing to
offer in price scenario o. There are an infinite number of
scenarios because the range of acquisition prices fore-
casted by the upstream entities fall in continuous compact
intervals. In this paper, for computational convenience, we
assume that a finite number of discrete points are chosen
by each upstream entity to represent the price range for
the flow function design. A practical approach for
computation is to select k points evenly in every
dimension of the price range. Thus, the scenario space O
considered is with kn scenarios if there are n downstream
tier entities. We note that upstream entities make this
relaxation for computational convenience when they
design flow functions, but downstream entities still
determine acquisition prices in a continuous space.

The objective of upstream entities is to construct a set
of robust flow functions against the price ambiguity. In
this paper, we use the measure of robust deviation defined
by Kouvelis and Yu (1997), such that each upstream site is
to minimize the maximum difference between the best it
can obtain when price offers from downstream sites are
realized and the robust objective value under the designed
flow function. This differs from a stochastic approach
because each upstream entity is not required to assign a
probability distribution over the acquisition prices,
and it has practical benefits as the knowledge of
acquisition prices is limited in a decentralized RPS. This
minimax optimization approach (Winston, 1994) captures
a notion of ‘‘risk’’—the upstream site wants to protect
itself from doing very poorly in a given price realization,
which is unknown before contracting with the down-
stream tier.

4.2. The price-flow contract: flow functions

A growing literature in operations management pre-
sents studies of supply chain contracting (see Tsay, 1999;
Donohue, 2000; Cachon and Lariviere, 2001; Corbett et al.,
2004; Giannoccaro and Pontrandolfo, 2004). These papers
focus on the coordination between two parties of an
upstream and a downstream entity (say a supplier and a
buyer). In this paper, we present a general price-flow
contract describing not only the coordination between
tiers but also the competition within the tier. Intuitively
the upstream entity tends to ship higher flow to the
downstream entity who offers the higher acquisition
price. Obviously the price-flow contract from upstream
sites to downstream sites is dependent of acquisition
prices offered by downstream entities.

We let V ðTrÞ
ij denote the unit transportation cost from

site i to j. The unit reward that upstream site i receives
from downstream site j is represented as the material
price that the downstream entity is willing to offer while
covering the associated unit transportation cost. There-
fore, the unit reward of site i in price scenario o is
Pjo � V ðTrÞ

ij . For the material flow from upstream site i to
downstream site j for scenario o, denoted by xðTrÞ

ijo ,
upstream site i tends to increase the flow amount on
xðTrÞ

ijo if downstream site j offers a higher price. Meanwhile,
upstream site i may decrease the amount of xðTrÞ
ijo to feed

more flow to other arcs if other downstream sites provide
more incentives in price offers. Our modeling implies any
particular arc of material flow is not only a function of the
price offered by its destination downstream site, but also
the relative price offers of other downstream sites. The
decision variables for upstream site i are the coefficients of
material flow determination, denoted by aijj0, from up-
stream site i to downstream site j affected by downstream
site j0 for all of downstream site pairs j and j0. Note the
decision variables of aijj0 are not dependent of price
scenario o: aijj0 is a common set of coefficients for all of
price scenarios. Using the common linear function
assumption (Corbett and Karmarkar, 2001; Guide et al.,
2003), the material flow from upstream site i to down-
stream site j in price scenario o is represented as

xðTrÞ
ijo ¼

Xn

j0¼1

aijj0 ðPj0o � V ðTrÞ
ij0
Þ 8i; j. (1)

4.3. Potential maximum flow determination

Upstream entities select several discrete price points to
represent the possible acquisition price range, and they
may determine different collection fees and collect
different amounts from sources given different acquisition
prices to be offered by downstream entities. Before
constructing price-flow contracts for upstream entities,
we first examine transactions between upstream sites and
sources to obtain the potential maximum flow corre-
sponding to each different price scenario pre-selected by
upstream entities. Assume the collection amount in
upstream site i, i ¼ 1,2,y, m, is given by a source supply

function Sio ¼ ai � biP
ðCoÞ
io , where ai and bi are parameters

and ai; bi40. We let PðCoÞ
io denote the collection fee charged

by site i, and Sio be the potential maximum flow amount
collected in upstream site i corresponding to price
scenario o. To ensure that the upstream site i obtains a
non-negative amount of flow, we require PðCoÞ

io pai=bi for all
price scenarios. The potential profit of upstream site i in
price scenario o, Pio, is

Y
io
¼ Sio PðCoÞ

io þ max
j¼1;...;n

fPjo � V ðTrÞ
ij g

� �

¼ ðai � biP
ðCoÞ
io Þ PðCoÞ

io þ max
j¼1;:::;n

fPjo � V ðTrÞ
ij g

� �
, (2)

where upstream site i picks the highest price offer from
downstream sites as the selling price and the only
unknown variable in (2) is the collection fee of PðCoÞ

io that
site i charged for the material from sources corresponding
to price scenario o. For notation simplicity, we let

PðmaxÞ
io ¼ max

j¼1;...;n
fPjo � V ðTrÞ

ij g. The potential profit function

Pio is concave in PðCoÞ
io whenever bi40, so (2) is maximized

when the first-order condition holds, i.e., when

PðCoÞn
io ¼ minfðai � bi PðmaxÞ

io Þ=2bi; ai=big 8i;o. (3)

Thus, (3) is the optimal collection fee for upstream site i

in price scenario o. The potential maximum flow amount
collected in upstream site i corresponding to price
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scenario o, Snio, can be obtained by substituting PðCoÞn
io into

Sio ¼ ai � biP
ðCoÞ
io . Note the pre-determined collection fee

PðCoÞn
io and the available flow Snio are realized by solving (3)

in price scenario o being input information for the robust
optimization model presented in Section 4.4 to determine
price-flow contracts.

4.4. The robust model for upstream sites

To execute the robust approach, first the optimal
solution of each upstream site for each specified price
scenario is found. This solution calculates the highest
profit that the individual upstream site can obtain if it
were to know the acquisition prices exactly. Then, we
minimize the maximum deviation of the objective func-
tion value between the ‘‘ideal’’ and the ‘‘robust’’ sales
profit for all price scenarios. Finally, we adjust the decision
variables, a’s, to ensure those returning the best sales
profit for all tight and non-tight price scenarios. We let On

io
denote the optimal objective value of upstream site i for
price scenario o, and CðTrÞ

ij denote the shipment capacity
between upstream site i and downstream site j. We
assume that each upstream site i seeks to maximize the
total profit associated with its collection and material
allocation operations with the optimization problem
given as follows for upstream site i for price scenario o.

Maximize Oio

Subject to : Oio ¼
Xn

j¼1

xðTrÞ
ijo ðPjo � V ðTrÞ

ij þ PðCoÞn

io Þ, (4)

xðTrÞ
ijo ¼

Xn

j0¼1

aijj0 ðPj0o � V ðTrÞ
ij0
Þ 8j, (5)

xðTrÞ
ijopCðTrÞ

ij 8j, (6)

Xn

j¼1

xðTrÞ
ijopSnio, (7)

xðTrÞ
ijoX0 8j, (8)

aijj040 8j; j0; j ¼ j0, (9)

aijj0p0 8j; j0; jaj0. (10)

The objective function (4) is the sum of the sales profits
and collection fees. Constraints (5) are the material flow
function definitions for emanating arcs from upstream
site i. Constraints (6) and (7) provide capacity limits for
each arc and for the recycled item source. Constraints (8),
(9), and (10) are sign restrictions for unknown variables.
Obviously, the material flow variables, xðTrÞ

ijo , are non-
negative, and the sign restrictions for a0s require that the
upstream site has more incentive to ship more flow on the
arc where its destination price offer is increased, but less
incentive when other downstream sites offer higher prices
competing the material flow.

Next, we determine the robust flow function, or a
common set of coefficients, a0s, to be evaluated in every
price scenario oAO for site i. Thus, for each price scenario
we subtract the robust objective function value (Rio) using
the common set of robust coefficients from the optimal
objective value (On

io) of realization of acquisition price
offers. The min–max robust optimization model over all
price scenarios for upstream site i can be stated as

Minimize di

Subject to : diXOn
io � Rio 8o, (11)

Rio ¼
Xn

j¼1

xðTrÞ
ijo ðPjo � V ðTrÞ

ij þ PðCoÞn

io Þ 8o, (12)

xðTrÞ
ijo ¼

Xn

j0¼1

aijj0 ðPj0o � V ðTrÞ
ij0
Þ 8j;o, (13)

xðTrÞ
ijopCðTrÞ

ij 8j;o, (14)

Xn

j¼1

xðTrÞ
ijopSnio 8o, (15)

xðTrÞ
ijoX0 8j;o, (16)

aijj040 8j; j0; j ¼ j0, (17)

aijj0p0 8j; j0; jaj0. (18)

The minimum maximum deviation dni of upstream site i

is realized after solving the min–max robust optimization
model. The final step of the upstream model is solving the
following model to optimality to ensure that the decision
variables, a’s, return the best sales profit for non-effective
price scenarios (non-tight price scenarios in (11)) for
upstream site i. The model for each upstream site i is

Maximize
X
o2O

Rio

Subject to : dni XOn
io � Rio 8o.

Constraints set of (12)–(18).
Given the robust solution values for a, the upstream

site models determine robust flow functions for each
independent upstream site. Thus, the robust flow function
describing the flow shipment from upstream site i to
downstream site j, denoted by xðTrÞ

ij , is represented as

xðTrÞ
ij ¼

Xn

j0¼1

aijj0 ðpj0 � V ðTrÞ
ij0
Þ 8i; j, (19)

where pj0 is the acquisition price offered by downstream
site j0. Note that the price scenario o is not an argument in
the flow function at this point, and that (19) describes the
material flow relationship of the amount and acquisition
price between upstream and downstream tiers. Each
upstream site provides each downstream site with a
robust flow function to govern the material flow transac-
tions between them. The general form of the price-flow
contract for each arc shown in (19) represents not only the
coordination between tiers but also the competition
within the tier. For example, in the price-flow contract
of arc (i,j) associated with upstream site i, site i specifies
both how downstream site j’s acquisition price affects the
flow on arc (i,j) and how other downstream sites’
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acquisition prices influence the flow on arc (i,j). If an
upstream entity determines its price-flow contract based
on only the price of the specific downstream j it is
considering, the price-flow contract is found by setting the
rest of the a’s equal to zero in the upstream model.

In the upstream model, each upstream entity first
predicts the possible range of acquisition prices and
chooses several discrete points (scenarios) to represent
the price range for further flow function design. Then, each
upstream entity considers the potential available input
flow by pre-determining the optimal collection fee corre-
sponding to each price scenario. The procedure of the
upstream model ends when flow functions are determined
by min–max robust optimization programs. In Section 5,
we present downstream site models to solve for the
equilibrium acquisition prices between these two tiers.

5. The downstream model: the equilibrium price

Downstream sites are involved in transactions with
upstream sites and customers in final demand markets
since they wish to obtain recycled items from upstream
tier and sell the materials or sub-components after
refurbished/demanufacturing processes. Downstream
sites make decisions on their own acquisition prices
subject to their constraints of processing capacities,
transportation capacities, and technology restrictions.
We develop an equilibrium model of competitive down-
stream sites to determine the Nash equilibrium price
where no downstream site can improve its objective
function value by a unilateral change in its price solution.
In this paper, we utilize the relaxation algorithm (see
Krawczyk and Uryasev, 2000; Contreras et al., 2004) to
find the Nash equilibrium price solution.

5.1. The optimization model for the downstream site

The independent downstream site maximizes its
objective function associated with the purchasing, proces-
sing cost and sales revenue and is subject to constraints
imposed on the processing, transportation capacity, and
demand restrictions. Required notation for the down-
stream model in addition to the upstream model notation
is listed as follows.

Downstream model parameters:

PðSaÞ
j Net selling price offered per standard unit of

material to downstream site j;
CðPrÞ

j Maximum amount of material that can be
processed at downstream site j;

CðTrÞ
ij Maximum amount of material that can be

shipped from upstream site i to downstream
site j;

V ðTrÞ
ij Transportation cost per standard unit per dis-

tance from upstream site i to downstream site j.

Downstream model variables:

pj Price offered per standard unit by downstream
site j;
xðTrÞ
ij The material flow from upstream site i to

downstream site j.

Using this notation, the optimization model for down-
stream site j can be stated as

Maximize
Xm

i¼1

ðPðSaÞ
j � pjÞx

ðTrÞ
ij , (20)

Subject to : xðTrÞ
ij ¼

Pn
j0¼1

aijj0 ðpj0 � V ðTrÞ
ij0
Þ 8i Flow definition;

Pm
i¼1

xðTrÞ
ij pCðPrÞ

j Processing capacity;

xðTrÞ
ij pCðTrÞ

ij 8i Transportation capacity;

xðTrÞ
ij X0 8i Variable restrictions;

pjX0:

We assume that recycled items coming from different
upstream sites are homogeneous. Thus, the total flows
shipped to downstream site j, which is denoted by xðTrÞ

j , is
the sum of flows from different upstream sites to down-
stream site j and is expressed as follows:

xðTrÞ
j ¼

Xm
i¼1

xðTrÞ
ij ¼

Xm

i¼1

Xn

j0¼1

aijj0 ðpj0 � V ðTrÞ
ij0
Þ 8j. (21)

Here, the material flow variable for recycled items
shipped to downstream site j, xðTrÞ

j , is the function of
acquisition prices of all downstream sites. Hence in order
for the downstream site to compute its optimal price bid,
it must know the bids of the other downstream sites, and
only this. The optimization model of (20) for downstream
site j can be generally transformed into the model shown
in (22), expressed in acquisition price variables where p ¼
ðp1; . . . ; pnÞ are the collective price actions and where fj is
the payoff (or objective) function of downstream site j. Let

gj
d denote the row d of constraint function and bj

d the

right-hand-side parameter of row d in downstream site j’s
optimization model.

Maximize fjðpÞ

Subject to : gj
1ðpÞpbj

1

..

.

gj
rðpÞpbj

r

pjX0:

(22)

Next, we show the convex property of downstream site
models for the existence and uniqueness of the Nash
equilibrium acquisition price solution.

Proposition 1. The optimization model for downstream site

j, j ¼ 1,y, n, has a strictly concave objective function with

respect to pj and a convex constraint set.

Proof. Trivially the set of linear constraints is a convex set
with respect to price variables (Nemhauser and Wolsey,
1999).

Again, the format of the material flow variable xðTrÞ
j is

written as
Pm

i¼1

Pn
j0¼1aijj0 ðpj0 � V ðTrÞ

ij0
Þ where all coefficients

a’s are given by upstream sites and V ðTrÞ
ij are transportation

cost parameters. The only unknown variables are all p’s.



ARTICLE IN PRESS

I-H. Hong et al. / Int. J. Production Economics 116 (2008) 325–337332
The variable xðTrÞ
j can be rewritten as

xðTrÞ
j ¼ aj

1p1 þ � � � þ aj
npn þ Cj, (23)

where Cj is a constant and aj
j0

is the coefficient term with

pj0 for downstream site j’s model. The interpretation of

(23) is that the material flows shipped to downstream site

j are a function of price pj and also functions of other price

variables offered by other downstream sites. Clearly, the

material flow is increasing as the price offer increases

but decreasing when the competitors’ prices increase, if

there exists a price effect between downstream site j and

other downstream sites. Thus, we have the following

inequality relations

aj
j40 and aj

j0
p0 8j0; j0aj. (24)

From (24), the sign of second derivative of the objective

function fj can be determined as q2fj=qp2
j o0. &

Proposition 2. The impact of the change of acquisition price

pj, j ¼ 1,2,y, n, on the material flow xðTrÞ
j is greater than the

total impact on xðTrÞ
j due to the price changes from the rest of

downstream sites.

Proof. For every upstream site i, we have aijj040 for all j; j0

when j is equal to j0, and aijj0p0 for all j; j0 when j is not
equal to j0. In order to ensure a positive robust objective
function for each arc between the upstream and down-
stream tier in all of price scenarios, o, we have

jaijjj4
Pn

j0¼1

j0aj

jaijj0 j for all i and j. Therefore, jaj
jj4
Pn

j0¼1

j0aj

jaj
j0
j for

all j and it completes the proof. &

In Section 5.2, we provide some concepts and the
required notation for the illustration of the downstream
site model algorithm.

5.2. Definitions and concepts

There are j ¼ 1,y, n downstream sites participating in
competing the material flows with the price. Each down-
stream site j, j ¼ 1,y, n, can adopt an individual price
setting denoted by pj 2 Pj, where Pj is the set of price
actions that downstream site j can choose. All down-
stream entities, when acting together, can take a collective
action, which is a vector p ¼ ðp1; . . . ; pnÞ. Denote the
collective price action set by P, and, by definition,
P � P1 � P2 � � � � � Pn. Let p ¼ ðp1; . . . ; pnÞ and q ¼
ðq1; . . . ; qnÞ be elements of the collective price action set
P1 � P2 � � � � � Pn.

The following notation and terminology are based
upon Krawczyk and Uryasev (2000) and Contreras et al.
(2004). An element ðqjjpÞ � ðp1; . . . ; pj�1; qj; pjþ1; . . . ;pnÞ of
the collective price action set can be interpreted as a set of
price actions where the jth downstream entity selects
price offer qj while the remaining entities are taking price
pj, j ¼ 1,2,y, j�1, j+1,y, n. A price action set pn ¼

ðpn
1 ; . . . ; pn

n Þ is called the Nash equilibrium price if, for
downstream site j,

fjðp
nÞ ¼ max

ðpj jp
nÞ2P

fjðpjjp
nÞ.
Note that at the Nash equilibrium solution, no entity
can improve its individual objective value by a unilateral
change in its price decisions. In order to compute the Nash
equilibrium, we introduce the Nikaido–Isoda function
(Nikaido and Isoda, 1955). This function transforms
an equilibrium problem into an optimization problem
(Contreras et al., 2004). The Nikaido–Isoda function C :

ðP1 � � � � � PnÞ � ðP1 � � � � � PnÞ ! < is defined as

Cðp;qÞ ¼
Xn

j¼1

½fjðqjjpÞ �fjðpÞ�:

Each summand of the Nikaido–Isoda function can be
viewed as the change in the objective function value when
its price action changes from pj to qj for all sites j in the
downstream tier, while all other downstream sites
continue to choose according to price vector p. This
means that one entity changes its price action while
others do not. Thus, the function represents the sum of
these changes in objective functions. Krawczyk and
Uryasev (2000) claim that the function is non-positive
for all feasible q when p* is a Nash equilibrium solution,
since no entity can improve its objective function value at
equilibrium by unilaterally alternating its solution. This
observation is used to construct a termination condition
for the relaxation algorithm, such that when an e is
chosen, the Nash equilibrium is obtained when
max

q2P
Cðps;qÞo�, where s is the iterative step of the

relaxation algorithm.
Finally we introduce the optimum response function,

which returns the set of downstream entities’ price
actions whereby they all try to unilaterally maximize
their respective objective function values. The optimum

response function (Krawczyk and Uryasev, 2000) at the
price vector p is expressed in (25) and it is a collective
function mapping the previous price decisions to the next
price decisions of all downstream entities. Technically,
each downstream entity unilaterally alters its price
solution on the basis of knowledge of other downstream
entities’ previous price solutions and its own objective
function.

ZðpÞ ¼ arg max
q2P

Cðp;qÞ p; ZðpÞ 2 P. (25)

Next, we illustrate the relaxation algorithm to solve for
the Nash equilibrium acquisition prices between up-
stream and downstream tiers.

5.3. The relaxation algorithm

The relaxation algorithms are used by Krawczyk and
Uryasev (2000) and Contreras et al. (2004) for different
applications. We apply the relaxation algorithm to
iteratively search for the Nash equilibrium acquisition
price solution of downstream site models. At each
iteration of the algorithm, downstream sites wish to move
to a price point that represents an improvement on the
current price point. Having an initial estimate price vector,
p0, the relaxation algorithm is shown as follows:

psþ1 ¼ ð1� bsÞp
s þ bsZðp

sÞ s ¼ 0; 1; 2; . . . , (26)
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where 0obsp1. The iterative step s+1 is constructed as a
weighted average of the improvement price point Z(ps)
and the current price point ps. The optimum response
function Z(ps) returns the next best move of price
solutions by solving the quadratic convex model shown
in (20); in turn, each downstream site is trying to
maximize its objective function by unilaterally moving
its price solution given others’ price solution. The iteration
at each step is constructed as a weighted average of the
improvement solution Z(p)and the current price solution
p. By taking a sufficient number of iterations, the
algorithm converges to the Nash equilibrium price p* with
a specified precision.

It is also interesting to note that the concept of the
algorithm itself matches the idea of a decentralized view
on downstream sites. In each iteration, every entity can
access all entities’ previous price actions and determines
its best move in price decision based on its own interests
and constraints. In other words, the problem is a
calculation of the succession of price decisions, where
entities choose their optimum response given the price
decisions of the competitors in the previous iteration. The
following corollary shows that existence and uniqueness
of the Nash equilibrium solution and the convergence of
the relaxation algorithm to downstream sites’ problems.

Corollary 1. There exists a unique Nash equilibrium price

solution for downstream sites to which the relaxation

algorithm converges.

Proof. See Appendix A.

We note that the usual solution space naturally defines
the convex set P if there are no other pairing price
restrictions. The necessary sign restrictions of a’s ((9) and
(10)) are possible and reasonable in real-world problems.
The Relaxation Algorithm states that each downstream
site is trying to maximize its objective function by
unilaterally moving its price solution given others’ pre-
vious price solutions. The algorithm itself essentially is in
an iterative scheme and continues until all of downstream
sites find the Nash equilibrium acquisition price solution
where no downstream site is willing to alter its acquisi-
Processing Sites

1

1

2

2

3

3

Collection Sites

Fig. 3. The reverse production system for the example.

Table 1
The unit transportation costs between entities

V ðTrÞ
11 V ðTrÞ

12 V ðTrÞ
13 V ðT2

Unit transportation cost 10 20 75 12
tion price based on the price-flow contracts given by
associated upstream sites. In Section 6, we summarize the
solution algorithm consisting of upstream and down-
stream models and explicitly illustrate the decision-
making procedures under this framework of Sections 4
and 5.

6. A numerical example

This example, depicted in Fig. 3, illustrates the
application of the above upstream and downstream
models. There are three collection sites, i ¼ 1, 2, and 3 in
the upstream tier and three processing sites, j ¼ 1, 2, and 3
in the downstream tier. The collection sites collect end-of-
life products from sources and ship them to processing
sites. The transportation costs per unit flow between
collection and processing sites are given in Table 1.

The final market prices for processing sites, j ¼ 1, 2,
and 3 are $105, $110, and $150, respectively. The collection
amount functions in collection sites, i ¼ 1, 2, and 3 are
given by S1 ¼ 350� 5PðCoÞ

1 , S2 ¼ 320� 4PðCoÞ
2 , and

S3 ¼ 330� 5PðCoÞ
3 , respectively. Clearly, the collection

amount decreases as the collection site charges a higher
collection fee per unit. In this example, we model the case
that the transportation costs (or the distances) from
Processing site 3 to collection sites are relatively larger
than the costs of other arcs; however, the final market
price for Processing site 3 provides the higher incentive to
attract recycled items.

We assume that all collection sites predict the ranges
of acquisition prices offered by processing sites, j ¼ 1, 2,
and 3 as ($60, $70, and $110)720 in the upstream model.
In other words, collection sites, i ¼ 1, 2, and 3 predict the
price offered by processing sites to acquire obsolete
products collected in collection sites are within the ranges
of [$40, $80], [$50, $90], and [$90, $130] for processing
sites, j ¼ 1, 2, and 3, respectively. We choose 5 evenly
distributed points in each price range. The upstream
model yields the following robust flow functions:

xðTrÞ
11 ¼ 2:73ðp1 � 10Þ � :10ðp2 � 20Þ � 1:36ðp3 � 75Þ,

xðTrÞ
12 ¼ � :10ðp1 � 10Þ þ 2:73ðp2 � 20Þ � 1:36ðp3 � 75Þ,

xðTrÞ
13 ¼ � :35ðp1 � 10Þ � :35ðp2 � 20Þ þ 3:30ðp3 � 75Þ,

xðTrÞ
21 ¼ 2:72ðp1 � 12Þ � 1:22ðp3 � 67:5Þ,

xðTrÞ
22 ¼ � :64ðp1 � 12Þ þ 2:23ðp2 � 18Þ � :44ðp3 � 67:5Þ,

xðTrÞ
23 ¼ � :88ðp1 � 12Þ þ 2:65ðp3 � 67:5Þ,

xðTrÞ
31 ¼ 2:78ðp1 � 15Þ � :73ðp2 � 22Þ � :31ðp3 � 64:5Þ,

xðTrÞ
32 ¼ � :08ðp1 � 15Þ þ 2:67ðp2 � 22Þ � 1:06ðp3 � 64:5Þ,

xðTrÞ
33 ¼ � 1:14ðp1 � 15Þ þ 2:92ðp3 � 64:5Þ.

We apply the relaxation algorithm to obtain the Nash
equilibrium acquisition prices determined by processing
rÞ
1 V ðTrÞ

22 V ðTrÞ
23 V ðTrÞ

31 V ðTrÞ
32 V ðTrÞ

33

18 67.5 15 22 64.5
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Table 2
The calculation of the relaxation algorithm for the example

Iteration(s) ps
1 ps

2 ps
3 Zðps

1Þ Zðps
2Þ Zðps

3Þ as psþ1
1 psþ1

2 psþ1
3

1 60.00 60.00 60.00 58.73 65.79 116.72 1.00 58.73 65.79 116.72

2 58.73 65.79 116.72 68.95 76.36 116.67 0.99 68.85 76.25 116.67

3 68.85 76.25 116.67 69.47 76.90 118.23 0.98 69.46 76.88 118.20

4 69.46 76.88 118.20 69.77 77.22 118.33 0.97 69.76 77.21 118.32

5 69.76 77.21 118.32 69.81 77.26 118.37 0.96 69.81 77.25 118.37

6 69.81 77.25 118.37 69.82 77.27 118.38 0.95 69.82 77.27 118.38

7 69.82 77.27 118.38 69.82 77.27 118.38 0.94 69.82 77.27 118.38

Table 3
The resulting material flows between collection and processing sites

xðTrÞ
11 xðTrÞ

12 xðTrÞ
13 xðTrÞ

21 xðTrÞ
22 xðTrÞ

23 xðTrÞ
31 xðTrÞ

32 xðTrÞ
33

Material flow 98.3 91.1 101.8 95.2 72.6 84.1 95.8 86.2 94.4

Table 4
The equilibrium collection fees

PðCoÞn
1 PðCoÞn

2 PðCoÞn
3

Equilibrium collection fee 11.76 17.02 10.72
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sites. The detailed steps of the relaxation algorithm are
illustrated in Table 2. At iteration 7, the max

q2P
Cðps;qÞ

approaches to zero, which indicates p1
7, p2

7, and p3
7 are the

Nash equilibrium acquisition prices for processing sites 1,
2, and 3.

The corresponding material flows between collection
and processing sites and equilibrium collection fees of
collection sites are listed in Tables 3 and 4, respectively.

The preceding example demonstrates a two-tier and
single-commodity decentralized RPS problem that can be
solved using the models given in Sections 4 and 5. First, the
upstream model for each collection site provides the flow
functions used to contract with processing sites. Then, we
solve for the Nash equilibrium acquisition prices between
collection and processing sites by the relaxation algorithm.
Finally, we obtain the corresponding material flows between
these two tiers and the equilibrium collection fees of
collection sites. We note the solution of equilibrium
acquisition prices may not return a value located within
the prediction price range in some extreme cases. If the
equilibrium price is above the range, it may lead to
infeasible flows due to the flow capacity of sites or arcs. To
avoid this, we assume that the collection sites conservatively
predict the range of acquisition prices so that the equili-
brium acquisition prices are within corresponding price
ranges. Otherwise, they may cause a significant loss due to a
potential penalty of unsatisfactory supply to processing
sites. We leave the penalty mechanism design for future
work and summarize our current results in Section 7.

7. Conclusions and extensions

This paper presents a decentralized perspective for
reverse production systems where each independent
entity considers its own objective function and is subject
to its own constraints. Meanwhile, the objective function
of each entity not only depends on its own decision
variables but also depends on decision variables of other
entities. In this paper, we focus on a two-tier reverse
production system involving the price and material flow
decisions where the price-flow contract is determined by
upstream entities and the acquisition prices of material
flows transacted between upstream and downstream sites
are determined by downstream entities. We apply the
min–max robust optimization on each of the independent
upstream models to generate the flow functions, which
are used to contract with downstream sites.

Downstream entities compete for material flows from
the upstream tier. The iterated relaxation algorithm is
used to solve for the Nash equilibrium acquisition prices
between upstream and downstream sites. Note that the
algorithm itself matches the idea of a decentralized
decision-making process where every downstream entity
can access all entities’ previous price actions and
determines its next best move for its price decision. We
also show the existence and uniqueness of the Nash
equilibrium price under reasonable assumptions about
the underlying functions of each entity. Then, the
equilibrium acquisition prices from downstream entities
are communicated to associated upstream entities, who
then determine the flows to the downstream entities and
the collection fees to acquire recycled items.

In this paper, upstream entities determine price-flow
contracts by using a robust optimization approach, but
there are other criteria, such as an expected value, a
max–min objective, a Bayesian belief, which may be used
by different upstream entities. Also, many reverse produc-
tion systems have network structures that involve more
than two types of entities we have discussed here, and
with more than one type of item to be picked up and
recycled. For example, computers, printers, monitors,
and other auxiliary equipment are available from sources
and may be converted into commodities such as steel and
copper through a supply chain that involves multiple
processors engaged in size reduction and smelting. The
extension of our approach to these multi-tier problems
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with multiple item types requires further refinement of
the models we have developed.

It is worth mentioning that the mechanism proposed
in this paper may also exist in conventional supply chains
where new products may not be necessarily traded in an
open-market. Instead, several types of commodities are
transacted between upstream and downstream tiers in a
similar way to the model presented in this paper. For
example, purchasing agents might place bids for agricul-
tural products ranging from flowers and livestock using
the type of flow function approach described in this paper.

Finally, the reverse supply chains differ general
forward chains in that, in the former, the government
may involve more with policy making or evaluation. The
model presented in this paper is a prototype decentralized
RPS model and can be used as a tool to analyze the issues
of the government-subsidy, price fluctuation, comparison
of centralized vs. decentralized systems, and other situa-
tions where the individual behavior of the supply chain
components might be an important overall factor in the
system behavior.
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Appendix A

We present required definitions as follows (see Con-
treras et al., 2004). Let C : P � P! < be a function
defined on a product P� P, where P is a convex closed
subset of the Euclidean space <n. Further, we consider that
C(p,q) is weakly convex–concave if it satisfies the follow-
ing inequalities.

bCðx; zÞ þ ð1� bÞCðy; zÞXCðbxþ ð1� bÞy; zÞ
þ bð1� bÞrzðx;yÞ 8x; y; z 2 P;0pbp1

and
rzðx; yÞ

jjx� yjj
! 0; as jjx� yjj ! 0; 8z 2 P,

and

bCðz;xÞ þ ð1� bÞCðz; yÞpCðz;bxþ ð1� bÞyÞ
þ bð1� bÞmzðx; yÞ 8x; y; z 2 P;0pbp1

and
mzðx; yÞ

jjx� yjj
! 0; as jjx� yjj ! 0; 8z 2 P,

where rz(x,y) and mz(x,y) are called the residual terms.
In other words, a function C of two vector arguments is

referred to as weakly convex–concave if it satisfies weak
convexity with respect to its first argument and weak
concavity with respect to its second argument. The notions
of weak convexity and concavity are relaxations of strict
convexity and concavity (Berridge and Krawczyk, 1997).
The residual terms, to be chosen at will, ensure that there
are many concave functions, which are weakly convex and
many convex functions, which are weakly concave.

Theorem 1. (Uryasev and Rubinstein, 1994) There exists a

unique Nash equilibrium point to which the relaxation

algorithm converges if:
(1)
 P is a convex compact subset of <n,

(2)
 the Nikaido–Isoda function C : P � P! < is a weakly

convex–concave function and Cðp;pÞ ¼ 0 for pAP,

(3)
 the optimum response function Z(p) is single-valued and

continuous on P,

(4)
 the residual term rz(x,y) is uniformly continuous on P

with respect to z for all x,yAP,

(5)
 the residual terms satisfy ryðx; yÞ � mxðy;xÞXlðjjx�

yjjÞ x; y 2 P where l(0) ¼ 0 and l is a strictly increas-

ing function,

(6)
 the relaxation parameters bs satisfy (a) bs40, (b)P1

s¼0bs ¼ 1, and (c) bs-0 as s-N.
Proof of Corollary 1. We need to verify that our down-
stream models satisfy the conditions (1)–(6) in Theorem 1.

Condition (1): It is trivially satisfied.

Condition (2): From (23), we have that the material

flows shipped to downstream site j, j ¼ 1,y, n, is

expressed as xðTrÞ
j ¼ aj

1p1 þ � � � þ a
j
npn þ Cj. After algebra

manipulations, the objective function of downstream site j

is simply expressed in (27), where Vj is a constant

parameter for downstream site j.

fjðpÞ ¼ ðVj � pjÞða
j
1p1 þ � � � þ aj

npn þ CjÞ. (27)

For any solution ðzjjpÞ ¼ ðp1; . . . ; pj�1; zj;pjþ1; . . . ; pnÞ 2 P

and ðzjjqÞ ¼ ðq1; . . . ; qj�1; zj;qjþ1; . . . ; qnÞ 2 P,

bfjðzjjpÞ þ ð1� bÞfjðzjjqÞ

¼ bðVj � zjÞðaj
1p1 þ � � � þ a

j
j�1pj�1 þ a

j
jzj

þ aj
jþ1pjþ1 þ � � � þ aj

npn þ CjÞ

þ ð1� bÞðVj � zjÞðaj
1q1 þ � � � þ a

j
j�1qj�1

þ aj
jzj þ a

j
jþ1qjþ1 þ � � � þ aj

nqn þ CjÞ

¼ ðVj � zjÞ½aj
1½bp1 þ ð1� bÞq1� þ � � �

þ aj
j�1½bpj�1 þ ð1� bÞqj�1� þ a

j
jzj

þ aj
jþ1½bpjþ1 þ ð1� bÞqjþ1�

þ � � � þ aj
n½bpn þ ð1� bÞqn� þ Cj�

¼ fjðzjjbpþ ð1� bÞqÞ.

Thus,

bfjðzjjpÞ þ ð1� bÞfjðzjjqÞ ¼ fjðzjjbpþ ð1� bÞqÞ 8j. (28)

Since the objective functions fj for all downstream sites

are concave, we have

bfjðpÞ þ ð1� bÞfjðqÞpfjðbpþ ð1� bÞqÞ 8j. (29)
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Combining (28) and (29), the following inequality is

satisfied:

b½fjðzjjpÞ �fjðpÞ� þ ð1� bÞ½fjðzjjqÞ

�fjðqÞ�Xfjðzjjbpþ ð1� bÞqÞ

�fjðbpþ ð1� bÞqÞ 8j. (30)

Summing up all inequalities of (30) for all downstream

site j, it implies that

b
Xn

j¼1

½fjðzjjpÞ �fjðpÞ� þ ð1� bÞ
Xn

j¼1

½fjðzjjqÞ �fjðqÞ�

X

Xn

j¼1

½fjðzjjbpþ ð1� bÞqÞ �fjðbpþ ð1� bÞqÞ�. (31)

The definition of the Nikaido–Isoda function is referred

to (31), we have

bCðp; zÞ þ ð1� bÞCðq; zÞXCðbpþ ð1� bÞq; zÞ. (32)

From (32), the Nikaido–Isoda function C is convex with

respect to the first argument. Based on the same algebra

manipulation, the function C is also concave with respect

to the second argument which is

bCðz;pÞ þ ð1� bÞCðz;qÞpCðz;bpþ ð1� bÞqÞ. (33)

From (32) and (33), the Nikaido–Isoda function C is

convex–concave which is also weakly convex–concave.

Then, the optimization model for each downstream site j

satisfies Condition (2).

Condition (3): The optimum response function Z(p) is

single-valued and continuous on P by solving the concave

quadratic convex constrained model.

Condition (4): If the Nikaido–Isoda function C(p,q) is

twice continuously differentiable with respect to both

arguments on the set P� P, the residual term is given by

(Uryasev and Rubinstein, 1994)

rzðp;qÞ ¼ 1
2hAðp;pÞðp� qÞ;p� qi þ oðjjp� qjj2Þ,

where /�,�S is the notation of inner product and

Aðp;pÞ ¼ Cppðp;qÞjq¼p is the Hessian of the Nikaido–Isoda

function with respect to the first argument evaluated at

q ¼ p. Moreover, if the function C(p,q) is convex with

respect to p, then oðjjp� qjj2Þ ¼ 0 (Uryasev, 1988). The

residual term of rz(p,q) is a polynomial expression which

is continuous on P. Furthermore, rz(p,q) is uniformly

continuous on P since P is compact (Bartle, 1976).

Condition (5): Assuming that C(p,q) is twice continu-

ously differentiable, in order to prove this condition, it

suffices to show that Cppðp;qÞjq¼p �Cqqðp;qÞjq¼p is posi-

tive definite (Krawczyk and Uryasev, 2000), where

Cppðp;qÞjq¼p is the Hessian of the Nikaido–Isoda function

with respect to the first argument and Cqqðp;qÞjq¼p is the

Hessian of the Nikaido–Isoda function with respect to the

second argument, both evaluated at q ¼ p.
The Hessian matrices of the Nikaido–Isoda function are

shown in (34) and (35), respectively.

Cppðp;qÞjq¼p ¼

2a1
1 a1

2 þ a2
1 � � � a1

n þ an
1

a2
1 þ a1

2 2a2
2

..

.

..

. . .
.

an
1 þ a1

n � � � 2an
n

0
BBBBBB@

1
CCCCCCA

, (34)

Cqqðp;qÞjq¼p ¼

�2a1
1 0 � � � 0

0 �2a2
2

..

.

..

. . .
.

0 � � � �2an
n

0
BBBBBB@

1
CCCCCCA

, (35)

Cppðp;qÞjq¼p �Cqqðp;qÞjq¼p

¼

4a1
1 a1

2 þ a2
1 � � � a1

n þ an
1

a2
1 þ a1

2 4a2
2

..

.

..

. . .
.

an
1 þ a1

n � � � 4an
n

0
BBBBBBBB@

1
CCCCCCCCA

.

As discussed in Proposition 1, we require that aj
j40 and

aj
j0
p0 8j0; j0aj. Since all pivots for the matrix of

Cppðp;qÞjq¼p �Cqqðp;qÞjq¼p are positive, Cppðp;qÞjq¼p �

Cqqðp;qÞjq¼p is positive definite (Strang 1986). We can

conclude that the optimization models of downstream

sites satisfy Condition (5).

Condition (6): In order for the algorithm to converge, we

may choose any sequence (bs) satisfying the Condition (6)

of Theorem 1.

All conditions in Theorem 1 are satisfied for the

optimization model of downstream sites. It completes

the proof. &
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