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The plane-wave method is employed to determine the band structures and the field patterns of the
photonic crystals with polygonal and circular rods in square lattices. Isotropic and anisotropic N-fold
polygonal rods are used to assess the effects of the shapes and symmetries of polygonal rods on E-
and H-polarization modes. The photonic band structures of the polygonal rods approach those of the
circular rods as N increases above a value that is determined by the optical properties of the photonic
crystal. Moreover, for comparable geometric structures, anisotropic polygonal-rod photonic crystals
can provide larger absolute photonic band gaps than isotropic photonic crystals. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3039213�

I. INTRODUCTION

In recent years, photonic crystals have attracted much
attention because of their various interesting properties and
many innovative applications.1–5 Various crystal structures
with absolute photonic band gaps �PBGs�, in which photons
within a particular frequency range cannot propagate in the
crystals, have been developed.1,6–8

Many applications require large absolute PBGs. They
include optical waveguides, defect cavities, and photonic
crystal fibers.9–11 Several attempts have been made to pro-
duce photonic crystals with large PBGs, including increasing
the difference between the refractive indices of the rods and
the background, trimming the rods, and tuning the filling
factor.12–16 Photonic crystals have been constructed with so-
lidified dielectric or void rods in square, hexagonal, and tri-
angular lattices. Square dielectric rods in a square lattice, but
not circular dielectric rods therein, exhibit absolute
PBGs,17,18 suggesting that the shapes or the symmetries of
rods may strongly influence the band structures of the dielec-
tric rods in square lattices.

To demonstrate this proposition, the symmetries of
N-fold polygonal rods are augmented up to those of circular
rods in square lattices under a fixed filling factor and their
band structures are calculated using the plane-wave method.
The effects of symmetry of the isotropic polygonal rods, in
terms of the side number N, on the E- and H-polarization
band structures are investigated.

Absolute PBGs can be developed using anisotropic rods,
by taking advantage of the tunability of the E- and
H-polarization band gaps, which enables them to overlap
each other.19,20 Following these developments, N-fold po-
lygonal and circular anisotropic tellurium �Te� rods are con-
structed with the same filling factor, and their band structures
are calculated to identify large absolute PBGs in these pho-

tonic crystals. The effects of the structural symmetries on the
E- and H-polarization band structures of anisotropic polygo-
nal rods are examined and discussed.

II. THEORY

Photonic band structures can be obtained by solving
Maxwell’s equations. In a source-free, time-invariant, and
nonpermeable ��=�0� space, Maxwell’s equations can be
written in terms of a magnetic field as a master equation,

� � � 1

��r�
� � H�r�� =

�2

c2 H�r� , �1�

where H�r� is the magnetic field, ��r� is a position-
dependent dielectric constant, � is the angular frequency,
and c is the speed of light in vacuo. For periodic systems, the
magnetic field H�r� and the dielectric function ��r� can be
expressed as sums of plane waves,

H�r� = �
G

�
�=1,2

hG,�ê�ei�k+G�·r �2�

and

��r� = �
G

��G�eiG·r, �3�

where hG,� is the coefficient of the H component, k is the
wave vector in the Brillouin zone, and G is the reciprocal-
lattice vector. Two independent polarizations characterized
by the unit vectors ê���=1,2� are perpendicular to the
propagation vector �k+G�. Under Fourier transform, the co-
efficient ��G� is defined as

��G� =
1

Acell
�

cell
��r�e−iG·rdr , �4�

where Acell is the area of the primitive cell of the lattice.
Therefore, Eq. �1� can be expressed in matrix form,a�Electronic addresses: slyang@mail.nctu.edu.tw and slyang0@gmail.com.

JOURNAL OF APPLIED PHYSICS 104, 113109 �2008�

0021-8979/2008/104�11�/113109/6/$23.00 © 2008 American Institute of Physics104, 113109-1

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

140.113.38.11 On: Wed, 30 Apr 2014 07:38:57

http://dx.doi.org/10.1063/1.3039213
http://dx.doi.org/10.1063/1.3039213
http://dx.doi.org/10.1063/1.3039213


�
G�

	k + G		k + G�	� �G,G�
−1 �ê2 · ê2�� − �G,G�

−1 �ê2 · ê1��

− �G,G�
−1 �ê1 · ê2�� �G,G�

−1 �ê1 · ê1��
�

��h1,G�

h2,G�
� =

�2

c2 �h1,G

h2,G
� , �5�

where �G,G�
−1 =�−1�G−G�� is the inverse of the matrix ��G

−G��. Eigenvalue �5� can be solved using the matrix diago-
nalization approach.

The axes of anisotropic dielectric rods with ordinary re-
fractive index no and extraordinary refractive index ne are
parallel to the extraordinary axis. The refractive index is ne

for the E-polarization mode when the electric field vector is
parallel to the extraordinary axis and becomes no for the
H-polarization mode when the electric field vector is perpen-
dicular to the extraordinary axis. The calculations pertain
only to the case in which the wave vectors of the eigenmodes
lie on the x-y plane and are uniform in the z-direction. The
dielectric constant is given by

��r� = �b + ��e,o − �b�Srod�r� , �6�

where Srod�r� is a function of the rods, and �e and �o are
dielectric constants that correspond to the refractive indices
ne and no, respectively. Substituting Eq. �6� into Eq. �4�
yields the Fourier coefficient,

��G� = 
�e,of + �b�1 − f� for G = 0

��e,o − �b�S�G� elsewhere,
� �7�

where f is the filling factor, which is the ratio of the cross-
sectional area of a rod to that of a primitive unit cell. The
structure factor is given by S�G�= �1 /Acell��rode

−iG·rdr. The
structure factor of the circular rod is

S�G� =
2�ra

G
J1�Gra� , �8�

where G is the magnitude of G, J1 is the first-order Bessel
function of the first kind, and ra is the radius of the circular
rod. N-fold equilateral polygonal rods with the jth vertex
coordinate P j = �xj ,yj� are considered. According to Stokes’
theorem, the structure factor of such a polygonal rod can be
expressed as

S�G� =

�
j=1

N
i�yje

−iG·Cj

Gx

sin�G · S j�
G · S j

for Gy = 0

�
j=1

N
− i�xje

−iG·Cj

Gy

sin�G · S j�
G · S j

for Gx = 0

�
j=1

N
2iêz�G � S j�e−iG·Cj

G2

sin�G · S j�
G · S j

for Gx � 0, Gy � 0,
� �9�

where C j ��P j+1+P j /2� and S j ��P j+1−P j /2� and �x
�xj+1−xj and �y�yj+1−yj.

The band structures of these photonic crystals are calcu-
lated using a standard plane-wave method. The calculations
for the anisotropic photonic crystals are performed in the
same way as for the isotropic photonic crystals. This work
uses 841 plane waves, and the computational errors for the
E- and H-polarization modes were estimated to be under 1%
in all cases.

III. RESULTS AND DISCUSSION

In this study, the photonic crystals comprise isotropic
and anisotropic circular and N-fold polygonal rods in square
lattices. For isotropic photonic crystals, the dielectric con-
stant of rods is set to 12.9, which is the dielectric constant of
GaAs at 1.55 �m. The background is air with a dielectric
constant �b=1.0. A filling factor f =0.45 is chosen for all
photonic crystals, a value which is optimal for the isotropic
square rods in the square lattice, as determined by our pre-
liminary evaluation. The band structures of such established

polygonal-rod photonic crystals are determined by the value
of N and the angle � between the side of the polygon and the
lattice basis vector.

Figures 1�a� and 1�b� present the side lengths and the
radii of the inscribed circles, Rinner, and the radii of the cir-
cumcircles, Router, for N-fold equilateral polygons in units of
the lattice constant a for N=4 to N=20. As shown in the
figure, the side length varies negligibly with N above 12. As
N approaches infinity, the side length becomes zero and Rinner

equals Router. Figures 2�a� and 2�b� plot the photonic band
structures of photonic crystals with isotropic circular rods
�N=	� and square rods �N=4�, respectively, for �=0 in
square lattices. The dispersion curves are traced along the
M-T-X-M-X�-T path in the first Brillouin zone of the square
lattice. The solid curves represent E-polarization modes and
the dotted curves represent H-polarization modes. As shown
in Fig. 2�a�, the circular rods in the square lattice do not have
a large H-polarization band gap at frequencies under
�a /2�c. This result indicates the absence of a feasible ab-
solute PBG in the circular-rod photonic crystals. However as
shown in Fig. 2�b�, the square-rod photonic crystal holds a
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sizable absolute PBG at high normalized frequency of
around 0.62. Absolute PBG occurs in the region where the E8

and H6 �not designated in the figure� gaps overlap, where Ei

or Hi represents the band gap between the ith and the �i
+1�th bands of the E- or the H-polarization modes.

Figures 3�a� and 3�b� show the band gaps of 9-sided and
12-sided polygonal rods as a function of rod rotation angle �
for both polarization modes. For square lattices, these func-
tions have a period of 90°. Only the bands below the 14th are
considered here. The midgap positions of both polarization
modes vary notably for the polygonal rods with an odd num-
ber of sides �such as N=9� and even more so for those with
a smaller odd number of sides �N=5 and 7; not shown here�.
For polygonal rods with a large even number of sides �such
as N=12�, midgap positions remain almost constant as the
rods rotate in a square lattice. The midgap positions of po-
lygonal rods with a small even number of sides �such as N
=4; not shown here� vary less than those of compatible po-
lygonal rods with a small odd number of sides �such as N
=5�. These results are consistent with the variation in sym-
metry from small to large odd-/even-number-sided polygonal
under rotation in square lattices.

Figure 4 presents the band gaps of polygonal rods �N
=4 to N=20� and circular rods �at the right of the figure�, at
rotation angle �=0, for both polarization modes. For the
E-polarization modes, five- and seven-sided polygonal rods
do not have the same number of gaps as the other sided

FIG. 1. �a� Lengths of sides and �b� radii of inscribed circles and circum-
circles of N-sided equilateral polygons at a filling factor of 0.45 in units of
lattice constant a.

FIG. 2. Band structures of isotropic �a� circular dielectric rods and �b�
square dielectric rods in square lattices, with a filling factor of 0.45.

FIG. 3. PBGs of N-sided isotropic polygonal rods as function of rotation
angle � for �a� N=9 and �b� N=12.

113109-3 Chang et al. J. Appl. Phys. 104, 113109 �2008�
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polygonal rods. The high-frequency gaps of square and six-
sided polygonal rods are specifically plotted in bars revealing
the frequency ranges. It is observed that the midgap positions
of the E-polarization modes are about the same for polygonal
rods with an even number of sides but vary significantly for
those with a small odd number of sides. The H-polarization
gaps neither become wide nor overlap with the
E-polarization gaps. The situation is similar when the angles
of rotation are not zero. Consequently, no absolute PBG is
available for these polygonal rods, except for the square
rods.

In H-polarization modes, the electric field is oriented on
the x-y plane and the tangential electric field is present in the
low-dielectric background regions �air� to satisfy the bound-
ary continuity. The electromagnetic interaction among the
high-dielectric rods influences the proportion of field energy
that is in the dielectric regions, and thus changes the band
structures of H-polarization modes. As presented in Fig. 1�b�,
the radius of the circumcircle declines as N increases, indi-
cating that the air space between the nearest rods becomes
smaller as the number of sides of the rods declines. There-
fore, the H-polarization bands shift drastically with N when
N is small. In contrast, when N exceeds 10, the air space
changes negligibly. The interaction between the fields influ-
ences the H-polarization bands in a comparable level and
thereby insignificantly changes the H-polarization band gap.
The gap-midgap ratio r is defined as the ratio of the gap
width ��=�U−�D to the midgap frequency �0, where �D

and �U are the lower and upper band edge frequencies of the
gap, respectively. The gap-midgap ratio is 0.045 for the H6

gap of the circular rods. The difference between the gap-
midgap ratios of the circular and polygonal structures is less
than 0.01 when N is greater than 10.

In E-polarization modes, the proportion of field energy
concentrated in the dielectric regions dominates the gap
width and midgap frequency. The field patterns of the pho-
tonic crystals are adopted to evaluate the effect of the po-
lygonal structures on the E-polarization modes. Figures
5�a�–5�h� display the field patterns of the polygonal struc-
tures with N=4 to N=11 sides and Fig. 5�i� displays the field
pattern of the circular structure. These field patterns pertain
to the E8 band at the M-symmetry point. The E-polarization
mode is related to the displacement field D that is normal to

the x-y plane: D�r�=d�r�êz, where d�r� is the magnitude of
the displacement field. The displacement field is observably
localized within the even-N-sided polygonal and circular
rods. The E-polarization bands of the even-sided polygonal
rods can be reasonably asserted to be analogous to those of
the circular structures.

However, the displacement field is not distributed well
within the dielectric rod regions of the odd-N polygonal
structures—especially for N=5. The fraction of the field that
is outside the dielectric regions indicates that E-polarization
bands tend to move toward higher normalized frequencies,
unlike in the case of even-sided polygonal structures. Addi-
tionally, the amplitude and the distribution of the displace-
ment field in the dielectric polygonal rods approach those of
the dielectric circular rods as N increases. The gap-midgap
ratio is 0.148 for the E8 gap of the circular structure. The
difference between the gap-midgap ratios of the circular and
polygonal structures is less than 0.01 when N exceeds 12.
Figure 6 plots the band structure of the 12-sided polygonal-
rod photonic crystal. The band structure of the 12-sided
polygonal-rod photonic crystal is analogous to that of the
circular-rod photonic crystal, as presented in Fig. 2�a�, for
both polarizations.

The convolution of the E-polarization and
H-polarization band gaps in polygonal-rod photonic crystals
reveals that the optical properties of N-fold polygonal rods in
square lattices are the same as those of circular rods in
square lattices when N exceeds 12. This fact is useful in
designing and fabricating polygonal-rod photonic crystals.

FIG. 4. PBGs of N-sided isotropic polygonal and circular rods as function
of N.

FIG. 5. Field patterns of E-polarization E8 band at M-symmetry point in
N-sided polygonal rods for N= �a� 4, �b� 5, �c� 6, �d� 7, �e� 8, �f� 9, �g� 10,
�h� 11, and �i� circular rods.

FIG. 6. Band structure of 12-sided isotropic polygonal rods in square lattice.
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Large absolute PBGs can be attained using dielectric
rods of anisotropic materials.19,20 The gap width and the mid-
gap position can be adjusted by varying the refractive index
contrast. This study also investigates the photonic band
structures of polygonal and circular Te rods in square lat-
tices. Te is an anisotropic optical material with extraordinary
refractive index ne=6.2 and ordinary refractive index no

=4.8 at wavelengths between 3.5 and 14 �m.20,21 The ab-
sorption coefficient of Te in the infrared region is less than
1 cm−1.22 The refractive indices and the absorption coeffi-
cient of Te depend on frequency.20–22 Our preliminary calcu-
lations verified that, based on the assumption that the refrac-
tive indices of Te are constant and the negligibility of the
effect of absorption on the structures, no noticeable error
occurs when the frequency is in an appropriate range and the
structures are of a finite size.

Figures 7�a� and 7�b� show the photonic band structures
of Te circular and square rods, respectively, in square lattices
at a filling factor of 0.45. The photonic band structures of Te
circular rods have two large absolute PBGs. However, the
square rods have no feasible absolute PBG. Figure 8 presents
the band gaps of Te polygonal rods for N=4 to N=20 and
circular rods �at the right of the figure� for both polarization
modes. Five- and seven-sided polygonal rods do not have as
many gaps as the other sided polygonal rods in
E-polarization modes. The high-frequency gaps of square
and six-sided polygonal rods are highlighted with bars re-
vealing their frequency locations. The refractive indices as-

sociated with E- and H-polarization modes of Te are larger
than the refractive index of the isotropic material, considered
above. The overall bands of the E-polarization and
H-polarization modes tend to move toward lower frequencies
than those in the cases of isotropic structures, as presented in
Fig. 4. In particular, the H-polarization gap is sizable for
each N and overlaps well with the E-polarization gap. Hence,
the photonic crystals with anisotropic Te rods have large ab-
solute PBGs.

In the H-polarization modes of Te rods, the difference
between the gap-midgap ratios of the circular and polygonal
rods is less than 1% for N
10. The variation in the
H-polarization bands on the number of sides of the polygon,
N, can be analyzed in a manner similar to that in the isotropic
cases. However, the E-polarization bands of the anisotropic
structures are more sensitive to the number of sides, N, than
are those of the isotropic structures. The gap-midgap ratio for
the E3 gap of the circular structure is 0.175. The difference
between the gap-midgap ratios of the N-sided polygonal
structures and the circular structures is less than 0.01 when N
is greater than 18. The band structures clearly depend
strongly on the shape and the boundaries of the polygonal
rods when the photonic crystals are formed from anisotropic
material. Hence, the requirements for fabricating anisotropic
photonic crystals are stricter than those for fabricating iso-
tropic photonic crystals.

IV. CONCLUSION

In this work, the band structures and the field patterns of
polygonal- and circular-rod photonic crystals are calculated
using the plane-wave method. The effects of polygonal struc-
tures on E- and H-polarization modes are investigated. The
anisotropic polygonal-rod photonic crystals can provide a
larger absolute PBG than the isotropic ones. For an isotropic
material with refractive index n=3.59 �=�12.9�, the band
structure of the N-fold polygonal rods approaches that of
circular rods as N increases above 12. In the case of aniso-
tropic material with extraordinary refractive index ne=6.2
and ordinary refractive index no=4.8, the band structure of
N-sided polygonal rods resembles that of the circular rods
when N exceeds 18. Moreover, the E-polarization bands of
the anisotropic photonic crystals are more sensitive to the
structural symmetry of the rod than are those of the isotropic

FIG. 7. Photonic band structures of anisotropic �a� circular rods and �b�
square rods in square lattices, with a filling factor of 0.45.

FIG. 8. PBGs of anisotropic rods as function of N.
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photonic crystals. These results guide the designing and fab-
rication of photonic crystals with polygonal rods in square
lattices.
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