國 立交通大 學 班 碩 論 利用 Ritz 法分析懸臂斜形厚板振動 Vibrations of cantilevered skew thick plates via the Ritz method 究 生:羅勝彦 研 指導教授:黃炯憲 博

中華民國九十七年一月

### 利用 Ritz 法分析懸臂斜形厚板振動

研究生:羅勝彦

m

指導教授:黄炯憲 博士

國立交通大學土木工程學系碩士班

摘要

為獲得複雜的應力奇異性問題的精確數值解,準確地描述應力奇異行 為是非常重要的。本研究以 Reddy 三階板理論建構厚板之平衡方程式,並 推導其幾何奇異應力之漸近解角函數。於 Ritz 法之允許函數引入(1) 完備集 之多項式函數及(2)可精確描述應力奇異行為之角函數,求解懸臂斜形板之 自然振動頻率。以完整之收斂性分析驗證角函數可有效加速求解自然振動 頻率之收斂速度。當斜角愈大時,角函數之效率愈高。最後,探討不同幾 何形狀對懸臂斜形厚板自然振動頻率之影響。

### Vibrations of cantilevered skew thick plates via the

### **Ritz method**

Student : Sang-Yeng Lo Adviser : C.S.Huang

Department of Civil Engineering

Natinoal Chiao Tung University

### Abstract

Correctly describing the behaviors of stress singularities is essential for obtaining accurate numerical solutions of complicated problems with stress singularities. This work derives asymptotic solutions on corner functions for thick plates with geometrically induced stress singularities based on Reddy's third order plate theory. Complete polynomial functions and corner functions which can accurately describe stress singularities are used for admissible functions of Ritz's method to solve the free vibration frequencies of cantilever skew plates. The effects of corner functions on obtaining accurate numerical solutions for native frequencies of plates are demonstrated through comprehensive convergence studies. Finally, accurate non-dimensional frequencies and mode shapes are tabulated for cantilevered skew thick plates having various geometrical shapes. 在交大的求學生涯隨著這篇論文的完成及將進入了尾聲,回顧研究所 這段時間的種種,首先要感謝指導教授 黃炯憲博士在課業上對我的教導 與督促,讓我的論文能夠順利完成。而老師所帶給我的學習態度與處事精 神更是我研究生涯中最珍貴的收穫,在這裡要表達我最誠摯的感謝。另外, 也感謝劉俊秀老師、洪士林老師與鄭復平老師在口試期間對這份論文的寶 貴建議,使本論文能夠更加完善。

這段時間以來承蒙博士班學長明儒與威智每每在深夜的時候與我一起 在研究室努力,幫我排除了許多研究上的困難。碩班學長存峰、基謙、加 地、志偉與宇翔對我的照顧,讓我在修課上有人可以解惑,與你們在一起 的時候總是笑語不斷。同窗好友增蔚、佳穎與嘉宜在整個研究所期間有人 可以互相打氣、一起扶持。學弟石仲維、劉竟俞與李昱成總是幫研究室帶 來許多的歡樂,也在我的研究上幫了許多的忙,使我可以順利畢業。階梯 有氧幫的伶酈、榕崧、思棉、鈺瀅、容瑩與陳晰,由於有你們的陪伴,讓 我在學習之虞尚有可以鍛鍊體魄的好去處,除了讓我成功減重,更讓我成 為了號稱階梯有氧助教的有氧王。高中死黨鈺芃與傻豪則是我吐苦水的對 象,使我在心情鬱悶的時候有個傾吐的地方。有你們這些好友的陪伴,讓 我的生活多采多姿。而與你們相處的時光也將成為我最珍貴的回憶。

除此之外,最要感謝的是我的父母及弟弟,謝謝你們對我一直以來的 支持與鼓勵,成為我最主要的精神支柱,在這裡我要將獲得碩士學位的喜 悅與你們分享。如今我即將進入人生的下一個階段,因為你們的支持及祝 福,我將以更積極進取的心態面對接下來的挑戰,最後僅以此論文獻給所 有愛護及關懷過我的人。

#### 勝彦 2008年1月18日







| 5.2  | 2 建議     |       |      |            | . 46 |
|------|----------|-------|------|------------|------|
|      |          |       |      |            |      |
| 參考文贏 | 犬        |       |      |            | . 47 |
|      | 122      |       |      | <u>e</u> . |      |
|      | × .      | 1000  |      | 100        | Þ    |
| 5/   |          | E     | 112  |            | E    |
|      | J.mm     | Belle | - A  | 2          | 15-1 |
|      |          |       |      | 1          | 100  |
|      |          | 11    | 1    | - Q -      | 100  |
|      | . 2      |       |      |            | 15-  |
|      | 100      |       |      | - A        | 100  |
| 21   | $\sim 2$ | 112   | 1010 |            | 5    |
|      |          |       |      |            | ÷.   |
|      |          |       | 1    | 28°        |      |
|      | 200      | -     | 100  | 1 C C      |      |
|      | - 48     |       | Ur.  |            |      |
|      |          |       |      |            |      |

## 表目錄

| 頁次                  |
|---------------------|
| -                   |
| 50                  |
|                     |
| $\sqrt{ch/D}$       |
| 45°) 54             |
| $\sqrt{ hoh/D}$ )   |
| 60°) 55             |
| $\sqrt{ hoh/D}$ )   |
| : 75°) 56           |
| $\sqrt{ ho h/D}$ )  |
| 45°)                |
| $\sqrt{\rho h/D}$ ) |
| = 60°) 58           |
| $\sqrt{\rho h}/D$ ) |
| = /ɔ )              |
|                     |

表 4.7 懸臂平行四邊形厚板面內無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

表 4.8 懸臂平行四邊形厚板面內無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

# 圖目錄

|       | A STALLER .                            | 頁次 |
|-------|----------------------------------------|----|
| 圖 1.1 | 斜形板示意圖(固定於θ=0處)                        | 79 |
| 圖 3.1 | 卡氏座標與極座標之轉換關係                          | 80 |
| 圖 4.1 | a 懸臂平行四邊形厚板振態圖 (β=30°, c/b=1, h/b=0.1) | 81 |
| 圖 4.1 | b 懸臂平行四邊形厚板振態圖(β=45°, c/b=1, h/b=0.1)  | 82 |
| 圖 4.1 | c 懸臂平行四邊形厚板振態圖(β=60°, c/b=1, h/b=0.1)  | 83 |
| 圖 4.1 | d 懸臂平行四邊形厚板振態圖(β=75°, c/b=1, h/b=0.1)  | 84 |
| 圖 4.1 | e 懸臂平行四邊形厚板振態圖(β=30°, c/b=1, h/b=0.2)  | 85 |
| 圖 4.1 | f 懸臂平行四邊形厚板振態圖(β=45°, c/b=1, h/b=0.2)  | 86 |
| 圖 4.1 | g 懸臂平行四邊形厚板振態圖(β=60°, c/b=1, h/b=0.2)  | 87 |
| 圖 4.1 | h 懸臂平行四邊形厚板振態圖(β=75°, c/b=1, h/b=0.2)  | 88 |

### 第一章 緒論

1.1 研究動機與方法

板元件於工程領域中的應用非常普遍且廣泛,特別是在土木、機械、 航空工程。因此,板元件之振動行為一直是許多學者研究的重點。目前常 利用來分析板之理論主要有三:古典板理論(CPT)、一階剪力板理論 (FSDPT,又稱為Mindlin板理論)以及三階剪力板理論。

許多彈性問題中常遇到應力奇異之現象。奇異點(singularity)發生的原因有:(1)幾何形狀之不連續,如尖銳切角、裂縫或是邊界條件;(2)載重不 連續,如單點荷重或是衝擊載重;(3)材料性質之不連續,如複合材料之接 面。需找到能夠完整描述奇異點特性之漸近解,方能得到該彈性問題之準 確數值解析解。

於古典板理論中,假設板變形前後,垂直於中平面之平面依舊垂直於 中平面且保持平面(plane remain plane),故忽略剪力變形之影響。在板之寬 厚比(L/h)遠大於1時可以接受。然而於現今工程上之需要,寬厚比愈來愈 小,已不適用薄板理論,當厚度不斷增加,因剪應力造成之剪力變形及轉 動慣量漸趨重要。 本論文主要利用三階板理論(third order plate),透過Ritz法探討具有幾 何應力奇異點之懸臂斜形厚板振動行為。針對本研究所欲探討之問題(參看 圖 1.1),茲將於允許函數數列中引進Huang(2002)所得之漸近解,以描述彎 矩與剪力奇異特性,並結合傳統之完備集允許函數。由於Huang所推導之 漸近解能正確描述由邊界條件所引起之彎矩與剪力奇異特性,故其應能加 速數值之收斂,以求得準確之數值解。

1.2 文獻回顧

針對板之奇異點研究的論文相當多。針對於邊界條件所造成之應力奇 異性,許多學者利用彈性板理論及三維彈性板理論做過詳細的研究。於彈 力平面問題,Williams(1952)首先針對等向薄板(isotropic thin plate)理論,探 討因不同邊界條件而引起之應力奇異解問題。Hein和 Erdogan(1971)則是利 用殘餘值定理(residues theory)及 Mindlin 轉換,探討由兩種材料組合成之楔 形區域(wedge-shaped-region)之應力奇異現象。Dempsey和 Sinclair(1979)則 將 Hein和 Erdogan之研究作進一步探討多種材料問題。Ting和 Chou(1981) 則探討非等向性板(Anisotropic composite plate)。利用三維彈性理論, Hartranft和 Sih (1969)利用特徵函數展開法求解三維的裂縫問題。而 Xie 和 Chaudhuri(1998)則是探討層狀複合材料板於自由端開裂之應力奇異現象。利 邊界條件造成之應力奇異解問題。接著 Williams 和 Chapkis(1958)延伸 Williams(1952)之研究至正向板(orthotropic plate)。Ojikut 等人(1984)研究層 狀複合薄板之應力奇異行為。Sinclair(2000)則考慮在薄板理論上以對數型態 表示應力之奇異性。

- 階剪力板理論(FSDT)幾何應力奇異問題之研究不多。Burton 和 Sinclair(1986)利用位能函數(potential function)求取於不同邊界條件下 Mindlin 扇形板之奇異解問題然。Huang 等人(1994)則利用 Bessel functions 求取徑向簡支承扇形 Mindlin 板之正確解,探討應力奇異問題。Huang(2001) 引用 Xie 和 Chaudhuri(1998)之方法廣泛的將十種邊界條件下之奇異性問題 以位移分量直接將平衡方程式解出。比較上述之文獻,相較於 Huang 等人 (1994)所求得之正確解以及 Huang(2001)所得到之結果, Burton 和 Sinclair(1986)之解僅有描述彎矩之奇異性階數項可以符合,而無法描述剪力 奇異性。而關於厚板幾何奇異性的研究則是寥寥可數;Huang(2002)針對三 階厚板理論探討由邊界條件引起之奇異性問題漸近解。由於在不同板理論 中, 彎矩以及剪力支奇異性階數皆有所不同, Huang(2004)探討於高階板理 論中由邊界條件引起之奇異性問題

研究斜形板振動的問題,有利用有限元素法者: Kanaka和 Hinton(1980) 分析各種不同邊界條件之菱形板振動頻率; McGee 和 Butalia(1992)配合不

3

同板理論(Mindlin 板理論、高階剪力變形板理論(HOSDPT)、3-D 彈性理論) 分析斜三角形板之振動頻率; McGee 等人(1994)於不同板理論(Mindlin 板理 論、高階剪力變形板理論(HOSDPT)), 分析由 clamped 與 free 邊界條件不同 所組合而成之菱形板。利用 Ritz 法分析者: Liew 等人(1993)用此法求取不 同邊界條件之平行四邊形厚板振動頻率; Karanasena 等人(1996)則是分析斜 三角形板。然而這些文獻中,並沒有考慮應力奇異性之特性。

觀察上述前人關於厚版振動之研究(如 McGee 等人(1994), Liew 等人 (1993)),其數值解均未考慮奇異點之特性。如上述文章之收斂性分析,於 奇異性愈明顯之案例中,其收斂性效果愈差。相信於允許函數中引進 Huang(2003)所得可描述奇異性之漸近解,將可使吾人所得之數值解于準確 性及收斂性上有較佳之效果;而本研究之完成相信亦可對三階厚板理論之 應用有所貢獻。

1.3 內容概要

本論文之內容共分為五章,茲將簡述如下:

第一章 說明研究動機及目的,交代研究方法及內容。

第二章 推導於 Reddy 三階懸臂斜形板中,用於描述剪力及彎矩奇異性之

### 角函數(corner function)。



## 第二章 角函數推導



利用變分法可以得到平衡方程式以及對應之邊界條件,於不施加荷重下之平衡方程式為

$$\begin{split} &C_{1}(P_{r,r} + \frac{2}{r}P_{r,s} + \frac{1}{r^{k}}P_{\theta r \theta} - \frac{1}{r}P_{\theta r} + \frac{2}{r}P_{r \theta r \theta} + \frac{2}{r^{k}}P_{r \theta \rho}) + \frac{\overline{\Phi}_{r}}{r} + \overline{\Phi}_{r,r} + \frac{1}{r}\overline{\Phi}_{r \theta \rho} = 0 , \quad (2.4) \\ &\overline{M}_{r,r} + \frac{\overline{M}_{r}}{r} - \frac{\overline{M}_{\theta}}{r} + \frac{1}{r}\overline{M}_{r \theta \rho} - \overline{Q}_{r} = 0 , \quad (2.5) \\ &\frac{1}{\overline{M}}_{\rho \sigma \mu} + \overline{M}_{r \theta r} + \frac{2\overline{M}_{r \theta}}{r} - \overline{Q}_{\theta} = 0 , \quad (2.6) \\ &\frac{1}{\overline{\mu}} + \overline{\Phi}_{r} + \frac{4}{r^{k}} - \frac{2}{r} - \overline{Q}_{\theta} = 0 , \quad (2.6) \\ &\overline{\mu} + \overline{\Phi}_{r} - \frac{4}{3k^{2}} + \frac{2}{r_{s}} - \frac{4}{r^{2}} + \overline{M}_{r \theta} = M_{r \theta} - C_{1}P_{r \theta} + \overline{M}_{\rho} = M_{\rho} - C_{1}P_{\rho} , \quad \overline{Q}_{\rho} = Q_{\rho} - C_{2}R_{\rho} , \\ &h k \overline{\pi} \overline{h} k \text{ th } P_{\overline{P}} \underline{g} , \quad \overline{T} \frac{R}{p} \beta \underline{h} r \underline{w}_{l} \theta \circ \underline{h} + \underline{s}_{r} \underline{\psi} \star . \end{split}$$

M,為垂直於r面上沿θ方向每單位長度的彎曲力矩,M。為垂直於θ面上沿
 r方向每單位長度的彎曲力矩,M,。為垂直於r面或θ面上沿θ方向或沿r
 方向每單位長度的扭轉力矩,Q,為於垂直之r之面上沿z方向每單位長度

之剪力 (shear force intensity), 
$$Q_{o}$$
為於垂直之  $\theta$  之面上沿  $z$  方向毎単位長度  
之剪力  $\theta$  径向( $\theta = \alpha$ )遠界須界定  
 $w_{o}$  or  $\overline{M}_{o}$ ,  $\psi$  or  $\overline{M}_{o}$ ,  
 $\psi$  or  $\overline{Q}_{o} + C(\frac{2}{r}P_{ov} + 2P_{ov} + \frac{1}{r}P_{os})$ , 以及 $\frac{w_{g}}{r}$  or  $P_{o}$ , (2.8)  
環向遠界( $\alpha r = R$ )須界定  
 $w_{o}$  or  $\overline{M}_{ee}$ ,  $\psi_{v}$  or  $M_{v}$ ,  
 $\psi$  or  $\overline{Q}_{v} + C(\frac{P_{v}}{r} + P_{v} + \frac{2}{r}P_{os}g - \frac{P_{g}}{r})$ , 以及 $w_{v}$  or  $P_{v}$ , (2.9)  
對於  $-$  具等向性且彈性之板, 由位移  $-$  應變、應力  $-$  應變關係以及式  
(2.7)可以建立力 (resultant forces)與位移分量之關係, 表示如下  
 $Q_{v} = \frac{2Gh}{3}(w_{v} + w_{v})$ ,  $Q_{g} = \frac{2Gh}{3}(w_{g} + w_{g})$ ,  
 $M_{vo} = Gh^{2}[\frac{1}{12}(w_{os} - \frac{1}{r}\psi_{w} + \frac{1}{r}\psi_{vs}) - \frac{1}{60r}(-\psi_{w} - \frac{2}{r}w_{w} + \psi_{vs} + 2w_{sv} + r\psi_{vs})]$ ,  
 $M_{v} = \frac{Eh^{3}}{1-v^{2}}[(\frac{1}{15}\psi_{v}, -\frac{1}{60}w_{v}) + \frac{\nu}{r}[\frac{1}{15}(w_{v} + \psi_{vs}) - \frac{1}{60}(w_{v} + \frac{1}{r}w_{ys})]],$ 

$$\begin{split} \mathcal{M}_{c} &= \frac{Eh^{3}}{1-\upsilon^{3}} \left\{ \frac{1}{r} \Big| \frac{1}{15} (\psi_{r} + \psi_{x,y}) - \frac{1}{60} (\psi_{r} + \frac{1}{r} \psi_{x,y}) \right\} + \upsilon(\frac{1}{15} \psi_{r,r} - \frac{1}{60} \psi_{r,r}) \right\} , \\ \mathcal{P}_{w} &= \frac{Gh^{3}}{1680} [16 \psi_{y}, -\frac{16}{r} \psi_{y} + \frac{16}{r} \psi_{r,y} - \frac{10}{r} (\psi_{r,y} - \frac{\psi_{y}}{r})] , \\ \mathcal{P}_{r} &= \frac{Eh^{3}}{1-\upsilon^{2}} \left\{ \frac{\psi_{r,x}}{105} + \frac{\psi_{r,x}}{336} + \frac{\upsilon}{r} \right\} \frac{1}{80} (\psi_{r} + \psi_{x,y}) - \frac{1}{336} (\psi_{r,y} + \psi_{r} + \psi_{r} + \frac{\psi_{w}}{r})) \right\} , \\ \mathcal{P}_{w} &= \frac{Eh^{3}}{1-\upsilon^{2}} \left\{ \frac{\psi_{r,x}}{r} + \frac{\psi_{r,x}}{180} + \frac{1}{80} (\psi_{r} + \psi_{x,y}) - \frac{1}{336} (\psi_{r,x} + \frac{\psi_{w,y}}{r}) \right\} + \upsilon(\frac{\psi_{r,x}}{105} - \frac{\psi_{r,x}}{336}) \right\} , \\ \mathcal{P}_{w} &= \frac{Eh^{3}}{1-\upsilon^{2}} \left\{ \frac{1}{r^{2}} \frac{1}{105} (\psi_{r} + \psi_{x,y}) - \frac{1}{336} (\psi_{r} + \frac{\psi_{w,y}}{r}) \right\} + \upsilon(\frac{\psi_{r,x}}{105} - \frac{\psi_{r,x}}{336}) \right\} , \\ \mathcal{P}_{w} &= \frac{Eh^{3}}{r^{2}} \left\{ \frac{1}{r^{2}} \frac{1}{105} (\psi_{r} + \psi_{x,y}) - \frac{1}{336} (\psi_{r} + \frac{\psi_{w,y}}{r}) \right\} + \upsilon(\frac{\psi_{r,x}}{105} - \frac{\psi_{r,x}}{336}) \right\} , \\ \mathcal{P}_{w} &= \frac{Eh^{3}}{r^{2}} \left\{ \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \psi_{x,y} - \frac{1}{336} (\psi_{r,x} + \frac{\psi_{w,y}}{r}) \right\} + \upsilon(\frac{\psi_{r,x}}{105} - \frac{\psi_{r,y}}{336}) \right\} , \\ \mathcal{P}_{w} &= \frac{Eh^{3}}{r^{2}} \left\{ \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \frac{1}{r^{2}} \psi_{x,y} - \frac{1}{r^{2}} \frac{1}{r^{2}} \psi_{x,y} + \frac{1}{r^{2}} \psi_{x,y} - \frac{1}{r^{2}} \psi_{x,y} + \frac{1}{r^{2}} \psi_{x,y} - \frac{1}{r^{2}} \psi_{x,y} + \frac{1}{r^{2}} \psi_{x,y}$$

$$\begin{aligned} \frac{1+\upsilon}{2}\frac{1}{r}\psi_{r,v} + \frac{3-\upsilon}{2}\frac{1}{r^2}\psi_{r,v} + \frac{1-\upsilon}{2}\psi_{v,r} + \frac{1-\upsilon}{2}(\frac{1}{r}\psi_{v}), \\ & +\frac{1}{r^2}\psi_{v,w} - \frac{4}{12}(\frac{1}{r}\psi_{r,w} + \frac{1}{r^2})\psi_{v,w} + \frac{1}{r^2}\psi_{v,w}) \\ & -\frac{1}{r^2h^2}(\psi_v + \psi_v) = 0, \end{aligned} (2.13) \\ \end{aligned}$$

$$\begin{aligned} & +\frac{84(1-\upsilon)}{17h^2}(\psi_v + \psi_v) = 0, \end{aligned} (2.13) \\ \end{aligned}$$

$$\begin{aligned} & +\frac{84(1-\upsilon)}{17h^2}(\psi_v + \psi_v) = 0, \end{aligned} (2.13) \\ \end{aligned}$$

$$\begin{aligned} & +\frac{84(1-\upsilon)}{17h^2}(\psi_v + \psi_v) = 0, \end{aligned} (2.13) \\ \end{aligned}$$

$$\begin{aligned} & +\frac{1}{r^2}\psi_{v,w} + \frac{1}{r^2}\psi_{v,w} + \frac{1}{r$$

$$\begin{split} & \Re \land \widehat{\oplus} \ \widehat{\oplus} \$$

$$\begin{aligned} (\lambda_{m} + n + 3)\Psi_{n2,2,0}^{(n)} + (\lambda_{m} + n + 1)^{2}(\lambda_{m} + n + 3)\Psi_{n2,2}^{(m)} + \Phi_{m2,2,00}^{(m)} + (\lambda_{m} + n + 1)^{2}\Phi_{n2,2,00}^{(n)} \\ & -\frac{5}{16}[(\lambda_{m} + n + 1)^{2}(\lambda_{m} + n + 3)^{2}W_{n2,2}^{(m)} + 2((\lambda_{m} + n + 2)^{2} + 1)W_{n2,2,00}^{(m)} + W_{n2,0,00}^{(m)}] \\ & = -\frac{2!(1-\upsilon)}{h^{2}}[(\lambda_{m} + n + 1)\Psi_{n}^{(m)} + \Phi_{n,0}^{(m)} + W_{n,0}^{(m)} + (\lambda_{m} + n + 1)^{2}W_{n2,2,00}^{(m)} + \frac{1+\upsilon}{2}(\lambda_{m} + n + 2)^{2} + 1)W_{n2,2,00}^{(m)} + \frac{1+\upsilon}{2}(\lambda_{m} + n + 2)^{2} + 1)W_{n2,2,00}^{(m)} + \frac{1+\upsilon}{2}(\lambda_{m} + n + 2)^{2}W_{n2,0,0}^{(m)} + \frac{4}{12}[(\lambda_{m} + n + 2)^{2} - 1]\Psi_{m2,0,0}^{(m)} + \frac{2}{2}\Psi_{n2,0,0}^{(m)} + \frac{2}{2}\Psi_{n2,0,0}^{(m)} + \frac{1+\upsilon}{2}(\lambda_{m} + n + 2)\Phi_{n2,2,0}^{(m)} + \frac{4}{11}[(\lambda_{m} + n + 3)^{n}(\lambda_{m} + n + 1)W_{n2,0}^{(m)} + (\lambda_{m} + n + 1)W_{n2,0,0}^{(m)}] + \frac{84(1-\upsilon)}{17h^{2}}[(\lambda_{m} + n + 2)^{2} - 1]\Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \frac{4}{17}[(\lambda_{m} + n + 2) + \frac{3-\upsilon}{2}]\Psi_{m2,0,0}^{(m)} + \frac{1-\upsilon}{2}[(\lambda_{m} + n + 2)^{2} - 1]\Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \frac{4}{17}[(\lambda_{m} + n + 2)]^{2}W_{n2,0,0}^{(m)} + \frac{84(1-\upsilon)}{17h^{2}}(\Phi_{m}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)}] + \frac{84(1-\upsilon)}{17h^{2}}(\Phi_{m}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)}] + \frac{4}{17}[(\lambda_{m} + n + 2)]^{2}W_{m2,0,0}^{(m)} + \frac{84(1-\upsilon)}{17h^{2}}(\Phi_{m}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)}] + \frac{4}{17}[(\lambda_{m} + n + 2)]^{2}W_{m2,0,0}^{(m)} + \frac{84(1-\upsilon)}{17h^{2}}(\Phi_{m}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)} + \Phi_{m2,0,0}^{(m)}] + \frac{4}{17}[(\lambda_{m} + n + 2)]^{2}W_{m2,0,0}^{(m)} + \Phi_{m2,0,0,0}^{(m)} + (\lambda_{m} - 1)^{2}\Phi_{0,0}^{(m)} + \frac{4}{17}[(\lambda_{m} + 1)^{2}W_{m2,0,0}^{(m)} + \Phi_{m2,0,0,0}^{(m)} + (\lambda_{m} - 1)^{2}\Phi_{0,0}^{(m)} + \frac{4}{17}[(\lambda_{m} + 1)^{2}W_{m2,0,0}^{(m)} + 2(\lambda_{m}^{2} + 1)^{2}W_{0,0,0}^{(m)} + (\lambda_{m} - 1)^{2}\Phi_{0,0}^{(m)} + \frac{4}{17}[(\lambda_{m} + 1)^{2}W_{0,0,0}^{(m)} + 2(\lambda_{m}^{2} + 1)^{2}W_{0,0,0}^{(m)} + (\lambda_{m} - 1)^{2}\Phi_{0,0,0}^{(m)} + \frac{4}{17}[(\lambda_{m} + 1)^{2}W_{0,0,0}^{(m)} + 2(\lambda_{m}^{2} + 1)^{2}W_{0,0,0}^{(m)} + \frac{4}{$$

$$\begin{aligned} & \left(\frac{4}{17}\left[(\dot{\lambda}_{n}+1)^{2}(\dot{\lambda}_{n}-1)W_{0}^{(n)}+(\dot{\lambda}_{n}-1)W_{0}^{(n)}\right]=0, \quad (2.22) \\ & \left[\frac{\left(1+\psi\right)\dot{\lambda}_{n}}{2}+\frac{3-\psi}{2}\right]\Psi_{0,0}^{(n)}+\frac{1-\psi}{2}(\dot{\lambda}_{n}^{2}-1)\Phi_{0}^{(n)}+\Phi_{0,0}^{(n)} \\ & -\frac{4}{17}\left[(\dot{\lambda}_{n}+1)^{1}W_{0,0}^{(n)}+W_{0,0}^{(n)}\right]=0, \quad (2.23) \\ & \left(\frac{4+\psi}{2}\right)\dot{\chi}(2.21)-(2.23)\dot{M}(2a,\dot{b},\dot{b})\,\hat{\pi}(2b,\dot{c})\,\hat{\pi}(2a,\dot{a}), \\ & \left(\frac{1+\psi}{2}\right)\dot{\chi}(2.21)-(2.23)\dot{M}(2a,\dot{b},\dot{b})\,\hat{\pi}(2b,\dot{c})\,\hat{\pi}(2a,\dot{a}), \\ & \left(\frac{1+\psi}{2}\right)\dot{\chi}(2.21)-(2.23)\dot{M}(2a,\dot{c})\,\hat{\pi}(2a,\dot{c}), \\ & \left(\frac{1+\psi}{2}\right)\dot{\chi}(2a,\dot{c}), \\ & \left(\frac{1+\psi}$$

$$k_1 = \frac{17}{16\lambda_m} \left( \frac{(1+\nu)\lambda_m}{2} + \frac{3-\nu}{2} \right) ,$$

$$k_{2} = \frac{17}{16\lambda_{m}} \left( \frac{(1+\upsilon)\lambda_{m}}{2} - \frac{3-\upsilon}{2} \right) ,$$

係數Ai以及Bi(i=1,2,3,4)為由邊界條件決定之待定係數。

從徑向之邊界條件可求得式(2.24) 中 $\lambda_m$ 以及 $A_i$ 與 $B_i$ 之關係,並依此建 立平衡方程式(2.11)-(2.13)之完備級數解。據此從式(2.18)-(2.20)及邊界條件 可求得對應於 $n > 1 之 W_n^{(m)} 、 \Psi_n^{(m)} 、 \Phi_n^{(m)} 的解, 但此部分不具任何應力奇異現$ ,故不予考慮。 除此之外,亦可將欲架構之級數解表示成以下之型式:  $w(r,\theta) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} r^{\lambda_m + n + l_1} \overline{W}_n^{(m)}(\theta,\lambda_m) ,$ (2.25a) $\sum^{\infty} r^{\lambda_m+n+l_2} \overline{\Psi}^{(m)}_n( heta,\lambda_m) \; ,$  $\psi_r(r,\theta) = \sum$ (2.25b) $\psi_{\theta}(r,\theta) = \sum_{n=1}^{\infty} \sum_{$  $\lambda_{m}^{+n+l_{3}}\overline{\Phi}_{n}^{(m)}( heta,\lambda_{m})$  , 2.25c)其中1,(i=1,2,3)為任意整數,且至少有一個為0。經上述程序,將發現式(2.14) 所提供解的型式為唯一可以產生 Williams-type 應力奇異性之解。

### 2.1.2 特徵方程式與角函數



今考慮一角度為α之扇形板,沿著其徑向邊緣之邊界條件分別為一固定

端以及一自由端。則當自由端角度θ=α時,將式(2.26)代入式(2.27b)中並引 入式(2.10)之關係可以求得對應於r之最低階數的方程式:

式(2.28)及式(2.29)架構一組由 A<sub>i</sub>和 B<sub>i</sub>組成的線性齊性代數方程式。為求得 A<sub>i</sub>和 B<sub>i</sub>之非零解,可以得到兩條特徵方程式,整理得 A<sub>m</sub>:

$$\begin{split} \sin^{2} \alpha \lambda_{n} &= \frac{4 - \lambda_{n}^{2} (1 - \nu)^{2} \sin^{2} \alpha}{(3 + \nu)(1 - \nu)}, \quad (2.30a) \\ \sin^{2} \alpha \lambda_{n} &= \frac{4 - \lambda_{n}^{2} (1 + \nu)^{2} \sin^{2} \alpha}{(3 - \nu)(1 + \nu)}, \quad (2.30b) \\ & \& \lim_{n \to \infty} \lambda_{n} \ll_{n} (1 + 2n)^{2} \sin^{2} \alpha + (2.29) \times_{n} (1 + 2n)^{2} \delta_{n} + (2.29) \times_{n} (1 + 2n)^{2} \delta_{n} + (2.20) \times_{n} (2.20)$$

其中  $\eta_1$ 以及 $\eta_2$ 分別為:

$$\eta_1 = \frac{(\lambda_m + 1)[(3 + \upsilon + \upsilon\lambda_m - \lambda_m)\cos(\lambda_m - 1)\alpha + (1 + \lambda_m)(1 - \upsilon)\cos(\lambda_m + 1)\alpha]}{(\lambda_m - 1)[(3 + \upsilon + \upsilon\lambda_m - \lambda_m)\sin(\lambda_m - 1)\alpha - (1 - \lambda_m)(1 - \upsilon)\sin(\lambda_m + 1)\alpha]}$$

$$\eta_2 = \frac{(3+\nu+\nu\lambda_m-\lambda_m)\cos(\lambda_m-1)\alpha+(1+\lambda_m)(1-\nu)\cos(\lambda_m+1)\alpha}{(3+\nu+\nu\lambda_m-\lambda_m)\sin(\lambda_m-1)\alpha-(1-\lambda_m)(1-\nu)\sin(\lambda_m+1)\alpha}$$

2.2 面內之角函數推導

參照面外的公式推導,中平面之面內位移為

$$\overline{u}(r,\theta,z) = u_0(r,\theta) ,$$
  
$$\overline{v}(r,\theta,z) = v_0(r,\theta) ,$$

由變分法可以得到平衡方程式為

$$N_{r,r} + N_{r\theta,\theta} / r + (N_r - N_{\theta}) / r = 0$$

 $N_{r\theta,r} + N_{\theta,\theta} / r + 2N_{r\theta} / r = 0$ ,

中 $N_r$ ,  $N_{\theta}$ 與  $N_{r\theta}$ 為面內之力

徑向 $(\theta = \alpha)$ 之邊界需界定

$$u_0$$
 or  $N_{r\theta}$ ,  $v_0$  or  $N_{\theta}$ 

而環向(r=R)之邊界需界定

 $u_0$  or  $N_r$ ,  $v_0$  or  $N_{r\theta}$ ,

(2.34b)

(2.34a)

(2.32a)

(2.32b)

(2.33a)

(2.33b)

力與位移分量之關係表示如下

$$N_{r} = \frac{\overline{D}_{0}}{r} u_{0} + \overline{E}_{0} u_{0,r} + \frac{\overline{D}_{0}}{r} v_{0,\theta}, \qquad (2.35a)$$

$$N_{\theta} = \frac{\overline{E}_0}{r} u_0 + \overline{D}_0 u_{0,r} + \frac{\overline{E}_0}{r} v_{0,\theta}, \qquad (2.35b)$$

$$N_{r\theta} = \frac{\overline{G}_0}{r} u_{0,\theta} - \frac{\overline{G}_0}{r} v_0 + \overline{G}_0 v_{0,r}, \qquad (2.35c)$$

將式(2.35a)-(2.35c)代入式(2.33),可以得到由位移分量表示之平衡方程

式如下

$$\begin{split} \overline{E}_{0}(-\frac{u_{0}}{r^{2}}+\frac{u_{0,r}}{r}+u_{0,rr}+\frac{1-\upsilon}{2r^{2}}u_{0,0}-\frac{3-\upsilon}{2r^{2}}v_{0,r}+\frac{1+\upsilon}{2r}v_{0,r})=0, \quad (2.36a) \\ \overline{E}_{0}(\frac{3-\upsilon}{2r^{2}}u_{0,r}+\frac{1+\upsilon}{2r}u_{0,rr}-\frac{1-\upsilon}{2r^{2}}v_{0}+\frac{1-\upsilon}{2r}v_{0,r}+\frac{1-\upsilon}{2}v_{0,r}+\frac{v_{0,00}}{r^{2}})=0, \quad (2.36b) \end{split}$$

$$\begin{aligned} \textbf{2.2.1 } \textbf{W} \textbf{W} \textbf{W} \textbf{W} \textbf{W} \textbf{M} \textbf{M} \textbf{D} \textbf{D} \neq (\Delta R, \textbf{R} | \textbf{R} | \textbf{T} | \textbf{U} | \textbf{F} | \textbf{M} | \textbf{U} |$$

$$+D_3\cos(\lambda_m-1)\theta+D_4\sin(\lambda_m-1)\theta , \qquad (2.39a)$$

$$N_{\theta} = 0 : b_{21}D_1 + b_{22}D_2 + b_{23}D_3 + b_{24}D_4 = 0 , \qquad (2.42b)$$

$$u_{n} = 0 : D_{1} + D_{2} = 0 \cdot (2.42c)$$

$$v_{0} = 0 : D_{2} + \mu_{1}D_{4} = 0 \cdot (2.42c)$$

$$b_{0} \leq \widehat{n} > \widehat$$

$$\delta_2 = \frac{[3 - \lambda_m - \upsilon - \upsilon \lambda_m + \lambda_m (\upsilon + 1) \cos 2\alpha + (\upsilon + 1) \cos 2\lambda_m \alpha]}{(\upsilon + 1)(\lambda_m \sin 2\alpha - \sin 2\lambda_m \alpha)} \circ$$



### 第三章 懸臂斜形板之振動分析

本章以 Ritz 法為主,採用 Huang (2002)所推導之漸近解, 佐以滿足幾 何邊界條件之傳統完備集允許函數,探討含有奇異點之懸臂斜形厚板之振 動行為。所考慮者為齊性(homogeneous)等向性(isotropic)板,雖 Reddy 三階 板理論包含面內(in-plane)與面外(out-of-plane)之位移分量,但兩者不藕合 (decoupled)。

3.1 以 Ritz 法求取自然振動頻率

欲利用 Ritz 法求解自然振動頻率時,須先定義一能量函數

(3.1)

 $\Pi = U_{\max} - T_{\max}^*$ 

其中 T<sub>max</sub>:一振動週期內最大動能

Umax:一振動週期內最大應變能, @為自然振動頻率

3.1.1 位移場、應變場與應力場

於分析懸臂斜形板時,採用ξ-η斜座標系統(參考圖 1.1)。將 Reddy 所 提出三階板理論之位移場以ξ-η座標表示如下:

$$u(x, y, z, t) = \cos \beta u_{\xi 0}(\xi, \eta, t) + z[\psi_{\xi}(\xi, \eta, t) - \sin \beta \psi_{\eta}(\xi, \eta, t)]$$

$$-\frac{4z^{3}}{3h^{2}}(\psi_{\xi} - \sin\beta\psi_{\eta} + \sec\beta\frac{\partial w_{0}}{\partial\xi} - \tan\beta\frac{\partial w_{0}}{\partial\eta}), \qquad (3.2a)$$

 $v(x, y, z, t) = v_{\eta 0}(\xi, \eta, t) + \sin \beta u_{\xi 0}(\xi, \eta, t) + z \cdot \cos \beta \psi_{\eta}(\xi, \eta, t)$ 

$$-\frac{4z^{3}}{3h^{2}}(\cos\beta\psi_{\eta}+\frac{\partial w_{0}}{\partial\eta}),$$

$$(3.2b)$$

$$y(x,y,z,t) = w_{0}(\xi,\eta,t),$$

$$(3.2c)$$

式(3.2)中之 $u_{\xi_0}$ 、 $v_{\eta_0}$ 、 $w_0$ 、 $\psi_{\xi}$ 與 $\psi_{\eta}$ 分別為 $\xi$ -η座標系統中,板中平面之位移

與轉角函數。

於笛卡爾座標系統應變與位移關係為

 $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$ ,

將式(3.2)代入應變-位移關係中可得應變之表示式

$$\mathcal{E}_{xx} = (u_{\xi_{0,\xi}} - \sin\beta \, u_{\xi_{0,\eta}}) + (z - C_1 z^3)(\psi_{\xi,\xi} \sec\beta - \tan\beta \, \psi_{\xi,\eta})$$

+  $(z - C_1 z^3)(-\tan \beta \psi_{\eta,\xi} + \sin \beta \tan \beta \psi_{\eta,\eta})$ 

$$-C_1 z^3 (\sec^2 \beta w_{\xi\xi} - 2 \sec \beta \tan \beta w_{\xi\eta} + \tan^2 \beta w_{\eta\eta}) , \qquad (3.3)$$

$$\varepsilon_{yy} = \sin\beta u_{\xi 0,\eta} + v_{\eta 0,\eta} + (z - C_1 z^3) \psi_{\eta,\eta} + (-C_1 z^3) w_{\eta,\eta} , \qquad (3.4)$$

$$y_{uv} = (\cos\beta - \sin\beta \tan\beta)u_{ubu} + \tan\beta u_{ubv} + [\sec\beta v_{ubv} - \tan\beta v_{ubu}] + (z - C_{1}z^{2})w_{z} + (z - C_{1}z^{2})(w_{uz} - 2\sin\beta w_{uu}) + (z - C_{1}z^{2})w_{z} + (z - C_{1}z^{2})(w_{uz} - 2\sin\beta w_{uu}) + (z - C_{1}z^{2})w_{z} + (z - C_{1}z^{2})(w_{uz} - 2\sin\beta w_{uu}) + (z - C_{1}z^{2})(\cos\beta w_{uu}) + (z - C_{1}z^{2})(\cos\beta w_{uu}) + (z - C_{1}z^{2})(\sin\beta w_{u}) + (z - C_{2}z^{2})(\sin\beta w_{u}) + (z - C_{2}z^{2})(\alpha w_{u}) + (z - C_{2}$$

其中允許函數 $\overline{u}_{\xi_i}$ 、 $\overline{v}_{\eta_i}$ 、 $\overline{v}_{\eta_i}$ ,  $\overline{w}_{\eta_i}$ 與 $\overline{W}_i$ 包含多項式及角函數。則每一項允許
# 函數(admissible functions)所表示的位移場可以矩陣型式表示

$$\begin{aligned} \begin{bmatrix} c_{\pi} \\ s_{\mu} \\ r_{\mu} \\$$

$$\hat{W}_2 = \sec \beta \,\overline{W}_{i,\xi} - \tan \beta \,\overline{W}_{i,\eta} \,, \tag{3.10h}$$

應變場與應力場之關係可以下式表示





則一週期內之最大動能為

$$T_{\max} = \frac{1}{2} \rho \omega^2 \int_A \int_{-t/2}^{t/2} \{N_i\}^T [M] \{N_i\} dz dA , \qquad (3.17)$$



其中下標 "p"表示满足傳統幾何邊界條件之允許函數,下標 "c"為角函數。

本論文所考慮者為一懸臂斜形板 (參看圖 1.1),採用之形狀函數必須

满足

述於銳角處(reentrant corner)所產生之彎矩奇異性,僅採用滿足傳統幾何邊 界條件之允許函數於數值求解時不僅收斂緩慢,更於描述奇異性行為上有 所誤差。為滿足於該處之奇異性以及加速其收斂,茲將代入由 Huang(2002) 所推導用以描述於銳角處(r=0 處)之應力奇異性行為的角函數(corner functions)  $u_{\xi c} = \sum_{k=1}^{n} B_k \operatorname{Re}(u_{\xi}(r,\theta,\lambda_k)) + \widetilde{B}_k \operatorname{Im}(u_{\xi}(r,\theta,\lambda_k)) ,$ (3.22a) $v_{\eta c} = \sum_{k=1}^{K} C_k \operatorname{Re}(v_{\eta}(r,\theta,\lambda_k)) + \widetilde{C}_k \operatorname{Im}(v_{\eta}(r,\theta,\lambda_k))$ (3.22b) $\Psi_{\xi c} = \sum_{k=1}^{K} D_k \operatorname{Re}(\Psi_{\xi}(r,\theta,\lambda_k)) + \widetilde{D}_k \operatorname{Im}(\Psi_{\xi}(r,\theta,\lambda_k)) ,$ (3.22c) $\Psi_{\eta c} = \sum_{k=1}^{K} F_k \operatorname{Re}(\Psi_{\eta}(r, \theta, \lambda_k)) + \widetilde{F}_k \operatorname{Im}(\Psi_{\eta}(r, \theta, \lambda_k)) ,$ (3.22d) $W_c = \sum_{l=i}^{l} A_l W (r, \theta, \overline{\lambda}_l)$ , (3.22e)式(3.22a)、(3.22b)、(3.22c)、(3.22d)及(3.22e)中代表彎矩奇異性之漸近解。 由於角函數 $u_r$ 、 $v_{\theta}$ 、 $\Psi_r$ 及 $\Psi_{\theta}$ 為極座標系統,為統一座標系,須將角函 數之座標系統由極座標轉換到ξ-η座標。轉換過程如下(參看圖 1.1、圖 3.1): (3.23a) $\overline{u} = v_{\theta} \cos \theta + u_r \sin \theta ,$ 

$$\overline{v} = v_{\theta} \sin \theta - u_r \cos \theta ,$$

(3.23b)

$$\begin{split} \Psi_{x} &= \Psi_{g} \cos \theta + \Psi_{y} \sin \theta , \qquad (3.23c) \\ \Psi_{y} &= \Psi_{g} \sin \theta - \Psi_{x} \cos \theta , \qquad (3.23d) \\ \mathbb{E} \Psi_{y} &= \Psi_{g} \sin \theta - \Psi_{x} \cos \theta , \qquad (3.23c) \\ \mathbb{E} \Psi_{y} &= \frac{\Psi_{x}}{\cos \beta} , \Psi_{z} &= \Psi_{x} + \tan \beta \cdot \Psi_{y} , \qquad (3.23c) \\ \mathbb{E} \Psi_{y} &= \frac{(v_{x} \cos \theta + u_{x} \sin \theta)}{\cos \beta} , \qquad (3.24a) \\ \Psi_{z} &= \frac{(v_{y} \cos \theta + u_{x} \sin \theta)}{\cos \beta} , \qquad (3.24b) \\ \Psi_{z} &= (\sin \theta - \cos \theta \tan \beta)v_{x} + (-\cos \theta - \sin \theta \tan \beta)u_{x} , \qquad (3.24b) \\ \Psi_{z} &= (\pi \theta - \cos \theta \tan \beta)v_{x} + (-\cos \theta - \sin \theta \tan \beta)u_{x} , \qquad (3.24c) \\ \Psi_{y} &(r, \theta, \lambda_{z}) &= [\cos \theta + \tan \beta \sin \theta]\Psi_{x} (r, \theta, \lambda_{z}) , \qquad (3.24c) \\ \Psi_{y} &(r, \theta, \lambda_{z}) &= \frac{(\sin \theta \cdot (r, \theta, \lambda_{z}) - \cos \Psi_{z} (r, \theta, \lambda_{z}))}{\cos \beta} , \qquad (3.24c) \\ \Psi(r, \theta, \lambda_{z}) &= r^{A_{x}} \sin \lambda_{z} \theta , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\cos \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\cos \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\cos \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\cos \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\cos \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\cos \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \cos \theta + \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \tan \theta + \cos \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad (3.24c) \\ \Psi_{z} &= \frac{(\pi \theta - \tan \theta + \sin \theta)\Psi_{z} (r, \theta, \lambda_{z})}{\sin \theta} , \qquad ($$

$$r = \left[\left(\frac{b}{2} - \eta\right)^2 + \xi^2 - 2\xi\left(\frac{b}{2} - \eta\right)\sin\beta\right]^{\frac{1}{2}},$$

$$\theta = \tan^{-1} \frac{\xi \cos \beta}{(b_2' - \eta) - \xi \sin \beta}$$

### 第四章 數值資料結果

由於懸臂斜形板形狀之多樣性,因此無法對其所有形狀皆做探討。本 章將針對懸臂斜形厚板中之平行四邊形板及梯形板進行數值分析,除探討 角函數對其求自然振動頻率收斂性之影響外,並針對不同幾何參數於懸臂 斜形板自然振動頻率所造成之差別進行分析。 收斂性分析 4.1 本研究於允許函數序列中引入角函數,以描述由邊界條件所造成的彎 矩奇異性。為了解角函數對數值解收<mark>歛快慢之影響程度,本章節針</mark>對柏松 比(v)=0.3、寬厚比(h/b)=0.1、0.2,斜角(β)=45°、60°及75°,之懸臂斜形厚 板進行面內模態及面外模態無因次化頻率之收斂性分析(參看表 4.1~4.13), 期望能在不良矩陣(ill-conditioning matrix)發生前, 求得該等板自 然振動頻率之收斂解。本研究之數值結果是以 FORTRAN 程式語言撰寫而 得,為求得其精確之收斂解,茲採用四倍精確度(quadral position)之浮點計 算。

表 4.1~表 4.3 乃寬厚比(h/b)為 0.1 的懸臂平行四邊形斜板於斜角 45°、 60°、75°面外無因次化頻率 $(\omega a^2 \sqrt{\rho h/D})$ 之收斂性分析,其a/b等於 1.0。表 4.4~表 4.6 乃寬厚比(h/b)為 0.2 的懸臂平行四邊形斜板於斜角 45°、60°、75° 面外無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )之收斂性分析,其a/b等於 1.0。表 4.7~表 4.12 為表 4.1~表 4.6 中所有案例之面內無因次化頻率( $\omega a \sqrt{\rho/E}$ )之收斂性分析。 於所有案例中,所引用之角函數數目分別為 0 個、1 個、5 個、10 個和 15 個。表 4.1~表 4.6 中之(I,J)代表式(3.22a)~式(3.22e)的 I和 J之大小,多項 式所引用之總項數為5×[(I-1)·J+I]-1;角函數之數目(No. of corner functions) 則代表式(4.23a)~式(4.23e)各所引用之項數,故所引用之總項數為 5×[(I-1)·J+I]-1+5 $n_e$ 。此處對於表 4.1~表 4.12 之收斂性分析係針對前五個 振態之無因次化頻率作為探討。表 4.13 為懸臂平行四邊形厚板不加角函 數、僅考慮多項式項次之收斂性分析。

從表 4.1 所得到的收斂性分析中,可以觀察到以下之現象:

a. 以第一振態為例,比較(4,4)不加角函數(多項式共 79 項)之頻率值為 4.574、(4,4)加 15 個角函數之頻率值為 4.396 以及(9,9)不加角函數(多項 式共 404 項)之頻率值為 4.399,可以發現頻率值從 4.574 降至 4.396,僅 需於五個位移函數各加 15 個角函數(共 75 項)。但若是以增加多項式的 方式,則需增加 325 項多項式方可自 4.574 降至 4.399,但其值尚大於 4.396。由此可以知道角函數相較於多項式對於收斂性其效果較為明顯, 影響亦較大。 b. 第一振態中,(8,8)不加角函數與加 10 個角函數頻率降低之百分比為 0.5221%,而(8,8)不加角函數與(9,9)不加角函數之頻率值減少之百分比為 0.1362%,二者相差 0.3859%。以此類推第二~第五個振態頻率差值百分 比依次為 0.2828%、0.3998%、0.2458%、0.0222%。於此五個振態中, 以前三振態之頻率差值最大,由此可以得知角函數對於低階振態的收斂 性較快,具有更佳之效果。

觀察每一個振態中(8,8)加 10 個角函數以及(9,9)加 10 個角函數之頻率 值,可發現大部份之頻率值皆可達到至少三位有效位數之收斂。

而針對表 4.7 之面內無因次化頻率所得到的收斂性分析中,可以觀察到以下之現象:

a. 以第一振態為例,比較(4,4)不加角函數之頻率值為 2.290、(4,4)加 15 個角函數之頻率值為 2.150 以及(9,9)不加角函數之頻率值為 2.165,可以發現頻率值從 2.290 降至 2.150,僅需於五個位移函數各加 15 個角函數(共 75 項)。但若是以增加多項式的方式,則需增加 325 項多項式方可自 2.290 降至 2.165,但其值尚大於 2.150。由此可以知道角函數針對面內模態,收斂性較諸多項式其效果亦較為明顯。

b. 第一振態中,可以觀察到當引用(6,6)加5個角函數,頻率值即收斂。第

二振態中,可以觀察到當引用(4,4)加15個角函數,頻率值即收斂。第三 振態中,可以觀察到當引用(5,5)加10個角函數,頻率值即收斂。第四振 態中,可以觀察到當引用(7,7)加15個角函數,頻率值即收斂。第五振態 中,可以觀察到當引用(5,5)加10個角函數,頻率值即收斂。相較於面外 之無因次化頻率,角函數明顯對於面內之無因次化頻率提供較佳之收斂 效果。

. 觀察每一個振態中(8,8)加 10 個角函數以及(9,9)加 10 個角函數之頻率 值,可發現所有頻率值皆可達到四位有效位數之收斂。

於表 4.1~表 4.12 亦列 Liew 等人(1993)、McGee 等人(1994)以及 Huang 等人(2005)所作相關斜形板之結果。Liew 等人(1993)應用 Mindlin 板理論, 以 Ritz 法求解自然振動頻率。所引用之允許函數為多項式函數,其呈現之 解答在斜角 $\beta \leq 30^{\circ}$ 時包含 198 個自由度,而在 $\beta > 30^{\circ}$ 時則有 222 個自由度, 此處僅取 $\beta > 30^{\circ}$ 者。McGee 等人(1994)利用高階斜形板理論(HSDPT) 佐以 有限元素法求取自然振動頻率,其採用 64 拉格朗日等參數板元素(64 Lagrangian isoparametric plate elements),總共包含 2448 個自由度。Huang 等人(2005)於 Mindlin 板理論中,利用 Ritz 法探討含有應力奇異點之振動行 為,採用之剪力修正因子為 $\frac{5}{6}$ ,所採用之允許函數除完備集之多項式外,同 時加入可描述應力奇異行為之角函數。其中 Liew 等人(1993)與 Huang 等人 (2005)雖採用相同之板理論,然因 Huang 等人(2005)於允許函數中加入角函 數,準確的描述應力奇異性,其結果較諸 Liew 等人(1993)更為準確。將本 論文與 Liew 等人(1993)、McGee 等人(1994)以及 Huang 等人(2005)所作之 結果相比較,本論文所得之收斂解皆與其他文獻相彷彿。

由表 4.1~表 4.3 中,針對 h/b=0.1、a/b=1、c/b=1 之懸臂平行四邊形板, 將其不同角度之第一振態頻率值,比較多項式(9,9)不加角函數以及(9,9)加 10 個角函數之頻率值。可以發現:

a. 斜角45°之斜形板,頻率值從4.399降至4.381,頻率值降低了0.41%;

b. 斜角60°之斜形板, 頻率值從 5.094 降至 5.032, 頻率值降低了 1.22%;

c. 斜角75°之斜形板,頻率值從 5.966 降至 5.734,頻率值降低了 3.89%;

另外同樣比較表 4.4~表 4.6 中,針對 h/b=0.2、a/b=1、c/b=1 之懸臂平

行四邊形板,多項式(9,9)不加角函數以及(9,9)加10個角函數之頻率值,於

不同角度之第一振態頻率值。整理可以得到以下數據:

a. 斜角45°之斜形板, 頻率值從 4.196 降至 4.179, 頻率值降低了 0.41%;

b. 斜角60°之斜形板, 頻率值從 4.792 降至 4.733, 頻率值降低了 1.23%;

c. 斜角75°之斜形板, 頻率值從 5.586 降至 5.363, 頻率值降低了 3.99%;

綜觀上述由表 4.1~表 4.6 之比較可以得知,收歛與否,主要由兩個因素控制: 1. 允許函數之多項式引用項數之多少,當引用之多項式項次越多,所得到 解會越趨近收斂,如表 4.13 所示,當多項式增加至(16,16)時,所有的 數值皆達到三位有效收斂; 角函數引用項數之多少,當引用之角函數項次越多,所得到之解會越趨 近收斂; 然雨者之影響有所差異。比較表 4.1 與表 4.13,以斜角β為 45 度的第一模 態為例,(9,9)加15個角函數所得之值為4.381,而(16,16)則為4.383;由此 可以得知:對於斜角較小之板,角函數對於增加其收歛性速度效果較不明 顯,僅須增加多項式之項數,亦可以得到效果不錯之收斂解。而當斜角愈 大時,比較表 4.3 與 4.13 斜角 β 為 75 度的第一模態, (9,9)加 15 個角函數所 得之值為 5.295, 而(16,16)則為 5.778, 增加角函數所造成頻率值降低的百 分比較大,而增加多項式反而對於加速其收斂無甚影響。由此可以知道, 斜角β的大小與收斂之特性有很大的關係;亦即當斜形板之斜角β愈大時, 奇異性愈強,需要引入較多之角函數方能得到較佳之解。但僅增加多項式 數量將會遭遇到數值上的困難(ill-conditioning),如表 4.13 所示,增加多項

式數目最多可以到達(16,16),當增加至(17,17)時則會出現病態矩陣而無法求解。

4.2 懸臂斜形厚板數值結果

#### 4.2.1 數值結果分析

於此章節,將探討在不同幾何參數下,懸臂斜形厚板(參看圖 1.1)振動 頻率的變化,其中柏松比v=0.3。所分析之案例,於不同之角度(30°、45°、 60°、75°),分為懸臂平行四邊形斜板(c/b=1)以及三種不同比例之懸臂梯形 斜板(c/b=0.25、c/b=0.5、c/b=0.75),其中每一種不同之懸臂斜形厚板再分 別選三種不同之長寬比(a/b=0.5、a/b=1、a/b=2),及雨種不同之厚寬比 (h/b=0.1、h/b=0.2)。茲將結果列於表 4.14~表 4.25,所採用之項數為(9,9) 加上 10 個角函數( $n_c$ )。因為齊性材料,故面內模態與面外模態雨者不藉合, 可分開討論其趨勢;表 4.14~表 4.17 為面內模態之無因次化頻率( $wa\sqrt{p/E}$ ), 表 4.18~表 4.21 為面外模態之無因次化頻率( $wa^2\sqrt{ph/D}$ )。為將面內與面外 之無因次化頻率做一排序處理,於表 4.22~表 4.25 中所採用之無因次化頻率 係考慮厚度之値( $wa^2\sqrt{ph/D}$ ),於表 4.22~表 4.25 中面內模態之頻率將加註 一符號(\*)以作區別。

針對面內模態之頻率, 觀察表 4.14~表 4.17 可以整理得知以下之現象:

 a. 以表 4.14(c/b=1)為例,比較相同之長寬比(a/b=1)及斜角β=75°,厚寬 比 h/b 為 0.1 時所出現面內第一模態之無因次化頻率為 11.50,而厚寬比
 h/b 為 0.2 時所出現面內第一模態之無因次化頻率為 11.50,其頻率值不 隨厚寬比之增加而變化,於表 4.15-表 4.17 中亦如此。

以表 4.14(c/b=1)為例,比較相同之斜角β=30°,長寬比a/b為 0.5 時所 出現面內第一模態之無因次化頻率為 2.728,長寬比a/b為 1 時所出現面 內第一模態之無因次化頻率為 2.200,而長寬比a/b為 2 時所出現面內第 一模態之無因次化頻率為 1.365,其頻率值隨長寬比之增加而降低,於 表 4.15-表 4.17 中亦如此。故若僅考慮長寬比之改變,其無因次化頻率 值將隨著a/b之增加而增加。

. 於表 4.14-表 4.17 中,比較相同之長寬比(a/b=1)、及斜角β=75 時, c/b=0.25(表 4.15)時所出現面內第一模態之無因次化頻率為 0.649, c/b=0.5(表 4.16)時所出現面內第一模態之無因次化頻率為 0.808, c/b=0.75(表 4.17)時所出現面內第一模態之無因次化頻率為 1.012,而 c/b=1(表 4.14)時所出現面內第一模態之無因次化頻率為 1.012,而 值隨 c/b之增加而增加,於不同長寬比及斜角時亦如此。故若僅考慮 c/b 之改變,其無因次化頻率值將隨著 c/b之增加而增加。

41

而觀察表 4.18~表 4.21 之結果,針對面外模態之頻率整理其現象如下:

a. 於表 4.18(c/b=1)中,比較相同長寬比(a/b=1)以及厚寬比(h/b=0.1) 時。 $\beta = 30°$ 時其第一振態之頻率值為 3.857,  $\beta = 45°$ 時其第一振態之 頻率值為 4.381,  $\beta = 60°$ 時其第一振態之頻率值為 5.032,  $\beta = 75°$ 時其 振態之頻率值為 5.734,隨著角度增加,頻率亦隨之變大,於表 4.19-表 4.21 中亦如此。故若僅考慮斜角 B 之改變,其無因次化頻率 值將隨著B之增加而增加。 b. 於表 4.18(c/b=1)中,比較相同長寬比(a/b=1)及斜角 β=30°時。厚寬 比h/b=0.1之第一振態之頻率值為 3.857, 厚寬比h/b=0.2 時其第一振 態之頻率值為 3.724,隨著厚度增加,頻率則隨之減小,於表 4.19-表 4.21 中亦如此。故若僅考慮厚寬比h/b之改變時,其無因次化頻 率值將隨著厚寬比之增加而降低。 c. 於表 4.18~表 4.21 中,比較相同斜角 $\beta = 30^{\circ}$ 、長寬比(a/b = 0.5)以及厚 寬比(h/b=0.1)時。c/b=0.25(表 4.19)時其第一振態之頻率值為 3.991,

c/b=0.5(表 4.20)時其第一振態之頻率值為 3.872, c/b=0.75(表 4.21)時其第一振態之頻率值為 3.851, c/b=1(表 4.18)時其第一振態之頻率值為 3.845,隨著c/b增加,頻率則隨之減小,於不同厚寬比、長寬

比及斜角時亦如此。故於同一角度β、厚寬比(h/b)及長寬比(a/b)的

情況下, c/b 值愈大, 頻率值愈小。

綜觀表 4.22~表 4.25 中所有之數據,可以發現面內模態與面外模態之頻率值 出現的順序並無一定之規律,然可發現,當斜角越大時,面內之振態會越 在前面。以斜角β=75°為例,無論何種幾何形狀,其面內振態之頻率均在第 或第二振態。 4.2.2 振熊圖 圖 4.1a-圖 4.1h 為不同斜角之懸臂平行四邊形厚板針對前五個頻率之振 態圖,其邊界條件為僅一端固定之懸臂型式,其中面外之模態將以節點線 圖之方式表示,節點線圖乃為取平板振動時,於w方向上位移量為0的點連 線而成。而面內之模態則將邊界處面內變形以虛線呈現。由圖 4.1 可以觀察 旱知: a. 於圖 4.1a 中,長寬比 a/b=2時第三個模態為受短邊方向之彎矩,此種模 態於長寬比a/b=1時後退至第四個模態,而到a/b=0.5時則退到第五個模 熊之後。

b. 比較圖 4.1a 與圖 4.1b 中,長寬比 a/b=1時,斜角 β 為 30 度與斜角 β 為 45

度第四及第五個模態互換。

A.

c. 當斜角β角度增加時由軸向彎矩及扭矩所造成之影響亦隨之加劇。

d. 以圖 4.1a 中,斜角β=30°、長寬比a/b=0.5、h/b=0.1為例,其面內之模 態為第四個模態,而在圖 4.1e 中,當厚寬比變為h/b=0.2時,同樣的面 內模態則為第三模態,且其第五模態亦為面內模態。觀察其餘組相同幾 何條件下,僅改變寬厚比的振態圖,可發現大部分之振態在寬厚比提高 以後,面內模態有往前移動的趨勢。

## 第五章 結論與建議

5.1 結論 本論文乃應用 Huang(2002)之成果,利用 Ritz 法探討含有奇異點之斜形 板的振動行為。本論文所研究分析之案例主要有二:懸臂梯形斜板以及懸 臂平行四邊形斜板。茲從本研究之結果於下作一完整的結論 從斜形板之收斂性分析,可以發現多項式允許函數之項數愈多,其數值 亦能愈逼近收斂值。其中多項式允許函數在沒有引用角函數時,所得到 之數值解或許會收斂,然而卻不是一個精確值;相對而言,加入角函數 可以加速自然振動頻率收斂之速度。 b. 在 Ritz 法中若只增加满足傳統邊界條件之多項式函數為允許函數 (admissible function),而不引入角函數,數值一樣會收斂。然而隨著傾 斜角度之增加,奇異性亦隨之增高;將造成為求得收斂解,須不斷增加

多項式之項數,然此舉會因引入之項數過多造成數值上的困難(ill

conditioning)而無法求解

因此,引入角函數以加速其收斂速度為必要之行為。

c. 觀察懸臂斜形板面外之無因次化頻率,其值將會隨著斜角β 角度之增加

而增加;彎矩與剪力奇異性亦隨之增強。當a/b減小時,勁度則隨之增加,造成頻率之加大。而當懸臂斜形板之形狀由梯形越接近平行四邊形時,頻率亦隨之增加。

d. 不論是懸臂平行四邊形厚板或是懸臂梯形厚板、斜角之大小,在其所有 振態中,面內模態之頻率皆比面外模態之頻率下降幅度為大,此點說明 了角函數在面內之振態效果較佳,收斂性亦較好。

5.2 建議

m

本論文利用 Ritz 法分析含有奇異點之懸臂平行四邊形厚板及懸臂梯形 厚板的自然振動行為。求解上加入角函數,讓 Ritz 法於分析不論由邊界條 件或幾何形狀所產生的應力奇異問題能更為精確。而利用 Ritz 法並引入角 函數,此一作法亦可提供予後人用於研究其它不同邊界條件下具應力奇異 點之厚板自然振動與力學行為。

46

- Burton, W. S., and Sinclair, G. B., "On the Singularities in Reissner's Theory for the Bending of Elastic Plates", *Journal of Applied Mechanics, ASME*, 53, pp. 220-222., 1986
- Dempsey, J. P., and Sinclair, G. B., "On the Stress Singularities in the Plate Elasticity of the Composite Wedge", *Journal of Elasticity*, 9(4), pp. 373-391., 1979
- Hanna, N. F., "Thick Plate Theories with Applications to Vibration", PhD dissertation, Ohio State University, Columbus, OH, 1990.
- Hartranft, R. J., and Sih, G. C., "The Use of Eigenfunction Expansions in the General Solution of Three-Dimensional Crack Problems", *Journal of Mathematics and Mechanics*, 19(2), pp. 123-138., 1969
- Hein, V. L., and Erdogan, F., "Stress Singularities in a Two-Material Wedge", International Journal for Fractural Mechanics, 7(3), pp. 317-330., 1971
- Huang, C. S., Leissa, A. W., and McGee, O. G., "Exact Analytical Solutions for the Vibrations of Sectorial Plates With Simply-Supported Radial Edges", *Journal of Applied Mechanics, ASME*, 60, pp. 478-483., 1993
- Huang, C. S., McGee, O. G., and Leissa, A. W., "Exact Analytical Solutions for the Vibrations of Mindlin Sectorial Plates With Simply-Supported Radial Edges", *International Journal of Solids and Structures*, 31(11), pp. 1609-1631., 1994
- Huang, C. S., "On the Singularity Induced by Boundary Conditions in a Third-Order Thick Plate Theory", *Journal of Applied Mechanics, ASME*, 69, pp. 800-810., 2002
- Huang, C. S., "Stress Singularities at Angular Corners in First-Order Shear Deformation Plate Theory", *International Journal of Mechanical Science*, 45, pp. 1-20., 2003
- Huang, C. S., "Corner Stress Singularities in a High-order Plate Theory", *Computers & Structures*, 82, pp. 1657-1669., 2004
- Huang, C. S., Leissa, A. W., and Chang, M. J. "Vibrations of Skewed Cantilevered Triangular, Trapezoidal and Parallelogram Mindlin Plates with

Considering Corner Stress Singularities", International Journal for Numerical Methods in Engineering, 62, pp. 1789-1806. , 2005

- Leissa, A. W., Huang, C. S., and Chang, M. J., "Accurate Frequencies and Mode Shapes for Moderately Thick, Cantilevered, Skew Plates", *International Journal of Structural Stability and Dynamics*, submitted for publication, 2006.
- Liew, K. M., Xiang, Y., Kitipornchai, S., and Wang, C.M., "Vibration of Thick Skew Plates based on Mindlin Shear Deformation Plate Theory", *Journal of Sound and Vibration*, 168(1), pp. 39-69., 1993
- McGee, O. G., and Butalia, T. S., "Natural Vibrations of Shear Deformable Cantilevered Skew Thick Plates", *Journal of Sound and Vibration*, 176(3), pp. 351-376., 1994
- Ojikutu, I. O., Low, R. O., and Scott, R. A., "Stress Singularities in Laminated Composite Wedge", *International Journal of Solids and Structures*, 20(8), pp. 777-790., 1984
- Reddy, J. N., "Energy and Variational Methods in Applied Mechanics", John Wiley, N.Y., 1984
- Sinclair, G. B., "Logarithmic Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates Under Bending", *Journal* of Applied Mechanics, ASME, 67, pp. 219-223., 2000
- Ting, T. C., and Chou, S. C., "Edge Singularities in Anisotropic Composities", International Journal of Solids and Structures, 17(11), pp. 1057-1068., 1981
- William, M. L., "Stress Singularities Resulting From Various Boundary Conditions in Angular Corner of Plates in Extension", *Journal of Applied Mechanics, ASME*, 19, pp. 526-528., 1952
- William, M. L., "Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates Under Bending", proceeding of 1<sup>st</sup> U.S. National Congress of Applied Mechanics, ASME, New York, pp. 325-329., 1952
- William, M. L., and Chapkis, R. L., "Stress Singularities for a Sharp-Notched Polarly Orthotropic Plate", proceeding of 3<sup>rd</sup> U.S. National Congress of

Applied Mechanics, ASME, New York, pp. 281-286., 1952

Xie, M., and Chaudhuri, R. A., "Three Dimensional Stress Singularity at a Bimaterial Interface Crack Front", *Composite Structures*, 40(2), pp. 137-147., 1998

表 2.1 面外之線性齊次方程式之係數



續表 2.1 面外之線性齊次方程式之係數



其中

 $\rho_1 = -16(1 + \upsilon\lambda_m) + 5k_1\lambda_m(3 + \upsilon - \lambda_m + \upsilon\lambda_m) ,$ 

$$\rho_{2} = 16 + [-16 + 5(3 + \nu)k_{2}]\lambda_{m} + 5(\nu - 1)k_{2}\lambda_{m}^{2} ,$$

$$\xi_{1} = -4(1 + \nu\lambda_{m}) + (3 + \nu - \lambda_{m} + \nu\lambda_{m})k_{1}\lambda_{m} ,$$

$$\xi_{2} = 4 + [-4 + (3 + \nu)k_{2}]\lambda_{m} + (\nu - 1)k_{2}\lambda_{m}^{2} ,$$

$$\gamma_{1} = 5(\nu - 1)E\lambda_{m}(1 + \lambda_{m}) (1 - \lambda_{m}) ,$$

$$\gamma_{3} = E(\lambda_{m} - 1)\lambda_{m}(2(-1 + \nu)(-8 + 5k_{1}\lambda_{m}) + 16(1 + \nu\lambda_{m}) - 5k_{1}\lambda_{m}(3 + \nu - \lambda_{m} + \nu\lambda_{m})] ,$$

$$\gamma_{3} = 16(\nu - 1)E\lambda_{m}(1 - \lambda_{m}) ,$$

$$\gamma_{4} = E(\lambda_{m} - 1)(16 + [-16 + 15k_{2} + 5\nu k_{m} - 16(\nu - 1)]\lambda_{m} - 5(\nu - 1)k_{2}\lambda_{m}^{2})$$

表 2.2 面內之線性齊次方程式之係數



#### 表 4.1 懸臂平行四邊形厚板

面外無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )之收斂性分析

|       |        | No.of corner      |                      | (I,J) in 1 | Equation | s (3.22a) | -(3.22e) |               | ъ фь                   |
|-------|--------|-------------------|----------------------|------------|----------|-----------|----------|---------------|------------------------|
|       | Mode   | functions $(n_c)$ | (4,4)                | (5,5)      | (6,6)    | (7,7)     | (8,8)    | (9,9)         | 又厭                     |
|       |        | 0                 | 4.574                | 4.469      | 4.432    | 4.416     | 4.405    | 4.399         |                        |
|       | 1      | 1.1               | 4.550                | 4.453      | 4.420    | 4.404     | 4.394    | 4.388         | <4.385>                |
|       |        | 5                 | 4.411                | 3.399      | 4.392    | 4.388     | 4.385    | 4.383         | [4.387]                |
|       | -      | 10                | 4.400                | 4.394      | 4.387    | 4.384     | 4.382    | 4.381         | (4.401)                |
|       |        | 15                | 4.396                | 4.392      | 4.387    | 4.384     | 4.382    | <b>4</b> .381 | 6.0                    |
|       |        | 0                 | 11.29                | 10.87      | 10.71    | 10.65     | 10.61    | 10.59         | 10 A                   |
|       | 100    | 1                 | 11.19                | 10.85      | 10.70    | 10.64     | 10.61    | 10.59         | <10.52>                |
| -     | 2      | 5                 | 10.79                | 10.67      | 10.60    | 10.58     | 10.57    | 10.56         | [10.54]                |
| 10 C  | N      | 10                | 10 <mark>.6</mark> 7 | 10.60      | 10.58    | 10.58     | 10.56    | 10.56         | (10.55)                |
| au 10 |        | 15                | 10.62                | 10.59      | 10.58    | 10.57     | 10.56    | 10.56         |                        |
| 1000  | 3      | 0                 | 29.00                | 25.89      | 25.30    | 25.10     | 25.01    | 24.95         |                        |
|       |        | 1                 | 28.91                | 25.87      | 25.30    | 25.09     | 24.99    | 24.93         | <2 <mark>4</mark> .72> |
|       |        | 5                 | 25.81                | 25.11      | 24.95    | 24.89     | 24.87    | 24.85         | [24.77]                |
|       |        | 10                | 25.11                | 24.96      | 24.91    | 24.88     | 24.85    | 24.84         | (24.82)                |
|       |        | 15                | 25.05                | 24.93      | 24.89    | 24.86     | 24.85    | 24.84         |                        |
| 1000  |        | 0                 | 32.13                | 29.52      | 28.85    | 28.58     | 28.48    | 28.42         |                        |
|       |        | 1                 | 32.02                | 29.51      | 28.84    | 28.57     | 28.47    | 28.41         | <28.24>                |
|       | 4      | 5                 | 29.74                | 28.67      | 28.50    | 28.39     | 28.36    | 28.34         | [28.26]                |
| - 975 | 10 A - | 10                | 28.65                | 28.49      | 28.42    | 28.37     | 28.35    | 28.34         | (28.32)                |
|       |        | 15                | 28.52                | 28.46      | 28.39    | 28.36     | 28.35    | 28.34         |                        |
|       |        | 0                 | 56.79                | 49.01      | 45.64    | 45.27     | 45.13    | 45.09         |                        |
|       |        | 1                 | 56.78                | 48.97      | 45.63    | 45.26     | 45.13    | 45.08         | <44.97>                |
|       | 5      | 5                 | 52.96                | 46.99      | 45.47    | 45.21     | 45.11    | 45.08         | [/]                    |
|       |        | 10                | 47.78                | 45.73      | 45.33    | 45.15     | 45.10    | 45.08         | (/)                    |
|       |        | 15                | 47.32                | 45.58      | 45.27    | 45.13     | 45.08    | 45.08         |                        |
|       | <>:表   | 長示 Huang 等人(200   | )5)之研算               | 究結果        |          |           |          |               |                        |
|       | []:表   | 示 Liew 等人(1993)   | 之研究約                 | 吉果         |          | 0. V      |          |               |                        |
|       | ():表   | 示 McGee 等人(199    | 4)之研多                | 宅結果        |          |           |          |               |                        |

 $(h/b = 0 1, a/b = 1, c/b = 1, \beta = 45^{\circ})$ 

/ : 文獻中未包含面內模態

#### 表 4.2 懸臂平行四邊形厚板

面外無因次化頻率 $(\omega a^2 \sqrt{\rho h/D})$ 之收斂性分析

|        | M 1  | No.of corner       |       | (I,J) in l | Equation | s (3.22a) | -(3.22e)      |               | 十声      |
|--------|------|--------------------|-------|------------|----------|-----------|---------------|---------------|---------|
|        | Mode | functions( $n_c$ ) | (4,4) | (5,5)      | (6,6)    | (7,7)     | (8,8)         | (9,9)         | 又麻      |
|        |      | 0                  | 5.812 | 5.381      | 5.224    | 5.196     | 5.125         | 5.094         |         |
|        | -12  | 1                  | 5.546 | 5.336      | 5.196    | 5.155     | 5.117         | 5.065         | <4.956> |
|        | 1    | 5                  | 5.084 | 5.060      | 5.049    | 5.042     | 5.037         | 5.034         | [5.049] |
|        |      | 10                 | 5.063 | 5.052      | 5.043    | 5.038     | 5.034         | <b>5</b> .032 | (5.078) |
| - 26   |      | 15                 | 5.058 | 5.047      | 5.041    | 5.037     | 5.034         | 5.032         |         |
|        | 10   | 0                  | 16.37 | 15.41      | 15.17    | 15.07     | 15.01         | 14.98         |         |
|        | κ.   | 1                  | 16.23 | 15.25      | 15.05    | 15.05     | 14.97         | 14.91         | <14.90> |
| 10 C - | 2    | 5                  | 15.36 | 15.00      | 14.93    | 14.90     | 14.88         | 14.87         | [14.90] |
| a. 30  | ·    | 10                 | 15.02 | 14.93      | 14.90    | 14.88     | 14.87         | 14.87         | (14.96) |
|        |      | 15                 | 14.97 | 14.91      | 14.89    | 14.88     | 14.87         | 14.87         |         |
|        |      | 0                  | 36.55 | 30.54      | 28.70    | 28.08     | 27.77         | 27.59         |         |
|        |      | 1                  | 33.40 | 30.38      | 28.66    | 28.66     | 27.95         | 27.46         | <26.39> |
|        | 3    | 5                  | 29.22 | 27.77      | 27.33    | 27.22     | 27.18         | 27.17         | [27.08] |
|        |      | 10                 | 27.71 | 27.35      | 27.21    | 27.20     | 27.17         | 27.16         | (27.11) |
|        |      | 15                 | 27.52 | 27.33      | 27.21    | 27.18     | 27.17         | 27.16         |         |
| 100    | 0.   | 0                  | 47.82 | 41.50      | 39.72    | 39.66     | 38.84         | 38.71         | 1.000   |
|        | D. 1 | 1                  | 46.30 | 41.49      | 39.66    | 39.08     | 38.66         | 38.62         | <38.24> |
| 100    | 4    | 5                  | 41.27 | 39.12      | 38.65    | 38.50     | 38.45         | 38.44         | [38.33] |
|        |      | 10                 | 39.65 | 38.75      | 38.57    | 38.47     | 38.44         | 38.43         | (38.41) |
|        |      | 15                 | 38.91 | 38.72      | 38.52    | 38.46     | 38.44         | 38.43         |         |
|        |      | 0                  | 68.96 | 61.61      | 53.64    | 52.38     | 51.99         | 51.85         |         |
|        | 1    | 1                  | 67.72 | 61.00      | 53.38    | 51.96     | 51.77         | 51.75         | <51.27> |
|        | 5    | 5                  | 61.60 | 58.19      | 52.62    | 51.86     | 51.64         | 51.60         | [/]     |
|        |      | 10                 | 61.07 | 53.64      | 52.61    | 51.76     | 51.6 <b>2</b> | 51.59         | (/)     |
|        |      | 15                 | 60.33 | 52.63      | 51.99    | 51.70     | 51.59         | 51.59         |         |

<>:表示 Huang 等人(2005)之研究結果

[]:表示 Liew 等人(1993)之研究結果

():表示 McGee 等人(1994)之研究結果

/ : 文獻中未包含面內模態

#### 表 4.3 懸臂平行四邊形厚板

面外無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )之收斂性分析

|       |             | No.of corner      |        | (I,J) in ]   | Equation | s (3.22a)     | -(3.22e) |       | とも      |
|-------|-------------|-------------------|--------|--------------|----------|---------------|----------|-------|---------|
|       | Mode        | functions $(n_c)$ | (4,4)  | (5,5)        | (6,6)    | (7,7)         | (8,8)    | (9,9) | 又麻      |
|       |             | 0                 | 9.078  | 7.212        | 6.499    | 6.204         | 6.055    | 5.966 |         |
|       |             | 1                 | 8.434  | 6.894        | 6.356    | 6.120         | 5.992    | 5.908 |         |
|       | 1           | 5                 | 5.810  | 5.782        | 5.769    | 5.759         | 5.750    | 5.744 | <5.295> |
|       | <b>Q</b> .2 | 10                | 5.783  | 5.766        | 5.753    | 5.743         | 5.735    | 5.734 | P       |
|       |             | 15                | 5.776  | 5.761        | 5.747    | 5.741         | 5.735    | 100   | 5.0°    |
| - 46  |             | 0                 | 32.76  | 27.57        | 25.13    | 24.21         | 23.77    | 23.52 | 10 A    |
| - 62  | 10          | 1                 | 27.61  | 25.93        | 24.55    | <b>23</b> .83 | 23,46    | 23.24 |         |
|       | 2           | 5                 | 23.82  | 23.10        | 22.95    | 22.90         | 22.86    | 22.85 | <22.95> |
| 100   |             | 10                | 23.11  | 22.99        | 22.87    | 22.83         | 22.82    | 22.80 |         |
| a. 17 | í           | 15                | 22.95  | 22.89        | 22.83    | 22.82         | 22.81    | -     |         |
| -     |             | 0                 | 68.12  | 51.48        | 44.81    | 42.21         | 41.26    | 40.78 |         |
| 100   | 1.12        | 1                 | 67.84  | 49.44        | 42.91    | 41.05         | 40.48    | 40.20 |         |
|       | 3           | 5                 | 41.58  | 40.43        | 39.88    | 39.61         | 39.46    | 39.55 | <44.78> |
| - C   |             | 10                | 40.09  | 39.81        | 39.57    | 39.45         | 39.38    | 39.36 |         |
|       |             | 15                | 39.77  | 39.56        | 39.48    | 39.42         | 39.38    | -     |         |
|       |             | 0                 | 68.12  | 67.02        | 62.44    | 60.74         | 58.18    | 57.75 |         |
| - 62  |             |                   | 67.00  | <u>65.93</u> | 59.30    | 58.18         | 57.09    | 56.01 | 1.000   |
| 100   | 4           | 5                 | 63.35  | 59.48        | 56.91    | 55.75         | 55.51    | 55.41 | <64.09> |
| 100   | ы÷.         | 10                | 58.11  | 56.68        | 55.90    | 55.55         | 55.45    | 55.35 | 100     |
|       |             | 15                | 57.57  | 56.50        | 55.83    | 55.45         | 55.39    | 174   |         |
|       |             | 0                 | 174.6  | 121.2        | 83.54    | 74.39         | 72.14    | 71.43 |         |
|       |             | 1                 | 153.4  | 100.9        | 80.29    | 72.62         | 71.54    | 71.15 |         |
|       | 5           | 5                 | 88.46  | 79.63        | 74.63    | 71.34         | 70.95    | 70.80 | <85.48> |
|       |             | 10                | 77.15  | 73.46        | 71.71    | 71.06         | 70.84    | 70.72 |         |
|       |             | 15                | 76.79  | 73.22        | 71.43    | 70.98         | 70.81    | -     |         |
|       | <>:表        | 長示 Huang 等人(200   | )5)之研第 | 究結果          |          |               |          |       |         |
|       |             |                   |        |              |          |               |          |       |         |

 $(h/b = 0 1, a/b = 1, c/b = 1, \beta = 75^{\circ})$ 

\*:為面內(in-plane)模態之頻率

-: 病態矩陣(ill-conditioning)

#### 表 4.4 懸臂平行四邊形厚板

面外無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )之收斂性分析

 $(h/b = 0.2, a/b = 1, c/b = 1, \beta = 45^{\circ})$ 

|       | Mada | No.of corner       |         | (I,J) in I | Equation | s (3.22a) | -(3.22e) |                      | 十郎      |
|-------|------|--------------------|---------|------------|----------|-----------|----------|----------------------|---------|
|       | Mode | functions( $n_c$ ) | (4,4)   | (5,5)      | (6,6)    | (7,7)     | (8,8)    | (9,9)                | 入原入     |
|       |      | 0                  | 4.357   | 4.266      | 4.232    | 4.214     | 4.203    | 4.196                |         |
|       | 1    | 1                  | 4.331   | 4.255      | 4.223    | 4.205     | 4.193    | 4.187                | <4.163> |
|       |      | 5                  | 4.208   | 4.197      | 4.191    | 4.186     | 4.182    | 4.1 <mark>8</mark> 0 | [4.171] |
|       | 200  | 10                 | 4.198   | 4.190      | 4.185    | 4.182     | 4.180    | 4.179                | (4.194) |
|       |      | 15                 | 4.195   | 4.188      | 4.184    | 4.181     | 4.180    | 4.179                |         |
| - 46  |      | 0                  | 10.07   | 9.781      | 9.678    | 9.631     | 9.608    | 9.594                |         |
| - 63  | - 12 | 1                  | 10.03   | 9.769      | 9.670    | 9.626     | 9.603    | 9.590                | <9.505> |
| - 25  | 2    | 5                  | 9.715   | 9.629      | 9.595    | 9.581     | 9.574    | <mark>9</mark> .569  | [9.524] |
| 1000  | Υ.   | 10                 | 9.639   | 9.595      | 9.580    | 9.570     | 9.569    | 9.567                | (9.572) |
| an 19 | _    | 15                 | 9.614   | 9.588      | 9.577    | 9.570     | 9.568    | 9.566                |         |
| _     |      | 0                  | 23.69   | 22.06      | 21.57    | 21.37     | 21.25    | 21.18                |         |
|       |      | 1                  | 23.63   | 22.02      | 21.56    | 21.36     | 21.25    | 21.18                | <20.74> |
|       | 3    | 5                  | 21.49   | 21.26      | 21.20    | 21.14     | 21.09    | 21.07                | [20.78] |
| - C   |      | 10                 | 21.28   | 21.20      | 21.13    | 21.10     | 21.07    | 21.06                | (21.02) |
|       |      | 15                 | 21.26   | 21.18      | 21.12    | 21.08     | 21.07    | 21.06                |         |
|       |      | 0                  | 25.90   | 24.11      | 23.88    | 23.79     | 23.75    | 23.73                | 1.000   |
| 1000  | h    |                    | 25.88   | 24.11      | 23.88    | 23.79     | 23.75    | 23.73                | <23.51> |
| 240   | 4    | 5                  | 24.90   | 23.92      | 23.75    | 23.73     | 23.72    | 23.71                | [23.56] |
| 1.2   | - N  | 10                 | 23.93   | 23.80      | 23.74    | 23.73     | 23.71    | 23.70                | (/)     |
|       |      | 15                 | 23.92   | 23.77      | 23.74    | 23.72     | 23.71    | 23.70                | 1.0     |
| -     |      | 0                  | 43.40   | 38.43      | 36.84    | 36.70     | 36.63    | 36.61                |         |
|       | 673  | 1                  | 43.39   | 38.41      | 36.84    | 36.70     | 36.63    | 36.61                | <36.24> |
|       | 5    | 5                  | 41.17   | 37.52      | 36.72    | 36.63     | 36.63    | 36.60                | [/]     |
|       |      | 10                 | 37.84   | 36.84      | 36.69    | 36.63     | 36.62    | 36.60                | (/)     |
|       |      | 15                 | 37.49   | 36.78      | 36.67    | 36.62     | 36.60    | 36.60                |         |
|       | <>:  | 表示 Huang 等人(2      | 2005)之居 | 开究結果       |          |           |          |                      |         |

[]:表示 Liew 等人(1993)之研究結果

():表示 McGee 等人(1994)之研究結果

/ :文獻中未包含面內模態

#### 表 4.5 懸臂平行四邊形厚板

面外無因次化頻率 $(\omega a^2 \sqrt{\rho h/D})$ 之收斂性分析

| (h/b = 0.2, | a/b=1, | c/b=1, | $\beta = 60^{\circ}$ | ) |
|-------------|--------|--------|----------------------|---|
|-------------|--------|--------|----------------------|---|

|      | Mada | No.of corner       |       | (I,J) in I | Equation | s (3.22a) | -(3.22e) |       | 十型      |
|------|------|--------------------|-------|------------|----------|-----------|----------|-------|---------|
|      | Mode | functions( $n_c$ ) | (4,4) | (5,5)      | (6,6)    | (7,7)     | (8,8)    | (9,9) | メ原入     |
|      |      | 0                  | 5.348 | 5.030      | 4.908    | 4.848     | 4.813    | 4.792 |         |
|      | - 5  | 1                  | 5.177 | 5.004      | 4.886    | 4.823     | 4.787    | 4.767 | <4.709> |
|      | 1.1  | 5                  | 4.777 | 4.756      | 4.747    | 4.742     | 4.738    | 4.735 | [4.719] |
|      |      | 10                 | 4.762 | 4.749      | 4.743    | 4.738     | 4.734    | 4.733 | (4.771) |
| - 26 |      | 15                 | 4.756 | 4.747      | 4.741    | 4.737     | 4.734    | 4.732 | Cont.   |
|      | 10   | 0                  | 14.11 | 13.58      | 13.44    | 13.37     | 13.33    | 13.30 |         |
| 125  | κ.   | -1                 | 13.93 | 13.43      | 13.35    | 13.29     | 13.26    | 13.23 | <13.17> |
| 1000 | 2    | 5                  | 13.49 | 13.28      | 13.24    | 13.22     | 13.21    | 13.20 | [13.20] |
| 200  | ·    | 10                 | 13.28 | 13.24      | 13.22    | 13.21     | 13.20    | 13.20 | (13.32) |
| -    |      | 15                 | 13.27 | 13.23      | 13.21    | 13.21     | 13.20    | 13.20 |         |
|      |      | 0                  | 24.25 | 23.05      | 22.74    | 22.58     | 22.47    | 22.40 |         |
|      |      | 1                  | 23.15 | 22.39      | 22.31    | 22.27     | 22.25    | 22.23 | <22.05> |
| 100  | 3    | 5                  | 22.22 | 22.17      | 22.16    | 22.16     | 22.16    | 22.16 | [22.10] |
|      |      | 10                 | 22.17 | 22.16      | 22.16    | 22.16     | 22.16    | 22.16 | (22.49) |
| 100  |      | 15                 | 22.16 | 22.16      | 22.16    | 22.16     | 22.16    | 22.16 |         |
| 100  | н.   | 0                  | 32.23 | 30.12      | 29.64    | 29.48     | 29.41    | 29.33 | 10000   |
| 100  | B    | 1                  | 31.93 | 29.90      | 29.56    | 29.39     | 29.38    | 29.32 | <28.97> |
| 120  | 4    | 5                  | 30.80 | 29.63      | 29.39    | 29.33     | 29.31    | 29.30 | [29.03] |
| - 12 | 10.  | 10                 | 29.82 | 29.46      | 29.36    | 29.32     | 29.29    | 29.29 | (/)     |
|      | 1    | 15                 | 29.66 | 29.40      | 29.35    | 29.30     | 29.29    | 29.29 |         |
|      | 97   | 0                  | 57.78 | 46.24      | 42.34    | 41.80     | 41.65    | 41.54 |         |
|      | - 0  | 1.                 | 56.81 | 45.99      | 42.11    | 41.68     | 41.56    | 41.50 | <40.97> |
|      | 5    | 5                  | 48.53 | 45.27      | 42.04    | 41.63     | 41.52    | 41.49 | [/]     |
|      |      | 10                 | 45.45 | 42.89      | 41.81    | 41.58     | 41.51    | 41.49 | (/)     |
|      |      | 15                 | 45.13 | 42.36      | 41.71    | 51.56     | 41.50    | 41.49 |         |

<>:表示 Huang 等人(2005)之研究結果

- []:表示 Liew 等人(1993)之研究結果
- ():表示 McGee 等人(1994)之研究結果

/ : 文獻中未包含面內模態

#### 表 4.6 懸臂平行四邊形厚板

面外無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )之收斂性分析

$$(h/b=0.2, a/b=1, c/b=1, \beta=75^{\circ})$$

|      | Mode  | No.of corner       |         | (I,J) in | Equation | s (3.22a)- | (3.22e) |       | 文獻      |
|------|-------|--------------------|---------|----------|----------|------------|---------|-------|---------|
|      | widde | functions( $n_c$ ) | (4,4)   | (5,5)    | (6,6)    | (7,7)      | (8,8)   | (9,9) |         |
|      |       | 0                  | 7.642   | 6.430    | 5.987    | 5.779      | 5.662   | 5.586 |         |
|      |       | 1                  | 6.991   | 5.953    | 5.821    | 5.729      | 5.621   | 5.552 | <5 227> |
|      | -9-2  | 5                  | 5.462   | 5.435    | 5.413    | 5.395      | 5.382   | 5.364 | <3.221> |
|      |       | 10                 | 5.433   | 5.411    | 5.395    | 5.377      | 5.369   | 5.363 | e .     |
| - 46 |       | 0                  | 31.38   | 22.11    | 21.01    | 20.58      | 20.34   | 20.18 | 6.6     |
| - 62 |       | 1                  | 24.21   | 21.08    | 20.57    | 20.27      | 20.08   | 19.96 | (10.05) |
|      | 2     | 5                  | 20.36   | 19.88    | 19.77    | 19.72      | 19.69   | 19.66 | <18.85> |
| 100  |       | 10                 | 19.86   | 19.75    | 19.71    | 19.67      | 19.65   | 19.64 |         |
| 2007 |       | 0                  | 31.88   | 27.85    | 26.14    | 25.30      | 24.88   | 24.61 |         |
|      | 3     | 1                  | 31.26   | 27.83    | 25.98    | 25.13      | 24.73   | 24.49 | 22.96   |
| -    |       | 5                  | 24.45   | 24.05    | 23.91    | 23.84      | 23.79   | 23.76 | <22.86> |
|      |       | 10                 | 24.02   | 23.94    | 23.86    | 23.81      | 23.76   | 23.75 |         |
| -    | 4     | 0                  | 44.60   | 41.69    | 37.86    | 37.11      | 36.80   | 36.63 |         |
|      |       | 1 🔢                | 43.53   | 41.00    | 37.02    | 36.96      | 36.67   | 36.44 | 20.00   |
| 100  |       | 5                  | 38.56   | 36.93    | 36.30    | 36.15      | 36.09   | 36.04 | <30.66> |
| 100  |       | 10                 | 36.92   | 36.43    | 36.16    | 36.08      | 36.06   | 36.04 | 1000    |
| 100  |       | 0                  | 75.38   | 63.02    | 47.40    | 45.49      | 44.74   | 44.29 |         |
| - 52 |       | 1                  | 72.90   | 60.71    | 46.23    | 44.85      | 44.19   | 43.92 | (10.00) |
|      | 5     | 5                  | 47.88   | 45.90    | 44.18    | 43.22      | 43.08   | 42.98 | <40.99> |
|      |       | 10                 | 45.08   | 43.99    | 43.53    | 43.12      | 43.02   | 42.97 |         |
|      | <>:   | 表示 Huang 等人        | (2005)之 | 研究結果     | ÷        |            | 1.5     |       |         |
|      | / : 3 | 又獻中未包含面內           | 模態      |          |          | - 6        | 100     |       |         |
|      | - 11  | 97 2 PROD          |         |          |          |            | 100     |       |         |
|      |       | B                  |         |          |          |            | 8.7     |       |         |
|      |       |                    |         | 8.9      |          | 1.00       |         |       |         |
|      |       |                    |         |          |          |            |         |       |         |

#### 表 4.7 懸臂平行四邊形厚板

面內無因次化頻率 $(aa\sqrt{\rho/E})$ 之收斂性分析

| (h/b = 0.1, | a/b=1, | $c/b = 1, \beta = 45^{\circ}$ |
|-------------|--------|-------------------------------|
| (           |        | ··· )/· · )                   |

|        | Mada  | No.of corner (I,J) in Equations (3.22a)-(3.22e) |               |       |       |       |       |               |                 |
|--------|-------|-------------------------------------------------|---------------|-------|-------|-------|-------|---------------|-----------------|
|        | Mode  | functions( $n_c$ )                              | (4,4)         | (5,5) | (6,6) | (7,7) | (8,8) | (9,9)         | 又厭              |
|        |       | 0                                               | 2.290         | 2.225 | 2.195 | 2.179 | 2.170 | 2.165         |                 |
|        |       | S. 31000                                        | 2.159         | 2.154 | 2.152 | 2.151 | 2.150 | 2.150         |                 |
|        | 1     | 5                                               | 2.153         | 2.150 | 2.149 | 2.149 | 2.149 | 2.149         | (2.173)         |
|        | 6.3   | 10                                              | 2.152         | 2.150 | 2.149 | 2.149 | 2.149 | 2.149         | - C             |
| - 4    |       | 15                                              | 2.150         | 21.50 | 2.149 | 2.149 | 2.149 | <b>2.</b> 149 | 6.0             |
| - 26   |       | 0                                               | 4.737         | 4.715 | 4.706 | 4.701 | 4.698 | 4.696         | 100             |
| 33     | -15   | 1                                               | 4.726         | 4.706 | 4.698 | 4.695 | 4.693 | 4.692         |                 |
| - 520  | 2     | 5                                               | 4.693         | 4.690 | 4.690 | 4.690 | 4.690 | 4.690         | (/)             |
| 10-10  |       | 10                                              | <b>4.69</b> 1 | 4.690 | 4.690 | 4.690 | 4.690 | 4.690         | <b>Contract</b> |
| - 10   |       | 15                                              | 4.690         | 4.690 | 4.690 | 4.690 | 4.690 | 4.690         |                 |
| 1000   |       | 0                                               | 6.668         | 6.531 | 6.487 | 6.467 | 6.455 | 6.448         |                 |
|        |       | 1                                               | 6.490         | 6.439 | 6.432 | 6.430 | 6.429 | 6.429         |                 |
| - 62   | 3     | 5                                               | 6.438         | 6.429 | 6.428 | 6.428 | 6.428 | 6.428         | (/)             |
|        |       | 10                                              | 6.429         | 6.428 | 6.428 | 6.428 | 6.428 | 6.428         |                 |
|        |       | 15                                              | 6.428         | 6.428 | 6.428 | 6.428 | 6.428 | 6.428         |                 |
| 100    | 1     | 0                                               | 9.665         | 9.304 | 9.249 | 9.232 | 9.223 | 9.218         | 1000            |
| 100    |       |                                                 | 9.662         | 9.283 | 9.228 | 9.213 | 9.208 | 9.206         |                 |
| 100    | 4     | 5                                               | 9.369         | 9.229 | 9.204 | 9.201 | 9.200 | 9.200         | (/)             |
| - 1973 | NA 1  | 10                                              | 9.244         | 9.206 | 9.202 | 9.201 | 9.200 | 9.200         | 1000            |
| - 6    |       | 15                                              | 9.213         | 9.204 | 9.201 | 9.200 | 9.200 | 9.200         |                 |
|        |       | 0                                               | 10.73         | 10.65 | 10.62 | 10.61 | 10.61 | 10.61         |                 |
|        |       | 1                                               | 10.72         | 10.64 | 10.61 | 10.60 | 10.60 | 10.60         |                 |
|        | 5     | 5                                               | 10.64         | 10.61 | 10.60 | 10.60 | 10.60 | 10.60         | (/)             |
|        | - 9   | 10                                              | 10.62         | 10.60 | 10.60 | 10.60 | 10.60 | 10.60         |                 |
|        |       | 15                                              | 10.61         | 10.60 | 10.60 | 10.60 | 10.60 | 10.60         |                 |
|        | ():表  | 示 McGee 等人(199                                  | 4)之研3         | 咒結果   |       |       |       |               |                 |
|        | / :文) | 獻中未包含面內模魚                                       | 態             |       |       | 0 V   |       |               |                 |
|        |       |                                                 |               |       |       |       |       |               |                 |

## 表 4.8 懸臂平行四邊形厚板

面內無因次化頻率( $ma\sqrt{\rho/E}$ )之收斂性分析

| $(h/b=0.1, a/b=1, c/b=1, \beta=60^{\circ})$ |  |
|---------------------------------------------|--|
|---------------------------------------------|--|

|      | Mada    | No.of corner   | (I,J) in Equations (3.22a)-(3.22e) |                      |                     |              |       |       | 十百      |
|------|---------|----------------|------------------------------------|----------------------|---------------------|--------------|-------|-------|---------|
|      | Mode    | functions      | (4,4)                              | (5,5)                | (6,6)               | (7,7)        | (8,8) | (9,9) | 入扁入     |
|      |         | 0              | 2.074                              | 1.979                | 1.937               | 1.913        | 1.899 | 1.890 |         |
|      |         | 1              | 1.884                              | 1.869                | 1.866               | 1.866        | 1.864 | 1.863 |         |
|      | 1       | 5              | 1.866                              | 1.864                | 1.863               | 1.863        | 1.862 | 1.862 | (1.902) |
|      | - Carlo | -10            | 1.866                              | 1.864                | 1.863               | 1.863        | 1.862 | 1.862 | e       |
|      |         | 15             | 1.865                              | 1.864                | 1.863               | 1.862        | 1.862 | 1.862 | 6.0     |
| - 10 | 57      | 0              | 4.782                              | 4.611                | 4.548               | 4.515        | 4.495 | 4.481 | Sec.    |
|      | 10      | 1              | 4.513                              | 4.445                | <mark>4.43</mark> 3 | 4.432        | 4.432 | 4.432 |         |
|      | 2       | 5              | 4.445                              | 4.433                | 4.433               | 4.432        | 4.432 | 4.432 | /       |
| 100  |         | 10             | 4.435                              | 4.433                | 4.432               | 4.432        | 4.432 | 4.432 | 10040   |
| - 10 | γ       | 15             | 4.433                              | 4.432                | 4.432               | 4.432        | 4.432 | 4.432 | 1000    |
| 222  |         | 0              | 6.896                              | 6.161                | 6.154               | 6.131        | 6.120 | 6.112 |         |
| 100  |         | 1              | 6.370                              | 6.115                | 6.099               | <u>6.097</u> | 6.097 | 6.097 |         |
|      | 3       | 5              | 6.161                              | 6.102                | 6.097               | 6.097        | 6.097 | 6.097 | /       |
|      |         | 10             | 6.107                              | 6.098                | <mark>6.097</mark>  | 6.097        | 6.097 | 6.097 |         |
|      |         | 15             | 6.098                              | 6.0 <mark>9</mark> 7 | 6.097               | 6.097        | 6.097 | 6.097 |         |
| 100  |         | 0              | 9.765                              | 9.755                | 9.165               | 9.053        | 9.002 | 8.972 |         |
| 100  | 0.      | 1              | 9.744                              | 9.156                | 8.997               | 8.885        | 8.881 | 8.879 | 1000    |
| - 20 | 4       | 5              | 9.705                              | 9.065                | 8.893               | 8.881        | 8.879 | 8.879 | /       |
|      |         | 10             | 9.090                              | 8.896                | 8.882               | 8.879        | 8.879 | 8.879 | (A) (C) |
|      |         | 15             | 8.993                              | 8.885                | 8.879               | 8.879        | 8.879 | 8.879 |         |
|      |         | 0              | 12.16                              | 11.85                | 11.84               | 11.83        | 11.83 | 11.82 |         |
|      | 10      | 1              | 11.90                              | 11.85                | 11.83               | 11.82        | 11.82 | 11.82 |         |
|      | 5       | 5              | 11.88                              | 11.84                | 11.82               | 11.82        | 11.82 | 11.82 | /       |
|      |         | 10             | 11.85                              | 11.82                | 11.82               | 11.82        | 11.82 | 11.82 |         |
|      |         | 15             | 11.83                              | 11.82                | 11.82               | 11.82        | 11.82 | 11.82 |         |
|      | ():表    | 示 McGee 等人(199 | 4)之研3                              | 宅結果                  |                     | 6.75         |       |       |         |
|      | / :文[   | 款中未包含面內模約      | 態                                  |                      |                     |              |       |       |         |
## 表 4.9 懸臂平行四邊形厚板

面內無因次化頻率( $wa\sqrt{\rho/E}$ )之收斂性分析

|                                       |          | (h/b=0                           | .1, a/b | =1, c/c       | $b = 1, \ \mu$ | $\beta = 75^{\circ}$ ) |          |       |     |
|---------------------------------------|----------|----------------------------------|---------|---------------|----------------|------------------------|----------|-------|-----|
|                                       | Mode     | No.of corner                     |         | (I,J) in l    | Equation       | s (3.22a)              | -(3.22e) |       |     |
|                                       | Widde    | functions                        | (4,4)   | (5,5)         | (6,6)          | (7,7)                  | (8,8)    | (9,9) |     |
|                                       |          | 0                                | 1.641   | 1.286         | 1.232          | 1.207                  | 1.192    | 1.182 |     |
|                                       |          | 1                                | 1.398   | 1.191         | 1.164          | 1.156                  | 1.152    | 1.151 |     |
|                                       | 1        | 5                                | 1.156   | 1.152         | 1.151          | 1.150                  | 1.150    | 1.150 |     |
|                                       | 100      | 10                               | 1.153   | 1.151         | 1.151          | 1.150                  | 1.150    | 1.150 |     |
|                                       |          | 15                               | 1.151   | 1.151         | 1.151          | 1.150                  | 1.150    |       |     |
| 40.00                                 |          | 0                                | 6.377   | 4.137         | 3.396          | 3.308                  | 3.265    | 3.238 |     |
|                                       |          | 1                                | 4.843   | 3.435         | 3.170          | 3.150                  | 3.146    | 3.144 |     |
| 100                                   | 2        | 5                                | 3.363   | 3.212         | 3.148          | 3.143                  | 3.143    | 3.143 |     |
| 100 C                                 |          | 10                               | 3.156   | 3.146         | 3.144          | 3.143                  | 3.143    | 3.143 |     |
| and in                                |          | 15                               | 3.146   | 3.146         | 3.144          | 3.143                  | 3.143    | - 1   | 1.1 |
|                                       |          | 0                                | 8.919   | 6.753         | 6.357          | 6.074                  | 5.892    | 5.783 |     |
|                                       |          | 1                                | 8.071   | 6.405         | 6.222          | 5.740                  | 5.637    | 5.616 |     |
|                                       | 3        | 5                                | 6.470   | 6.138         | 5.740          | 5.621                  | 5.616    | 5.616 |     |
| -                                     |          | 10                               | 5.889   | <b>5</b> .678 | 5.619          | 5.616                  | 5.616    | 5.616 |     |
|                                       |          | 15                               | 5.773   | 5.663         | 5.618          | 5.616                  | 5.616    | -     |     |
| 100 C                                 |          | 0                                | 15.08   | 10.17         | 8.136          | 7.013                  | 6.902    | 6.874 |     |
|                                       |          |                                  | 12.56   | 8.214         | 7.318          | 6.830                  | 6.804    | 6.802 | 100 |
| 200                                   | 4        | 5                                | 8.846   | 7.963         | 7.043          | 6.827                  | 6.802    | 6.802 |     |
| 100                                   |          | 10                               | 7.293   | 6.936         | 6.817          | 6.803                  | 6.802    | 6.802 |     |
| 100                                   |          | 15                               | 7.014   | 6.898         | 6.810          | 6.802                  | 6.802    |       |     |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | 0                                | 20.36   | 12.60         | 10.88          | 10.39                  | 10.01    | 9.784 |     |
| 100                                   |          | 1                                | 15.34   | 11.17         | 10.53          | 10.29                  | 9.877    | 9.515 |     |
|                                       | 5        | 5                                | 11.13   | 10.47         | 10.14          | 10.01                  | 9.563    | 9.514 |     |
|                                       | <b>P</b> | 10                               | 10.58   | 10.23         | 10.03          | 9.585                  | 9.522    | 9.514 |     |
|                                       |          | 15                               | 10.49   | 10.18         | 10.01          | 9.563                  | 9.515    | —     |     |
|                                       | -: 病態    | <ul><li>矩陣(ill-conditi</li></ul> | oning)  |               |                |                        |          |       | 1   |
|                                       |          |                                  |         |               |                |                        |          |       |     |

### 表 4.10 懸臂平行四邊形厚板

面內無因次化頻率 $(aa\sqrt{\rho/E})$ 之收斂性分析

| (h/b = 0.2, | a/b=1,       | c/b=1, | $\beta = 45^{\circ}$ ) |
|-------------|--------------|--------|------------------------|
| (           | ···· · · · · |        | r - )                  |

|       | Mada | No.of corner       |        | (I,J) in l           | Equation | s (3.22a) | -(3.22e) |       | 子型                 |
|-------|------|--------------------|--------|----------------------|----------|-----------|----------|-------|--------------------|
|       | Mode | functions( $n_c$ ) | (4,4)  | (5,5)                | (6,6)    | (7,7)     | (8,8)    | (9,9) | 入扇入                |
|       |      | 0                  | 2.290  | 2.226                | 2.196    | 2.180     | 2.170    | 2.164 |                    |
|       |      | 1                  | 2.160  | 2.154                | 2.152    | 2.150     | 2.150    | 2.150 |                    |
|       | 1    | 5                  | 2.152  | 2.150                | 2.150    | 2.150     | 2.150    | 2.150 | (2.174)            |
|       | 99   | 10                 | 2.152  | 2.150                | 2.150    | 2.150     | 2.150    | 2.150 | 2                  |
|       |      | 15                 | 2.150  | 2.150                | 2.150    | 2.150     | 2.150    | 2.150 | 6.0                |
| - 26  |      | 0                  | 4.826  | 4.716                | 4.706    | 4.702     | 4.698    | 4.696 | 10.00              |
| - 10  | 11   | 1                  | 4.790  | 4.692                | 4.698    | 4.694     | 4.694    | 4.692 |                    |
|       | 2    | 5                  | 4.692  | <u>4.690</u>         | 4.690    | 4.690     | 4.690    | 4.690 | (4.712)            |
| 100   |      | 10                 | 4.690  | 4.690                | 4.690    | 4.690     | 4.690    | 4.690 | Contraction of the |
| a. 19 | í    | 15                 | 4.690  | 4.690                | 4.690    | 4.690     | 4.690    | 4.690 | 1.0                |
| -     |      | 0                  | 6.668  | 6.530                | 6.488    | 6.466     | 6.456    | 6.448 |                    |
| 100   |      | 1                  | 6.490  | 6.438                | 6.432    | 6.430     | 6.430    | 6.428 |                    |
|       | 3    | 5                  | 6.438  | 6.430                | 6.428    | 6.428     | 6.428    | 6.428 | /                  |
| -     |      | 10                 | 6.430  | 6.428                | 6.428    | 6.428     | 6.428    | 6.428 |                    |
|       |      | 15                 | 6.428  | 6.428                | 6.428    | 6.428     | 6.428    | 6.428 |                    |
|       |      | 0                  | 9.666  | 9.304                | 9.248    | 9.232     | 9.224    | 9.218 |                    |
| 1000  | . N  |                    | 9.662  | 9.284                | 9.228    | 9.214     | 9.208    | 9.206 | 1.000              |
| -     | 4    | 5                  | 9.368  | 9. <mark>23</mark> 0 | 9.200    | 9.200     | 9.200    | 9.200 | /                  |
| 100   |      | 10                 | 9.244  | 9.206                | 9.200    | 9.200     | 9.200    | 9.200 | 100                |
|       |      | 15                 | 9.238  | 9.204                | 9.200    | 9.200     | 9.200    | 9.200 |                    |
|       |      | 0                  | 10.73  | 10.65                | 10.62    | 10.61     | 10.61    | 10.61 | 1.00               |
|       | 0    | 1                  | 10.72  | 10.64                | 10.61    | 10.60     | 10.60    | 10.60 |                    |
|       | 5    | 5                  | 10.64  | 10.61                | 10.60    | 10.60     | 10.60    | 10.60 | /                  |
|       |      | 10                 | 10.62  | 10.60                | 10.60    | 10.60     | 10.60    | 10.60 |                    |
|       |      | 15                 | 10.61  | 10.60                | 10.60    | 10.60     | 10.60    | 10.60 |                    |
|       | ():  | 表示 McGee 等人(1      | 994)之两 | 开究結果                 |          |           |          |       |                    |

/ :文獻中未包含面內模態

### 表 4.11 懸臂平行四邊形厚板

面內無因次化頻率( $ma\sqrt{\rho/E}$ )之收斂性分析

|           |       | ()                 | n / b = 0.2     | 2, a/b =   | =1, C/D             | p=1, p        | = 60 )   |        | · · · · · · · · · · · · · · · · · · · |
|-----------|-------|--------------------|-----------------|------------|---------------------|---------------|----------|--------|---------------------------------------|
|           | Mode  | No.of corner       |                 | (I,J) in ] | Equation            | s (3.22a)     | -(3.22e) |        | <b>文</b>                              |
|           | widde | functions( $n_c$ ) | (4,4)           | (5,5)      | (6,6)               | (7,7)         | (8,8)    | (9,9)  | 入南八                                   |
|           |       | 0                  | 2.074           | 1.979      | 1.937               | 1.913         | 1.899    | 1.890  |                                       |
|           |       | 1                  | 1.884           | 1.869      | 1.866               | 1.864         | 1.864    | 1.863  |                                       |
|           | 1     | 5                  | 1.866           | 1.864      | 1.863               | 1.863         | 1.862    | 1.862  | (1.902)                               |
|           | - 242 | 10                 | 1.866           | 1.864      | 1.863               | 1.863         | 1.862    | 1.862  | e                                     |
|           |       | 15                 | 1.865           | 1.864      | 1.863               | 1.862         | 1.862    | 1.862  | 6.0                                   |
| - 26      | 1.1   | 0                  | 5.824           | 4.974      | 4.732               | 4.640         | 4.590    | 4.560  | 10 A                                  |
|           | 100   | 1                  | 5.402           | 4.956      | <mark>4.72</mark> 0 | <b>4.</b> 616 | 4.564    | 4.536  |                                       |
|           | 2     | 5                  | 4.670           | 4.528      | 4.498               | 4.488         | 4.484    | 4.482  | (4.500)                               |
| - Co. Co. |       | 10                 | 4.526           | 4.504      | 4.490               | 4.484         | 4.480    | 4.480  | 1.0                                   |
| - 20      |       | 15                 | 4.512           | 4.496      | 4.486               | 4.482         | 4.480    | 4.480  | 1.00                                  |
| 222       |       | 0                  | 6.896           | 6.232      | 6.154               | 6.132         | 6.120    | 6.104  |                                       |
| 100       |       | 1                  | 6.663           | 6.115      | 6.099               | 6.096         | 6.096    | 6.096  |                                       |
| 100       | 3     | 5                  | 6.230           | 6.102      | 6.098               | 6.096         | 6.096    | 6.096  | /                                     |
|           |       | 10                 | 6.106           | 6.098      | 6.096               | 6.096         | 6.096    | 6.096  |                                       |
| 100       |       | 15                 | 6.102           | 6.096      | 6.096               | 6.096         | 6.096    | 6.096  |                                       |
| 100       |       | 0                  | 11.71           | 9,754      | 9,164               | 9.052         | 9.002    | 8.976  |                                       |
|           | 0.    | 1.50               | 10.97           | 9.335      | 9.024               | 8.901         | 8.880    | 8.878  | 1.000                                 |
| -         | 4     | 5                  | 10.16           | 9.064      | 8.892               | 8.880         | 8.878    | 8.878  | 1                                     |
| - 203     | BA.,  | 10                 | 9.260           | 8.896      | 8.882               | 8.880         | 8.878    | 8.878  | 1000                                  |
|           |       | 15                 | 9.088           | 8.886      | 8.880               | 8.878         | 8.878    | 8.878  |                                       |
|           |       | 0                  | 12.16           | 11.85      | 11 84               | 11.83         | 11.83    | -11-82 | 1. THE                                |
|           |       | ů l                | 12.00           | 11.85      | 11.83               | 11.82         | 11.82    | 11.82  |                                       |
|           | 5     | 5                  | 11.88           | 11.85      | 11.82               | 11.82         | 11.82    | 11.82  | /                                     |
|           |       | 10                 | 11.85           | 11.82      | 11.82               | 11.82         | 11.82    | 11.82  | ŕ                                     |
|           |       | 15                 | 11.84           | 11.82      | 11.82               | 11.82         | 11.82    | 11.82  |                                       |
|           | ():   | 表示 McGee 笔 人 (1)   | 994) <i>之</i> 研 | 开究结果       |                     |               | 11.02    |        | <u> </u>                              |
|           | ().   |                    |                 |            |                     |               |          |        |                                       |

 $(h/h - 0.2 \quad a/h - 1 \quad c/h - 1 \quad B - 60^{\circ})$ 

/ :文獻中未包含面內模態

### 表 4.12 懸臂平行四邊形厚板

面內無因次化頻率( $\omega a \sqrt{\rho/E}$ )之收斂性分析

$$(h/b=0.2, a/b=1, c/b=1, \beta=75^{\circ})$$

| _            |          |                   |       |                     |          |           |          |       |
|--------------|----------|-------------------|-------|---------------------|----------|-----------|----------|-------|
|              | Mode     | No.of corner      |       | (I,J) in I          | Equation | s (3.22a) | -(3.22e) |       |
|              | WIGue    | functions $(n_c)$ | (4,4) | (5,5)               | (6,6)    | (7,7)     | (8,8)    | (9,9) |
|              | <b>1</b> | 0                 | 1.641 | 1.288               | 1.232    | 1.207     | 1.192    | 1.182 |
| - 1          |          | 1                 | 1.461 | 1.258               | 1.183    | 1.156     | 1.153    | 1.151 |
| - 94         | 1        | 5                 | 1.156 | 1.152               | 1.151    | 1.150     | 1.150    | 1.150 |
| -0.35        | 80       | 10                | 1.153 | 1.151               | 1.151    | 1.150     | 1.150    | 1.150 |
| 6-3 C        |          | 0                 | 4.996 | 4.136               | 3.396    | 3.308     | 3.266    | 3.238 |
| - 01         | 2        | 1                 | 4.400 | <mark>3.43</mark> 4 | 3.170    | 3.150     | 3.146    | 3.144 |
|              | 2        | 5                 | 3.362 | 3.212               | 3.148    | 3.144     | 3.142    | 3.142 |
|              |          | 10                | 3.156 | 3.146               | 3.144    | 3.144     | 3.142    | 3.142 |
|              |          | 0                 | 10.82 | 6.702               | 6.244    | 5.898     | 5.820    | 5.776 |
|              | 2        | 1                 | 9.856 | 6.432               | 5.899    | 5.644     | 5.632    | 5.620 |
|              | 3        | 5                 | 6.336 | 6.136               | 5.740    | 5.622     | 5.616    | 5.616 |
|              |          | 10                | 5.812 | 5.668               | 5.620    | 5.616     | 5.616    | 5.616 |
|              |          | 0                 | 16.07 | 10.70               | 8.136    | 7.012     | 6.902    | 6.874 |
|              | 4        | 100 -0            | 12.41 | 8.908               | 7.769    | 7.001     | 6.803    | 6.802 |
|              | 4        | 5                 | 10.00 | 8.288               | 7.042    | 6.828     | 6.802    | 6.802 |
|              | - 1      | 10                | 7.292 | 6.936               | 6.818    | 6.804     | 6.802    | 6.802 |
|              |          | 0                 | 22.46 | 14.60               | 12.32    | 11.17     | 10.01    | 9.784 |
|              | _        |                   | 21.78 | 14.19               | 11.92    | 10.80     | 9.577    | 9.520 |
| 100          | 5        | 5                 | 13.34 | 11.89               | 10.78    | 10.30     | 9.564    | 9.514 |
| 100          |          | 10                | 11.28 | 10.83               | 10.08    | 9.584     | 9.522    | 9.514 |
| - <b>9</b> 3 |          | 2                 |       |                     |          | 10        | -        | 1.00  |
| - 19         |          |                   |       |                     |          |           |          |       |
|              | 97. J    | and the second    |       |                     |          |           |          |       |
|              |          | 10000             |       |                     |          |           |          |       |
|              |          |                   |       |                     | 0. V     |           |          |       |
|              |          |                   |       |                     |          |           |          |       |

65

|      | Mada     | h/h        | P  | (I,J) in Equations (3.22a)-(3.22e) |         |         |         |         |         |         |  |  |  |
|------|----------|------------|----|------------------------------------|---------|---------|---------|---------|---------|---------|--|--|--|
|      | Widde    | <i>n/0</i> | ρ  | (10,10)                            | (11,11) | (12,12) | (13,13) | (14,14) | (15,15) | (16,16) |  |  |  |
|      |          |            | 45 | 4.394                              | 4.391   | 4.388   | 4.386   | 4.385   | 4.384   | 4.383   |  |  |  |
|      |          | 0.1        | 60 | 5.078                              | 5.068   | 5.060   | 5.053   | 5.049   | 5.045   | 5.042   |  |  |  |
|      | 1        |            | 75 | 5.909                              | 5.870   | 5.841   | 5.819   | 5.802   | 5.789   | 5.778   |  |  |  |
|      | 100      |            | 45 | 4.191                              | 4.187   | 4.185   | 4.183   | 4.182   | 4.181   | 4.180   |  |  |  |
|      |          | 0.2        | 60 | 4.777                              | 4.767   | 4.759   | 4.753   | 4.749   | 4.745   | 4.743   |  |  |  |
|      | 10.0     | γ.         | 75 | 5.535                              | 5.497   | 5.469   | 5.448   | 5.431   | 5.417   | 5.406   |  |  |  |
|      |          |            | 45 | 10.58                              | 10.57   | 10.57   | 10.56   | 10.56   | 10.56   | 10.56   |  |  |  |
| - 50 | 18 A 1   | 0.1        | 60 | 14.95                              | 14.94   | 14.92   | 14.91   | 14.90   | 14.90   | 14.89   |  |  |  |
| 10-1 | 2        |            | 75 | 11.76                              | 11.71   | 11.67   | 11.64   | 11.62   | 11.60   | 11.59   |  |  |  |
| -    | 2        |            | 45 | 9.585                              | 9.579   | 9.575   | 9.573   | 9.571   | 9.569   | 9.568   |  |  |  |
| 1000 |          | 0.2        | 60 | 9.416                              | 9.394   | 9.378   | 9.366   | 9.357   | 9.349   | 9.344   |  |  |  |
|      |          |            | 75 | 5.879                              | 5.854   | 5.836   | 5.822   | 5.811   | 5.802   | 5.795   |  |  |  |
|      |          |            | 45 | 21.61                              | 21.58   | 21.57   | 21.55   | 21.54   | 21.53   | 21.53   |  |  |  |
| _    |          | 0.1        | 60 | 18.83                              | 18.79   | 18.76   | 18.73   | 18.71   | 18.70   | 18.69   |  |  |  |
|      | 2        |            | 75 | 23.36                              | 23.25   | 23.16   | 23.10   | 23.05   | 23.00   | 22.97   |  |  |  |
| 100  | 5        |            | 45 | 10.81                              | 10.79   | 10.78   | 10.78   | 10.77   | 10.77   | 10.76   |  |  |  |
|      |          | 0.2        | 60 | 13.28                              | 13.26   | 13.25   | 13.24   | 13.23   | 13.23   | 13.22   |  |  |  |
|      |          |            | 75 | 16.09                              | 16.02   | 15.97   | 15.93   | 15.90   | 15.87   | 15.85   |  |  |  |
| - 63 | 100      |            | 45 | 24.91                              | 24.89   | 24.87   | 24.86   | 24.85   | 24.84   | 24.84   |  |  |  |
|      |          | 0.1        | 60 | 27.47                              | 27.40   | 27.34   | 27.30   | 27.28   | 27.25   | 27.24   |  |  |  |
|      | 1        |            | 75 | 32.19                              | 32.05   | 31.94   | 31.86   | 31.80   | 31.75   | 31.70   |  |  |  |
|      |          |            | 45 | 21.14                              | 21.11   | 21.09   | 21.08   | 21.07   | 21.06   | 21.06   |  |  |  |
|      | <b>1</b> | 0.2        | 60 | 22.36                              | 22.32   | 22.29   | 22.27   | 22.26   | 22.24   | 22.23   |  |  |  |
|      |          | 6.00       | 75 | 20.06                              | 19.98   | 19.92   | 19.86   | 19.82   | 19.79   | 19.76   |  |  |  |
|      |          |            | 45 | 28.39                              | 28.37   | 28.35   | 28.34   | 28.34   | 28.33   | 28.33   |  |  |  |
|      |          | 0.1        | 60 | 38.63                              | 38.58   | 38.54   | 38.51   | 38.50   | 38.48   | 38.47   |  |  |  |
|      | 5        |            | 75 | 40.48                              | 40.27   | 40.11   | 39.99   | 39.89   | 39.80   | 39.74   |  |  |  |
|      | 5        |            | 45 | 23.48                              | 23.47   | 23.46   | 23.46   | 23.46   | 23.46   | 23.46   |  |  |  |
|      |          | 0.2        | 60 | 22.70                              | 22.64   | 22.59   | 22.55   | 22.52   | 22.50   | 22.48   |  |  |  |
|      |          |            | 75 | 24.43                              | 24.29   | 24.19   | 24.11   | 24.05   | 24.00   | 23.96   |  |  |  |

表 4.13 懸臂平形四邊形厚板無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )之收斂性分析

|       | ~ / <b>L</b> | 1. /I.  | 0          |       | M                                                                                                 | Iode Numbe                                                                                                    | er    |                      |
|-------|--------------|---------|------------|-------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|----------------------|
|       | <i>a/b</i>   | n/b     | P          | 1     | 2                                                                                                 | 3                                                                                                             | 4     | 5                    |
|       |              | - 6.3   | 30         | 2.728 | 4.588                                                                                             | 6.040                                                                                                         | 6.364 | 7.034                |
|       | 1            | 0.1     | 45         | 2.556 | 4.568                                                                                             | 6.376                                                                                                         | 6.936 | 7.918                |
|       |              | 0.1     | 60         | 2.040 | 4.628                                                                                             | 6.272                                                                                                         | 8.220 | 8.920                |
|       | 0.5          |         | 75         | 1.177 | 3.208                                                                                             | 5.316                                                                                                         | 6.788 | 8.344                |
|       | 0.5          |         | 30         | 2.728 | 4.588                                                                                             | 6.040                                                                                                         | 6.364 | 7.036                |
| - 25  | 100          | 0.2     | 45         | 2.556 | 4.568                                                                                             | 6.376                                                                                                         | 6.936 | 7 <mark>.91</mark> 6 |
| - 62  | 11           | 0.2     | 60         | 2.040 | 4.628                                                                                             | 6.072                                                                                                         | 8.220 | 8.920                |
|       |              |         | 75         | 1.177 | 3.208                                                                                             | 5.316                                                                                                         | 6.788 | 8.344                |
| 100   |              |         | 30         | 2.200 | 4.904                                                                                             | 6.296                                                                                                         | 13.67 | 18.19                |
| a. 19 | ·            | 0.1     | 45         | 2.149 | 4.690                                                                                             | 6.428                                                                                                         | 9.200 | 10.60                |
|       |              | 0.1     | 60         | 1.862 | 4.432                                                                                             | 6.097                                                                                                         | 8.879 | 11.82                |
| 1000  | 1            |         | 75         | 1.150 | 3.143                                                                                             | 5.616                                                                                                         | 6.802 | 9.514                |
|       |              |         | 30         | 2.200 | 4.904                                                                                             | 6.296                                                                                                         | 13.67 | 18.19                |
| -     |              | 0.2     | 45         | 2.150 | 4.690                                                                                             | 6.428                                                                                                         | 9.200 | 10.60                |
|       |              | 0.2     | 60         | 1.862 | 4.480                                                                                             | 6.097 8.879   5.616 6.802   6.296 13.67   6.428 9.200   6.096 8.878   5.616 6.802                             | 11.82 |                      |
| 98 B. |              |         | 75         | 1.150 | 3.142                                                                                             | 5.616                                                                                                         | 6.802 | 9.514                |
| 100   |              |         | 30         | 1.365 | 4.690 6.428 9.200   4.480 6.096 8.878   3.142 5.616 6.802   4.851 5.918 10.77   4.270 4.627 0.015 | 10.77                                                                                                         | 14.94 |                      |
|       | D            | 0.1     | 45         | 1.242 | 4.379                                                                                             | 6.296 13.67   6.428 9.200   6.096 8.878   5.616 6.802   5.918 10.77   4.637 9.915   5.931 8.403   5.205 6.215 | 14.27 |                      |
| 100   |              | 0.1     | 60         | 1.034 | 4.166                                                                                             | 5.931                                                                                                         | 8.403 | 12.75                |
|       | 2            | 100.00  | 7 <u>5</u> | 0.604 | 2.702                                                                                             | 5.205                                                                                                         | 6.215 | 8.800                |
|       |              | . · · · | 30         | 1.364 | 4.851                                                                                             | 5.918                                                                                                         | 10.77 | 14.94                |
|       | 6730         | 0.2     | 45         | 1.242 | 4.379                                                                                             | 4.637                                                                                                         | 9.913 | 14.26                |
|       | 1.0          | 0.2     | 60         | 1.006 | 4.166                                                                                             | 5.9318.4035.2056.2155.91810.774.6379.9135.9318.403                                                            | 8.403 | 12.75                |
|       |              |         | 75         | 0.604 | 2.702                                                                                             | 5.207                                                                                                         | 6.213 | 8.800                |
|       |              | 4.5     |            |       |                                                                                                   |                                                                                                               |       |                      |
|       |              |         | 14 M       |       |                                                                                                   |                                                                                                               |       |                      |
|       |              |         |            |       |                                                                                                   |                                                                                                               |       |                      |

表 4.14 懸臂平行四邊形厚板(c/b=1)面內之無因次化頻率 $(\omega a \sqrt{\rho/E})$ 

|       |      | 1. /1. | 0     |                                                                 | N     | Iode Numbe          | er    |       |
|-------|------|--------|-------|-----------------------------------------------------------------|-------|---------------------|-------|-------|
|       | a/b  | n/b    | P     | 1                                                               | 2     | 3                   | 4     | 5     |
|       |      | 6.3    | 30    | 2.522                                                           | 5.100 | 6.528               | 9.420 | 10.11 |
|       | 1    | 0.1    | 45    | 2.168                                                           | 4.936 | 6.496               | 9.504 | 10.66 |
|       |      | 0.1    | 60    | 1.674                                                           | 4.608 | 6.160               | 8.784 | 11.91 |
|       | 0.5  | 10 C - | 75    | 0.979                                                           | 3.095 | 5.720               | 6.698 | 8.062 |
|       | 0.5  |        | 30    | 2.521                                                           | 5.100 | 6.528               | 9.420 | 10.11 |
| - 46  | 100  | 0.2    | 45    | 2.168                                                           | 4.936 | 6.496               | 9.504 | 10.66 |
|       | 11   | 0.2    | 60    | 1.672                                                           | 4.608 | 6.160               | 8.784 | 11.91 |
|       |      |        | 75    | 0.979                                                           | 3.095 | 5.720               | 6.698 | 8.062 |
| 100   |      |        | 30    | 1.969                                                           | 5.168 | 6.324               | 10.22 | 13.27 |
| a. 19 | ·    | 0.1    | 45    | 1.611                                                           | 4.776 | 6.524               | 9.578 | 13.49 |
|       |      | 0.1    | 60    | 1.179                                                           | 3.984 | 6.018               | 8.246 | 9.611 |
|       | 1    |        | 75    | 0.649                                                           | 2.436 | 5.148               | 6.374 | 8.418 |
|       |      |        | 30    | 1.969                                                           | 5.168 | 6.324               | 10.22 | 13.27 |
| -     |      | 0.2    | 45    | 1.611                                                           | 4.776 | <mark>6.</mark> 524 | 9.578 | 13.49 |
|       |      | 0.2    | 60    | 1.170                                                           | 3.984 | 6.018               | 8.246 | 9.610 |
|       |      |        | 75    | 1.170   3.984   6.018   8.246     0.648   2.436   5.148   6.374 | 6.374 | 8.418               |       |       |
| 100   |      |        | 30    | 1.304                                                           | 4.306 | 6.160               | 8.810 | 13.71 |
| -     | D    | 0.1    | 45    | 1.044                                                           | 3.663 | 6.055               | 7.860 | 12.54 |
| 100   |      | 0.1    | 60    | 0.742                                                           | 2.767 | 5.840               | 6.500 | 10.47 |
| - 197 | 2    |        | 75    | 0.395                                                           | 1.541 | 3.591               | 6.155 | 6.685 |
|       | 2    |        | 30    | 1.304                                                           | 4.306 | 6.162               | 8.810 | 13.71 |
|       | 1000 | 0.2    | 45    | 1.044                                                           | 3.663 | 6.056               | 7.860 | 12.54 |
|       | 100  | 0.2    | 60    | 0.742                                                           | 2.767 | 5.842               | 6.499 | 10.47 |
|       |      |        | 75    | 0.395                                                           | 1.541 | 3.591               | 6.154 | 6.684 |
|       |      |        |       | -                                                               |       |                     |       |       |
|       |      |        | 10.00 |                                                                 | 10.00 |                     |       |       |
|       |      |        |       |                                                                 |       |                     |       |       |

表 4.15 懸臂梯形厚板(c/b=0.25)面內之無因次化頻率( $\omega a \sqrt{\rho/E}$ )

|         |      | 1. /1. | 0     | Mode Number |       |       |       |        |
|---------|------|--------|-------|-------------|-------|-------|-------|--------|
|         | a/b  | n/b    | β     | 1           | 2     | 3     | 4     | 5      |
|         |      | - 6. X | 30    | 2.662       | 4.996 | 6.288 | 8.566 | 8.694  |
|         | 1.1  | 0.1    | 45    | 2.424       | 6.416 | 8.952 | 9.272 | 9.376  |
|         |      | 0.1    | 60    | 1.972       | 4.568 | 6.706 | 6.110 | 8.842  |
|         | 0.5  |        | 75    | 1.170       | 3.200 | 5.711 | 6.830 | 9.590  |
| - 4     |      |        | 30    | 2.662       | 4.996 | 6.288 | 8.564 | 8.696  |
| - 46    |      | 0.2    | 45    | 2.430       | 6.416 | 8.952 | 9.272 | 9.376  |
|         |      | 0.2    | 60    | 1.971       | 4.568 | 6.706 | 6.110 | 8.842  |
|         |      |        | 75    | 1.174       | 3.200 | 5.711 | 6.830 | 9.590  |
| 10- C - |      |        | 30    | 2.045       | 6.444 | 10.48 | 12.68 | 14.34  |
|         | ·    | 0.1    | 45    | 1.776       | 4.898 | 6.402 | 9.854 | 12.980 |
|         |      | 0.1    | 60    | 1.386       | 4.550 | 6.122 | 8.664 | 12.610 |
|         | 1    |        | 75    | 0.808       | 2.908 | 5.452 | 6.518 | 9.107  |
|         |      |        | 30    | 2.046       | 6.444 | 10.48 | 12.68 | 14.34  |
|         |      | 0.2    | 45    | 1.776       | 4.898 | 6.402 | 9.854 | 12.98  |
|         |      | 0.2    | 60    | 1.386       | 4.550 | 6.122 | 8.664 | 12.61  |
|         |      |        | 75    | 0.808       | 2.908 | 5.452 | 6.518 | 9.106  |
| 100     |      |        | 30    | 1.298       | 5.855 | 9.880 | 14.96 | 15.370 |
|         | D    | 0.1    | 45    | 1.079       | 4.220 | 5.808 | 9.095 | 14.15  |
| 100     |      | 0.1    | 60    | 0.796       | 3.395 | 5.807 | 7.610 | 12.13  |
|         | 2    |        | 75    | 0.438       | 2.000 | 4.628 | 6.035 | 7.710  |
|         | 2    |        | 30    | 1.298       | 5.853 | 9.882 | 14.95 | 15.37  |
|         | 0.00 | 0.2    | 45    | 1.079       | 4.220 | 5.808 | 9.097 | 14.15  |
|         | 100  | 0.2    | 60    | 0.796       | 3.395 | 5.807 | 7.608 | 12.13  |
|         |      |        | 75    | 0.438       | 2.000 | 4.628 | 6.037 | 7.708  |
|         |      | 93     |       |             |       |       |       |        |
|         |      |        | 10.00 |             | 10.00 |       |       |        |
|         |      |        |       |             |       |       |       |        |

# 表 4.16 懸臂梯形厚板(c/b=0.5)面內之無因次化頻率( $\omega a \sqrt{\rho/E}$ )

|       | ~ / <b>h</b> | h/h    | ρ     |       | N.    | Iode Numb | er    |       |
|-------|--------------|--------|-------|-------|-------|-----------|-------|-------|
|       | a/b          | n/D    | P     | 1     | 2     | 3         | 4     | 5     |
|       |              | 6.3    | 30    | 2.550 | 4.796 | 6.100     | 7.308 | 7.798 |
|       | 1            | 0.1    | 45    | 2.530 | 6.384 | 7.996     | 8.312 | 9.816 |
|       |              | 0.1    | 60    | 2.032 | 4.612 | 6.084     | 8.704 | 9.484 |
|       | 0.5          | 10 C - | 75    | 1.163 | 3.172 | 6.820     | 8.931 | 10.60 |
|       |              |        | 30    | 2.204 | 4.796 | 6.100     | 7.308 | 7.796 |
| - 46  |              | 0.2    | 45    | 2.530 | 6.384 | 7.996     | 8.312 | 9.816 |
|       |              | 0.2    | 60    | 2.032 | 4.612 | 6.084     | 8.704 | 9.484 |
|       |              |        | 75    | 1.163 | 3.172 | 6.820     | 8.931 | 10.60 |
| 1000  |              |        | 30    | 2.141 | 5.004 | 6.432     | 10.06 | 11.17 |
| a. 19 | ·            | 0.1    | 45    | 1.979 | 4.814 | 6.490     | 9.598 | 11.69 |
| 200   |              | 0.1    | 60    | 1.646 | 4.466 | 6.132     | 8.906 | 12.39 |
|       | 1            |        | 75    | 1.012 | 3.004 | 5.534     | 6.790 | 9.479 |
|       |              |        | 30    | 2.140 | 5.004 | 6.432     | 10.06 | 11.17 |
| - A - |              | 0.2    | 45    | 1.979 | 4.814 | 6.490     | 9.598 | 11.69 |
|       |              | 0.2    | 60    | 1.646 | 4.466 | 6.132     | 8.906 | 12.39 |
|       |              |        | 75    | 1.012 | 3.004 | 5.534     | 6.790 | 9.480 |
| 100   |              |        | 30    | 1.328 | 4.859 | 5.830     | 10.52 | 15.19 |
| 100   | D            | 0.1    | 45    | 1.153 | 4.538 | 5.845     | 9.760 | 14.52 |
| 100   |              | 0.1    | 60    | 0.888 | 3.888 | 5.800     | 8.245 | 12.51 |
| 199   | 2            |        | 75    | 0.509 | 2.420 | 5.735     | 6.020 | 14.33 |
|       | 2            |        | 30    | 1.328 | 4.859 | 5.832     | 10.52 | 15.18 |
|       | 1993         | 0.2    | 45    | 1.152 | 4.538 | 5.845     | 9.761 | 14.52 |
|       |              | 0.2    | 60    | 0.888 | 3.888 | 5.802     | 8.243 | 12.51 |
|       |              |        | 75    | 0.509 | 2.420 | 5.742     | 6.018 | 14.33 |
|       |              |        | 1.000 |       |       | 10.1      |       |       |
|       |              |        | 18 M  |       |       |           |       |       |
|       |              |        |       |       |       |           |       |       |

表 4.17 懸臂梯形厚板(c/b=0.75)面內之無因次化頻率( $\omega a \sqrt{\rho/E}$ )

|       | ~ / <b>I</b> e | 1. /1. | 0                       |       | N     | Iode Numbe | er                   |        |
|-------|----------------|--------|-------------------------|-------|-------|------------|----------------------|--------|
|       | <i>a/b</i>     | n/b    | P                       | 1     | 2     | 3          | 4                    | 5      |
|       |                | - 6. Y | 30                      | 3.845 | 5.709 | 9.883      | 17.14                | 19.87  |
|       |                | 0.1    | 45                      | 4.319 | 7.460 | 11.55      | 18.65                | 21.75  |
|       |                | 0.1    | 60                      | 4.828 | 12.16 | 16.04      | 21.64                | 25.19  |
|       | 0.5            | 62     | 75                      | 5.451 | 19.89 | 23.89      | 35.35                | 40.47  |
|       |                |        | 30                      | 3.459 | 4.908 | 8.094      | 13.13                | 13.80  |
| - 46  |                | 0.2    | 45                      | 3.805 | 6.266 | 9.261      | 1 <mark>3.</mark> 87 | 14.31  |
| - 62  |                | 0.2    | 60                      | 4.205 | 9.323 | 12.16      | 13.54                | 16.45  |
|       |                |        | 75                      | 4.696 | 8.487 | 14.58      | 15.50                | 22.79  |
| 19. C |                |        | 30                      | 3.857 | 8.888 | 23.30      | 24.31                | 37.14  |
|       | í              | 0.1    | 45                      | 4.381 | 10.56 | 24.84      | 28.34                | 45.08  |
|       |                | 0.1    | 60                      | 5.032 | 14.87 | 27.16      | 38.43                | 44.32  |
|       | 1              |        | 75                      | 5.734 | 22.80 | 39.36      | 55.35                | 70.72  |
|       |                |        | 30                      | 3.724 | 8.094 | 19.72      | 21.44                | 30.80  |
|       |                | 0.2    | 45                      | 4.179 | 9.567 | 21.06      | 23.70                | 36.60  |
|       |                | 0.2    | 60                      | 4.733 | 13.20 | 22.16      | 29.29                | 41.49  |
| P 10  |                |        | 0.2 <u>60</u> 4<br>75 5 | 5.363 | 19.64 | 23.75      | 36.04                | 42.97  |
| -     |                | - Al-  | 30                      | 3.689 | 15.24 | 24.27      | 44.88                | 68.96  |
| -     | D              | 0.1    | 45                      | 4.011 | 17.16 | 28.43      | 47.37                | 78.80  |
| 100   |                | 0.1    | 60                      | 4.422 | 20.12 | 36.03      | 54.06                | 90.05  |
|       | 2              |        | 75                      | 4.868 | 24.69 | 58.51      | 62.05                | 111.70 |
|       |                | . I    | 30                      | 3.646 | 14.30 | 22.76      | 41.47                | 61.52  |
|       |                | 0.2-   | 45                      | 3.946 | 16.11 | 25.85      | 43.79                | 69.05  |
|       | - 65           | 0.2    | 60                      | 4.323 | 19.43 | 30.82      | 49.54                | 78.32  |
|       |                |        | 75                      | 4.740 | 23.30 | 40.01      | 56.48                | 96.43  |
|       |                | 43     |                         |       |       |            |                      |        |
|       |                |        | 48                      |       |       |            |                      |        |
|       |                |        |                         |       |       |            |                      |        |

表 4.18 懸臂平行四邊形厚板(c/b=1)面外之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

|       | a/h        | 1./h   | ρ  |       | M     | lode Numbe | er                                                                                                                                                                                                                                                                                                                                                                               |        |
|-------|------------|--------|----|-------|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|       | <i>a/b</i> | n/D    | p  | 1     | 2     | 3          | 4                                                                                                                                                                                                                                                                                                                                                                                | 5      |
|       |            |        | 30 | 3.991 | 10.09 | 19.33      | 20.00                                                                                                                                                                                                                                                                                                                                                                            | 28.89  |
|       | . 96       | 0.1    | 45 | 4.257 | 11.73 | 21.11      | 22.52                                                                                                                                                                                                                                                                                                                                                                            | 31.45  |
|       | 0.23       | 0.1    | 60 | 4.677 | 15.32 | 23.04      | 29.59                                                                                                                                                                                                                                                                                                                                                                            | 38.80  |
|       | 0.5        |        | 75 | 5.148 | 19.94 | 22.77      | 38.53                                                                                                                                                                                                                                                                                                                                                                            | 43.36  |
| - 26  |            |        | 30 | 3.576 | 7.975 | 13.33      | 14.80                                                                                                                                                                                                                                                                                                                                                                            | 20.52  |
|       |            | 0.2    | 45 | 3.766 | 8.904 | 13.68      | 16.11                                                                                                                                                                                                                                                                                                                                                                            | 21.78  |
|       |            | 0.2    | 60 | 4.063 | 10.06 | 13.72      | 4 5   20.00 28.8   22.52 31.4   29.59 38.8   38.53 43.3   14.80 20.5   16.11 21.7   18.95 21.9   16.76 22.6   37.47 57.0   41.25 59.0   49.02 68.6   56.11 92.0   30.67 44.8   32.62 46.2   37.25 48.0   37.12 44.8   32.62 46.2   37.12 44.8   32.62 46.2   37.12 44.8   54.54 85.0   56.77 92.2   62.98 105.   85.65 114.3   49.66 71.9   50.87 77.2   53.11 86.5   56.19 82.6 | 21.96  |
| 1000  |            |        | 75 | 4.480 | 7.721 | 14.29      | 16.76                                                                                                                                                                                                                                                                                                                                                                            | 22.68  |
| an 19 | ·          |        | 30 | 4.326 | 16.51 | 25.23      | 37.47                                                                                                                                                                                                                                                                                                                                                                            | 57.00  |
| -     |            | 0.1    | 45 | 4.486 | 18.10 | 28.20      | 41.25                                                                                                                                                                                                                                                                                                                                                                            | 59.08  |
|       |            | 0.1    | 60 | 4.746 | 20.90 | 34.31      | 49.02                                                                                                                                                                                                                                                                                                                                                                            | 68.66  |
|       | 1          |        | 75 | 5.075 | 23.62 | 44.60      | 56.11                                                                                                                                                                                                                                                                                                                                                                            | 92.02  |
| -     | 1          | -      | 30 | 4.156 | 14.50 | 20.35      | 30.67                                                                                                                                                                                                                                                                                                                                                                            | 44.87  |
|       |            | 0.2    | 45 | 4.279 | 15.77 | 21.47      | 32.62                                                                                                                                                                                                                                                                                                                                                                            | 46.21  |
| 97.04 |            | 0.2    | 60 | 4.496 | 17.98 | 22.39      | 37.25                                                                                                                                                                                                                                                                                                                                                                            | 48.05  |
| 1000  |            |        | 75 | 4.802 | 18.06 | 20.69      | 37.12                                                                                                                                                                                                                                                                                                                                                                            | 44.87  |
|       |            |        | 30 | 4.572 | 21.41 | 37.85      | 54.54                                                                                                                                                                                                                                                                                                                                                                            | 85.07  |
| 100   |            | 0.1    | 45 | 4.648 | 21.93 | 44.24      | 56.77                                                                                                                                                                                                                                                                                                                                                                            | 92.28  |
|       |            | 0.1    | 60 | 4.799 | 23.03 | 55.27      | 62.98                                                                                                                                                                                                                                                                                                                                                                            | 105.19 |
|       | 2          |        | 75 | 4.995 | 24.32 | 61.59      | 85.65                                                                                                                                                                                                                                                                                                                                                                            | 114.82 |
|       | 0.00       | Sec. 1 | 30 | 4.508 | 20.53 | 32.38      | 49.66                                                                                                                                                                                                                                                                                                                                                                            | 71.97  |
|       |            | 0.2    | 45 | 4.570 | 20.99 | 36.32      | 50.87                                                                                                                                                                                                                                                                                                                                                                            | 77.27  |
|       |            | 0.2    | 60 | 4.698 | 21.94 | 41.85      | 53.11                                                                                                                                                                                                                                                                                                                                                                            | 86.55  |
|       |            |        | 75 | 4.882 | 23.11 | 39.47      | 56.19                                                                                                                                                                                                                                                                                                                                                                            | 82.67  |
|       |            |        |    |       | 10.10 |            |                                                                                                                                                                                                                                                                                                                                                                                  |        |
|       |            |        |    |       |       |            |                                                                                                                                                                                                                                                                                                                                                                                  |        |

表 4.19 懸臂梯形厚板(c/b=0.25)面外之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

| Γ     | ~ /h  | 1. /h | 0     |       | N     | Iode Number | <u>.</u>             |       |
|-------|-------|-------|-------|-------|-------|-------------|----------------------|-------|
|       | a/b   | n/D   | p     | 1     | 2     | 3           | 4                    | 5     |
|       | 1.1   |       | 30    | 3.872 | 7.872 | 16.17       | 19.88                | 25.19 |
|       | . 254 | 0.1   | 45    | 4.292 | 9.328 | 18.31       | 21.79                | 27.46 |
|       | 0.23  | 0.1   | 60    | 4.800 | 13.12 | 21.72       | 26.16                | 33.58 |
|       | 0.5   |       | 75    | 5.412 | 19.75 | 23.76       | 35.92                | 42.84 |
| - 24  | 0.5   | _     | 30    | 3.477 | 6.472 | 12.39       | 13.80                | 18.31 |
|       | 18    | 0.2   | 45    | 3.772 | 7.503 | 11.93       | 13.80                | 19.31 |
|       |       | 0.2   | 60    | 4.156 | 9.696 | 13.52       | 15.27                | 20.82 |
| 10-01 |       |       | 75    | 4.687 | 8.484 | 14.65       | 15.37                | 22.83 |
|       |       |       | 30    | 4.010 | 13.38 | 23.46       | 32.32                | 53.69 |
|       |       | 0.1   | 45    | 4.293 | 15.12 | 26.45       | 35.33                | 55.41 |
|       |       | 0.1   | 60    | 4.693 | 18.87 | 31.00       | 44.44                | 61.22 |
|       | 1     |       | 75    | 5.161 | 23.47 | 42.69       | 55.31                | 88.70 |
| - 22  | 1     |       | 30    | 3.863 | 11.83 | 19.60       | 25.54                | 43.20 |
|       |       | 0.2   | 45    | 4.100 | 13.22 | 21.17       | 2 <mark>9.3</mark> 7 | 44.34 |
|       |       | 0.2   | 60    | 4.438 | 16.11 | 22.34       | 35.08                | 48.17 |
| 100   |       | 100   | 75    | 4.846 | 19.23 | 21.89       | 38.87                | 44.01 |
| -     | D     |       | 30    | 4.063 | 20.30 | 29.19       | 51.70                | 75.89 |
| 100   |       | 0.1   | 45    | 4.214 | 21.18 | 34.89       | 53.68                | 86.40 |
|       |       | 0.1   | 60    | 4.434 | 22.84 | 46.34       | 58.19                | 103.3 |
|       | 2     |       | 75    | 4.690 | 24.67 | 63.02       | 72.33                | 116.9 |
|       |       |       | 30    | 4.011 | 19.36 | 25.88       | 47.08                | 65.70 |
|       | - 67  | 0.2   | 45    | 4.144 | 20.19 | 29.66       | 49.09                | 73.30 |
|       | 1     | 0.2   | 60    | 4.340 | 21.71 | 35.73       | 52.87                | 85.70 |
|       |       | 100   | 75    | 4.579 | 23.38 | 39.56       | 57.45                | 95.84 |
|       |       |       | 10.00 |       |       | 5. W .      |                      |       |
|       |       |       | - E   | 6.5   | 1 P.  |             |                      |       |

表 4.20 懸臂梯形厚板(c/b=0.5)面外之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

|        | a /h       | h/h | ρ   | Mode Number |       |       |       |       |  |
|--------|------------|-----|-----|-------------|-------|-------|-------|-------|--|
|        | <i>a/b</i> | n/D | p   | 1           | 2     | 3     | 4     | 5     |  |
|        | 1.1        |     | 30  | 3.851       | 6.528 | 13.62 | 19.85 | 26.44 |  |
|        | . 96       | 0.1 | 45  | 4.311       | 8.076 | 14.49 | 21.32 | 23.51 |  |
|        | 0.24       | 0.1 | 60  | 4.781       | 12.36 | 18.61 | 23.37 | 28.91 |  |
| - 4    | 0.5        |     | 75  | 4.974       | 5.820 | 19.76 | 27.04 | 35.35 |  |
| - 26   | 0.5        |     | 30  | 3.462       | 6.811 | 10.23 | 13.69 | 15.74 |  |
| - 10   | 11         | 0.2 | 45  | 3.798       | 6.686 | 11.36 | 11.62 | 14.00 |  |
|        | N          | 0.2 | 60  | 4.201       | 9.407 | 13.27 | 14.24 | 19.00 |  |
| 88 C ( |            |     | 75  | 4.723       | 8.476 | 14.22 | 14.56 | 15.50 |  |
|        | ·          |     | 30  | 3.901       | 10.74 | 23.25 | 28.51 | 47.96 |  |
|        |            | 0.1 | 45  | 4.313       | 12.41 | 26.10 | 31.43 | 50.62 |  |
|        |            | 0.1 | 60  | 4.866       | 16.43 | 29.25 | 41.73 | 57.03 |  |
|        | 1          |     | 75  | 5.500       | 22.80 | 40.89 | 55.54 | 81.30 |  |
|        | 1          | -   | 30  | 3.763       | 9.649 | 19.63 | 24.62 | 38.94 |  |
|        |            | 0.2 | 45  | 4.118       | 11.07 | 21.33 | 26.62 | 41.03 |  |
|        |            | 0.2 | 60  | 4.588       | 14.33 | 22.92 | 32.60 | 45.46 |  |
| -      |            |     | 75  | 5.155       | 19.45 | 23.16 | 37.33 | 43.57 |  |
| -      | D          |     | 30  | 3.820       | 18.11 | 25.21 | 48.53 | 71.09 |  |
| 100    |            | 0.1 | 45  | 4.054       | 19.60 | 29.91 | 50.78 | 82.22 |  |
| - 197  |            | 0.1 | 60  | 4.362       | 22.19 | 39.17 | 56.49 | 97.36 |  |
|        | 2          |     | 75  | 4.702       | 24.93 | 61.90 | 64.86 | 114.7 |  |
|        | 6710       |     | 30  | 3.774       | 17.02 | 23.25 | 44.68 | 62.76 |  |
|        | - 61       | 02  | 45  | 3.988       | 18.49 | 26.53 | 46.68 | 70.97 |  |
|        | 1.14       | 0.2 | 60  | 4.267       | 20.96 | 32.13 | 51.59 | 82.79 |  |
|        |            |     | 75  | 4.582       | 23.54 | 39.55 | 57.42 | 98.58 |  |
|        |            |     | 100 |             | 10.0  |       |       |       |  |
|        |            |     |     |             |       |       |       |       |  |

懸臂梯形厚板(c/b=0.75)面外之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ ) 表 4.21

|       | ~/ <b>b</b> | lı /lı     | ρ      | Mode Number |        |        |        |        |  |
|-------|-------------|------------|--------|-------------|--------|--------|--------|--------|--|
|       | <i>u/0</i>  | n/D        | p      | 1           | 2      | 3      | 4      | 5      |  |
|       |             |            | 30     | 3.845       | 5.709  | 9.883  | 13.64* | 17.14  |  |
|       |             | 0.1        | 45     | 4.319       | 7.460  | 11.55  | 12.78* | 18.65  |  |
|       | 1.1         | 0.1        | 60     | 4.828       | 10.20* | 12.16  | 16.04  | 21.64  |  |
|       | 0.5         |            | 75     | 5.451       | 5.886* | 16.04* | 19.89  | 23.89  |  |
|       | 0.3         |            | 30     | 3.459       | 4.908  | 6.819* | 8.094  | 11.47* |  |
| - 4   | 100         | 0.2        | 45     | 3.805       | 6.266  | 6.389* | 9.261  | 11.42* |  |
| - 26  | 1.11        | 0.2        | 60     | 4.205       | 5.099* | 9.323  | 11.57* | 12.16  |  |
|       | 11          |            | 75     | 2.708*      | 4.696  | 7.302* | 8.487  | 13.29* |  |
|       |             |            | 30     | 3.857       | 8.888  | 22.00* | 23.30  | 24.31  |  |
| 1000  |             | 0.1        | 45     | 4.381       | 10.56  | 21.49* | 24.84  | 28.34  |  |
| a. 19 | ·           | 0.1        | 60     | 5.032       | 14.87  | 18.62* | 27.16  | 38.43  |  |
| 200   | 1           |            | 75     | 5.734       | 11.50* | 22.80  | 31.43* | 39.36  |  |
|       |             | 0.2        | 30     | 3.724       | 8.094  | 11.00* | 19.72  | 21.44  |  |
|       |             |            | 45     | 4.179       | 9.567  | 10.75* | 21.06  | 23.45  |  |
|       |             |            | 60     | 4.733       | 9.310* | 13.20  | 22.16  | 22.40* |  |
|       |             |            | 75     | 5.363       | 5.750* | 15.71* | 19.64  | 23.75  |  |
| P 10  |             | 01         | 30     | 3.689       | 15.24  | 24.27  | 27.29* | 44.88  |  |
| 1000  |             |            | 45     | 4.011       | 17.16  | 24.83* | 28.43  | 47.37  |  |
| -     | D           | 0.1        | 60     | 4.422       | 20.12  | 20.67* | 36.03  | 54.06  |  |
| 100   | 2           |            | 75     | 4.868       | 12.08* | 24.69  | 54.04* | 58.51  |  |
|       |             |            | 30     | 3.646       | 13.64* | 14.30  | 22.76  | 41.47  |  |
|       |             | -02        | 45     | 3.946       | 12.42* | 16.11  | 25.85  | 43.79  |  |
|       | 6730        | 0.2        | 60     | 4.323       | 10.06* | 19.43  | 30.82  | 41.66* |  |
|       | - 67        |            | 75     | 4.740       | 6.039* | 23.30  | 27.02* | 40.01  |  |
|       | * :面        | 內(in-plane | )模態之頻率 | <u></u>     | -      |        |        |        |  |
|       |             |            |        |             |        |        |        |        |  |
|       |             |            | 48     |             | 10.0   |        |        |        |  |
|       |             |            |        |             |        |        |        |        |  |
|       |             |            |        |             |        |        |        |        |  |

表 4.22 懸臂平行四邊形厚板(c/b=1)之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

|        | /1    | 1./1       | Mode Number |        |        |        |        |        |
|--------|-------|------------|-------------|--------|--------|--------|--------|--------|
|        | a/b   | h/b        | β           | 1      | 2      | 3      | 4      | 5      |
|        |       |            | 30          | 3.991  | 10.09  | 12.61* | 19.33  | 20.00  |
|        |       | 0.1        | 45          | 4.257  | 10.84* | 11.73  | 21.11  | 22.52  |
|        | -0.2X | 0.1        | 60          | 4.677  | 8.372* | 15.32  | 23.04  | 23.08* |
|        | 0.5   |            | 75          | 3.776* | 5.148  | 12.18* | 19.94  | 22.77  |
| - 26   | 0.5   |            | 30          | 3.576  | 6.302* | 7.975  | 12.75* | 13.33  |
|        |       | 0.2        | 45          | 3.766  | 5.421* | 8.904  | 12.34* | 13.68  |
|        |       | 0.2        | 60          | 4.180* | 10.06  | 11.52* | 13.72  | 15.40* |
| 100    |       |            | 75          | 2.448* | 4.480  | 7.721  | 7.738* | 14.29  |
| an 19  | ·     |            | 30          | 4.326  | 16.51  | 19.69* | 25.23  | 37.47  |
| 200    |       | 0.1        | 45          | 4.486  | 16.11* | 18.10  | 28.20  | 41.25  |
| 100    |       | 0.1        | 60          | 4.746  | 11.79* | 20.90  | 34.31  | 40.08* |
|        | 1     |            | 75          | 5.075  | 6.485* | 23.62  | 24.36* | 44.60  |
| - 10 m | 1     | -          | 30          | 4.156  | 9.843* | 14.50  | 20.35  | 25.84* |
| -      |       | 0.2        | 45          | 4.279  | 8.053* | 15.77  | 21.47  | 23.88* |
| 910    |       | 0.2        | 60          | 4.496  | 5.852* | 17.98  | 19.92* | 22.39  |
| 100    |       |            | 75          | 3.242* | 4.802  | 12.18* | 18.06  | 20.69  |
|        | D     | 1000       | 30          | 4.572  | 21.41  | 26.08* | 37.85  | 54.54  |
| - 10   |       | 0.1        | 45          | 4.648  | 20.87* | 21.93  | 44.24  | 56.77  |
|        |       | 0.1        | 60          | 4.799  | 14.84* | 23.03  | 55.27  | 55.33* |
|        | 2     |            | 75          | 4.995  | 7.893* | 24.32  | 30.82* | 61.59  |
|        |       | 1 A A      | 30          | 4.508  | 13.04* | 20.53  | 32.38  | 43.06* |
|        | - 61  | 0.2        | 45          | 4.570  | 10.44* | 20.99  | 36.32  | 36.63* |
|        |       | 0.2        | 60          | 4.698  | 7.421* | 21.94  | 27.67* | 41.85  |
|        |       |            | 75          | 3.947* | 4.882  | 15.41* | 23.11  | 35.91* |
|        | * : 面 | 內(in-plane | )模態之頻率      | 3      | 10.0   |        |        |        |
|        |       |            |             |        |        |        |        |        |

表 4.23 懸臂梯形厚板(c/b=0.25)之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

|        | a/b  | h/h        | P      | Mode Number |        |        |                      |        |  |
|--------|------|------------|--------|-------------|--------|--------|----------------------|--------|--|
|        | u/D  | n/D        | ρ      | 1           | 2      | 3      | 4                    | 5      |  |
|        |      |            | 30     | 3.872       | 7.872  | 13.31* | 16.17                | 19.88  |  |
|        |      | 0.1        | 45     | 4.292       | 9.328  | 12.12* | 18.31                | 21.79  |  |
|        | 9,21 | 0.1        | 60     | 4.800       | 9.861* | 13.12  | 21.72                | 22.84* |  |
| - 4    | 0.5  | <u> </u>   | 75     | 5.412       | 5.850* | 15.95* | 19.75                | 23.76  |  |
| - 26   | 0.5  |            | 30     | 3.477       | 6.472  | 6.655* | 1 <mark>2.</mark> 39 | 12.49* |  |
|        | 18   | 0.2        | 45     | 3.772       | 6.075* | 7.503  | 11.93                | 13.80  |  |
|        |      | 0.2        | 60     | 4.156       | 4.927* | 9.696  | 11.42*               | 13.52  |  |
| 100    |      |            | 75     | 2.934*      | 4.687  | 8.001* | 8.484                | 14.28  |  |
| a. 19  | í    |            | 30     | 4.010       | 13.38  | 20.45* | 23.46                | 32.32  |  |
| 200    |      | 0.1        | 45     | 4.293       | 15.12  | 17.76* | 26.45                | 35.33  |  |
| 1000   |      |            | 60     | 4.693       | 13.86* | 18.87  | 31.00                | 44.44  |  |
|        | 1    |            | 75     | 5.161       | 8.084* | 23.47  | 29.08*               | 42.69  |  |
| -      | 1    | 0.2        | 30     | 3.863       | 10.23* | 11.83  | 19.60                | 25.54  |  |
| 100    |      |            | 45     | 4.100       | 8.882* | 13.22  | 21.17                | 24.49* |  |
| 199 C. |      |            | 60     | 4.438       | 6.928* | 16.11  | 22.34                | 22.75* |  |
| 100    |      |            | 75     | 4.042*      | 4.846  | 14.54* | 19.23                | 21.89  |  |
|        | D    |            | 30     | 4.063       | 20.30  | 25.96* | 29.19                | 51.70  |  |
| - 70   |      | 0.1        | 45     | 4.214       | 21.18  | 21.58* | 34.89                | 53.68  |  |
| - 197  |      | 0.1        | 60     | 4.434       | 15.92* | 22.84  | 46.34                | 58.19  |  |
|        | 2    |            | 75     | 4.690       | 8.755* | 24.67  | 40.00*               | 63.02  |  |
|        |      | S          | 30     | 4.011       | 12.98* | 19.36  | 25.88                | 47.08  |  |
|        | 19   | 0.2        | 45     | 4.144       | 10.79* | 20.19  | 29.66                | 42.20* |  |
|        |      | 0.2        | 60     | 4.340       | 7.962* | 21.71  | 33.95*               | 35.73  |  |
|        |      | 100        | 75     | 4.378*      | 4.579  | 20.00* | 23.38                | 39.56  |  |
|        | *:面  | 內(in-plane | )模態之頻率 | <u>.</u>    |        |        |                      |        |  |
|        |      |            |        |             |        |        |                      |        |  |

表 4.24 懸臂梯形厚板(c/b=0.5)之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )

| a /h    |     | h/h       | ρ      | Mode Number |        |        |        |        |
|---------|-----|-----------|--------|-------------|--------|--------|--------|--------|
|         |     | n/D       | p      | 1           | 2      | 3      | 4      | 5      |
|         |     |           | 30     | 3.851       | 6.528  | 12.75* | 13.62  | 19.85  |
|         | 10  | 0.1       | 45     | 4.311       | 8.076  | 12.65* | 14.49  | 21.33* |
|         |     | 0.1       | 60     | 4.781       | 10.16* | 12.36  | 18.61  | 23.06* |
| 0.5     |     |           | 75     | 4.974       | 5.820  | 5.965* | 16.40* | 19.76  |
| 0.3     |     |           | 30     | 3.462       | 5.510* | 6.811  | 10.23  | 11.99* |
| 100     |     | 0.2       | 45     | 3.798       | 6.326* | 6.686  | 11.36  | 11.62  |
| - 1 C   |     | 0.2       | 60     | 4.201       | 5.081* | 9.407  | 11.53* | 13.27  |
| April 1 |     |           | 75     | 2.918*      | 4.723  | 7.930* | 8.476  | 14.22  |
|         |     |           | 30     | 3.901       | 10.74  | 21.41* | 23.25  | 28.51  |
|         |     | 0.1       | 45     | 4.313       | 12.41  | 19.79* | 26.10  | 31.43  |
|         |     |           | 60     | 4.866       | 16.43  | 16.46* | 29.25  | 41.73  |
| 1       |     |           | 75     | 5.500       | 10.12* | 22.80  | 30.05* | 40.89  |
| 1       |     |           | 30     | 3.763       | 9.649  | 10.70* | 19.63  | 24.62  |
|         |     | 0.2       | 45     | 4.118       | 9.896* | 11.07  | 21.33  | 24.07* |
|         |     | 0.2       | 60     | 4.588       | 8.231* | 14.33  | 22.33* | 22.92  |
|         |     | <b>1</b>  | 75     | 5.060*      | 5.155  | 15.02* | 19.45  | 23.16  |
|         |     | 1000      | 30     | 3.820       | 18.11  | 25.21  | 26.55* | 48.53  |
| 100     |     | 0.1       | 45     | 4.054       | 19.60  | 23.05* | 29.91  | 50.78  |
|         |     | 0.1       | 60     | 4.362       | 17.76* | 22.19  | 39.17  | 56.49  |
| 2       |     |           | 75     | 4.702       | 10.17* | 24.93  | 48.40* | 61.90  |
|         |     |           | 30     | 3.774       | 13.28* | 17.02  | 23.25  | 44.68  |
| - T     |     | 0.2       | 45     | 3.988       | 11.52* | 18.49  | 26.53  | 45.38* |
| -       |     | 0.2       | 60     | 4.267       | 8.882* | 20.96  | 32.13  | 38.88* |
|         |     | 01        | 75     | 4.582       | 5.085* | 23.54  | 24.20* | 39.55  |
| *       | :面內 | (in-plane | )模態之頻率 |             | 111    |        |        |        |

表 4.25 懸臂梯形厚板(c/b=0.75)之無因次化頻率( $\omega a^2 \sqrt{\rho h/D}$ )



圖 1.1 斜形板示意圖(固定於θ=0處)

















