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摘要 

在直接序列分碼多工系統中，碼擷取是一個很重要的課題。傳統上，相關器常被用

來解決此問題。然而，其碼擷取的性能卻因多重使用者干擾而嚴重惡化。我們熟知

在接收機端架設陣列天線可以有效的壓制多重使用者干擾。但是，在多天線系統

下，大多數的碼擷取系統依舊是倚賴相關器。由於相關器固有的性質，使得基於相

關器所設計的碼擷取系統通常擁有較長的平均碼擷取時間。最近，適應性濾波技術

被應用於此問題上。儘管，此技術能提供較佳的碼擷取性能，但是它的計算複雜度

卻隨著延遲不確定性變大而增加。而且，在適應性多天線系統下，有效率的碼擷取

系統尚未被研究。在本論文中，我們發展新的適應性演算法來解決前述問題。 

 

為了對付長延遲的問題，首先，我們提出了一個多率(multirate)碼擷取系統。它是由

多個不同碼擷取單元所組成的，而這些單元擁有不同的信號處理速率。拜多率信號

處理中抽取(decimation)性質之賜，整體的計算複雜度可以被大量降低。我們亦分析

了適應性濾波器的收斂以及平均碼擷取時間。由實驗結果可以看出，當多率碼擷取

系統與傳統適應性濾波碼擷取系統性能相近時，多率系統僅需非常低的計算複雜

度。 

 

在適應性多天線系統下，我們提出的系統可以遠優於傳統上基於相關器所設計的系

統。提出的系統包含了兩個適應性濾波器，一個適應性空間濾波器與一個適應性時

間濾波器。經由特別的設計，空間濾波器可以作為波束成型器，而時間濾波器可以



 

作為碼延遲的估計器。基於最小均方差的準則，我們利用隨機梯度坡降法(stochastic 

gradient decent method)來同時調整這兩個濾波器。我們亦仔細的分析了其碼擷取性

能與收斂行為。由模擬結果可以看出: 提出系統的平均碼擷取時間遠低於傳統相關

器所設計的系統，以及理論的分析是正確的。 

 

最後，我們設計了兩個演算法來優化前述的適應性多天線碼擷取系統。首先，在第

一個研究裡，我們藉由連續搜尋技術，可以大量的縮短時間濾波器的長度，同時可

以達到降低計算複雜度。我們對此低複雜度系統分析並得到相關的固定表示式。由

模擬結果，可以看出此系統可以藉由稍微犧牲性能以大量降低計算複雜度。此外，

我們發現在多路徑通道中，前述的適應性多天線碼擷取系統有收斂變慢的傾向。為

了解決收斂便慢的問題，在第二個研究裡，我們提出了一個基於共軛梯度法所設計

的適應性演算法。與傳統的共軛梯度法相比，所提出的方法是低計算複雜度的，這

是由於我們利用輸入信號的相關性矩陣中特殊結構。由模擬結果可以看出，與傳統

的共軛梯度法相比，所提出的低複雜度共軛梯度適應性演算法擁有相近的收斂速

度。 
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Abstract 

Code acquisition has been an important issue in direct-sequence/code-division multiple 

access (DS/CDMA) systems. The conventional solution to this problem is to use the 

correlator. However, the corresponding acquisition performance is significantly degraded 

when multiple access interference (MAI) is present. It is well-known that the receiver 

equipped with an antenna array can effectively suppress MAI. However, most code 

acquisition schemes for array systems still rely on the correlator structure. Due to the 

inherent property, the mean acquisition time of the correlator-based approaches is usually 

large. Recently, adaptive-filtering technique was applied to solve the problem. Although 

adaptive-filtering systems can provide better performance, its computational complexity 

becomes high when the delay uncertainty becomes large. Also, effective adaptive array 

systems for code acquisition have not been investigated yet. In this dissertation, we have 

developed novel adaptive algorithms solving the problems mentioned above. 

 

To cope with the large code delay problem, we first propose a multirate acquisition system, 

which is comprised of several acquisition units operating in different processing rates. 

Thanks to the decimation property in multirate processing, the overall computational 

complexity can be greatly reduced. Theoretical analysis of filter convergence and mean 

acquisition time is also provided. Experimental results show that while the proposed 

scheme can have comparable performance with respect to the conventional adaptive 

filtering scheme, its computational complexity is much lower. We then propose an 

adaptive array system having superior performance than the conventional correlator-based 

system. The proposed scheme comprises two adaptive filters, an adaptive spatial and an 



 

adaptive temporal filter. With a specially designed structure, the spatial filter can act as a 

beamformer suppressing interference, while the temporal filter can act as a code-delay 

estimator. A mean squared error (MSE) criterion is proposed such that these filters can be 

simultaneously adjusted by a stochastic gradient descent method. The performance as well 

as the convergence behavior of the proposed algorithm are analyzed in detail. Simulations 

show that the mean acquisition time of the proposed algorithm is much shorter than that of 

the correlator-based approach, and the derived theoretical expressions are accurate. 

 

Finally, we develop algorithms refining the proposed adaptive array acquisition system. 

The first approach is to incorporate a serial-search technique. By this way, we are able to 

significantly reduce the size of the temporal filter, so does the computational complexity. 

We also analyze the proposed low-complexity system and derive related closed-form 

expressions. Simulations show that while the refined system slightly compromises the 

performance, the computational complexity is much lower. In multipath-channel 

environments, the convergence of the proposed adaptive array system tends to be slow. In 

the second approach, we propose an adaptive algorithm with the conjugate gradient (CG) 

method to solve the problem. Unlike the original CG method, the proposed method, 

exploiting the special structure inherent in the input correlation matrix, requires a low 

computational-complexity. Simulation results show that the performance of adaptive array 

code acquisition with the proposed CG method is comparable to that with the original CG 

method. 
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Chapter 1

Introduction

DIRECT-sequence/code-division multiple access (DS/CDMA) is a promising multiple access

technique for wireless mobile communication. However, one problem associate with the

approach is the presence of multiple access interference (MAI). It has been shown that MAI

is the main performance bottleneck for CDMA systems. Unfortunately, MAI not only affects

data detection, but also code synchronization, which is the first step that CDMA systems have

to perform. Code synchronization can be further divided into code acquisition and code track-

ing. Code acquisition can be considered as a coarse code synchronization process, aligning the

received signal and the local code sequence with an error less than a chip duration. After suc-

cessful code acquisition, other operations such as channel estimation, code tracking, and data

detection can follow. Thus, code acquisition is a critical task in DS/CDMA systems. In this

dissertation, we consider code acquisition in MAI environments.

Code acquisition has been widely studied in the literature. The conventional approach to this

problem is the well-known correlator-based method. However, the correlator-based method is

only optimal for the single-user case. The acquisition performance degrades greatly when MAI

is present, especially in near-far environments. It has been shown that the acquisition-based

capacity of the correlator system is less than the bit-error-rate-based capacity. The acquisition-

based capacity is a performance measure for an acquisition scheme, defined as the maximum
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number of users that a system can serve with certain acquisition performance. This implies that

code acquisition may become a limiting factor for a CDMA system capacity. It is well-known

that antenna array can significantly improve the performance of a receiver. Still, code acqui-

sition in array systems is usually solved with correlator-based methods. Due to the inherent

property of the associated serial-search scheme, its mean acquisition time is large, especially in

strong MAI environments.

Recently, adaptive-filtering technique was proposed to solve the acquisition problem. It has

been shown that the acquisition-based capacity associated with this approach can be enhanced

significantly. However, its computational complexity may becomes higher when the delay un-

certainty becomes large. Also, array systems employing the adaptive-filtering technique for

code acquisition have not been investigated yet. This motivates us to develop novel adaptive

algorithms solving the problems mentioned above.

In Chapter 2, we first propose a multirate adaptive-filtering scheme to deal with the large

code delay problem. Compared with the conventional adaptive-filtering scheme, the multirate

system requires much lower computationally complexity. The proposed system comprised of

several acquisition units operating in different processing rates. Theoretical analysis of the

multirate adaptive filters and the mean acquisition time of the acquisition system is also inves-

tigated.

Then, we consider adaptive code acquisition with an array system, and propose a novel

adaptive array code acquisition scheme in Chapter 3. The proposed system has two adaptive

filters, spatial and temporal filters. The former, acting as a beamformer, can suppress MAI and

the later can simultaneously estimate the code-delays of the desired user. A mean squared error

(MSE) criterion is proposed such that these filters can be simultaneously adjusted by a stochastic

gradient descent method. The performance as well as the convergence behavior of the proposed

algorithm are analyzed in detail. Closed-form expressions for optimum filter weights, optimum

beamformer signal-to-interference-plus-noise ratio (SINR), steady-state MSE, and mean acqui-

sition time are derived for the additive white Gaussian noise (AWGN) channel. It is shown that
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the proposed system can significantly outperform the conventional correlator-based acquisition

system.

The computational complexity of temporal filter in the proposed array system may become

higher when the delay uncertainty is large. To solve this, we employ the serial-search technique

to develop a low-complexity system. This is described in Chapter 4. Detail analysis and exper-

imental simulations are also made. Apart from the complexity issue, in the adaptive array code

acquisition system, we find that the filter convergence is slow in multipath channel environ-

ments. Although the recursive-least-squares (RLS) algorithm can be applied, the computational

complexity will be greatly increased. To alleviate this, we employ the conjugate gradient (CG)

algorithm to accelerate the convergence in Chapter 5. Taking the advantage of the special struc-

ture in the correlation matrix of the input signal, we proposed a CG algorithm having much

lower computational complexity than the conventional CG algorithm. It can be shown that the

computational complexity of the proposed method is on the same order of the least-mean-square

(LMS) algorithm. However, the convergence is much faster. Finally, we draw conclusions in

Chapter 6.
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Chapter 2

Multirate Adaptive Filtering for Low

Complexity Code Acquisition

Code acquisition has been widely studied in the literature. The conventional approach to

this problem is the well-known correlator-based method [1]– [10], [32], [36] (and references

therein). The correlator can have a serial [1], parallel [2]– [4], or hybrid search structure pro-

viding an easy trade-off between hardware complexity and acquisition time. However, the

correlator-based method is only optimal for the single-user case. The acquisition performance

degrades greatly when MAI presents, especially in near-far environments [5]– [6]. To evalu-

ate the performance of an acquisition scheme, a measure called acquisition-based capacity was

defined in [7]. This capacity corresponds to the maximum number of users that a system can

serve (with certain acquisition performance). It was shown in [7] and [19] that the asymptotic

acquisition-based capacity for the correlator is�,�	 �����, where � is the processing gain. The

quantity is less than the bit-error-rate-based capacity [8] which is proportional to � . This im-

plies that code acquisition may become a limiting factor for a CDMA system capacity. Another

discussion on the acquisition-based capacity for the correlator can be found in [9].

Another category of the acquisition technique employs subspace- or matrix-based meth-

ods [11]– [18]. The advantage of subspace-based approaches is that it does not require train-
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ing sequences. However, these methods usually have to estimate, decompose, and inverse the

autocorrelation matrix of the received signal vector. This often demands high computational

complexity, especially at a large processing gain. The projection degree measurement (PDM)

algorithm [11] observes two successive symbols in order to obtain the complete information

of one desired symbol. As a consequence, the PDM has to estimate and inverse an autocorre-

lation matrix of dimension 	� -by-	� . The multiple signal classification (MUSIC) algorithm

has also been applied to code acquisition [12]– [14]. The MUSIC algorithm has to carry out

eigen-decompositions and extract eigen-vectors corresponding to noise subspace. Despite of

the oversampling operation in [12], the computational complexity of the MUSIC algorithm is

with ��� ��. Besides, this algorithm is constrained under 	� - � , where � is the number of

users. A matrix-based method [18] called a large sample maximum likelihood (LSML) acqui-

sition algorithm, provides excellent performance and robustness against the near-far problem.

However, it requires a large amount of received bit signals and, again, pays a high computa-

tional complexity in the matrix operations. Notably, these methods are specifically designed for

CDMA systems with periodic spreading codes (i.e., the spreading code repeats itself for every

bit) and may not straightforwardly apply to the aperiodic-code systems (i.e., the periodicity of

the spreading code is great than a bit interval).

Recently, the adaptive filter technique [19]– [26] was proposed to solve the acquisition prob-

lem in the presence of MAI. The method [19]– [24] separates the delay uncertainty into several

regions, named (delay) cells. The input to the adaptive filter is the desired user’s pseudo-noise

(PN) sequence with a code delay associated to a cell. Each cell is then sequentially tested and

the code delay can then be estimated with the location of the maximum convergent tap-weight.

This method can also have a serial or parallel searching structure trading performance with com-

putational complexity. It was addressed in [19]– [20] that the adaptive filtering scheme can have

a much higher acquisition-based capacity than the correlator. Apart from the maximum weight

testing, architectures with the threshold testing were also considered [21]– [22]. The threshold

can be set for the mean-squared error (MSE) or for the maximum tap-weight (in a cell). It was
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found in [23] that the tap-weight testing can bring better performance than the MSE testing. The

acquisition performance with fading channels was analyzed and reported in [24]. Yet, another

adaptive receiver structure reported in [26] performs an exhaustive search to find the integer

chip delay, and then solve a quadratic equation to find the corresponding fractional chip delay.

The drawback of this approach is that its complexity is high particularly for a large processing

gain.

In this chapter, we propose a code acquisition algorithm using a multirate adaptive filter-

ing technique. Similar to the original adaptive filter approach [19]– [20], our structure is valid

for periodic as well as for aperiodic spreading codes. In fact, many commercial CDMA sys-

tems, including IS-95 standard [28], CDMA-2000 proposal [29], and 3G CDMA-based wireless

networks [30]– [31], adopt aperiodic codes for spreading. The fundamental structure of the pro-

posed algorithm is similar to that in [19]– [20]; however, the proposed scheme contains several

adaptive filters operating in different rates. The adaptive filters with low rates will search the

code delay in low resolutions. The adaptive filters with higher rates will then resolve the code

delay in higher resolutions. The adaptive filter with the highest rate, say the chip-rate, can

finally identify the original code delay. The proposed multirate processing can have a much

lower computational complexity than the conventional adaptive filtering approaches in [19]–

[20]. This is particularly true in the applications where the processing gain as well as the delay

uncertainty is large.

The rest of this chapter is organized as follows. Section 2.1 reviews the conventional adap-

tive code acquisition scheme. Section 2.2 describes the proposed multirate code acquisition

scheme. Section 2.3 analyzes the performance of the proposed scheme, and Section 2.4 reports

simulation results. Finally, we draw conclusions in Section 2.5.
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§ 2.1 Conventional Adaptive Code Acquisition

In this section, we briefly review the conventional adaptive code acquisition scheme [19]– [20].

Fig. 2.1 shows the structure of this scheme. For reference convenience, we name this scheme

as a one-rate (1R) scheme since only one processing rate (i.e., chip-rate) is used. The baseband

chip-rate sampled received signal can be expressed as

"��� �
��
�	�

������� ��� � ����� (2.1)

where �, ��, ��, �����, and ���� denotes the number of user, the code delay, the signal

amplitude, the transmitted signal of user-�, and channel noise, respectively. The channel noise

is assumed to be additive white Gaussian and its mean is zero. The transmitted signal of user-�

can be expressed as

����� �
��

�	��

.����
����
�	�

/����(� ��� ( � ���� � � �� � � � � � (2.2)

where .���� denotes the �-th BPSK signal of user-� and /����(� � ������ corresponds to the

(-th chip signal in .����. Also, � denotes the processing gain and  ��� the chip-rate sampled

pulse. Before proceed further, we list assumptions to be used in the sequel:

a) User-�’s code delay is of interest and �� � �.

b) The code delay is an integer multiples of the chip-duration and smaller than � .

c) Carrier synchronization is established before code acquisition.

d) No data are modulated for user-1’s signal in the period of code acquisition, i.e., .���� � �.

e) The chip-pulse is considered as a rectangular pulse with unit amplitude.

f) The code sequence /��� has a period much higher than the processing gain such that the input

to the adaptive filter can be viewed as statistically white.
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Figure 2.1: Conventional 1R code acquisition system, where ���� � ���� is user-�’s PN se-

quence at �-th cell with � � �� � � � � �� �.

g) Only the additive white Gaussian noise (AWGN) channel is considered and the summation

of MAI and white Gaussian noise can be modeled as another white Gaussian noise [32].

The 1R scheme first divides � into � � 	�,��
 cells, where �� is the length of the

adaptive filter. The adaptive filter then serially searches the code delay in these cells. The least-

mean-square (LMS) algorithm is employed to minimize the MSE between the received signal

"��� and the adaptive filter output (see Fig. 2.1). The tap-weight update equations are given by

����� �� � ����� � �#����
���� (2.3)

#��� � "���� ������������� � � ��� � � � � �� �� (2.4)

where � denotes the step size controlling the convergence of the adaptive filter, ����� �

�������� �
�
����� � � � � �

�
����

���� the filter tap-weight vector for the �-th cell, and ����� � ������
����� ���� � ��� � ��� � � � � ���� � ��� ��� � ��� the corresponding input vector. Here,

� is sequentially increased from zero to � � �. The tap-weight vector ����� for a particular

� is stored after some iterations, say �� chips. Then, an estimation of �� can be derived with

the tap-index of the maximum tap-weight (among all cells). Let the ���-th tap (� � ��� - ��)
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of the adaptive filter in the �)�-th cell has the maximum value. Then, we can have the delay

estimation ��� � �)��� � ���. Combine ������, � � �� �� � � � � � � � into a big vector �,

i.e., � �
�
�������

� � �������
� � � � � � �� ������

�
��

. It can be shown that the probability of

acquisition error is

�� � �� �!��� � ���� / �� �� �/� �� � ��� �� � � � � � � ��� (2.5)

where �� denotes the �-th element of � and �� the tap-weight corresponding to the true code

delay �� (i.e., / � ��). To evaluate (2.5), we need to know the stochastic properties of the

tap-weights. It has been shown in [33] that these tap-weights at convergence have Gaussian

distributions with a mean vector of

������ � ��� (2.6)

and a covariance matrix of

	����� � �
	
$��������� (2.7)

� '���� (2.8)

where�� is the optimum solution of� solved with the Wiener equations [34], $��� is the corre-

sponding minimum mean-squared error (MMSE), and '�
� is the variance of each tap-weight. Let


� � ��������������� and �� � �������"����. Since the input is white, 
� � ��������.

It is well known that ��� � �
������. Let �� � )��� � ��, � � �� - ��, and  �� is the �-th

entry of �� (� � ��� �� � � � ���� ��). It is simple to show that  �� � � when � � )� and � � ��,

and  �� � � otherwise. This is to say that a unique peak with value one will appear in ��, and

all other weights are zeros. Thus, we can have $��� � ��"������ �. Using (2.6) and (2.8), we

can rewrite (2.5) as

�� � ��
� �

��

�
���

�
��
'�

�����
���

�
���� � ���

	'��

�
.��� (2.9)

where ���� denotes the �-function [35]. It is known that an ��-tap adaptive filter (with the

LMS algorithm) requires 	�� multiplications per iteration. Thus, the computational complexity

is proportional to the filter size.
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§ 2.2 Proposed Adaptive Multirate Code Acquisition

To understand our idea easier, we start our development with a two-rate (2R) system. Then, we

will extend it to a three-rate (3R) system.

§ 2.2.1 2R Scheme

Following the assumptions given in Section 2.1, we express (2.1) as

"��� �
��
�	�

������� ��� � ����

� ����� ��� � ����� (2.10)

where

���� �
��
�	�

������� ��� � ���� (2.11)

denotes the sum of MAI and white Gaussian noise. Let the variance of ���� be '�
� . For nota-

tional simplification, we will omit the subscripts of ����� and �� in following derivations. Fig.

2.2 shows the architecture of the proposed 2R acquisition system. As we can see, the system

contains two units with two different processing rates. We call the unit in Fig. 2.2 (a) as a

low-rate unit (LRU). In this unit, the adaptive filter updates its tap-weights with a low rate.

For this reason, we refer to the adaptive filter in this unit as a low-rate adaptive filter (LRAF).

By contrast, we call the unit in Fig. 2.2 (b) a high-rate unit (HRU). The adaptive filter in this

unit updates its tap-weights with a high rate. We refer to the adaptive filter in this unit as a

high-rate adaptive filter (HRAF). Note that the high-rate here denotes the chip-rate. There are

feedforward and feedback operations in the system. We now describe the fundamental feed-

forward operation. First, consider Fig. 2.2 (a). The system passes the received signal "���

and the locally generated user-1’s signal ���� through lowpass filters (LPFs) to obtain "�" ���

and ��" ��� respectively. Then, it downsamples these signals with a factor of � and feeds
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the resultant signals to the LRAF. Let �� � 	�,�
. Then, the code delay can be rewritten as

� � )��� where ) � ��� �� � � � ���� and ��,	 - � � �,	. Note that the ranges of ) and

� are defined different from that in the previous section. The LRAF will adapt to estimate a

low-resolution � having the value in ��� �� � � � �����. Similar to the 1R system, we select the

tap-index associating with the maximum tap-weight value. Note that �� � � is the filter length

of the LRAF and ��� � ��� must be great or equal to � . Let the index with the maximum

tap-weight in the LRAF be �). The HRU in Fig. 2.2 (b) then delays ���� with �)� chips. We

call the device to perform the delay function as the delay-tuning filter (DTF). With this oper-

ation, the HRAF adapts to refine the code-delay resolution. After convergence, we select the

tap-index �� with the maximum tap-weight. It is easy to see that the index should be in the range

of ��,	. Combing these two tap-weight indices, we can finally obtain a code-delay estimate.

In summary, the LRU attempts to acquire � in a multi-chip level (low resolution), while the

HRU in a chip level (high resolution).

We now examine some properties of the 2R feedforward operation. For low complexity

consideration, we let the LPF filtered "��� [in (2.10)] as

"�" ��� �
#���
�	�

"��� ��

�
#���
�	�

���� � � �� � ��" ���� (2.12)

where

��" ��� �
#���
�	�

���� ��� (2.13)

It is simple to see that this is just an averaging operation with a �-tap filter (apart from a

constant). In Fig. 2.2 (a), �� indicates a vector consisting of the impulse response of the LPF.

As shown, each element of �� has the value of one. Substituting � � )� � �, we can rewrite

(2.12) as

"�" ��� �
#���
�	�

���� )� ��� �� � ��" ���� (2.14)
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Figure 2.2: Proposed 2R code acquisition system with (a) LRU and (b) HRU. Note that LRU

and HRU interact only when � � 	�. The dash-lines indicate feedforward and feedback

operations.

Downsampling (2.14) with a factor of �, we then have

"��	� � "�" �����	�#

�
#���
�	�

���	� )�� ��� �� � ���	�� (2.15)
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where we let 	 � ��,�� and ���	� � ��" �	��. Similarly, we can average ���� to obtain

��" ��� �
#���
�	�

���� ��� (2.16)

and downsample ��" ��� to obtain

���	� � ��" �����	�#

�
#���
�	�

��	� � ��� (2.17)

Let the input vector of the LRAF be ���	�. Then, we have

���	� � ����	�� ���	� ��� � � � � ���	����
� � (2.18)

In what follows, we will find out how� will influence the steady-state tap-weights of the LRAF.

Let

0 �
���
�

� (2.19)

and consider the case where � � � first. The element ���	� 1�, 1 � ��� �� � � � ���� in (2.18)

can be rewritten as

���	� 1� �
#���
�	�

���	� 1�� � ��

�

���
�	�

���	� 1�� � �� �
#���
�	


���	� 1�� � ��

�

���
�	�

���	� 1�� � �� �
#�
���
�	�

���	� 1�� ��� ��

�
	

�0



��
�0


���
�	�

���	� 1�� � ��

�

�
	

���� 0�



�	

���� 0�

#�
���
�	�

���	� 1�� ��� ��

�
� (2.20)
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Let

2�	� �
��
�0


���
�	�

��	� � �� (2.21)

��	� �
�	

���� 0�

#�
���
�	�

��	� ��� ��� (2.22)

��	� � �2�	�� 2�	���� � � � � 2�	����
� , and�	� � ���	�� ��	���� � � � � ��	����

� .

Thus, (2.20) can be written as

���	� 1� �
	

�02�	� 1� �
	

���� 0���	� 1�� 1 � ��� �� � � � ���� (2.23)

and (2.18) as

���	� �
	

�0��	� �
	

���� 0��	�� (2.24)

Note that 2�	�, ��	� and ���	� are zero mean, mutually uncorrelated, and

��2�	�2�	� 1�� � Æ�1�

����	���	� 1�� � Æ�1�

�����	����	� 1�� � �'��Æ�1�� (2.25)

where Æ��� denotes a Kronecker Dirac delta function. Using (2.21)–(2.22), we can also express

(2.15) as

"��	� �
#���
�	�

���	� )�� ��� �� � ���	�

�
#�
���
�	�

���	� )�� ��� �� �
#���
�	#�


���	� )�� ��� �� � ���	�

�
#�
���
�	�

���	� )�� ��� �� �

���
�	�

���	� )� ��� � �� � ���	�

�
	

���� 0���	� )� �
	

�02�	� )� �� � ���	�� (2.26)
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Let the tap-weights of the LRAF be���	� and���	� � ������	�� �����	�� � � � � ������	�� .

Also, let the corresponding optimal solution be ����. Using the corresponding Wiener equa-

tions, we can have

���� � 
��
� ��� (2.27)

where �� � �����	�"��	�� and 
� � �����	�����	��. It is simple to see that


� � ��� (2.28)

Substituting (2.24), (2.26) and (2.28) into (2.27), we obtain

�����$ �

��
�

�� 0� 1 � )

0� 1 � ) � �

�� otherwise

� 1 � ��� �� � � � ���� (2.29)

where �����$ is the 1-th element of����. Let the MSE that the Wiener filter minimizes be $��	�.

Then,

$��	� � ���"��	������	����	���
� ��"���	�� � 	����	��� ��

�
��	�
����	�� (2.30)

where ��"���	�� � ���"����� � ��'�����. Replacing���	� with����, we can obtain the

corresponding MMSE, $�����, as

$����� � ���"����� ������ 0�� � 0�

� ��'�� � 	0��� 0�� (2.31)

From (2.31), we can see that a nonzero 0 will produce an extra term in the MMSE. We now
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proceed to find the MSE yielded by the LMS algorithm. Using (2.24) and (2.29), we derive

����	����� � ��� 0��
	

�02�	� )� �
	

���� 0���	� )��
� 0�
	

�02�	� )� �� �
	

���� 0���	� )� ��� (2.32)

�
	

�02�	� )� �
	

���� 0���	� )�

� 0
	

�02�	� )�� 0
	

���� 0���	� )�

� 0
	

�02�	� )� �� � 0
	

���� 0���	� )� ��� (2.33)

Substituting (2.26) into (2.33), we obtain

����	����� � "��	�� ���	� � ��� 0�
	

�0�2�	� )�� 2�	� )� ���
� 0
	

���� 0����	� )�� ��	� )� ���� (2.34)

Rewriting (2.34), we have

"��	� � ����	����� � ���	�

���� 0�
	

�0�2�	� )�� 2�	� )� �� � 0
	

���� 0����	� )�� ��	� )� ��� �� �
�%���

�

(2.35)

where %�	� is zero mean and its variance is '�% � 	�0�� � 0�. The LMS tap-weight update

equation for the LRAF is given by

���	� � ���	� �� � ����	�
�
"��	�� ����	����	� ��

�
� (2.36)

where � is the step size. Substituting (2.35) into (2.36), we have

���	� � ���	� �� � ����	�
�
����	����� � ���	� � %�	�� ����	����	� ��

�
�

(2.37)

Subtracting ���� on the both sides of (2.37) and letting ����	� � ���	� � ����, we can
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rewrite (2.37) as

����	� � ����	� ��� ����	�����	�����	� ��

� ����	����	� � ����	�%�	�

� ��� ����	�����	�����	� �� � ����	����	� � ����	�%�	�� (2.38)

Let ��	� � ������	������	��. Then,

��	� � ����� ����	�����	�����	� ��

������	� ����� ����	�����	���
� ��������	����	�����	��
� ����%��	����	�����	��� (2.39)

Equation (2.39) can be written as

��	� � ��� �
����	� �� ��� �
��

� ���'��
� � ��'
�
%
�� (2.40)

Note that in (2.40) we implicitly assume that %��	� and ���	�����	� are uncorrelated. The

1-th entry on the main diagonal of ��	� is

�$�$�	� � ��� �����$�$�	� �� � ���
�'�� � ���'�% � (2.41)

When 	 ��, we have the asymptotic result as

�$�$�	� � �
	
��'�� � '�% �

�
��

	
�'�� � 	0��� 0� 1 � ��� �� � � � ����� (2.42)

Using (2.31) and (2.42), we can have the MSE for the LMS algorithm in steady-state [34] as

$��� � $����� �
��� � ����

	
�'�� � 	0��� 0�

�

�
� �

��� � ���
	

�
$������ (2.43)
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Next, let us consider the case where � - �. We define a new set of 2�	� and ��	� as

2�	� �
�	

���� 0�

#��
����
�	�

��	� � �� (2.44)

��	� �
��
�0

�
����
�	�

���	� ��� � ��� � ��� (2.45)

Then, we can have ���	� 1� as

���	� 1� �
#���
�	�

���	� 1�� � �� (2.46)

�

#��
����
�	�

���	� 1�� � �� �
#���

�	#��
�

���	� 1�� � �� (2.47)

�

#��
����
�	�

���	� 1�� � �� �

�
����
�	�

���	� 1� ��� � ��� � �� (2.48)

�
	

���� 0�2�	� 1� �
	

�0��	� 1�� (2.49)

and (2.15) as

"��	� �
#���
�	�

���	� )�� � ��� � �� � ���	� (2.50)

�

�
����
�	�

���	� )�� � ��� � �� �
#���
�	�
�

���	� )�� � ��� � �� � ���	� (2.51)

�

�
����
�	�

���	� )�� � ��� � �� �

#��
����
�	�

���	� )�� � �� � ���	� (2.52)

�
	

�0��	� ) � �� �
	

���� 0�2�	� )� � ���	�� (2.53)

Following the similar procedure for the case that � � �, we can derive

�����$ �

��
�

�� 0� 1 � )

0� 1 � )� �

�� otherwise

1 � ��� �� � � � ���� (2.54)
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and

$��� � $����� �
��� � ����

	
�'�� � 	0��� 0�

�

�
� �

��� � ���
	

�
$������ (2.55)

As shown in (2.31), $����� is a function of 0. Since � � 0 � �,	, when 0 gets larger, $�����

will become larger. This will also make the steady-state MSE in (2.43) larger. Furthermore,

from (2.29) and (2.54), we see that a nonzero 0 will produce two nonzero weights and make the

value of the peak tap-weight smaller than one. Combining these effects, we can conclude that

the larger the 0, the worse the acquisition performance. The worst case occurs when 0 � �,	

yielding two nonzero equal weights. In what follows, we will develop a system that can null 0.

Now, let us consider operations in the HRU. As Fig. 2.2 (b) shows, the input to the HRAF

is ��� � �)��. As mentioned, the optimal filter of the LRAF may have two nonzero weights

with the same value. Thus, the peak position can be ) or ) � �. In other words, we need at

least � � � taps for the HRAF. To simplify our analysis, we let �) � ). It is simple to see that

the optimal weights of the HRAF will have a unique peak at ��. Since the analysis of HRAF is

straightforward, we only provide the results without detailed derivations. Let

����� � ����� �)� ��,	�� � � � � ���� �)��� � � � � ���� �)� ��,	��

� �����#&����� � � � � �������� � � � � ���#&����
� (2.56)

����� � �����#&����� � � � � �������� � � � � ���#&����
� � (2.57)

where we assume that �,	 is an integer (for notational convenience). Notice that 
� �

�������������� � �. We then have the optimum weights listed below:

������ �

��
� �� � � �

�� otherwise
� (2.58)

where ������ is the �-th element of ����, and ���� is the optimal solution of �����. We then
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have the MMSE and steady-state MSE as

$����� � ���"�����������������������	����

� ��"����� � 	������������"����������
�����
� '�� (2.59)

$��� �

�
� �

�� � ���
	

�
$������ (2.60)

where � is the step size used in the HRAF.

The main problem associated with the 2R scheme described above is that sampling phases

for "�" ��� and ��" ��� may not be synchronized (i.e., � �� �). As analyzed, the acquisition

performance can be greatly affected when � is not equal to zero. Our remedy to this problem

is to adjust the sampling phase of ���� during filter adaptation. This is possible if � estimated

by the HRAF can be fedback to the LRAF. To realize this thought, we use a device, namely

phase-tuning filter (PTF), to tune the input phase with �� chips (see the feedback operation in

Fig. 2.2). The PTF can advance or lag the phase of its input signal. With this structure, the

sampling phases for "�" ��� and ��" ��� can be synchronized. Note that the LRU and HRU

interact only when � � 	�. Letting � � � (i.e., 0 � �) in (2.31) and (2.42), we have

$����� � �'�� � (2.61)

�$�$�	� �
�
	
�'�� 1 � ��� � � � ����� (2.62)

Thus, steady-state MSEs of the LRAF and the HRAF are

$��� �

�
� �

��� � ���
	

�
�'�� � (2.63)

$��� �

�
� �

�� � ���
	

�
'�� � (2.64)

§ 2.2.2 3R Scheme

In the previous subsection, we have proposed a 2R scheme that is able to null 0. Since the

HRAF operates in a high processing rate, it dominates the overall computational complexity.
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This becomes an important issue when the tap-length ��� is large. We can solve the problem

by introducing a unit with another processing rate. We call this unit as a medium-rate unit

(MRU). This unit contains a medium-rate adaptive filter (MRAF) sharing the computational

loading of the HRAF. As shown in Fig. 2.3 (b), the LPFs �� average "��� and ���� with a

window side of �� , and the decimators downsample the resultant signals with a factor of �� .

Let the DPTF denote the device cascading the DTF and PTF. Here, the processing rate of the

MRU is �,�� times faster than that of the LRU, but �� times slower than that of the HRU.

With the additional MRU, we have three resolutions to work with. We can express the code

delay as � � )� � 3�� � Æ, where

) � ��� �� � � � ����� (2.65)

3 � ���,�	���� � � � � �� � � � � �,�	����� (2.66)

Æ � ����,	� � � � � �� � � � � ��,	�� (2.67)

Again, for convenience we assume that �,�	��� and ��,	 are integers. Then, we use the

LRU, MRU and HRU to estimate �)� 3� Æ�, respectively. Note that�������,	 � 3���Æ �
�� ����,	, where �� � 	. In other words, the MRAF and HRAF can span a delay region

greater than � � �. Define the tap-weight vector and the input vector of the MRAF as

���+� � �����#&��#� ��+�� � � � � �����+�� � � � � ���#&��#� ��+�
� (2.68)

���+� � �����#&��#� ��+�� � � � � �����+�� � � � � ���#&��#� ��+�
� � (2.69)

where + � ��,���. The update equation for the MRAF is given by

���+� � ���+� �� � ����+��"��+�� ����+����+� ��� (2.70)
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Figure 2.3: Proposed 3R code acquisition system with (a) LRU, (b) MRU, and (c) HRU. Again,

all units interact only when � � 	� and the dash-lines are for feedforward and feedback

operations.

23



where � is the corresponding step size and

"��+� �

#����
�	�

"��� ����	
#�
� (2.71)

���$�+� �

#����
�	�

���� �)� � �Æ � 1�� � ����	
#�

1 � ���,�	���� � � � � �� � � � � �,�	����� (2.72)

where we have used �)� and �Æ obtained from other two units. The weight adaptations for the

LRAF and HRAF are similar to (2.36).

We have analyzed the performance of the HRAF and LRAF in a 2R system previously.

The performance of the MRU in a 3R system can be done in a similar way. We can treat the

MRU as a special LRU, and replace � with �� for the formulas derived for the LRAF. Since

this is straightforward, we omit the detailed results here. Note that in Fig. 2.3 all units update

parameters in their PTFs or DTFs simultaneously at � � 	�. Let the estimates for ), 3, and Æ

at the instant � � 	� be �)�	�, �3�+�, and �Æ���, respectively. When � � 	�, the PTF in the

LRU delays ���� by �3�+�����Æ��� chips, the DPTF in the MRU delays ���� by �)�	����Æ���

chips, and the DPTF in the HRU delays ���� by �)�	�� � �3�+��� chips. We can extend the

idea to a four-rate or higher rate system; however, the system architecture will become complex.

For typical applications, a 2R or 3R system will be sufficient. As described, all the filters are

adjusted using the LMS algorithm. As shown later, the tap-weight of an adaptive filter can

be treated as a random variable. Thus, ), 3, or Æ may be incorrectly estimated during the

adaptation, which we call a decision error. Note that the LMS algorithm changes the filter-

weight values slowly. For most cases, the estimation error can be corrected shortly. There are

only few cases that the error will propagate between adaptive filters and the overall effect may

lower the final amplitudes of the peak tap-weights. To alleviate the decision error problem, we

can let the LRU operate for a short period of time without feedback at the initial. Simulations

show that the error propagation effect only slightly slows the convergence.
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§ 2.3 Performance Analysis

To compare the proposed schemes with the 1R system in Section 2.2, we employ some per-

formance measures such as the required computational complexity (per iteration), acquisition

error probability, and mean acquisition time.

§ 2.3.1 Computational Complexity

To have a fair comparison, we let � � �� � �� , where �� denotes the iteration time

of the multirate system. Also, we let � � � such that the filter size in the 1R system is

approximately equal to that of the LRAF (�� ��� � �). Since the main operation in filtering

is multiplication, we only take this into account. We first calculate the total multiplications

required in � iterations and then divide the result by � .

a) 1R scheme

As mentioned in Section 2.2, the ��-tap adaptive filter will require 	�� multiplications

per iteration. Then, the computational complexity of the 1R system, denoted as 4�, is 	�� �

		�,�
.
b) 2R scheme

For the 2R scheme, we have to take both the LRAF and HRAF into account. Since the

HRAF has � � � taps and operates in the chip-rate, it requires 	�� � �� multiplications per

iteration. On the other hand, the LRAF has �� � � taps operating in a rate � times slower.

Thus, the required multiplications per iteration for a 2R scheme, 4�, is given by

4� �
	��� � ��'

#
� 	�� � ���

�
(2.73)

�
	��� � ��

�
� 	�� � ��� (2.74)

c) 3R scheme

Similarly, we take the LRAF, MRAF, and HRAF into account. The required multiplication
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per iteration for a 3R system, 4�, turns out to be

4� �
	��� � ��'

#
� 		#��

#�

 '
#�

� 	��� � ���

�
(2.75)

�
	��� � ��

�
�

	

��
	� � �

��

� 	��� � �� (2.76)

where 	�� � ��,��
 is the minimum required tap-length for the MRAF.

§ 2.3.2 Probability of Acquisition Error

For the 1R system, we let the adaptive filter run for a period of four time-constants to reach

the steady-state (for each cell). The time-constant for a LMS filter with white input and a step

size � can be estimated as 	�,�
 (see pp. 348 in [34]). The overall convergence time for the

1R system, denoted as ��, is then ��	�,�
. Let the step size for the adaptive filter in the 1R

system and that in the HRAF be the same (i.e., � � � � ). For multirate systems described

in Section 2.2, we further let � � ,� and � � ,�� . In this way, the variances of these

adaptive filter taps are the same [see (2.7) and (2.62)].

a) 2R scheme

An acquisition error may occur due to �) �� ), �Æ �� Æ, or both. If we assume that there are

no decision errors, the probability of acquisition error for the time instant �, denoted as �����,

can be written as

����� � �� �����	�������� (2.77)

�����	� � � ������	� � �����	�� / �� �� �/� �� � ��� �� � � � ���� (2.78)

������� � � �������� � �������� / �� �� �/� �� � ���,	� � � � � �� � � � � �,	�� (2.79)

where �����	� and ������� denote the correct acquisition probabilities of the LRAF and HRAF,

respectively. Also, �����	� and ������� denote the taps whose tap-indices correspond to the

actual code delay.

Using the transient analysis of LMS algorithms in [33], we have the mean weight vector of
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the LRAF as

�����	�� � ��� ��� �
��
������ (2.80)

and the ��� � ��-by-��� � �� covariance matrix as

	��	� �
��'��

	
��� ��� 	�
��

�� (2.81)

Since 
� � ��, we can let 	��	� � '����	�� where '����	� is an equivalent variance that

can be derived from (2.81). Here, ���	� and ����� are assumed to be Gaussian distributed.

Similarly, we can have the mean weight vector and the covariance matrix of ����� as

�������� � ��� ��� �
��
������ (2.82)

and

	���� �
�'

�
�

	
��� ��� 	�
��

�� (2.83)

Since 
� � �, we can let 	���� � '��� ����. Similarly, '��� ��� is an equivalent variance that

can be derived from (2.83). From (2.81) and (2.83), we find that tap-weights are independent

and identically distributed. As mentioned, both the HRAF and LRAF are run for � chips. For

notational simplicity, we let �� as the peak in �������,����, '�� � '������,���, �� �

�������,���, �� as the peak in ��������, '�� � '��� ���, �� � �������, and �� �

�����. The probabilities in (2.78)–(2.79) at � � � turn out to be

�� �
�	
	5'��

� �

��

�
���

�
�

'�

����

���

�
��� � ���

�

	'��

�
.�� (2.84)

�� �
�	
	5'��

� �

��

�
���

�
�

'�

��#
���

�
��� � ���

�

	'��

�
.�� (2.85)

Finally, we obtain

�� � �� ���� � (2.86)
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As mentioned in Section 2.2, incorrect decisions can occur and the error propagation be-

tween the HRAF and LRAF will lower the peak amplitudes of final tap-weights. Thus, the

results in (2.84)–(2.86) may be too optimistic. However, the exact analysis of the error prop-

agation effect turns out to be very difficult, if not impossible. In what follows, we propose a

simple approximation method to overcome the problem. We first assume that the error propa-

gation affects the mean of a tap-weight much more serious than the variance. As a result, we

only consider the variation of mean weight vectors. For an adaptation period, a decision error

can occur in any instant and the error sequence can have many patterns. For simplicity, we only

investigate those affecting performance most. Consider the LRAF. It is simple to see that if

there are 6 decision errors during the adaptation period (i.e., between 	 � � and 	 � ��,��),
the error pattern corresponding to the worst performance will be the one when all errors oc-

cur between 	 � ��,�� � 6 � � and 	 � ��,��. In other words, once a decision error

occurs, the error will continue to the end of the adaptation period. This will make the peak

weight value of the LRAF decrease from 	 � ��,���6�� monotonically. We then use this

pattern to represent all possible error patterns having 6 decision errors. From (2.80), we have

�� � �� ��� ����'&#�. Taking the decision errors into account, we may then rewrite �� as

���6� �
�
�� ��� ����'&#��(

� � ����� 6

7�
�� (2.87)

where 7��� � �8� and 8� � � is the eigenvalue of 
� [34]. We may treat 6 as a random

variable with a binomial distribution as

 �6� �

���,��
6

�
��� ���

(�
�'&#��(
� � (2.88)

where �� is the correct probability in (2.84). We then use (2.87)–(2.88) to calculate the mean

value of ���6�, denoted as ���. It is given by

��� �

�'&#��
(	�

���6� �6�� (2.89)

Then, the probability of correct acquisition for the LRAF, denoted as ���, can be obtained by

substituting ��� into (2.84). Similarly, we can use the same procedure to obtain the probability
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of correct acquisition for the HRAF, ��� . Finally, the probability of acquisition error for a 2R

system, denoted as ��, is obtained by

�� � �� ��� ��� � (2.90)

It is worth mentioning that �� and �� are the correct acquisition probabilities without decision

errors. Thus, these values essentially correspond to two upper bounds of the correct acquisition

probabilities. Using these values in the calculation of  �6� [as that in (2.88)] will underestimate

the acquisition error probability. On the other hand, we only take the worst decision error

patterns into consideration and this will overestimate the acquisition error probability. Thus,

(2.90) is a result corresponding a compromise of these two extreme cases.

b) 3R scheme

Using the similar idea, we can have the probability of acquisition error for the decision-

error-free case as

����� � �� �����	������+�������� (2.91)

�����	� � � ������	� � �����	�� / �� �� �/� �� � ��� �� � � � ���� (2.92)

�����+� � � ������+� � �����+�� / �� �� �/� �� � ���,�	���� � � � � �� � � � � �,�	����
(2.93)

������� � � �������� � �������� / �� �� �/� �� � ����,	� � � � � �� � � � � ��,	�� (2.94)

where �����	�, �����+�, and ������� are the correct acquisition probabilities of the LRU,

MRU, and HRU, respectively; �����	�, �����+�, ������� denote the taps whose tap-indices

correspond to the actual code delay. Note that + � ��,���. Let �� � �������,���,
�� � �������,����, �� � �������, and �� � �����. Then �� can be calculated as

that in (2.84), while �� and �� are given by

�� �
�	
	5'��

� �

��

�
���

�
�

'�

��#&#�

���

�
��� � ����

	'��

�
.�

�� �
�	
	5'��

� �

��

�
���

�
�

'�

��#�

���

�
��� � ���

�
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where �� and '�� can be obtained as that described in (2.80)–(2.81). Then, we have �� �

� � ������ . Again, �� does not consider the decision error propagation effect. We can

follow the same notation definitions and procedures outlined in the previous subsection to obtain

{ ���� ��� � ���}. Finally, we have the probability of acquisition error for the 3R system as

�� � �� ��� ��� ��� � (2.96)

 chips for  
iteration

ACQ

START

pT

EP z

1 EP−
ACQ

START

pT N

EP z +

(1 ) N
EP z−

Figure 2.4: Markov chain model for multirate code acquisition schemes. The right hand side

figure illustrates an equivalent model, where 
 is a delay operator, �� the probability of acqui-

sition error, �� penalty time, and ACQ the correct acquisition state.

§ 2.3.3 Mean Acquisition Time

Mean acquisition time analysis is generally derived with a Markov chain model [36]. Since

our multirate systems is different from the correlator with serial search, the commonly used

model [10] cannot be applied here. Fig. 2.4 shows the model derived for our systems. As the

figure shows, the system iterates for � chips to obtain �� and the probability of acquisition error

is ��. If the acquisition fails, it will wait for a period of time �� (chips) before the system

re-starts the acquisition. Here, �� is generally referred to as the penalty time [32]. For our

schemes, �� is constructed from ��)� ��� or ��)� �3� �Æ� at � � � . If �� �� � , the receiver will
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re-initialize acquisition after a time interval of �� chips. We can have the transfer function of

the Markov chain model in Fig. 2.4 as [27], [36]

*����z� �
��� ���z'

�� ��z���'
� (2.97)

where z is a delay operator and �� is the probability of acquisition error formulated above. The

mean acquisition time can then be easily found as

���� �
.

.z
*����z��z	� (2.98)

� � �
��� �����
��� ���

� (2.99)

Note that the unit of ���� is chip.

§ 2.4 Simulations

In this section, we conduct computer simulations to demonstrate the effectiveness of the pro-

posed algorithms. First, we investigate the computational complexity issue. Using (2.74) and

(2.76), we can evaluate the computational complexity requirement per chip versus � for 1R,

2R, and 3R schemes. We list the results in Table 2.1, 2.2, and 2.3 for � � �, �, and ��, re-

spectively. The numbers inside the parentheses in these tables indicate the values of �� used

for the 3R system. Also, the last two rows of the tables give the complexity ratio defined as

4�,4� and 4�,4�, respectively. From these tables, we can have several observations. Firstly,

the larger the processing gain, the higher efficiency the multirate system can achieve. Secondly,

the 3R system is always more efficient than the 2R system. Lastly, there exists an optimum �

for a given processing gain � . For example, when � � ��	� and � � �, the computational

complexity of the 2R system is about 	�� of the 1R system. For the same processing gain with

� � ��, the complexity of the 3R system is only about ��� of the 1R system. These outcomes

state that the multirate system can be much more efficient than the 1R system for large � .
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Table 2.1: Computational Complexity Comparison for � � �.

� 128 256 512 1024

4� 64 128 256 512

4� 26.50 42.50 74.50 138.50

4� 25.5(2) 41.5(2) 73.5(2) 137.5(2)

4�,4� 0.414 0.332 0.291 0.271

4�,4� 0.398 0.324 0.287 0.269

Table 2.2: Computational Complexity comparison for � � �.

� 128 256 512 1024

4� 32 64 128 256

4� 22.25 26.25 34.25 50.25

4� 14.25(3) 18.25(3) 26.25(3) 42.25(3)

4�,4� 0.695 0.410 0.268 0.196

4�,4� 0.445 0.285 0.205 0.165

Table 2.3: Computational Complexity Comparison for � � ��.

� 128 256 512 1024

4� 16 32 64 128

4� 35.125 36.125 38.125 42.125

4� 13.125(3) 14.125(3) 16.125(3) 20.125(3)

4�,4� 2.195 1.129 0.596 0.329

4�,4� 0.821 0.441 0.252 0.157

We then compare the probabilities of acquisition error for 1R, 2R, and 3R systems. We set

signal-to-interference-plus-noise ratio (SINR�), which is defined �,'�� , as ��
 dB (about 20

users with equal power). Also, � � �	�, � � �, �� � �,  � � � �� � ��,	, and

32



� � ��	�,
. The code-delay � is uniformly and randomly selected from ��� ��. We conduct

��� independent trials and show the results in Fig. 2.5. Also shown in the figure is the theoretical

results derived in Section 2.3. Experimental results in Fig. 2.5 indicate that the performance of

multirate systems are slightly better than that of the 1R system. Theoretical predictions for all

systems are accurate particularly when the step size is large. For the 1R system, the deviation

between experimental and theoretical values is smaller than that in 2R and 3R systems. This is

not surprising, since the 1R system does not have the error propagation problem.
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Figure 2.5: Experimental and theoretical �� [(2.9), (2.90), and (2.96)] versus step size  (� �

�, �� � �, � � �	�, and SINR� � ��
 dB).
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Figure 2.6: Experimental mean acquisition time ���� versus step size  (�� � ��	� � ���,

� � �, �� � �, and SINR� � ��
 dB).

As mentioned, an important acquisition performance measure is the mean acquisition time.

To derive the mean acquisition time, ����, we first set �� � ��	�� ��� chips (100 bits) and sub-

stitute the experimental acquisition error probabilities obtained from Fig. 2.5 into (2.99). Fig.

2.6 shows the mean acquisition time for all systems. The lower bound in Fig. 2.6 corresponds

to the case that no acquisition errors occur. In this case, ���� � � � ��	�,
 and this can

serve as a performance bound for comparison. As we can see, initially the mean acquisition

time decreases when the step size increases. When the step size is larger than  � � � ����,

the mean acquisition time starts to increase. For the setting here, the optimal step size is around

 � �� ����. In this case, ���� for the 1R system is about 7500 chips, that for the 2R system

is about 7150 chips, and that for the 3R system is about 7250 chips. We also examine the prob-
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ability of acquisition error for various SINR�. Fig. 2.7 shows the experimental results. Here,

we let  � �� ����, � � �	�, � � �, �� � �, and � � ��	�,
. We find that all systems

have similar performance. Also, the higher the SINR�, the better performance we can have.

The 2R system behaves slightly better than the others. Fig. 2.8 shows the corresponding mean

acquisition time. In terms of the mean acquisition time, we have the same conclusion that all

systems have similar performance.
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Figure 2.7: Experimental �� versus SINR� ( � �� ����).

For all simulations shown above, we have fixed � � ��	�,
 for the systems. In terms

of mean acquisition time, this choice may not be optimal. Fig. 2.9 shows the mean acquisition

time for various � (SINR� is ��
 dB). As we can see, there are optimum � ’s for multirate

systems. For  � �� ����, we find that the mean acquisition time of the 3R system increases

quicker than that of the 2R system when � is smaller than the optimum value. This is because
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Figure 2.8: Experimental mean acquisition time ���� versus SINR� ( � �� ����).

the performance of low-rate units depends on � more strongly. When � is larger than the

optimum value, the mean acquisition times of both systems approach the lower bounds. We can

observe the same behaviors when  � 
� ����. From the figure, we also find that the optimal

� is about 2 and 2.5 time-constants for  � 
� ���� and  � �� ����, respectively. In these

cases, ���� � �� ��� chips (47 bits) for both step sizes.

§ 2.5 Conclusions

The performance of conventional code acquisition in a CDMA system degrades greatly when

MAI presents. The adaptive filtering approach proposed recently has been proven to be MAI-

resistant. In this chapter, we propose a multirate adaptive code acquisition scheme that can
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significantly reduce the required computational complexity. We have specifically studied the

2R and 3R systems and theoretically analyzed their performance; this includes the filter conver-

gence properties, acquisition error rate, and mean acquisition time. Experimental results show

that while the proposed schemes can perform similarly with the conventional adaptive acquisi-

tion, the computational complexity is much lower. The proposed scheme is specially suitable

for CDMA systems operating in large propagation delay environments. With proper choice of

� or �� , the multirate code acquisition scheme can achieve an efficient compromise between

the mean acquisition time and computational complexity. The proposed scheme can also be

used in a carrier-phase unsynchronized system. In this circumstance, we have to take the in-

phase as well as quadrature components of tap-weights into account. For fractional delay, we
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can conduct a sub-chip level acquisition using an oversampled receive signal. This will enhance

acquisition performance, but it increases the computational complexity too. In this chapter, we

only consider the scenario of the AWGN channel. It is straightforward to extend the use of the

proposed scheme to a frequency selective fading channel. In this case, the proposed scheme

will acquire the code delay of the strongest channel path. These problems can serve as potential

topics for further research.
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Chapter 3

Adaptive Antenna Array Code Acquisition

Antenna arrays, being able to perform beamforming, can be used to enhance acquisition per-

formance [38]– [42]. Code acquisition with an array system is conventionally solved with the

correlator-based structure. In [38], each array element is equipped with a correlator, and the

correlator outputs are used as the input to a beamformer. If an assumed code-phase is cor-

rect, the output of the optimum beamformer will exceed a pre-set threshold. Then, acquisition

is claimed. Otherwise, the code-phase is changed and optimum beamformer weights are re-

calculated. A frequently considered MAI scenario is called directional MAI, in which MAI sig-

nals arrive at the array in some incident angles. When the interference is present, direct matrix

inversion is needed to derive the optimum beamformer weights [38]. In [39], an adaptive beam-

former is used to avoid this problem. However, the beamformer has to converge for each trial

code-phase. It requires a long adaptation time in an MAI environment and acquisition is then

slow. The approach in [42] uses a simple noncoherent correlator performing a two-dimensional

search. This method serially searches a cell corresponding to a specified delay and an angular

region. Since the search is performed in two-dimension, it often requires longer mean acquisi-

tion time if better angular resolution is desired. Besides, the acquisition performance degrades

when directional interference exists, as addressed in [42]– [43]. A remedy with an additional

algorithm was proposed in [43]. Apart from that, there are approaches treating acquisition as a
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channel estimation problem [44]– [49]. These methods provide good performance and usually

require matrix computations that are not desirable in real-world implementation. In [50]– [51],

a correlator-bank exploiting multipath signals was used for acquisition. However, its structure

is quite complicated.

In this chapter, we propose a novel scheme for code acquisition with antenna array. The

proposed algorithm belongs to the category of the adaptive filtering approach. It can be applied

in either periodic or aperiodic code systems. The proposed scheme contains two adaptive fil-

ters, a spatial and a temporal filter. A MSE criterion is proposed such that both filters can be

simultaneously adjusted by a stochastic gradient descent algorithm, called the constrained LMS

algorithm. The spatial filter acts as a beamformer to suppress interference while the temporal

filter acts as a channel estimator identifying the code-delay. The proposed scheme can form

a beam-pattern with multiple main beams collecting the desired user’s multipath signals from

different directions. We also analyze the signal-to-interference-plus-noise ratio (SINR) at the

beamformer output, probability of correct acquisition, and mean acquisition time, and derive

closed-from expressions for the AWGN channel. The proposed scheme can deal with fractional

code-delay, which is not considered in [38]– [42]. Also, the temporal filter can estimate channel

responses of the desired user.

This chapter is organized as follows. Section 3.1 describes the adaptive array acquisition

approach in [39]. Section 3.2 develops the proposed schemes for various channel scenarios.

Section 3.3 discusses issues of adaptive processing, and Section 3.4 carries out performance

analysis. Section 3.5 presents simulation results demonstrating the effectiveness of the proposed

scheme. Finally, Section 3.6 gives conclusions. Throughout this chapter, we use � to denote an

identity matrix. Note that the dimension of � is not explicitly shown; it will be defined whenever

necessary.
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§ 3.1 Correlator-Based Adaptive Array Code Acquisition

In this section, we briefly review the adaptive array approach in [39] which is a single-dwell

serial search method. The block diagram of this approach is shown in Fig. 3.1. As seen, it has

an antenna array with � sensors, and uses an individual correlator (or accumulator) for each

array element. It is assumed that the array is linear and the � sensors are uniformly placed.

Also, the element spacing is half a wave-length. The chip-rate sampled received signal vector

in baseband is given by

���� � � ������2����� �� � ����� (3.1)

where ���� � ������� is the PN code sequence of the desired user (i.e., no data are modulated

for the desired user during acquisition), 2 the carrier-phase offset, � the corresponding code-

delay assumed to be an integer form zero to � � � where � is the processing gain, and ����

a zero-mean, complex, and white Gaussian noise vector associated with a covariance matrix

of '�)�. Note that ���� consists of MAI and noise. When the number of interfering users and

the number of resolvable multipaths are large, the Gaussian assumption is generally held. The

steering vector � in (3.1) is given by � �
�
�� ������5 ������ � � � � ������5�� � �� �����

��
�

where � denotes the direction-of-arrival (DoA) of the desired user. For a trial code-phase �� , the

output of the 	-th correlator can be obtained as

����� �
��
�	�

"������� � �� �� 	 � �� � � � �� � �� � � �� � � � � �� � �� (3.2)

where "���� is the 	-th element in ���� and �� is the processing period for each code-phase,

selected as 	� in [39]. Let ���� � ������� � � � � �������
� and

����� �
�
�

����

�������� � (3.3)

Then (3.3) is used as the input to an � -tap adaptive filter, �����. Consider a specific pro-

cessing period and let �
 be the starting instant for filter adaptation (�
 � � - ��� �). Define
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Figure 3.1: Correlator-based adaptive array code acquisition system. Note that ����� � �� �
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a cost function of ���#�������, where #���� � ����� ��������. Using the method of stochastic

gradient descent, we can then have the update equation for ����� as

����� �� � ����� � �#
�
��������� �
 � � - �� � �� (3.4)

where � is the step size controlling the convergence rate. The filter-weight vector ����� � ��

is then used for constructing the testing statistic � � ���
� ���� ������� ���� (see Fig. 3.1). If

� exceeds a pre-set threshold, the system will claim the acquisition and enter the code-tracking

phase. Otherwise, the system will advance the trial code-phase and repeat the process all over

again. As indicated in [34], the step size is bounded in the range of 0 and 	,tr�
�*�, where 
�*

is the correlation matrix of ����� and tr��� is the trace operation. In [39], �,� was chosen as a

compromise between the convergence rate and stability.

Let the trial code-phase be �� . If �� � � , the decision variable � will have a noncentral
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chi-square distribution. By contrast, if �� �� � , the decision variable � will have a central chi-

square distribution. Let 6� be the threshold for the acquisition claim. Then, we can have the

probability of false alarm �+ and the probability of correct detection ��. Since the false alarm is

more harmful to the mean acquisition time, �+ is usually fixed to some level (e.g., �+ � ����)

and the threshold can be calculated accordingly. Finally, the mean acquisition time, denoted as

����, can be determined as [39]

���� �

�
�	� ����� ����+��� � ��

	��
�

�

��

�
��� (3.5)

where �� is the penalty factor and the unit for (3.5) is chip. Note that if there is no directional

interference and the signal-to-noise ratio (SNR) is high, ����� will converge to the steering

vector of the desired user. If the adaptive filter is initialized with����
� � ��� � � � � �� , the filter

will converge rapidly since each element in the optimum filter-weight is just a phase-rotated

version of that in����
�. However, if directional interference exists, the relationship cannot be

held and the convergence of the adaptive filter becomes slow. As a result, the mean acquisition

time becomes large (shown in Section 3.5), especially at strong interference environments.

§ 3.2 Proposed Adaptive Array Code Acquisition

§ 3.2.1 Signal Model and Algorithm Development

Assume that there are � users in a cell and each user is given an aperiodic PN sequence.

Aperiodic code means its period is much longer than a symbol period [44], [52]– [53]. The

continuously transmitted signal of the �-th user in baseband can be expressed as

���!� �
��

�	��

.����
����
�	�

/����(� �!� (�� � ����� � � �� � � � � �� (3.6)

where .���� is the �-th BPSK symbol of the �-th user, /����(� the (-th chip of the spreading

code (assumed to be random) for .����, and  �!� a unit-amplitude rectangular pulse with a

chip-duration ��. Also, let the channel associated with the �-th user has �� paths, and the
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Figure 3.2: Proposed adaptive array code acquisition system.

DoA for each path may be different. Then, the chip-rate sampled received signal vector can be

represented as

���� �
��
�	�

���
�	�

����)���3������ ������2���� � ����� (3.7)

where

3������ �

� �������

���

���!� �������.!� (3.8)

���� is an � �� complex Gaussian vector with zero-mean and a covariance matrix of '�
,�, and

����� ����� )���� 2��� denotes the code-delay, steering vector, complex channel gain, and carrier-

phase offset, associated with the (-th channel path of the �-th user, respectively. Note that 2��� is

uniformly distributed over ��5� 5� and ���� is given by

���� � ��� ������5 ��������� � � � � ������5�� � �� ��������
� � (3.9)

where ���� is the DoA for the (-th channel path of the �-th user.

Fig. 3.2 illustrates the structure of the proposed scheme. Without loss of generality, the

first user is seen as the desired user. As seen, there are two adaptive filters, a spatial and a
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cascaded temporal filter. The spatial filter �
 combines the array outputs into a single output.

The temporal filter �	 uses ����� as its input signal and the spatial filter output as its reference

signal. Note here that ����� is the same as the PN code sequence of the desired user, /������,
since .���� � � during the acquisition period. In what follows, we will use ����� to denote the

PN code sequence of the desired user as well. The spatial filter acts like a beamformer to reject

interference, while the temporal filter acts like a channel estimator to estimate the beamformed

temporal channel of the desired user. The code-delay can then be estimated from the peak

position of �	. The difference between these two filter outputs forms the error signal from

which we can perform filter adaptation. We propose a cost function as

�$ � �����	 �������
 �������� (3.10)

where

�
 � ��
��� � � � � �
����
� (3.11)

�	 � ��	��� � � � � �	����
� (3.12)

���� � ������� ����� ��� � � � � ����� � � ��� � (3.13)

Note that the function of the beamformer is to suppress interference and in the ideal case, its

output, ��
 ����, will consist of the beam-formed signal of the desired user and noise. On the

other hand, the function of the channel estimator is to identify the beam-formed channel and in

the ideal case, its output,��	 ����, can form the same beam-formed signal. Thus, minimization

of (3.10) will let�
 and�	 have the solutions we desire.

Notice that the filter size of �	 should be larger or equal to the delay uncertainty assumed

to be � here. From (3.10), it is simple to find that a minimum �$ (which is zero) occurs when

�	 � � and�
 � �, and this is an undesired trivial solution. To avoid that, we pose a unit-norm

constraint on the solution. That is

���	��� � ��	 �	 � �� (3.14)
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As a result, (3.10) becomes a constrained optimization problem. We use the Lagrange multiplier

method [34] to transform the constrained optimization problem into an unconstrained one. From

(3.10) and (3.14), we have an equivalent cost function as

$ ������	 �������
 �������� %�����	 �	
���	 
��	 ��

�
	 ��
 ��

�

 �

��	 ��
�

 
��
 � %�����	 �	� (3.15)

where

������ � �������������� (3.16)


������ � ������������, 
������ � ������������, and % denotes the Lagrange multi-

plier. Differentiating (3.15) with respect to��

 and��

	 and setting the results to be zero-vectors,

we can obtain

9$

9��



� ���	 �
��
 � � (3.17)

9$

9��
	

� 
��	 ���
 � %�	 � �� (3.18)

Since 
� is a full-rank matrix, its matrix inversion exists. From (3.17), we have

�
 � �
��
� �

��	� (3.19)

Substituting (3.19) into (3.18), we have

�

� ��
��

� �
�
�
�	 � %�	 � �� (3.20)

It is simple to see that the solution of % is an eigenvalue of
���
��
� �

� , while�	 is the cor-

responding eigenvector. Note that an eigenvector satisfies the constraint in (3.14) automatically.

Once �	 is derived,�
 can be found using (3.19). Multiplying (3.20) with ��
	 , we obtain

% � ��	 �
� ��
��
� �

� �	� (3.21)
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Substituting (3.19) into (3.15) and using (3.21), we have

$ � ��	 
��	 ���	
�
�
��

� �
�
�
�	 ���	

�
�
��

� �
�
�
�	 ��

�
	

�
�
��

� �
�
�
�	

� ��	
�

� ��
��

� �
�
�
�	

� %� (3.22)

Let the solutions to (3.17)–(3.18), which are optimum weights, be denoted as�
�� and�	�� and

the corresponding minimum value of (3.15) be $���. From (3.22), we can conclude that $��� is

equal to the minimum eigenvalue of
���
��
� �

� , and�	�� is the corresponding eigenvector.

Substituting�	�� into (3.19), we can then obtain�
��. In the sequel, we will apply this result to

find �
�� and �	�� in various channel scenarios.

§ 3.2.2 Code Acquisition with AWGN Channel

In this subsection, we consider the AWGN channel scenario. In other words, �� � � for

� � �� � � � � � in (3.7). For convenience, we drop the subscript ( in (3.7). The received signal

can be written as

���� �
��
�	�

��)�3���� ������2�� � ����

� � � � � 3��� ������2� �
��
�	�

��)�3���� ������2�� � ����� (3.23)

where we let �� � �, )� � �, 3���� � 3���, 2� � 2, and �� � � .

Here, we let the code-delays of all users have fractional parts. For the desired user, we let

� �  � Æ� (3.24)

where  is an integer,  � ��� ��, and Æ is a real number, Æ � ��� ��. Also, let ����� � ����.

From (3.8), we can write the received signal of the desired user as [12], [18], [45]

3��� � ��� Æ� � ����  � � Æ � ����  � ��� (3.25)
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Note that (3.25) is a weighted sum of ���� with two successive code-delays  and  � �. This

is because Æ �� � and a complete received chip in the chip-matched filter crosses two successive

chip-intervals. Using (3.25), we can rewrite (3.23) as

���� � � ������2�
�
��� Æ������  � � Æ�����  � ��

�

�
��
�	�

��)�3���� ������2�� � ����� (3.26)

Substituting (3.26) into (3.16), we find

������ � ��� � � � � ������ Æ�� ������2���Æ� ������2�� �� � � � � �� � (3.27)

where ��� � Æ��� �����2� and �Æ�� �����2� are in the � � ��- and � � 	�-th row of �,

respectively. We then apply (3.27) to (3.20) and then obtain

���
��
� �

� �

�
�������������������

� �
...

...

� �

�� �� � � � �� �� ��� Æ���0 �Æ��� Æ��0 ���� � � � ��

�Æ��� Æ��0 �� Æ��0

� �
...

...

� �

�
�������������������

�

(3.28)

where we have assumed that
� � � (long-code assumption) and defined

�0 � ��
��
� � (3.29)

�- � ��� � � � � �� �� �
-��

� �� �� � � � � �� � . � �� � � � � �� (3.30)

Now, we can see that there are two non-unity columns in (3.28) and they are located in the

� � ��- and � � 	�-th columns. To derive the eigenvalue %, we let

det����
��
� �

� � %�� � �� (3.31)
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where det��� stands for the determine of a matrix. Then, we have

��� %����
��

�� ��� Æ���0� %

�
��� Æ��0� %�� Æ���� Æ���0�

�
� �� (3.32)

It is simple to see that there are � roots for (3.32) and only one is non-unity. Its value is

� � ��� � Æ�� � Æ��0. Since both �� � Æ�� � Æ� and �0 are positive, the non-unity eigenvalue is

positive and smaller than one. Thus, it is the minimum eigenvalue. Denoting it as %���, we have

%��� � $��� � �� ���� Æ�� � Æ��0� (3.33)

Note that the terms in the bracket of (3.33) are maximized when Æ � ���. Substituting %���

back to (3.20), we can solve the corresponding eigenvector�	�� as

�
���
��

� �
� � %����

�
�	�� � �� (3.34)

Equation (3.34) implies that�	�� is in the null space of � � ���
��
� �

� � %����, where

� �

�
�������������������

� �
...

...

� �

��� %������ ��� %������ � � � Æ��0 �Æ��� Æ��0 � � � ��� %������

�Æ��� Æ��0 ��� Æ���0

� �
...

...

� �

�
�������������������

�

(3.35)

Note that the � � ��- and � � 	�-th rows in (3.35) are linearly dependent. Thus, � is with a

rank of � � �. Substituting (3.35) into (3.34), we obtain

��� %�����	���� � � � ��  �  � � (3.36)

Æ�0�Æ�	���� � ��� Æ��	������� � � (3.37)

��� Æ��0��Æ�	���� � ��� Æ��	������� � �� (3.38)
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where �	���� denotes the �-th element of �	�� and � � �� � � � � � � �. Thus, we have

�	�� �
�����:�	

��� Æ�� � Æ�
��� � � � � �� �� �

�

� �� Æ� Æ� �� � � � � �� � (3.39)

where : is an arbitrary angle. With the peak position in (3.39), it is simple to see that the

code-delay is correctly acquired. As we can see, �	�� does not have a unique solution. The

non-uniqueness of the optimum solution stems from the fact that (3.14) is only an amplitude

constraint. Even though the solution is non-unique, it does no harm to our solution since only

the amplitude is used in peak finding. Now, let us solve�
��. Using (3.39) and (3.27) in (3.19),

we can derive

�
�� � 
��
� � � ������: � 2�

	
��� Æ�� � Æ�� (3.40)

As we can see from (3.40), �
�� corresponds to the conventional MMSE beamformer (
��
� �).

Notably, we can estimate the fractional delay Æ from �	�� [see (3.39)] as

Æ �
�

��	�����

��	�������
� �

� (3.41)

A special case considered most in the literature (e.g., [20], [38]– [42]) is that Æ � � (integer

delay). In this case, the results shown above can be further simplified. Substituting Æ � �

into (3.33), (3.39), and (3.40), we then obtain $��� � � � �0, �	�� � ���� � �����:�, and

�
�� � 
��
� � � ������: � 2�.

§ 3.2.3 Code Acquisition with Multipath Channel

In this subsection, we consider the scenario of a general multipath channel. We rewrite (3.7) as

���� �
���
�	�

����)���3������ �
��
�	�

���
�	�

����)���3������ � ����

�

��
�	�

��)�3���� �
��
�	�

���
�	�

����)���3������ � ����� (3.42)
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in which we let �� � �� ���� � ��� )��� � )�� 3������ � 3����, and ���� � �� for notational

simplicity. Note that the transmitted power and carrier-phase offset have been absorbed into the

channel gain. We let the multipath delay of the desired user, ��, be expressed as

�� �  � � Æ�� ( � �� � � � � �� (3.43)

where  � � ��� �� and Æ� � ��� ��. Similar to the previous case, we have

3���� � ��� Æ�� � ����  �� � Æ� � ����  � � ��� ( � �� � � � � �� (3.44)

For simplicity, we also assume that ���� ; ��, �� - � , and  ��� �  � ; � [45] for all channels.

Following the procedures described above, we can have �
���� as

� �

�
����������������������������

������

...

������

�)����� Æ���
�
�

�)��Æ����
...

�)����� Æ���
�
�

�)��Æ����
������

...

������

�
����������������������������

� (3.45)

In (3.45), the � � � ��-th, � � � 	�-th, � � �, � � � ��-th, and � � � 	�-th rows are nonzero.

Substituting (3.45) into (3.34) and rearranging the results, we have

��� %�����	���� � � � ��  ��  � � �� � � � �  ��  � � � (3.46)�
��� %�������

� � ��	�� � �� (3.47)
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where ��	�������� � ��	������ �	�������� � � � � �	������ �	�������
� ,

� �

�
����
���� � � � ����

. . .

���� � � � ����

�
����
�������

� (3.48)

���� � �
�
� 


��
� �� � )��)�

�
� ��� Æ����� Æ�� ��� Æ��Æ�

Æ���� Æ�� Æ�Æ�

�
� � (3.49)

���� � ��
���� ��� �� � ��� � � � � ��, and the dimension of � here is 	� � 	�. From (3.46), we

can see that the tap-weights that do not corresponding to multipath delays are all zeros. Also,

from (3.47) we know that ��	�� is in the null space of �� � %����� � �. In this general case,

however, it is difficult to obtain a closed-form solution for ��	��. As shown, an optimum ��	�� is

the eigenvector associated with the smallest eigenvalue of ���
��
� �

� [or (3.47)]. Once�	��

is obtained,�
�� can be solved accordingly.

For multipath channels, we can also estimate Æ�, ( � �� � � � � �. To show this, we rewrite

(3.18) as

��
�� � ��� %�����	�� � �� (3.50)
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Using (3.45), we have

�	�� �
�

�� %���

�
����������������������������

�
...

�

)����� Æ���
�
� �
��

)��Æ��
�
� �
��
...

)����� Æ���
�
��
��

)��Æ��
�
��
��

�
...

�

�
����������������������������

� (3.51)

It is simple to see that Æ� can be estimated by

Æ� �
�

��	����
�

��	����
���
� �

( � �� � � � � �� (3.52)

which is similar to (3.41). With known�
����	��� ������	� and �Æ����	�, the channel estimate can

be obtained accordingly.

Note that for derivation convenience,  �!� is assumed to be a rectangular pulse. In real-world

applications, we can apply other types of pulses as well, e.g., the squared-root-raised-cosine

(SRRC) pulse. It can be shown that for the SRRC pulse, the received signal of the desired user

has the same form as that in (3.25). The only difference is that the coefficients in (3.25) are

replaced with <�� � Æ� and <�Æ�, where <�Æ� stands for the raised-cosine function sampled at

Æ��. The derivation is straightforward and then omitted here. All results derived above can be

applied accordingly.
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§ 3.3 Adaptive Implementation and Convergence Analysis

In Section 3.2, we have proposed a new scheme for code acquisition with the antenna array.

Optimal-weights of the system are derived with the eigen-decomposition technique. However,

the required computational complexity of the eigen-decomposition is on the order of��� ��. In

addition, the matrix inverse of
� is required in (3.20). To alleviate these problems, we propose

to use an adaptive algorithm to approach the optimum filter-weights. The adaptive algorithm we

consider is the LMS algorithm which is well-known for its simplicity and robustness. As shown,

we have a unit-norm constraint on the temporal filter. Applying this constraint, we then obtain

a constrained LMS algorithm. In what follows, we describe the algorithm and examine related

issues such as the step size bound and the steady-state mean squared error (MSE). Besides, we

also analyze the output SINR of the beamformer [���� in Fig. 3.2].

§ 3.3.1 Constrained LMS and Convergence Analysis

Rewriting (3.10), we have

�$ � ��� 
���� (3.53)

where

�� � ���	 ��
�

 
� (3.54)

���� � ��� ������� ���� (3.55)


� � ������������� (3.56)

The gradient of (3.53) is given by

9 �$

9��
�

� 
���� (3.57)

Using (3.57), we can apply a gradient descent method to obtain the optimum solution, denoted

as����. However,
� needs to be estimated. The simplest estimate of
� is to use the instanta-

neous value from ��������� and this yields a stochastic gradient descent algorithm, called the
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LMS algorithm [34]. We then can have the filter adaptation as

���� � �� � ����� � ����������������� (3.58)

where  is the step size controlling the convergence rate. Recall that we have the constraint that

���	��� � �. This constraint can be easily satisfied if normalization is performed on �	��� at

each iteration. The overall adaptation procedure is given as:

#��� � ��� ������� (3.59)

���� � diag
� �

���	����� � � � � �
�

���	������ �� �
�

� �� � � � � �� �� �
�

�
(3.60)

����� �� � ���������� ����#����� � � �� �� � � � � � � �� (3.61)

where diag��� denotes a diagonal matrix consisting of the arguments it includes, and � the

maximum iteration number for the adaptive filter. To complete the acquisition, ��	�������,
� � �� �� � � � � � � �, are compared and the position corresponding to the maximum value is

used for code-delay estimation. As we can see, ���� normalizes �	��� at every iteration. To

guarantee convergence,  has to be selected properly. Here, we perform the mean convergence

analysis to derive a step size bound. Subtracting���� � ���	����
�

��

� from both sides of (3.61),

we have

����� � �� � ������ � ������ ������� �������� �������
�

� ������ � ������ ������� ���������������� �����

� ��� ��������������� � ������ ������� ����#������ (3.62)

where

#���� � �
�
������� (3.63)

������ � ����������� (3.64)
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Note that the dimension of � here is �� � �� � �� � ��. Taking the statistical expectation

of (3.62), applying the direct-averaging method [34], and using the orthogonality principle, we

then have

�������� ��� � ��� 
����������� �������� � ���������� (3.65)

Let � � diag�8���� � � � � 8������ with 8��� being an eigenvalue of 
�, and � be a matrix con-

sisting of the eigenvectors of
�. Multiplying (3.65) with�� and letting ���� � �����������,
we have

���� �� � ��� ����� ��� �������� � ����������� (3.66)

Since �	��� is normalized at every iteration and the step size is usually small, it is reasonable

to assume that ���� � � and the second term in the right-hand side of (3.66) can be ignored.

Iterating (3.66), we obtain

���� � ��� ������� (3.67)

Thus, for (3.66) to converge, the following condition must be satisfied

� -  -
	

8�����
� (3.68)

where 8����� denotes the maximum eigenvalue of 
�. This result is the same as the conven-

tional LMS algorithm [34]. From (3.67), we can also see that ��� � �. In other words,

�������� � ���� when ��.

Note that while the conventional LMS algorithm requires 	�� � �� multiplications per

iteration, the constrained LMS algorithm developed here needs extra � multiplications for cal-

culation of ���	����� and extra � divisions for normalization [see (3.61)].

§ 3.3.2 Steady-state MSE Analysis

We now derive the steady-state MSE of the constraint LMS algorithm. Invoking the direct-

averaging method [34] and using (3.62), we can write the correlation matrix of the tap-weight
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error vector as

���� �� � �������� ������ ��� ���
� ��� 
�������� 
�

� �$���
� � �������� ��������� ��������� ��� (3.69)

As stated, �	��� is normalized at every iteration and the step size is usually small. Thus,

���� � � and the last term in the right-hand side of (3.69) can be ignored. Let ����� �

������� and observe that��
�� � �. Pre-multiplying and post-multiplying both sides of

(3.69) with�� and �, respectively, we have

���� � �� � ��� � �������� � � �$����� (3.70)

Let the �-th element on the diagonal of ����� be � ����. Then,

� ���� �� � ��� 8����
�� ���� � �$���8��� � � �� � � � � � ��� (3.71)

When ��, � ���� �� � � ����. From (3.71), we have

� ��� �
$���

	� 8���
� (3.72)

The additional MSE due to the use of the LMS algorithm is generally referred to as the excess

MSE, denoted as $����. From [34], we then have

$���� �
����
�	�

� ���8��� � $���

����
�	�

8���
	� 8���

� (3.73)

Denote the steady-state MSE of the LMS adaptation as $

. Finally, we have

$

 � $��� � $����� (3.74)
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§ 3.3.3 Output SINR of Beamformer

Now, let us analyze the output SINR of the beamformer. For the scenario considered in Section

3.2.2, we have the beamformer output as

���� � ��
 �������

� ��
 ���

�
� ������2����� Æ� � ����  � � Æ � ����  � ��

�
� �.���

�
� (3.75)

where �.��� consists of MAI and noise and

�.��� �
��
�	�

��)�3���� ������2�� � ����� (3.76)

Using (3.40), we can find the output SINR of the optimum beamformer, denoted as �����, as

����� �
��
��
.�
��

��
��
/��
��

�
���� Æ�� � Æ� � ���
��

� ���
��
��

� 
/�

��
� �

� (3.77)

where 
. �
�
�� � Æ�� � Æ�

�
��� and 
/� � ���.�����. ����. Since we use adaptive filter-

weights to approximate the optimum weights, we have to include the excess MSE in the SINR

calculation. Thus, we can rewrite (3.77) as

����� �
���� Æ�� � Æ� � ���
��

� ���
��
��

� 
/�

��
� � � $����

� (3.78)

where $���� is that shown in (3.73). For the special case that Æ � �, (3.78) is reduced to

����� �
���
��

� ���
��
��

� 
/�

��
� � � $����

� (3.79)

Similarly, we can derive the corresponding result for the scenario considered in Section

3.2.3. The beamformer output here is given by

���� � ��
 ���

� ��
�	�

��)�
�
��� Æ�� � ����  �� � Æ� � ����  � � ��

�
� �����

�
� (3.80)
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where

����� �
��
�	�

���
�	�

����)���3������ � ����� (3.81)

The output SINR of the optimum beamformer is then

����� �
��
��
��
��

��
��
/��
��
� (3.82)

where 
� �
 �
�	� �)���

�
�� � Æ��

� � Æ��
�
���

�
� and 
/� � ��������������. For the adaptive

approach, we have the output SINR as

����� �
��
��
��
��

��
��
/��
�� � $����
� (3.83)

§ 3.4 Performance Analysis

In general, acquisition performance can be measured by the probability of correct acquisition

and the mean acquisition time. In this section, we will evaluate the performance of the proposed

scheme with these two measures.

§ 3.4.1 Probability of Correct Acquisition

In the proposed scheme, � is estimated with the quantities of ��	�������, � � �� �� � � � � ���. To

evaluate the probability of correct acquisition, we have to characterize the statistical property of

��	������� first. From the analysis shown in the previous section, we see that in the steady-state

(��), �	��� has a mean vector of

���	���� � �	��� (3.84)

Its covariance matrix, denoted as 	 � ����	��� � �	����	��� � �	��
��, can be derived as

follows. As a common practice, the step size is usually small. Thus, we can use the Taylor

expansion to expand �,�	� 8���� in (3.72) with respect to 8��� � �. Then, we have

�

�	� 8����
�

�

	
�

�

�
8��� � � � � � (3.85)
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From (3.70), it can be seen that the matrix ����� will become diagonal as � � . Using this

property and truncating the terms higher than the first-order in (3.85), we then have

����� �


	
$�����

�

�
$����� (3.86)

Pre-multiplying and post-multiplying both sides of (3.86) with � and�� , we obtain

���� �
$���

	
��

�$���
�


�� (3.87)

Note that the � � � upper-left submatrix of ���� corresponds to the covariance matrix 	.

Finally, we have

	 � $���

�


	
�

�

�

�
� � $���

	
�� (3.88)

From (3.88), we can see that the filter taps are independent and identically distributed (i.i.d.).

Let’s consider the AWGN channel with an integer delay first. When �	��� approaches its

steady-state, �	��� can be assumed to have a Gaussian distribution [33]. From (3.84)–(3.88),

we can find that when � is large, ��	�� ����� has a noncentral chi-square distribution with two

degrees of freedom, whereas other taps ��	�������� � �� � , have chi-square distributions. Let

�� � ��	�����������, � � �� � � � � � � �. The probability density functions for the filter weights

are then

 0� ��� �
�

	'��
�������	���� �

� � �

	'��
�&��

�
�
��	���� �
'��

� � ; � (3.89)

 0��� �
�

	'��
����� �

	'��
� � ; �� � �� � � (3.90)

where &���� is the zero-th order modified Bessel function of the first kind and '�
� � $���,	.

The conditional probability of correct acquisition for the AWGN channel, denoted as ������, is

given by

����
� � � Pr�
� ; ��� � � � � 
� ; ����� 
� ; ����� � � � � 
� ; ������� � 
� �

�
���!

�	��� 		�

Pr�
� ; ����� � 
� �

�

�� /�

�

�

	'��
����� �

	'��
�.�

����
� (3.91)
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Note that the i.i.d. property has been applied in (3.91). The probability of correct acquisition,

denoted as ��, is then

�� �

� �

�

������ �  0� ���.�� (3.92)

Note that  0� ��� in (3.92) is the function shown in (3.89) with ��	���� �� � �.

Next, we consider the scenario of the AWGN channel with a fractional delay. In this case,

two nonzero successive peaks in optimum filter-weights will result [see (3.39)]. As mentioned,

� �  � Æ. Thus, �� and ���� will be the peaks. We will claim correct acquisition if either ��

or ���� is the maximum of all ��. Define two events as

E� � �
� ; ��� � � � � 
� ; ����� 
� ; ����� � � � � 
� ; ������� � 
��
E��� � �
��� ; ��� � � � � 
��� ; ����� 
��� ; ����� � � � � 
��� ; ��������� � 
����� (3.93)

Thus, correct acquisition corresponds to the event E� � E���. Then, the conditional probability

of correct acquisition can be formulated as

����
�� 
���� � Pr�E� � E���� � Pr�E�� � Pr�E����� Pr�E�� � Pr�E����� (3.94)

where

Pr�E�� �
���!

�	��� 		�� ���

Pr�
� ; ����� � 
��

�

�� /�

�

�

	'��
����� �
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�.�

����
(3.95)
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�

�

	'��
����� �

	'��
�.�

����
� (3.96)

Note that both �� and ���� are functions of Æ (though the dependence is not shown explicitly).

Thus, the probability of correct acquisition is

�� �

� �

�

� �

�

� �

�

����1� =� �  0��1� �  0����=� .1.=.�Æ� (3.97)
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where 1, =, and �Æ stand for the dummy variables of ��, ����, and Æ, respectively. Note that

 0���� and  0������ are obtained by replacing ��	���� �� with ��	������ and ��	�������� in (3.89),

respectively.

For general multipath channels, we can also evaluate the probability of correct acquisition.

Since the procedure is similar and the result is complicated, we omit the details here.

§ 3.4.2 Mean Acquisition Time

Mean acquisition time usually serves an indicator showing that how fast a receiver can complete

the acquisition. It is generally derived with a Markov chain model [1], [10]. Since our system

is different from the conventional serial-search correlator, the commonly used model [1], [39]

cannot be applied here. Apply the model derived in Fig. 2.4 to our system and let the probability

of acquisition error is ��, which is equal to � � ��. As the figure shows that if the acquisition

fails, the system will wait for a period of time �� (chips) to re-start the acquisition. Here, �� is

generally referred to as the penalty time [1]. The transfer function of the model can be [27]

*����z� �
��� ���z

�� ��z���'
� (3.98)

where z is the unit-delay operator. The mean acquisition time can be found as

���� �
.

.z
*����z��z	� � � � �� � ���

��
�� ��

� (3.99)

From (3.99), it is easy to see that if �� � �, ���� � � . Thus, � can serve as a performance

bound for ����.

§ 3.5 Simulations

In this section, we report simulation results to demonstrate the effectiveness of the proposed

algorithm. We set common parameters used for all simulations as: � � �, � � �, �� � ����

chips,�
��� � �, and �	����� � �,
�
� , � � �� �� � � � � � � �.
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§ 3.5.1 AWGN Channel

Let the power of each jammer be 3 dB stronger than that of the desired user (i.e., �)� � � and

�)�� � 	 for � � 	� � � � � �). Also, '�, � �, � � ��, and  � � � ����. The DoAs are set

as ������	� � ���
��	, ������� ��  ��� ���	���� ����	
�� (radians). Simulations with 400

independent trials are conducted. Figs. 3.3–3.5 show the adaptation results for the proposed

algorithm. Also shown in these figures are the corresponding theoretical predictions derived

in Section 3.3 and 3.4. Fig. 3.3 shows the convergence curves for averaged ��	������� and

��	���������. Note that the convergence behaviors for ��	�������, � ��  �  � �, are all similar.

Two delay scenarios with Æ � � and Æ � ��� are considered. As we can see, ��	������� converges

to its optimum values, one for Æ � � and 0.5 for Æ � ���. By contrast, ��	��������� converges

to a small value close to zero. Fig. 3.4 gives the convergence curves for MSE. As expected, the

MSE for Æ � ��� is larger than that for Æ � �. Using (3.74), we obtain theoretical steady-state

MSEs for Æ � � and 0.5 as 0.158 and 0.278, respectively. From the figure, it is apparent that

the experimental result matches the theoretical one quite well. The corresponding output SINR

for the beamformer is shown in Fig. 3.5. The theoretical SINRs are calculated with (3.79) and

(3.78), and they are 7.34 dB and 4.25 dB for Æ � � and Æ � ���, respectively. As seen, the

SINR is increased from ��	 dB to 7.34 dB in 700 iterations (for Æ � �). The beamformer in

the proposed algorithm effectively suppresses the interference.

As mentioned in (3.41), Æ can be estimated from �	����� and �	�������. Simulations are

carried out to evaluate the performance of the estimation. We randomly generate  and Æ for

500 trials. The MSE, defined as ����Æ��� � Æ���, is used as the performance measure, where

�Æ��� denotes an estimate of Æ at � � � . Here, we let  � � � ���� and � � ���� chips

for filter adaptation. For simplicity, we perform estimation of Æ only when ��	������� and

��	��������� are the first two maximums of all weights. Fig. 3.6 shows the simulation result.

As we can see, the estimation errors is small. For an SNR (per chip) of�	 dB, the MSE is only

����. The SNR here is defined as �)��,'�, and �)� � �. Note that in the same figure, the result
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for a multipath channel, which will be discussed later, is also included.

Next, we will consider the performance of acquisition. Let’s first examine the probability

of correct acquisition [(3.92) and (3.97)]. Fig. 3.7 gives the simulation results for various step

sizes. Here, we let � � ��, � � ��� and ���, and the array input SINR (per chip) be ���
dB. Theoretical values calculated with (3.92) and (3.97) are also shown for comparison. It is

clear from Fig. 3.7 that the experimental results highly agree with the theoretical ones. When

Æ �� �, the probability of correct acquisition is somewhat lower. This is due to the fact that

optimum values of ��	������� and ��	��������� are smaller than one. Also, we can see that the

experimental probability of correct acquisition with � � ��� is different from the theoretical

one. This indicates that � is not sufficiently large and adaptive filters have not reach their

steady-states. As we will see below, experimental results of � � ��� can be very close to the

results calculated with (3.97).

We then substitute the experimental probabilities (� � ��) shown in Fig. 3.7 into (3.99) to

derive the mean acquisition time. The result is shown in Fig. 3.8. It is seen that the proposed

algorithm can acquire an integer delay in a short period of time. For example, ���� is ��	 chips

when  is 
�����. The mean acquisition time for fractional delay is slightly larger than that for

integer delay. In Fig. 3.8, � is selected somewhat arbitrarily and the value may be not optimal.

Fig. 3.9 shows the mean acquisition time for various � with  � 
� ���� and �� ����. The

lower bound being ���� � � serves a performance benchmark. For integer code-delay, when

� is greater than 
��, the mean acquisition time becomes close to the lower bound. Also, we

can see that the minimum mean acquisition time is around � � 
�� for  � 
 � ����. The

acquisition performance for fractional delay will be poorer if � is too small. For � is larger

than 400, it becomes close to that in integer delay. The minimum mean acquisition time is

around � � 
�� for  � �� ����.

From Fig. 3.9, we can see that there is an optimum � for a given array input SINR. To let

the system be operated in its optimum conditions all the time, we can build a table for optimum

� ’s (vs. input SINR) off-line, and then obtain an optimum � with a table lookup on-line. If we

66



3 3.5 4 4.5 5

x 10
−3

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

step size

pr
ob

ab
ili

ty
 o

f c
or

re
ct

 a
cq

ui
si

tio
n

Experimental, δ=0, N=400

Experimental, δ=0, N=600

Theoretical, δ=0

Experimental, δ≠0, N=400

Experimental, δ≠0, N=600

Theoretical, δ≠0

Figure 3.7: Probability of correct acquisition versus step size. Theoretical values are obtained

from (3.92) and (3.97).

3 3.5 4 4.5 5

x 10
−3

390

395

400

405

410

415

420

425

430

435

440

step size

m
ea

n 
ac

qu
is

iti
on

 ti
m

e

δ= 0, N=400
δ≠ 0, N=400
Lower bound

Figure 3.8: Experimental mean acquisition time (in chips) versus step size for AWGN channel.

67



200 250 300 350 400 450
200

300

400

500

600

700

800

900

1000

1100

N

m
ea

n 
ac

qu
is

iti
on

 ti
m

e
δ=0, μ=3×10−3

δ=0, μ=5×10−3

δ≠0, μ=3×10−3

δ≠0, μ=5×10−3

Lower bound

Figure 3.9: Experimental mean acquisition time (in chips) versus � and step size for AWGN

channel.

assume that the power of the received signal is dominated by MAI, an estimate of input SINR

can be � � ����������,������������. We have found that this SINR estimate can converge

fast and provide good results.

§ 3.5.2 Multipath Channels

For the scenario of multipath channels, we let the number of channel paths be two (�� � 	) for

all users. Also, let � � 	��� and  � �� ����. Other related parameters used in simulations

are summarized in Table 3.1. This setting leads the antenna array operating in a heavily loaded

case (i.e., the number of overall multipaths is greater than that of array sensors). Simulations

with 500 trials are conducted. Fig. 3.10 shows some experimental beam-patterns derived from

�
��� and the theoretical beam-pattern from Section 3.2.3. Note that the arrow signs indicate

the DoAs of all users, and only the DoAs of the desired user are labeled. The beamformer
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Table 3.1: Parameters used for simulations in multipath scenario

 ����  ��� Æ���� Æ��� ����� ���� �radians� �)����� �)����
� � � 3, 7 0.44, 0.65 ����	
�, � 1, 0.85

� � 	 8, 10 0.81, 0.29 �������, ������� 1, 1

� � 
 3, 11 0.74, 0.45 ���	���, ��
�� 1, 1

� � � 6, 14 0.52, 0.80 ������, ���
�� 1, 1

� � � 0, 5 0.35, 0.62 ���
�
, ��� �� 1, 1

forms two main-beams collecting the desired signals coming from the angles � and ����	
�
radians. From Fig. 3.10, we see that some interference cannot be deeply nulled. This is because

their incident angles are close to the desire user’s DoAs. The convergence behavior of the MSE

and SINR is similar to those shown previously and the corresponding figures are then omitted.

Specifically, we find that the steady-state MSE is 0.35 and output SINR of the beamformer

is 1.98 dB. We then examine the performance of fractional delay estimation. We randomly

generate code-delays for all paths and all users for acquisition and calculate the MSE, defined

as �� �
�	� ��Æ���� � Æ����. The SNR here is defined as �

 �
�	� �)����,'�, . Fig. 3.6 gives the

result with 500 trials. We can see that the performance is worse than that in AWGN case. Also,

it is more sensitive to the SNR. When SNR is low, the performance is seriously affected.

§ 3.5.3 Performance Comparison

Finally, we compare the proposed scheme with the correlator-based scheme described in [39].

Since the scheme in [39] does not consider the case with fractional delay, we let the code-

delay be integer. Also, the channel is an AWGN channel. We assume that � � �� and 128,

�)� � �, �)�� � � � � � �)��, and '�, � 	. The setting of DoAs is the same as that in Sec-

tion 3.5.1. For the proposed system, we let �� � ����. Then, we experimentally search for

an optimal set of ���� giving minimal mean acquisition time for each input SINR. For the
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Figure 3.10: Experimental and theoretical beam-patterns for multipath channel. Arrow signs

indicate DoAs of all users; the labeled are DoAs of the desired user.

system in [39], we let �+ � ���� and �
 � �. Note that �� � ��,�� [in (3.5)]. As addressed

in [39], the convergent filter-weight vector is not exactly identical to the steering vector of the

desired user, and there exists a gap between the experimental and theoretical performance (for

� � 	), especially at low SINR. In other words, the theoretical threshold derived from [39]

may not guarantee �+ � ����. Let �� � $� where $ is a positive scalar. To ensure a fair

comparison, we experimentally search for the threshold, $ , and the step size to achieve the op-

timum performance. Fig. 3.11 shows the mean acquisition times versus the array input SINR

for the correlator-based and proposed schemes. From the figure, we can see that the proposed

system significantly outperforms the correlator-based system, especially for low SINR. For ex-

ample, when the SINR is �
� dB, the performance gap between the proposed system and the

correlator-based system exceeds two orders of magnitude. For the the proposed scheme, we find

that the mean acquisition time of � � �	� is only slightly larger than that of � � ��. While

the mean acquisition time for the correlator-based scheme can be significantly enlarged when
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� is changed from 64 to 128. The poor performance of the correlator-based algorithm stems
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Figure 3.11: Mean acquisition time (in chips) comparison.
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Figure 3.12: Mean acquisition time (in chips) versus M (size of antenna array).
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from the slow convergence of the adaptive filter and its necessity for code-phase searching. The

proposed scheme simultaneously performs beamforming and code acquisition yielding much

better performance in interference suppression and filter convergence.

Finally, we consider the effect of � on the mean acquisition time. Here, we let � � �� and

�� � ����. With the previous setting, we show the result in Fig. 3.12. As seen, the performance

can be rapidly degraded when � - � (� � �). When � is greater than �, most interference

can be effectively suppressed, and no obvious improvement is observed.

§ 3.6 Conclusions

In this chapter, we propose a novel adaptive antenna array for code acquisition. Unlike the

correlator-based serial-search scheme, the proposed system can simultaneously perform beam-

forming and code acquisition. Another distinct feature is that the proposed algorithm can deal

with both integer and fractional code-delays. For multipath channels, the proposed system can

acquire multipath delays and serve as a channel estimator. We also theoretically analyze the

properties and performance of the proposed algorithm. Closed-form solutions for optimum so-

lutions, steady-state MSE, and SINR are derived. We also show that experimental results highly

agree with analytical ones. Simulations results show that the proposed system significantly out-

performs the correlator-based one in [39]. In this chapter, we consider the scenario of single

transmit antenna. However, the proposed algorithm can also be applied to the scenario of mul-

tiple transmit antennas. Acquisition in the multiple-input-multiple-output (MIMO) system is a

potential topic for further research.
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Chapter 4

Low-Complexity Adaptive Array Code

Acquisition

In the scenario of large code-delay, the computational complexity of the temporal filter in the

scheme proposed in Chapter 3 can high. In this chapter, we propose a low-complexity adaptive

array code acquisition scheme to solve the problem. The main idea is to divide the whole delay

uncertainty range into several (delay) cells, and then sequentially search for the code-delay of

the desired user among those cells. This is essentially a serial search technique, being able to

shorten the filter-length of the temporal filter. As a result, the computational complexity can be

reduced. As that in [41], the proposed system employs a criterion such that both filters can be

simultaneously adjusted by a constrained LMS algorithm. However, the acquisition process is

more involved than that in [41]. This is because one additional decision have to be made before

the code delay can be estimated. For each tested cell, filters are first adapted for a period time

to determine if the code-delay falls into the cell’s delay region or not. If it does, the spatial

filter will act as an MMSE beamformer and the temporal filter as a code-delay estimator. Thus,

the code delay can then be estimated with the peak position of the temporal filter. If not, the

next cell is tested and the process is repeated. Note that if the code-delay does not fall into the

tested cell’s region, the spatial filter will act as a signal blocker with its weighs all being zeros.
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This property is then used to derive an index for the cell testing. With the choice of the number

of cells, we can have an easy tradeoff between performance and complexity. In many cases,

however, the complexity reduction is large, but the performance loss is still acceptable.

§ 4.1 Proposed Low-Complexity Code Acquisition

Consider that there are � users in a mobile cell and each user is given an aperiodic PN code

sequence with a period much longer than a symbol period. The transmitted signal of the �-th

user in baseband can be expressed as

���!� �
��

�	��

.����
����
�	�

/����(� �!� (�� � ������ (4.1)

� � �� � � � � �, where .���� is the �-th BPSK symbol of the �-th user, /����(� the (-th chip of

the spreading signal for .����,  �!� a unit-amplitude rectangular chip-pulse with a chip-duration

��, and � the number of chips in a symbol. At the receiver, a uniformly linear array with

� sensors is placed and the element spacing is assumed to be half a wave-length. Then, the

chip-rate sampled received signal vector in baseband can be represented as

���� �
��
�	�

��)������ ��� ������2�� � ����� (4.2)

where code-delays ��, � � �� � � � � � are assumed to be integers between ��� ��, and ���� is

an � � �, complex, and zero-mean Gaussian noise vector with a covariance matrix '�
,�. Also,

��� )�� 2� stand for the steering vector, the amplitude, and the carrier-phase offset, associated

with the �-th user, respectively. Note that 2� is uniformly distributed over ��5� 5� and �� is

given by �� � ��� ������5 ������� � � � � ������5�� � �� ������
� , where �� denotes the DoA

of the �-th user’s signal. Without loss of generality, the first user is seen as the desired user. We

also assume that .���� � � during the acquisition period.

As described, the whole delay uncertainty � is divided into cells. Let � � 	�,�	
, where

�	 denotes the filter-length of the temporal filter. Among these � cells, the actual code-delay

74



+ +

Constrained 
LMS

[ ( )]q H
t nw 1( )tx n qM−

[ ( )]q H
s nw

( )nr

Find peak-weight
location

 go to code 
tracking loop

advance code-phase 
by        chipstMqZ ζ≥

No

Yes

+-

Figure 4.1: System diagram of the proposed system, where � � � ����
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only falls into the delay region of a certain cell. Let the cell whose delay region includes the

desired code delay be the inphase cell and others be outphase cells. Thus, we have one inphase

cell and �� � outphase cells.

Fig. 4.1 illustrates the block diagram of the proposed system. As seen, the spatial filter ��



combines � array outputs into a single output, where � � �� � � � � �� � denotes the cell index.

The temporal filter ��	 uses ���� � ��	� as its input signal and the spatial filter output as its

reference signal, where ����� is the desired user’s PN sequence [since .���� � �]. As far as

an inphase cell is concerned, the system is the same as that in [57]. From Fig. 4.1, we can

see that the spatial filter can act like a beamformer to reject interference, while the temporal

filter a code-delay estimator. In other words, the optimum temporal filter will have a unique

peak-weight whose location corresponds to the code-delay [57]. However, for the outphase

cells, there is no correlation between the input and the reference signals. The optimum spatial

filter will become a signal blocker (all weights are zeros). Using the characteristic, we propose

to perform cell detection with the magnitude of the spatial filter-weights. If �����


 ��� exceeds a
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preset threshold, then the � 
-th cell is considered as the inphase cell. Once the inphase cell is

identified, the peak-weight in��
�

	 can be located. Let the peak-weight be ��
�

	� 

, where ��

�

	� 

with

� � �� - �	 denotes the ( �� � �)-th element of ��
�

	 . Then, the code-delay can be estimated

with ��� � �
�	 � ��.

As shown, the difference between these two-filter outputs forms the error signal from which

we can perform minimization. The cost function to minimize is the same as that in [57]. For

each cell, we let

�$� � �
�""���	 ������� ���


�����
""��� (4.3)

� � �� � � � � �� �, where

��
 � ���
��� � � � � �
�

����

� � (4.4)

�
�
	 � ���	��� � � � � �

�
	��	��

� � (4.5)

����� � ������ ��	�� ����� ��	 � ��� � � � � ����� ��	 ��	 � ��� � (4.6)

From (4.3), it is simple to observe that a minimum �$� (which is zero) occurs at ��	 � � and

��
 � �, and this is an undesired trivial solution. To avoid that, we have to make a constraint on

the solution. Here, we pose a unit-norm constraint, i.e.,

����	 ��� � ���	 
��

�
	 � �� � � �� � � � � �� �� (4.7)

Thus, minimization of (4.3) turns out to be a constrained optimization problem. We use the

Lagrange multiplier method [34] to transform the constrained optimization problem into an

unconstrained one. From (4.3) and (4.7), we have an equivalent cost function as

$� ��
�""���	 ������� ���


�����
""��� %�

�
�� ���	 

��
�
	

�
����	 

�

���

�
	 � ���	 

�
����
 � ���


� ������	

� ���

�
��

�

 � %�

�
�� ���	 

��
�
	

�
� (4.8)

where

�
�
��	��� �� �������������� (4.9)
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������ � ������������, 
����	��	�
� ���������������, and %� denotes the Lagrange

multiplier for the �-th cell. Differentiating (4.8) with respect to ���


� and ���	 

� and setting the

results to be zero-vectors, we obtain

9$�

9���
�
� ������	 �
��

�

 � � (4.10)

9$�

9���	 
�
� 
���

�
	 ��

���
 � %���	 � �� (4.11)

Since 
� is a full rank matrix, its matrix inversion exists. From (4.10), we have

��
 � �
��
� ������	 � (4.12)

Substituting (4.12) into (4.11), we have

�

�� ���
��

� ����
�
�
�
	 � %���	 � �� (4.13)

It is simple to observe that the solution of % � in (4.13) denotes the eigenvalue of
�����
��
� ���� ,

while��	 is the corresponding eigenvector. Note that an eigenvector��	 satisfies (4.7) automat-

ically. Once ��	 is derived, ��
 can be found using (4.12). Multiplying (4.13) with ���
	 
� , we

obtain

%� � ���	 
�
�

�� ���
��

� ����
�
�
�
	 � (4.14)

Substituting (4.12) into (4.8) and using (4.14), we have

$� � ���	 
�
���

�
	 � ���	 

�
�
��
��

� ����
�
�
�
	

� ���	 
�
�
��
��

� ����
�
�
�
	 � ���	 

�
�
��
��

� ����
�
�
�
	

� ���	 
�
�

�� ���
��

� ����
�
�
�
	

� %�� (4.15)

which is identical to (4.14) exactly. Let solutions to (4.10)–(4.11), which are optimum weights,

be ��
�� and ��	��, and the corresponding minimum value of (4.15) be $ ����. We then conclude
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that $���� is equal to the minimum eigenvalue
�
����
��

� ���� and��	�� is the corresponding

eigenvector. Substituting��	�� into (4.12), we can then obtain��
��.

To simplify notations, we rewrite (4.2) as

���� �
��
�	�

��)������ ��� ������2�� � ���� (4.16)

� � � ������2� � ���� >�	 ���

�
��
�	�

��)������ ��� ������2�� � ����� (4.17)

where we let �� � �, )� � �, 2� � 2, ����� � ����, and �� � >�	 ��. It is simple to see that

the inphase cell is the cell that � � >.

We first consider the scenario of the inphase cell. As mentioned, the proposed system is just

the same as that in [57]. From [57], we can have

%���� � $���� � �� ��
��
� � (4.18)

��	�� � ��� � � � � �� �� �



� �� �� � � � � �� �����:� (4.19)

��
�� � 
��
� � �������2 � :�� (4.20)

where : is an arbitrary angle. From (4.19) and (4.20), we can see that both filters do not have

unique solutions. This is not surprising since we only pose the magnitude constraint. Also, note

that��
�� is just the conventional MMSE beamformer (
��
� �).

Now, let us consider the rest ��� outphase cells. Since � �� >, we have�� � � [see (4.9)].

Then, (4.8) becomes

$� � ���

�
��

�

 � ���	 

�
���
�
	 � %�

�
�� ���	 

��
�
	

�
� (4.21)

� �� >, where 
�� � � (the long-code assumption). Also, (4.10)–(4.11) become

9$�

9���
�
� 
��

�

 � � (4.22)

9$�

9���	 
�
� �

�
	 � %���	 � �� (4.23)
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From (4.22), we have ��
�� � �, since 
� is a full-rank matrix. The spatial filter will block all

signal from entering the temporal filter. From (4.23), we can see %���� � $���� � �, and there is

no unique solution for ��	�� either. Any vector satisfies the unit-norm constraint can serve as an

optimum solution.

§ 4.2 Adaptive Implementation and Convergence Analysis

In lase section, we have proposed a low-complexity code acquisition system modifying the

system in [57]. Optimum-weights of the filters are derived with the eigen-decomposition tech-

nique. However, the required computational complexity of eigen-decomposition is on the order

of ����
	 �. In addition, the matrix inversion of 
� is required in (4.13). To alleviate these

problems, we propose to use an adaptive algorithm to derive the optimum filter-weights. The

adaptive algorithm we consider is the LMS algorithm which is well-known for its simplicity

and robustness. As shown, we have a unit-norm constraint on the temporal filter. Applying

this constraint, we then obtain a constrained LMS algorithm. In what follows, we will describe

the algorithm and examine related issues such as the step size bound and steady-state MSE.

Besides, we also analyze the output SINR of beamformer [see ���� in Fig. 4.1] for an inphase

cell.

§ 4.2.1 Constrained LMS and Convergence Issue

Rewriting (4.3), we have

�$���� � �������
�
���

�
���� � � �� � � � � �� �� (4.24)

where

������ �
�
���	 ���

� � ���
���
�
��
� (4.25)

����� �
�
������� � � �� ����� � (4.26)


�� � ���������������� (4.27)
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The gradient of (4.24) is by

9 �$����

9��������
� 
���

�
����� (4.28)

Using (4.28), we can apply a gradient decent algorithm to obtain the optimum solution, denoted

as�����. However,
�� needs to be estimated. The simplest estimate of
�
� is to use instantaneous

value from ������������ and this yields a stochastic gradient decent algorithm, called the LMS

algorithm. We then can have the filter adaptation as

������ �� � ������ � 
��������������������� � (4.29)

where  is the step size controlling the convergence rate. Recall that we have the constraint

����	 ����� � �. This constraint can be easily satisfied if normalization is performed on��
	 ��� at

every iteration. The overall adaptation procedure is given as

#���� � �������
������ (4.30)

����� � diag
� �

����	 �����
� � � � �

�

����	 ������ �� �
�	

� �� � � � � �� �� �
�

�
(4.31)

������ �� � ������������ ������#������ (4.32)

� � �� �� � � � � � � �! � � �� � � � � �� �, where "�#$��� denotes a diagonal matrix consisting of

the arguments that it includes, and � the iteration number for each cell. As we can see, �����

normalizes ��	 ��� at every iteration. After training, we have to detect the inphase cell first.

To do that, we propose to compare ����
������ with a preset threshold. If ����
������ is larger

than the threshold, the cell is deemed as the inphase cell. Then, the peak location of ��
	 ��� is

located and the code delay is estimated. Otherwise, we go to the next cell and start the process

all over again. To guarantee convergence,  has to be selected properly. Here, we perform the

mean convergence analysis to derive a step size bound. Subtracting ����� � ����	��
� � ���
��

� �
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from both sides of (4.32), we have

������� �� � ������� � ������� �������
� ���������������������

� ������� � ������� �������
� ������������ �������� ��

�
���

� ��� ��������������������
� ������� �������� ������#�����

�� (4.33)

where #����� � ������
������ and ������� � ������ � ������ Taking the statistical expectation

of (4.33), applying the direct-averaging method [34], and using the orthogonality principle, we

then have

��������� ��� � ��� 
������������
� ��������� � ����������� (4.34)

Let �� � diag�8����� � � � � 8����	��
� with 8���� being an eigenvalue of 
��, and �� be a ma-

trix consisting of the eigenvectors of 
�
�. Multiplying (4.34) with ���� and letting ����� �

��������������, we obtain

����� �� � ��� �������

� ���� ��������� � ����������� (4.35)

Since ��	 ��� is normalized at every iteration and the step size is usually small, it is reasonable

to assume that ����� � � and the second term in the right-hand side of (4.35) can be ignored.

Iterating (4.35), we obtain

����� � ��� ��������� (4.36)

Thus, for (4.35) to converge, the following condition must be satisfied

� -  -
	

8������
� (4.37)
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where 8������ denotes the maximum eigenvalue of 
�
�. This result is the same as that of the

conventional LMS algorithm. From (4.36), we can also see that ���� � �. In other words,

��������� � �����, when ��.

Note that while the conventional LMS algorithm requires 	��	 � �� multiplications per

iteration, the constrained LMS algorithm developed here needs extra �	 multiplications for

calculation of ����	 ����� and extra �	 divisions for normalization [see (4.32)].

§ 4.2.2 Steady-state MSE Analysis

We now derive the steady-state MSE of the constrained LMS algorithm. Invoking the direct-

averaging method [34] and using (4.33), we can write the correlation matrix of the tap-weight

error vector as

����� �� � �������� � ���������� ����
� ��� 
���

������� 
�� � �$����

�
�

� ��������� ��������������� ������� ��� (4.38)

As stated, ��	 ��� is normalized at every iteration and the step size is usually small. Thus,

����� � � and the last term in the right-hand side of (4.38) can be ignored. Let ������ �

����������� and observe that ����
���
� � ��. Pre-multiplying and post-multiplying

both sides of (4.38) with ���� and ��, respectively, we have

������ �� � ��� �� ��������� �� � �$�����
�� (4.39)

Let the �-th element on the diagonal of ������ be � �����. Then,

� ����� �� � ��� 8�����
�� ����� � �$����8

�
���� (4.40)

� � �� � � � ��	 �� . When ��, � ����� �� � � �����. Form (4.40), we derive

� ���� �
$����

	� 8����
� (4.41)
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The additional MSE due to the use of the LMS algorithm is generally referred to as the excess

MSE, denoted as $ �����. From [34], we then have

$����� �
�	���
�	�

� ����8���� � $����

�	���
�	�

8����
	� 8����

� (4.42)

Denote the steady-state MSE of the LMS adaptation as $ �

. Finally, we have

$�

 � $���� � $������ (4.43)

§ 4.2.3 Output SINR at Beamformer for an Inphase Cell

Now, let us analyze the output SINR of the beamformer. We consider the inphase cell (� � >),

and the output is by

���� � ���
 ���
����� (4.44)

� ���
 ���
�
�
� ������2����� >�	 ��� � ����

�
� (4.45)

where ���� consists of MAI and noise. Using (4.20), we can find the output SINR of the

optimum beamformer, denoted as �����, as

����� �
���
��

�
.�
�

��

���
��
�
/��
��

(4.46)

�
��
��

� 
.

��
� �

��
��
� 
/


��
� �

� (4.47)

where 
. � ��� and 
/ � ������������. Since we use adaptive filter-weights to approxi-

mate the optimum weights, we have to include the excess MSE in the SINR calculation. Thus,

we can rewrite (4.47) as

����� �
��
��

� 
.

��
� �

��
��
� 
/


��
� � � $�����

� (4.48)

where $����� is from (4.42).
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§ 4.3 Performance Analysis

The performance of acquisition is generally measured with the mean acquisition time, which

is the averaged time for correct acquisition. The mean acquisition time of the proposed system

is a function of the probability of false alarm, the probability of missing (denoted as �� ), and

the probability of correct acquisition (denoted as �#). In this section, we will first derive these

probabilities and then calculate the mean acquisition time.

§ 4.3.1 Mean Acquisition Time

As mentioned, the proposed scheme performs sequential cell testing. Since there are � possible

cells, there are � possible states in the system. Label these states as �+�� � � � � + ��� in the

circular state diagram [1], as shown in Fig. 4.2. In the figure, the state labeled as ACQ indicates

the state of correct acquisition. That labeled as FA is the state of false alarm. Using this

diagram, we can evaluate the averaged time reaching the ACQ state, i.e., the mean acquisition

time. Without loss of generality, we assume + �� being the state of an inphase cell, and thus

it is connected to the ACQ state. Also, let � � � ����
������. As described in Section 4.1, the

optimum��
��, for outphase cells are all-zero vectors, and the corresponding�� should be small.

On the other hand, �� of the inphase cell should be large. Using this property, we set a threshold

� for the detection of the inphase cell. Thus, the acquisition problem can be seen as a hypothesis

testing problem. Note that correct acquisition means that the inphase cell is correctly detected

and at the same time the optimum peak-weight location (�) is also correctly estimated. There

are two types of false alarm. We name the false alarm occurring in an inphase cell as an inphase

false alarm, which means that the inphase cell is correctly detected but the peak location is not

(i.e., �� �� �), and the false alarm occurring in an outphase cell as an outphase false alarm.

From Fig. 4.2, we can see that the transfer function (TF) between + �� and ACQ can be

expressed as *!�z� � �#z'�� [1], [21], [22], where � � � denotes the time for iteration and

cell detection, and z the unit-delay operator. The probability of missing, �� , is defined as
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the probability of � �� - � . Thus, if only the missing is considered, the TF between + ��

and +� can be expressed as *��z� � ��z'��. The probability of the inphase false alarm,

denoted as ��, is equal to �� � � � �# � �� . On the other hand, if only the inphase

false alarm is considered, the TF between + �� and FA can be expressed *+�z� � ��z'��.

Note the system has to stay �� chips once it enters the FA state. The quantity �� is generally

referred to as the penalty time [1]. The TF between the input and the output of the FA state

can be described as *-�z� � z�� . Thus, we can have the TF between + �� and +� as *1�z� �

*��z� � *+�z�*-�z�. The TF between any +�, � � �� �� � � � � � � 	, and the FA state will be

*��z� � ��z'��, where �� is the probability of outphase false alarm. If the outphase false

alarm between two consecutive states, +� and +���, � � �� �� � � � � �� 	, is not considered, then

the TF between these two consecutive states can be described as *��z� � ������z'��. Thus,

we can have the TF between any two consecutive states, +� and +���, � � �� �� � � � � � � 	, as

*2�z� � *��z� �*��z�*-�z�.

Using the TFs derived above, we now can redraw the diagram in Fig. 4.2 as that in Fig.

4.3. In what follows, we use Fig. 4.3 to calculate the mean acquisition time. We define the

probability of correct acquisition starting from time zero and ending at time � as �.� ���.

Then, its z-transform is given by

�.� �z� �
��
�	�

�.� ���z�� (4.49)

which can be the generating function of acquisition time. Denote the mean acquisition time as

���� and it can be derived from [1]

���� �
.

.z
�.� �z��z	�� (4.50)

Note that the unit of (4.50) is chip. Assuming that we can start searching at any state in
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�+�� � � � � + ��� with equal probability �,�, we rewrite (4.49) as

�.� �z� �
�

�

 ���
�	�

���.� �z� (4.51)

�
�

�
*!�z�

 ���
�	�

��� ���z�� (4.52)

where ���.� �z� denotes the TF between +� and ACQ states, and ��� ���z� the TF between +�

and + ��. Using Fig. 4.3, we can have

��� ���z� �
* ����
2 �z�

��*1�z�*
 ��
2 �z�

� (4.53)

Substituting (4.53) into (4.52), we obtain

�.� �z� �
�

�

*!�z�

��*1�z�*
 ��
2 �z�

 ���
�	�

* ����
2 �z� (4.54)

�
�

�

*!�z����* 
2 �z�

���*1�z�*
 ��
2 �z����*2�z�

� (4.55)

Using (4.55) in (4.50), we finally obtain

���� �
�

�#

�
�� � ��� ��

	� �#
	

�� � ��

� ��� � ��� ����
	� �#

	
��

�
� (4.56)

Observing (4.56), we find that a large �� and a small �# can enlarge ���� significantly. It

should be noted that �� is more harmful to ���� than ��. This is because there are � � �

outphase cells and only one inphase cell. For an ideal situation that �# � � and �� � �� � �,

we have

������3 �
�� �

	
�� � ��� (4.57)

which can serve as the lower bound of (4.56).
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§ 4.3.2 Probabilities Derivation

Since �� is random, we have to characterize its statistical properties. It is mentioned in [33]

that when an adaptive filter approaches the steady-state, its weights have a Gaussian distribution.

From the analysis in the previous section, we see that in the steady-state (� �),��

��� has

a mean vector of ��
�� and ��	 ��� has a mean vector ��	��. We denote their covariance matrices

as	�
 � �����
������
�����
������
���� and	�	 � �����	 ������	�����	 ������	����,
respectively. As a common practice, the step size is usually small. Thus, we can use the Taylor

expansion to expand �,�	� 8����� in (4.41) with respect to 8���� � �. Then, we can derive

�

	� 8����
�

�

	
�

�

�
8���� � � � � � (4.58)

From (4.39), it can be seen that the matrix ������ will become diagonal as � �. Using this

property and truncating the terms higher than the first-order in (4.58), we then have

������ �


	
$������

�

�
$�����

�� (4.59)

Pre-multiplying and post-multiplying both sides of (4.59) with �� and ���� , we obtain

����� �


	
$������

�

�
$����


�
�� (4.60)

Note that the �	��	 upper-left submatrix of����� corresponds to	�	 and the � �� lower-

right submatrix of that can be 	�
. Thus, we can write

	�
 � $����

�


	
��

�

�

�

�
� $����

	
� (4.61)

	
�
	 � $����

�


	
�

�

�

�
� � $����

	
�� (4.62)

where $���� is the MMSE evaluated in Section 4.1. For notational clarity, we let '�
� � $����,	

and '�� � $����,	, � �� >. From (4.61)–(4.62), we can see that these filter weights are approx-

imately i.i.d.
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Let us calculate �# now. Since ��
�� � � for � �� >, we find that ��, � �� > is chi-square

distributed with � degrees of freedom, while �� is noncentral chi-square distributed with �

degrees of freedom. Thus, the probability of �� is given by

�� �

� �

4

�

'�� 	�&����,	�
3�&��� ����� 3

	'��
�.3� (4.63)

where ���� stands for the gamma function [35], and � is usually selected on some level to prevent

a large �� (e.g. �� � ����). Let �� be the probability of correct inphase cell detection. Then,

�� �

� �

4

�

	'��
�
3

+�
������&� �����+� � 3

	'��
�&�&����

	
3
+

'��
�.3� (4.64)

where +� � ����
����� and &�&������ the ��,	 � ��-th order modified Bessel function of the

first kind [35]. Next, we evaluate the probability of �� � �, say �
. Let ?� � ���	������� for

� � �� � � � ��	 � �. When � is large enough, ?
 has a noncentral chi-square distribution with

two degrees of freedom, whereas ?�, � �� �, has a chi-square distribution. The corresponding

probability density functions can be shown as

 5���� �
�

	'��
�������

�
	���
�� � �

	'��
�&��

�
�
���	���
�
'��

� (4.65)

 5��� �
�

	'��
����� �

	'��
� � ; �� � �� �� (4.66)

where ��	���
 denotes the �� � ��-th element in��	�� with ���	���
�� � �. With (4.65)–(4.66), �


is given by

�
 � Pr�?� - ?
� (4.67)

�

� �

�

�� 6

�

 5�3

�.3 

��	��

 5��3�.3� � �� � (4.68)

where the i.i.d. property has been applied in (4.68). Finally, we can have �# � ���
, �� �

�� �� , �� � �� �# � �� . Then, (4.56) can be evaluated.
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§ 4.4 Simulations

To demonstrate the effectiveness of the proposed system, we report some simulation results

in this section. First, we set common parameters used in simulations as follows: � � 	��,

� � �, � � �, �� � ���� chips, '�, � �,  � 
 � ����, ��
��� � �, and ��	 ��� �

��,
�
�	���� � � � � �

� for � � �� � � � � � � �. Also, for convenience, the DoAs are fixed to be

������	� � ������ ����� �� �����	������	�����	� ���	� ����� (radians) in all simulations.

In the first set of simulations, we examine the convergence behaviors of the the proposed

adaptive system. This includes the MSE convergence of the system, the SINR convergence

behavior of the spatial filter, and the weight convergence of the temporal filter. All experimental

results are derived from an average of 400 trials. In these experiments, we let �	 � �, the array

input SINR be ��� dB () � �), and the powers of jammers be equal. Fig. 4.4 shows the MSE

convergence curve for the proposed system with the inphase cell (� � >). It can be seen that

the steady-state MSE value approaches to the theoretical value 0.28 around � � �
��. The

theoretical MSE value is calculated from (4.43). In the same figure, we also show the MSE

with an outphase cell (� �� >). It is apparent that the experimental MSE is more fluctuating.

This is because that $ ����, � �� >, is much greater than $���� making the corresponding excess

MSE larger. Fig. 4.5 illustrates the SINR convergence curve for the beamformer output [see

���� in (4.44)]. The SINR starts from ��� dB and eventually reaches the optimum value 4.18

dB. The theoretical value is derived from (4.48) and is shown with the horizontal line in the

figure. We omit the results for � �� >, in which the experimental SINR is around ��� dB.

This indicates that the spatial filter can not suppress interference for outphase cells. From the

figure, we conclude that the adaptive spatial filter can effectively suppress interference when it

operates in the inphase cell. Fig. 4.6 presents several experimental beam-patterns calculated

from ��
 ���. Here, we let � � 	���. The optimum beam-pattern, derived from (4.20), is also

shown. Note that the arrow signs indicate the signal DoAs and only the DoA of the desired

user, ��, is labeled. As seen, the spatial filter, acting as a beamformer, can steer the main-beam
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to the incident direction �� and put nullities in the directions of interference. The convergence

behavior of the temporal filter weights is shown in Fig. 4.7. We can see that the tap-weight

whose indices correspond to the code delay, ���	�
�����, converges to unity, while other weights,

���	�������� � �� �, converge to a very small value (only one weight is shown in the figure).

In the figures shown above, we can see that the theoretical results calculated using derived

formulas all match the simulated ones very well. Then, we calculate the mean acquisition time

of the proposed system. Before that, we have to evaluate related probabilities. Fig. 4.8 shows

the comparison of experimental and theoretical �� (versus �).
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Figure 4.8: Experimental and theoretical probabilities of outphase false alarm �� versus

threshold � .

Here, the array input SINR is set as ��� dB. As we can see, �� decreases rapidly as the

threshold increases. The experimental results with �	 � � match the theoretical results [in

(4.63)] better that those with �	 � ��. We also see that the experimental results for � � ����

and � � 	��� are close. Fig. 4.9 shows the similar comparison for �� .

Here, experiment and theoretical results agree very well for � � 	���. However, they agree
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Figure 4.9: Experimental and theoretical probabilities of �� versus threshold � .

poorly for � � ����. This is because the spatial filter has not converged with the given number

of iterations, and �� tends to be smaller than the threshold. This behavior is different from that

in �� calculation. From Figs. 4.8 and 4.9, we can see that the best � is around 0.07. Using

this value, �� can be close to zero and �� to one. The theoretical value of �
 is usually very

close to one. With ��� trials, we find �
 � � (� � 	���, �	 � � or �	 � ��). As a result, we

can let �� � �#. Since the interference is mainly suppressed by the spatial filter, �� is close

to zero. Substituting derived experimental probabilities into (4.56), we can then calculate the

mean acquisition time. Fig. 4.10 shows the result.

In the figure, lower bounds derived from (4.57), are also shown. It is simple to see that if �

is too small, �� will be large, leading to large mean acquisition time. On the contrary, if � is

too large, �� being equal to �� �� will be large, leading to large mean acquisition time also.

From the figure, we can observe that � can be chosen in a wide range of value such that mean

acquisition times can approach lower bounds.

Finally, we conduct performance comparison for the correlator-based scheme in [39], the
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Figure 4.10: Experimental mean acquisition time (chips) versus � .

adaptive array system in [57], and the proposed system. We let � � 	��, '�
, � �, ) � �,

and the powers of all jammers be equal. As addressed in [39], the derived theoretical threshold

is not accurate enough to guarantee that a designated probability of false alarm (set as 0.01

here) can be achieved. Thus, we experimentally search for the threshold, processing period

(for adaptation), and step size that gives the minimal mean acquisition time (for each array

input SINR). To ensure a fair comparison, we also search for an optimum set ���� �� that

provides the optimum performance for the proposed system (�	 � � or ��). Here, �� is set

as ����. Similarly, for the system in [57], the performance is optimized over ����. Fig. 4.11

shows the performance comparison for these systems in various SINRs. From the figure, we

first can see that the correlator-based system has the worst performance. This is because the

beamformer training cannot be accomplished in a short processing period, especially in serious

MAI environments. The system in [57] exhibits the best performance. It can outperform the

correlator-based system by an order of magnitude. Comparing to that in [57], the proposed

system somewhat compromises the performance. However, its computational complexity is
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much lower. For example, with �	 � �, the temporal-filter size is just 1/32 of that in [57]. We

also can see that for the proposed system with �	 � � performs slightly worse than that with

�	 � ��. We can expect that the larger the �	, the smaller the performance loss. Thus, we can

have an easy tradeoff between performance and computational complexity.

§ 4.5 Conclusions

In this chapter, we proposed a low-complexity adaptive array code acquisition scheme, espe-

cially being suited to large-delay channel environments. Applying the serial search technique,

we can greatly reduce the temporal filter size, so does the computational complexity. The pro-

posed scheme also allows an easy tradeoff between performance and computational complexity.

With the special designed structure, the proposed system is able to suppress MAI and estimate

code-delay simultaneously. It can outperform the conventional correlator-based system. We

also analyze the convergence behavior and the mean acquisition time of the proposed scheme,
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and derive related closed-form expressions. Simulations verify that theoretical and experimen-

tal results agree well. In this chapter, we only consider the AWGN integer chip-delay channels.

With minor modification, the proposed system can be easily extended to apply in the multipath

yet fractional chip-delay channels [57]. This issue may serve as a topic for further research.
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Chapter 5

Conjugate Gradient Algorithm for Array

Code Acquisition

The adaptive array proposed in Chapter 3 has a simple structure and can simultaneously per-

forms adaptive beamforming and code-delay estimation. For simplicity, the well-known LMS

adaptive algorithm was used in Chapter 3. However, the convergence of the adaptive filters

becomes very slow when their dimensions become large or they are operated in multipath chan-

nel environments. The recursive-least-squares (RLS) algorithm can be applied; however, the

computational complexity will be increased dramatically.

To solve the dilemma, in this chapter we propose the application of the conjugate gradi-

ent (CG) algorithm [59] in the adaptive array code acquisition problem. The CG algorithm

has been well-developed in optimization theory and used in many fields, [60]– [61]. It can

iteratively solve a quadratic minimization problem in just 6 steps, where 6 is the number of

unknown parameters. However, it requires the exact knowledge of the second-order derivative

of the quadratic cost function, which cannot be known in general signal processing problems.

With an estimated derivative, the CG algorithm is degenerated [62], which means the finite-step

convergence property may be not held. Nevertheless, the convergence of the CG algorithm is

still fast. Note that the straightforward application of the original CG algorithm in adaptive
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signal processing will require a very high computational complexity. In [62], a simple method

was proposed to alleviate this problem. Still, the computational complexity is on the order of

�����, where � is the filter dimension. Exploiting the special structure of the correlation ma-

trix, we propose a low-complexity CG algorithm for the array acquisition scheme in [57]. It is

shown that the computational complexity can be reduced to the order of ����, same as that of

the LMS algorithm. However, the convergence of the proposed CG algorithm is significantly

faster than that of the LMS algorithm.

§ 5.1 Proposed CG Adaptive Algorithm

In Chapter 3, we have proposed the adaptive antenna arrays code acquisition system. Optimal-

weights of the system are derived with the eigen decomposition. However, the required compu-

tational complexity is on the order of��� ��. In addition, the matrix inversion of
� is required

in (3.20). To alleviate these problems, a constrained LMS algorithm is used in [57] to approach

the optimum filter-weights. However, the LMS algorithm converges slowly, especially when the

constraint is applied. In this section, we propose a CG algorithm to speed up the convergence.

As mentioned, the RLS type of algorithms can be applied for the same purpose. However, the

computational complexity of the RLS is on the order of ��� ��, which is still computationally

expensive. It is known that the main effort in the RLS algorithm is to estimate the inverse of the

correlation matrix. With a different perspective, the CG algorithm estimates the input correla-

tion matrix itself. As a result, the CG algorithm will be more stable than the RLS algorithm. In

its original form, the CG algorithm [59] is not suitable for adaptive processing. In [62], a simple

modification allows the CG algorithm to reduce its complexity to the order of ��� ��. We will

use the special structure inherent in the correlation matrix and propose a low-complexity CG

algorithm with the computational complexity of order ����. As shown, we have a unit-norm

constraint on the temporal filter-weights. Applying this constraint, we then obtain a constrained
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CG algorithm for adaptive filtering. Rewriting (3.10), we can have

�$��� � ��� ���
������ (5.1)

where

����� �
�
��	 ���� �

�

 ���
��

(5.2)

���� �
�
�� ���� � �� ����� (5.3)


� � �������������

�

�
� ������ �

�� 
�

�
� � (5.4)

Thus, the optimum solution of the filter-weights, denoted as ���� � ���	��� �
�

��

� , can also be

expressed as

���� � #%$&��
��

��� 
��� (5.5)

s.t. ���	���� � �� (5.6)

Before our development, we briefly describe the constrained LMS algorithm used in [57].

It can be summarized as:

Given ������

for � � �� �� 	� � � � � � � �

#��� � ��� ������� (5.7)

���� � diag� �

���	����� � � � � �
�

���	������ �� �
�

� �� � � � � �� �� �
�

� (5.8)

����� �� � ���������� ����#���� (5.9)

end

where diag��� denotes a diagonal matrix consisting of the argument it includes,  the step size,

and � the iteration number. Note that in (5.8) ���� normalizes �	��� at every iteration. By
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doing so, we can force �	��� to satisfy the unit-norm constraint. Due to the small step size and

the normalization procedure, we can assume���� � �, and thus the excess mean-squared error

(MSE) and step size bound are similar to those of the conventional LMS algorithm. While the

conventional LMS algorithm requires 	�������multiplications per iteration, the constrained

one mentioned above needs extra � multiplications and extra � divisions for normalization.

As mentioned, the original CG algorithm [59] iteratively solves a quadratic cost function

(with a constant symmetric positive-definite matrix) and can converge in finite steps (the number

of unknown parameters). It is well-known that it converges faster than steepest-decent methods,

and has lower computational-complexity than Newton’s method. Consider our problem here.

The cost function in (5.5) to minimize is a purely quadratic cost function. Its second-order

derivative is the correlation matrix
�, which is unknown in practice. This implies that an esti-

mate, say �
����, has to be used. As a result, the CG algorithm minimizes��
� ��� �
���������

subject to the unit-norm constraint. Similar to the constrained LMS algorithm, we can normal-

ize the temporal filter-weight at each CG iteration, resulting a constrained CG algorithm. Note

that the filter dimension is � � � and we have one new input-vector at each time-instant. In

other words, �
���� is updated for each time-instant, and for each update of �
����, 6� � ���

iterations have to be conducted for the CG algorithm. We refer this approach as the conven-

tional CG (CCG) algorithm. Let ���� be a �� � �� � � vector for the iteration �, where

� � �� � � � � 6� � �. The application of the CCG algorithm in our problem can be summarized

below.

Given ����� �
����� � �

for � � �� �� 	� � � � � � � �

�
���� � �
���� �� � ��������� (5.10)

�
���� �
�

�
�
���� (5.11)

����� � �
�������� (5.12)

���� � ������ (5.13)
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for � � �� �� � � � �6� � �

���� �
����������

����� �
��������
(5.14)

��� � �� � ���� � �������� (5.15)

��� ' �� � � �� �
��� ' �� � � ��

����� ' �� � � ���� (5.16)

���� � �� � �
������� � �� (5.17)

31��� �
������ � �����
���������� (5.18)

��� � �� � ����� � �� � 31������� (5.19)

end

����� � ��6�� (5.20)

���� � ��6�� (5.21)

end

Here, ����� stands for the gradient of (5.1), ���� the update direction, ���� the optimum step

size. Usually, we let ���� � ��,
�
����� � � � � �� �� � � � � �� . In (5.10)–(5.11), the CCG first cal-

culates �
���� with the average in a rectangular window. Then, for each � the CCG iterates ����
by 6� times and only ��6�� is of interest. Note that ���� is normalized for its first � elements at

each iteration. Finally, ��6�� serves as����� and the initial ���� for the next time-instant. Note

that 31��� attempts to provide �
����-congujacy for ������ with respect to previous directions

������ � � � ������ [59], [62]. It should be emphasized that the CCG performs minimization over

�
���� (not true 
�) for each �. When � is large, �
���� will approach 
�, and ����� ap-

proaches����. As seen, the CCG resets the update direction at each time-instant [see (5.12) and

(5.13)]. As mentioned, the correlation matrix is estimated and the property of the finite-step

convergence is not held anymore. In our application, the problem becomes more apparent due

to the weight normalization operation. Even with these problems, the convergence of the CCG

algorithm is still fast. The CCG algorithm requires 	6� � � matrix-vector multiplications for
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every time-instant. Thus, the computational complexity is very high, and it is not suitable for

sample-by-sample adaptive filtering application.

For sample-by-sample adaptive filtering, a modified CG algorithm [62] was developed to

alleviate the high complexity problem. This algorithm updates the weights only one time per

time-instant, and its computational complexity is lower. We call the algorithm as a modified

CG algorithm (MCG). Applying the MCG algorithm to our problem, we have

Given ������ �
����� � �

for � � �� �� 	� � � � � � � �

�
���� � �
���� �� � ��������� (5.22)

�
���� �
�

�
�
���� (5.23)

����� � �
���������

���� � ������

#$
% applied only when

�,�� is an integer
(5.24)

���� �
����������

����� �
��������
(5.25)

����� �� � ����� � �������� (5.26)

���� ' �� �� �� �
���� ' �� �� ��

������ ' �� �� ���� (5.27)

����� �� � �
�������� � �� (5.28)

31��� �
������ � �����
���������� (5.29)

���� �� � ����� � �� � 31������� (5.30)

end

Here, �� denotes the length of a reset period. Inside the period, the correlation matrix remains

the same. At the moment that the correlation matrix is updated, ���� is reset to ������.
Although the computational complexity of the MCG is lower, it still much higher than the

LMS algorithm. In our application, there is a special structure in the correlation matrix. This

can be seen from (5.4), in which the upper-left � � � sub-matrix in 
� is an identity matrix.
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Also note that in typical array acquisition, � � � . Using these properties, we now propose a

CG algorithm that can effectively reduce the computational complexity to the order similar to

the LMS algorithm. We call the algorithm as the low-complexity CG (LCG) algorithm. The

algorithm is summarized as below.

Given ������ ������ � �� �
����� � �

for � � �� �� 	� � � � � � � �

����� � ����� ��� ��������� (5.31)

�
���� � �
���� �� � ��������� (5.32)

����� �
�

�
����� (5.33)

�
���� �
�

�
�
���� (5.34)

�
���� �

�
� ������ �����

������ �
����

�
� (5.35)

����� � �
���������

���� � ������

#$
% applied only when

�,�� is an integer
(5.36)

���� �
����������

����� �
��������
(5.37)

����� �� � ����� � �������� (5.38)

���� ' �� �� �� �
���� ' �� �� ��

������ ' �� �� ���� (5.39)

����� �� � �
�������� � �� (5.40)

31��� �
������� �����
���������� (5.41)

��� � �� � ����� � �� � 31������� (5.42)

end

The key idea of the proposed algorithm is in (5.35), where the correlation matrix is only partially

calculated. We approximate the upper-left ��� sub-matrix in �
���� as an identity matrix, i.e.,
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������. Thus, only small correlation matrices � and 
� are required to be estimated. In such

a manner, the matrix-vector multiplications in (5.36), (5.37), and (5.40) can be significantly

simplified. Since the elements in ���� are binary, (i.e., ��), the calculation of ���������

in (5.31) is also simple to implement. As that in the MCG algorithm, the direction vector is

periodically reset [in (5.36)]. The choice of �� will influence the performance [62]. For a small

��, the performance will be better, but the complexity is higher.

In this paragraph, we analyze the computational-complexity requirement for the CCG,

MCG, and LCG algorithms. The complexity considered here is the required multiplications

and divisions for each time-instant. Note that the complexity for the MCG and LCG algorithms

is considered at the time instants that reset is applied. We show the results in Table 5.1.

Table 5.1: Computational Complexity Comparison for Constrained CCG, MCG, and LCG Al-

gorithms

Multiplications & divisions

CCG 	�� ���� � ��� ���� � �	� � ���� ���

MCG 
�� ���� �  � � �� ��� � ��

LCG  ��� � �� � ��� � ��

As we can see from the table, the complexity of the CCG algorithm is on the order of

�����, that of MCG is ��� ��, and that of LCG is ����. Fig. 5.1 shows the ratio of the

required computational complexity for the LCG and MCG algorithms. As we can seen, the

ratio is decreasing along with the increase of � . When � � �	� and � � �, the complexity of

the LCG algorithm is only 8.5% of that of the MCG algorithm. We then conclude that the LCG

algorithm is much more efficient than the MCG algorithm.

The SINR at beamformer output ���� [see Fig. 3.2] can serve as an indicator for the effec-
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Figure 5.1: Ratio of the computational complexity of MCG and LCG versus � and � (� �

	�� � � �
� �� � � � � ��).

tiveness of interference suppression. The beamformer output here is given by

���� � ��
 ���

� ��
�	�

��)����� ��� � �����

�
� (5.43)

where

����� �
��
�	�

���
�	�

����)�������� ����� � ����� (5.44)

The output SINR of the optimum beamformer can then be expressed as

����� �
��
��

�
��

��
��
/��
��
� (5.45)

where 

 �
 �
�	� �)�������� , 
/� � ��������������, and �
�� denotes the optimum beam-

former weights derived above.
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§ 5.2 Simulation Results

To demonstrate the effectiveness of the proposed algorithm, we report some simulation results

in this section. We let commonly used parameters as � � ��, � � �, � � �, and '�
, � �. The

array input SINR is set as ��� dB, with equal power for each jammer. Also, we let the desired

user’s channel be a three-path channel (� � 
) with �� � 	, �� � �, and �� � ��. The channels

for jammers are assumed to have single paths (i.e., �� � � for � �� �). The DoAs for the

jammers and desired user are assumed to be ��������	� � ����	��������	
�� �� ������� and

��������	� � ��������� ������� ��  ��� radians, respectively. The path gains associated with

the desired user are fixed to be ��)�����	� � ������ �������� ����� � ������.
For the LCG algorithm, the estimated correlation matrix may not be positive definite when

the number of input vectors is small. This will lead to large ��������� affecting convergence

greatly. To mitigate this problem, we limit the values of ���� and 31��� when � is small.

For the simulations conducted below, we let � - ���� � ���� and � - 31��� � ���� when

� - ���. Also let �� � � �� , and simulation results be derived with 200 trials.

Figs. 5.2-5.3 show the learning curves for the constrained CCG, MCG, LCG, and LMS

algorithms. In these figures, the minimum MSE, $���, being equal to ��	
	, is also shown [see

(3.22)]. As we can see from Fig. 5.2, the CCG can approach $��� very rapidly. The convergence

of the MCG and LCG algorithms is slower. Also, the convergence of the LCG is slightly slower

than that of the MCG. This stems from the fact that LCG approximates the sub-matrix in �
����

as an identity matrix. We find that both MCG and LCG can reach steady-state around 350

iterations. Fig. 5.3 shows the learning results for the constrained LMS algorithm. Two step

sizes are used. The first one is the maximum allowable step size which is ��
 � ����. This

step size will let the LMS algorithm have the fastest convergence. However, the corresponding

steady-state MSE is also large (0.85). In this case, the LMS converges around 1000 iterations.

To obtain a comparable steady-state MSE with that of the LCG, we use another step size which

is � � ����. With this step size, the LMS algorithm converges around 2000 iterations. From
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Figure 5.2: Learning curves for constrained CG algorithms (�� � � �� ).
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Figure 5.3: Learning curves for constrained LMS algorithm.
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these results, we can clearly see that while the computational complexity of the LCG algorithm

is comparable to that of the LMS algorithm, the convergence is much faster.

Next, let us examine the convergence of temporal filter-weights. Note that the magnitudes of

those weights directly influence the performance of code acquisition. In Fig. 5.4, we only show

a weight, which is ��	��������, for clarity. In the scenario considered, ��	����� �� corresponds to a

significant tap in the desired beamformed channel. For the filter-weights that do not correspond

to multipath delay positions, their values will decay to a very small value close to zero [57].

As seen, the CCG converges rapidly, and its steady-state value is close to the optimum. The

MCG algorithm converges slower, but its steady-state value is the same as the CCG one. The

convergence of LCG is similar to that of MCG. However, its steady-state value has a small bias.

Fig. 5.5 shows the results for the constrained LMS algorithm. The LMS algorithm requires

around 2000 and 4000 iterations to convergence for  � ��
� ���� and �� ����, respectively.

We also can see that the LMS algorithm has the bias problem too. The larger the step size, the

larger the bias.

To examine the effectiveness of the beamformer, we show the SINR of the spatial filter

output in Fig. 5.6. The SINR of CCG rapidly approaches the theoretical value of 5.2 dB [see

(5.45)]. Similar to previous results, the SINR convergence for MCG and LCG is slower; the

difference between these two algorithms are not obvious. Fig. 5.7 shows the beam-patterns

formed by the algorithms (derived with � � 	��). As expected, the beampatterns have multiple

main-beams to collect the multipath signals of the desired user and put nullities to the DoAs

of interfering signals. We find that all algorithms can deeply null the interference. Yet, the

performance of LCG is slightly poorer.

In above simulations, we let �� � � �� . As mentioned, �� will influence the adaptation

performance. Fig. 5.8 shows the convergence curve of ��	�������� for �� � � � � and


�����. We can clearly see that for both the MCG and LCG with �� � 
�����, the weight

grows faster only when the update direction is reset. The convergence for �� � 
�� ��� is

then slower that that for �� � � �� .
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Figure 5.4: Convergence curves of ��	�������� for constrained CG algorithms (�� � � �� ).
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Finally, we consider the performance of code acquisition. We define the correct acquisition

as the situation that ���	��������� ��	��������� ��	��������� correspond to the first three maximal

filter-weights in�	���. Also, denote the probability of correct acquisition as��. Fig. 5.9 shows

�� versus different � (array input SINR=��� dB) for various algorithms. The results here are

derived with ��� trials. As seen, the constrained LMS gives very poor performance when the

training period, � , is short, while the MCG and LCG are not sensitive to the period. Also,

the performance gap between the CG algorithm is very small justifying the effectiveness of the

LCG algorithm. For the LCG, we can then use a small � effectively shortening the acquisition

time.

§ 5.3 Conclusions

In this chapter, we propose an adaptive algorithm with the conjugate gradient algorithm to solve

the slow convergence problem associated with the adaptive array code acquisition in [57]. Un-
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like the MCG algorithm, the proposed method, exploiting the special structure inherent in the

correlation matrix, requires a low computational-complexity. We have shown that the com-

putational complexity of the proposed method is on the same order of the LMS algorithm.

However, the convergence rate is much faster. Simulation results show that the performance

of adaptive array code acquisition with the proposed CG algorithm is comparable to that with

the MCG algorithm. In this chapter, only integer code-delays are considered. However, with

minor modifications, the proposed algorithm can also be applied to a scenario with fractional

multipath-delays [57]. Besides, it may be feasible to apply the proposed algorithm in MIMO

CDMA systems. These may serve as topics for future research.
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Chapter 6

Conclusions and Future Works

In this dissertation, we consider code acquisition with adaptive filtering techniques. From the

analysis and experimental results, we conclude that proposed adaptive-filtering based code ac-

quisition algorithms can either significantly reduce the computational complexity or enhance

the performance of conventional correlator-based algorithms.

In Chapter 2, we first proposed a multirate adaptive-filtering scheme for single-antenna

systems. Using the decimation property in the multirate signal processing, we are able to sig-

nificantly reduce the computational complexity of the conventional adaptive-filtering scheme.

However, in this work, we assume that the channel is AWGN, the code-delay is an integer,

and carrier frequency offset is not present. To be applicable in real-world, multipath channels,

carrier frequency offset, and fractional code-delay have to be taken into considered.

To deal with code acquisition in array systems, we proposed a novel adaptive array sys-

tem in Chapter 3. The system can simultaneously suppress MAI and estimate the code-delays.

We have shown that its mean acquisition time is much smaller than the correlator-based sys-

tem. We have also analyzed the proposed system and derived related closed-form expressions.

Simulations show that theoretical results for MSE, probability of acquisition error, and beam-

former output SINR agree with experimental results very well. Multiple-input-multiple-output

(MIMO) systems have become more popular nowadays. With some modification, the proposed

114



adaptive array code acquisition can be applied in MIMO CDMA systems, serving as a good

topic for further research.

As mentioned before, the complexity of the temporal filter increases with large delay uncer-

tainty. In Chapter 4, we use the serial-search technique to solve the problem. With the proposed

structure, it is easy to obtain a compromise between performance and computational complexity.

Except for the serial-search scheme, another possibility for computational complexity reduction

may be the multirate processing technique developed in Chapter 2.

In Chapter 5, we employed the CG algorithm to cope with the slow convergence problem

of the proposed adaptive array system. Although the proposed algorithm, referred to as LCG,

has the same order of computational complexity as that of the LMS algorithm, it can provide

much faster convergence performance. The proposed CG algorithm can also be applied to the

scenario of fractional multipath-delays or in MIMO environments.
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