RO =D | A -5 LR -
i T MR

Adaptive Filtering Techniques for DS/CDMA
Code Acquisition

gAY E

h#E L 2 R



RN > D= N A T N S g 2 R | ) Y e
o A P
Adaptive Filtering Techniques for DS/CDMA Code

Acquisition
R O £ Student: Hua-Lung Yang

R £ o2 B HEL Advisor: Dr. Wen-Rong Wu

B = 2l x F
T A F

=8 N

A Dissertation
Submitted to Department of Communication Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in
Communication Engineering
October 2006

Hsinchu, Taiwan, Republic of China

P EARY LT &L

).3



RERAEFARE L AT o B BRAE RO B o pM B AR
RfFiy AL o R > HBEFPcnia frF S £ % 533 a LB - AP R
BT A AR LA AT LGP R| SER Y e B S XM kM
Tk S HOBRP ik R R ARRIE o M Ap M B R NIL 0 R T A
BB TR PR P L L W MR T IE R PER o BT o i ik F
A TP RRRE L o G F o 0 R R R AR B E T et AR
PP F U BT S AH Ao A DR RS AR RT o oS g e
R AARFT Y o AT ¢ o AR AT MR B R ok R i R AT

POOHHEWBORAL F A APRNT - B 5 S (multirate) AR5 ks o T L
PR R ARSI AR G PR E ARG A R G AL - T S

L ¥ g B (decimation) i 2 1 » AERE St K AT SRR T AL A B E I o A A g
T iRk BAVCA R TOmIFPET o d FHRE ST U N 0§ 5 S m
o B SR MR RS Rk SR AT 0 5 I F Y et B e

Ny

BB S R AR KT > SR A0k AT R R B AL AN AR B R AT 3 0
Soe BN e 00 BEBALE - BEBET AR EE - B R
,@,ﬁa@c é«ed *3‘%‘]m;}: 2L, ;;Fé&/}‘%/ﬁ\ﬁ?u f%é‘/ﬁ»q\’g\‘ﬂlﬁ , ﬁfﬁﬁ“/@,ﬁtﬁ?u



FALBUBDGE o A3 353 L ) > AP S48 & B "% 2 (stochastic
gradient decent method) % fr 533 Bz m Big i B o NP T e 477 B AGREE-1E
BT AT R o o HOES R T g D R K SLen T IO R P AR M0 @ sudp B

Rk b eh kb0 1R TR A 41 AT FEih o

BfS o APRIFIABHFEZ KRB AERE RS IR L5 A AR
- By R R fﬁﬂ,%%’gl B HEEF HEE T U ‘E‘_é’f‘lfﬁﬁ TR R BHER > BEY
PUE R R G B AT AR R o AN MAT R R AT AR D E R A T o
e s vg ik nw ,u,%gd iRyt 0 B MG AR o Bt
AP RE SRITEE Y i Bl S % SUBHEE L A kBT - S
TfEAc RO AL AY - BALA APRD T - BANEFEH R TR

i IF B2 o AR R AP o TR D 2 R NP AT RA D i
A RS gy~ §BLaAR MR P FARSHE o o OB R T L 0 B
DR R EAR Y > TR D AR R SRR G R B R PR AP AT e At
B oo



Adaptive Filtering Techniques for DS/CDMA Code

Acquisition
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Abstract

Code acquisition has been an important issue in direct-sequence/code-division multiple
access (DS/CDMA) systems. The conventional solution to this problem is to use the
correlator. However, the corresponding acquisition performance is significantly degraded
when multiple access interference (MAI)is present. It is well-known that the receiver
equipped with an antenna array: can effectively Suppress MAI. However, most code
acquisition schemes for array systems still rely on the correlator structure. Due to the
inherent property, the mean acquisition-time of the cerrelator-based approaches is usually
large. Recently, adaptive-filtering technique was applied to solve the problem. Although
adaptive-filtering systems can provide better performance, its computational complexity
becomes high when the delay uncertainty becomes large. Also, effective adaptive array
systems for code acquisition have not been investigated yet. In this dissertation, we have

developed novel adaptive algorithms solving the problems mentioned above.

To cope with the large code delay problem, we first propose a multirate acquisition system,
which is comprised of several acquisition units operating in different processing rates.
Thanks to the decimation property in multirate processing, the overall computational
complexity can be greatly reduced. Theoretical analysis of filter convergence and mean
acquisition time is also provided. Experimental results show that while the proposed
scheme can have comparable performance with respect to the conventional adaptive
filtering scheme, its computational complexity is much lower. We then propose an
adaptive array system having superior performance than the conventional correlator-based

system. The proposed scheme comprises two adaptive filters, an adaptive spatial and an



adaptive temporal filter. With a specially designed structure, the spatial filter can act as a
beamformer suppressing interference, while the temporal filter can act as a code-delay
estimator. A mean squared error (MSE) criterion is proposed such that these filters can be
simultaneously adjusted by a stochastic gradient descent method. The performance as well
as the convergence behavior of the proposed algorithm are analyzed in detail. Simulations
show that the mean acquisition time of the proposed algorithm is much shorter than that of

the correlator-based approach, and the derived theoretical expressions are accurate.

Finally, we develop algorithms refining the proposed adaptive array acquisition system.
The first approach is to incorporate a serial-search technique. By this way, we are able to
significantly reduce the size of the temporal filter, so does the computational complexity.
We also analyze the proposed low-complexity system and derive related closed-form
expressions. Simulations show that while the refined system slightly compromises the
performance, the computational complexity is much lower. In multipath-channel
environments, the convergence of the.proposédsadaptive array system tends to be slow. In
the second approach, we propose:an adaptive algorithm with the conjugate gradient (CG)
method to solve the problem. Unlike the original €G method, the proposed method,
exploiting the special structure Ginherent in_the input correlation matrix, requires a low
computational-complexity. Simulation results show-that the performance of adaptive array
code acquisition with the proposed CG method is comparable to that with the original CG

method.
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Chapter 1
| ntroduction

IRECT-sequence/code-division multiple access (DS/CDMA) isapromising multiple access
D technique for wireless mobilg communi cati‘on‘. However, one problem associate with the
approach is the presence of multi ple acc&s ‘i“n“térfer‘eh‘ce (MALI). It has been shown that MAI
is the main performance bottleneck for CDM‘A systems. Unfortunately, MAI not only affects
data detection, but also code wnéhroni zetion, Whi chiis the first step that CDMA systems have
to perform. Code synchronization can be further divided into code acquisition and code track-
ing. Code acquisition can be considered as a coarse code synchronization process, aligning the
received signal and the local code sequence with an error less than a chip duration. After suc-
cessful code acquisition, other operations such as channel estimation, code tracking, and data
detection can follow. Thus, code acquisition is a critical task in DSICDMA systems. In this

dissertation, we consider code acquisition in MAI environments.

Code acquisition has been widely studied in theliterature. The conventional approach to this
problem is the well-known correlator-based method. However, the correlator-based method is
only optimal for the single-user case. The acquisition performance degrades greatly when MAI
is present, especialy in near-far environments. It has been shown that the acquisition-based
capacity of the correlator system is less than the bit-error-rate-based capacity. The acquisition-

based capacity is a performance measure for an acquisition scheme, defined as the maximum
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number of users that a system can serve with certain acquisition performance. Thisimpliesthat
code acquisition may become a limiting factor for a CDMA system capacity. It is well-known
that antenna array can significantly improve the performance of a receiver. Still, code acqui-
gition in array systems is usualy solved with correlator-based methods. Due to the inherent
property of the associated serial-search scheme, its mean acquisition timeislarge, especialy in

strong MAI environments.

Recently, adaptive-filtering technique was proposed to solve the acquisition problem. It has
been shown that the acquisition-based capacity associated with this approach can be enhanced
significantly. However, its computational complexity may becomes higher when the delay un-
certainty becomes large. Also, array systems employing the adaptive-filtering technique for
code acquisition have not been investigated yet. This motivates us to develop novel adaptive

algorithms solving the problems mentioned above.

In Chapter 2, we first propose a mtjltirate ajéptiye-filtéri ng scheme to deal with the large
code delay problem. Compared with the conventiohal adaptijveufi ltering scheme, the multirate
system requires much lower computationally compléxity. The proposed system comprised of
several acquisition units operating in different procng rates. Theoretical analysis of the
multirate adaptive filters and the mean acquisition time of the acquisition system is also inves-

tigated.

Then, we consider adaptive code acquisition with an array system, and propose a novel
adaptive array code acquisition scheme in Chapter 3. The proposed system has two adaptive
filters, spatial and temporal filters. The former, acting as a beamformer, can suppress MAI and
the later can simultaneously estimate the code-delays of the desired user. A mean squared error
(MSE) criterion is proposed such that these filters can be simultaneously adjusted by astochastic
gradient descent method. The performance aswell asthe convergence behavior of the proposed
algorithm are analyzed in detail. Closed-form expressions for optimum filter weights, optimum
beamformer signal-to-interference-plus-noiseratio (SINR), steady-state M SE, and mean acqui-

sition time are derived for the additive white Gaussian noise (AWGN) channel. It is shown that

2



the proposed system can significantly outperform the conventional correlator-based acquisition
system.

The computational complexity of temporal filter in the proposed array system may become
higher when the delay uncertainty islarge. To solvethis, we employ the serial-search technique
to develop a low-complexity system. Thisis described in Chapter 4. Detail analysis and exper-
imental simulations are also made. Apart from the complexity issue, in the adaptive array code
acquisition system, we find that the filter convergence is slow in multipath channel environ-
ments. Although the recursive-least-squares (RLS) algorithm can be applied, the computational
complexity will be greatly increased. To aleviate this, we employ the conjugate gradient (CG)
algorithm to accel erate the convergence in Chapter 5. Taking the advantage of the special struc-
ture in the correlation matrix of the input signal, we proposed a CG algorithm having much
lower computational complexity than thé'conveénti onal CG agorithm. It can be shown that the
computational complexity of the propesed mqhod ison the same order of the |east-mean-square
(LMYS) agorithm. However, the c‘onvergénbé is much-faster. Finally, we draw conclusionsin
Chapter 6. ‘ “






Chapter 2

Multirate Adaptive Filtering for Low
Complexity Code Acquisition

Code acquisition has been widely studie‘di in_the I‘itéyature. The conventional approach to
this problem is the well-known correlator-baéed method [1]- [10], [32], [36] (and references
therein). The correlator can have'aserial (11, baréllel [2]—[4], or hybrid search structure pro-
viding an easy trade-off between hardware complexity and acquisition time. However, the
correlator-based method is only optimal for the single-user case. The acquisition performance
degrades greatly when MAI presents, especialy in near-far environments [5]— [6]. To evau-
ate the performance of an acquisition scheme, a measure called acquisition-based capacity was
defined in [7]. This capacity corresponds to the maximum number of users that a system can
serve (with certain acquisition performance). It was shown in [7] and [19] that the asymptotic
acquisition-based capacity for the correlator isU/[2 In(U)], where U isthe processing gain. The
quantity is less than the bit-error-rate-based capacity [8] which is proportiona to U. Thisim-
pliesthat code acquisition may become alimiting factor for a CDMA system capacity. Another

discussion on the acquisition-based capacity for the correlator can be found in [9].

Another category of the acquisition technique employs subspace- or matrix-based meth-

ods [11]- [18]. The advantage of subspace-based approaches is that it does not require train-

5



ing sequences. However, these methods usually have to estimate, decompose, and inverse the
autocorrelation matrix of the received signal vector. This often demands high computational
complexity, especially at alarge processing gain. The projection degree measurement (PDM)
algorithm [11] observes two successive symbols in order to obtain the complete information
of one desired symbol. As a consequence, the PDM has to estimate and inverse an autocorre-
lation matrix of dimension 2U-by-2U. The multiple signal classification (MUSIC) algorithm
has also been applied to code acquisition [12]— [14]. The MUSIC algorithm has to carry out
eigen-decompositions and extract eigen-vectors corresponding to noise subspace. Despite of
the oversampling operation in [12], the computational complexity of the MUSIC algorithm is
with O(U?). Besides, this algorithm is constrained under 2K < U, where K is the number of
users. A matrix-based method [18] called alarge sample maximum likelihood (LSML) acqui-
sition algorithm, provides excellent performarice and robustness against the near-far problem.
However, it requires a large amount of: rece|ved b|t Signals and, again, pays a high computa-
tional complexity in the matrix operations. Notably, these methods are specifically designed for
CDMA systems with periodic spreadi ng ‘codes (i-e--the spreadl ng code repeats itself for every
bit) and may not straightforwardly apply‘tothe aperlodlc-code systems (i.e., the periodicity of
the spreading code is great than a bit i nterval)

Recently, the adaptivefilter technique [19]-[26] was proposed to solve the acquisition prob-
lemin the presence of MAI. The method [19]—[24] separates the delay uncertainty into several
regions, named (delay) cells. The input to the adaptive filter is the desired user’s pseudo-noise
(PN) sequence with a code delay associated to a cell. Each cell is then sequentially tested and
the code delay can then be estimated with the location of the maximum convergent tap-weight.
Thismethod can also have aserial or parallel searching structure trading performance with com-
putational complexity. It was addressed in [19]—[20] that the adaptive filtering scheme can have
amuch higher acquisition-based capacity than the correlator. Apart from the maximum weight
testing, architectures with the threshold testing were also considered [21]—[22]. The threshold

can be set for the mean-squared error (MSE) or for the maximum tap-weight (in acell). It was
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found in [23] that the tap-weight testing can bring better performance than the M SE testing. The
acquisition performance with fading channels was analyzed and reported in [24]. Yet, another
adaptive receiver structure reported in [26] performs an exhaustive search to find the integer
chip delay, and then solve a quadratic equation to find the corresponding fractional chip delay.
The drawback of this approach is that its complexity is high particularly for alarge processing

gain.

In this chapter, we propose a code acquisition algorithm using a multirate adaptive filter-
ing technique. Similar to the original adaptive filter approach [19]— [20], our structure isvalid
for periodic as well as for aperiodic spreadi ng codes. In fact, many commercia CDMA sys-
tems, including 1S-95 standard [28], CDMA—ZOOO proposal [29], and 3G CDMA-based wireless
networks [30]—[31], adopt aperiodi‘c codeSffor spl‘feadi‘ng. The fundamental structure of the pro-
posed algorithm is similar to that |n [19]- [ZOj ; “howeve‘r, the proposed scheme contains several
aclaptive filters operating in different rafes FReadaptive filters with low rates will search the
code delay in low resolutions. The adaptivefilters With higher rates will then resolve the code
delay in higher resolutions. The adaptive filter with the highest rate, say the chip-rate, can
finaly identify the original code delay. The proposed multirate processing can have a much
lower computational complexity than the conventional adaptive filtering approaches in [19]—
[20]. Thisis particularly true in the applications where the processing gain as well as the delay

uncertainty islarge.

The rest of this chapter is organized as follows. Section 2.1 reviews the conventional adap-
tive code acquisition scheme. Section 2.2 describes the proposed multirate code acquisition
scheme. Section 2.3 analyzes the performance of the proposed scheme, and Section 2.4 reports

simulation results. Finally, we draw conclusionsin Section 2.5.
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§2.1 Conventional Adaptive Code Acquisition

In this section, we briefly review the conventional adaptive code acquisition scheme [19]—[20].
Fig. 2.1 shows the structure of this scheme. For reference convenience, we name this scheme
as aone-rate (1R) scheme since only one processing rate (i.e., chip-rate) is used. The baseband

chip-rate sampled received signal can be expressed as

= Z Az (n — 1) + w(n), (2.1)

k=1
where K, 7, Ax, xx(n), and w(n) denotes the number of user, the code delay, the signal
amplitude, the transmitted signal of user-k, and channel noise, respectively. The channel noise

is assumed to be additive white Gaussian and its mean is zero. The transmitted signal of user-k

can be expressed as |
U-1 = | ) )"
Z dy(j Zc,” )(n—l‘—jU), - k=1,...,K (2.2)
Jj=—00 =0 : 3

where dy(j) denotes the j-th BPSK sgnal of user-k and ¢rj(1) € {1, -1} corresponds to the
I-th chip signal in d,(j). Also, U denotes the processing gain and p(n) the chip-rate sampled
pulse. Before proceed further, we list assumptionsto be used in the sequel:

a) User-1'scodedelay isof interestand A, = 1.

b) The code delay isan integer multiples of the chip-duration and smaller than U.

¢) Carrier synchronization is established before code acquisition.

d) No data are modulated for user-1's signal in the period of code acquisition, i.e., d;(j) = 1.
€) The chip-pulseisconsidered as arectangular pulse with unit amplitude.

f) The code sequence ¢, ; has a period much higher than the processing gain such that the input

to the adaptive filter can be viewed as statistically white.
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user-1's PN filter

sequence * l

Store results

Figure 2.1: Conventiona 1R code acquisition system, where z1(n — ¢M,) isuser-1's PN se-

guence at g-th cell withg =0,...,Q — 1.

g) Only the additive white Gaussian noisq (AWQN) channel is considered and the summation

of MAI and white Gaussian roi$e can be modeled as another white Gaussian noise [32].

The 1R scheme first divides U.into Q=" [U /M| cells, where M., is the length of the
adaptive filter. The adaptivefilter then'serially sear‘cﬁes the code delay in these cells. The least-
mean-square (LMS) algorithm is employed to minimize the M SE between the received signal
r(n) and the adaptive filter output (see Fig. 2.1). The tap-weight update equations are given by

wil(n+1) = wi(n) + pee(n)x?(n) (2.3

e(n) =r(n) — [wi(n)]"x(n), ¢e{0,...,Q—1} (2.4)

where 1. denotes the step size controlling the convergence of the adaptive filter, w?(n) =
[wg(n), wi(n),...,wi, ,(n)]" thefilter tap-weight vector for the¢-thcell, and x?(n) = [z (n—
qM.),x1(n — qM, —1),...,2:(n — gM, — M, + 1)]” the corresponding input vector. Here,
q is sequentialy increased from zero to Q — 1. The tap-weight vector w?(n) for a particular
q is stored after some iterations, say N; chips. Then, an estimation of 7; can be derived with

the tap-index of the maximum tap-weight (among all cells). Let the A.-thtap (0 < A, < M)
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of the adaptive filter in the a.-th cell has the maximum value. Then, we can have the delay
estimation 7, = .M, + A.. Combine w?(N;), ¢ = 0,1,...,Q — 1 into a big vector w,
i.e,w = HWO(NI)]T, [wi(N)]T, ..., [wQ—l(Nl)]T}T. It can be shown that the probability of

acquisition error is
Pe:]'_Pb(wCij)? C%ja {Caj}e {0717"-7U_1}7 (25)

where w; denotes the j-th element of w and w.. the tap-weight corresponding to the true code
delay 7, (i.e.,, ¢ = 7). To evaluate (2.5), we need to know the stochastic properties of the
tap-weights. It has been shown in [33] that these tap-weights at convergence have Gaussian

distributions with a mean vector of

mx1) = W, (2.6)

and a covariance matrix of
C(U;If) ~ %Jmm;["(UxU)ﬂ~1 (2.7)
| il E (28)

where w,, isthe optimum solution of w sol ved with the\Wiener equations[34], J,,, isthe corre-
sponding minimum mean-squared error (M MSE), and o2 isthevariance of each tap-weight. Let
R? = E{x?(n)[x%(n)]"} and p? = E{xI(n)r(n)}. Since theinput iswhite, R? = I(s;, «1r,).
Itiswell known that wl = (R?)~'p?. Let 7y = a. M. + A, 0 < A, < M,, and p§ isthe j-th
entry of p? (j € {0,1,..., M. —1}). Itissimpleto show thatpj. =1lwheng=a.andj = A,
and pj- = 0 otherwise. Thisisto say that a unique peak with value one will appear in w.., and
all other weights are zeros. Thus, we can have J,,;, = E{r?(n)} — 1. Using (2.6) and (2.8), we

can rewrite (2.5) as

e[ o)) (), e

where Q(-) denotes the @-function [35]. It is known that an M ,.-tap adaptive filter (with the
LM Salgorithm) requires 2 M, multiplications per iteration. Thus, the computational complexity

is proportional to thefilter size.
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§2.2 Proposed Adaptive Multirate Code Acquisition

To understand our idea easier, we start our development with atwo-rate (2R) system. Then, we

will extend it to athree-rate (3R) system.

§2.21 2R Scheme

Following the assumptions given in Section 2.1, we express (2.1) as

r(n) = ZAk:vk(n —Tk) +w(n)

k=1
=x1(n—m)+v(n), (2.10)
where
=HALINA &
v(n) = ZA‘ka‘fk“(n = 1) + w(n) (2.12)
k=2 1

denotes the sum of MAI and white Gatissian noisel L et the variance of v(n) be o2. For nota-
tional simplification, we will omit the subscripts of z1(n) and 7, in following derivations. Fig.
2.2 shows the architecture of the proposed 2R acquisition system. As we can see, the system
contains two units with two different processing rates. We call the unit in Fig. 2.2 (a) as a
low-rate unit (LRU). In this unit, the adaptive filter updates its tap-weights with a low rate.
For this reason, we refer to the adaptive filter in this unit as a low-rate adaptive filter (LRAF).
By contrast, we call the unit in Fig. 2.2 (b) a high-rate unit (HRU). The adaptive filter in this
unit updates its tap-weights with a high rate. We refer to the adaptive filter in this unit as a
high-rate adaptive filter (HRAF). Note that the high-rate here denotes the chip-rate. There are
feedforward and feedback operations in the system. We now describe the fundamental feed-
forward operation. First, consider Fig. 2.2 (a). The system passes the received signal r(n)
and the locally generated user-1'ssignal z(n) through lowpassfilters (LPFs) to obtain r;pr(n)

and xpr(n) respectively. Then, it downsamples these signals with a factor of D and feeds
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the resultant signals to the LRAF. Let M, = [U/D]. Then, the code delay can be rewritten as
T=aD+ Awherea € {0,1,...,M,}and —D/2 < A < D/2. Note that the ranges of « and
A are defined different from that in the previous section. The LRAF will adapt to estimate a
low-resolution 7 having the valuein {0, D, ..., M,D}. Similar to the 1R system, we select the
tap-index associating with the maximum tap-weight value. Notethat M/, + 1 isthe filter length
of the LRAF and (M, + 1)D must be great or equal to U. Let the index with the maximum
tap-weight in the LRAF be &. The HRU in Fig. 2.2 (b) then delays x(n) with &D chips. We
call the device to perform the delay function as the delay-tuning filter (DTF). With this oper-
ation, the HRAF adapts to refine the code-delay resolution. After convergence, we select the
tap-index A with the maximum tap-weight. It is easy to see that theindex should bein therange
of +D/2. Combing these two tap-weight indices, we can finally obtain a code-delay estimate.
In summary, the LRU attempts to acquire,ztin-a rhulti-chip level (low resolution), while the
HRU in achip level (high resolution). = =l . ‘

We now examine some properties-of ‘the 2§ ;féedforward operation. For low complexity

consideration, we let the L PF filtered r(n) [in(2:10)}-as

TLPF(”) = i:r(n‘— j) ‘

7=0

D—-1
= x(n —71—j)+vLpr(n), (212)
where
vrpr(n) =Y v(n—j). (213
j=0

It is simple to see that this is just an averaging operation with a D-tap filter (apart from a
constant). In Fig. 2.2 (a), f; indicates a vector consisting of the impulse response of the LPF.
As shown, each element of f; hasthe value of one. Substituting - = aD + A, we can rewrite
(2.12) as

D-1

ropr(n) = Zx(n—aD—A—j)+vaF(n). (2.14)

=0
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Figure 2.2: Proposed 2R code acquisition system with (a) LRU and (b) HRU. Note that LRU
and HRU interact only when n = mD. The dash-lines indicate feedforward and feedback

operations.

Downsampling (2.14) with afactor of D, we then have

TL(m) = TLPF(n)|n:mD
— - z((m—a)D — A —j) +wvr(m), (2.19)
=0
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whereweletm = |n/D| and vy, (m) = vy pr(mD). Similarly, we can average 2:(n) to obtain

D—-1

zrpr(n) = Y x(n—j), (2.16)

§=0

and downsample 2, pr(n) to obtain

= z(mD —j). (2.17)

Let the input vector of the LRAF be x,(m). Then, we have
x,(m) = [z (m), 2z (m —1),..., 2 (m — M,)]. (2.18)
In what follows, we will find out how A yvil"[ i n%l uen(;e ;ﬁé stgady-state tap-weights of the LRAF.

Let = E(S

1

3 P":n%w g (2.19)

and consider the case where A > 0 first. The element =, (m —¢), e € {0,1,..., M,} in (2.18)

can be rewritten as

rm—€) = D((m ~9D )
- j:_olx((m —e)D —j) + j::x((m —€)D —j)
- j:x«m ~9D-j) +D]Aolx<<m ~9D-A-j)
_ /Dy {%gx((m — D - J)}
T { i p)D:O_Ix«m —gD-A- j)} 220



Let

| A
f(m) = \/T_pjz;x(mD —7) (2.21)
1 D—A-1
m) = x(mD — A — 2.22
$m) = s ; ( j) (2.22)

O(m) =[0(m),f(m—1),..., O(m— M,)]", and ®(m) = [¢p(m), p(m—1),..., d(m— M,)]".

Thus, (2.20) can be written as

= VDpf(m—e) + /DI =p)p(m—e), €e€{0,1,....M} (229
and (2.18) as
:N‘V@;‘@(m‘j‘ 4/ D(1— p)®(m). (2.24)
Note that (), ¢(m) and vy, (m ):;a\re = *Hjméén"“mutﬁal ly uncorrelated, and

E{9 m)H -‘+e)} 3 (5

E{sUmymea) = o(c)
E{vr(m)vr(m — €)} = Da?5(e), (2.25)

where (-) denotes a Kronecker Dirac delta function. Using (2.21)—2.22), we can also express
(2.15) as

rp(m) = '_ z((m —a)D — A —j) +vr(m)
=3 Hm DA )+ X allm—)D A )+ vglm)
=S a(m—a)D A=)+ S a((m—a—1)D — j)+ vi(m)
D(1 — p)p(m — @) +/Dpf(m — a — 1) + vy, (m). (2.26)



Let thetap-weightsof theLRAFbew, (m) andw (m) = [wyo(m), w1 (m), ..., wgum, (m)]".
Also, let the corresponding optimal solution be w, ,. Using the corresponding Wiener equa-
tions, we can have

WL, =R;'PrL, (2.27)
wherepy, £ E{x;(m)rr(m)} and Ry = E{x;(m)x}(m)}. Itissimpleto seethat

R, = DL (2.28)

Substituting (2.24), (2.26) and (2.28) into (2.27), we obtain

W0, = 0, € : o E1 H 4 e E‘ "{0,1,...,Mp} (229)
0, othenNise o

wherewy, , . isthe e-th element of w, ,. Letthé M SE that the Wiener filter minimizesbe J,(m).

Then,

Tp(m) = E{[rp(m) — wp (m)x(m)]*}

= B{ri(m)} —2wj (m)pg + wi (m)Rpw(m), (2.30)

where E{r? (m)} = DE{r*(n)} = D(02+1). Replacing w,(m) with w, ,, we can obtain the
corresponding MMSE, J;, in, 8

Jrmin = DE{r*(n)} — D[(1 — p)* + p]

= D[o? + 2p(1 — p)]. (2.31)

From (2.31), we can see that a nonzero p will produce an extraterm in the MMSE. We now
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proceed to find the MSE yielded by the LM S agorithm. Using (2.24) and (2.29), we derive

xi(m)wi, = (1= p){y/Dpb(m — a) + /D(1 = p)d(m
+p{\/Dpb(m —a —1)+ /D1 — p)p(m — a — 1)} (2.32)
= V/Dpf(m — ) +/D(1 = p)p(m — a)
— pV/Dpb(m — ) = p\/D(1 = p)p(m
+ p/Dpb(m — o — 1 +p\/17—¢ —a—1). (2.33)

Substituting (2.26) into (2.33), we obtain

x} (m)wp,, = r(m) —vp(m p)V/Dp{f(m — ) — O(m — o — 1)}

~ /D= pfgm g a) — d(m —a —1)}. (2.34)
Rewriting (2.34), we have y E|S

ri(m) = xE(m)wp, + vz (m) =

—(1 = )/ Dplf(m — ) g — a)) + p/ DU = P[o(m — a) — dm — a — 1],

(2.35)

where &(1m) is zero mean and its variance is o7 = 2Dp(1 — p). The LMS tap-weight update
eguation for the LRAF is given by

wr(m) = wr(m — 1) + prxr(m) [rr(m) — x; (m)wg(m —1)] (2.36)

where 17, isthe step size. Substituting (2.35) into (2.36), we have

wi(m) = wi(m — 1) + prxg(m) [x7,(m)Wro + vr(m) +§(m) —xp (m)wr(m —1)] .

(2.37)
Subtracting w, , on the both sides of (2.37) and letting Aw(m) = wg(m) — w,, we can
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rewrite (2.37) as

Awp(m) = Awg(m — 1) — ppxg(m)xr (m)Awy (m — 1)
+ prxp(m)vr(m) + prxg (m)é(m)

= I — prxp (m)xp (m)]JAwy, (m — 1) + pxg (m)og(m) + prx,(m)é(m). (2.38)
Let Q(m) = E{Aw(m)AwZ(m)}. Then,

Q(m) = E{[L - prxp(m)xg(m)|Awy (m — 1)
x Awy, (m = DI = prxp(m)x (m)]"}
+ pg, E{vi (m)xg (m)x;,(m)}

+ p E{€* (m)xg (m)x (m)}. (2.39)

Equation (2.39) can be written as "
=l 4
Q(m 1) (

Q(m) = (I =psRg) - purRr)
+ Do TR oeR 1 (2.40)

Note that in (2.40) we implicitly assume thaté Q(m‘)“and‘ &L(m)xf(m) are uncorrelated. The
e-th entry on the main diagonal of Q(m) is
Qcc(m) = (1 = pD)*Qce(m — 1) + pj D07 + i Do (2.41)
When m — oo, we have the asymptotic result as
KL 2 2
Q.. (m) = = (Do, + o¢)

2
D
- “L2 02 +20(1—p)]  ec{0,1,...,M,). (2.42)

Using (2.31) and (2.42), we can have the M SE for the LM S agorithm in steady-state [34] as

M,+1 D
JL(OO) — JL’mm + %

[o2 + 2p(1 — p)]

:| JL,min- (243)

18



Next, let us consider the case where A < 0. We define anew set of #(m) and ¢(m) as

D—|A|-1
O(m) & ———— \/17— Z z(mD — §) (2.44)
A1
om) & > allm =)D +1a] =) (249
Then, we can have z €) as
zr(m—¢€) = - z((m —€)D — j) (2.46)
§=0
D—|A]-1 D1
= z((m—¢€)D—j)+ z((m —e€)D — j) (2.47)
j=0 j=D—|A|
D-|al-1 N

= > alm @B Y (- 1D +IAI-)) (@49

= /D1 = p)éraz=)  /Dpo s — o). (2.49)
and (2.15) as \ Ne== £

ri(m) = 1_ 2((m — a)D + |A| = ) + vz (m) (2.50)

|Al-1 D1
= a((m—a)D+ A=)+ Y z((m—a)D+|Al—j) +vr(m) (251)

Jj=0 J=l4A|

|A]—1 D—|A|-1

=D allm=—a)D+[A]=j)+ } w((m=a)D=j)+uvi(m) (2.52)
= /Dpp(m — a+1) + /D1 — p)f(m — ) + vy (m). (2.53)

Following the similar procedure for the case that A > 0, we can derive

1—p, e=«
W0, = P, e=a—1 € € {0, 1, Ceey Mp} (254)
0, otherwise
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and

(Mp + I)MLD
2

J(00) = JL min + [0 +2p(1 — p)]

:| JL,min- (255)

As shown in (2.31), J;, min isafunction of p. Since 0 < p < 1/2, when p gets larger, J, min
will become larger. This will also make the steady-state MSE in (2.43) larger. Furthermore,
from (2.29) and (2.54), we see that anonzero p will produce two nonzero weights and make the
value of the peak tap-weight smaller than one. Combining these effects, we can conclude that
the larger the p, the worse the acquisition performance. The worst case occurs when p = 1/2
yielding two nonzero equal weights. In what follows, we will develop a system that can null p.
Now, let us consider operations in the HRWLASFig. 2.2 (b) shows, the input to the HRAF
isz(n — aD). As mentioned, the optimal filter‘ Qf“th‘"e L"R:AF may have two nonzero weights
with the same value. Thus, the peak position can bea or & + 1. In other words, we need at
least D + 1 tapsfor the HRAF. To simplify ou‘r'anra‘lﬂysis, welet é = a. Itis simple to see that
the optimal weights of the HRAF will have éﬂnique peak at A. Sincethe analysis of HRAF is

straightforward, we only provide the results without detailed derivations. Let

xi(n) = [z(n —&D + D/2),...,x(n — aD),...,x(n — aD — D/2)]"
=[xy, _pjan),...,xgon),...,xgppn)]" (2.56)

wi(n) = (Wi, —pja(n), ..., wgo(n),... ,wH,D/Q(n)]T, (2.57)

where we assume that D/2 is an integer (for notational convenience). Notice that Ry =
E{x(n)x%(n)} = 1. We then have the optimum weights listed below:

L, j=A
WH,0,j = o (2.58)
0, otherwise

where wyy , ; is the j-th element of wy ,, and wy, is the optimal solution of w (n). We then
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have the MM SE and steady-state MSE as

Titmin = E{[r(n) = wip(n) % (n)]*Hwp (m)=wn.,
= E{r*(n)} — 2wy E{xu(n)r(n)} + Wi Ruwn,,
=0, (2.59)

D+ Vpn

Jr(o0) = [H( 5 ]JH,mm, (2.60)

where p; isthe step size used in the HRAF.

The main problem associated with the 2R scheme described above is that sampling phases
for r,pr(n) and x 1, pr(n) may not be synchronized (i.e., A # 0). Asanalyzed, the acquisition
performance can be greatly affected when A is not equal to zero. Our remedy to this problem
isto adjust the sampling phase of x(n) during filter adaptation. Thisis possibleif A estimated
by the HRAF can be fedback to the ‘LRAF. To fealize this thought, we use a device, namely
phase-tuning filter (PTF), to tunethe input phase wi‘t‘h‘ A chips (see the feedback operation in
Fig. 2.2). The PTF can advance br lag the phaee of its input signal. With this structure, the
sampling phases for (1) and-ay (A6 Be sychronized. Note that the LRU and HRU
interact only when n = mD. Letting' A= 0-(i:€.,’p - 0) in(2.31) and (2.42), we have

JLmin = Do, (2.61)
Qe.(m) = %Dag ec{0,..., M)} (2.62)
Thus, steady-state M SEs of the LRAF and the HRAF are
Ty (o0) = {1 + M} Do?, (2.63)
Ji(o0) = {1 + %} ol (2.64)

§2.2.2 3R Scheme

In the previous subsection, we have proposed a 2R scheme that is able to null p. Since the

HRAF operates in a high processing rate, it dominates the overall computational complexity.
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This becomes an important issue when the tap-length D + 1 islarge. We can solve the problem
by introducing a unit with another processing rate. We call this unit as a medium-rate unit
(MRU). This unit contains a medium-rate adaptive filter (MRAF) sharing the computational
loading of the HRAF. As shown in Fig. 2.3 (b), the LPFs f,, average r(n) and x(n) with a
window side of D,,, and the decimators downsample the resultant signals with afactor of D ;.
Let the DPTF denote the device cascading the DTF and PTF. Here, the processing rate of the
MRU is D/D,, timesfaster than that of the LRU, but D, times slower than that of the HRU.

With the additional MRU, we have three resolutions to work with. We can express the code

delay as™ = aD + 3D, + §, where

o€ {01, My} (2.65)
B €{=D/CB). .m0 8, D4(2Dn)}, (2.66)
5 € {~ Dy /2 ws0ssres Darf2 N (2.67)

Again, for convenience we assume that D /(2D) and ‘D, /2 are integers. Then, we use the
LRU, MRU and HRU to estimate { v, 3, 6 }, respectivély. Notethat —(D+Dy)/2 < BDy+6 <
(D + Dyy)/2, where Dy, > 2. In other words, the MRAF and HRAF can span a delay region
greater than D + 1. Define the tap-weight vector and the input vector of the MRAF as

WM(S) £ [wM,—D/(QDM)(S); Caey wMyo(S), ceey ’U)M,D/(QDM)(S)]T (268)

£

xpr(5) TM,~D/(2Dar)(8), -5 Taro(S),-- -, l"M,D/(zDM)(S)]Ta (2.69)

where s = |n/D), |. The update equation for the MRAF is given by

war(s) = war(s — 1) + parxar (s)[rar(s) — x(s)war (s — 1), (2.70)
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Figure 2.3: Proposed 3R code acquisition system with (a) LRU, (b) MRU, and (¢) HRU. Again,
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operations.
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where 11, 1sthe corresponding step size and

Dyr—

Z r(n = 5)|n=spars (2.71)
Tarels Z (n—aD — 5—6DM—j)|n sDys
=0
ec€{—=D/(2Dy),...,0,...,D/(2Dy)}, (2.72)

where we have used @D and ¢ obtained from other two units. The weight adaptations for the

LRAF and HRAF are similar to (2.36).

We have analyzed the performance of the HRAF and LRAF in a 2R system previously.
The performance of the MRU in a 3R system,can.be done in a similar way. We can treat the
MRU as a special LRU, and replace D wifh D for the formulas derived for the LRAF. Since
this is straightforward, we omit the defailed raﬂlt]s\‘hefe. Note that in Fig. 2.3 all units update
parametersin their PTFs or DTFssmultaneoust atn=mb. Let the estimatesfor «, 3, and ¢
at theinstant n = mD be &(m), B(s), and 5(n), r&spectlvely When n = mD, the PTF in the
LRU delays(n) by 3(s) Das +6(n) chips, theDPTF in the MRU delaysz(n) by é(m) D+ 6 (n)
chips, and the DPTF in the HRU delays x:(n) by a(m)D + (3(s)D,, chips. We can extend the
ideato afour-rate or higher rate system; however, the system architecture will become complex.
For typical applications, a 2R or 3R system will be sufficient. As described, al the filters are
adjusted using the LMS algorithm. As shown later, the tap-weight of an adaptive filter can
be treated as a random variable. Thus, o, 3, or § may be incorrectly estimated during the
adaptation, which we call a decision error. Note that the LMS algorithm changes the filter-
weight values slowly. For most cases, the estimation error can be corrected shortly. There are
only few cases that the error will propagate between adaptive filters and the overall effect may
lower the final amplitudes of the peak tap-weights. To alleviate the decision error problem, we
can let the LRU operate for a short period of time without feedback at the initial. Simulations
show that the error propagation effect only slightly slows the convergence.
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§2.3 Performance Analysis

To compare the proposed schemes with the 1R system in Section 2.2, we employ some per-
formance measures such as the required computational complexity (per iteration), acquisition

error probability, and mean acquisition time.

§2.3.1 Computational Complexity

To have a fair comparison, we let N = N; = N,;, where N,, denotes the iteration time
of the multirate system. Also, we let D = (@ such that the filter size in the 1R system is
approximately equal to that of the LRAF (A1, ~ M, + 1). Since the main operation in filtering
is multiplication, we only take this into./account, We first calculate the total multiplications
required in ' iterations and then diVide therresult by.V.
a) 1R scheme >

As mentioned in Section 2.2; the MC‘-t‘ap”gdaptive‘ filter will require 20, multiplications
per iteration. Then, the computati OnaI‘C“c‘)mpIexity‘ of the 1R system, denoted as C', is2M, =
2[U/D]. | ‘
b) 2R scheme

For the 2R scheme, we have to take both the LRAF and HRAF into account. Since the
HRAF has D + 1 taps and operates in the chip-rate, it requires 2(D + 1) multiplications per
iteration. On the other hand, the LRAF has M, + 1 taps operating in arate D times slower.

Thus, the required multiplications per iteration for a 2R scheme, C',, is given by

20M, + DX +2(D + 1)N

N
= 72(M1’D+ b 2(D +1). (2.74)

¢) 3R scheme

Similarly, we take the LRAF, MRAF, and HRAF into account. The required multiplication
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per iteration for a 3R system, Cs, turns out to be

N D+17 N
Cy = 2(M, +1)5 +2[mj\;m +2(Dp +1)N 275
2(M, +1) 2 D+1

- D +DM[DM

T+2(Dy +1) (2.76)

where [(D + 1)/ D] isthe minimum required tap-length for the MRAF.

§2.3.2 Probability of Acquisition Error

For the 1R system, we let the adaptive filter run for a period of four time-constants to reach
the steady-state (for each cell). The time-constant for a LM S filter with white input and a step
size . can be estimated as [1/ .| (see pp. 348in[34]). The overall convergence time for the
1R system, denoted as IV, is then 4Q[ 1/} L et theélstep size for the adaptive filter in the 1R
system and that in the HRAF be the sanie (ife., Jit = Jui 27). For multirate systems described
in Section 2.2, we further let i, = M/‘D‘ and jus Z /)/DM. In this way, the variances of these
adaptive filter taps are the same [see (2».?) and (262)]-7 |
a) 2R scheme ” o

An acquisition error may occur due to & 7é a, 3‘ # 9, or both. If we assume that there are
no decision errors, the probability of acquisition error for the time instant », denoted as P.(n),

can be written as

P.(n)=1— Pp.(m)Pg.(n) (2.77)
Pr..(m) = P(wg,c(m) > wy,_j(m)) c#7j,{c,j} €{0,1,..., M,} (2.78)
Py o(n) = P(wp,(n) > wy;(n)) c#j,{c,j} € {-D/2,...,0,...,D/2}, (2.79)

where P, .(m) and Py .(n) denote the correct acquisition probabilities of the LRAF and HRAF,
respectively. Also, wr, .(m) and wy .(n) denote the taps whose tap-indices correspond to the
actual code delay.

Using the transient analysis of LM S algorithmsin [33], we have the mean weight vector of
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the LRAF as
E{wr(m)} = [I— (I—pR)"wr, (2.80)

and the (M, + 1)-by-(M,, + 1) covariance matrix as

MLDU

CL(m) 5

PEZT0E (T 2.R)") (2.81)

Since R;, = DI, wecan let C;(m) = oy, (m)I where o7, (m) is an equivalent variance that
can be derived from (2.81). Here, w(m) and wy (n) are assumed to be Gaussian distributed.

Similarly, we can have the mean weight vector and the covariance matrix of w(n) as
E{wg(n)} = I — (I - puRp)" W, (2.82)
and

Conil) gt EGE AL S210 R ) (2.83)

SinceRy =1, wecanlet Cy(n )‘ 7z ( I Slmllarly, .. (n) isan equivalent variance that
can be derived from (2.83). From (2.81) and (2:83), we find that tap-weights are independent
and identically distributed. As mentionéd both the HRAF and LRAF are run for V chips. For
notational simplicity, we let A, asthe peak in E{w(|N/D])}, 07 = o, (|N/D]), P, =
Pr.(|N/D]), Ay asthe peak in E{wg(N)}, o}, = o2 (N), Py = Pg.N), and P, =

WH

P.(N). The probabilitiesin (2.78)—«2.79) at » = N turn out to be

P, = 220% _: [1 —Q (%)} " exp (—7(“’ ;;;L) ) dw, (2.84)
O h {1—Q<ﬂ)rex (—M) dw (2.85)
" oo ) o P 207, ' |

Finally, we obtain

P.=1-PLPy. (2.86)
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As mentioned in Section 2.2, incorrect decisions can occur and the error propagation be-
tween the HRAF and LRAF will lower the peak amplitudes of final tap-weights. Thus, the
results in (2.84)—2.86) may be too optimistic. However, the exact analysis of the error prop-
agation effect turns out to be very difficult, if not impossible. In what follows, we propose a
simple approximation method to overcome the problem. We first assume that the error propa-
gation affects the mean of a tap-weight much more serious than the variance. As a result, we
only consider the variation of mean weight vectors. For an adaptation period, a decision error
can occur in any instant and the error sequence can have many patterns. For simplicity, we only
investigate those affecting performance most. Consider the LRAF. It is simple to see that if
there are x decision errors during the adaptation period (i.e., between m = 0 and m = | N/D|),
the error pattern corresponding to the worst performance will be the one when all errors oc-
cur between m = |N/D| — x + 1 and m =N/ DJ;, In other words, once a decision error
occurs, the error will continue to the end of the §adaptation period. This will make the peak
weight value of the LRAF decrease from m = LN / DJ — 41 monatonically. We then use this
pattern to represent all possible error pa‘ttem“s“‘ha‘vingn deciéion errors. From (2.80), we have
Ay =1— (1 — pupD)N/P) Taking the décision errorsinto account, we may then rewrite A, as

K

Ap(k) = [1 = (1 = p D)NPI=] exp(— ). (2.87)

where ;' = A and \;, = D isthe eigenvalue of R, [34]. We may treat « as a random

variable with a binomial distribution as

o) = (PP = payepe (289

where Py, is the correct probability in (2.84). We then use (2.87)—2.88) to calculate the mean
value of Ay (x), denoted as Ay It isgiven by

N/D

[N/D]
A=Y An(mp(s). (2.89)

Then, the probability of correct acquisition for the LRAF, denoted as P;,, can be obtained by

substituting A;, into (2.84). Similarly, we can use the same procedure to obtain the probability
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of correct acquisition for the HRAF, P;. Finally, the probability of acquisition error for a 2R
system, denoted as Py, is obtained by

Pz =1— P.Py. (2.90)

It isworth mentioning that P;, and Py are the correct acquisition probabilities without decision
errors. Thus, these values essentially correspond to two upper bounds of the correct acquisition
probabilities. Using these valuesin the calculation of p(r) [asthat in (2.88)] will underestimate
the acquisition error probability. On the other hand, we only take the worst decision error
patterns into consideration and this will overestimate the acquisition error probability. Thus,
(2.90) isaresult corresponding a compromise of these two extreme cases.
b) 3R scheme

Using the similar idea, we can have the probability of acquisition error for the decision-

error-free case as " |
3 ’ ElC

P.(n) = 1= Pro(m) Pay (§Pmel) 777 (2.91)
Pp.(m) = P(wg.(m) > wL,j(m)) Le#ETHe j}‘e‘ 0,1,...,M,} (2.92)
Purro(s) = P(wne(s) > war;(s)) “les s {c,j} e {—-D/(2Dy),...,0,...,D/(2Dy)}

(2.93)

Pyo(n) = P(wpg(n) > wn,;(n)) c#j,{c,j} € {=Dm/2,...,0,...,Dp/2}, (2.94)

where P, .(m), Pu.(s), and Pg.(n) are the correct acquisition probabilities of the LRU,
MRU, and HRU, respectively; wy, .(m), war.(s), wu(n) denote the taps whose tap-indices
correspond to the actual code delay. Note that s = |n/Dy/|. Let P, = P .(|N/D]),
Py = Pyo(|N/Dy|), Pu = Pgo(N), and P. = P.(N). Then P, can be calculated as
that in (2.84), while P,; and Py are given by

B 1 0 w \1P/Pu (w— An)?
po= g L0 GE)] e () o
R D el PPN ATAY _M)
Py = \/ﬂ/—oo [1 Q (UH)] exp ( 207 dw, (2.95)
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where A,; and 2, can be obtained as that described in (2.80)<2.81). Then, we have P, =
1 — PPy Py. Agan, P, does not consider the decision error propagation effect. We can
follow the same notation definitions and procedures outlined in the previous subsection to obtain

{ P, P\, Py} . Finaly, we have the probability of acquisition error for the 3R system as

Pg =1— P,PyPy. (2.96)

START START

¢ 1-P. ‘

. C (1-P)Z"
N ch1p§ for A AQQ
fteration

i
Pz’

Figure 2.4: Markov chain model for multirate code‘acquisition schemes. The right hand side
figure illustrates an equivalent model, where Ziisadelay operator, Py the probability of acqui-

sition error, 7, penalty time, and ACQ the correct acquisition state.

8§2.3.3 Mean Acquisition Time

Mean acquisition time analysis is generally derived with a Markov chain model [36]. Since
our multirate systems is different from the correlator with serial search, the commonly used
model [10] cannot be applied here. Fig. 2.4 shows the model derived for our systems. As the
figure shows, the system iteratesfor V chipsto obtain 7 and the probability of acquisition error
is Pp. If the acquisition fails, it will wait for a period of time T}, (chips) before the system
re-starts the acquisition. Here, T}, is generaly referred to as the penalty time [32]. For our

schemes, 7 is constructed from {&, A} or {a, 3,0} at n = N. If 7 # 7, the receiver will
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re-initialize acquisition after a time interval of 7}, chips. We can have the transfer function of

the Markov chain model in Fig. 2.4 as[27], [36]

(]_ — PE)ZN
Hacy(2) = 1 Pozlih (2.97)

where z isadelay operator and P isthe probability of acquisition error formulated above. The

mean acquisition time can then be easily found as

d
Tacq é _ZHacq(Z)|Z:1 (298)
(T, + N)Pg
= ~r - /- 2.99
=Py (2.99)

Note that the unit of 7}, is chip.

8§24 Simulations

In this section, we conduct computer sim‘ulat‘i ons to démonstrate the effectiveness of the pro-
posed algorithms. First, we investigate the coihpUtationaI complexity issue. Using (2.74) and
(2.76), we can evaluate the computational-complexity requirement per chip versus D for 1R,
2R, and 3R schemes. We list the results in Table 2.1, 2.2, and 2.3 for D = 4, 8, and 16, re-
spectively. The numbers inside the parentheses in these tables indicate the values of D, used
for the 3R system. Also, the last two rows of the tables give the complexity ratio defined as
Cy/C, and C5/CY, respectively. From these tables, we can have several observations. Firstly,
the larger the processing gain, the higher efficiency the multirate system can achieve. Secondly,
the 3R system is always more efficient than the 2R system. Lastly, there exists an optimum D
for a given processing gain U. For example, when U = 1024 and D = 8, the computational
complexity of the 2R system is about 20% of the 1R system. For the same processing gain with
D = 16, the complexity of the 3R system is only about 16% of the 1R system. These outcomes
state that the multirate system can be much more efficient than the 1R system for large U.
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Table 2.1: Computational Complexity Comparison for D = 4.

U 128 | 256 | 512 | 1024
c 64 128 | 256 512
C, | 2650 | 4250 | 7450 | 13850
Cs | 255(2) | 41.5(2) | 73.5(2) | 137.5(2)
C,/Cy | 0414 | 0332 | 0291 | 0271
Cs3/Cy | 0398 | 0.324 | 0.287 | 0.269

Table 2.2: Computational Complexity comparison for D = 8.

U | 128 | 256 | 512 | 1024
G| 32 64 128 | 256
C, | 2225 | 42625 (48425 | 5025
Cy | 14253 18.25(3):| 26.25(3) | 42.25(3)
C,/C: | 06957 | 0410 | 0268 | 0196
C4/Cy | 04457} 028BI|170.205 | 0.165

Table 2.3: Computational Complexity Comparison for D = 16.

U 128 256 512 1024
o 16 32 64 128
C, | 35125 | 36125 | 38125 | 42.125
Cy | 13.125(3) | 14.125(3) | 16.125(3) | 20.125(3)
Cy/C, | 2195 1.129 0.596 0.329
Cy/C, | 0821 0.441 0.252 0.157

We then compare the probabilities of acquisition error for 1R, 2R, and 3R systems. We set
signal-to-interference-plus-noise ratio (SINR.), which is defined 1/02, as —13 dB (about 20
users with equal power). Also, U = 128, D =8, Dy = 4, p = pg = purD = upyD/2, and
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N =4D][1/u]. The code-delay 7 isuniformly and randomly selected from [0, U'). We conduct
10* independent trials and show theresultsin Fig. 2.5. Also showninthefigureisthetheoretical
results derived in Section 2.3. Experimental resultsin Fig. 2.5 indicate that the performance of
multirate systems are dlightly better than that of the 1R system. Theoretical predictions for all
systems are accurate particularly when the step size is large. For the 1R system, the deviation
between experimental and theoretical valuesis smaller than that in 2R and 3R systems. Thisis

not surprising, since the 1R system does not have the error propagation problem.

Probabilty of acquisiiton error

10 7 -0- 1R systems, experimental|
i —6— 1R systems, theoretical |1
I —*— 2R systems, experimental| ]
—+— 2R systems, theoretical ||
-o- 3R systems, experimental| |
—=— 3R systems, theoretical

3 3.5 4 4.5 5 55 6
step size %1072

Figure 2.5: Experimental and theoretical P [(2.9), (2.90), and (2.96)] versus step size 1 (D =
8, Dy =4, U =128, and SINR, = —13 dB).
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Figure 2.6: Experimental mean acquisifion time Zaeg-Versus step size p (1, = 1.28 x 10%,
D =8, Dy = 4,and SINR, = —13 dB).

As mentioned, an important acquisition performance measure is the mean acquisition time.
To derive the mean acquisition time, T, wefirst set 7, = 1.28 x 10* chips (100 bits) and sub-
stitute the experimental acquisition error probabilities obtained from Fig. 2.5 into (2.99). Fig.
2.6 shows the mean acquisition time for al systems. The lower bound in Fig. 2.6 corresponds
to the case that no acquisition errors occur. In thiscase, T7,.,, = N = 4D[1/u] and this can
serve as a performance bound for comparison. As we can seg, initially the mean acquisition
time decreases when the step size increases. When the step sizeis larger than i = 5 x 1073,
the mean acquisition time starts to increase. For the setting here, the optimal step sizeisaround
pw=>5x 1073, Inthis case, T,., for the 1R system is about 7500 chips, that for the 2R system
isabout 7150 chips, and that for the 3R system is about 7250 chips. We a so examine the prob-
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ability of acquisition error for various SINR,. Fig. 2.7 shows the experimental results. Here,
welet p=5x 1073, U =128, D = 8, Dy; = 4, and N = 4D[1/;]. Wefind that all systems
have similar performance. Also, the higher the SINR,, the better performance we can have.
The 2R system behaves dlightly better than the others. Fig. 2.8 shows the corresponding mean
acquisition time. In terms of the mean acquisition time, we have the same conclusion that all

systems have similar performance.

10° ¢ :

—o— 1R systems |]

é: —— 2R systems |]
—&— 3R systems |[i

Experimental probability of acquisition error

-16 -15 -14 -13 -12 -11 -10
SINR_(dB)

Figure 2.7: Experimental Py versus SINR, (i = 5 x 1073).

For all simulations shown above, we have fixed N = 4D[1/u] for the systems. In terms
of mean acquisition time, this choice may not be optimal. Fig. 2.9 shows the mean acquisition
time for various N (SINR, is —13 dB). As we can see, there are optimum N’s for multirate
systems. For ;1 = 5 x 1073, we find that the mean acquisition time of the 3R system increases

quicker than that of the 2R system when N is smaller than the optimum value. Thisis because
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Figure 2.8: Experimental mean apquisition time 7, ., versus SINR, (1 =5 x 107%).

the performance of low-rate units depends on N more strongly. When N is larger than the
optimum value, the mean acquisition times of both systems approach the lower bounds. We can
observe the same behaviors when 1 = 3 x 1073, From the figure, we aso find that the optimal
N isabout 2 and 2.5 time-constantsfor ;» = 3 x 1072 and . = 5 x 1073, respectively. In these
cases, T,., = 6 x 10* chips (47 bits) for both step sizes.

8§25 Conclusions

The performance of conventional code acquisitionin a CDMA system degrades greatly when
MAI presents. The adaptive filtering approach proposed recently has been proven to be MAI-

resistant. In this chapter, we propose a multirate adaptive code acquisition scheme that can
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significantly reduce the required computational complexity. We have specifically studied the
2R and 3R systems and theoretically analyzed their performance; thisincludes thefilter conver-
gence properties, acquisition error rate, and mean acquisition time. Experimental results show
that while the proposed schemes can perform similarly with the conventional adaptive acquisi-
tion, the computational complexity is much lower. The proposed scheme is specialy suitable
for CDMA systems operating in large propagation delay environments. With proper choice of
D or D,,, the multirate code acquisition scheme can achieve an efficient compromise between
the mean acquisition time and computational complexity. The proposed scheme can also be
used in a carrier-phase unsynchronized system. In this circumstance, we have to take the in-

phase as well as quadrature components of tap-weights into account. For fractional delay, we
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can conduct a sub-chip level acquisition using an oversampled receive signal. Thiswill enhance
acquisition performance, but it increases the computational complexity too. In this chapter, we
only consider the scenario of the AWGN channel. It is straightforward to extend the use of the
proposed scheme to a frequency selective fading channel. In this case, the proposed scheme
will acquire the code delay of the strongest channel path. These problems can serve as potential

topics for further research.
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Chapter 3

Adaptive Antenna Array Code Acquisition

Antenna arrays, being able to perform beamforming, can be used to enhance acquisition per-
formance [38]— [42]. Code acquisitibn with.an array system is conventionally solved with the
correlator-based structure. In [38], each arrayel ement is equipped with a correlator, and the
correlator outputs are used as the input.to‘a beamformer. If an assumed code-phase is cor-
rect, the output of the optimum béamfofmer vv‘i‘I‘I exceed a pre-set threshold. Then, acquisition
is claimed. Otherwise, the code-phase is‘changed and optimum beamformer weights are re-
calculated. A frequently considered MAI scenario iscalled directional MAI, inwhich MAI sig-
nals arrive at the array in some incident angles. When the interference is present, direct matrix
inversion is needed to derive the optimum beamformer weights [38]. In[39], an adaptive beam-
former is used to avoid this problem. However, the beamformer has to converge for each trial
code-phase. It requires a long adaptation time in an MAI environment and acquisition is then
slow. The approach in [42] uses asimple noncoherent correlator performing atwo-dimensional
search. This method serially searches a cell corresponding to a specified delay and an angular
region. Since the search is performed in two-dimension, it often requires longer mean acquisi-
tion time if better angular resolution is desired. Besides, the acquisition performance degrades
when directional interference exists, as addressed in [42]— [43]. A remedy with an additional
algorithm was proposed in [43]. Apart from that, there are approaches treating acquisition as a
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channel estimation problem [44]— [49]. These methods provide good performance and usually
require matrix computations that are not desirable in real-world implementation. In [50]—- [51],
a correlator-bank exploiting multipath signals was used for acquisition. However, its structure

is quite complicated.

In this chapter, we propose a novel scheme for code acquisition with antenna array. The
proposed algorithm belongs to the category of the adaptive filtering approach. It can be applied
in either periodic or aperiodic code systems. The proposed scheme contains two adaptive fil-
ters, a spatial and a temporal filter. A MSE criterion is proposed such that both filters can be
simultaneously adjusted by a stochastic gradient descent algorithm, called the constrained LMS
agorithm. The spatial filter acts as a beamformerto-suppress interference while the temporal
filter acts as a channel estimator identifying the pode—dél ay. The proposed scheme can form
a beam-pattern with multiple main beams colleé:ti Hg “t‘he dSi‘red user’'s multipath signals from
different directions. We aso analyze the signal -to—i‘nterferer‘]cepl us-noise ratio (SINR) at the
beamformer output, probability of corruect acquisiti oh, and mean acquisition time, and derive
closed-from expressions for the AWGN channel. The proposed scheme can deal with fractional
code-delay, whichisnot considered in [38]—[42]. Also, the temporal filter can estimate channel

responses of the desired user.

This chapter is organized as follows. Section 3.1 describes the adaptive array acquisition
approach in [39]. Section 3.2 develops the proposed schemes for various channel scenarios.
Section 3.3 discusses issues of adaptive processing, and Section 3.4 carries out performance
analysis. Section 3.5 presents simulation results demonstrating the effectiveness of the proposed
scheme. Finally, Section 3.6 gives conclusions. Throughout this chapter, we use I to denote an
identity matrix. Note that the dimension of I isnot explicitly shown; it will be defined whenever

necessary.
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8§3.1 Correlator-Based Adaptive Array Code Acquisition

In this section, we briefly review the adaptive array approach in [39] which is a single-dwell
serial search method. The block diagram of this approach is shown in Fig. 3.1. Asseen, it has
an antenna array with M sensors, and uses an individual correlator (or accumulator) for each
array element. It is assumed that the array is linear and the M sensors are uniformly placed.
Also, the element spacing is half a wave-length. The chip-rate sampled received signal vector

in baseband is given by
r(n) = aexp(—if)x(n — 1) + o(n), (3.1)

wherex(n) € {+1, —1} isthe PN code sequence of the desired user (i.e., no data are modul ated
for the desired user during acquisition),‘e the carrier-phase offset, 7 the corresponding code-
delay assumed to be an integer ferm zeroltb U —~ 1'Where U isthe processing gain, and g(n)
a zero-mean, complex, and white Gaussiaﬁ hdise vectjor associated with a covariance matrix
of o21. Note that o(n) consists of“ MA“I and-noise. When the number of interferi ng users and
the number of resolvable multi paths arelarge, theG‘éussian assumption is generaly held. The
steering vector a in (3.1) isgiven by a - [1,‘exp(—z‘7r sin @), ..., exp(—im(M — 1)sin qﬁ)]T,
where ¢ denotes the direction-of-arrival (DoA) of the desired user. For atrial code-phase 7, the

output of the m-th correlator can be obtained as
ym() =Y ru(z(—7), m=0,...,M-1,n=0,...,N.—1, (3.2)
§=0

where r,,,(n) isthe m-th element in r(n) and N, is the processing period for each code-phase,

selected as 2U in [39]. Let y(n) = [yo(n),. .., yu—1(n)]" and

(n) — y(n)
yn) = VMoo (33

Then (3.3) isused as the input to an M -tap adaptive filter, w.(-). Consider a specific pro-
cessing period and let N, be the starting instant for filter adaptation (N, < n < N,.—1). Define
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Figure 3.1: Correlator-based adaptive array code acquisition system. Note that w (N, — 1) £

[wc,Oa fee 7wc,M71]T-

acost function of E{|e.(n)|?}, wheree,(n) = M=wH(n)y(n). Using the method of stochastic

gradient descent, we can then have the update equation for w.(-) as
we(n +1) = wo(n) + pee()§(n) Ny <n< N, -1, (34)

where 1. isthe step size controlling the convergence rate. The filter-weight vector w.(N,. — 1)
isthen used for constructing the testing statistic Z = [w (N, — 1)y (N, — 1)|? (see Fig. 3.2). If
7 exceeds a pre-set threshold, the system will claim the acquisition and enter the code-tracking
phase. Otherwise, the system will advance the trial code-phase and repeat the process al over
again. Asindicated in [34], the step size isbounded in the range of 0 and 2/tr{R ;}, where R;,
isthe correlation matrix of y(n) and tr{-} isthe trace operation. In [39], 1/M was chosen asa
compromise between the convergence rate and stability.

Let the trial code-phase be 7. If 7 = 7, the decision variable Z will have a noncentral
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chi-square distribution. By contrast, if 7 # 7, the decision variable Z will have a central chi-
sguare distribution. Let «, be the threshold for the acquisition claim. Then, we can have the
probability of false alarm Py and the probability of correct detection P,. Sincethefalseaarmis
more harmful to the mean acquisition time, P; is usually fixed to some level (e.g., Py = 0.01)
and the threshold can be calculated accordingly. Finally, the mean acquisition time, denoted as

Theq, CaN be determined as [39]

(2=-P)A1+KP)(U~-1) 1
Tacq - ( 2Pc + E) Nc; (35)

where K, is the penalty factor and the unit for (3.5) is chip. Note that if there is no directional
interference and the signal-to-noise ratio (SNR) is high, w.(-) will converge to the steering
vector of the desired user. If the adaptivefilter isinitialized with w.(N,) = [1,..., 1]7, thefilter
will converge rapidly since each element.inithe optimum filter-weight is just a phase-rotated
version of that inw.(N;). Howevex, if di re\c’}ti onal ihterference exists, the relationship cannot be
held and the convergence of the adaptive filter-becomes slow. As aresult, the mean acquisition

time becomes large (shown in Section,3.5), especially at strong interference environments.

§3.2 Proposed Adaptive Array Code Acquisition

8§3.21 Signal Model and Algorithm Development

Assume that there are K users in a cell and each user is given an aperiodic PN sequence.
Aperiodic code means its period is much longer than a symbol period [44], [52]- [53]. The
continuously transmitted signal of the £-th user in baseband can be expressed as

00 U-1
wr(t) = > de(j)Y e (U)p(t —IT, — jUT,) k=1,... K, (3.6)
=0

j=—00
where dj(j) is the j-th BPSK symbol of the k-th user, ¢, ;(1) the i-th chip of the spreading
code (assumed to be random) for dy(j), and p(t) a unit-amplitude rectangular pulse with a
chip-duration 7.. Also, let the channel associated with the k-th user has L, paths, and the
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Figure 3.2: Proposed adaptive array code acquisition system.

DoA for each path may be different. Then, the chip-rete sampled received signal vector can be

represented as
K L °* ‘

Z Zak 10, zﬁkz exp( ~i0;1) +1(n), (3.7)

k=1 I=1
where

N (n+1)Te
ﬂk,l(n) = / xk(t — Tk,ch)dt, (38)
nTe

n(n)isan M x 1 complex Gaussian vector with zero-mean and a covariance matrix of 021, and
Tk, Ak 1, O 1, O denotes the code-delay, steering vector, complex channel gain, and carrier-
phase offset, associated with the /-th channel path of the k-th user, respectively. Notethat 6, is

uniformly distributed over [—7, 7) and ay,; is given by
ag; = [1,exp(—imsin ¢ y), ..., exp(—in(M — 1)sin gbk’l)]T, (3.9)

where ¢y, ; isthe DoA for the [-th channel path of the £-th user.
Fig. 3.2 illustrates the structure of the proposed scheme. Without loss of generality, the

first user is seen as the desired user. As seen, there are two adaptive filters, a spatial and a
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cascaded temporal filter. The spatial filter w, combines the array outputs into a single output.
The temporal filter w, uses z;(n) asitsinput signal and the spatial filter output asits reference
signal. Note here that z,(n) is the same as the PN code sequence of the desired user, ¢; ;(-),
since d;(j) = 1 during the acquisition period. In what follows, we will use z:; (n) to denote the
PN code sequence of the desired user aswell. The spatial filter acts like a beamformer to reject
interference, while the temporal filter acts like a channel estimator to estimate the beamformed
tempora channel of the desired user. The code-delay can then be estimated from the peak
position of w,. The difference between these two filter outputs forms the error signal from

which we can perform filter adaptation. We propose a cost function as

J = E{lw;'x(n) —wr(n)|*}, (3.10)
where
\ 2 k' e
w, 2 [ oA & (3.11)
w2 [, - cwrrr=t} - | (312
x(n) £ [xltn), xl(n — ‘1), woa(n—U+1)", (3.13)

Note that the function of the beamformer is to suppress interference and in the ideal case, its
output, wZr(n), will consist of the beam-formed signal of the desired user and noise. On the
other hand, the function of the channel estimator isto identify the beam-formed channel and in
theideal case, itsoutput, w/'x(n), can form the same beam-formed signal. Thus, minimization
of (3.10) will let w, and w; have the solutions we desire.

Notice that the filter size of w; should be larger or equal to the delay uncertainty assumed
to be U here. From (3.10), it is simple to find that a minimum .J (which is zero) occurs when
w; = 0 andw, = 0, and thisisan undesired trivial solution. To avoid that, we pose a unit-norm

constraint on the solution. That is
||W,5||2 42 wat =1. (3.14)
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Asaresult, (3.10) becomes a constrained optimization problem. We use the Lagrange multiplier
method [ 34] to transform the constrained optimization problem into an unconstrained one. From

(3.120) and (3.14), we have an equivalent cost function as

T =E{|w,"x(n) — wr(n)]’} + £[1 — wi'w,]

=wi'R,w, + w/ Kw, + w/K"w, + w/R,w, + £[1 — w!/'w,], (3.15)
where
K« 2 —FE{x(n)r" (n)}, (3.16)

R, sy = E{r(n)rf(n)}, Rywxry = E{x(n)x"(n)}, and ¢ denotes the Lagrange multi-
plier. Differentiating (3.15) with respect to w; and w; and setting the resultsto be zero-vectors,

we can obtain n ‘
E|S
3J ot o .
=K%+ Riw, =0 - (3.17)
owr = | | :
a‘]* — Row, £ Kw, — &wj = 0. (3.18)
ow; 3

Since R isafull-rank matrix, its matrix inveréi on e*ists. From (3.17), we have
w, = R 'K7w,. (3.19)
Substituting (3.19) into (3.18), we have
R, — KR, 'K"|w, — &w, = 0. (3.20)

It issimpleto seethat the solution of ¢ isan eigenvalue of R, — KR, 'K, while w; isthe cor-
responding eigenvector. Note that an eigenvector satisfies the constraint in (3.14) automatically.

Once w; is derived, w, can be found using (3.19). Multiplying (3.20) with w!’, we obtain
¢ =wl[R, — KR, 'K?|w,. (3.21)
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Substituting (3.19) into (3.15) and using (3.21), we have

J =w/R,w, — w/ [KR;'K"|w, — w//[KR;'K"|w, + w// [KR,'K" ] w,
=w/ [R, - KR, 'K"]w,
=¢. (3.22)

Let the solutionsto (3.17)—3.18), which are optimum weights, be denoted asw ; , and w, , and
the corresponding minimum value of (3.15) be J,,;,. From (3.22), we can concludethat .J,,,;,, IS
equal to the minimum eigenvaueof R, — KR, 'K, and w, , isthe corresponding eigenvector.
Substituting w, , into (3.19), we can then obtain w, ,. In the sequel, we will apply thisresult to

find w, , and w, , in various channel scenarios.

§3.2.2 CodeAcquisition Wi”thJAWGN Channel

In this subsection, we consider -the AWGN ‘jchannel scenario. In other words, L, = 1 for
k=1,...,Kin(3.7). For convenience, wedrop thessubscript / in (3.7). The received signal

can be written as

r(n) = Z aray i (n) exp(—iH;) +n(n)

=a-1-B(n)exp(—if) + > _ arapBi(n) exp(—iby) + n(n), (3.23)

k=2
whereweleta; = a, a; =1, 61(n) = 3(n), 0 =6,and = 7.

Here, we let the code-delays of all users have fractional parts. For the desired user, we let
T=p+96, (3.24)

where p isan integer, p € [0,U), and ¢ isareal number, § € [0,1). Also, let z;(n) = x(n).
From (3.8), we can write the received signal of the desired user as[12], [18], [45]

n)=01-0)-z(n—p)+d-z(n—p—1). (3.25)
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Note that (3.25) is aweighted sum of x(n) with two successive code-delays p and p + 1. This
isbecause § # 0 and a complete received chip in the chip-matched filter crosses two successive
chip-intervals. Using (3.25), we can rewrite (3.23) as

r(n) = aexp(—if) ((1 —0)x(n—p)+dx(n—p— 1))

K
+ Z agou B (n) exp(—ify) + n(n). (3.26)
k=2
Substituting (3.26) into (3.16), we find
Kwxmy =[0,...,0,—(1 — d)aexp(—if), —daexp(—if),0,..., 0]7, (3.27)

where —(1 — §)a” exp(if) and —da’ exp(if) are in the (p + 1)- and (p + 2)-th row of K,
respectively. We then apply (3.27) to (3.20) and then obtain

Ole,, o ]
Elspo Ny
L 0
I KROKY — e, e ... e“pﬂ 1 —(1 =)D fé(l —0)p €piz ... €y |
=5(1—8)p" 1-6%p
0 0
0 0
(3.28)
where we have assumed that R, = I (long-code assumption) and defined
p=a’R'a (3.29)
e;=10,...,0,1,0,...,0]T, d=1,...,U. (3.30)
d—1

Now, we can see that there are two non-unity columns in (3.28) and they are located in the

(p+ 1)- and (p + 2)-th columns. To derive the eigenvalue &, we let

det(I - KR, 'K — ¢I) = 0, (3.31)
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where det(-) stands for the determine of a matrix. Then, we have

a-7{(1-a-op-e)u-tp-g-ra-oppf -0 G

It is ssimple to see that there are U roots for (3.32) and only one is non-unity. Its value is
1 —[(1—6)?+ §?]p. Since both (1 — §)? + 62 and p are positive, the non-unity eigenvalue is

positive and smaller than one. Thus, it isthe minimum eigenvalue. Denoting it as¢ ,,,;,., we have
Emin = Jmin =1 = [(1 = §)* + 6°]p. (3.33)

Note that the terms in the bracket of (3.33) are maximized when 6 = 0.5. Substituting &,

back to (3.20), we can solve the corresponding eigenvector w, , as
(I-KR,'K" — &,;,I)wy, = 0. (3.34)

Equation (3.34) impliesthat w, , isin the null épéce‘of B21-KR'K" — ¢,,1, where

HOE o
” . 0
B — (1 - gmin)el (1 - fmin)e2 -NE ; 62ﬁ _5(1 - 6)ﬁ s (1 - fmin)eU
—0(1=d)p (1-4)*
0 0
i 0 0

(3.35)
Note that the (p + 1)- and (p + 2)-th rowsin (3.35) are linearly dependent. Thus, B iswith a
rank of U — 1. Substituting (3.35) into (3.34), we obtain

(1 - fmin)wt,o,j =0 ] 7é p,p+ 1 (336)
5ﬁ{5wt,o,p — (]_ — 5)wt707p+1} = O (337)
(1 —0)p{—0wtop+ (1 —)wiopi1} =0, (3.38)
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where w, , ; denotesthe j-th element of w, , and j = 0,...,U — 1. Thus, we have

exp(i))
0= 0,1—4,9,0,. 3.39
N E=E +52L/—/ O (3.9

where v is an arbitrary angle. With the peak position in (3.39), it is simple to see that the

code-delay is correctly acquired. As we can see, w;, does not have a unique solution. The
non-uniqueness of the optimum solution stems from the fact that (3.14) is only an amplitude
constraint. Even though the solution is non-unique, it does no harm to our solution since only
the amplitude is used in peak finding. Now, let ussolve w, ,. Using (3.39) and (3.27) in (3.19),

we can derive
w,, =R, a-exp(ifyp — 0])y/(1 — )% + 62 (3.40)

As we can see from (3.40), w, , correspoﬁds to,the convénjti onal MM SE beamformer (R, 'a).

Notably, we can estimate the fractional-delay 3 from wi [see (3.39)] as

% |w“—;o'pl| +1‘ & (34D

{we.o.p+1
A special case considered most in the literature (e.g., [20], [38]—-[42]) isthat § = 0 (integer
delay). In this case, the results shown above can be further simplified. Substituting 6 = 0
into (3.33), (3.39), and (3.40), we then obtain J,,;,, = 1 — p, w;, = e, - exp(itp), and

o = R 'a-expli(y — 0)].

83.2.3 Code Acquisition with Multipath Channel

In this subsection, we consider the scenario of a general multipath channel. We rewrite (3.7) as

L K Ly
= Z ai o B(n) + Z Z ag, 0,10k (n) +n(n)
k=2 11
K Ly
= Z auBi(n) + > Y apagBru(n) +n(n), (342)
=2 1=1
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inwhichwelet L, = L,a;; = aj, a1y = ag,51,(n) = Bi(n), and 7, = 7 for notational
simplicity. Note that the transmitted power and carrier-phase offset have been absorbed into the

channel gain. We let the multipath delay of the desired user, 7;, be expressed as
T =p+ 0y, l=1,...,L, (3.43)
wherep, € [0,U) and §; € [0, 1). Similar to the previous case, we have
Bi(n) = (1=08) - z(n—p)+ 6 -x(n—p —1), I=1,...,L. (3.44)

For ssimplicity, we also assumethat 7,, 1 > 7, 7, < U, and p,.1 — p; > 1 [45] for al channels.

Following the procedures described above, we can have (3.16) as

e, ]
QY
0‘&1;<M) :

(e, )al

o gdalt

K—| . (3.45)

—ap(1—dr)af
—ajdral

01y

i O(1x 1) |

In (3.45), the (pi + 1)-th, (p1 + 2)-th, ..., (pr + 1)-th, and (pr, + 2)-th rows are nonzero.
Substituting (3.45) into (3.34) and rearranging the results, we have

(1 = &min)Weo; =0 J#Fpu,p+1,...,pp,pr+1 (3.46)
[(1 - fmm)]: - Q] ’ wt,o =0, (347)
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— A T
where Wt,o(2L><1) - [wt,o,pla Wtop1+1y-++y Wtoprs wt,o,pL—H] )

9171 e Ql,L
= , (3.48)
QL,I ce QL,L (2Lx2L)
1—6,)(1—46,) (1-46,)6,
Q,., =2a'R'a, ala, [ ( ) ) ) ] , (3.49)
| a4 5.0, |

Qup = @, {u,v} € {1,..., L}, and‘,the dimehSion of I r;ereis 2L x 2L. From (3.46), we
can see that the tap-weights that do not“corresponding to multipath delays are all zeros. Also,
from (3.47) we know that w;, is in the null" space of (i — &min)I — Q. In this general case,
however, it is difficult to obtain a closed-form solution for w, ,. Asshown, an optimum w,, is
the eigenvector associated with the smallest eigenvalue of I — KR, 'K [or (3.47)]. Once w,,

is obtained, w , can be solved accordingly.

For multipath channels, we can also estimate 6;,, [ = 1,..., L. To show this, we rewrite
(3.18) as

Kw,, + (1 — &nin)Weo = 0. (3.50)
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Using (3.45), we have

0
Oé){ (1 — (51)3{{Ws’0

% H
a161a1 W570

Wio = 1 — fmm (351)
Oéz(l — 5L)afws,o
aZéLafwM
0
ELSpn e X |
Itissimpleto see that 6, can be estimated by

1
01 = —p— I=1,...,L, (3.52)

,0,P]

‘wt,o,pl+1\

whichissimilar to (3.41). Withknown w ,, w; ., {a;}%, and {6, }%-_,, the channel estimate can

be obtained accordingly.

Note that for derivation convenience, p(t) isassumed to be arectangular pulse. Inreal-world
applications, we can apply other types of pulses as well, e.g., the squared-root-raised-cosine
(SRRC) pulse. It can be shown that for the SRRC pulse, the received signal of the desired user
has the same form as that in (3.25). The only difference is that the coefficients in (3.25) are
replaced with f(1 — ) and f(9), where f(§) stands for the raised-cosine function sampled at
0T.. The derivation is straightforward and then omitted here. All results derived above can be

applied accordingly.
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§3.3 Adaptive I mplementation and Convergence Analysis

In Section 3.2, we have proposed a new scheme for code acquisition with the antenna array.
Optimal-weights of the system are derived with the eigen-decomposition technique. However,
the required computational complexity of the eigen-decomposition is on the order of O(U3). In
addition, the matrix inverse of R, isrequired in (3.20). To alleviate these problems, we propose
to use an adaptive algorithm to approach the optimum filter-weights. The adaptive algorithmwe
consider isthe LM S algorithm whichiswell-known for itssimplicity and robustness. Asshown,
we have a unit-norm constraint on the temporal filter. Applying this constraint, we then obtain
aconstrained LM S algorithm. In what follows, we describe the algorithm and examine related
issues such as the step size bound and the steady-state mean squared error (MSE). Besides, we
also analyze the output SINR of the beamforfrier [+(#) nFig. 3.2].

§3.3.1 Constrained LMSand ‘Convér;gehce Analysis

Rewriting (3.10), we have

J=wiRw, (353)
where
w, 2 [wl, wl]’ (354)
v(n) £ [x"(n), —x"(n)]" (3.55)
R, = E{v(n)v"(n)}. (3.56)
The gradient of (3.53) isgiven by
;)—i = R,w,. (3.57)

v

Using (3.57), we can apply a gradient descent method to obtain the optimum solution, denoted
asw,,. However, R, needsto be estimated. The simplest estimate of R, isto use the instanta-

neous vaue from v(n)v* (n) and this yields a stochastic gradient descent algorithm, called the
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LMS algorithm [34]. We then can have the filter adaptation as
w,(n+ 1) = w,(n) + p[—v(n)v? (n)w,(n)], (3.58)

where y isthe step size controlling the convergence rate. Recall that we have the constraint that
||w¢||> = 1. This constraint can be easily satisfied if normalization is performed on w(n) at

each iteration. The overall adaptation procedure is given as.

e(n) = w(n)v(n) (3.59)
. 1 1
U

w,(n+1) = H(n)w,(n) - uv(nn)e*(n), n=0,1,...,N—1, (3.61)

where diag{-} denotes a diagonal matrix‘cbnsi'gti ng of the arguments it includes, and N the
maximum iteration number for the adapt‘i\)eji‘filter. To complete the acquisition, |w, ;(N)|?,
j=0,1,...,U — 1, are compé(éd and‘thepqsitio‘n éorr&sponding to the maximum value is
used for code-delay estimation. As wé‘c‘an see, H{n) normalizes w,(n) at every iteration. To
guarantee convergence, i hasto be selected properly. Here, we perform the mean convergence
analysis to derive a step size bound. Subtracting w,,, = [w/,, w{ |” from both sides of (3.61),

we have

Aw,(n+1) = Aw,(n) + [H(n) — I}w,(n) — pv(n)[wl (n)v(n)]*

= Aw,(n) + [H(n) — Iw,(n) — pv(n)v" (n)[Aw,(n) + w, ]

= [I— pv(n)v7(n)]Aw,(n) + [H(n) — w,(n) — pv(n)es(n),  (3.62)
where

eo(n) 2 Wi v(n) (3.63)
Aw,(n) = w,(n) — w,,. (3.64)



Note that the dimension of I hereis (U + M) x (U + M). Taking the statistical expectation
of (3.62), applying the direct-averaging method [34], and using the orthogonality principle, we

then have
E{Aw,(n+ 1)} = [I = pR,|E{Aw,(n)} + [E{H(n)} — [|E{w,(n)}. (3.65)

Let A = diag{\,1,..., \p,usn} With ), ; being an eigenvalue of R, and Q be a matrix con-
sisting of the eigenvectorsof R.,. Multiplying (3.65) with Q" andlettingg(n) = Q" E{Aw,(n)},

we have
g(n+1) = I—pAlg(n) + Q7[E{H(n)} — IIE{Aw,(n)}. (3.66)

Since w;(n) isnormalized at every iteration and the step size is usually small, it is reasonable
to assume that H(n) ~ I and the second term in,the right-hand side of (3.66) can be ignored.

Iterating (3.66), we obtain 1
E|&

g(n) ST — pAl'g(0). = (3.67)
Thus, for (3.66) to converge, the following condition wmljst“be satisfied

0<p< , (3.68)

Av,maz
where A, ... denotes the maximum eigenvalue of R,. This result is the same as the conven-
tional LMS algorithm [34]. From (3.67), we can aso see that g(oco) = 0. In other words,
E{w,(n)} = w,, whenn — oc.
Note that while the conventional LMS algorithm requires 2(U + M) multiplications per
iteration, the constrained LM S algorithm devel oped here needs extra U multiplicationsfor cal-

culation of ||w;(n)|| and extra U divisionsfor normalization [see (3.61)].

8§3.3.2 Steady-state MSE Analysis

We now derive the steady-state MSE of the constraint LMS agorithm. Invoking the direct-
averaging method [34] and using (3.62), we can write the correlation matrix of the tap-weight
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error vector as

P(n+1) 2 E{Aw,(n + D)Aw" (n + 1)}
+ 2 iRy + E{[H(n) — I}w,(n)w (n)[H(n) — I]}. (3.69)

v

As stated, wy(n) is normalized at every iteration and the step size is usualy small. Thus,
H(n) ~ I and the last term in the right-hand side of (3.69) can be ignored. Let P(n) =
Q"P(n)Q and observethat QR.,Q = A. Pre-multiplying and post-multiplying both sides of
(3.69) with Q¥ and Q, respectively, we have

Pin+1)= L AR ()1 — pA] + 12 Tmin A (3.70)

Let the j-th element on the diagonal of P(n) ibg‘"ﬁj ()= Then,

pi(n+1) = (1 - pog) B iAo j=1,... .U+ M. (37D
Whenn — oo, pj(n + 1) = pj(n). From (3.71), we have

_ Mszn

pi(o0) = 5 (372)
U?]

The additional M SE due to the use of the LM S algorithm is generally referred to as the excess
MSE, denoted as /., (co). From [34], we then have

U+M v
Jea(00) = D Pi(00) A = Jmin D 55— (3.73)
U]

J=1 Jj=1

Denote the steady-state M SE of the LM S adaptation as J,,. Finally, we have

Jss = Jmin + Jez(00). (3.74)
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§3.3.3 Output SINR of Beamformer

Now, let us analyze the output SINR of the beamformer. For the scenario considered in Section

3.2.2, we have the beamformer output as

A(n) £ wl (n)r(n)

=wl(n) (a exp(—if) [(1 —§)-x(n—p)+d-x(n—p-— 1)} + ZA(TL)> , (3.75)
where z 4 (n) consists of MAI and noise and
K
za(n) = Y aronfi(n) exp(—ife) +n(n). (3.76)
k=2

Using (3.40), we can find the output SINR of the optimum beamformer, denoted as SINR,,, as

S R a7
T 0 AR RoR I |

where R, £ [(1 — 0)? + 6°]aa’” and R. & E{z4)2 (n)}. Sincewe use adaptive filter-
weights to approximate the optimum weights, we have to include the excess MSE in the SINR
calculation. Thus, we can rewrite (3.77) as

(1-6)2467 - ]a"R, 'a]

SINR, = )
alR 'R, , R-'a+ J.;(o0)

(3.78)

where J,,(co) isthat shown in (3.73). For the specia casethat 6 = 0, (3.78) is reduced to

a"R;al”

SINR, = .
alR 'R, , R 'a+ J.,(c0)

(3.79)

Similarly, we can derive the corresponding result for the scenario considered in Section

3.2.3. The beamformer output hereis given by
L
v(n) = w(n) (Z aq [(1 =) x(n—p)+6-x(n—p — 1)] + zM(n)), (3.80)
=1
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where
K L

zy(n) = Z Z ay, 01 B (n) +n(n). (3.82)

k=2 I=1
The output SINR of the optimum beamformer is then
WSHORMWS 0
SINR, = —2——=, (3.82)
where Ry, £ Y7 g2 [(1 — 8)% + 6F]aal” and R.,, & E{zy(n)z};(n)}. For the adaptive
approach, we have the output SINR as
Wf{ORMWs,o

SINR, = .
wf{oRzMws,o + Joz(00)

(3.83)

§3.4 PerformanceAnalysis

In general, acquisition performance can bg;mea;ured by the probability of correct acquisition
and the mean acquisition time. Inthis %cti‘oh,‘we will eval uate the performance of the proposed

scheme with these two measures. '

83.4.1 Probability of Correct Acquisition

In the proposed scheme, 7 is estimated with the quantities of |w, ;(N)|?,j =0,1,...,U—1. To
evaluate the probability of correct acquisition, we have to characterize the statistical property of
|wy j(n)|? first. From the analysis shown in the previous section, we see that in the steady-state

(n — 00), wy(n) has a mean vector of
E{w;(n)} = Wi,. (3.84)

Its covariance matrix, denoted as C £ E{[w;(n) — w,,|[w:(n) — w;,]}, can be derived as
follows. As a common practice, the step size is usually small. Thus, we can use the Taylor
expansion to expand 1/(2 — pA, ;) in (3.72) with respect to 2\, ; = 0. Then, we have

1 1 1

=-+

—_— Api - 3.85
Gy 2T (389
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From (3.70), it can be seen that the matrix P(n) will become diagonal asn — oo. Using this

property and truncating the terms higher than the first-order in (3.85), we then have

2
P(n) = g,]mmI + %JmmA. (3.86)
Pre-multiplying and post-multiplying both sides of (3.86) with Q and Q 7, we obtain
. 27
P(n) = MJ;’”"I 4+ {lm" R,. (3.87)

Note that the U x U upper-left submatrix of P(n) corresponds to the covariance matrix C.

Finally, we have
2

C=Jom {g n %] I~ @I (3.88)
From (3.88), we can see that the filter taps are independent and identically distributed (i.i.d.).
Let's consider the AWGN channel with an integer delay first. When w,(n) approaches its
steady-state, w,(n) can be assumed to hax/é a Gapssiaﬁ distribution [33]. From (3.84)—3.88),
we can find that when n is large, |w, (n)|? has a noricentra! chi-square distribution with two

degrees of freedom, whereas other taps‘,|wt7j‘(n)|2,” j.# 7, have chi-square distributions. Let

Zi & Jwij(n)Plo-soer j = 0,..., U — 1.The probability density functions for the filter weights

are then
1 Wor > +y Wio,r
i) = g exp(— 12l 0 g ltiasly s (389
1 Y .
pz;(y) = 257 eXp(—ﬁ) y>0,5#, (3.90)

where Iy (-) is the zero-th order modified Bessel function of the first kind and o2 = 1], /2.
The conditional probability of correct acquisition for the AWGN channel, denoted as P,.(-), is
given by

Po(z;)=Pr(z, > Zoyo oo y20 > Zr 1320 > Loty oy 20 > Zy_1|Zr = 2;)
U-1
IT Pz > 2z = =)

J=0,j#7

_ U;’Lexp(_ Y )y T (3.91)

2 2
207 207
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Note that the i.i.d. property has been applied in (3.91). The probability of correct acquisition,

denoted as P,, isthen
P. = / Pee(y) - pz, (y)dy. (3.92)
0

Note that p_(y) in (3.92) isthe function shown in (3.89) with |w,, . |* = 1.

Next, we consider the scenario of the AWGN channel with a fractional delay. In this case,
two nonzero successive peaks in optimum filter-weights will result [see (3.39)]. As mentioned,
T =p+4. Thus, Z, and Z,,, will be the peaks. We will claim correct acquisition if either 7,

or Z,, isthemaximum of al Z;. Define two events as
A
Ep = {Zp > Zo, - - -y Rp > Zp—lazp > Zp+2, sy Zp > ZU_1|Zp = Zp}
A
Epi1 = {2p11 > Zo, ..., 2pp1 > Zp—la Zpt1 > Zp+2, oy Zpr1 > Zu—i|Zpyr = 2pya ). (3.93)

Thus, correct acquisition corresponds to theevent E U E,+1. Then, the conditional probability

of correct acquisition can be formulated as 3‘

Pec(2p, 2pi1) = Pr(E, U E,,+1) Pz Pr(Ep+1) Pr(E,) - Pr(Eyv1), (3.94)

where
U-1
Pr(E,) = H Pr(z, > Z;|Zp = 2p)
7=0,5#p, p+1
1 Y U-2
-] ey (395)
U—-1
Pr(Ep+1) = H Pr(zp1 > Zj| Zps1 = zp1)
J=0,j#p, p+1
Zp+1 1 y U-2
= — ——)d . 3.96
[ eyt (390

Note that both Z, and Z,,, are functions of ¢ (though the dependence is not shown explicitly).

Thus, the probability of correct acquisitionis

1 00 [e%)
P = / / / Poale,9) - p, () - pr ., (9) dedds, (3.97)
0 0 0

61



where ¢, 9, and § stand for the dummy variables of Z,, Z,.,, and 4, respectively. Note that
pz,(-) and py,,, (-) are obtained by replacing |w;, . |* With |w;,,|*> and |w;, 1|2 in (3.89),
respectively.

For general multipath channels, we can also evaluate the probability of correct acquisition.

Since the procedure is similar and the result is complicated, we omit the details here.

§3.4.2 Mean Acquisition Time

Mean acquisition time usually serves an indicator showing that how fast areceiver can complete
the acquisition. It is generally derived with a Markov chain model [1], [10]. Since our system
is different from the conventional serial-search correlator, the commonly used model [1], [39]
cannot be applied here. Apply the model derived in Fig. 2.4 to our system and let the probability
of acquisition error is P,, which is equal to'1 — P Aéthe figure shows that if the acquisition
fails, the system will wait for a period &f tirhe T3 (chips) to Fe-start the acquisition. Here, 7, is

generally referred to as the penalty time[ 1]. Thetransfer function of the model can be [27]

o Satero’ s
Hacq(z) ¥ W, (398)
where z isthe unit-delay operator. The mean acquisition time can be found as
A d P
Tocq = _Hacq(z)|Z:1 =N+ (N + Tp) (3.99)

dz 1—-P°

From (3.99), it is easy to see that if P, = 0, T,,, = N. Thus, N can serve as a performance

bound for T,,.

§3.5 Simulations

In this section, we report simulation results to demonstrate the effectiveness of the proposed
algorithm. We set common parameters used for all simulationsas: M =8, K =5, T, = 100U
chips, w,(0) = 0, and w; ;(0) = 1/V/U,j =0,1,...,U — 1.
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§3.51 AWGN Channel

Let the power of each jammer be 3 dB stronger than that of the desired user (i.e, || = 1 and
lag] = 2fork =2,...,K). Also, 0] = 1,U = 16,and u = 6 x 107%. The DoAs are set
as {¢p ., = {0.3152, 0.5586, 0.7754, —0.2014, —0.5236} (radians). Simulations with 400
independent trials are conducted. Figs. 3.3-3.5 show the adaptation results for the proposed
algorithm. Also shown in these figures are the corresponding theoretical predictions derived
in Section 3.3 and 3.4. Fig. 3.3 shows the convergence curves for averaged |w;,(n)* and
|wy p12(n)[*. Note that the convergence behaviors for |w, ;(n)|?, j # p,p + 1, are dl similar.
Two delay scenarioswithd = 0 and 6 = 0.5 are considered. Aswe can see, |w, ,(n)|* converges
to its optimum values, one for § = 0 and 0.5 for ¢ = 0.5. By contrast, |w,2(n)|* converges
to asmall value closeto zero. Fig. 3.4 gfves the Convergence curvesfor MSE. As expected, the
MSE for § = 0.5 islarger than that fdr & #0 U‘sing‘(3.74), we obtain theoretical steady-state
MSEsfor 6 = 0 and 0.5 as 0.158:and 0.278,: répectivjely. From the figure, it is apparent that
the experimental result matches the theeretical" one quite well. The corresponding output SINR
for the beamformer is shown in Fig. 3.55The theoretical SINRs are calculated with (3.79) and
(3.78), and they are 7.34 dB and 4.25 dB for § = 0 and § = 0.5, respectively. As seen, the
SINR isincreased from —12 dB to 7.34 dB in 700 iterations (for 6 = 0). The beamformer in

the proposed algorithm effectively suppresses the interference.

As mentioned in (3.41), 6 can be estimated from w, ,(n) and w; ,1(n). Simulations are
carried out to evaluate the performance of the estimation. We randomly generate p and o for
500 trials. The MSE, defined as E{|6()N) — 6|2}, is used as the performance measure, where
(N denotes an estimate of  at n = N. Here, welet = 4 x 1073 and N = 1000 chips
for filter adaptation. For simplicity, we perform estimation of ¢ only when |w,,(N)[* and
|wy 11 (N)|? are the first two maximums of all weights. Fig. 3.6 shows the simulation result.
Aswe can see, the estimation errorsis small. For an SNR (per chip) of —2 dB, the MSE isonly
107°. The SNR here is defined as |a|*/o; and |a| = 1. Note that in the same figure, the result
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for a multipath channel, which will be discussed later, is also included.

Next, we will consider the performance of acquisition. Let’s first examine the probability
of correct acquisition [(3.92) and (3.97)]. Fig. 3.7 gives the simulation results for various step
Sizes. Here, welet U = 16, N = 400 and 600, and the array input SINR (per chip) be —15
dB. Theoretical values calculated with (3.92) and (3.97) are aso shown for comparison. It is
clear from Fig. 3.7 that the experimental results highly agree with the theoretical ones. When
0 # 0, the probability of correct acquisition is somewhat lower. This is due to the fact that
optimum values of |w;,(n)|* and |w;,+1(n)|* are smaller than one. Also, we can see that the
experimental probability of correct acquisition with N = 400 is different from the theoretical
one. Thisindicates that N is not sufficiently large and adaptive filters have not reach their
steady-states. Aswe will see below, experimental results of N = 600 can be very close to the

results calculated with (3.97).

We then substitute the experimental-probabilities (L~ 64) shown in Fig. 3.7 into (3.99) to
derive the mean acquisition time. ThefesUltis shown in Figj. 3.8. Itis seen that the proposed
algorithm can acquire an integer delay ina short ‘peri‘bd‘of time. For example, T, is402 chips
when 1 is3 x 1073, The mean acquisition timefaor fractic)nél delay isdlightly larger than that for
integer delay. In Fig. 3.8, IV is selected somewhat arbitrarily and the value may be not optimal.
Fig. 3.9 shows the mean acquisition time for various NV with 1 = 3 x 1072 and 5 x 1073, The
lower bound being 7,., = N serves a performance benchmark. For integer code-delay, when
N is greater than 350, the mean acquisition time becomes close to the lower bound. Also, we
can see that the minimum mean acquisition time is around N = 300 for 4 = 3 x 1073, The
acquisition performance for fractional delay will be poorer if IV istoo small. For N is larger
than 400, it becomes close to that in integer delay. The minimum mean acquisition time is
around N = 350 for =5 x 1073,

From Fig. 3.9, we can see that there is an optimum N for a given array input SINR. To let
the system be operated in its optimum conditions all the time, we can build atable for optimum

N’s(vs. input SINR) off-line, and then obtain an optimum N with atable lookup on-line. If we
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assume that the power of the received signal Is domi ‘nated‘ by MAI, an estimate of input SINR
can be M x E{|y(n)|?}/E{||r(n)||*}. We have found that this SINR estimate can converge

fast and provide good results.

§3.5.2 Multipath Channels

For the scenario of multipath channels, we let the number of channel paths be two (L, = 2) for
all users. Also, let N = 2600 and pr = 4 x 103, Other related parameters used in sSimulations
are summarized in Table 3.1. This setting |eads the antenna array operating in a heavily loaded
case (i.e., the number of overall multipaths is greater than that of array sensors). Simulations
with 500 trials are conducted. Fig. 3.10 shows some experimental beam-patterns derived from
w (V) and the theoretical beam-pattern from Section 3.2.3. Note that the arrow signs indicate

the DoAs of all users, and only the DoAs of the desired user are labeled. The beamformer
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Table 3.1: Parameters used for simulationsin multipath scenario

Pk Pe2 | Ok1s0k2 | Ok1s Pr2 (radians) |Oék,1|,|0ék,2|

k= 3, 7 0.44,0.65 | —0.5236, O 1,0.85
k= 8,10 | 0.81,0.29 | —0.8481, —0.4115 1,1
k= 3,11 | 0.74,045 | —0.2014, 0.3047

1,1
k=4 6,14 |052,0.80 | 1.1198,—-0.3047 1,1
k=5 0, 5 0.35, 0.62 1.0353, 0.1708 1,1

forms two main-beams collecting the desired signals coming from the angles 0 and —0.5236
radians. From Fig. 3.10, we see that some interference cannot be deeply nulled. Thisis because
their incident angles are close to the dési re usér’s‘DoAs. The convergence behavior of the MSE
and SINR is similar to those shown previ ously and the corresponding figures are then omitted.
Specifically, we find that the steédy-state MSE is 0:35 and output SINR of the beamformer
is 1.98 dB. We then examine the“perfbrmance of fractional delay estimation. We randomly
generate code-delays for al paths ”and aI‘I usersfor acquisition and calculate the M SE, defined
as E{>_7_, |0i(N) — &/*}. The SNR here is defined as (X7, |uf?) /o2, Fig. 3.6 givesthe
result with 500 trials. We can see that the performance is worse than that in AWGN case. Also,

itis more sensitive to the SNR. When SNR is low, the performance is seriously affected.

§3.5.3 Performance Comparison

Finally, we compare the proposed scheme with the correlator-based scheme described in [39].
Since the scheme in [39] does not consider the case with fractional delay, we let the code-
delay be integer. Also, the channel is an AWGN channel. We assume that U = 64 and 128,
la| =1, |ag| = ... = |ak|, and 67 = 2. The setting of DoAs is the same as that in Sec-
tion 3.5.1. For the proposed system, we let P, = 0.01. Then, we experimentally search for

an optimal set of {x, N} giving minimal mean acquisition time for each input SINR. For the
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systemin [39], welet P; = 0.01 and Nj= 1" Note‘t‘hat K, =T,/N.[in (3.5)]. As addressed
in [39], the convergent filter-weight vector is not exactly identical to the steering vector of the
desired user, and there exists a gap between the experimental and theoretical performance (for
M > 2), especialy at low SINR. In other words, the theoretical threshold derived from [39]
may not guarantee Py = 0.01. Let N, = JU where J is a positive scalar. To ensure a fair
comparison, we experimentally search for the threshold, .7, and the step size to achieve the op-
timum performance. Fig. 3.11 shows the mean acquisition times versus the array input SINR
for the correlator-based and proposed schemes. From the figure, we can see that the proposed
system significantly outperforms the correlator-based system, especially for low SINR. For ex-
ample, when the SINR is —30 dB, the performance gap between the proposed system and the
correlator-based system exceeds two orders of magnitude. For the the proposed scheme, wefind
that the mean acquisition time of U = 128 is only dightly larger than that of U = 64. While

the mean acquisition time for the correlator-based scheme can be significantly enlarged when
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U is changed from 64 to 128. The poor performance of the correlator-based algorithm stems
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Figure 3.11: Meanacquisition time (1n chips) comparison.
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Figure 3.12: Mean acquisition time (in chips) versus M (size of antenna array).
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from the slow convergence of the adaptivefilter and its necessity for code-phase searching. The
proposed scheme simultaneously performs beamforming and code acquisition yielding much
better performance in interference suppression and filter convergence.

Finally, we consider the effect of A/ on the mean acquisition time. Here, welet U = 64 and
P, = 0.01. With the previous setting, we show theresult in Fig. 3.12. As seen, the performance
can be rapidly degraded when M < K (K = 5). When M isgreater than K, most interference

can be effectively suppressed, and no obvious improvement is observed.

8§ 3.6 Conclusions

In this chapter, we propose a novel adaptive antenna array for code acquisition. Unlike the
correlator-based serial-search scheme, the preposed system can simultaneously perform beam-
forming and code acquisition. Another distinct fgature is‘that the proposed algorithm can deal
with both integer and fractional code-delays. Fdr ;rh‘ulﬁ path channels, the proposed system can
acquire multipath delays and serve as_a‘ channel. estimator. We also theoreti caly analyze the
properties and performance of the proposed algorithm. Closed-form solutions for optimum so-
lutions, steady-state MSE, and SINR are derived. We al so show that experimental results highly
agree with analytical ones. Simulationsresults show that the proposed system significantly out-
performs the correlator-based one in [39]. In this chapter, we consider the scenario of single
transmit antenna. However, the proposed algorithm can also be applied to the scenario of mul-
tiple transmit antennas. Acquisition in the multiple-input-multiple-output (MIMO) system isa

potential topic for further research.
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Chapter 4

L ow-Complexity Adaptive Array Code

Acquisition

In the scenario of large code-del ay the cdﬁﬁut&i onal complexity of the temporal filter in the
scheme proposed in Chapter 3 can high. Inithischapter, we propose a low-complexity adaptive
array code acquisition scheme to ‘”solve the problem. The main ideaisto divide the whole delay
uncertainty range into several (delay) cells,"and then sequentially search for the code-delay of
the desired user among those cells. Thisis essentialy a seria search technique, being able to
shorten the filter-length of the temporal filter. Asaresult, the computational complexity can be
reduced. Asthat in [41], the proposed system employs a criterion such that both filters can be
simultaneously adjusted by a constrained LM S algorithm. However, the acquisition processis
more involved than that in [41]. Thisis because one additional decision have to be made before
the code delay can be estimated. For each tested cell, filters are first adapted for a period time
to determine if the code-delay falls into the cell’s delay region or not. If it does, the spatial
filter will act as an MM SE beamformer and the temporal filter as a code-delay estimator. Thus,
the code delay can then be estimated with the peak position of the temporal filter. If not, the
next cell istested and the process is repeated. Note that if the code-delay does not fall into the
tested cell’s region, the spatial filter will act as a signal blocker with itsweighs all being zeros.
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This property isthen used to derive an index for the cell testing. With the choice of the number
of cells, we can have an easy tradeoff between performance and complexity. In many cases,

however, the complexity reduction is large, but the performance lossis still acceptable.

84.1 Proposed Low-Complexity Code Acquisition

Consider that there are K users in a mobile cell and each user is given an aperiodic PN code
sequence with a period much longer than a symbol period. The transmitted signal of the k-th

user in baseband can be expressed as

o0 U—-1
wr(t) = Y di(§) e (Dp(t — 1T, — jUT,), (4.)
j=—00 =0

k=1,...,K, where di(j) is the j-th BPSKs/merd of: the k-th user, ¢, ;(1) the I-th chip of
the spreading signal for dy(j), p(t) aun‘i"t-‘amplituofle‘rec‘tangmar chip-pulse with achip-duration
T,, and U the number of chipsin a wfnbol. At fhé recei\)jer, a uniformly linear array with
M sensors is placed and the element spéci nQ |s assumed t‘o‘be half a wave-length. Then, the
chip-rate sampled received signal vector in‘baseband can be represented as

K

r(n) = Zakakxk(n — 1) exp(—iby) + n(n), (4.2)
k=1

where code-delays 7, £ = 1,..., K are assumed to be integers between [0, U), and n(n) is
an M x 1, complex, and zero-mean Gaussian noise vector with a covariance matrix U%I. Also,
ay, oy, B stand for the steering vector, the amplitude, and the carrier-phase offset, associated
with the k-th user, respectively. Note that 6 is uniformly distributed over [—7, 7) and a;, is
givenby a, = [1, exp(—imsin ¢y), . .., exp(—im(M — 1) sin ¢;)]", where ¢, denotes the DoA
of the k-th user’s signal. Without loss of generality, the first user is seen as the desired user. We
also assumethat d;(j) = 1 during the acquisition period.

As described, the whole delay uncertainty U isdivided into cells. Let Q = [U/M,]|, where
M, denotes the filter-length of the temporal filter. Among these () cells, the actual code-delay
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Figure 4.1: System diagram of the proposed syster, where Z¢ = [wi(N)||2,¢=0,...,Q—1.

only fallsinto the delay region of a certamncell.. Let the cell whose delay region includes the
desired code delay be the inphase egll ‘arid others be outphase cells. Thus, we have one inphase
cell and () — 1 outphase cells.

Fig. 4.1 illustrates the block diagram of the proposed system. As seen, the spatial filter w?
combines M array outputsinto asingle output, whereq = 0, ..., Q — 1 denotesthe cell index.
The temporal filter w{ uses z;(n — ¢M,;) asitsinput signal and the spatial filter output as its
reference signal, where z; (n) is the desired user’s PN sequence [since d;(j) = 1]. Asfar as
an inphase cell is concerned, the system is the same as that in [57]. From Fig. 4.1, we can
see that the spatial filter can act like a beamformer to reject interference, while the temporal
filter a code-delay estimator. In other words, the optimum temporal filter will have a unique
peak-weight whose location corresponds to the code-delay [57]. However, for the outphase
cells, there is no correlation between the input and the reference signals. The optimum spatial
filter will become a signal blocker (all weights are zeros). Using the characteristic, we propose

to perform cell detection with the magnitude of the spatial filter-weights. If ||w?||?> exceeds a
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preset threshold, then the ¢’-th cell is considered as the inphase cell. Once the inphase cell is
identified, the peak-weight in w? can belocated. Let the peak-weight be w;{ .+ Where w;{’ . with
0 < A < M, denotes the (A + 1)-th element of w?. Then, the code-delay can be estimated
with 7 = ¢'M, + A.

As shown, the difference between these two-filter outputsformsthe error signal from which
we can perform minimization. The cost function to minimize is the same as that in [57]. For

each cell, we let

J = B{|[wi]"x"(n) — [wi)"x(n)| "}, (43)
qg=0,...,Q —1,where
w! £ [wio, . ,wg’Mfl]T, (4.4)
w{ = [wg,m ) wg,Mt—l]Tv ) (4.5)
x?(n) £ [z, (n — ¢M,), 2, (= M, 4‘—51;), ,a:l(n —qM; — My +1)]". (4.6)

1

From (4.3), it is simple to observe that a minimam J¢ (which is zero) occurs at w! = 0 and
w? = 0, and thisis an undesired trivial solution. To avoid that, we have to make a constraint on
the solution. Here, we pose a unit-norm constraifit;iie.;

1”& [wiwi =1, q=0,...,Q — 1. (4.7)

[wil[* = [wi

Thus, minimization of (4.3) turns out to be a constrained optimization problem. We use the
Lagrange multiplier method [34] to transform the constrained optimization problem into an
unconstrained one. From (4.3) and (4.7), we have an equivalent cost function as
J* =E{[[w{]"x"(n) — [wi]"r(n)| "} + {1 ~ [w{]" wi}
=(wi]"Rgwi + [wi] KW - [ w
+ Wil TR, wi + &7{1 — [wi]wi}, (4.8)
where

K‘(]MtXM)

= — E{x"(n)r" (n)}, (4.9)
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R.rxar) = E{r(n)r(n)}, RZ(MtxMt) £ E{x%(n)[x%(n)]}, and £7 denotes the Lagrange
multiplier for the ¢-th cell. Differentiating (4.8) with respect to [w?]* and [w{]* and setting the

results to be zero-vectors, we obtain

0.J* qH 1,4 q
o[wi* = [K"w{ +R,wi =0 (4.10)
0J° - Ul ¢y
AW = RiIw; + K'w? — ¢w; = 0. (4.11)
t

Since R, isafull rank matrix, its matrix inversion exists. From (4.10), we have
w!=-R;'[KY"w{. (4.12)
Substituting (4.12) into (4.11), we have

(R — KIR KT w! — c'w! = 0. (4.13)

FISRY e
Itissimpleto observethat the solition of €7 in(4.13) denotesthe eigenvalue of R¢—K/R. 1 [K]7,

while w{ isthe corresponding eigérwector. Note that'an eigenvector w satisfies (4.7) automat-
ically. Once w{ is derived, w? can be found using-(4.12). Multiplying (4.13) with [w{]", we

obtain
€1 = [wi]"{R% - K'R, '[K'| T }wi. (4.14)
Substituting (4.12) into (4.8) and using (4.14), we have

77 = Wi Row! — [l (KR, K bwi
— [l (KR, K !+ [wi]7 (KR, K] ) w!
= [wi)" {R? — K'R; ' [K")" }w!
=&, (4.15)

whichisidentical to (4.14) exactly. Let solutionsto (4.10)—4.11), which are optimum weights,

be w?, and w/ ,, and the corresponding minimum value of (4.15) be .J; ;. We then conclude

in"
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that .J? ;. isequal to theminimum eigenvalue R4 — KR, ' [K9|" and w/ , isthe corresponding
eigenvector. Substituting w, into (4.12), we can then obtain w? .

To simplify notations, we rewrite (4.2) as

K

r(n) = apopzi(n — 7) exp(—ify) + n(n) (4.16)
k=1

=a-exp(—if) - z(n — vM; — A)
K
+ ) apagag(n — ) exp(—if) + n(n), (4.17)
k=2
whereweleta; =a, oy = 1,0, =60, 2,(n) = z(n),and , = vM,; + A. Itissimpleto seethat
theinphase cell isthe cell that ¢ = v.
Wefirst consider the scenario of theinphase cell. As mentioned, the proposed systemisjust

the same as that in [57]. From [57], we can,héave

Emin = Tl — E=4 HH?R:ia 2 (4.18)

wl, = (054, 0.0 s 0] exp (i) (4.19)
w!, = R, acxpiwild ), (4.20)

where v is an arbitrary angle. From (4.19) and (4.20), we can see that both filters do not have
unigue solutions. Thisisnot surprising since we only pose the magnitude constraint. Also, note
that w , isjust the conventional MM SE beamformer (R, 'a).

Now, let us consider therest (Q — 1 outphase cells. Sinceq # v, wehave K? = 0 [see (4.9)].
Then, (4.8) becomes

T = [wil"Ryw + [wi]"RIw] + {1 — [w]"wj}, (4.21)

q # v, where RZ = I (the long-code assumption). Also, (4.10)—4.11) become

q
% —R,w!=0 (4.22)
9.J4
Wi =wi —&wl =0. (4.23)
t
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From (4.22), we have w! , = 0, since R, is afull-rank matrix. The spatia filter will block all
signal from entering the temporal filter. From (4.23), wecansee ¢! . = J!. =1, andthereis

no unique solution for w , either. Any vector satisfies the unit-norm constraint can serve as an

optimum solution.

84.2 Adaptive  mplementation and Convergence Analysis

In lase section, we have proposed a low-complexity code acquisition system modifying the
systemin [57]. Optimum-weights of the filters are derived with the eigen-decomposition tech-
nique. However, the required computational complexity of elgen-decomposition is on the order
of O(M}). In addition, the matrix inversion of R, is required in (4.13). To aleviate these
problems, we propose to use an adaptive algorithm to derive the optimum filter-weights. The
adaptive algorithm we consider isithe LMS algorlthm which is well-known for its simplicity
and robustness. As shown, we have a un|t norm constraint on the temporal filter. Applying
this constraint, we then obtain aconstral ned LMS algorlthm In what follows, we will describe
the algorithm and examine related issues such as the step size bound and steady-state M SE.
Besides, we also analyze the output SINR of beamformer [see v(n) in Fig. 4.1] for an inphase
cell.

84.2.1 Constrained LMSand Convergence | ssue

Rewriting (4.3), we have

J'(n) = [wi(n)]"Riwi(n) ¢=0,...,Q —1, (4.24)
where
wi(n) 2 [wi(n)]", [wi(n)]"]", (4.25)
vi(n) 2 [x?(n)]", —r"(n)]", (4.26)
R 2 B{vi(n)[v(n)]"}. (4.27)



The gradient of (4.24) isby

0.J%(n)

Sy~ Rewi). (4.29)

Using (4.28), we can apply agradient decent algorithm to obtain the optimum solution, denoted
asw{ ,. However, R{ needsto be estimated. The simplest estimate of R{ isto useinstantaneous
valuefromv?(n)[v?(n)]" andthisyieldsastochastic gradient decent algorithm, called the LM S
algorithm. We then can have the filter adaptation as

wi(n+1) =wi(n) + p {-v'(n)[v!(n)]"wi(n)}, (4.29)

where 1 is the step size controlling the convergence rate. Recall that we have the constraint
||lw{(n)|| = 1. Thisconstraint can be easily satisfied if normalization is performed on w(n) at

every iteration. The overall adaptation pr0ceduré i‘s)gi‘\ien as.

el(n) = [wg(n)‘ijqt(n‘)‘ =y - | (4.30)
") = di 1 ‘ 1

H’(n) = diag{ ng(n)",..v., ||wq(n)||,1,...,1} (4.31)

wi(n+1) = Hi(n)wi(n) — pvi(n)e’(n)]", (4.32)

n=0,1,...,N—-1;¢=0,...,Q — 1, where diag{-} denotes adiagonal matrix consisting of
the arguments that it includes, and N the iteration number for each cell. Aswe can see, H?(n)
normalizes w{(n) at every iteration. After training, we have to detect the inphase cell first.
To do that, we propose to compare ||w?(N)||? with a preset threshold. If ||w?(N)||? islarger
than the threshold, the cell is deemed as the inphase cell. Then, the peak location of wi(N) is
located and the code delay is estimated. Otherwise, we go to the next cell and start the process
all over again. To guarantee convergence, 1 has to be selected properly. Here, we perform the
' W

mean convergence analysis to derive a step size bound. Subtracting w! , = [[wy{

,0
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from both sides of (4.32), we have
Awg(n + 1) = Awj(n) + [H(n) — Tjwj(n)
— pvi(n){[wi(n)]"v?(n)}*
= Awj(n) + [H"(n) — Ijwi(n)
— v (n) [V (n)]"[Aw (n) + wi ]
= {I— uv'(n)[v!(n)" }Awi(n)
+ [H(n) = Iwi(n) — pvi(n)[eg(n)]", (4.33)

where ef(n) £ [wi ]"vi(n) and Aw!(n) £ wi(n) — w? . Taking the statistical expectation
of (4.33), applying the direct-averaging method [34], and using the orthogonality principle, we

then have

B{awin 51} =l R | Awi(n))
T pE{E ) — 1B {wi(n)}. (4.34)

Let A? = diag{\j,,..., AzyM&M} wniﬂthv Ay being an eigenvalue of RY, and U? be a ma-
trix consisting of the eigenvectors of R Mullti plyi"hg (4.34) with U] and letting g?(n) =
(U7 E{Aw(n)}, we obtain
g’(n+1) = [I - pA%lg(n)
+ U7 [E{H(n)} — IE{w{(n)}. (4.35)
Since w{(n) isnormalized at every iteration and the step size is usually small, it is reasonable

to assume that H?(n) ~ I and the second term in the right-hand side of (4.35) can be ignored.

Iterating (4.35), we obtain
g’(n) = [T — uA"]"g"(0). (4.36)
Thus, for (4.35) to converge, the following condition must be satisfied

0< <

, (4.37)

q
)\v,max
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where A7 .. denotes the maximum eigenvalue of Ri. This result is the same as that of the
conventional LMS agorithm. From (4.36), we can also see that g?(co) = 0. In other words,
E{wi(n)} = w,, whenn — oo.

Note that while the conventional LM S algorithm requires 2(M,; + M) multiplications per
iteration, the constrained LMS algorithm developed here needs extra M, multiplications for

calculation of ||w/(n)|| and extra M, divisionsfor normalization [see (4.32)].

8§4.2.2 Steady-state M SE Analysis

We now derive the steady-state MSE of the constrained LM S algorithm. Invoking the direct-
averaging method [34] and using (4.33), we can write the correlation matrix of the tap-weight

error vector as

PU(n 1) 2 B{awih ) jawiin K1)

= [1 - g RI@) L =7RAT " 77,

+ B{(H(3), — My (" [ () — 1)} (4.38)

R;

in

As stated, w{(n) is normalized at every iteration and the step size is usualy small. Thus,
H?(n) ~ I and the last term in the right-hand side of (4.38) can be ignored. Let P9(n) =
[U?)"P4(n)U? and observe that [UY|"RIU? = AY. Pre-multiplying and post-multiplying
both sides of (4.38) with [U?]" and U¢, respectively, we have

Pi(n+1) = I — pAYNPI(n)[T — pA9] + p2J%, A9 (4.39)
Let the j-th element on the diagonal of P4(n) be p7(n). Then,
pjin+1)= (1~ M)\g,j)2ﬁ?(”) + H2Jgnn)‘g,ja (4.40)

j=1,...,M;+ M. Whenn — oo, pj(n + 1) = pj(n). Form (4.40), we derive

~d :Lglin 4.41
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The additional M SE due to the use of the LM S algorithm is generally referred to as the excess
MSE, denoted as .JZ,(o0). From [34], we then have

Mi+M Mi+M MXI )
TL(00) = 3 PN = Thin D 5 ST (4.42)
j:l v,]

i=1

Denote the steady-state M SE of the LM S adaptation as JZ,. Finally, we have

gl — J1

min

+ J&p(00). (4.43)

84.2.3 Output SINR at Beamformer for an Inphase Cell

Now, let us analyze the output SINR of the beamformer. We consider the inphase cell (¢ = v),

and the output is by
1) £ [y (A xy EEL (4.44)

1

S

= [t () (s (= w11, — ) +2(0), (4.45)

where z(n) consists of MAI and noiserdsing (‘4.20), we can find the output SINR of the

optimum beamformer, denoted as SINR,,, as

(Wi "Raw?,

R o
a’lR 'R R, ‘a
" af/R.'R,R, !a’ (4.47)

where R, = aa and R, = E{z(n)z' (n)}. Since we use adaptive filter-weights to approxi-
mate the optimum weights, we have to include the excess MSE in the SINR calculation. Thus,
we can rewrite (4.47) as

a’R'R,R, 'a
a"R-'R,R;'a+ JY (o0)’

SINR, = (4.48)

where J¥ (oo) isfrom (4.42).
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84.3 Performance Analysis

The performance of acquisition is generally measured with the mean acquisition time, which
isthe averaged time for correct acquisition. The mean acquisition time of the proposed system
isafunction of the probability of false alarm, the probability of missing (denoted as P,,), and
the probability of correct acquisition (denoted as Pp). In this section, we will first derive these

probabilities and then cal culate the mean acquisition time.

8§4.3.1 Mean Acquisition Time

As mentioned, the proposed scheme performs sequential cell testing. Since there are () possible
cells, there are () possible states in the system, , L.abel these states as {s,...,sq-1} in the
circular state diagram [1], as shown in Fig: 42 Lo the figure, the state labeled as ACQ indicates
the state of correct acquisition. That-labeled as FA”is thé‘state of false aarm. Using this
diagram, we can evaluate the averaged-time reaching the ACQ state, i.e., the mean acquisition
time. Without loss of generality, we aésume So1 be| ng the state of an inphase cell, and thus
it is connected to the ACQ state. Also, let 7% £ {[|w?(N)||2. As described in Section 4.1, the
optimumw? , for outphase cellsare all-zero vectors, and the corresponding Z¢ should be small.
Ontheother hand, Z¢ of theinphase cell should belarge. Using this property, we set athreshold
( for the detection of theinphase cell. Thus, the acquisition problem can be seen asa hypothesis
testing problem. Note that correct acquisition means that the inphase cell is correctly detected
and at the same time the optimum peak-weight location (A) is aso correctly estimated. There
are two types of false alarm. We name the false alarm occurring in an inphase cell as an inphase
false alarm, which means that the inphase cell is correctly detected but the peak location is not
(i.e., A # A), and the false alarm occurring in an outphase cell as an outphase false alarm.
From Fig. 4.2, we can see that the transfer function (TF) between s,_; and ACQ can be
expressed as H,(z) = PpzV*' [1], [21], [22], where N + 1 denotes the time for iteration and
cell detection, and z the unit-delay operator. The probability of missing, P,,, is defined as
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A:H (2=PR,z""
B:H,(2=P,2""
C:H.(2=P, 2"
D:H,(2)=2"
E:H.(2=@1-P,)z""
F:H, (29=P,z""

S S-1 $
H, (2) H,(2)

HY ()

Figure 4.3: Simplified state diagram.
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the probability of Z9~' < (. Thus, if only the missing is considered, the TF between sq_;
and s, can be expressed as H,(z) = PyzV*'. The probability of the inphase false alarm,
denoted as Pr;, isequa to Pr;, = 1 — Pp — Py;. On the other hand, if only the inphase
false darm is considered, the TF between s_; and FA can be expressed H;(z) = PpzV .
Note the system has to stay 7}, chips once it enters the FA state. The quantity 7}, is generally
referred to as the penalty time [1]. The TF between the input and the output of the FA state
can be described as H,(z) = z"». Thus, we can have the TF between s, and s, as H,(z) =
H,(z) + H¢(z)H4(z). The TF between any s,, ¢ = 0, 1,...,Q — 2, and the FA state will be
H.(z) = Pp,z"*', where Pr, isthe probability of outphase false darm. If the outphase false
alarm between two consecutive states, s, and s,41,¢ =0, 1,...,Q — 2, isnot considered, then
the TF between these two consecutive states can be described as H,.(z) = (1 — Pr,)z¥*L. Thus,
we can have the TF between any two consecutive s’tates,‘sq and s;11,¢=0,1,---,Q — 2,88
Hy(z) 2 H,(z) + H.(z)Hy(2). L Ele

Using the TFs derived above, we ndw can redraw the diagram in Fig. 4.2 asthat in Fig.
4.3. In what follows, we use Fig. 4.310 ca!ﬂ‘c‘u‘l ate the mean acquisition time. We define the
probability of correct acquisition starting from.time zero and ending at time n as Pacq(n).

Then, its z-transform is given by
PACQ(Z) = Z PACQ(TL)Zn, (449)
n=0

which can be the generating function of acquisition time. Denote the mean acquisition time as

Thcq @nd it can be derived from [1]

d
Tocq = EPACQ(z)|z:1. (4.50)

Note that the unit of (4.50) is chip. Assuming that we can start searching at any state in
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{so,...,s¢-1} with equal probability 1/¢), we rewrite (4.49) as

Qfl
Pacq(2) = 0 Z Fya0q(2) (4.51)
q=0
2) Z Po1(2), (452)

where P, 4c¢(z) denotes the TF between s, and ACQ states, and P, ¢ (z) the TF between s,

and sg_;. Using Fig. 4.3, we can have

HY " (2)

Pro-1(z) = T H,QH @) (4.53)

Substituting (4.53) into (4.52), we obtain
PACQ()ZQ H( HQF Z (4.54)
L e >[1—“H,?< 2) -
R H@ELN)| - H) e

Using (4.55) in (4.50), we finally obtain:

Ty = {1+ @- 12204 )

+ [Pri + (@ — l)PFo2 QPD]TP}. (4.56)

Observing (4.56), we find that a large Pr, and a small P, can enlarge 1., significantly. It
should be noted that Py, is more harmful to 7y, than Pg;. Thisis because there are () — 1
outphase cellsand only oneinphase cell. For anideal situationthat Pp = 1 and Pr; = Pp, = 0,

we have

E(N +1). (4.57)

Tacq,LB - 9

which can serve as the lower bound of (4.56).
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84.3.2 Probabilities Derivation

Since Z¢ is random, we have to characterize its statistical properties. It is mentioned in [33]

that when an adaptivefilter approachesthe steady-state, itsweights have a Gaussian distribution.
From the analysisin the previous section, we see that in the steady-state (N — oc), w?(N) has
amean vector of w! , and wi(N) has amean vector w{ ,. We denote their covariance matrices
asCY 2 E{[wi(N) —wi Jwi(N) —wi,]"} and Cf £ E{[w{(N) — w},Jwi(N) —wi,]"},
respectively. As acommon practice, the step size is usually small. Thus, we can use the Taylor

expansion to expand 1/(2 — ] ;) in (4.41) with respect to 12} ; = 0. Then, we can derive

1 1 1
= ) S ER 458
From (4.39), it can be seen that the matrianq(n) will become diagonal asn — oo. Using this

property and truncating the terms highet'than th@ f| rstéOrdd” in (4.58), we then have

P!(n )f—Jq 1+ Jq AY, (4.59)

2 mln 4 min
Pre-multiplying and post-multiplying both S desof@59) with U? and [U7]#, we obtain

Pin) =Ly 14 1 Ly RY. (4.60)

2 min 4 min

Note that the M, x M, upper-left submatrix of P9(n) correspondsto C{ and the M x M lower-

right submatrix of that can be C¢. Thus, we can write

2 q

Ol = Jp | 41+ R (461)
2 q

cl=Jl. [g “Z]IN%I (4.62)

where J,‘!nm isthe MMSE evaluated in Section 4.1. For notational clarity, welet o2 £ p.Jv. /2

and o2 = pJ%. /2, q # v. From (4.61)—(4.62), we can see that these filter weights are approx-
imately i.i.d.
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Let us calculate Pp now. Since wi, = 0 for ¢ # v, wefind that Z%, ¢ # v is chi-square
distributed with M degrees of freedom, while Z" is noncentral chi-square distributed with A/
degrees of freedom. Thus, the probability of Pr, isgiven by

_[" 1 M/2—1 B
PFO_/; O_[])\42M/21"(M/2)ﬁ exp( 2Ug)dﬂ, (4.63)

whereT'(-) standsfor the gammafunction [35], and  isusually selected on somelevel to prevent

alarge Pr, (e.9. Pr, = 0.01). Let P bethe probability of correct inphase cell detection. Then,

2\ 2
207 s oy

00 2
Po 2 [T e (< 1o (V) (464
¢ 71

where s £ ||lw? |[> and Iy 1(-) the (M/2 — 1)-th order modified Bessel function of the
first kind [35]. Next, we evaluate thé‘probqbili‘tyn of. A = A, say Pa. LetY; = [w/;(N)[? for
j=0,...,M; — 1. When N islérge enoddhi,y YA haganoncentral chi-sguare distribution with
two degrees of freedom, whereas Y] T A,”has a chi;square distribution. The corresponding

probability density functions can be shown'as

1 Clwy, AP +y WY, A
- _heal N 0 4.65
PYA(?J) 20% exp( 20% ) 0(\/@ a% ) ( )
1 Y .
: = — —— 0 A 4.66
py; (y) %07 exp( 20%) y>0,7#A, (4.66)

where wy, , denotesthe (A + 1)-th element in wy, with |w}, A|* = 1. With (4.65)<4.66), Pa

isgiven by

Ps = Pr(Y; < Ya) (4.67)
Mi—1

00 B8
=A Mpmmwﬂ ()8, #A (469

where the i.i.d. property has been applied in (4.68). Finaly, we can have Pp = PoPa, Py =
1— Pc, PF’L =1- PD — PM Then, (456) can be evaluated.

89



84.4 Simulations

To demonstrate the effectiveness of the proposed system, we report some simulation results
in this section. First, we set common parameters used in simulations as follows: U = 256,
M =8, K =8, T, = 100U chips, 02 = 1, p = 3 x 1073, w!(0) = 0, and w{(0) =
(1/v/My)[1,...,1]" for ¢ = 0,...,Q — 1. Also, for convenience, the DoAs are fixed to be
{on}E | ={0.41,0.56,0.78, —0.20, —0.52, —1.12,1.12,0.94} (radians) in all simulations.

In the first set of simulations, we examine the convergence behaviors of the the proposed
adaptive system. This includes the MSE convergence of the system, the SINR convergence
behavior of the spatial filter, and the weight convergence of the temporal filter. All experimental
results are derived from an average of 400 trials In these experiments, we let M, = 8, the array
input SINR be —10 dB (. = 1), and the powers of Jammers be equal. Fig. 4.4 showsthe MSE
convergence curve for the proposed wstem W|th the lnphase cell (¢ = v). It can be seen that
the steady-state MSE value approaches to the theoretlcal value 0.28 around n = 1300. The
theoretical MSE value is calculated from (4.43) In the'same figure, we aso show the MSE
with an outphase cell (¢ # v). It is apparent that'the experlmental MSE is more fluctuating.
Thisis because that .J...., ¢ # v, is much greater than .J7,

min

making the corresponding excess
MSE larger. Fig. 4.5 illustrates the SINR convergence curve for the beamformer output [see
v(n) in (4.44)]. The SINR starts from —11 dB and eventually reaches the optimum value 4.18
dB. The theoretical value is derived from (4.48) and is shown with the horizonta line in the
figure. We omit the results for ¢ # v, in which the experimental SINR is around —10 dB.
This indicates that the spatial filter can not suppress interference for outphase cells. From the
figure, we conclude that the adaptive spatial filter can effectively suppress interference when it
operates in the inphase cell. Fig. 4.6 presents severa experimental beam-patterns calculated
fromw?(N). Here, welet N = 2000. The optimum beam-pattern, derived from (4.20), isalso
shown. Note that the arrow signs indicate the signal DoAs and only the DoA of the desired

user, ¢y, islabeled. Asseen, the spatial filter, acting as a beamformer, can steer the main-beam
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Figure 4.4: Convergence curve for MSE when ji'=3
from (4.43).
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Figure 4.5: Convergence curve for SINR of v(n) at aninphasecell, u = 3 x 1073, and M, = 8.
Theoretical valueisfrom (4.48).
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Figure 4.7: Convergence curve for squared temporal filter-weights |w};(n)[* for j
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to the incident direction ¢, and put nullitiesin the directions of interference. The convergence
behavior of the temporal filter weights is shown in Fig. 4.7. We can see that the tap-weight
whose indices correspond to the code delay, [wy  (n)|?, convergesto unity, while other weights,
lwy ;(n)|*, 7 # A, convergeto avery small value (only one weight is shown in the figure).

In the figures shown above, we can see that the theoretical results calculated using derived
formulas al match the ssmulated ones very well. Then, we calculate the mean acquisition time
of the proposed system. Before that, we have to evaluate related probabilities. Fig. 4.8 shows

the comparison of experimental and theoretical Py, (versus ().

0.25 \ \ \

—— Experimental, Mt=16, N=2000
—=— Experimental, Mt=16, N=1000
—+— Experimental, Mt= 8, N=2000
—e— Experimental, Mt= 8, N=1000 | -|
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0.05r-

0 3 2 B
0.02 . 0.06 0.08 0.1 0.12 0.14
Threshold ¢

Figure 4.8: Experimental and theoretical probabilities of outphase false darm Pp, versus
threshold ¢.

Here, the array input SINR is set as —10 dB. As we can see, Py, decreases rapidly as the
threshold increases. The experimental results with M; = 8 match the theoretical results [in
(4.63)] better that those with M; = 16. We aso see that the experimental resultsfor N = 1000
and N = 2000 are close. Fig. 4.9 shows the similar comparison for Pc.

Here, experiment and theoretical results agree very well for N = 2000. However, they agree
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Figure 4.9: Experimental and theorgtical probabilitiesof P¢ versusthreshold (.

poorly for N = 1000. Thisis because the spatial filfer has not converged with the given number
of iterations, and Z" tends to be smaller. #han fhe threshol d. This behavior is different from that
in Pr, calculation. From Figs. 4.8 and 4.9, Wwe can'see that the best ¢ isaround 0.07. Using
thisvalue, P, can be close to zero and P to one. The theoretical value of PA isusualy very
closeto one. With 10* trials, wefind Py = 1 (N = 2000, M, = 8 or M, = 16). Asaresult, we
can let Po =~ Pp. Since the interference is mainly suppressed by the spatial filter, Pr; is close
to zero. Substituting derived experimental probabilities into (4.56), we can then calculate the

mean acquisition time. Fig. 4.10 shows the result.

In the figure, lower bounds derived from (4.57), are also shown. It issimpleto seethat if ¢
istoo small, Pr, will be large, leading to large mean acquisition time. On the contrary, if  is
too large, P, being equal to 1 — P will be large, leading to large mean acquisition time also.
From the figure, we can observe that ¢ can be chosen in a wide range of value such that mean

acquisition times can approach lower bounds.

Finally, we conduct performance comparison for the correlator-based scheme in [39], the
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Figure 4.10: Experimental mean vauisition time (chips) versus (.

adaptive array system in [57], and the proposed system. We let U = 256, 0727 =1 a =1,
and the powers of all jammers be equal ~As addressed in [39], the derived theoretical threshold
is not accurate enough to guarantee that a designated probability of false alarm (set as 0.01
here) can be achieved. Thus, we experimentally search for the threshold, processing period
(for adaptation), and step size that gives the minimal mean acquisition time (for each array
input SINR). To ensure a fair comparison, we aso search for an optimum set {u, N, ¢} that
provides the optimum performance for the proposed system (M; = 8 or 16). Here, Py, is Set
as 0.01. Similarly, for the system in [57], the performance is optimized over {1, N}. Fig. 4.11
shows the performance comparison for these systems in various SINRs. From the figure, we
first can see that the correlator-based system has the worst performance. This is because the
beamformer training cannot be accomplished in a short processing period, especially in serious
MAI environments. The system in [57] exhibits the best performance. It can outperform the
correlator-based system by an order of magnitude. Comparing to that in [57], the proposed

system somewhat compromises the performance. However, its computational complexity is
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Figure 4.11: Mean acquisition time cdmparison for U = 256.

much lower. For example, with 1, =3, the temporal-filter Sizeisjust 1/32 of that in [57]. We
also can see that for the proposed system withi;=-8 perfOrms slightly worse than that with
M; = 16. We can expect that the larger the M, the smallér the performance loss. Thus, we can

have an easy tradeoff between performance and computational complexity.

84.5 Conclusions

In this chapter, we proposed a low-complexity adaptive array code acquisition scheme, espe-
cially being suited to large-delay channel environments. Applying the serial search technique,
we can greatly reduce the temporal filter size, so does the computational complexity. The pro-
posed scheme also alows an easy tradeoff between performance and computationa complexity.
With the special designed structure, the proposed system is able to suppress MAI and estimate
code-delay simultaneously. It can outperform the conventional correlator-based system. We

also analyze the convergence behavior and the mean acquisition time of the proposed scheme,
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and derive related closed-form expressions. Simulations verify that theoretical and experimen-
tal results agree well. In this chapter, we only consider the AWGN integer chip-delay channels.
With minor modification, the proposed system can be easily extended to apply in the multipath

yet fractional chip-delay channels[57]. Thisissue may serve as atopic for further research.
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Chapter 5

Conjugate Gradient Algorithm for Array

Code Acquisition

The adaptive array proposed in Chapter 3 has a éjmpl‘e strUQture and can simultaneously per-
forms adaptive beamforming and code-delay esti mati on. For simplicity, the well-known LM S
adaptive algorithm was used in Chaptér R Howe«ék, fhe convergence of the adaptive filters
becomes very slow when their dimensions becomelarge or they are operated in multipath chan-
nel environments. The recursive-least-squares (RLS) algorithm can be applied; however, the

computational complexity will be increased dramatically.

To solve the dilemma, in this chapter we propose the application of the conjugate gradi-
ent (CG) agorithm [59] in the adaptive array code acquisition problem. The CG agorithm
has been well-developed in optimization theory and used in many fields, [60]— [61]. It can
iteratively solve a quadratic minimization problem in just x steps, where « is the number of
unknown parameters. However, it requires the exact knowledge of the second-order derivative
of the quadratic cost function, which cannot be known in general signal processing problems.
With an estimated derivative, the CG algorithm is degenerated [62], which means the finite-step
convergence property may be not held. Nevertheless, the convergence of the CG algorithmis

still fast. Note that the straightforward application of the original CG algorithm in adaptive
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signal processing will require avery high computational complexity. In [62], a simple method
was proposed to alleviate this problem. Still, the computational complexity is on the order of
O(U?), where U isthe filter dimension. Exploiting the special structure of the correlation ma-
trix, we propose a low-complexity CG algorithm for the array acquisition schemein [57]. Itis
shown that the computational complexity can be reduced to the order of O(U), same as that of
the LMS algorithm. However, the convergence of the proposed CG algorithm is significantly
faster than that of the LM S algorithm.

85.1 Proposed CG Adaptive Algorithm

In Chapter 3, we have proposed the édaptive antenna array's code acquisition system. Optimal-
weights of the system are derivedwith the elgen ‘decompositi on. However, the required compu-
tational complexity ison the order of O(E7#)< Inaddition, the matrix inversion of R, isrequired
in (3.20). To alleviate these probl“éms, atonstraned LMS a gorithm is used in [57] to approach
the optimum filter-weights. However, the LM'S algorithm converges slowly, especially when the
constraint is applied. In this section, we propose a CG algorithm to speed up the convergence.
As mentioned, the RLS type of algorithms can be applied for the same purpose. However, the
computational complexity of the RLS is on the order of O(U?), which is still computationally
expensive. It isknown that the main effort in the RLS algorithm isto estimate the inverse of the
correlation matrix. With a different perspective, the CG algorithm estimates the input correla-
tion matrix itself. Asaresult, the CG algorithm will be more stable than the RLS algorithm. In
itsoriginal form, the CG algorithm [59] is not suitable for adaptive processing. In[62], asimple
modification allows the CG algorithm to reduce its complexity to the order of O(U?). We will
use the special structure inherent in the correlation matrix and propose a low-complexity CG
algorithm with the computational complexity of order O(U). As shown, we have a unit-norm

constraint on the temporal filter-weights. Applying this constraint, we then obtain a constrained
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CG agorithm for adaptive filtering. Rewriting (3.10), we can have

J(n) = wl(n)R,w,(n) (5.1)

where
w, (n) £ [w] (n), wI'(n)]" (5.2)
v(n) 2 [x"(n), —2T(n)]" (5.3)

(5.4)

Thus, the optimum solution of the filter-weights, denoted as w,, = [w{,, w |7, can also be

expressed as

W0 o arg mid WfRUW,, (5.5)

Staflw, ol =d 0 J (5.6)
Before our development, we briefly describe the constrained LMS algorithm used in [57].
It can be summarized as: |
Given pu, w,(0)

forn=0,1,2,..., N —1

e(n) = w,! (n)v(n) (5.7)

. 1 1
H(n) = dlag{HWt(n)H,.;’ ||Wt(n)||:1"”’1} (5.8)
w,(n + 1) = H(n)w,(n) — pv(n)e*(n) (5.9

end

where diag{-} denotes a diagonal matrix consisting of the argument it includes, . the step size,

and N the iteration number. Note that in (5.8) H(n) normalizes w,(n) at every iteration. By
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doing so, we can force w,(n) to satisfy the unit-norm constraint. Due to the small step size and
the normalization procedure, we can assume H(n) ~ I, and thus the excess mean-squared error
(MSE) and step size bound are similar to those of the conventional LM S algorithm. While the
conventional LM Salgorithmrequires2(U -+ M )+1 multiplicationsper iteration, the constrained
one mentioned above needs extra U multiplications and extra U divisions for normalization.

As mentioned, the original CG algorithm [59] iteratively solves a quadratic cost function
(with aconstant symmetric positive-definite matrix) and can convergein finite steps (the number
of unknown parameters). Itiswell-known that it converges faster than steepest-decent methods,
and has lower computational-complexity than Newton’'s method. Consider our problem here.
The cost function in (5.5) to minimize is a purely quadratic cost function. Its second-order
derivativeis the correlation matrix R.,, which is unknown in practice. Thisimpliesthat an esti-
mate, say R, (n), hasto be used. As arésult, fhe CG agorithm minimizes wi (n)R,(n)w,(n)
subject to the unit-norm constraint. Similar §tq the constrai ned LMS algorithm, we can normal-
ize the temporal filter-weight at each CG i‘téréti‘bn, resglting a constrained CG algorithm. Note
that the filter dimension is U + M and \‘(v‘e‘ have one néw input-vector at each time-instant. In
other words, R,, (n) isupdated for eaghtime-instant; and for each update of R, (n), x; = U+ M
iterations have to be conducted for the CG algorithm. We refer this approach as the conven-
tional CG (CCG) agorithm. Let u(j) bea (U + M) x 1 vector for the iteration j, where
j =0,...,k; — 1. The application of the CCG algorithm in our problem can be summarized
below.

Given u(0), R,(

_1)
for n=0,1,2,...,N —1

R,(n) = Ry(n — 1) + v(n)v(n) (5.10)
Ru(n) = - Ry(n) (5.11)
g,(0) = Ry (n)u(0) (5.12)

d(0) = —g,(0) (5.13)



for j=0,1,...,k,—1

e ()1

O Q)R ()4 G) o
u(j +1) =u(j) + pc(j)d(s) (5.15)
, _ou(l:U,j+1)
u(l:U,j+1) = ST (5.16)
g,(j +1) =R,(n)u(j +1) (5.17)
o g+ DI
By(j) = PREIE (5.18)
d(j +1) = —gu(j + 1) + B,(j)d()) (5.19)
end
Wv(ﬂ) = u(k) ) (5.20)
0] = sl &, (5.21)

end =0y

Here, g,(-) stands for the gradient of ("5;1), d() the ‘;Upd‘ate direction, .¢(-) the optimum step
size. Usually, we let u(0) = (1/vD)[1, ..., 10,005 0]". In (5.10)(5.11), the CCG first cal-
culates R, (n) with the average in arectangular window. Then, for each n the CCG iterates u(-)
by k; timesand only u(x;) isof interest. Note that u(-) isnormalized for itsfirst U elements at
each iteration. Finally, u(x;) servesasw,(n) and theinitial u(0) for the next time-instant. Note
that 3, () attemptsto provide R, (n)-congujacy for d(;j + 1) with respect to previous directions
{d(j),...,d(0)} [59], [62]. It should be emphasized that the CCG performs minimization over
R, (n) (not true R,) for each n. When n is large, R, (n) will approach R,,, and w,(n) ap-
proaches w, ,. As seen, the CCG resets the update direction at each time-instant [see (5.12) and
(5.13)]. As mentioned, the correlation matrix is estimated and the property of the finite-step
convergence is not held anymore. In our application, the problem becomes more apparent due
to the weight normalization operation. Even with these problems, the convergence of the CCG

algorithm is till fast. The CCG agorithm requires 2x; + 1 matrix-vector multiplications for
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every time-instant. Thus, the computational complexity is very high, and it is not suitable for
sample-by-sample adaptive filtering application.

For sample-by-sample adaptive filtering, a modified CG algorithm [62] was developed to
aleviate the high complexity problem. This algorithm updates the weights only one time per
time-instant, and its computational complexity is lower. We call the algorithm as a modified

CG dgorithm (MCG). Applying the MCG algorithm to our problem, we have

Given w,(0), R,(—~1) =0

for n=0,1,2,..., N —1

R,(n) = Ry,(n— 1) +v(n)v7(n) (5.22)
Ru(n) = ~Ry(n) (5.23)
g, (n) = R, (n)wifi) } applied only when 520
d(n) = —gun) El's n).Nyis an integer
W e ()P &
PR e R, () 52
Wa(n + 1) =¥ (n) + pic(n)d(n) (5.26)
" ow,(1:U,n+1)
w, (1 Un+1) T T D (5.27)
g,(n+1)= Rv(n)wv(n +1) (5.28)
llgo(n + DIP
Blt) = g 2 529
d(n+1) = ~gu(n + 1) + B,(n)d(n) (5.30)
end

Here, N, denotes the length of areset period. Inside the period, the correlation matrix remains

the same. At the moment that the correlation matrix is updated, d(-) isreset to —g, ().
Although the computational complexity of the MCG is lower, it still much higher than the

LMS agorithm. In our application, there is a special structure in the correlation matrix. This

can be seen from (5.4), in which the upper-left U x U sub-matrix in R, is an identity matrix.
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Also note that in typical array acquisition, U > M. Using these properties, we now propose a

CG algorithm that can effectively reduce the computational complexity to the order similar to
the LMS algorithm. We call the algorithm as the low-complexity CG (LCG) algorithm. The

algorithm is summarized as below.

Given w,(0), K(-1) =0,R,(-1) =0

for n=0,1,2,...,N—1

K(n) = %K(n)
R,(n) = %Rr(n)
i, <o
e LRmER M)

g,(n) = R, (n)waln) }nappli ed only when

d(n) = —g,(n) " n/N, isaminteger
g, ()
po(n) 47 (n)R, (n)d(n)
wy(n+1) = wy(n) + pe(n)d(n)
'  ow,(1:Un+1)
woll:Uin+ 1) = 1 1)
go(n+1)= Rv(n)wv(n +1)
_lge(n+ 1)]J?
B(m) = g I

din+1) =—-g,(n+1)+ 3,(n)d(n)

end

(5.31)
(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)
(5.38)
(5.39)

(5.40)

(5.41)

(5.42)

Thekey ideaof the proposed algorithmisin (5.35), where the correlation matrix isonly partially

calculated. We approximate the upper-left U x U sub-matrix in Rv(n) asan identity matrix, i.e.,
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Lrwony. Thus, only small correlation matrices K and R, are required to be estimated. In such
a manner, the matrix-vector multiplications in (5.36), (5.37), and (5.40) can be significantly
simplified. Since the elements in x(n) are binary, (i.e., +1), the caculation of x(n)r” (n)
in (5.31) is aso simple to implement. As that in the MCG agorithm, the direction vector is
periodically reset [in (5.36)]. The choice of N, will influence the performance [62]. For asmall
N,., the performance will be better, but the complexity is higher.

In this paragraph, we analyze the computational-complexity requirement for the CCG,
MCG, and LCG algorithms. The complexity considered here is the required multiplications
and divisionsfor each time-instant. Note that the complexity for the MCG and L CG algorithms
isconsidered at the time instants that reset is applied. We show the resultsin Table 5.1.

Table 5.1: Computational Complexity Cbmpérison for Constrained CCG, MCG, and LCG Al-

gorithms

- Multiplications& divisions
CCG | 2(U EMPP SN2 + (2U + 1)(U + M)

MCG 3(U+MPRT + UM + M? + 6M
LCG TUM +1)+4M? + 6M

As we can see from the table, the complexity of the CCG algorithm is on the order of
O(U?), that of MCG is O(U?), and that of LCG is O(U). Fig. 5.1 shows the ratio of the
required computational complexity for the LCG and MCG algorithms. As we can seen, the
ratio is decreasing along with the increase of U. When U = 128 and M = 4, the complexity of
the LCG agorithmisonly 8.5% of that of the MCG algorithm. We then conclude that the LCG
algorithm is much more efficient than the MCG algorithm.

The SINR at beamformer output y(n) [see Fig. 3.2] can serve as an indicator for the effec-
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Complexity ratio

Figure 5.1: Ratio of the computational complexity of MICG and LCG versus U and M U =
27z € {3,4,...,9)). ~ ElS e

tiveness of interference suppression. The bearﬁfofmef output here is given by

. ‘
v(n) = w(n) (Z aoqx(n —m) + zM(n)> , (5.43)
I=1
where
K Ly
ZM(TL) é Z Z ak,lakylxk(n — Tk,l) + ’I’](TL) (544)
k=2 I=1

The output SINR of the optimum beamformer can then be expressed as

—, (5.45)

where R, 2 Y7 |a|?aaf’, R.,, 2 E{zy(n)z;(n)}, and w, , denotes the optimum beam-

former weights derived above.
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§5.2 Simulation Results

To demonstrate the effectiveness of the proposed algorithm, we report some simulation results
in this section. We let commonly used parametersasU = 16, M = 8, K = 5, and 03 =1.The
array input SINR isset as —10 dB, with equal power for each jammer. Also, we let the desired
user’s channel be a three-path channel (. = 3) with, = 2, 7, = 5, and 73 = 10. The channels
for jammers are assumed to have single paths (i.e,, L, = 1 for k£ # 1). The DoAs for the
jammers and desired user are assumed to be {¢;1}5 , = {—0.2014, —0.5236, 0, 1.1198} and
{p1.}E, = {-0.6561,0.5586,0.7754} radians, respectively. The path gains associated with
the desired user are fixed to be {|ay|} ., = {0.66,0.45, /1 — 0.662 — 0.452}.

For the LCG algorithm, the estimated correlation matrix may not be positive definite when
the number of input vectors is srﬁnalrl‘. This Wi‘II‘ lead to large ||g.(-)|| affecting convergence
greatly. To mitigate this problem, we limit the“Valud§ of pue(n) and B,(n) when n is small.
For the simulations conducted below, we‘le‘t(‘) < pefn) < 0.01and 0 < S3,(n) < 0.99 when
n < 100. Also let N, = [/ + M, and Smulation reslits be derived with 200 trials;

Figs. 5.2-5.3 show the learning cunves for the constrained CCG, MCG, LCG, and LMS
algorithms. In these figures, the minimum MSE, J,,;., being equal to 0.232, is aso shown [see
(3.22)]. Aswecan seefrom Fig. 5.2, the CCG can approach .J,,,;,, very rapidly. The convergence
of the MCG and LCG agorithmsis slower. Also, the convergence of the LCG isdlightly slower
than that of the MCG. This stems from the fact that L CG approximates the sub-matrix in R, (n)
as an identity matrix. We find that both MCG and LCG can reach steady-state around 350
iterations. Fig. 5.3 shows the learning results for the constrained LM S algorithm. Two step
sizes are used. The first one is the maximum allowable step size which is 1.3 x 1072, This
step size will let the LM S agorithm have the fastest convergence. However, the corresponding
steady-state MSE is also large (0.85). In this case, the LMS converges around 1000 iterations.
To obtain a comparabl e steady-state M SE with that of the LCG, we use another step size which
is5 x 1073, With this step size, the LMS algorithm converges around 2000 iterations. From
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Figure 5.2: Learning curves for constrained CG agorithms (N, = U + M).
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Figure 5.3: Learning curves for constrained LM S agorithm.
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these results, we can clearly see that while the computational complexity of the LCG agorithm

is comparable to that of the LM S algorithm, the convergence is much faster.

Next, let us examinethe convergence of temporal filter-weights. Note that the magnitudes of
those weights directly influence the performance of code acquisition. In Fig. 5.4, we only show
aweight, whichis |w; -, (n)[?, for clarity. In the scenario considered, |w; , -, |* corresponds to a
significant tap in the desired beamformed channel. For the filter-weights that do not correspond
to multipath delay positions, their values will decay to a very small value close to zero [57].
As seen, the CCG converges rapidly, and its steady-state value is close to the optimum. The
MCG algorithm converges slower, but its steady-state value is the same as the CCG one. The
convergence of LCG issimilar to that of MCG. However, its steady-state value has asmall bias.
Fig. 5.5 shows the results for the constrained LMS algorithm. The LMS agorithm requires
around 2000 and 4000 iterationsto convérgenée for = 1.3 x 1072 and 5 x 103, respectively.
We also can see that the LM S algorithm hes the bias problem too. The larger the step size, the

larger the bias.

To examine the effectiveness-of: the beamformér, we show the SINR of the spatial filter
output in Fig. 5.6. The SINR of CCG rapidly. apprdaches the theoretical value of 5.2 dB [see
(5.45)]. Similar to previous results, the SINR convergence for MCG and LCG is slower; the
difference between these two algorithms are not obvious. Fig. 5.7 shows the beam-patterns
formed by the algorithms (derived with n = 200). As expected, the beampatterns have multiple
main-beams to collect the multipath signals of the desired user and put nullities to the DoAs
of interfering signals. We find that all algorithms can deeply null the interference. Yet, the
performance of LCG is dlightly poorer.

In above simulations, welet N, = U + M. As mentioned, NV, will influence the adaptation
performance. Fig. 5.8 shows the convergence curve of |w; ., (n)|? for N, = U + M and
3(U+ M). Wecan clearly seethat for both the MCG and LCG with N, = 3(U + M), theweight
grows faster only when the update direction isreset. The convergence for N, = 3(U + M) is
then dower that that for N, = U + M.

109



0.8

0.7t
0.6
N—
T o5
-
&
= o04f
()
o
g
2 03t
<
02b | ~-—ccc ||
MCG
——Lce
1 2|
° — |
3
O Il Il Il Il Il Il
0 100 200 300 400 500 600 700

Iteration

Figure 5.4: Convergence curves of |w;, (n)} for constrained CG algorithms (N, = U + M).

0.8

0.7

0.6

o
4

3

o
~

o
()

Averaged |Wt . (n)|2

o
)

o
S

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

Figure 5.5: Convergence curves of |w, ., (n)|* for constrained LMS algorithm.

110



6 ~

T
4r Iuhl\‘\ryl‘i’\,"\";‘mMW i M"',"' s |
et : 3
'
2 ]
O -
) i
8
x 4 i
P
" _6 4
-8 i
-10 i
- - CCG
2 o6 |
—14} —S|NR0 i
Il Il Il Il Il I
0 100 200 300 400 500 600 700

Iteration

Figure 5.6: Convergence curve'of SINRifer-eonstrained CG agorithms (N, = U + M).

10° F j# ¢¢ ## # il

=
2
5]
T
£
@©
[}
as]
107 1
- CCG
-- MCG
—LCG
10_3 ! 1 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 15

DoA radian
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Finally, we consider the performarice of codeacquisition. We define the correct acquisition
asthesituation that {|w,,, (N)|2, |wy. (N)Z, fivg -, (N )%} eorrespond to the first three maximal
filter-weightsinw, (V). Also, denote the probability'of correct acquisitionas P... Fig. 5.9 shows
P. versus different V (array input SINR=—10 dB) for various algorithms. The results here are
derived with 10* trials. As seen, the constrained LMS gives very poor performance when the
training period, NV, is short, while the MCG and LCG are not sensitive to the period. Also,
the performance gap between the CG algorithm is very small justifying the effectiveness of the
L CG agorithm. For the LCG, we can then useasmall N effectively shortening the acquisition

time.

§5.3 Conclusions

In this chapter, we propose an adaptive a gorithm with the conjugate gradient algorithm to solve

the slow convergence problem associated with the adaptive array code acquisition in [57]. Un-
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like the MCG algorithm, the proposed method, exploiting the specia structure inherent in the
correlation matrix, requires a low: computeati dhaLcompIexity. We have shown that the com-
putational complexity of the proposed method is on the same order of the LMS agorithm.
However, the convergence rate is much faster. Simulation results show that the performance
of adaptive array code acquisition with the proposed CG algorithm is comparable to that with
the MCG algorithm. In this chapter, only integer code-delays are considered. However, with
minor modifications, the proposed algorithm can also be applied to a scenario with fractional

multipath-delays [57]. Besides, it may be feasible to apply the proposed agorithm in MIMO

250

300 350
N

CDMA systems. These may serve as topics for future research.
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Chapter 6

Conclusions and Future Works

In this dissertation, we consider code acquisition with adaptive filtering techniques. From the
analysis and experimental results, we conclude that prdposed adaptive-filtering based code ac-
quisition algorithms can either significéntly reduée the corhputational complexity or enhance
the performance of conventional correlator-based algorithms,j

In Chapter 2, we first proposed a multirate adéptiVefiItering scheme for single-antenna
systems. Using the decimation property in themultirate signal processing, we are able to sig-
nificantly reduce the computational complexity of the conventional adaptive-filtering scheme.
However, in this work, we assume that the channel is AWGN, the code-delay is an integer,
and carrier frequency offset is not present. To be applicable in real-world, multipath channels,

carrier frequency offset, and fractional code-delay have to be taken into considered.

To deal with code acquisition in array systems, we proposed a novel adaptive array sys-
tem in Chapter 3. The system can simultaneously suppress MAI and estimate the code-delays.
We have shown that its mean acquisition time is much smaller than the correlator-based sys-
tem. We have aso analyzed the proposed system and derived related closed-form expressions.
Simulations show that theoretical results for MSE, probability of acquisition error, and beam-
former output SINR agree with experimental results very well. Multiple-input-multiple-output

(MIMO) systems have become more popular nowadays. With some modification, the proposed
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adaptive array code acquisition can be applied in MIMO CDMA systems, serving as a good
topic for further research.

Asmentioned before, the complexity of the temporal filter increases with large delay uncer-
tainty. In Chapter 4, we use the serial-search technique to solve the problem. With the proposed
structure, it iseasy to obtain acompromise between performance and computational complexity.
Except for the serial-search scheme, another possibility for computational complexity reduction
may be the multirate processing technique developed in Chapter 2.

In Chapter 5, we employed the CG algorithm to cope with the slow convergence problem
of the proposed adaptive array system. Although the proposed agorithm, referred to as LCG,
has the same order of computational complexity as that of the LMS algorithm, it can provide
much faster convergence performance. The proposed CG algorithm can also be applied to the

scenario of fractional multipath-del aysor'in M MO environments.

115



Bibliography

[1] A.Polydorosand C. L. Weber, “A unified approach to serial search spread-spectrum code
acquisition—part |1: a matched-filter receiver,” IEEE Trans. on Commun., vol. 32, No. 5,

pp. 550-560, May 1984.

[2] R.R.RickandL.B. Milstein, “Parall¢l,acquisition in mobile DS-CDMA systems,” IEEE
Trans. on Commun., vol. 45, No. 11, pp. 1466-1476; Nov. 1997.

[3] Yu T. Su, “Rapid code acquisition agorithms employing PN matched filters” IEEE
Trans. on Commun., vol. 36, No."6, pp../24-733, June 1988.

[4] E. Sourour and S. C. Gupta, “Direct-seiquence spread-spectrum parallel acquisitionin a
fading mobile channel," IEEE Trans. on Commun., vol. 38, no. 7, pp. 992-998, 1990.

[5] T. K. Moon, R. T. Short, and C. K. Rushforth, “Average acquisition time for SSMA
channels,” in IEEE Military Communnication Conference, pp. 1042-1046, 1991.

[6] G. E. Corazza and V. Degli-Esposti, “Acquisition-based capacity estimates for CDMA
with impefect power control,” in IEEE International Symposium on Spread Spectrum

Techniques and Applications, vol. 1, pp. 325 -329, July 1994.

[7] U. Madhow and M. B. Pursley, “Acquisition in direct-sequence spread-spectrum com-
munication networks: an asymptotic analysis,” |EEE Trans. on Information Theory, vol.
39, No. 3, pp. 903-912, May 1993.

116



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

R. L. Pickholtz, L. B. Milstein, and D. L. Schilling, “ Spread spectrum for mobile com-
munication,” 1EEE Trans. on Vehicular Technology, Vol. 40, No. 2, pp. 313-322, May
1991.

A. G. Dabak, “Acquisition based capacity of a synchronous direct sequence spread spec-
trum multiple access technique,” in |EEE International Symposium on Information The-
ory, pp. 141, 1994.

J. K. Holmes and C. C. Chen, “Acquisition time performance of PN spread-spectrum
systems,” |EEE Trans. on Commun., vol. 25, No. 8, pp. 778-783, May 1977.

Ho-Chi Hwang and Che-Ho Wei, “A new blind adaptive interference suppression scheme
for acquisition and MM SE demodulation of DS/CDMA signals,” IEEE Trans. on \ehic-
ular Technology, vol. 49, Ne. 3, pp. 875884 May 2000.

E. G. Strom, S. Parkvall, S.‘ L. Miller, and Bj(’jrh E. Ottersten, “Propagation delay esti-
mation in asynchronous direct-seguence code-division multi ple access systems,” |EEE

Trans. on Commun., vol. 44, No. 1, pp. 84-93, Jan. 1996.

S. E. Bensley and B. Aazhang, “ Subspace-based channel estimation for code division
multiple access communication systems,” |EEE Trans. on Commun., vol. 44, No. 8, pp.
1009-1020, Aug. 1996.

Sangchoon Kim, “Improved MUSIC algorithm for the code-timing estimation of DS
CDMA multipath-fading channels in multiantenna systems,” |EEE Trans. on Vehicular
Technology, vol. 53, No. 5, pp. 1354-1369, Sept. 2004.

Peter K. P. Cheung and P. B. Rapgjic, “CMA-based code acquisition scheme for DS
CDMA systems,” |EEE Trans. on Commun., vol. 48, No. 5, pp. 852-862, May 2000.

117



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

R. Wang, H. Li, and T. Li, “Code-timing estimation for CDMA systemswith bandlimited
chip waveforms," |EEE Trans. on Wireless Commun., vol. 3, No. 4, pp. 1338-1348, July
2004.

Y. Ma, K. H. Li, A. C. Kat, and G. Ye, “A blind code timing estimator and its imple-
mentation for DS-CDMA signals in unknown colored noise,” IEEE Trans. on Vehicular
Technology, vol. 51, No. 6, pp. 1600-1607, Nov. 2002.

D. Zheng, J. Li, S. L. Miller, and E. G. Strom, “An efficient code-timing estimator for
DS-CDMA signals,” IEEE Trans. on Sgnal Processing, vol. 45, pp. 82-89, Jan. 1997.

M. G. El-Tarhuni and Asrar U. H. Sheikh, “PN code acquisitionin CDMA systems using
a MMSE adaptive filter,” in IEEE:Canadian Cdnference on Electrical and Computer
Engineering, vol. 2, pp. 746-749; May 19918.3“

—, “An adaptive filtering PN code acquisition‘ sChemé with improved acquisition based
capacity in DSCDMA,” in 9th IEEE International S,/mposi um on Personal, Indoor and
Mobile Radio Communications, vol. 3, pp. 1486-1490, Sept. 1998.

—, “Adaptive synchronization for spread spectrum systems,” in 46th |[EEE Vehicular
Technology Conference, val. 1, pp. 170-174, 1996.

M. G. El-Tarhuni, Application of adaptive filtering to direct-sequence spread-spectrum
code synchronization, Ph. D. Thesis proposal, Department of System and Computer En-
gineering, Carleton university, Canada, Jan. 1996.

T. Yu, J. Kwun, H. Jeon, D. Hong, and C. Kang, “Noncoherent adaptive code synchro-
nization for DS/ICDMA systems,” in |[EEE Global Telecommunications Conference, vol.
6, pp. 3311-3315, Nov. 2001.

118



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. G. El-Tarhuni and Asrar U. H. Sheikh, “Code acquisition of DS/SS signalsin fading
channelsusing an LM S adaptive filter,” IEEE Communication Letters, vol. 2, No. 4, pp.
85-88, April 1998.

H. L. Yang and W. R. Wu, “Multirate adaptivefiltering for DS'CDMA code acquisition,”
in |EEE International Symposium on Sgnal Processing and Information Technology, pp.

363-366, Dec. 2003.

R. F. Smith and S. L. Miller, “Acquisition performance of an adaptive receiver for DS
CDMA,” IEEE Trans. on Commun., vol. 47, No. 9, pp. 1416-1424, Sept. 1999.

H. R. Park and B. J. Kang, “On the performance of a maximum-likelihood code-
acquisition technique for preamble search in a CDMA reverse link,” IEEE Trans. on

Vehicular Technology, vol. 47,“No‘. 1, pp. 65-74, Feb. 1998.

TIA/EIA/IS95, Mobile station-base'station compatibility standard for dual-mode wide-
band spread spectrum cellular system: Telecomimun. Industry Assoc., July, 1993.

TIA cdma2000, Wideband cdmaOne radio transmission technology proposal: Int.

Telecommun. Union, Radi ocommun. StUdy Groups, June 1998.

E. Dahlman et ., “WCDMA-The radio interface for future mobile multimedia commu-
nications,” |EEE Trans. on Vehicular Technology, vol. 47, pp. 1105-1118, Nov. 1998.

P. Taaghol et a., “Satellite UMTS/IMT2000 W-CDMA air interfaces,” |EEE Commun.
Mag., vol. 37, pp. 116-126, Sept. 1999.

A. J. Viterbi, Principle of Spread Spectrum Communications. New York: Addison-
Wesley, 1995.

N. J. Bershad and L. Z. Qu, “On the probability density function of the LM S adaptive
filter weights,” IEEE Trans. on Acoustics, Speech, and Sgnal Processing, vol. 37, No. 1,

pp. 43-56, Jan. 1989.

119



[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Haykin, S., Adaptive Filter Theory, 3rd. ed., Prentice-Hall, 1996.
J. G. Proakis, Digital Communications, 4th ed., McGraw-Hill, 2000.
J. K. Holmes, Coherent Spread Spectrum Systems. New York: Wiley, 1982.

M. Simon et a., Spread Spectrum Communications Handbooks, Revised Edition,
McGraw-Hill, Inc., New York, 1994.

Y. Zhang, L. Zhang, and G. Liao, “PN code acquisition and beamforming weight acqui-
sition for DS-CDMA systems with adaptive array,” in 14th |EEE Int. Symp. on Personal,
Indoor, and Mobile Radio Communications, vol. 2, pp. 1385-1389, 2003.

B. Wang and H. M. Kwon, “PN code acquisition using smart antennafor spread-spectrum
wireless communications—part |, | EEE Trans, Veh.Technol ., vol. 52, No. 1, pp. 142-149,
Jan. 2003, ‘ SEL A,

—, “PN code acquisition using ‘Smartantenna for spread-spectrum  wireless
communications—part 11,” IEEE Trans: \Wreless Commun., vol. 2, No. 1, pp. 108-117,
Jan. 2003. |

H. L. Yang and W. R. Wu, “A novel adaptive code acquisition using antenna array for
DS/ICDMA systems,” in IEEE Int. Workshop on Antenna Technology: Small Antennas
and Novel Metamaterials, pp. 458-461, Mar. 2005.

M. D. Katz, J. linatti, and S. Glisic, “Two-dimentional code acquisition in time and
angular domains,”" |EEE J. Select. Areas Commun., vol. 19, No. 12, pp. 2441-2451, Dec.
2001.

—, “Two-dimentional code acquisition in environmentswith a spatially nonuniform dis-
tribution of interference: algorithms and performance,” IEEE Trans. Wireless Commun.,
vol. 3, No. 1, pp. 1-7, Jan. 2004.

120



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

S. Buzzi and H. V. Poor, “On parameter estimation in long-code DS/ICDMA systems.
crameér-rao bounds and least-squares algorithms,” |EEE Trans. Sgnal Processing, vol.
51, No. 2, pp. 545-559, Feb. 2003.

C. Sengupta, J. R. Cavallaro, and B. Aazhang, “On multipath channel estimation for
CDMA systems using multiple sensors,” |EEE Trans. Commun., vol. 49, No. 3, pp. 543-
553, June 2001.

S. Affesand P. Mermelstein, “A new receiver structurefor asynchronous CDMA: STAR-
the spatial-temporal array-receiver," |IEEE J. Select. Areas Commun., vol. 16, No. 8, pp.
1411-1421, Oct. 1998.

J. Ramos, M. D. Zoltowski, andH:Liu, L.ow-complexity space-time processor for DS-
CDMA Communications,” {EEE Trans. Signal Processing, vol. 48, No. 1, pp. 39-52, Jan.
2000. | 2

Z.Liu,J Li,and S. L. Mil“ler, “Ah efficient code-timing estimator for receiver diversity
DS-CDMA systems,” |[EEE Trans."Commun., vol. 46, No. 6, pp. 826-835, June 1998.

G. Seco, A. L. Swindlehurst, and D. Astély, “Exploiting antenna arrays for synchroniza-
tion,” in Signal Processing Advances in Wireless and Mobile Communications, G. B.
Giannakis et al., Eds. Upper Saddle River, NJ. Prentice-Hall, vol. 2, 2001.

O. S. Shinand K. B. Lee, “Utilization of multipath for spread-spectrum code acqusiition
in frequency-selective rayleigh fading channels,” IEEE Trans. Commun., vol. 49, pp.
734-743, Apr. 2001.

H. W. Je, O.-S. Shin, and K. B. Lee, “Acquisition of DS/CDMA systems with multiple
antennas in frequency-selective fading channels,” IEEE Trans. Wireless Commun., vol.
2, pp. 787-798, July 2003.

121



[52] TIA/EIA/IS95, Mobile station-base station compatibility standard for dual-mode wide-
band spread spectrum cellular system: Telecommun. Industry Assoc., July, 1993.

[53] E. H. Diana, B. Jabbari, and G. Mason, “Spreading codes for direct sequence CDMA
and wideband CDMA cellular networks,” |EEE Commun. Mag., vol. 36, pp. 48-54, Sept.
1998.

[54] —, “Multirate adaptive filtering for low complexity DS/CDMA code acquisition,” sub-
mitted to |EEE Trans. Veh. Technol., Aug. 2005.

[55] Y. Zhang, L. Zhang and G. Liao, “PN code acquisition and beamforming weight acquisi-
tion for DS-CDMA systems with adaptive array,” in 14th IEEE Int. Symp. on Personal,
Indoor, and Mobile Radio Communications, vol. 2, pp. 1385-1389, 2003.

[56] Sangchoon Kim, “Approximate maximum Ili‘kelihoo‘d approach for code acquisition in
DS-CDMA systemswith multiple Atennas,’{EICE Trans. Commun., vol. E88-B, no. 3,
pp. 1054-1065, Mar. 2005. : |

[57] H.L.Yangand W. R. Wu, “A novel adaptive antenna array for DSICDMA code acquisi-
tion," IEEE Trans. Signal Process., Sept. 2006, accepted.

[58] —, “A low-complexity adaptive antenna array for DSI'CDMA code acquisition,” submit-
ted to IEICE Trans. Commun., Apr. 2006.

[59] E. K. P Chongand S. H. Zak, An introduction to optimization, 2nd ed. NY: Wiely, 2001.

[60] G. K. Boray and M. D. Srinath, “Congugate gradient techniques for adaptive filtering,"
|EEE Trans. Circuit and System, vol. 39, pp. 1-10, Jan. 1992.

[61] P. S. Chang and A. N. Willson, Jr., “Adaptive spectral estimation using the conjugate
gradient algorithm,” in Proc. |IEEE Int. Conf. Acoust., Speech, Sgnal Process., Atlanta,
GA, pp. 2979-2982, May 1996.

122



[62] —, “Analysis of congugate gradient algorithms for adaptive filtering,” IEEE Trans. Sg-
nal Processing, vol. 48, pp. 409-418, Feb. 2000.

123



	封面.pdf
	Cover pages.pdf
	extract_diser.pdf

