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The Study of Mixture Gaussian Neural Networks

Student:Yeong-Yuh Xu Advisor:Prof. Hsin-Chia Fu

Department of Computer Science and Information Engineering
National Chiao Tung University

Abstract

In this dissertation, the mixture Gaussian Neural networks are proposed
for pattern recognition. Self-growing Probabilistic Decision based Neural Net-
work (SPDNN) is proposed to classify the numerical data. The ISLUG training
scheme is introduced to tune the SPDNN parameters to improve the classifica-
tion accuracy. Furthermore, a generalized version of SPDNN, called Generalized
Probabilistic Decision based Neural Network (GPDNN), is proposed to han-
dle the general case that the data are in the form of the distributions instead
of the numerical quantities. In order to verify the accuracy of the proposed
SPDNN and GPDNN, the applications of handwritten character recognition
and content-based image retrieval are involved.

An SPDNN-based Handwritten Chinese major hybrid character recognition
system is developed. All the major processing modules, including pre-processing
and feature selection modules, a coarse classifier, a character recognizer, and
a personal adaptation module, are implemented. Based on the CCL/HCCR1
database, the SPDNN character recognizer achieved 86.12% recognition accu-
racy, which is comparable to the reports by Li and Yu (88.65%) [1] and Tseng
et al (88.55%) [2], but uses only 92 features compared to the huge number of
character features used in [1] (400 features) and [2] (256 features).

In the content-based image retrieval application, a Neural Networks based
Image Retrieval System (NNIRS) is developed based on GPDNN and is im-
plemented at “http:// 140.113.216.78/ imagequerysystem”. Two novel image
representation concepts for CBIR are proposed: (1) the visual keyword and (2)
the visual string. The visual keyword describes the visual characteristics (color,
texture, and spatial features) of a homogenous region, while the visual string
represents the spatial relation of the regions in an image. The experiment re-
sults show the follows: (1) the retrieving performance by visual keyword method
is 49.4%, which is comparable the 46.8% of IRM method [3] and 47.7% of the
UFM method [4], and (2) query by visual string can significantly improve the hit
rate of finding the interested images while the spatial relation of visual keywords
is concerned.
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Chapter 1

Introduction

The term pattern recognition encompasses a wide range of information pro-

cessing problems of great practical significance, from speech recognition and

the classification of handwritten characters to fault detection in machinery and

medical diagnosis [5]. Watanabe [6] defines a pattern “as opposite of a chaos;

it is an entity, vaguely defined, that could be given a name.” For example, a

pattern could be a handwritten character, a nature image, a speech signal, or a

human face. In a pattern recognition problem, a pattern or object is given some

measurements (the “features”) and is assigned with a class membership (“la-

bel”). Given a set of training patterns, a pattern recognition system is trained

to establish decision boundaries in the feature space which separate patterns be-

longing to different classes. Two excellent survey papers of pattern recognition

can be found in [7] and [8].

Since uncertainty is the nature problem of measurements, the statistical

approach has been studied to characterize the uncertainty with a probability

distribution. In the statistical approach, the decision boundaries are deter-

mined by the probability distributions of the patterns belonging to each class,
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which must be specified or learned [9] [10]. A good review of statistical pattern

recognition can be found in [11].

More recently, neural network techniques and methods imported from sta-

tistical learning theory have been receiving increasing attention [5] [12]. A neu-

ral network is a parallel, distributed, adaptive system that has the capability to

learn, accumulate knowledge, and apply this knowledge to new situations. The

relationship between neural networks and statistical pattern recognition have

been discussed in [13] and [14].

Probabilistic decision-based neural networks (PDBNN) [15] is an example

of combining the statistical and neural networks approaches for pattern recog-

nition. PDBNN is proposed to attack face and other biometrics recognition

systems. The modular structure in PDBNN devotes one of its subnets to the

representation of a particular person’s face images. In each subnet, the discrim-

inate function of PDBNN is in a form of mixture Gaussian distribution. This

yields extremely low false acceptance and rejection rates for the face recognition

systems. Nonetheless, the number of Gaussian clusters of the mixture Gaussian

distribution is predeterminate. With the incorrect assumption of the number

of Gaussian clusters, the recognition or classification accuracy may be poor.

In some pattern recognition problems, the features of an object are in the

form of the distributions instead of the numerical quantities. For example,

the color feature of an image region may be defined as statistical information

about the variation of the color across the region and described by a Gaussian

distribution with mean vector and covariance matrix. It is an important issue to

measure the dissimilarity between two distributions to classify or recognize the

object. However, only few works [16, 17, 18, 19] have been devoted to studying

3



the dissimilarity measurement between two distributions. Besides, none of these

studies showed how to build a class model from a set of distributions.

In this thesis, a new PDBNN, called Self-growing Probabilistic Decision-

based Neural Network (SPDNN) is proposed. For different classes, the discrim-

inate function of SPDNN is in a form of flexible number of mixture of Gaussian

distributions. Furthermore, to handle the general case that each feature is in

the form of the distribution, I proposed a generalized version of SPDNN, called

Generalized Probabilistic decision based Neural Network (GPDNN). In order

to verify the accuracy of the proposed SPDNN and GPDNN, the applications

of handwritten character recognition and content-based image retrieval are in-

volved. The following section summarizes the contributions of this thesis.

1.1 Summary of Contributions

The goal of this thesis is to study the various problems and develop the neural

networks for statistical pattern recognition. Based on the proposed neural net-

works, a handwritten character recognition system and a content-based image

retrieval system are built. The main contributions of the research are summa-

rized below:

Mixture Gaussian Neural Networks (Chapters 2 and 3)

Self-growing Probabilistic Decision based Neural Network (SPDNN) is proposed

to classify the numerical data. The ISLUG training scheme is introduced to tune

the SPDNN parameters to improve the classification accuracy. Furthermore, a

4



generalized version of SPDNN, called Generalized Probabilistic decision based

Neural Network (GPDNN), is proposed to handle the general case that the data

are in the form of the distributions instead of the numerical quantities. Two

features of SPDNN/ GPDNN make it suitable for implementing in pattern

recognition systems. These features are:

• Architecture feature: SPDNN/ GPDNN adapts the modular OCON (One

class in One Network) structure, which devotes one of its subnets to rep-

resentation of a particular class. This kind of structure is beneficial not

only for training and recognition performance, but also for hardware im-

plementation.

1. The system is easy to train and maintain. Training an SPDNN/

GPDNN-based pattern recognition system is relatively straightfor-

ward. For example, by adding or modifying one or a few clusters

(cf. Section 2.3.2) in a subnet of SPDNN/ GPDNN, the character

recognition system can adapt a person’s style. A centralized system,

in contrast, would have to include global updating.

2. A distributed computing principle is adopted. With the large number

of class, the computing hardware requirements for recognition system

are greater. Due to its modular architecture, an SPDNN/ GPDNN-

based recognition system is relatively easy to implement on parallel

computers.

• Performance Feature: The discriminant function of SPDNN/GDDNN is

in a form of probability density. This yields an effective adaptation process

and very accurate recognition.
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Handwritten Character Recognition (Chapters 4)

An SPDNN-based Handwritten Chinese major hybrid character recognition sys-

tem is developed. All the major processing modules, including pre-processing

and feature selection modules, a coarse classifier, a character recognizer, and an

personal adaptation module, are implemented.

Content-based Image Retrieval (Chapters 5)

A GPDNN-based image retrieval system is developed. The visual keyword and

the visual string are proposed to illustrate the visual key characteristics and

their spatial relation of an image. The visual keyword is in the form of the

mixture Gaussian distribution. Instead of annotating each region in an image

by keywords, a region is represented by a visual keyword. The key issues for

the visual keyword representation are as follows: (1) the precise segmentation

or skillful sketch of the region is no longer needed, and (2) the approximating

a region by mixture Gaussian distributions allows the searching for its similar

regions more flexible and robust. In addition, by using the visual string to index

an image, computing the similarity or dissimilarity between the desired and a

tested images becomes as simple as a string matching task.

1.2 Thesis Organization

This thesis is divided into six chapters. In Chapter 2, the architecture and

learning scheme of the proposed SPDNN are introduced. By generalizing from

6



SPDNN, GPDNN is proposed and described in Chapter 3. In Chapter 4, the

handwritten character recognition is study, and an SPDNN-based Handwritten

Chinese major hybrid character recognition system is developed. Some exper-

iments are involved to verify the proposed handwritten character recognition

system. Chapter 5 provides the application of the content-based image retrieval

for GPDNN. This chapter introduces the proposed visual keyword and visual

string. Based on these image indexes, a GPDNN-based image retrieval system

is developed and evaluated on the COREL Gallery 1, 000, 000, containing about

60000 general purpose color images. Chapter 6 provides the conclusions and

some research topics in the future.
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Chapter 2

Self-growing Probabilistic
Decision based Neural Network

Self-growing Probabilistic Decision-based Neural Network (SPDNN) is a prob-

abilistic variant of decision-based modular neural network [20] for classification.

One subnet of an SPDNN is designed to represent one object class. There are

two properties of the SPDNN learning rules. The first one is the decision-based

learning rules. Based on the teacher information which only tells the correctness

of the classification for each training pattern, SPDNN performs a distributed

and localized updating rules. The updating rule applies reinforced learning to

a subnet corresponding to the correct class and antireinforced learning to the

(unduly) winning subnets.

The second property is the Iteratively Supervised Learning and Unsuper-

vised Growing (ISLUG). There are two learning phases in this scheme: after

each subnet is initialized with one cluster (see Section 2.3.1) or is self-grown

with a new cluster (Section 2.3.2), the system enters the Supervised Learning

(SL) phase. In the SL phase, teacher information is used to reinforce or antire-

inforce the decision boundaries obtained during the initialization or self-growing

8



stages. When the supervised training progress becomes very slow or is trapped

in a paralysis state, yet the classification or recognition accuracy is not at a satis-

fied level, the training enters the Unsupervised Growing (UG) phase. In the UG

phase, an SPDNN creates a new cluster in a subnet according to the proposed

self-growing rule. Thereafter, the training enters the Supervised Learning phase

again. The ISLUG learning procedure terminates when the training accuracy

reaches a predefined satisfaction level. The detailed description of SPDNN is

given in the following sections.

2.1 Overview

Similar to PDBNN, SPDNN devotes one of its subnetworks to represent one

object class with a mixture Gaussian distribution. For a K-category classifi-

cation problem, SPDNN contains K subnets as shown in Fig. 2.1. In each

subnet, several ϕ components are involved to compute the Gaussian clusters of

a mixture Gaussian distribution to represent the corresponding class. Fig. 2.2

shows an example of a subnet with five ϕ components to represent a particular

class, where ‘o’ stands for data belonging to the class. In Fig. 2.2, each ellipse

corresponds to one of the ϕ components in the subnet to show one of the Gaus-

sian clusters of a mixture Gaussian distribution. The following sections details

the SPDNN computation.
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Figure 2.1: Schematic diagram of a k-class SPDNN classifier.

Figure 2.2: An example of data representation via a subnet in SPDNN. ‘o’

stands for pattern belonging to the target class. Each ellipse corresponds to

one of the Gaussian clusters, and a mixture Gaussian distribution with five

Gaussian clusters is used to approximate the data distribution of the class.
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2.2 Discriminant Functions of SPDNN

One of the major differences between PDBNN [15] and SPDNN is that SPDNN

extends the fixed number of clusters in PDBNN to flexible number of clusters.

That is, the subnet discriminant functions of SPDNN are designed to model the

log-likelihood functions of different complex distributions. Thus, reinforced or

antireinforced learning is applied to all the subnets of the global winner and the

supposed (i.e., the correct) winner with a weighting distribution proportional

to the degree of possible involvement (measured by the likelihood) by each

subnet. Given a set of i.i.d. patterns X+ = {x(t); t = 1, 2, · · · , N}, we assume

that the likelihood function p(x(t) | ωi) for class ωi is a mixture of Gaussian

distributions.

Define p(x(t) | ωi, Θri
) to be one of the Gaussian distributions which com-

prise p(x(t) | ωi), where Θri
represents the parameter set {µri

,Σri
} for a cluster

ri in subnet i.

p(x(t) | ωi) =

Ri∑

ri=1

P (Θri
| ωi)p(x(t) | ωi, Θri

), (2.2.1)

where P (Θri
| ωi) denotes the prior probability of the cluster ri. By definition,

∑Ri

ri=1 P (Θri
| ωi)=1, where Ri is the number of clusters in ωi.

The discriminate function of the multiclass SPDNN models the log-likelihood

function

φ(x(t),wi) = log p(x(t) | ωi)

= log

[
Ri∑

ri=1

P (Θri
| ωi)p(x(t) | ωi, Θri

)

]

, (2.2.2)

where wi = {µri
,Σri

, P (Θri
| ωi), Ti}, and Ti is the output threshold of the

subnet i.

11



In most general formulation, the basis function of a cluster should be able

to approximate the Gaussian distribution with full rank covariance matrix, i.e.,

φ(x, ωi) = -1
2
xTΣ−1

ri
x, where Σri

is the covariance matrix. However, for those

applications which deal with high-dimension data but finite number of train-

ing patterns, the training performance and storage space discourage such ma-

trix modelling. A natural simplifying assumption is to assume uncorrelated

features of unequal importance. That is, suppose that p(x(t) | ωi, Θri
) is a

D-dimensional Gaussian distribution with uncorrelated features

p(x(t) | ωi, Θri
) =

1

(2π)
D

2 |Σri
| 12

· exp

[

−1

2

(x(t) − µri
)T (x(t) − µri

)

Σri

]

(2.2.3)

where x(t) = [x1(t), x2(t), · · · , xD(t)]T is an input pattern, µri
= [µri1, µri2, · · · , µriD]T

is the mean vector, and diagonal matrix Σri
= diag[σ2

ri1
, σ2

ri2
, · · · , σ2

riD
] is the

covariance matrix. As shown in Fig. 2.1, an SPDNN contains K subnets which

are used to represent a K-category classification problem. Inside each subnet,

an elliptic basis functions (EBFs) is used to serve as the basis function for each

cluster ri:

ϕ(x(t), ωi, Θri
) = −1

2

D∑

d=1

αrid(xd(t) − µrid)
2 + θri

(2.2.4)

where θri
= −D

2
ln 2π + 1

2

∑D
d=1 ln αrid. After passing an exponential activation

function, exp{ϕ(x(t), ωi, Θri
)} can be viewed as a Gaussian distribution, as

described in (2.2.3), except a minor notational change: 1
αrid

= σ2
rid

.

After the outputs of all subnets are obtained, the MAXNET in SPDNN

is activated to select the maximum one among these outputs. That is, if the

output value of subnet i is the maximum one among the outputs of all subnets

in SPDNN, the testing datum x(t) is classified to class ωi.
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2.3 Learning Rules for SPDNN

The training scheme for SPDNN follows the ISLUG training scheme, which

contains the following two phases: supervised learning and unsupervised growing.

2.3.1 Supervised Learning in each subnet

At the beginning of the first supervised learning phase, each subnet is initialized

with one cluster since the number of cluster in a subnet of SPDNN can be ad-

justed in the unsupervised growing phase. The values of the parameters (mean

and covariance) of a cluster in each subnet are initialized as follows: Suppose

that X+
i = {xi(1), · · · ,xi(Mi)} is a set of given training patterns, which cor-

respond to one of the L classes {ωi, i = 1, · · · , L}, the mean µi and covariance

matrix Σi of the initial cluster in subnet i can be calculated as

µi =
1

Mi

Mi∑

m=1

xi(m) (2.3.1)

Σi =
1

Mi − 1

Mi∑

m=1

(xi(m) − µi)(xi(m) − µi)
T . (2.3.2)

Then, during the supervised learning phase, the decision boundaries of each

classes are fine tuned corresponding to the training data. The data adaptive

scheme of the supervised learning for the multiclass SPDNN is the extension

of the GS learning in [15]. Each class is modelled by a subnet with discrimi-

nant functions, φ(x(t),wi), i = 1, 2, · · · , L. At the beginning of each supervised

learning phase, use the still-under-training SPDNN to classify all the train-

ing patterns X+
i = {xi(1),xi(2), · · · ,xi(Mi)} for i = 1, · · · , L. A pattern

xi(m) is classified to class ωi if φ(xi(m),wi) > φ(xi(m),wk), ∀k 6= i, and

φ(xi(m),wi) ≥ Ti, where Ti is the output threshold for subnet i. According to

13



the classification results, the training patterns for each class ωi can be divided

into three subsets:

• Correctly classified set:

Di
1 = {xi(m);xi(m) ∈ ωi,xi(m) is classified to ωi };

• False rejection set:

Di
2 = {xi(m);xi(m) ∈ ωi,xi(m) is misclassified to other class ωj};

• False acceptance set:

Di
3 = {xi(m);xi(m) 6∈ ωi,xi(m) is misclassified to class ωi }.

The following reinforced and antireinforced learning rules [20] are applied

to the corresponding subnets.

Reinforced Learning :

w
(m+1)
i = w

(m)
i + η∇φ(xi(m),wi) (2.3.3)

Antireinforced Learning :

w
(m+1)
j = w

(m)
j − η∇φ(xi(m),wj) (2.3.4)

In (2.3.3) and (2.3.4), η is an user defined learning rate 0< η ≤1, and the

gradient vectors ∇φ can be computed in a similar manner as proposed in [15].

For the data set Di
2, reinforced and antireinforced learning will be applied

to class ωi and ωj, respectively. As for the false acceptance set Di
3, antireinforced

learning will be applied to class ωi, and reinforced learning will be applied to

the class ωj where xi(m) belongs to.

Threshold Updating The threshold value Ti of a subnet i in the SPDNN

recognizer can also be learned by reinforced or antireinforced learning rules.
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2.3.2 Unsupervised Growing of a new cluster

The network enters the unsupervised growing phase when the supervised learn-

ing reaches a saturated (learning state) but unsatisfied (classification accuracy)

situation. There are three main aspects for the self-growing rules:

I1: When should a new cluster be created?

I2: Which cluster should be partitioned to create a new cluster?

I3: How to initialize the center and the covariance of the new cluster?

On Issue I1, when the whole training set has been presented for a few times,

the train status (especially the classification accuracy) remains unchanged or

unimproved. An extra cluster is suggested to improve the representation power

of SPDNN.

On Issue I2, when an extra cluster is needed, a new cluster is suggested to

be created from the subnet which caused the most of misclassification during

the recent supervised learning processes.

On Issue I3, when a new cluster is needed, its initial values of the center

and covariance need to be properly determined, otherwise poor classification

situation may still exist.

Assume that a training pattern x corresponding to the class ωi is presented

to an SPDNN classifier: the cluster Θi is in the class ωi, and the cluster Θj is in

the class ωj which corresponds to the largest response among the classes other

than ωi. Let oi and oj be the output of x from the class ωi and the class ωj,
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respectively. According to the retrieving scheme of the proposed SPDNN, if

oj is larger than or equal to oi, the retrieving result for the training pattern x

must be wrong. As shown in Fig. 2.3(a), clearly the best position for the center

of the new cluster should be located at x, i.e., µ0 = x, so that the class with

new cluster Θ′
i will generate the maximal output oi for the training character x.

To determine the covariance matrix Σ0, first let Σ0 = σ0I and σ0 be a positive

constant (to be determined). As shown in Fig. 2.3(b), if σ of the new cluster Θ′
i

is not properly determined, the class with the new cluster will have its largest

possible output oi(x) to be smaller than the output oj(x) of the class ωj. In

other word, the cluster Θ′
i is overwhelmed by the cluster Θj. Suppose µj and

Σj are the center and covariance of cluster Θj. To prevent the overwhelming

problem, Fig. 2.3(c) presents a properly initiated new cluster Θ′
i. The following

two constraints are suggested for a proper initial value of σ.

oj(x) =
P (Θj | ωj)

(2π)
D

2 |Σj |
1
2

exp

[

−1

2

(x − µj)
T (x − µj)

Σj

]

+ ǫj

< oi(x) =
P (Θ0 | ωi)

(2πσ)
D

2

+ ǫi (2.3.5)

oi(µj) =
P (Θ0 | ωi)

(2πσ)
D

2

exp

[

−1

2

(x − µj)
T (x − µj)

Σi

]

+ ǫ′i

< oj(µj) =
P (Θj | ωj)

(2π)
D

2 |Σj |
1
2

+ ǫ′j (2.3.6)

where P (Θ0 | ωi) and P (Θj | ωj) are the prior probability of the cluster Θ′
i and

Θj , respectively. ǫi and ǫj represent the partial output of the classes ωi and ωj

from the clusters other than Θi and Θj at x. ǫ′i and ǫ′j are the partial output at

µj of the clusters other than Θi and Θj. The prior probability P (Θ0 | ωi) of the

cluster Θ′
i can be initialized as (σ/σ̄i)P (Θi | ωi), where σ̄i = (1/Ri)

∑Ri

ri=1 σri
,

in which σri
is the covariance of the cluster ri in the class ωi. Since ǫi,ǫj , ǫ′i, and

ǫ′j , are very small at x and µi, they are ignored in the following σ estimation.
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These two constraints imply that the cluster Θ′
i and the cluster Θj will not

overwhelm each other. To satisfy (2.3.5), σ is initialized to be less than

(
P (Θi | ωi)

(2π)D/2σioj(x)

) 2
D−2

.

Then, σ can be iteratively decreased by a small value η (0 ≤ η ≤ 1) until (2.3.6)

is satisfied, and the final value of σ can be a proper initial value of σo for the

new cluster Θ′
i.

To verify the accuracy of the proposed SPDNN, the SPDNN based hand-

written character recognition system is developed. For this application, the

system is designed to recognize 5401 traditional Chinese characters. The im-

plementation and measurement of the system are detailed in Section 4.
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Figure 2.3: Example of creating a new cluster in a mixture of Gaussian distributions.

(a) For x ∈ ωi, the xi is not correctly classified, since oi(x) is smaller than oj(x). A

new cluster Θ′
i is needed in ωi. (b) The new cluster Θ′

i is overwhelmed by the cluster

Θj, i.e., oi(µ0) is still smaller than oj(µ0). (c) By having initialized with proper µ0,

σ0 and P (Θ0 | ωi), the new cluster Θ′
i can contribute enough to support class ωi. For

example, oi(µ0) is larger than oj(µ0), and oi(µj) is smaller than oj(µj).
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Chapter 3

Generalized Probabilistic
Decision based Neural Network

In Chapter 2, we discussed the functionality of SPDNN to model the distribution

of the data. SPDNN has a limitation in terms of the data that should be in

the form of the numerical quantities. In some pattern recognition problems, the

features of an object are in the form of the distributions instead of the numerical

quantities. For example, the color feature of an image region may be defined

as statistical information about the variation of the color across the region and

described by a Gaussian distribution with mean vector and covariance matrix.

To handle the general case that each datum is in the form of the distribution,

I proposed a generalized version of SPDNN, called Generalized Probabilistic

Decision based Neural Network (GPDNN).

The schematic of GPDNN is depicted in Fig. 3.1. Compared to SPDNN,

GPDNN adapts the similar modular OCON structure, but is input with a dis-

tribution instead of a numerical quantity. Thus, the internal computation of

each subnet in GPDNN is different from it in SPDNN. A detailed description

of GPDNN model is given in the following sections.
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Figure 3.1: The schematic diagram of a k-class GPDNN. Each subnet is designed

to represent a class. (The detail of a subnet is shown in Fig. 3.2.) Compared

to SPDNN shown in Fig. 2.1, GPDNN is input with a distribution instead of

a numerical quantity. When a testing datum x(t) (a distribution p(z | ω(t)))

is input to GPDNN, each subnet measures the difference between x(t) and

the corresponding class. Then, the MINNET assigns x(t) to the class whose

corresponding subnet have the minimum output among all subnets in GPDNN.

3.1 Discriminant Functions of GPDNN

Since the input data of GPDNN are distributions, the discriminate function

of the multi-class GPDNN measures the difference between the input and the

modelled distributions. We assume that the likelihood function for the class ωi

is p(z | ωi). For a testing datum x(t) formed by a distribution p(z | ω(t)), the

difference of p(z | ωi) and p(z | ω(t)) can be considered as a Gaussiam noise ǫz,
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so that

p(z | ωi) = p(z | ω(t)) + ǫ
z
. (3.1.1)

We now assume that the error ǫz have a normal distribution with zero mean

and standard a derivation σ. Thus, the distribution of ǫ is given by

p(ǫ
z
) =

1

(2πσ2)1/2
exp

(

− ǫ2
z

2σ2

)

=
1

(2πσ2)1/2
exp

(

− [p(z | ωi) − p(z | ω(t))]2

2σ2

)

. (3.1.2)

Then, the similarity between p(z | ωi) and p(z | ω(t)) is defined as

ϕ(x(t),wi) = −
∫

RD

ln p(ǫ
z
)dz

≈
∫

RD

[p(z | ωi) − p(z | ω(t))]2dz + ε, (3.1.3)

where ε is a constant. Suppose p(z | ωi) is the mixture Gaussian distribution

shown in (2.2.1), then wi = {µri
,Σri

, P (θri
| ωi), Ti}, and Ti is the output

threshold of the subnet i. When the value of ϕ(x(t),wi) becomes smaller,

p(z | ωi) and p(z | ω(t)) are similar to each other.

Before showing the expression of (3.1.3), we first introduce the expression

of the product moment of two distributions Pa and Pb:

F(Pa,Pb) =

∫

RD

PaPbdz. (3.1.4)

Suppose Pa and Pb are two mixture Gaussian distributions:

Pa =
Ra∑

ra=1

P (θra
)p(z | θra

) (3.1.5)

Pb =

Rb∑

rb=1

P (θrb
)p(z | θrb

), (3.1.6)

where p(z | θra
) and p(z | θra

) with the parameter sets θra
= {µra

, Σra
}

and θrb
= {µrb

, Σrb
} are the Gaussian clusters in Pa and Pb, respectively.
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µra
= [µra(1) · · ·µra(D)]

T and µrb
= [µrb(1) · · ·µrb(D)]

T are the mean vectors, and

Σra
= diag[σ2

ra(1) · · ·σ2
ra(D)]

T and Σrb
= diag[σ2

rb(1)
· · ·σ2

rb(D)]
T are the diagonal

matrixes. Then, F can be simplified to a closed-form expression as shown in

the following lemma.

Lemma 3.1.1. Suppose Pa and Pb are two mixture Gaussian distributions de-

fined in (3.1.5) and (3.1.6), respectively. The product moment of Pa and Pb,

F(Pa,Pb) =

Ra∑

ra=1

Rb∑

rb=1

P (θra
)P (θrb

)G(θra
, θrb

), (3.1.7)

where

G(θra
, θrb

) =

exp

{

−1
2

∑D
d=1

(µr
b
(d)−µra(d))

2

σ2
rb(d)

+σ2
ra(d)

}

√

(2π)D
∏D

d=1(σ
2
rb(d) + σ2

ra(d))
. (3.1.8)

Proof. See Appendix.

By applying Lemma 3.1.1, the following theorem presents the expression

for (3.1.3).

Theorem 3.1.2. Let Pi and Pt denote p(z | ωi) and p(z | ω(t)), respectively.

Then, the discriminate function defined in (3.1.3) equals

F(Pi,Pi) − 2F(Pi,Pt) + F(Pt,Pt). (3.1.9)
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Proof. As shown in (3.1.3),

ϕ(x(t),wi) =

∫

RD

P2
i−tdz

=

∫

RD

(Pi −Pt)
2dz

=

∫

RD

(P2
i − 2PiPt + P2

t )dz

=

∫

RD

P2
i dz− 2

∫

RD

PiPtdz +

∫

RD

P2
t dz

= F(Pi,Pi) − 2F(Pi,Pt) + F(Pt,Pt).

According to Theorem 3.1.2, the discriminate function can be calculated

through (3.1.9) by a careful designed subnet, which is described in the following

section.

3.1.1 The architecture of a subnet

Based on the expression (3.1.9) for the discriminate function, a subnet is de-

signed as a two-layer neural network shown in Fig. 3.2. The first layer is com-

posed with three structurally identical components, each of which computes the

F(Pi,Pi), F(Pi,Pt), and F(Pt,Pt), respectively. By summing the computing

results of these three components, the difference from the testing datum x(t)

to the class ωi is output at the top layer of the subnet.

Fig.3.3 depicts the internal architecture of the subnetwork corresponding to

F(Pi,Pt). Suppose that the mixture Gaussian distributions Pi and Pt consist of

Ri and Rt Gaussian clusters, then the subnetwork for F(Pi,Pt) contains Ri×Rt

input units (called G nodes), Ri hidden units, and one output unit.
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Figure 3.2: The diagram of the subnet in Generalized Probabilistic decision based

Neural Network (GPDNN). Suppose the likelihood function for the class ωi is

p(z | ωi) (denoted as Pi). For a testing datum x(t) formed by a distribution p(z |

ω(t)) (denoted as Pt), three subnetworks first compute F(Pi,Pi), F(Pi,Pt), and

F(Pt,Pt), respectively. (The detail of a subnetwork to calculate F(Pi,Pt) is

shown in Fig.3.3.) Then, F(Pi,Pt) times 2, and the difference from the testing

datum x(t) to the class ωi is output at the top of the subnet.

While the component is input with the testing datum x(t), formed by Pt,

each Gri,rt
node performs the computation of (3.1.8) to measure the difference

between the Gaussian clusters ri in Pi and the Gaussian clusters rt in Pt. Then,

the outputs of these G nodes are weighted summed to hidden node hi:

hi =

Rt∑

rt=1

P (θrt
| ω(t))Gri,rt

. (3.1.10)

Finally, the output of each hidden node hi, i = 1, . . . , Ri, are also weight summed
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Figure 3.3: The architecture of a subnetwork in Fig. 3.2 to compute F(Pi,Pt).

Suppose Pi =
∑Ri

ri=1 P i
ri
p(z | θri

, ωi) and Pt =
∑Rt

rt=1 P t
rt
p(z | θrt

, ω(t)) are

two mixture Gaussian distributions. The component contains Ri × Rt input

units (called G nodes), Ri hidden units, and one output unit. Each Gri,rt
node

measures the difference between the Gaussian cluster ri in Pi and the Gaussian

cluster rt in Pt by performing (3.1.8), and each hidden unit forms a weighted

sum of the Rj output values of the G nodes. F(Pi,Pt) is obtained from the

output unit after a weighted sum of the Ri output values of the hidden units is

computed.

to the output node:

F(Pi,Pt) =

Ri∑

ri=1

P (θri
| ωi)hi. (3.1.11)

After the outputs of all subnets are obtained, the MINNET in GPDNN is

activated to select the minimum one among these outputs. That is, if the output

value of the subnet i is the minimum one among the outputs of all subnets in

GPDNN, the testing datum x(t) is classified to the class ωi.
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3.2 Learning Rules for GPDNN

GPDNN adopts the same ISLUG training scheme of SPDNN. Since the de-

tails of the ISLUG training scheme can be referred to Section 2.3, only a brief

description of the ISLUG training scheme for GPDNN is provided here.

There are two learning phases in the ISLUG training scheme. In the Super-

vised Learning (SL) phase, teacher information is used to reinforce or antirein-

force the decision boundaries between classes. The reinforced and antireinforced

learning rules shown in (2.3.3) and (2.3.4) are applied to the misclassified sub-

nets. Suppose that X+
i = {xi(1), · · · ,xi(Mi)} is a set of given training data,

which correspond to one of the L classes {ωi, i = 1, · · · , L}. A training da-

tum xi(m), formed by a distribution p(z | ωi(m)), is classified to class ωi if

ϕ(xi(m),wi) < ϕ(xi(m),wk), ∀k 6= i, and ϕ(xi(m),wi) ≤ Ti, where Ti is the

output threshold for subnet i. With the different discriminate function, the

gradient vectors in (2.3.3) and (2.3.4) are computed as follows:

∂ϕ(xi(m),wi)

∂µri(d)

∣
∣
∣
∣
ωi(m)=ωi(k)

=
∂

∂µri(d)

(
F(Pi,Pi) − 2F(Pi(k),Pi)

)

= 2P (θri
| ωi)

[
Ri∑

rn=1

(

P (θrn
| ωi)G(θrn

, θri
)

σ2
rn(d) + σ2

ri(d)

)

·(µrn(d) − µri(d))

−
Ri(k)
∑

ri(k)=1

(

P (θri(k)
| ωi(k))G(θri(k)

, θri
)

σ2
ri(k)(d) + σ2

ri(d)

)

·(µri(k)(d) − µri(d))
]

, (3.2.1)
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and

∂ϕ(xi(m),wi)

∂σ2
ri(d)

∣
∣
∣
∣
∣
ωi(m)=ωi(k)

=
∂

∂σ2
ri(d)

(
F(Pi,Pi) − 2F(Pi(k),Pi)

)

= P (θri
| ωi)

[
Ri∑

rn=1

(

P (θrn
| ωi)G(θrn

, θri
)

σ2
rn(d) + σ2

ri(d)

)

·
(

(µrn(d) − µri(d))
2

σ2
rn(d) + σ2

ri(d)

− 1

)

−
Ri(k)
∑

ri(k)=1

(

P (θri(k)
| ωi(k))G(θri(k)

, θri
)

σ2
ri(k)(d) + σ2

ri(d)

)

·
(

(µri(k)(d) − µri(d))
2

σ2
ri(k)(d) + σ2

ri(d)

− 1

)]

, (3.2.2)

where ri = 1, 2, . . . , Ri and d = 1, 2, . . . , D. D is the dimension of the feature

space. Since the discriminate function of GPDNN is a quadratic function, its

minimum can be found in terms of the solution of a set of linear equations.

By supervised learning, the setting of the mixture Gaussian function parame-

ters may be prone to finding local minima of the discriminant function defined

in (3.1.3). However, if the initial cluster parameters of GPDNN are well deter-

mined, any given input datum will only generate a small movement of the cluster

parameters. Since the EM algorithm [21] is guaranteed to decrease the error

function of the quadratic form to the global minimum, it is used to initialize

the cluster parameters of GPDNN.

When the supervised training progress becomes very slow or is trapped

in a paralysis state, yet the classification or recognition accuracy is not at a

satisfied level, the training enters the unsupervised growing (UG) phase. In

the UG phase, a GPDNN creates a new cluster in a subnet according to the

proposed self-growing rule (cf. Section 2.3.2). Thereafter, the training enters
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the supervised learning phase again. The ISLUG learning procedure terminates

when the training accuracy reaches a predefined satisfaction level.

GPDNN classifies the data which are in the form of distributions. In the

case of representing image with the visual feature (color and/or texture) distri-

bution over the image, the content-based image retrieval system can be built

up based on GPDNN. The implementation and measurement of the GPDNN

based content-based image retrieval are detailed in Section 5.
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Chapter 4

Handwritten Character
Recognition

In recent years, there is a significant increase in the electronic management of

information by multimedia information systems. The handling of multimedia

documents consists of the editing and display of texts, graphics, images, and

handwriting. Currently, the keyboard and the mouse are still the dominant

input devices for personal computer based multimedia systems. However, in

preparing a first draft and concentrating on content creation, pencil and paper

are often superior to keyboard entry. By incorporating character recognition

with a text-to-speech technology, converting handwriting directly to voice will

be an interesting multimedia application.

In this application, we propose a three phase (stage) handwriting recog-

nition system, including (1) a global coarse classifier, (2) a user independent

hand written character recognizer, and (3) a user adaptation module. In par-

ticular, an SPDNN is used to implement the kernel of the proposed personal

handwriting recognition system.
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4.1 Overview

The machine recognition of characters has been a topic of intense research since

the 1960s [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. After more than 30

years of rigorous attacks, studies in the field of handwriting recognition remain

as active as ever.

Multi-linguistic documents are considered as a mixture of two or more kinds

of character with different graphical structures, such as Chinese mixed with

English. Documents contain several languages with same or similar graphical

structures, such as most of the western languages, are not the interest of this

research because they can be considered as one type of character on the recog-

nition point of view. However, Chinese (including Japanese Kanji) characters

are unique and different from those of western languages in that they are non-

alphabetic and have quite complicated stroke structures. In general, directly

applying several monolanguage character recognition techniques to each indi-

vidual type of characters in a multilinguistic documents can be quiet difficult,

owing to the following aspects:

1. separating mixed characters of different languages efficiently and correctly

sometimes can be as hard as recognizing characters,

2. implementing two or more different types of recognition modules in a

system is not time and space (in both software and hardware) efficient,

and

3. combining recognition results from two different types of recognition mod-

ules is somewhat an unnecessary or a non-productive extra work.
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Therefore, it is desirable to design a uniform recognition architecture for multi-

linguistic character recognition. First, select a set of general features for char-

acters of different languages in a document, so that every character can be rep-

resented by a uniform feature vector. Comparing to a large character set like

Chinese,1 alphanumerics can be considered as a small subset of special char-

acters to the larger character set. Then, a character recognition architecture

for large character set can be adopted directly (or with minor modification) to

multilinguistic character recognition. Thus, the uniform feature selection and

the recognition architecture can be applied.

An SPDNN-based Handwritten Chinese major hybrid character recognition

system is developed. The system configuration is depicted in Fig. 4.1. All

the major processing modules, including pre-processing and feature selection

modules, a coarse classifier, a character recognizer, and a personal adaptation

module, are implemented on a personal computer.

The system built upon the proposed SPDNN model has been demonstrated

to be applicable under reasonable variations of character orientation, size, and

stroke width. This system also has been shown to be very robust in recog-

nizing characters written using various tools, such as pencils, ink pens, mark-

ing pens and Chinese calligraphy brushes. As to the processing speed of the

prototype system, the whole recognition process (including image preprocess-

ing, feature selection, and character recognition) consumes approximately 0.14

second/character on a Pentium-II based personal computer, without using a

hardware accelerator or co-processor.

1There are more than 40,000 modern Chinese characters, and 5401 characters are used

frequently in daily life.
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Figure 4.1: System configuration of the multistage character recognition sys-

tem. Character recognition system acquires images from a scanner. The coarse

classifier determines an input character image to be one of the predefined sub-

class. The character recognizer matches the input character with a reference

character. The personal adaptive module learns the user’s own written style to

enhance the recognition accuracy.

4.2 Image Pre-processing and Feature Selec-

tion

Image preprocessing of a multilinguistic character recognition is by no means

of any different from the monolanguage character recognition. Character seg-

mentation on free format handwritten character is a very difficult task, thus

it is usually an interactive task between segmentation and recognition. Since

the multilinguistic character recognition is already a complicated recognition

problems, and the interactive segmentation methods would slow down the pro-
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cessing speed, we must restrict our handwritten character domain to be free

format on Chinese characters and handprinted characters on alphanumerics.

Thus, an Interactive Rule-Based Character Segmentation [34] is applied to slice

and separate the whole page image into a sequence of character image. Basi-

cally, this method is based on some heuristic rules to combine several isolated

connected-components into a separated character.

The binary images of a handwritten character are then passed through a series

of image processing stages, such as boundary smoothing, noise removing, space

normalization, and stroke thinning operations. Figure 4.2 depicts a series of

preprocessing results of some Chinese and English characters.
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Figure 4.2: Image preprocessing on handwritten characters: (from top) original

text image, smoothed text, linear normalized text, nonlinear normalized text

and thinned text.

Feature extraction Using statistical features in pattern recognition has

been very successful for a long time. A character can be well represented by

a 2-D image pattern, thus many statistical pattern recognition techniques have

been applied in this type of character recognition. Among various statistical

33



features [35], we selected the crossing count (CCT), belt shape pixel number

(BSPN), and stroke orientation feature (STKO) as candidate features for the

proposed character recognition system. As shown in Figure 4.3, features such

as CCT and BSPN represent the stroke complexity and the pixel density of a

character image. In [36], Kimura et al. proposed the directional code histogram,

and used this feature for Chinese character recognition successfully. As shown

in Figure 4.5, the STKO is a simplified version of Kimura’s directional code

histogram.

Figure 4.3: Extracting the CCT and BSPN features from a Chinese character.

4.3 Multistage character recognition

Since there are as many as 5401 commonly used characters, and 62 alphanumer-

ics and symbols in a Chinese majored multilinguistic document, it is desirable

to perform a coarse classification (or clustering) to reduce the number of candi-

date characters for the character recognition. With a smaller candidate set, not

only the overall recognition speed and recognition accuracy can be greatly im-

proved, but also the training on the SPDNN character recognizer can be much

easier and faster. The architecture of a multistage SPDNN character recognizer

34



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4.4: The architecture of the three-stage recognition system.

is depicted in fig. 4.4.

4.3.1 Global training on coarse classification

In order to achieve a balanced recognition performance in a multistage recogni-

tion system, the coarse classifier needs to maintain a very high accuracy, (e.g.,

≥ 99.9%). Although this is a difficult task, we proposed to use the CCT fea-

ture and SPDNN with overlapped boundaries to implement the coarse classifier.

This design is to achieve low sensitivity in personal writing style and high clas-

sification rate among characters. By applying the ISLUG principle on the two

public databases, i.e., CCL/HCCR1 [37] and CEDAR [38], we have trained the

proposed coarse classifier to achieve this goal. The training and testing results

are listed in Table 4.1. At the end of the retrieving phase of the coarse classi-
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fier, the number of candidate characters with respect to the input character is

reduced to 516 characters in average.

Table 4.1: The training and testing results of coarse classifica-

tion on the CCL/HCCR1 and the CEDAR Databases. Half of the

randomly selected characters in each of databases are used for

training and the other half are used for testing.

Number Ave. No. of Training Testing

of characters Accuracy Accuracy

cluster in a cluster

61 516 99.9 % 99.8%

4.3.2 Batch training in character recognition

The design of the character recognizer is also based on the SPDNN model. For

a K-character recognition problem, an SPDNN character recognizer consists of

K subnets. A subnet i in the SPDNN recognizer estimates the distribution on

the patterns of character i only, and treats those patterns which do not belong

to character i as the “non i” patterns. The combined features such as CCT,

BSPN, and STKO are used in the SPDNN character recognizer. The training

of the character SPDNN was conducted with the ISLUG principle. During the

retrieving phase, each of the subnets corresponding to the candidate characters

from the coarse classifier produces a score according to its discriminate function

φ(x(t),wi). The subnet which produces the highest score is the winner and its

corresponding reference character is considered as the result of the character

recognizer.
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Figure 4.5: Preprocessing and STKO feature extraction of a Chinese character.

Two experimental results from the SPDNN character recognizer will be

discussed. The first type of recognition experiment were performed on the

CCL/HCCR1 [37] handwriting database, which has been used by several hand-

writing recognition research groups [34, 35, 1]. The second type of experiment

explored the ability of SPDNN to deal with the multi-linguistic handwriting

recognition problem, which has seldom been discussed in the character recog-

nition literature.

(1) Experiment 1–Handwritten Chinese Recognition:

We have conducted experiments on the CCL/HCCR1 database, which con-

tains more than 200 samples of 5401 frequently used Chinese characters. The

samples were collected from 2600 people including junior high school and col-

lege students as well as employees of ERSO/ITRI. According to the most recent

survey on handwriting recognition [25, 27, 39], most of the handwritten Chi-

nese OCR studies are designed for small databases, i.e., training and testing
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on very small character sets, e.g., a few hundred characters. As for studies

conducted on recognition using a complete set of commonly used Chinese char-

acters, Xia [40] developed an experimental system with a 3755 character set

and achieved an 80% of recognition rate. In [1], Li and Yu reported 88.65%

recognition accuracy on the CCL/HCCR1 database. Recently, Tseng et al. [2]

used the M distance method in their recognition system to achieve 88.55% ac-

curacy on the CCL/HCCR1 database. Table 4.2 shows the training and testing

accuracy of Gaussian model as well as SPDNN with and without the unsuper-

vised growing phase. Each subnet of SPDNN is initialized with one Gaussian

cluster. At the end of the training, the distribution of the number of clusters

in each subnet of SPDNN is shown in Table 4.3. The recognition accuracy of

Gaussian model without any training is 83.11%, and is improved to 85.18% by

fine tuning the decision boundary between classes via the supervised learning of

the SPDNN. After the unsupervised growing, the recognition accuracy can be

further improved to 86.12%.

Table 4.2: The training and testing accuracy of Gaussian model as well as

SPDNN with and without the unsupervised growing phase. Each subnet of

SPDNN is initialized with one Gaussian cluster.

Various Gaussian Model SPDNN (mix=1) SPDNN

Training set 89.49% 94.87% 97.78%

Testing set 83.11% 85.18% 86.12%

Table 4.4 summarizes a performance comparison of these systems evalu-

ated using the CCL/HCCR1 database. We would like to comment on the overall

performance of these systems as follows. First, compared to the huge number
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Table 4.3: The distribution of the number of clusters in each class.

Number of clusters 1 2 3 4 5

Number of class 3697 1376 252 69 7

of character features used by other researchers, e.g., 400 features used in [1] or

256 features used in [2], the SPDNN recognizer uses only 92 features. A more

relevant comparison could be made if a comparable number of training and

testing features for these two systems were available. In fact, the SPDNN char-

acter recognizer is designed to use no more than 100 sets of features since more

feature sets would require more memory storage and longer recognition time.

Two reasons explain why an SPDNN-based system can have fewer features yet

achieve comparable performance. (1) The mixed Gaussian-based discrimination

function permits SPDNN to learn the character decision boundary precisely. (2)

The self-growing rules allow a small number of Gaussian clusters to be sufficient

to represent the character image distribution.

Table 4.4: Performance of different handwriting recognizers on

the CCL/HCCR1 database. A portion of this Table is adapted

from Li et al. [1] and Tseng et al. [2].

Various Recognition Features Train & testing Classification

Systems Accuracy Used data used time

SPDNN 86.12% 92 50-50 0.24 sec/char

Li et al. 88.65% 400 50-1 NA

Tseng et al. 88.55% 256 100-100 0.6 sec/char

(2) Experiment 2–Multilinguistic Handwriting Recognition: By searching
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on major conference proceedings, journals as well as Web sites, we have not

found any performance test report on this type of handwritings. We there-

fore conducted experiments on the combined databases of CCL/HCCR1 and

CEDAR [38]. The training and testing data sets for Chinese characters are

selected by the same way used in the Experiment 1. The CEDAR database

contains various style of handwritten alphanumerics, which were lifted from

envelop address blocks from USA. Among the data, 4000 alphanumerics were

used for training and 2000’s for testing. We also conducted experiments with

rejection. Rejection criteria was implemented through the threshold value Ti,

which can be learned by the reinforced and antireinforced learning rules. In gen-

eral, when an input character is correctly recognized with certain confidence, its

output of the discriminate function should maintain a certain gap larger than

Ti with respect to the second largest output from other discriminate functions.

The experimental results are discussed as follows: For the sake of compar-

ison, we adjusted the thresholds Ti so that the proposed system has 0% false

rejection rate during the training phase. The recognition accuracy with 0%

and 6.7% of false rejection rates at the testing phase are shown in Table 4.5.

Li and Yu’s method can not provide rejection function in their Bayesian rule

based statistical recognition system [1]. However, SPDNN’s rejection function

is based on the reinforced and antireinforced learning rules, thus each subnet,

which represents a character in SPDNN, can have its own rejection criteria. We

think this characteristic is beneficial for real world applications.
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Table 4.5: Performance of SPDNN handwritten character rec-

ognizers with and without rejection on the CCL/HCCR1 and

CEDAR databases.

Systems Top 1 Accu. Top 2 Accu. Top 3 Accu.

SPDNN (rej=0%) 90.12% 93.49% 94.75 %

SPDNN (rej=6.7%) 94.11% 97.01% 97.67 %

4.3.3 Personal adaptation in handwriting recognition

Most of the recently announced handwritten character recognition systems

claimed their benchmarking recognition performance to be higher than 90%.

However, when they were tested on unconstrained freehand-writing, most of

their recognition accuracy fell between 40% and 50% [41]. Hence, we sug-

gested an unconstrained freehand-writing recognition module to adaptively fine

tune the parameters of the SPDNN character recognizer in order to learn the

user’s own writing style. When input characters were misclassified, the erro-

neous recognition results will be manually corrected by a user. In the mean

time, the parameters or the decision boundaries of the corresponding character

SPDNN are modified and improved by performing the reinforced and antire-

inforced learning processes. In addition, when it is necessary, clusters in a

character SPDNN may be created (self-growing rules) to better approximate

the partition boundaries. In order to prevent the excessive learning of the des-

ignated character boundary, the adaptive learning process usually include a

verification process. Naturally, the reinforced and antireinforced learning pro-

cesses are applied to SPDNN associated with the mismatched character and

its similar characters (the TOP 10 candidates). When more and more uncon-
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strained freehand-written characters are presented to the system, each character

SPDNN will gradually learn the user’s personal writing style.
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Figure 4.6: The user interface and a recognition snapshot of the proposed three-

stage recognizer.

Experimental results and Performance evaluation

In order to evaluate the performance of the unconstrained freehand-writing

recognition module for its adaptation and recognition capabilities, we prepared

our in house database (NCTU/NNL) in the following manner. We first selected

the most commonly used 300 characters from the Chinese textbooks for the

elementary schools in Taiwan. And then, these 300 Chinese characters and

the alphanumerics were written without any restriction on the writing style by

several students in our university for 10 times in several days. We intended to

simulate a natural and general unconstrained freehand-written database in this

manner. The testing results for 5 user’s adaptation processes are illustrated

in Table 4.6. The recognition rates was raised from 44.09% to 82.2% during

the 5 learning cycles. And the performance may finally increase up to 90.03%
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in 10 learning cycles. Figure 4.6 depicts the user interface and a snapshot of

recognition results of the prototype system.

Table 4.6: By applying 300 commonly used characters written with-

out any constraints by five students, the proposed adaptive sys-

tem shows significant improvement on the recognition accuracy

during the 10 learning cycles.

Trial user#1 user#2 user#3 user#4 user#5 avg.

1st 50.6% 33.6% 38.1% 52.3% 45.7% 44.0%

2nd 67.7% 69.0% 55.5% 56.6% 61.1% 62.0%

3rd 78.6% 80.0% 69.9% 71.5% 72.7% 74.5%

4th 84.3% 78.7% 69.3% 75.9% 86.0% 79.5%

5th 84.6% 87.6% 73.9% 79.9% 85.1% 82.2%

6th 81.9% 89.0% 76.2% 80.2% 84.0% 82.2%

7th 86.5% 89.6% 79.9% 78.5% 84.6% 83.8%

8th 89.5% 90.3% 79.5% 86.9% 89.3% 87.1%

9th 90.5% 90.6% 81.2% 87.7% 89.3% 87.9%

10th 93.6% 91.4% 84.6% 90.5% 90.1% 90.0%
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Chapter 5

Content-based Image Retrieval

The ongoing proliferation of digital content available over Internet leads to

an increasing demand for systems that can automatically query, search, and

retrieve of relevant images from large content databases and/or library. To

construct such systems, two issues have to be considered: (1) how to properly

index an image, and (2) how to design a user friendly query method. Over

the past decades, a considerable number of studies have been made on content-

based image retrieval (CBIR), where images are indexed and retrieved by their

visual features, such as object shape, position, color, texture, etc. [42, 43, 44,

3, 4, 45, 46].

5.1 Overview

According to the different query methods, image query systems can be divided

into (1) the full automatic, and (2) the user feedback query categories. For the

full automatic query systems [47, 48, 49, 50], a user specifies several related

images to vaguely reflect his/her desired images, and then the query systems
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respond with a bunch of so called related images. Sometimes, most of these

images may be undesired due to misinterpretation between users and the query

system. On the other hand, to make the retrieval results to be more satisfactory,

the user feedback query systems [51, 52] specify some details of contents instead

of just the image itself, such that the query systems can directly use these

information for searching and matching suitable images.

In a full automatic query system, indexing an image with its global fea-

tures, such as color histograms, are often used for image retrieval. Some early

developed systems, such as QBIC [47], Virage [48], Photobook [49], VisualSEEk

and WebSEEk [50] basically applied global features for image retrieval. How-

ever, using global features for image indexing, a query system may ignore some

significant local details of an image, so as to retrieve undesired images.

Instead of using global features of an image, the user feedback query sys-

tems, such as the Netra [51] and Blobword [52], adopt local features to represent

or to index an image. In these systems, the local features are obtained from

some regions or subimages, which are segmented or sketched from an image

first, and then various visual features of these regions are extracted. In gen-

eral, the query and retrieving precision of these systems are usually better than

the global feature based systems, but their performance depend heavily on the

precise segmentation or skillful sketch of a region.

For the past decades, segmenting an image into semantic meaningful re-

gions is still a difficult task in image processing [42, 43, 44]. Instead of em-

phasizing on the precise region segmentation, the Integrated Region Matching

(IRM) metric [3] is proposed to robust measure the similarity between regions

and reduces the influence of inaccurate segmentation. In addition, a region-
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based fuzzy feature matching approach, called unified feature matching (UFM)

[4], is proposed to characterize each region with a fuzzy feature set; thus, an

image is associated with a family of fuzzy feature sets. Since fuzzy features

naturally characterize the blurry boundaries between regions, the influence of

inaccurate segmentation is reduced.

Since an image can be partitioned into several sub-images, called regions

or objects, the spatial relationship of these regions plays an important role in

representing an image. The 2D B-string [53] is proposed to represent spatial

relation of regions, where each region is represented by two symbols: the begin

boundary and the end boundary symbols. With these symbols, a 2D B-string

can represent the spatial relation of partial overlap regions without a boundary

cutting process.

Since the 2D B-string represents only the spatial relation of regions in an

image, it may correspond to two sets of regions of similar spatial relations but

completely different in shapes and sizes. Thus, in addition to 2D B-string, more

visual features, such as color, texture, and shape are needed to represent regions

and to index an image for query and retrieving purposes.

The kernel problem of image retrieval lies on the representing a user’s de-

sired images, which is conceptually resided in his/her mind, into a set of com-

putable image processing formulas or models. Similar to the keywords for the

text query, the visual keywords are proposed for the image query and retrieval.

Instead of annotating each region in an image by keywords, I represent a region

with a visual keyword, and spatial relation of regions with a visual string.

A Neural Networks based Image Retrieval System (NNIRS) is developed
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at “http:// 140.113.216.78/ ImageQuerySystem”. The system configuration

is depicted in Fig. 5.1. All the major processing modules, including pre-

processing and feature extraction modules, a Visual Keyword based Retrieval

Module (VKRM), and a Visual String based Retrieval Module (VSRM), are im-

plemented on a personal computer.

Image Preprocessing

and

Feature Extraction

Visual Keyword

based

Retrieval module

Visual String

based

Retrieval module

Retrieval results

Visual StringVisual Keywords

Image

Database

Query Image

Figure 5.1: System configuration of the Neural Networks based Image Retrieval

System (NNIRS). The pre-processing and feature extraction module is used to

extract the visual keyword or visual string from the image. The visual keyword

and visual string based retrieval modules are used to find the relevant images

in the database using visual keywords or visual string, respectively.

The user can query the NNIRS by visual keyword or visual string. When

a query image is submitted, the pre-processing and feature extraction module

is first activated to extract the visual keyword or visual string from the image

depending on the query requirement. Then, the VKRM or VSRM is used to

find the relevant images in the database using visual keywords or visual string.
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The following sections show the details of these modules in the NNIRS.

5.2 Image Pre-processing and Feature Extrac-

tion

The flowchart of Image Pre-processing and Feature Extraction is shown in Fig.

5.2. First, an image is blurred to remove the noise. Then, the pixels of closer

color or similar texture features form several homogeneous regions. Finally, the

visual keywords and visual string are generated to represent these homogeneous

regions and the spatial relation of regions, respectively.

Image blurring

Homogeneous

Region

Determination

Visual Keyword

Generation

Visual String

Generation

An image

the blurred

image

homogeneous

regions

visual

keywords

a visual

string

Figure 5.2: The flowchart of Image Pre-processing and Feature Extraction. The

given image is first blurred. Then, several homogeneous regions are determined

based on the pixels of closer color or similar texture features in the blurred

image. At last, the visual keywords and visual string are generated to represent

these homogeneous regions and the spatial relation of regions, respectively.
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5.2.1 Image blurring

The Gaussian kernel based low-pass filter [54] is commonly used for image blur-

ring. However, applying this technique may also blur natural edges or bound-

aries of an image. To preserve the sharpness of the natural boundaries, the

anisotropic diffusion method was proposed [55]. The anisotropic diffusion pro-

cess would blur only the interior of a natural region with closer color value, and

leave the boundaries cleared and sharped. An example of the image blurring

is shown in Fig. 5.3. The original image is shown in Fig. 5.3(a); the blurred

images by the Gaussian kernel low pass filter, and the anisotropic diffusion are

shown in Fig. 5.3(b) and (c), respectively.

(a) The original image (b) The blurred image after

Gaussian kernel low pass fil-

ter

(c) The blurred image af-

ter the anisotropic diffusion

method

Figure 5.3: An example of the blurred images by the Gaussian kernel low pass

filter (b) and the anisotropic diffusion method (c).

5.2.2 Homogeneous Region Determination

After an image is blurred, a homogeneous region is determined based on a set

of the pixels with closer color and similar texture in the blurred image. The

following color and texture features are involved in the Homogeneous Region
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Determination.

The color feature: The L∗a∗b∗ color system is chosen to represent the

color component of a pixel since it is approximately perceptual uniform [56];

thus the distance between two colors in this color system conforms well to human

perceptual distance as measured by psychophysicists. Suppose the dimension

of the image I is N ×M . Then, the color feature of a pixel x is represented by

a 3-dimension vector c
x

where each dimension corresponds to one of the color

components in the L∗a∗b∗ color space.

The texture feature: Since the Gabor representation is optimal [57] in

the sense of minimizing the uncertainty in the space and the frequency domain,

the Gabor wavelet decomposition [58] is used to extract the texture features

from the image of multiple scales and orientations. Before to decompose an

image, a Gabor filter set is created from a two-dimensional Gaussian-modulated

complex sinusoid function

g(x, y) =

(
1

2πσxσy

)

exp

[

−1

2

(
x2

σ2
x

+
y2

σ2
y

)

+ jωx

]

, (5.2.1)

where σx and σy determine the scale of the Gaussian envelope along the re-

spective axes, and ω is the filter center frequency. By selecting T dilations

and K rotations of the rectilinear coordinates of g(x, y), a Gabor filter set

Gf = {gtk : 1 ≤ t ≤ T, and 1 ≤ k ≤ K} is created from

gtk(x, y) = a−tg(x′, y′), a > 1

where

x′ = a−t(x cos θ + y sin θ),

y′ = a−t(−x sin θ + y cos θ),
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where θ is the angle of the rotation of the rectilinear coordinate, i.e., θ = kπ/K.

With a Gabor filter gtk, the filter response of the image I can be calculated by

the following convolution:

Itk = I ∗ gtk,

and its spectrogram is calculated as

Stk(x) = |Itk(x)|2. (5.2.2)

Then, the texture feature around a pixel x is represented by a K×T -dimension

vector t
x

where each dimension corresponds to one of the elements in {Stk(x) :

1 ≤ t ≤ T and 1 ≤ k ≤ K}. By combining the color and texture features, an

N ×M visual feature array CI is built up, where each element CI(x) is a visual

feature vector [c
x
, t

x
]T .

Instead of performing the precise image segmentation, a homogeneous re-

gion is “grown up” from a given reference pixel until the visual features of the

pixels around the homogeneous region are far from of the reference pixel. Based

on the visual feature array, a homogeneous region Ai is determined as the sur-

rounding area of the reference pixel xs with closer color and similar texture

features, such that

Ai = {x : x ∈ I, ‖CI(x) − CI(xs)‖ ≤ λ}, (5.2.3)

where ‖ · ‖ is a norm operator, and λ is a given tolerance threshold. Meanwhile,

the similarity degrees between the pixels in Ai and the reference pixel xs are

stored in an N ×M Homogeneous Region Array (HRA) Hi, where the similarity

degree of a pixel x is calculated as

Hi(x) =

{

1 − ‖CI (x)−CI (xs)‖
λ

for x ∈ Ai

0 otherwise.
(5.2.4)
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An example of a homogenous region to represent the sail of the boat is

shown in Fig. 5.4. The original image with a reference pixel (the black dot) is

depicted in Fig. 5.4(a), and its HRA is illustrated as a brighten region in Fig.

5.4(b). It is clear that the HRA exactly presents the sail of the boat. After a

homogeneous region is formed, it is represented by a visual keyword, which is

introduced in the following section.

(a) (b)

Figure 5.4: An example of a homogenous region determination. (a) The orig-

inal image with a reference pixel showing as a black dot on a sail. (b) The

corresponding HRA of the reference pixel is shown as a light gray image.

5.2.3 Visual Keyword Generation

Similar to the (text) keywords for representing the key information of a docu-

ment, the visual keyword is proposed to illustrate the visual key characteristics

of an image. In general, an image can be characteristically specified by a few

objects, each of which usually is composed of one or few near homogenous re-

gions. For each of these regions, a set of visual features such as color, texture,

and shape can be extracted to represent the region. With these visual features,

the visual keyword is defined as follows.

Definition 5.2.1 (Visual Keyword). Given a homogeneous region i in an

image, the visual keyword ωi is a triple of Gaussian mixture models (GMM)
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{Gs
i , G

c
i , G

t
i} to formulate the spatial, color, and texture features of the region i.

The 2D GMM Gs
i approximates the spatial features (location and shape) of the

region i according to its means and the covariance matrices. The other GMMs

Gc
i and Gt

i formulate the average and variation of color and texture features

over the region i by their means and the covariance matrices, respectively.

The key issues for the visual keyword representation are shown as follows:

(1) The precise segmentation or skillful sketch of the region is no longer needed,

and (2) the approximating a region by mixture Gaussian distributions allows

the searching for its similar regions more flexible and robust. An exemplar of

the visual keyword is shown in Fig. 5.5. The three visual keywords, shown as

the elliptic regions ω1, ω2, and ω3, are created to cover the two sails and the

boat body. As we can see, the shape and the location of these regions can be

formulated by three 2D mixture Gaussian distributions, respectively.

Figure 5.5: An example of the visual keyword. The visual keywords ω1, ω2 and

ω3 are used to represent the sailboat in the image.

A visual keyword is generated to formulate the spatial, color and texture

features of a homogeneous region via two steps: (1) the spatial modelling and
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(2) the color and texture modelling.

Spatial Modelling

For illustration purpose, we often use an elliptic region to illustrate a 2D Gaus-

sian distribution. In addition, the shape of an elliptic region can be altered

by changing the parameters (the mean, the covariance matrix, and the prior

probability) of its corresponding 2D Gaussian distribution. Thus, an arbitrary

shaped region can be approximated by the union of several elliptic regions.

In the following, we will present the methods and procedures of adjusting the

parameter values of a 2D mixture Gaussian distribution.

For a given homogeneous region Ai = {x(l) : l = 1, 2, . . . , L} and its

corresponding Homogeneous Region Array (HRA) Hi, where L is the number of

pixels in Ai, suppose a 2D mixture Gaussian distribution ps(x(l) | ωi) formulates

the spatial feature of Ai. Define ps(x(l) | θs,ri
, ωi) as a Gaussian cluster to

comprise ps(x(l) | ωi), i.e.,

ps(x(l) | ωi) =

Ni∑

ri=1

Ps(θs,ri
| ωi)ps(x(l) | θs,ri

, ωi), (5.2.5)

where θs,ri
represents the parameter set {µs,ri

, Σs,ri
}, and Ps(θs,ri

| ωi) denotes

the prior probability of the cluster ri. By definition,
∑Ni

ri=1 Ps(θs,ri
| ωi) = 1,

where Ni is the number of clusters in ps(x(l) | ωi). Suppose the cluster ri is a

2D Gaussian distribution:

ps(x(l) | θs,ri
, ωi) =

exp
{
−1

2
(x(l) − µs,ri

)T Σ−1
s,ri

(x(l) − µs,ri
)
}

2π|Σs,ri
|1/2

. (5.2.6)

The dissimilarity between the HRA Hi and 2D mixture Gaussian distribu-
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tion ps(x(l) | ωi) can be measured by the cross-entropy function

E = −
L∑

l=1

Hi(x(l)) ln(ps(x(l) | ωi)), (5.2.7)

regarded as an error function between the region Ai and visual keyword ωi.

By applying the EM algorithm, (5.2.7) is minimized by the following update

equations for the parameters of 2D mixture Gaussian distribution: At each

epoch j,

µ(j+1)
s,ri

=

∑L
l=1 Hi(x(l))p

(j)
s (θs,ri

| x(l), ωi)x(l)
∑L

l=1 Hi(x(l))p
(j)
s (θs,ri

| x(l), ωi)
,

Σ(j+1)
s,ri

=

∑L
l=1 Hi(x(l))p

(j)
s (θs,ri

| x(l), ωi)(x(l) − µ
(j)
s,ri

)(x(l) − µ
(j)
s,ri

)T

∑L
l=1 Hi(x(l))p

(j)
s (θs,ri

| x(l), ωi)
,

P (j+1)
s (θs,ri

| ωi) =

∑L
l=1 Hi(x(l))p

(j)
s (θs,ri

| x(l), ωi)
∑L

l=1 Hi(x(l))
,

where

p(j)
s (θs,ri

| x(l), ωi) =
P

(j)
s (θs,ri

| ωi)p
(j)
s (x(l) | θs,ri

, ωi)
∑Ni

ri=1 P
(j)
s (θs,ri

| ωi)p
(j)
s (x(l) | θs,ri

, ωi)
.

The iteration of EM computation is continuous until (5.2.7) becomes less

than a given threshold. Fig. 5.6 illustrates the spatial modelling of a sail boat.

The original image with a reference point (the black dot) is depicted in Fig.

5.6(a), and the corresponding homogenous region and its spatial model, a 2D

GMM comprised of two Gaussian clusters, is depicted in Fig. 5.6 (b) and (c,

respectively.

Color and Texture Modelling

After the spatial modelling is done, the homogeneous region Ai is approximated

by the 2D mixture Gaussian distribution ps(x(l) | ωi). Suppose ps(x(l) | ωi)

55



(a) (b) (c)

Figure 5.6: The spatial feature modelling of a sail region. (a) The original image

with a reference point shown as a black dot on a sail. (b) The corresponding

homogeneous region of the reference point. (c) The modelling results of a 2D

mixture Gaussian approximation on the sail region. The pictures in (b) and (c)

are shown as gray level images.

consists of Ni Gaussian clusters, then Ai can be divided into Ni elliptic regions,

{ar1 , ar2, . . . , arNi
}, each of which corresponds to an Gaussian cluster in ps(x(l) |

ωi). For each elliptic region, its color and texture features are modelled by one

of Gaussian clusters in Gc
i and Gt

i, respectively. In the following, only the color

modelling is illustrated. The notations and formulas for texture modelling can

be obtained by replacing the subscript c by t.

Suppose a Gaussian distribution pc(cx(l) | θc,ri
, ωi) is used to approximate

the color (texture) feature distribution in an elliptic region ari
. Let c

x(l) be a

Dc-dimensional color (texture) feature vector at a pixel x(l), then the visual

keyword ωi models the color (texture) with a GMM pc(cx(l) | ωi) comprised by

Ni Gaussian clusters:

pc(cx(l) | ωi) =

Ni∑

ri=1

Pc(θc,ri
| ωi)pc(cx(l) | θc,ri

, ωi), (5.2.8)

where θc,ri
represents the parameter sets {µc,ri

, Σc,ri
}, and Pc(θc,ri

| ωi) denotes

the prior probability of the cluster ri. Suppose pc(cx(l) | θc,ri
, ωi) is a Gaussian
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distribution,

pc(cx(l) | θc,ri
, ωi) =

exp
{
−1

2
(c

x(l) − µc,ri
)T Σ−1

c,ri
(c

x(l) − µc,ri
)
}

(2π)Dc/2|Σc,ri
|1/2

. (5.2.9)

In order to estimate parameters of Gaussian distribution pc(cx(l) | θc,ri
, ωi), the

following formula are applied.

µc,ri
=

∑

x(l)∈ari

c
x(l)

N(ari
)

(5.2.10)

Σc,ri
=

∑

x(l)∈ari

(c
x(l) − µc,ri

)(c
x(l) − µc,ri

)T

N(ari
) − 1

, (5.2.11)

where N(ari
) denotes the number of pixels in the elliptic region ari

.

After modelling the spatial, color, and texture of an elliptic region ari
,

ps(x(l) | θs,ri
, ωi), pc(cx(l) | θc,ri

, ωi), and pt(tx(l) | θc,ri
, ωi) can be merged into a

Gaussian cluster as

p(z(l) | θri
, ωi) = ps(x(l) | θs,ri

, ωi)pc(cx(l) | θc,ri
, ωi)

× pt(tx(l) | θc,ri
, ωi), (5.2.12)

where z(l) = (x(l), c
x(l), tx(l))

T , and θri
= (θs,ri

, θc,ri
, θt,ri

). Then, for the ho-

mogenous region Ai, the visual keyword ωi formulates its spatial, color, and

texture features by a uniformed GMM:

p(z(l) | ωi) =

Ni∑

ri=1

P (θri
| ωi)p(z(l) | θri

, ωi), (5.2.13)

where Ni is the number of Gaussian clusters, and P (θri
| ωi) is the prior prob-

ability of clusters ri.

Since a visual keyword is in the form of mixture Gaussian distribution, its

difference from the other one can be measured by (3.1.9), which is described in

Section 3.1. While the spatial relation of regions is concerned, the visual string

is generated and presented in the following section.
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5.2.4 Visual String Generation

The visual string can be considered as an extension of the visual keyword for

the image querying. In addition to only using key regions, the spatial relation

of regions plays an important rules for image indexing and retrieving. In order

to describe the spatial relation of each region, the visual string is proposed and

defined as follows.

Definition 5.2.2 (Visual String). For a given image I containing a set of

visual keywords Ω = {ωi : i = 1, 2, . . . , N}, a visual string is a 2D sequence S =

(Sh, Sv), where Sh and Sv are sequences of the visual keywords to indicate the

spatial order of each visual keyword along the horizontal and vertical directions,

respectively.

By using the visual string to index an image, computing the similarity or

dissimilarity between a desired image and a tested image becomes as simple as

a string matching task. Constructing a visual string from visual keywords can

be implemented in a similar manner as proposed in [53]. One simple example is

shown in Fig.5.7. There are two visual keywords ω1 and ω2 in the figure, and the

visual string S = (Sh, Sv) is composed of Sh = ω1ω2ω1ω2 and Sv = ω1ω2ω2ω1.

The procedure to construct the visual string is shown in Fig. 5.8.

Difference measure between visual strings

When the query and testing visual strings is compared, several visual keywords

have to selected from the testing visual string to match the visual keywords in

the query visual string. The spatial relations of the selected visual keywords
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Figure 5.7: An example of constructing the visual string from two visual key-

words ω1 and ω2. Rectangles M1 and M2 are the minimum enclosing rectangles

of ω1 and ω2, respectively. ω1 and ω2 are the projecting points of he boundary,

i.e., M1 and M2 on the x-axis and y-axis, respectively. According to the spatial

order of the projection points of M1 and M2 on the x-axis and y-axis, the visual

string S = (Sh, Sv), where Sh = ω1ω2ω1ω2 and Sv = ω1ω2ω2ω1

and of the visual keywords in the query visual string have to be similar to each

other. An example of the visual string comparison is shown in Fig. 5.9. In

order to compare the visual string Sq = (ωq
1ω

q
2, ω

q
1ω

q
2) shown in Fig. 5.9(b), we

have to select ωt
3 and ωt

2 from the visual string St = (ωt
1ω

t
3ω

t
2, ω

t
1ω

t
2ω

t
3) shown in

Fig. 5.9(b).

A recursive computing strategy is proposed to select the visual keywords

from a testing visual string. Suppose a visual string S = (Sh, Sv) represents the

spatial relation of M visual keywords Ω = {ωi : i = 1, 2, . . . , M}. In order to

consider the horizontal and vertical spatial relations at the same time while com-

paring two visual strings, we transfer S into a sequence U = u1u2 · · ·um · · ·uM ,

where um is a pair (ωm, vm), ωm is the mth visual keyword in Sh, and vm is

the position of ωm in Sv. The position of an element um in U indicates the

horizontal order, and the vm in the element um presents the vertical order of

the visual keyword ωm in S.
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Visual String Creation procedure

Notations:

• Ω = {ωi : i = 1, 2, . . . , N}: an input visual keyword set

• S = (Sh, Sv): the output visual string

• Mi: the minimum enclosing rectangle (MER) of ωi

BEGIN

1. Set Sh = ε and Sv = ε, where ε is an empty string.

2. MER creation:

For each visual keyword ωi in Ω,

find the Mi of ωi;

3. Sh creation:

Project all the MERs along the x-axis of the image.

Scan the x-axis from left to right.

If there is a left or right boundary of the MER Mi,

set Sh = Shωi.

4. Sv creation:

Project all the MERs along the y-axis of the image.

Scan the y-axis from top to bottom.

If there is a top or bottom boundary of the MER Mi,

set Sv = Svωi.

END

Figure 5.8: The procedure to construct the visual string from a set of visual

keywords
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Figure 5.9: An example of the visual keyword selection when two visual strings

are compared. (a) the query image contains the visual strings Sq = (ωq
1ω

q
2, ω

q
1ω

q
2)

(b) the testing image contains the visual strings St = (ωt
1ω

t
3ω

t
2, ω

t
1ω

t
2ω

t
3). When

St is compared to Sq, the visual keywords ωt
3 and ωt

2 are selected from St.

Suppose Sq = (Sh
q , Sv

q ) is a query visual string containing M visual key-

words, and St = (Sh
t , Sv

t ) is a testing visual strings containing N visual keywords.

Then, the visual strings Sq and St can be represented by Uq = uq
1u

q
2 · · ·uq

M and

Ut = ut
1u

t
2 · · ·ut

N , respectively. In order to compare the query and testing visual

strings, an element set U t
IM

(N) = {ut
i1u

t
i2 · · ·ut

im · · ·ut
iM
} is selected from Ut,

where IM = {i1, i2, · · · , im, · · · , iM} is an index set of U
t, and ut

im is an element

matching with uq
m in Uq. In order to make sure that the spatial relations of the

selected set U t
IM

(N) is similar as of Uq, U t
IM

(N) has to satisfy (1) horizontal

constraint: IM is mono increasing, and (2) vertical constraint: for the elements

in U t
IM

(N),

sign(vt
ik
− vt

il
) = sign(vq

k − vq
l ), ∀ik, il ∈ IM (5.2.14)

Let U
q(m) and U

t(n) denote the first m and n elements in U
q and U

t,

respectively. Thus, Uq(m) = Uq(m − 1)uq
m and Ut(n) = Ut(n − 1)ut

n. Sup-

pose an element set U t
Im−1

(n − 1) = {ut
i1
, ut

i2
, · · · , ut

ik
, · · ·ut

im−1
} contains m − 1

elements selected from Ut(n − 1) to compare with Uq(m − 1), where Im−1 =

61



{i1, i2, · · · , ik, · · · , im−1} is an index set of Ut(n − 1). Then, when Uq(m) and

Ut(n) is compared , (5.2.14) can be computed as

sign(vt
n − vt

ik
) = sign(vq

m − vq
k), ∀k ∈ Im−1, (5.2.15)

and U t
IM

(N) = {ut
i1u

t
i2 · · ·ut

iM
} is selected from Ut through the following recur-

sive equation.

• U t
Im

(n) = ε for m = 0, i.e., the query string contains no elements.

• U t
Im

(n) = φ for n < m.

• U t
Im

(n) =

{
U t

Im−1
(n − 1)ut

n, if (5.2.15) is satisfied,

U t
Im

(n − 1), otherwise.

On the first case, the query visual string contains no elements; therefore, we

select zero element from Ut(n), i.e., U t
I0

(n) = ε, for all n. On the second case,

the length of the testing visual string is too short to select enough elements to

compare with the query visual string. Hence, U t
Im

(n) is not exist, and U t
Im

(n) =

φ. On the last case, based on U t
Im

(n − 1) and U t
Im−1

(n − 1), according to the

newly attached element ut
n of Ut(n), the computing of U t

Im
(n) may be divided

into two cases: (A) ut
n is selected to compare with the last element uq

n in Uq(m),

and therefore U t
Im

(n) = U t
Im−1

(n−1)ut
n; (B) ut

n is not selected, and then U t
Im

(n)

is equal to the previously selected set U t
Im

(n− 1). The case A occurs if (5.2.15)

is satisfied; otherwise, the case B occurs.

After the visual keyword and visual string are generated, they are input to

the Visual Keyword based Retrieval Module and the Visual String based Retrieval

Module, respectively. Since the visual keyword is in a form of the mixture Gaus-

sian distribution, the Visual Keyword based Retrieval Module is implemented
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based on GPDNN shown in Section 3. GPDNN is built up to represent a query

image, where each subnet corresponds to one of the visual keywords in the query

image. In order to train a GPDNN to represent the designated image, we can

select several visual keywords from different images as the training examples.

Then, the learning rule shown in Section 3.2 is adopt to train the Visual Key-

word based Retrieval Module. While a testing image is compared, its visual

keywords are input to the Visual Keyword based Retrieval Module sequentially.

Then, the input visual keywords are classified to their corresponding query vi-

sual keyword categories, and their distances are summed as the dissimilarity

between the query and testing images.

Although GPDNN can measure the dissimilarity between two visual key-

words, it is unable to present the spatial relation of the visual keywords. In

order to compute and model the visual string, a Visual String based Retrieval

Module is proposed in the following section.

5.2.5 Visual String based Retrieval Module

The schematic diagram of a Visual String based Retrieval Module (VSRM) for

a query visual string Uq is shown in Fig. 5.10. The matching system is com-

posed of M submodules, each of which corresponds to an element in Uq. The

submodules are sequentially connected according to the orders of the element

appeared in U
q. Each submodule contains three components: (1) a VKNN(m),

abbreviated from visual keyword neural network, adopts the same structure as

the subnet shown in Fig. 3.1 to compute the difference between the visual key-

word ωq
m and a testing visual keyword, (2) a vertical spatial comparator, which
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checks the similarity of the vertical spatial relations of the visual keywords, and

(3) a storage, which saves the intermediate computing results. The details of

the recursive computation is described as follows.
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Figure 5.10: The schematic diagram of the Visual String based Retrieval Mod-

ule (VSRM) for a visual string Uq = uq
1u

q
2 · · ·uq

M . The VSRM consists of M

submodules, sequentially connected depending on the order of the elements ap-

peared in Uq. Each of submodules contains (1) a VKNN(m), abbreviated from

visual keyword neural network, adopts the same structure as the subnet shown

in Fig. 3.1 to compute the difference between the visual keyword ωq
m and a test-

ing visual keyword, (2) a vertical spatial comparator, which checks the similarity

of the vertical spatial relations of the visual keywords, and (3) a storage, which

saves the intermediate computing results.

When a tested visual string Ut = ut
1u

t
2 · · ·ut

N is given to the VSRM, the

elements in U
t are sequentially input to each submodule. Suppose an element

ut
n = (ωt

n, vt
n) is input to the mth submodule. Then, the VKNN(m) measures

the difference between ωt
n and ωq

m, and the vertical spatial comparator performs

(5.2.15) to check whether the spatial relations of the visual keywords in Uq(m)
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and in Uq(n) are the same. Suppose the last intermediate computing results

in the storage of the mth submodule are the element set U t
Im−1

(n − 1), which

is selected from U
t(n − 1), and the similarity degree between the U

q(m − 1)

and Ut(n − 1), which is denoted as Dm−1(n − 1). Then, the new intermediate

computing results, Dm(n) and U t
Im

(n), are computed by summing the output of

VKNN(m) and Dm−1(n−1) and by appending vt
n to U t

Im−1
(n−1), respectively.

If the vertical spatial comparator indicates that the vertical spatial relations are

similar, the new intermediate computing results are feed forward to the next

submodule. Otherwise, the new intermediate computing results are aborted.

When the last visual keyword ut
N is input, the output of the M th submodule is

the element set U t
IM

(N) whose spatial relation is similar to Uq.
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5.3 Experiments

In this section, two experiments of image query and retrieval will be discussed.

In order to measure the image retrieving performance of the visual keyword

and visual string based matching system, we have implemented a Neural Net-

works based Image Retrieval System (NNIRS) at “http:// 140.113.216.78/ Im-

ageQuerySystem”. The database for training and testing of NNIRS is from the

COREL Gallery 1, 000, 000, which contains about 60000 general purpose color

images. In the first part of experiment (see section 5.3.1), the retrieving perfor-

mance of VKRM is compared with some leading algorithms [3]. On considering

the spatial relation of the visual keywords in an image, VSRM is used in the

second part of experiment (see section 5.3.2).

As shown in Section 5.2.3, a visual keyword represents a homogenous re-

gion which is expanded from a reference point assigned by a user. For each

image in the dataset, its visual keywords are generated automatically. The first

region is produced by randomly place a reference points in the image, and uses

the expanding method (see Section 5.2.3) to produce a region which covers a

homogenous color/texture area. Then, the second region can be produced again

by placing another reference point on the area which is not in the previously

partitioned region(s). This process continues until the whole image is covered

by the homogenous regions. At this stage, visual keywords of the image are

then generated, and their corresponding visual string can be produced by using

the method introduced in Section 5.2.4. In the following section, the image

retrieving performance of the visual keyword is presented.
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5.3.1 Visual keyword evaluation

To qualitatively evaluate the accuracy of NNIRS based on the visual keyword

method, I picked four query images with different semantics, namely horses,

elephants, flowers, and people. For each query example, the precision of the

query results depending on the relevance of the image semantics is examined.

The retrieval results of these four examples are illustrated in Fig. 5.11. For

each block of images, the query image is on the upper-left corner, and the rest

images are the top 20 query results. As we can see, most of query results match

with the query images in the cases of horse or elephant.

In order to evaluate the performance of the visual keyword query, 10 cat-

egories, each of which contains 100 images, are selected [3] from the COREL

Gallery 1, 000, 000. These categories are Africa, Beach, Building, Buses, Di-

nosaurs, Elephants, Flowers, Horses, Mountains, and Food. The mean and

variance of the precision rate are computed for each category. Give a query

image q belonging to a category C, the first N retrievals of the NNIRS contains

nq correct candidates, and then the precision rate for the query image q are

defined as

Precisionq =
nq

N
,

and the mean of the precision rate of the category C is computed as

P C =
1

W

∑

q∈C

Precisionq,

where W is the number of the images in the category C. The mean and variance

and the average rank, are also used. Let ri
q is the rank (position) of image i in
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the retrieved images, and the average rank for the query image q are defined as

Rankq =
1

W

∑

i∈C

ri
q.

Then, for a category C, its mean rank is computed as

RC =
1

W

∑

q∈C

Rankq.

The retrieving performance of the visual keyword method is compared to

the IRM [3] and UFM [4] methods. The average precision and average rank for

each category of the IRM [3] and the visual keyword are shown in Table 5.1.

As we can see that the retrieving performance by the visual keyword method

is 49.4%, which is comparable to 46.8% of the IRM method. Here, the rank

and precision performance for each category of the UFM method are not shown

since their numerical results are not available in [4]. By comparing the overall

average precision for 10 categories for the UFM method shown in [4], the visual

keyword method is still comparable to 47.7% of the UFM method.

This experimental result indicates that without considering the local con-

tent of the image, i.e., query by all the visual keywords in the image, the retriev-

ing performance of NNIRS is comparable to (and even slightly better than) that

of the antecedent research. It is emphasis that the content of the image is abun-

dant. Thus, the unexpected retrieval result may be obtained when including

the uninterested or unconcerned visual keywords in the query.

An example is shown in Fig. 5.12, where (a) is the query image assigned to

the Mountains category. With respect to the designated image of Mountains,

some visual keywords in (a) are unconcerned, such as the river, tree, horse, etc.

The retrieval result of query by all the visual keywords in the image is shown
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Table 5.1: Performance of two different retrieving methods, visual keyword (VK)

and IRM, on the different categories of images. The rank and precision perfor-

mance of VK were presented by its mean/variance values.

precision rank

category VK IRM VK IRM

Africa 0.532/0.15 0.475 148.62/54.67 178.2

Beach 0.350/0.13 0.325 267.52/94.12 242.1

Building 0.277/0.10 0.33 299.73/74.51 261.8

Buses 0.550/0.19 0.36 137.05/76.94 260.73

Dinosaurs 0.932/0.05 0.981 52.67/4.66 49.7

Elephants 0.447/0.10 0.4 197.08/49.47 197.7

Flowers 0.505/0.14 0.402 199.00/84.41 298.4

Horses 0.684/0.11 0.719 102.05/43.56 92.5

Mountains 0.270/0.10 0.342 324.44/83.09 230.4

Food 0.390/0.13 0.34 234.24/80.06 271.4

Average 0.494/0.19 0.468/0.22 196.24/83.03 208.29/80.91

in (b), and whose precision rate is 15%. As we can see, some unexpected im-

ages related to the unconcerned visual keywords are retrieved. With respect

to the interested visual keywords (illustrated as a union of the elliptic shapes

in (a)), the retrieval result is shown in (c), and the precision rate of the re-

trieval result is enhanced from 15% to 32%. More examples can be found at

“http:// 140.113.216.78/ NNIRS/ results”. Hence, the retrieving performance

can be improved by selecting the interested visual keywords corresponding to

the designated image to query the system.
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(a) Horses: 19 matches out of 20 (b) Elephants: 19 matches out of 20

(c) Flowers: 20 matches out of 20 (d) People: 14 matches out of 20

Figure 5.11: Query results by using the VKRM in the NNIRS. For each block

of images, the query image is on the upper-left corner. There are two numbers

below each image. From left to right they are: the ID of the image in the

database and the value of the visual keyword measure between the query image

and the matched image.
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(a)

(b) (c)

Figure 5.12: The retrieval results of query by all the visual keywords and by

the interested visual keywords. (a) shows the query image and the interested

visual keyword, illustrated as a union of the elliptic shapes. The relevant images

are shown in (b) with respect to all the visual keywords, and (c) with respect

to the interested visual keywords in (a). The images are shown in order of the

similarity from top to bottom and left to right.
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5.3.2 Visual string evaluation

The visual string evaluation is different from the visual keyword evaluation since

the spatial relation of the visual keywords is involved in the visual string. Al-

though each of 10 categories mentioned above is formed by images with the

same semantics, the spatial relation of regions in the image is not concerned

in each category. Thus, the average precision and average rank for each of 10

category are not suitable to evaluate the retrieving performance of the visual

string method.

Seven query examples are selected for the visual string evaluation. For each

image shown in Fig. 5.13, a visual string is generated to represent the spatial

relation of the selected visual keywords, shown as a union of the elliptic shapes.

The description of the corresponding visual string is shown below each image

in Fig. 5.13.

The retrieval results of query examples in Fig. 5.13 are shown from Fig.

5.14 to Fig. 5.20. In these figures, part (a) and (b) illustrate the relevant feed-

backs of the NNIRS with respect to visual keywords and visual string. For each

query example, the precision of the query results depending on the relevance

of the image semantics is examined. It is admitted that the relevance of the

visual string depends on the standpoint of the user. Thus our relevance criteria,

specified from Fig. 5.14 to Fig. 5.20, may be quite different from those used

by a user of the system. In each retrieval case, the top 20 images are shown

in order of the similarity from top to bottom and left to right. More retrieval

results can be found at “http:// 140.113.216.78/ NNIRS/ results”.

Fig. 5.21 illustrates the number of interested images depended on the
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number of retrieved images with respect to the different query examples. For

each query example, the retrieval performance based on the visual keyword

query and the visual string query are depicted as the solid line and dash line,

respectively. As we can see, in each query example, the dash line is on the left-

upper side of the solid one. That means, the interested images are in the fore

part of the retrieved images when the visual string is used to query the system.

Hence, query by visual string can significantly improve the hit rate of finding

the interested images while the spatial relation of visual keywords is concerned.
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(a) Blue sky and white sand

beach

(b) Stelas (c) Dinosaur stands on the

sienna ground.

(d) Elephant stands on the

sand in front of trees.

(e) Flower with pink and

white petal margins

(f) Brown horse stands on

the left side of the white

horse in the grass.

(g) Blue sky and

mountain with

snow

Figure 5.13: Seven query images are selected for the visual string evaluation

experiments. In each image, several visual keywords are generated using the

proposed methods in Section 5.2.3. Each visual keyword and its corresponding

reference point are shown as a union of the elliptic shapes and the “+” marks,

respectively. A visual string is generated to represent the spatial relation of the

selected visual keywords in an image as described in Section 5.2.4.
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(a) 7 matches out of 20

(b) 11 matches out of 20

Figure 5.14: The retrieval results for the query visual string shown in Fig.

5.13(a). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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(a) 10 matches out of 20

(b) 11 matches out of 20

Figure 5.15: The retrieval results for the query visual string shown in Fig.

5.13(b). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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(a) 0 matches out of 20

(b) 9 matches out of 20

Figure 5.16: The retrieval results for the query visual string shown in Fig.

5.13(c). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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(a) 8 matches out of 20

(b) 9 matches out of 20

Figure 5.17: The retrieval results for the query visual string shown in Fig.

5.13(d). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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(a) 8 matches out of 20

(b) 13 matches out of 20

Figure 5.18: The retrieval results for the query visual string shown in Fig.

5.13(e). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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(a) 3 matches out of 20

(b) 9 matches out of 20

Figure 5.19: The retrieval results for the query visual string shown in Fig.

5.13(f). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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(a) 0 matches out of 20

(b) 10 matches out of 20

Figure 5.20: The retrieval results for the query visual string shown in Fig.

5.13(g). The relevant images are shown in (a) with respect to only the visual

keywords, and (b) with respect to the visual string. The images are shown in

order of the similarity from top to bottom and left to right.
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Figure 5.21: The retrieving performance with respect to the query examples

shown in Fig. 5.13 from (a) to (g) are depicted as ‘+’, ‘×’, ‘∗’, ‘◦’, ‘�’, ‘⋄’, and

‘�’, respectively. In each query example, the dash and solid lines are used to

shown the retrieval performance based on the visual keyword and visual string,

respectively.
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Chapter 6

Conclusions and Future work

In this thesis, Self-growing Probabilistic Decision based Neural Network (SPDNN)

is first introduced. The ISLUG training scheme is proposed to tune the decision

boundary of SPDNN to improve the classification accuracy. Furthermore, the

Generalized Probabilistic Decision based Neural Network (GPDNN), a general-

ized version of SPDNN, is proposed to handle the general case that the data

are in the form of the distributions instead of the numerical quantities. In

order to verify the accuracy of the proposed SPDNN and GPDNN, the appli-

cations of handwritten character recognition and content-based image retrieval

are involved.

In the handwritten character recognition application, an SPDNN-based

Handwritten Chinese major hybrid character recognition system is developed.

This recognition system performs pre-classification, character recognition, and

personal adaptation. The experiment results indicate the follows: (1) the mixed

Gaussian-based discrimination function permits SPDNN to learn the character

decision boundary precisely, and (2) the self-growing rules allow a small number

of Gaussian clusters to be sufficient to represent the character image distribu-
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tion.

In the content-based image retrieval application, a Neural Networks based

Image Retrieval System (NNIRS) is developed based on GPDNN and is im-

plemented at “http:// 140.113.216.78/ imagequerysystem”. The database of

NNIRS is from the COREL Gallery 1, 000, 000, which contains about 60000

general purpose color images. Two novel image representation concepts for

CBIR are proposed: (1) the visual keyword and (2) the visual string. The visual

keyword describes the visual characteristics (color, texture, and shape features)

of a homogenous region, while the visual string represents the spatial relation-

ship of the regions in an image. The experiment results show the follows: (1)

the retrieving performance by visual keyword method is 49.4%, which is com-

parable the 46.8% of IRM method [3] and 47.7% of the UFM method [4], and

(2) query by visual string can significantly improve the hit rate of finding the

interested images while the spatial relation of visual keywords is concerned.

The experiment results shown that SPDNN and GPDNN are suitable for

handwritten character recognition and content-based image retrieval, respec-

tively. The following description provides some further research topics in the

future.

NNIRS over Internet

Since there is a a huge thesaurus on the Internet, the ability of the NNIRS can

be extended in the future to mine the World Wide Web to find the interested

images. The NNIRS over Internet can be designed as shown in Fig. 6.1. In this

system, the robot travels the Internet periodically in the background. while a
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new image is found, the robot will sent it back to the system for image indexing.

Then, the URL of the new image is recorded in the local database. The user can

query the NNIRS to retrieve the interesting images, and download the images

via URL.

Image

Indexing

Robot

Search

Workstation

Computer

Server

Computer

Workstation

Server

An image

Local Database

Hyperlink

Visual

Keywords

Internet

Figure 6.1: The flowchart of the NNIRS over Internet. In the robot search,

images in the Internet will be checked periodically. While a new image is found,

it will be indexed by visual keyword and visual string. The user can query the

NNIRS to retrieve the interesting images, and download the images via the

images’ URL.

Structured Visual Keyword Search

As discussed in this thesis, the visual keywords in database are sequentially

compared to the query visual keywords. Thus, while the database is grown up,

such as the case of NNIRS over Internet, the speed of the image retrieval will

be slow down. Hence, to structuralize the visual keywords in the database for

further query or browsing will be the next research topic to improve the query

speed of NNIRS over Internet.
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Content-based Video retrieval

In the recent years, more and more researches focus on the content-based video

retrieval (CBVR). How to define the content of a video is a kernel problem in

CBVR. The video can be considered as a sequence of the images. Since an image

can be indexed by the proposed visual keywords, it is an interesting research

topic to extend the visual keyword with the time information to represent the

content of a video.
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Appendix A

Proof

Lemma 3.1.1: Suppose Suppose Pa and Pb are two mixture Gaussian distri-

butions defined in (3.1.5) and (3.1.5), respectively. The product moment of Pa

and Pb,

F(Pa,Pb) =
Ra∑

ra=1

Rb∑

rb=1

P (θra
)P (θrb

)G(θra
, θrb

),

where

G(θra
, θrb

) =

exp

{

−1
2

∑D
d=1

(µr
b
(d)−µra(d))

2

σ2
rb(d)

+σ2
ra(d)

}

√

(2π)D
∏D

d=1(σ
2
rb(d) + σ2

ra(d))
.

Proof.

F(Pa,Pb) =

∫

RD

PaPbdz

=

∫

RD

(
Ra∑

ra=1

P (θra
)p(z | θra

)

Rb∑

rb=1

P (θrb
)p(z | θrb

)

)

dz

=

Ra∑

ra=1

Rb∑

rb=1

(

P (θra
)P (θrb

)

∫

RD

p(z | θrb
)p(z | θra

)dzs

)

.
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Let M(θrb
| θra

) be the expected value of the p(z | θrb
) under the Gaussian

distribution p(z | θra
),

M(θrb
| θra

) =

∫

RD

p(z | θrb
)p(z | θra

)dz

=

∫

· · ·
∫

︸ ︷︷ ︸

D

{p(z1, · · · , zD | θrb
)

· p(z1, · · · , zD | θra
)} dz1 · · · dzD. (A.0.1)

Since the elements in visual feature vector are mutually independent, the fol-

lowing joint probability densities can be expressed in product forms:

p(z1, · · · , zD | θrb
) =

D∏

d=1

p(zd | θrb
), and

p(z1, · · · , zD | θra
) =

D∏

d=1

p(zd | θra
). (A.0.2)

Substitute (A.0.2) into (A.0.1),

M(θrb
| θra

) =

D∏

d=1

Md(θrb
| θra

). (A.0.3)
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Each of the product terms, Md(θrb
| θra

), can be derived as follows:

Md(θrb
| θra

) =

∫ ∞

−∞

p(zd | θrb
)p(zd | θra

)dzd

=
1

2πσra(d)σrb(d)

·
∫ ∞

−∞

exp

{

−1

2

(

(zd − µra(d))
2

σ2
ra(d)

+
(zd − µrb(d))

2

σ2
ra(d)

)}

dzd

=
1

2πσra(d)σrb(d)

·
∫ ∞

−∞

exp

{

−1

2

[(

1

σ2
ra(d)

+
1

σ2
rb(d)

)

z2
d

−2

(

µra(d)

σ2
ra(d)

+
µrb(d)

σ2
rb(d)

)

zd

+

(

µ2
ra(d)

σ2
ra(d)

+
µ2

rb(d)

σ2
rb(d)

)]}

dzd.

Let

A =

∫ ∞

−∞

exp

{

−1

2

(

1

σ2
ra(d)

+
1

σ2
rb(d)

)

·
(

zd −
σ2

rb(d)µra(d) + σ2
ra(d)µrb(d)

σ2
ra(d) + σ2

rb(d)

)2





dzd.
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Then

Md(θrb
| θra

) =
A

2πσra(d)σrb(d)

· exp

[

−1

2

(

µ2
ra(d)

σ2
ra(d)

+
µ2

rb(d)

σ2
rb(d)

)

+
1

2

(
µra(d)

σ2
ra(d)

+
µr

b
(d)

σ2
rb(d)

)2

(

1
σ2

ra(d)

+ 1
σ2

rb(d)

)








=
A

2πσra(d)σrb(d)

· exp

[

−1

2

(µra(d) − µrb(d))
2

σ2
ra(d) + σ2

rb(d)

]

. (A.0.4)

Let sd = zd −
σ2

r
b
(d)

µra(d)+σ2
ra(d)

µr
b
(d)

σ2
ra(d)

+σ2
rb(d)

; thus

A2 =

∫ ∞

−∞

∫ ∞

−∞

exp

{

−1

2

(

1

σ2
ra(d)

+
1

σ2
rb(d)

)

·(s2
d + t2d)

}
dsddtd.

Let sd = ρd cos αd and td = ρd sin αd, then

A2 =

∫ ∞

0

ρd

∫ 2π

0

exp

{

−1

2

(

1

σ2
ra(d)

+
1

σ2
rb(d)

)

·ρ2
d

}
dρddαd

= 2π

(

σ2
ra(d)σ

2
rb(d)

σ2
ra(d) + σ2

rb(d)

)

.

Hence,

A =

√
√
√
√2π

(
σ2

ra(d)σ
2
rb(d)

σ2
ra(d) + σ2

rb(d)

)

. (A.0.5)

Substitute (A.0.5) into (A.0.4);

Md(θrb
| θra

) =
exp(−1

2

(µr
b
(d)−µra(d))

2

σ2
ra(d)

+σ2
r
b
(d)

)

√
2π
√

σ2
ra(d) + σ2

rb(d)

. (A.0.6)
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Finally, substitute (A.0.6) into (A.0.3), and

M(θrb
| θra

) =
exp(−1

2

∑D
d=1

(µr
b
(d)−µra(d))

2

σ2
ra(d)

+σ2
rb(d)

)
√

(2π)D
∏D

d=1(σ
2
ra(d) + σ2

rb(d))

= G(θrb
| θra

).
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