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摘要 

 
 
 
 
 

在本論文，作者提出平行耦合微帶線帶通濾波器之新合成方法，可獲取精確

頻寬。傳統上，一段平行線耦合級係以兩段 1/4 波長傳輸線及中間夾一個導納轉

換器來等效，由於導納轉換器並不具隨頻率改變之特性，因此此種等效模式僅在

設計小頻寬時較為準確，當設計較大頻寬時，實際頻寬會明顯大幅縮減。為改善

此問題，論文第一部份提出以頻帶邊緣等效取代中心頻率等效之觀念來修正傳統

公式，以獲取較為精確之頻寬。更進一步地，論文第二部份提出以介入損耗函數

來合成具有精確頻寬之平行耦合線帶通濾波器之方法。介入損耗函數可直接由耦

合級串接之 ABCD 矩陣推導得出，而不需使用含導納轉換器之等效電路，藉由

與最大平坦函數及柴比雪夫函數比對係數，得出所需之合成公式。由於在某些嚴

苛設計規格下，耦合線線寬及線距可能過窄難以實現，此時可運用合成公式提供

之自由度適當選擇解答，放寬中間耦合級之尺寸，將困難移至兩端(輸入及輸出

端)耦合級，並採用擇定饋入法(Tapped input)方式來實現端級。作者並實際合成

數組大頻寬濾波器作為範例，以模擬及量測數據來與本文之理論計算結果做比

較，證實此方法可行且頻寬相當精確。 
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Abstract 

 
 

In the thesis, authors propose the new synthesis methods of parallel-coupled 

microstrip bandpass filters (PCBPFs) with accurate bandwidth. In a conventional 

design, the equivalence of a coupled stage is established by using two quarter-wave 

transmission line sections with a J-inverter in between. Since the J-inverter is 

independent of frequency, the conventional equations are accurate only for filters with 

relatively narrow bandwidths. When a large bandwidth is designed, filters synthesized 

based on the conventional method will have a fractional bandwidth less than 

specification. In the first part of the dissertation, for recovering the bandwidth 

decrement, the correction θ = (π/2)(1 ± ∆/2) is incorporated into the synthesis formulas 

to modify the conventional method. Furthermore, the insertion loss (IL) functions are 

derived for synthesis of PCBPFs with accurate bandwidth. The synthesis is based on 

the composite ABCD matrix of all coupled stages instead of modeling each stage with 

the J-inverter equivalent circuit. Synthesis equations are established by matching the 

coefficients of IL function with the maximally-flat and Chebyshev functions. The 

under-determined conditions leave several degrees of freedom in choosing the circuit 

dimensions. By properly utilizing these degrees of freedom, the problem resulted from 

the tight coupled-line dimensions can be resolved by gathering all difficulties to the end 

stages and employing tapped input/output to replace the end stages. Several filters are 

simulated, fabricated and measured to demonstrate the formulation and circuit 

synthesis. The measured results manifest very accurate bandwidths. 
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Chapter 1 

Introduction 
 

1-1 New formulas for synthesizing microstrip bandpass filters with relatively wide 

bandwidths: 

The ultra-wideband (UWB) technologies for commercial communication 

applications have created a need of a transmitter with bandwidths of up to or more than 

several GHz [1]. Microwave passive devices with such a wide bandwidth have been 

investigated recently [2–4]. Lumped elements are incorporated into the circuit design 

for a directional coupler with an octave-band [2]. The three-line structures in [3] and 

ground plane aperture compensation techniques in [4] are suitable for implementing 

filters of a wide bandwidth. 

Consisting of a cascade of coupled stages, parallel-coupled line configuration is 

attractive for realizing microstrip bandpass filters in microwave frequencies [3-7]. It is 

popular since it has an easy synthesis procedure and a wide range of realizable 

bandwidths. In a conventional design, approximate synthesis formulas have been well 

documented for determining dimensions of each coupled stage [6-7]. In deriving these 

formulas, one of the key steps is to establish the equivalence of a coupled stage to a 

two-port network of two quarter-wave transmission line sections with an admittance 

inverter in between. The approximation has a good accuracy when the filter has a 

relatively small bandwidth. This is because the frequency response of a coupled stage 

has a zero derivative at center frequency fo, and thus is relatively insensitive to 

variation of frequency. When the designed bandwidth becomes larger, however, the 

coupling of the coupled stage is no longer a constant, and it apparently rolls off as the 
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frequency moves away from fo. Thus, a modification is required for the formulas when 

the microstrip filters are designed to have a wide bandwidth.  

In Chapter 2, simple formulas are proposed for improving prediction of the 

bandwidth of parallel-coupled microstrip filters. Two experimental Chebyshev filters 

are measured to demonstrate the significant improvement. 

1-2 Insertion loss function synthesis of maximally flat parallel-coupled line bandpass 

filters: 

As mentioned in Section 1-1, since the admittance inverter in equivalent circuit is 

assumed independent of frequency, the conventional formulas are accurate only for 

bandpass filters (BPFs) with a relative small bandwidth (BW). 

BPFs synthesized based on the conventional method will have a fractional BW ∆ 

less than specification. The BW decrement deteriorates as filter order or designed BW 

is increased. As reported in [13], when filter order N = 3 and ∆ = 35%, the synthesized 

circuit has only ∆ = 30%. When ∆ = 50%, the realized BWs are only 41% and 38% for 

N = 3 and N = 5, respectively. For recovering the BW decrement, new formulas for 

determining Zoe and Zoo of each coupled stage have been derived in Chapter 2 for 

synthesizing relatively wideband filters. In this way, the realized BWs can be greatly 

improved, but the BW decrement is still not completely resolved. For example, when ∆ 

= 50% is given, the new designs still have only 48.2% and 44% for N = 3 and N = 5, 

respectively. 

Some methods have been proposed to design filters with accurate passband 

responses. In [14], insertion loss (IL) functions are derived for maximally flat filters 

with short- circuited quarter-wave stubs. The Q distribution method in [8] can provide 

accurate solutions to filters with narrow and wide BWs. Entire procedure for finding 
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the Q distribution includes choosing the number of sections, creating composite ABCD 

matrix, and solving individual admittance values of the resonators. For direct-coupled 

microwave filters of 2 ~ 12 resonant elements having ∆ = 10% ~ 43%, the theoretical 

results in [9] have good agreement with computed responses. In [38], the synthesis 

formulas are derived based on the image parameter method and the insertion loss 

method, which are available for the design of wide-band and narrow-band microwave 

filters. 

In Chapter 3, the IL function of a parallel-coupled bandpass filter is derived for 

synthesizing maximally flat responses. The synthesis formulas are derived directly 

from the composite ABCD matrix of all coupled stages instead of using J-inverter 

equivalent circuits. Based on the derived function, simultaneous conditions for 

determining dimensions of all coupled stages are provided. Section 3-1 shows the 

derivation for filters of order N ≤ 6. Section 3-2 presents results of three filters to 

demonstrate the formulation and synthesis. In realizing two additional relatively 

wideband filters, pattern resolution of certain stages exceeds our fabrication limits. 

Thus in Section 3-3 tapped lines are designed to resolve this problem. Measured 

responses are compared with EM simulation and theoretical predictions. 

1-3 Direct synthesis of parallel-coupled line bandpass filters with Chebyshev 

responses: 

The formulation in Chapter 3, however, is limited to maximally flat responses. 

Chebyshev filters can have more applications than those of the maximally flat type, due 

to the degree of freedom in trade-off between the ripple level in passband and rejection 

rate in transition band. Chapter 4 extends the method developed in Chapter 3 to 

synthesis of the Chebyshev filters. Section 4-1 formulates the IL function for filters of 
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order N ≤ 5, and Section 4-2 investigates the performance of synthesized responses 

associated with given ripple level and BW. The IL functions can not give absolute 

equal ripples when N ≥  4. A viable method is provided to improve the situation. 

Section 4-3 presents three filters to demonstrate the formulation and synthesis. 

Measured responses are compared with theoretical predictions as well as the simulated 

obtained by an EM software package.  
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Chapter 2 

New Formulas for Synthesizing Microstrip 

Bandpass Filters with Relatively Wide 

Bandwidths 
 

 

Approximate design equations for each coupled stage in a parallel-coupled 

microstrip filter have been given by [6-7] and adopted popularly in realization. The 

classical design formulas for determining the dimensions of each coupled stage are 

derived based on an assumption that the admittance inverter is independent of 

frequency. As a result, these equations are accurate only for filters with relatively 

narrow bandwidths. Thus, for parallel-coupled microstrip filters designed to have a 

wide bandwidth, the design formulas need modifying. 

New formulas are proposed for designing wideband parallel-coupled microstrip 

bandpass filters with improved prediction of bandwidth. When a fractional bandwidth 

∆ is required, a correction θ = (π/2)(1 ± ∆/2) is incorporated into the formulation for 

determining the dimensions of each coupled stage. Two filters with ∆ = 50% are 

designed and fabricated to show the improvement. The measurement shows a very 

good agreement with the simulation. 
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2-1 Design Formulas with Improved Accuracy 

From the perspective of circuit synthesis, accurate dimensions of the coupled 

stage are the most important in implementing the filter. The coupled stage in Fig. 2.1(a) 

has an electrical length θ, and even and odd mode characteristic impedances Zoe and 

Zoo.  

The impedance matrix elements of the coupled stage in Fig. 2.1(a) can be derived 

[7] as  

( ) θcot
22211 oooe ZZjZZ +−==                                    (2.1a) 

( ) θcsc
22112 oooe ZZjZZ −−==                                   (2.1b) 

 

 

Z   , Zoe         oo

0

 
(a) 

 

JZo oZ

0 0

 
(b) 

 

 
Fig. 2.1 (a) A coupled-line stage. (b) Equivalent circuit of (a). 
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Here, the even- and odd-mode phase velocities for the coupled stage are assumed 

identical. From (2.1a) and (2.1b), the ABCD matrix for the coupled-line stage can be 

derived as 
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The ABCD matrix for the J inverter circuit in Fig. 2.1(b) can be derived as  
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      (2.3) 

 

Equating the right hand sides of (2.2) and (2.3), one can express Zoe and Zoo in terms of 

the circuit parameters of the admittance inverter as follows 
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It is difficult to implement a coupled microstrip stage having a 

frequency-dependent behavior as described in (2.4). In fact, constant values for Zoe and 

Zoo have to be used to determine the dimensions of each stage from the characteristic 

impedance design graphs. Note that if θ = π/2 is used, (2.4a) and (2.4b) reduce to those 

given in [7]. Since the approximation θ = π/2 is accurate only in the vicinity of the 

center frequency, this may lead to an error in estimating the filter bandwidth. Thus, 

when the required fractional bandwidth is ∆, 

 

(1 )
2 2
πθ ∆

= ±                         (2.5) 

 

can be used to calculate the Zoe and Zoo for each coupled stage. Obviously, an exact 

equivalence between the circuits in Fig. 2.1(a) and Fig. 2.1(b) is assured at the 

passband edges. This will make the prediction of filter bandwidths more accurate, 

which will be demonstrated later. 
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2-2 Filter Fabrication and Measurements 

To show the significant improvement in predicting the filter bandwidth provided 

by (2.4) and (2.5), we first examine the changes of Zoe and Zoo of coupled microstrip 

stages due to the deviation of θ from π/2. Table 2.1 lists their values for the nth coupled 

stage in a third-, a fifth- and a seventh-order Chebyshev filters with 0.1dB ripple level 

and 50% fractional bandwidth.  

It is noted that for an Nth-order Chebyshev filter, the nth coupled stage is identical 

to the (N+2-n)th one. The numbers in Table 2.1 indicate that the end stages have the 

largest change in Zoo, which is increased by no more than 6% for all cases shown here. 

On the other hand, the value of Zoe exhibits a significant change; for example, Zoe is 

increased by more than 20Ω for the end stages.  

 

 

TABLE  2.1    

EVEN AND ODD MODE CHARACTERISTIC IMPEDANCES FOR THE nth COUPLED STAGES OF AN NTH-ORDER 

CHEBYSHEV FILTER OBTAINED BY THE IMPROVED AND CLASSICAL FORMULAS.  

RIPPLE LEVEL = 0.1dB AND ∆= 50%. 

    N         Improved                 Classical
n       Zoe(Ω)         Zoo(Ω)            Zoe(Ω)       Zoo(Ω)

3 1          155.6          47.0          131.7         44.4
2          126.4          40.6            112.2         40.0

    1          146.2           44.7            125.6          42.9
    5  2          111.0           38.3            100.9          38.3
   3             90.8           37.0              85.3          37.5
   1          143.8           44.2              124.0          42.5
   2          107.9           38.0                98.6          38.1
   3            88.1           37.0                83.1          37.6
   4            85.5           37.1                81.0           37.7
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Figure 2.2 Normalized characteristic impedances Zoe and Zoo versus designed bandwidths with  ripple 

level 0.1dB.(a) N = 3. (b) N = 5. 
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Fig. 2.2(a) and 2.2(b) show the variations of normalized characteristic impedance 

Zoe and Zoo versus designed bandwidths with Chebyshev response, ripple level 0.1dB, 

N = 3 and N = 5, respectively. The results are obtained by using the approximation 

condition (2.5). As shown in the figures, the normalized impedance Zoe of each coupled 

stage is increased by the improved formulas, thus increased the coupling factor. The 

largest variation of normalized Zoe is occurred at the end stage. 

Next, we proceed to synthesize the parallel-coupled microstrip wideband filters. 

All the filters are designed on an RT/duroid 6010 substrate with εr = 10.2 and thickness 

d = 1.27mm. Fig. 2.3 plots the bandwidth decrement against the designed specification. 

The test vehicle includes a third- and a fifth-order Chebyshev filters of ripple level 

0.1dB. In simulation by the full-wave simulator IE3D [10], the responses are obtained 

by discretizing the circuits with twenty and forty cells per wavelength, and they are 

found indistinguishable.  

In Fig. 2.3, the curves denoted by “classical” are of filters obtained by (2.4) with θ 

= π/2, and those by “improved” are of filters synthesized by (2.4) and (2.5). When the 

filter order N = 3 and the designed bandwidth is less than 25%, the bandwidth 

decrement is insignificant. If ∆ is increased to 35%, however, the classical formulas 

produce a fractional bandwidth with 5% less than the specification. The bandwidth 

decrement deteriorates as the filter order or the designed ∆ is increased. Upon the 

requirement of ∆ = 70%, in the classical design, the bandwidth decrements are close to 

19% and 25% for N = 3 and N = 5, respectively, while in our proposed equations, the 

decrements are only about 5% and 12.5%.  
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Fig. 2.3 Bandwidth decrement versus designed bandwidth from simulation responses of a third- 

and fifth-order Chebyshev filters with 0.1dB ripple level. 

 

 

Finally, we examine the quality of the passband responses for filters designed with 

(2.4) and (2.5). Fig. 2.4 plots the simulation and measured responses for a third-order 

Chebyshev filter, and they show a very good agreement. Detailed data show that the 

simulated and measured results have fractional bandwidths of 48.4% and 48.2%, 

respectively, which are close to the designed bandwidth 50%. The measured results of 

a filter designed by classical formulas are also plotted for comparison. Its fractional 

bandwidth is only 41%. 

Fig. 2.5(a) plots the results for a fifth-order filter. Again, the simulation and 

measured responses have a good agreement, and fractional bandwidths of 44.4% and 

44%, respectively. For the filter based on the classical design, the measured response 

shows ∆ = 38%. 
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Fig. 2.4  Comparison of responses for third-order filters designed by the improved and classical formulas. 

The designed bandwidth is 50% and ripple level is 0.1dB. The substrate has εr = 10.2 and thickness d = 

1.27mm. 
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(b) 
 

Fig. 2.5 (a) Comparison of responses for fifth-order filters designed by the improved and classical 

formulas. The designed bandwidth is 50% and ripple level is 0.1dB. The substrate has εr = 10.2 and 

thickness d = 1.27mm. (b) Photograph of the fifth-order filter. 
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Chapter 3 

Insertion Loss Function Synthesis of 

Maximally Flat Parallel-Coupled Line 

Bandpass Filters 
 

 

Insertion loss (IL) functions are derived for synthesis of microstrip 

parallel-coupled line bandpass filters with maximally flat responses. The derivation is 

performed by successively multiplying the ABCD matrices of all coupled stages 

instead of using J-inverter equivalent circuits. Simultaneous equations for determining 

line width and line spacing of the coupled stages are established by total Q (QT) of the 

filter specification and comparing the IL function with the canonical form. The results 

are provided for filters of order N ≤ 6. Two filters with fractional bandwidths ∆ = 30% 

and a filter with ∆ = 40% are synthesized and demonstrated by simulation using an EM 

full-wave software package, while measurements are further performed for one of 

them. The results show very accurate bandwidths. The under-determined conditions 

leave several degrees of freedom in choosing the circuit dimensions. By properly 

utilizing these degrees of freedom, the problem resulted from the tight coupled-line 

dimensions can be resolved by gathering all difficulties to the end stages and 

employing tapped input/output to replace the end stages. Two filters with ∆ = 40% and 

50% are fabricated to proof the feasibility. The measured results show very good 

agreement with the theoretical responses. 
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3-1 The Maximally Flat Insertion Loss Function 

For the N-order parallel-coupled microstrip filter in Fig. 3.1, let the generator and 

load impedances be identical and normalized to unity. Since a maximally flat response 

is assumed, the circuit layout is symmetric about its center and, when it is characterized 

by a composite ABCD matrix, A = D holds. It can be shown that the IL function can be 

written as [6] 

 

22 )(1]
2

)([1 N

L

o CBj
P
P

Ω+=
−

+=     (3.1) 

 

where j = 1− , N is order, Po is power available from source, and PL is power delivered 

to load.  

 

1 2
N N +1

 
 

Fig. 3.1 An N-order parallel-coupled line filter. 

 

θ

oei ooi

Wi

Gi Z    ,Z

 
 

Fig. 3.2 The ith coupled stage has line width Wi and gap Gi. Even and odd mode characteristic 

impedances are respectively Zoei and Zooi. 
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Of an Nth-order filter, the impedance matrix elements of the ith coupled stage in 

Fig. 3.2 can be derived [7] as  

 

( ) θcot
22211 ooioeiii ZZjZZ +−==                               (3.2a) 

( ) θcsc
22112 ooioeiii ZZjZZ −−==                               (3.2b) 

 

where θ is its electrical length and Zoei and Zooi are the characteristic impedances of the 

even- and odd-modes, respectively. Here, the even- and odd-mode phase velocities for 

all coupled stages are assumed identical. From (3.2a) and (3.2b), the ABCD matrix can 

be obtained as 
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q = cotθ                                                       (3.3b) 
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The composite ABCD matrix of an N-order filter can be obtained by successively 

multiplying the N+1 ABCD matrices as follows: 
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As N becomes large, the result of (3.4) can be very tedious and complicated. If the 

matrix entries are expressed in terms of q, however, the results become much simpler. 

Substituting (3.3a) for all stages into (3.4) yields 
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Where 
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when N is odd, and 
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when N is even. The coefficients of each polynomial are functions of Si and Ti. The 

object of (3.5) is to find conditions for determining Zoei and Zooi, and hence geometries 

of the coupled stages. 
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3-1-1 First-order Filters: 

When N = 1, the composite ABCD matrix is a product of two identical ABCD 

matrices. It can be derived that  
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Comparing (3.6) with the canonical form (3.1), we have  
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12 1

3
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Substituting (3.7) into (3.6) yields the IL function 
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The condition for solving T1 can be obtained by imposing the given 3-dB bandwidth to 

(3.8). This will be addressed later. 

 

3-1-2 Third-order Filters: 

For a third-order filter, S1 = S4, S2 = S3, T1 = T4, and T2 = T3. The composite ABCD 

matrix can be obtained by multiplying the ABCD matrices of the leading two stages, 

and post-multiplying the resulted matrix by itself with indices 1 and 2 being 
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interchanged. The result can be written as 
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Where 
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Matching (3.9a) with the canonical form (3.1), we reserve only the cos3θ/sinθ term, i.e., 

enforce h1 = 0 and h2 = h3, to eliminate the dependence of the IL function on sinθcosθ 

and sinθcos3θ. It leads to the following two conditions: 
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Inserting (3.10b) and (3.9d) into (3.9a) yields 
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The variable S1 is purposely kept in (3.11) since it is useful in expressing the IL 

function in a general form. Note that there are four unknowns to be determined by only 

three equations, i.e., (3.10a), (3.10b), and (3.11) from given BW. Thus we have one 

degree of freedom in choosing the circuit dimensions. 

 
3-1-3 Fifth-order Filters: 

 When N = 5, from the circuit symmetry, S1 = S6, S2 = S5, S3 = S4, T1 = T6, T2 = T5 

and T3 = T4. It can be derived that 

 

)](
sin

cos)(cossin

)2(cossin)(cos[sin
2

1
2

)(

4

5

4321
5

12
3

12
3

2
2

2
1

ggggg

ggg
TTT

CBj

θ
θθθ

θθθθ

+−+−+

−+
−

=
−

                

                   (3.12a) 

where 

 
4

2332
2

3
4

121
2

11
2

3
2

21 4)()](4[ TSSSTTSSTSTTg −+++−=                                  (3.12b) 

)4()(

)]([4])())[(4(

)]2()2()[4()2)((4

])(2)[]4))[((

2
23

2
1

2
32

2
1

2
32

2
232

4
132

32
2
13

2
2

2
3

2
2

2
3

2
3

2
3

2
2

2
2

2
11

32
2

23132
2

321
2

1
2

23
2

32
2
2

2
2

2
132

2
21

2
1

2
3

2
22

4
132

2
3

2
32

TSSTSSSSTSSTSS

SSSSSTTSTTSTTS

SSTSSSSTSSTTSTSST

TSSTSSTTTSTSSSTg

−−++

−+++−+−−

++++−−+−

−++−+−+−=

        
         

        
( 2

1

                (3.12c) 

      (3.12d) 

)](4[)4(

)()()(4))()(4(

))(())((4)2)(4)((

)2)(4)(()](4)4()[

)24)(()](2)2(

)2()[(])(2)[)((

32
2

32
2

2332
2
1

2
3

2
21

32
22

1
2

3
22

23
2
3

2
21

2
2

2
1

2
31

2
3

2
2232

2
1

2
2

2
231

32
2

1
2
3

2
32132

2
1

2
2

2
1322

2
3

2
23

2
1

2
32

2
1

2
32

2
232

2
13232

2
231

32
2

321
2
1

2
1

2
2132

2
1

2
3

2
3

2
1

2
13

SSTSTSSSSTSSS

SSSTTSTSSTSTTS

STSTTSSTSTSSSTSTSS

SSTSTSSSSSTSSSSST

TSSTSSSSSTSSTSSSSTSS

SSTSSSTTSSSTSTSTg

+−++−

++−+−−−−−

+−−+−−−+−−

−+−−−++−−

+−−−++++

++−−++−−=

2
1

2
1

2
2

2
3

2
2

2
1

2
2

2
1

2
3

2
2

2
3

2
2

        
        
        

(        
        

))()(()(

)())(())((

))()(2())()(2(

)()()(

2
3

2
3

2
2

2
2

2
1

2
11

22
2

2
23

2
1

32
2
3

2
3

22
1

2
132

2
3

2
3

2
2

2
22

2
1

2
2

2
2

2
1

2
13231

2
3

2
3

2
1

2
13221

2
3

2
33

2
2

2
1

2
2

2
2

2
32

2
1

2
1

2
1

2
3

2
214

STSTSTSSTSS

SSSTSTSSSTSTSS

STSTSSSSSTSTSSSS

STSSSSTSSSSTSSSg

−−−+−

−−−−++−−

−−−+−−−+

−−+−+−=

        
        
                          (3.12e) 

 21



 
Matching (3.12a) with the canonical form (3.1), we reserve only the cos5θ/sinθ term, 

i.e., enforce g1 = 0, g2 = 2g1 and g1-g2+g3-g4 = 0 to eliminate the dependence of the IL 

function on sinθcosθ, sinθcos3θ and sinθcos5θ. It leads to the following three 

conditions: 
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Inserting (3.13b) and (3.13c) into (3.12a) yields the IL function as 
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Note that in (3.14) there are six unknowns, i.e., S1, S2, S3, T1, T2, and T3, to be 

determined. When the circuit bandwidth is given, there are only four conditions 

including (3.13a) ~ (3.13c). It means that we have two degrees of freedom in choosing 

the circuit dimensions.  

3-1-4 Insertion Loss Function of a Filter of Order N ≤ 6: 

For an Nth-order filter, the IL function can be derived in a similar fashion. The 

simultaneous equations for solving Si and Ti are obtained by saving cosNθ/sinθ term and 

enforcing coefficients for all other terms to zero. It is found that a general expression 

exists for the IL functions of order N ≤ 6: 
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It is interesting to note that in the θ-dependent term of (3.15a), the numerator is cos2Nθ 

and denominator is sin2θ. The former reflects the fact that the leading 2N – 1 

derivatives of (3.15a) with respect to θ are zero at fo, and the latter implies a 

transmission zero existing at 2fo where θ = π. The zero relies on the assumption that all 

coupled-line stages in the filter have only one phase velocity.  

The simultaneous conditions for determining Si and Ti are listed in Table 3.1. It is 

found that S1 = 2 for each N. Note that total number of unknowns for an N-order filter is 

N+1 for odd N and N+2 for even N. As shown in Table 3.1, only [N/2] + 2 conditions 

are obtained, including the condition specified by the bandwidth. Here, [N/2] is an 

integer by truncating N/2. It can be seen that number of equations is less than that of 

unknowns when N ≥  2. For example, when N = 6, eight variables have to be found for 

four of seven coupled stages. Three free dimensions exist since these variables are 

specified by only five equations. This under-determined feature is very helpful for 

circuit realization since both line width and gap size of coupled microstrips have 

resolution limits in fabrication. This will be discussed in Section 3-3. 
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TABLE 3.1 

THE MAXIMALLY FLAT CONDITIONS FOR N = 1 ~ 6. 

N Maximally Flat Conditions Degree of 
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Fig. 3.3 The calculated maximally flat responses of N =1, 3 and 5. Fractional bandwidth ∆ =50%, fo = 5.8 

GHz. 
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3-1-5 The QT Condition and the 3-dB Bandwidth: 

For a maximally flat filter, the total Q (QT) and the 3-dB bandwidth is related by 
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where ω0 is the design frequency, and ω1 and ω2 are the 3-dB cutoff frequencies 

specified by 
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Thus, the electrical length θ can be written in terms of QT as 
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and KN in (3.15a) can be derived as 
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This is called the QT condition herein. For demonstration, based on (3.15a) and (3.19), 

Fig. 3.3 plots the calculated maximally flat responses for N = 1, 3 and 5 with ∆ = 50% 

and fo = 5.8GHz. The inserted frame shows the detailed passband performance.  

The synthesis method can be applied to Chebyshev filters as well. For example, 

when N = 3, the expressions of h1, h2, and h3 in (3.9a) are then specified by constants 

associated with the ripple level. Detailed results will be reported later in Chapter 4. 
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3-2 Three Examples 

A third-order filter α  and a sixth-order filter β are synthesized with ∆ = 30%, and 

the fifth-order filter χ is synthesized with ∆ = 40% for validating the formulation. The 

center frequency is fo = 5.8GHz. Simulated results by the IE3D [10] are presented for 

three circuits, while measurements are further performed for filter α. 

 
3-2-1 Filter α:  

When N = 3, the QT condition (3.19) gives 
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where (3.10a) is used and, from (3.18), θ = 1.3352 radian. Inserting (3.10b) into (3.20) 

yields 
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There is one degree of freedom in finding the solution. Fig. 3.4 plots the solutions of S2 

and T2 for T1 ranging from 0.9 to 1.3. Referring to (3.3c) and (3.3d), we have Zoei = (Si 

+ Ti)×Zo/2 and Zooi = (Si − Ti)×Zo/2. Obviously, not all roots shown in Fig. 3.4 are 

realizable using the standard microstrip technology. Realizable Zoei and Zooi depend on 

structural parameters, and obviously Zo is the dominant factor. Suppose that the filters 

are designed on a substrate with εr = 10.2 and thickness d = 1.27mm. According to 

resolution of our fabrication facilities, G/d and W/d must be no less than 0.1. When Zo = 

50Ω and 90Ω, Zoe and Zoo for the first and second stages are plotted together with the 

design graph in Fig. 3.5. As T1 is increased, values of Zoe1, Zoe2, and Zoo2 increase while 

that of Zoo1 decreases. If Zo = 50Ω is used, the gap size G/d for stage 1 will be no larger 

than 0.1. If both stages are required to have G/d ≥  0.1, for Zo = 90Ω, value of T1 must be 

between 1.03 and 1.06. Therefore, the solution is chosen as S1 = 2, T1 = 1.043, S2 = 

0.895 and T2 = 0.336. The corresponding modal characteristic impedances are listed in 

Table 3.2. 
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Fig. 3.4 Possible roots for S2 and T2 with respect to T1 for a third-order filter with ∆ = 30% and ∆ = 50%. 

 

 

 

TABLE 3.2 

 THE CHOSEN SOLUTIONS AND MODAL CHARACTERISTIC IMPEDANCES OF EACH COUPLED STAGE OF 

FILTERS α, χ AND β  

 

Filters 1st stage 2nd stage 3rd stage 4th stage 

α 
N = 3 
∆ = 30% 
Zo = 90Ω 

S1 = 2 
T1 = 1.043 
Zoe1 = 136.93Ω
Zoo1 = 43.07Ω 

S2 = 0.895 
T2 = 0.336 
Zoe2 = 55.40Ω 
Zoo2 = 25.16Ω 

Same as the 
2nd stage 

Same as the 
1st stage 

χ 
N = 5 
∆ = 40% 
Zo = 50Ω 

S1 = 2 
T1 = 1.454 
Zoe1 = 86.35Ω 
Zoo1 = 13.65Ω 

S2 = 1.32 
T2 = 0.72 
Zoe2 = 51Ω 
Zoo2 = 15Ω 

S3 = 1.321 
T3 = 0.447 
Zoe3 = 44.2Ω 
Zoo3 = 21.85Ω

Same as the 
3rd stage 

β 
N = 6 
∆ = 30% 
Zo = 90Ω 

S1 = 2 
T1 = 1.23 
Zoe1 = 145.35Ω
Zoo1 = 34.65Ω 

S2 = 0.96 
T2 = 0.51 
Zoe2 = 66.15Ω 
Zoo2 = 20.25Ω 

S3 = 1.25 
T3 = 0.4 
Zoe3 = 74.25Ω
Zoo3 = 38.25Ω

S4 = 1.65 
T4 = 0.465 
Zoe4 = 95.18Ω 
Zoo4 = 53.33Ω 
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Fig. 3.5  Root loci for Zoe and Zoo of the first and second stages of filter α when Zo = 50 Ω and 90 Ω. 
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Fig. 3.6 (a) Theoretical and measured responses of filter α. (b) Photograph of the fabricated circuit. fo = 

5.8GHz, N = 3 and ∆ = 30%. Circuit dimensions: W1 = 0.24 mm, G1 = 0.15 mm, W2 = 1.45 mm, G2 = 0.13 

mm. The line width of the quarter-wave transformer is 0.8mm. Substrate: εr = 10.2, thickness = 1.27 

mm. 
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Fig. 3.6(a) shows the theoretical and measured results of filter α. Quarter-wave 

transformers are used to match Zo = 90 Ω to 50 Ω at the input and output ports. In Fig. 

3.6(a), the curve denoted by “theoretical” is obtained by (3.11), and those by “present” 

and “conventional” are measured responses of filters synthesized by the present 

method and the conventional method [7], respectively. The “present” response matches 

with the “theoretical” maximally flat response very well. The excess poles of |S11| 

could result from the unequal even- and odd-mode phase velocities of the microstrip 

coupled stages. Detailed data show that the measured “present” filter has ∆ = 30.2%, 

very close to the design. The filter based on the conventional method [6-7] has ∆ = 26%, 

mainly due to the use of frequency independent J-inverters for the coupled-line stages. 

This is consistent with the results reported in [13]. Fig. 3.6(b) is photograph of filter α. 

 

3-2-2 Filter χ:  

For a fifth-order filter, the QT condition is obtained as 
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Using (3.22) and the maximally conditions (3.13a) ~ (3.13c), the maximally flat 

responses are well specified. From (3.18), θ = 1.2566 radian. There are two degrees of 

freedom for choosing the solutions. Fig. 3.7 plots the filtered solutions of S2, T2, S3 and 

T3 for T1 ranging from 1.4 to 1.75. When Zo = 50 Ω, Zoe and Zoo for the first, second and 

third stages are plotted together with the design graph in Fig. 3.8. It is found the gap 

size G/d for stage 1 is always less than 0.1 even the degrees of freedom in choosing the 
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solution are fully utilized. However, we choose a solution for the 5-order filter for 

validating the circuit synthesis. The characteristic impedances for each coupled stages 

are listed in Table 3.2 and detailed dimensions are in the figure caption of Fig. 3.9. 

Since some gap sizes, G1 = 0.001 mm and G2 = 0.005 mm, are far beyond the best 

resolution of our fabrication facilities, only simulation responses are provided. Fig. 3.9 

shows the theoretical and simulated results of this filter. If the conventional method is 

used, upon the requirement of ∆ = 40%, the bandwidth decrement could close to 10% 

[13]. While in our proposed method, the bandwidth is 40.5% which very close to the 

specification.  
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Fig. 3.7 Possible roots for the 2nd and 3rd coupled stages of the fifth-order filter with ∆ = 40%. 
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Fig. 3.8 Root loci for Zoe and Zoo of the first, second and third stages of the fifth-order filter with ∆ = 40% 

and Zo = 50 Ω. 
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Fig. 3.9 Simulated and theoretical responses of the synthesized filter χ. fo = 5.8GHz, N = 5, ∆ = 40%. 

Circuit dimensions: W1 = 0.767 mm, G1 = 0.001 mm, W2 = 1.94 mm, G2 = 0.005 mm, W3 = 2.1 mm, G3 = 

0.1 mm. 
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3-2-3 Filter β:  

For a sixth-order filter, the QT condition is 
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There are three degrees of freedom for choosing the solutions. We take T1, S2 and T2 as 

sweep variables in solving the simultaneous equations. If solutions with tough 

structural parameters are removed, the rest S2 ranges from 0.49 to 1.54 and T2 from 

0.28 to 0.61, for 1.08 ≤ T1 ≤ 1.7. Three sets of solutions with (S2, T2) = (0.49, 0.28), 

(0.96, 0.51) and (1.54, 0.61) are plotted in Fig. 3.10. Based on the design graph in Fig. 

3.5 and Zo = 90Ω, we choose a solution for filter β for validating the circuit synthesis. 

As shown in Fig. 3.11, the simulation results match very well with the theoretical 

prediction. The simulated response has a BW of 30.3%, i.e., only 0.3% away from the 

specification. The characteristic impedances for each coupled stage are listed in Table 

3.2 and detailed dimensions are in the figure caption. Since some gap sizes, G1 = 

0.06mm and G2 = 0.02mm, are far beyond the best resolution of our fabrication 

facilities, only simulation responses are provided. 
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Fig. 3.10 Root loci of S3, T3, S4 and T4 for a sixth-order filter with ∆ = 30% for (S2, T2) = (0.49, 0.28), 

(0.96, 0.51) and (1.54, 0.61). 
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Fig. 3.11 Simulation and theoretical responses of filter β.  fo = 5.8GHz, N = 6, ∆ = 30%. Circuit 

dimensions: W1 = 0.24 mm, G1 = 0.06 mm, W2 = 1.27 mm, G2 = 0.02 mm, W3 = 0.92 mm, G3 = 0.47 mm, 

W4 = 0.55 mm, G4 = 0.78 mm. 
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3-3  Implementation Using Tapped Input/Output 

In many cases, such as Fig. 3.11, line widths or gaps are too small to fabricate, 

even the degrees of freedom in choosing the solution are fully utilized. This situation 

becomes more severe when order or BW is increased. Fortunately, the tapped 

input/output [15-16] can be used to resolve this problem. Theoretically, the tapping 

structure can realize a very wide range of the coupling coefficients. Thus, criterion for 

choosing the solution becomes to release dimensions of middle stages and locate the 

difficulties to the end stages as much as possible.  

Since the derivation of the IL function (3.15) is based on a cascade of coupled 

stages, we have to establish the equivalence between a tapped resonator and a coupled 

stage. For the tapped structure in Fig. 3.12, let l be the distance between the tap point 

and one end of the resonator and Z1 be its characteristic impedance. It can be shown 

that its impedance matrix elements can be written as 

 

)cotcos(sincos111 LjZZ ββββ lll +−=    (3.24a) 

L
ZjZZ

β
β

sin
cos1

2112
l

−==       (3.24b) 

LjZZ βcot122 −=        (3.24c) 

 

At the same time, the Z matrix elements of a coupled-line stage are (3.2a) and (3.2b). 

The equivalence of these two two-ports can be established by letting θ = βL = π/2, l = 0 

and Z1 = (Zoe – Zoo)/2. The equivalence is, however, valid only for a finite frequency 

band. Fig. 3.13 investigates the performance of the equivalence. Two coupled stages 

with (Zoe, Zoo) = (92.88Ω, 7.12Ω) and (89.68Ω, 10.32Ω) are studied. The sum of Zoe 
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and Zoo is 100Ω since S1 = 2 and Zo = 50Ω is expected. In Fig. 3.13, both cases have a 

maximal |S21| deviation less than 0.08 dB and 0.34 dB within a BW of 50% and 100%, 

respectively. These two tapped line structures will be employed to the following two 

experimental filters. 

 

3-3-1 Filter δ: 

 This filter is designed to have N = 3 and ∆ = 50%. Based on (3.18), θ = 1.1781 

radian, the S2 and T2 solutions for T1 varying from 1.1 to 1.6 are shown in Fig. 3.4. For 

realization, the chosen roots and modal impedances are listed in Table 3.3 with Zo = 

50Ω. A tapped resonator with Z1 = 39.68Ω is used to replace the end stages with Zoe1 = 

89.68Ω and Zoo1 = 10.32Ω. Fig. 3.14(a) plots the theoretical, simulated and measured 

responses. They have very good agreement within the passband. Detailed data show 

that the BWs of the simulated and measured results have only 0.5% and –0.5%, 

respectively, away from the theory. The measured midband insertion loss is about 

0.35dB. Photograph of the fabricated filter is in Fig. 3.14(b). Note that the line gap 

0.23mm is much easier to realize than the 0.13mm-gap of filter α. Thus, as compared 

with filter α, there are at least two advantages incorporating the tapped input/output 

into the design. One is that it greatly releases the tough circuit dimensions even though 

the BW is increased from 30% to 50%, and the other is that the impedance transformer 

can be saved since Zo = 50Ω. 
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Fig.3.12 A tapped line treated as a two-port network. 
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Fig. 3.13 Comparison of |S21| responses of tapped lines and coupled stages. 
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Fig. 3.14 (a) Theoretical, simulated and measured responses of filter δ. fo = 5.8GHz, N = 3, ∆ = 50%. (b) 

Photograph of the fabricated circuit. Circuit dimensions: W1 = 2mm, W2 = 0.54mm, G2 = 0.23mm. 
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TABLE 3.3 

THE CHOSEN ROOTS AND MODAL IMPEDANCES OF THE TWO EXPERIMENTAL FILTERS 

WITH TAPPED INPUTS 

 

 
Filters 1st stage 2nd stage 3rd stage 

δ 
N = 3 
∆ = 50% 
Zo = 50Ω 

S1 = 2 
T1 = 1.587 
l = 0 
Z1 = 39.68Ω 

S2 = 2.629 
T2 = 1.112 
Zoe2 = 93.53Ω 
Zoo2 = 37.93Ω 

Same as the 
2nd stage 

γ 
N = 5 
∆ = 40% 
Zo = 50Ω 

S1 = 2 
T1 = 1.715 
l = 0 
Z1 = 42.88Ω 

S2 = 2.619 
T2 = 1.11 
Zoe2 = 93.23Ω 
Zoo2 = 37.73Ω 

S3 = 1.893 
T3 = 0.699 
Zoe3 = 64.80Ω 
Zoo3 = 29.85Ω 
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3-3-2 Filter γ:  

The second experiment is a fifth-order filter with ∆ = 40%. Fig. 3.7 plots the filtered 

roots with θ = 1.2566 radian. The end stages, with Zoe1 = 92.88Ω and Zoo1 = 7.12Ω, are 

replaced with a tapped resonator with Z1 = 42.88Ω. Fig. 3.15(a) plots the theoretical, 

simulation and measured results. All of them show good agreement. The measured 

midband insertion loss is 0.5dB. The BW of the measured response has about 1% less 

than the theoretical calculation by (3.15). The required minimal gap of this filter is 

0.22mm. If a coupled stage is used instead, the required line gap will be less than 

0.01mm. Fig. 3.15(b) is the photograph of the experiment circuit. 
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Fig. 3.15 (a) Theoretical, simulated and measured responses of filter γ. fo = 5.8GHz, N = 5, ∆ = 40%. (b) 

Photograph of the fabricated circuit. Circuit dimensions: W1 = 1.7mm, W2 = 0.58mm, W3 = 1.2mm, G2 = 

0.22mm, G3 = 0.22mm. 
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Chapter 4 

Direct Synthesis of Parallel-Coupled Line 

Bandpass Filters with Chebyshev 

Responses 
 

 

Parallel-coupled line filters with Chebyshev responses are synthesized based on 

derived insertion loss (IL) function method. The synthesis provides improvement in 

prediction of circuit bandwidth. The IL function is obtained by converting the product 

of the ABCD matrices of all coupled stages. Simultaneous equations for Chebyshev 

filters of order N ≤ 5 are derived for calculating geometric parameters of the coupled 

stages associated with specific in-band ripple levels. The results are provided for filters 

of order N ≤ 5. Emphasis is also placed on the trade-off between fractional bandwidth 

∆ and in-band ripple level. When N ≥  4, the passband response is specified by a 

maximal ripple level. A filter with fractional bandwidths ∆ = 50% and two filters with 

∆ = 40% are fabricated and demonstrated by simulation using an EM full-wave 

software package. Tapped line inputs are employed to these circuits since line widths 

or gaps for certain stages are beyond the common fabrication resolution. The measured 

results show very good agreement with the theoretical responses. 
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4-1 The Chebyshev Insertion Loss Function 

Let both the generator and load impedances of the synthesized circuit be 

normalized with respect to system impedance Zo and identical to unity. The ABCD 

matrix of the ith coupled stage in Fig. 3.2 can be written as  
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where j = 1− , θ is its electrical length, q = cotθ, Si = (Zoei + Zooi)/Zo, Ti = (Zoei – Zooi)/Zo, 

and Zoei and Zooi are the characteristic impedances for the even- and odd-modes, 

respectively, of the coupled lines. The line width Wi and gap Gi are target variables to 

be solved by the synthesis. Here, the even- and odd-mode phase velocities for all 

coupled stages are assumed identical. 

The composite ABCD matrix of an Nth-order filter can be obtained by 

successively performing N multiplications of the N + 1 ABCD matrices. As reported in 

Chapter 3, each matrix entry is a finite power series of q with coefficients that are 

functions of Si and Ti. Since the circuit is symmetric, it can be shown that the IL 

function can be written as 
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where Po is power available from source and PL is power delivered to load. The general 

insertion loss function for a Chebyshev filter can be expressed as 
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where 1+ε2 is the ripple level and TN (x) is the Chebyshev polynomial of order N of the 

first kind. The object of (4.2) is to match (4.3) and hence to establish simultaneous 

conditions for determining Zoei and Zooi. 

 

4-1-1 Second-order Filters: 

As an example, the insertion loss function of a second-order Chebyshev filter is 

derived. When N = 2, the composite ABCD matrix involves two matrix multiplications. 

From the circuit symmetry, S1 = S3 and T1 = T3. It can be derived that  
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where 
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Substituting (4.4a) into (4.2), the insertion loss function can be written as 
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where 
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In (4.5c), QT is the total Q of the filter and θm is the electrical length of a coupled stage 

at passband edges. A variable k is purposely added in (4.5a), since it provides an extra 

freedom in matching coefficients in (4.5a) with (4.3) and preserves the given 

Chebyshev response at the same time. Note that x in (4.5b) defines the mapping θ = θm 

to x = 1.  

Substituting T2(x) into (4.3), the insertion loss function can be written as  
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Matching (4.5a) with (4.6) and enforcing kh1 = 1, kcos2θm (2h1 – h2) = 2 and h2 = h1 + h3. 

It leads to the following three conditions:  
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Inserting (4.7a) ~ (4.7c) into (4.5a) yields 
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The term [T2(x)]2 will provide an equal ripple response in the passband, and its 

coefficient [2T1
2T2ksinθ]–1 not only defines the ripple level but also implies a 

transmission zero at 2fo where θ =π. Due to the frequency variable 1/sinθ, the 

uniformity of the ripple levels is deteriorated when N ≥ 4. This point will be addressed 

in Section 4-2. Note that in (4.7a) ~ (4.7c) there are five unknowns, i.e., k, S1, S2, T1 and 

T2, to be determined. By imposing the given ripple level to (4.8), the system has four 

conditions. If in (4.5a) the variable k is not introduced, the system will be fully 

determined. 

 

4-1-2 Filters of Order N ≤ 5: 

For an Nth-order parallel-coupled line filter, the IL function can be derived in a 

similar fashion. Note that it needs N+1 2×2 matrix products obtain the composite 

ABCD matrix. When N is large, the expressions for the matrix entries can be long and 

tedious. One can properly utilize the structural symmetry to reduce the times of matrix 
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multiplication. The simultaneous conditions for solving Si and Ti are established by 

matching coefficients of the cosnθ term of the IL function with those of Chebyshev 

polynomial, as shown above. We derive the IL functions for such filters of order N ≤ 5. 

The results are 
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when N = 1, and 
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when N = 2 ~ 5. The simultaneous conditions for determining Si and Ti are listed in 

Table 4.1 It is found that S1 = 2 for each N. Note that total number of Si and Ti for an 

N-order filter is N+1 for odd N and N+2 for even N. The number of conditions, 

including the specified ripple level, is less than that of unknowns, when N ≥  4. In 

addition, the variable k introduces an extra degree of freedom in the coefficient 

matching. Thus, the total degrees of freedom for N ≤ 5 are [N/2], where [N/2] is an 

integer by truncating N/2. This under-determined feature is very helpful for circuit 

realization. This will be addressed in Section 4-3. 
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TABLE 4.1 

THE CHEBYSHEV CONDITIONS FOR N = 1 ~ 5. 

 

N Chebyshev Conditions Degree of 
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4-2 The Ripple Level and Bandwidth 

The 1/sinθ term in (4.10) will alter the specified ripple level R to a certain extent. 

When N ≤  3, a method for correcting R will be formulated. For N ≥  4, the 1/sinθ term 

also deviates the uniformity of passband ripples slightly. A strategy for its 

improvement will be investigated.  

 

4-2-1 Ripple Level Specified by θm : 

Take the second-order filter as an example again. The passband ripple level can be 

obtained by evaluating the IL function (4.8) at θ = θm, edges of the passband, i.e., 
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It can be rewritten as 
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This is called the ripple level condition herein. Based on (4.7a) ~ (4.7c) and (4.12), the 

variables S1, S2, T1, and T2 can be solved. For example, if R = 3dB and fractional 

bandwidth ∆ = 50%, the solutions are S1 = 2, T1 = 0.83, S2 = 0.981 and T2 = 0.787 with 

k = 1. 

The dashed curves denoted by θm in Fig. 4.1 are the calculated Chebyshev 

response (4.8) for a filter with center frequency fo = 5.8 GHz. Detailed passband in the 

inserted frame shows that ∆ is accurately obtained, but the ripple level is 0.3dB less 
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than the specification. A further study shows that if a ripple level of 0.1dB is given, the 

decrement is about 0.01dB. 

 

4-2-2 Ripple level specified by θd : 

If a little BW decrement is acceptable, the decrement of R can be recovered. Let θ 

= θd be the frequencies where peak ripples occur. Thus, the positions of θd can be found 

by  
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When N = 2, it leads to x = cosθd /cosθm = 0 or θd = π/2. Enforcing the specified ripple 

level R at θ = θd, the ripple level condition (4.12) becomes 
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The solid curve in Fig. 4.1 shows the calculated Chebyshev responses based on 

(4.14). Given R = 3dB and ∆ = 50%, the calculated ripple level is exactly 3 dB as 

expected. It is worth mentioning that the new solutions are S1 = 2, T1 = 0.803, S2 = 

0.955 and T2 = 0.777 for k = 1, and that the new response has ∆ = 49.7%, a little bit 

smaller than the specification. 

When N = 3, there are two symmetric peak ripples locating on both sides of the 

center frequency. Fig. 4.2(a) investigates the influence of θd formulation on the 
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calculated BWs for R = 0.5dB. Detailed data show that when ∆ = 30%, 40%, 50%, and 

60%, the calculated BWs are 29.93%, 39.77%, 49.70% and 59.42%, respectively. 

Further studies for designed bandwidth ∆ = 50%, the θd formulation gives ∆ = 49.7% 

for R varing from 0.1 to 3dB as shown in Fig. 4.2(b). Table 4.2 summarizes the results 

of Fig. 4.2(a) and 4.2(b). The results imply that the BW decrement will be increased as 

the designed BW increases, but it seems irrelative to the given ripple level. In addition, 

when N ≤ 5, it is found that the BW decrements are more or less the same for filters 

with different orders. 

When N = 4 and 5, there are 3 and 4 symmetric peak ripples, respectively, locating 

in the passband. Thus, both cases have two ripple levels deviating from the given 

specification, again, due to the 1/sinθ term in (4.10). 

When N = 4, the three 1/|S21| peaks locate at x = 0, ±0.707 or θd = π/2, 

±cos-1(0.707×cosθm), obtained by enforcing the first derivative of T4(x) to zero. If θd = 

π/2, or f = fo, is chosen to locate the assigned ripple level, the other two peak levels will 

exceed the specification slightly. On the other hand, if θd = ±cos-1(0.707×cosθm) are 

used, the central peak ripple will be slightly less than specification. This θd will be 

preferred since the given ripple level defines the maximal in-band ripple level. Fig. 4.3 

shows the detailed |S21| responses of fourth-order filters based on the θd formulation for 

∆ = 50% and R = 0.1, 0.5, and 1 dB. When R = 1dB, the central peak ripple level is 

0.93dB, only 0.07dB away from the design. When R is small, the ripple level 

decrements seem to be negligible. 
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Fig. 4.1 Calculated Chebyshev responses with ripple levels specified by θm and θd. N = 2, R = 3dB, ∆ = 

50%, fo = 5.8 GHz. 
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Fig. 4.2 Calculated responses of third-order Chebyshev filters, with ripple levels specified by θd. (a) 

With ripple level R = 0.5dB. (b) With designed bandwidth ∆ =50% . 
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TABLE 4.2 

THE INFLUENCES OF USING θd ON RIPPLE LEVEL DESIGN OF THIRD-ORDER FILTERS 

 

Given ripple level = 0.5dB 

Given bandwidth (%) 30 40 50 60 
Calculated bandwidth 
 with IL function (%) 29.93 39.77 49.7 59.42 

Given bandwidth = 50% 

Given ripple level (dB) 0.1 0.5 1 2 3 

Calculated bandwidth 
with IL function (%) 49.7 49.7 49.7 49.7 49.7 
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Fig. 4.3 Detailed |S21| performance within passband of fourth-order filters with ripple levels specified by 

θd. ∆ = 50%, R = 0.1, 0.5 and 1dB. 
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4-3 Three Examples 

Three filters are synthesized and fabricated at fo = 5.8 GHz for demonstration. A 

third-order filter η is designed with ∆ = 50% and R = 0.5dB, a fourth-order filter ξ and 

a fifth-order filter ψ are synthesized with ∆ = 40% and R = 0.1dB. The full-wave EM 

software package IE3D [10] is used for circuit simulation. The θd formulation is used 

for defining the maximal in-band ripple level. 

 

4-3-1 Filter η (N = 3, ∆ = 50%, R = 0.5dB): 

 When N = 3, four geometric variables have to be solved for two of four coupled 

stages. With θd = cos-1(cosθm/2), the ripple level condition becomes 
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                          (4.15) 

 

From (4.5c), we have θm = 1.1781 rad, and hence θd = 1.3783 rad. Based on the 

three conditions listed in Table 4.1 and (4.15), possible roots for T1, S2 and T2 with 

respect to k ranging from 0.3 to 2.0 are plotted in Fig. 4.4. Obviously, not all roots 

shown in Fig. 4.4 are practical using the standard microstrip technology. Note that 

geometry of coupled stage i will be determined by Zoei = (Si + Ti)×Zo/2 and Zooi = (Si − 

Ti)×Zo/2, with Zo being the system impedance. Suppose that the circuit substrate has εr 

= 10.2 and thickness d = 1.27 mm. Our fabrication facilities require both G/d and W/d 

no less than 0.1. When Zo = 50 Ω, solutions of Zoe and Zoo for the first and second stages 

are plotted together with the design graph in Fig. 4.5, which is very useful for seeking 

adequate roots from realization point of view. As k is increased, values of Zoo1 increases 
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while those of Zoe1, Zoe2 and Zoo2 decrease. As shown in Fig. 4.5, there is no possible 

solution to the first stage. The tapped structure in Chapter 3 can be used to replace the 

end stage with a λ/4 line with characteristic impedance Z1 = (Zoe – Zoo)/2 and tap point 

being at the outer open end. Fig. 4.6 investigates the performance of the equivalence. 

Three coupled stages with (Zoe, Zoo) = (86 Ω, 14 Ω), (86.08 Ω, 13.92 Ω) and (86.5 Ω, 

13.5 Ω) for using in the three experimental filters are studied. All of them have a 

maximal |S21| deviation less than 0.13dB within a BW of 50%. 

With the tapped input/output, criterion for choosing the solution becomes to 

release dimensions of middle stages and locate all difficulties to the end stages as much 

as possible. Thus, the solution is then chosen as S1 = 2, T1 = 1.44, S2 = 3.366 and T2 = 

1.531 with k = 0.3. The corresponding modal characteristic impedances for all stages 

are listed in Table 4.3 with Zo = 50 Ω. The tapped resonator has Z1 = 36 Ω for 

substituting the end stages with Zoe1 = 86 Ω and Zoo1 = 14 Ω. 

Fig. 4.7(a) plots the theoretical, simulated and measured responses. The simulated 

and measured results show good agreement with the theoretical response. The inserted 

frame shows the three detailed |S21| curves within the passband. Detailed data show that 

the fractional BWs of the simulated and measured results have only –0.5% and –1%, 

respectively, away from the theoretical design. In measurement, in-band IL is 0.6 dB, 

and ripple level is close to 0.6 dB. The 0.1 dB deviation causes a 6-dB decrement in the 

|S11| response. Photograph of the fabricated circuit is in Fig. 4.7(b). 
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Fig. 4.4 Possible roots for T1, S2 and T2 with respect to k for a third-order filter with R = 0.5 dB and ∆ = 

50%. 
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Fig. 4.5 Root loci for Zoe and Zoo of the first and second stages of third-order filter when Zo = 50 Ω. 
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Fig. 4.6 Comparison of |S21| responses of tapped lines and coupled stages. 
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Fig. 4.7 (a) Theoretical, simulated and measured responses of filter η. (b) Photograph of the fabricated 

circuit. fo = 5.8GHz, N = 3, ∆ = 50%, R = 0.5dB. Circuit dimensions: W1 = 2mm, W2 = 0.286mm, G2 = 

0.206mm. Substrate: εr = 10.2, thickness = 1.27 mm. 
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TABLE 4.3 

THE CHOSEN ROOTS AND MODAL IMPEDANCES OF THE THREE EXPERIMENTAL FILTERS  

WITH TAPPED INPUTS 

 

Filters 1st stage 2nd stage 3rd stage 

η 
N = 3 
∆ = 50% 
Zo = 50Ω 

S1 = 2 
T1 = 1.44 
l = 0 
Z1 = 36Ω 

S2 = 3.366 
T2 = 1.531 
Zoe2 = 122.43Ω
Zoo2 = 45.87Ω 

Same as the 2nd 
stage 

ξ 
N = 4 
∆ = 40% 
Zo = 50Ω 

S1 = 2 
T1 = 1.443 
l = 0 
Z1 = 36.08Ω 

S2 = 2.803 
T2 = 1.181 
Zoe2 = 99.63Ω 
Zoo2 = 40.53Ω 

S3 = 2.991 
T3 = 1.154 
Zoe3 = 103.63Ω 
Zoo3 = 45.93Ω 

ψ 
N = 5 
∆ = 40% 
Zo = 50Ω 

S1 = 2 
T1 = 1.46 
l = 0 
Z1 = 36.5Ω 

S2 = 3.03 
T2 = 1.284 
Zoe2 = 107.85Ω
Zoo2 = 43.65Ω 

S3 = 3.972 
T3 = 1.388 
Zoe3 = 133.99Ω 
Zoo3 = 64.61Ω 

 

 63



 
4-3-2  Filter ξ (N = 4, ∆ = 40%, R = 0.1dB):  

When N = 4, six variables have to be determined. Let θd = cos−1(0.707×cosθm), 

then the ripple level condition can be derived as 
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mk

TTT

θ
   (4.16) 

 

Two free dimensions exist for this design. One is from that six variables are specified 

by (4.16) and the four Chebyshev conditions in Table 4.1 and the other from k. Since ∆ 

= 40%, θm = 1.2566 rad. We can take k and T1 as sweep variables to solve the 

simultaneous equations. The possible solutions for S2, T2,  S3 and T3 with respect to T1 

are shown in Fig. 4.8(a) ~ 4.8(c) with k = 2, 1 and 0.5, respectively. Observe that the 

values of S3 and T3 drop off with T1, while S2 increases oppositely. The value of T2 only 

varies with k. For each T1, Zoei/Zo is average of the two curves of Si and Ti, and Zooi/Zo is 

half the distance between them.  For implementation, the larger value of Si and larger 

distance between Si and Ti are preferred. Since there are different tendencies for second 

and third stages, compromises must be made in choosing roots. Fig. 4.9 plots the root 

loci for Zoo and Zoe of the second and third stages when Zo = 50 Ω and k = 0.5, 1, and 2. 

The root loci indicate that most of solutions fall into the fan area of G/d ≥  0.1 and W/d 

≥  0.1. We choose a solution with k = 1 for demonstration. Each end stage with Zoe1 = 

86.08 Ω and Zoo1 = 13.92 Ω is replaced by a tapped section with Z1 = 36.08 Ω.  As 

shown in Fig. 4.10(a), the simulated and measured results match very well with the 

theoretical prediction. Detailed data show that both simulated and measured responses 

have BWs of 39.1% and 39.3%, respectively. The circuit photograph is in Fig. 4.10(b). 
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Fig. 4.8. Possible roots for S2, T2, S3 and T3 with respect to T1 for a fourth-order filter with R = 0.1dB and 

∆ = 40%. (a) With k = 2. (b) With k = 1. (c) With k = 0.5. 
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Fig. 4.8(c) 
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Fig. 4.9 Root loci for Zoe and Zoo of the second and third stages of a fourth-order Chebyshev filter with k 

= 2, 1 and 0.5 when Zo = 50 Ω. 
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Fig. 4.10 (a) Theoretical, simulated and measured responses of filter ξ. fo = 5.8GHz, N = 4, ∆ = 40%, R = 

0.1dB. (b) Photograph of the fabricated circuit. Circuit dimensions: W1 = 2mm, W2 = 0.49mm, W3 = 

0.41mm G2 = 0.23mm, G3 = 0.31mm. 
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4-3-3  Filter ψ (N=5, ∆ = 40%, R = 0.1dB): 

 The third experiment is a fifth-order filter with ∆ = 40% and R = 0.1dB. From 

d/dx(T5(x)) = 0, we have θd = cos-1(0.809×cosθm). The ripple level condition is 
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                      (4.17) 

 

Fig. 4.11 plots the filtered roots with θm = 1.2566 radian, R = 0.1dB and k = 0.5. Fig. 

4.12(a) plots theoretical, simulation and measured results. The end stages, with Zoe1 = 

86.5 Ω and Zoo1 = 13.5 Ω, are replaced by tapped λ/4 sections with Z1 = 36.5Ω. All of 

them show good agreement. The measured insertion loss is 0.7dB. The measured BW 

is about 1.9% less than the theoretical calculation by (4.10). Fig. 4.12(b) is the 

photograph of the experiment circuit.  
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Fig. 4.11 Possible roots for the 2nd and 3rd coupled stages of a fifth-order parallel-coupled line filter 

with ∆ = 40%, R = 0.1dB and k = 0.5. 
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Fig. 4.12 (a) Theoretical, simulated and measured responses of filter ψ. fo = 5.8GHz, N = 5, ∆ = 40%, R 

= 0.1dB. (b) Photograph of the fabricated circuit. Circuit dimensions: W1 = 1.97mm, W2 = 0.4mm, W3 = 

0.16mm, G2 = 0.25mm, G3 = 0.39mm. 

 71



 

Chapter 5 

Conclusion 
 

For recovering the BW decrement, new formulas for determining Zoe and Zoo of 

each coupled stage have been derived in Chapter 2 for synthesizing relatively 

wideband filters. A third- and a fifth-order Chebyshev filters with 50% designed 

bandwidth are fabricated and measured. The measurements show that the proposed 

formulas not only provide a significant improvement in predicting the filter bandwidth, 

but also preserve the quality of passband responses. 

As presented in Chapter 2, the realized BWs can be greatly improved, but the BW 

decrement is still not completely resolved. In Chapter 3, parallel coupled-line filters 

with maximally flat responses of order N ≤ 6 are synthesized based on derived insertion 

loss functions. Simultaneous equations for maximally flat responses and the QT 

condition are formulated for determining Zoe and Zoo of each coupled stage. The 

under-determined conditions leave several degrees of freedom in choosing the circuit 

dimensions. By properly utilizing these degrees of freedom, the problem resulted from 

the tight coupled-line dimensions can be resolved by gathering all difficulties to the 

end stages and employing tapped input/output to replace the end stages. Five circuits 

are simulated and three of them are fabricated and measured to demonstrate the 

formulation and circuit synthesis. The measured results manifest very accurate 

bandwidths. 

The formulation in Chapter 3, however, is limited to maximally flat responses. 

Chebyshev filters can have more applications than those of the maximally flat type. 

From Chapter 4, parallel-coupled line filters with Chebyshev responses are directly 
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synthesized for order N ≤ 5 based on derived insertion loss functions. Simultaneous 

equations for Chebyshev responses and the ripple level condition are formulated for 

determining Zoe and Zoo of each coupled stage. The ripple level condition can be 

modified to recover the error of ripple level resulted from the 1/sinθ term in the 

canonical Chebyshev expression. When N ≥ 4, the in-band peak ripple levels of the 

synthesized filters have a slight deviation from design. The deviation is negligible 

when the design ripple level is small. Three circuits are fabricated and measured to 

validate the formulation. The proposed method provides a significant improvement in 

predicting the filter BW and preserve quality of Chebyshev responses. 
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