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正交分頻多工無線網路之資源管理 

 

研究生:林淵斌         指導教授:蘇育德 博士 

國立交通大學電信工程研究所 

中文摘要 

    本文旨在探討正交分頻多工無線網路之資源管理並針對各式頻譜與功率分

配問題提出最佳與次佳的演算法。我們的演算法採取的是使用者去除的概念來解

耦(decouple)多用戶多載波分配的關連性。無線資源分配牽涉到眾多用戶需求條

件與系統參數與設計之選擇及實務考量，其複雜度相當高，在大部分情況下無法

有最佳的解決方案。本文所考量的情境(scenario)為單一基地台與多個移動台用戶

的細胞式通訊系統。 

 
    我們主要解決的問題有下列幾項。第一個問題為「在滿足不同用戶之不同傳

輸率的要求下使用最少的總功率或能量來分配既有的無線電資源（傳輸功率、能

量及次載波）。」其中，我們考慮各通道之增益雜訊比(channel-gain-to-noise-ratio)
之不同，提出最佳與次佳的演算法。第二問題則是試圖在單一用戶尖峰傳輸功率

的限制下對總加權傳輸率極大化。我們提出兩種次佳的頻譜分配演算法，其中之

一利用了對偶分解(dual-decomposition)的方法。第三問題考量了用戶公平性的問

題，因此針對用戶傳輸率總乘積之極大化提出一個次佳演算法。傳輸速率總乘積

之極大化可使系統在傳輸速率總和增加的同時儘可能地維持各用戶一定的傳輸

率! 最後一個問題，我們針對多輸入多輸出的通訊系統提出低複雜度的資源管理

演算法，使系統在滿足用戶之不同傳輸率要求下能讓總傳輸功率極小化。在此多

輸入多輸出的通訊系統中我們採取主對角線塊狀化(block diagonalization)來使其

每一載波通道皆可允許多個用戶在無彼此干擾下傳輸。我們開發的演算法亦應用

了對偶分解法來解決用戶的移除與選擇。與第二個問題的不同是：每一載波可以

保留給多個用戶。基於主對角線塊狀化的特性我們所提出的演算法在保留使用效

率高的用戶之同時亦兼顧了保持其空間通道正交的優勢。對於上述各類資源管理

問題所提出的最佳或次佳分配解我們均分析了其複雜度並以電腦模擬證明所提

出的演算法皆能有甚佳的效能表現。 
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Absract

Algorithms for finding suboptimal and optimal solutions to total power minimization or

capacity maximization resource allocation problems in OFDMA-based networks haven

been studied by many authors. But the complexities of finding the optimal solution

and some suboptimal are prohibitively high and only few numerical examples for low

dimension cases can be found. On the other hand, low-complexity suboptimal solutions

often give unsatisfactory performance.

In this thesis, we propose optimal and suboptimal resource allocation solutions for

OFDMA and MIMO-OFDMA wireless networks. Various design criteria and system

constraints are considered. The corresponding complexities for all suboptimal solutions

are relatively low while that for the optimal algorithm is only moderate high. We

first investigate the problem of transmit power minimization in an OFDMA downlink

network subject to user rates and BER requirements constraints. We provide near-

optimal and optimal solutions based on the dynamic programming and branch& bound

methodologies. The second scenario we consider is a weighted sum rate maximization

problem which is solved via dynamic programming and dual decomposition. We then

proceed to consider the product rate maximization scenario and present a suboptimal

solution. Finally, we consider a total power minimization problem for a MIMO-OFDMA

wireless networks and present a low-complexity solution.
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The main concept in our proposed algorithms can be easily applied to obtain a

near-optimal solution for many similar multi-constraints optimization problem with low

complexity.
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Chapter 1

Introduction

As the demand for high data rate multi-media wireless communications increases, it

also becomes more and more important that one takes into account the energy/spectral

efficiency factor in designing an anti-fading transmission scheme for mobile terminals.

A fast and proper adaptive algorithm in allocating both the physical and MAC layer

resources is essential to provide high quality high rate multiuser transmissions. Because

of its robustness against frequency-selective fading and its flexibility in appropriating the

transmission resources, the OFDM-based Frequency Division Multiple Access (OFDMA)

scheme in which each user is allocated a collection of time slots and sub-carriers for

transmission, has been adopted in several industrial wireless communication standards.

If the allocation is predetermined and static, there may be unused sub-carriers and time

slots if the designated users do not need so many signal dimensions.

When there are limited power and multiple orthogonal channels available for trans-

mitting multiuser/multimedia signal, a proper channel and power allocation scheme is

needed to minimize the average power consumption, co-channel interferences while meet-

ing various users and media’s rate requirement and maintaining the link quality. For an

OFDMA system, this problem is complicated by the fact that a subcarrier (channel)1

is bad, in deep fade and with low channel signal-to-noise ratio (SNR) for one user may

be good (with high channel SNR) for another user. In [1], the authors proposed a sub-

1We shall use the terms subcarrier and channel interchangeably throughout this paper.

1



optimal multiuser subcarrier/bit allocation scheme which minimizes the total transmit

power with rate constraints. They relaxed the discrete-(integer-)rate constraint by al-

lowing time-sharing use of a subcarrier by multiple users–an idealized assumption that

was subsequently used by many investigators. [4] considered a continuous-rate version

of the same problem but forbad the multiple-user-per-subcarrier scenario and suggested

a method for computing the optimal solution. Obtaining the exact optimal solutions

to either problem requires high computing complexity and become impractical for large

channel and/or user constraints. There are many works that studied variations and ex-

tensions of [1] or [4]; each deals with different objective function (maximizing weighted

sum rate [9], utility [12]), constraint (fairness [7], proportional rates [8]), or scenario

(e.g., multi-cell [10], relay-aided [7]). A survey on various dynamic resource allocation

(RA) solutions was recently reported in [6].

In Chapter 3 we present two efficient algorithms for solving the problems of [1] and

[4], i.e., efficient subcarrier, power and rate assignment schemes that satisfy multi-user

multi-media requirements with the minimum total transmitted power are given. The

first algorithm uses a dynamic programming (DP) approach; it is simple and offers

near-optimal performance. The second algorithm invokes the branch-and-bound (B&B)

principle, uses a good initial bound and tight lower bounds along with some complexity-

reduction techniques. It gives the optimal solution with a moderate increase of com-

plexity. Our discourse concentrates on the continuous-rate case but both algorithms

can be used for the discrete-rate case with a minor modification (see Section IV.D).

It is not difficult to see that, through suitable modifications, our algorithms can also

be applied to solve a similar RA problem of maximizing the aggregated throughput or

weighted sum rate with individual power constraints. The rest of this paper is organized

as follows. The ensuing section describes the operation scenarios of concern and gives an

optimization problem formulation. Section III presents the proposed DP-based resource

allocation algorithm and the B&B-based approach is given in Section IV. We also derive
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some useful properties and suggest design guidelines there. Numerical performance of

the proposed algorithm and some existing suboptimal algorithms is presented in Section

V. Finally, we give concluding remarks in Section VI and derive an optimal mono-rate

(single user) power allocation (OMPA) algorithm in Appendix A.

Most of the previous approaches show how to efficiently maximize total transmission

or minimize the total transmitted power under the related constraints of system and

users. In addition to the issue that to minimize total transmitted power under all

users’ constraints can ensure the benefits of users far away from the base station, most

formulated problems and the corresponding solutions are focus on the efficiency issue

such that the users closer to the base station or with higher power capability will get the

most resource/benefits. The fairness issue in resource allocation is addressed in Chapter

4. First, we discuss the problem of maximizing the weighted sum rate under uplink

users’ power constraints. A similar weighted downlink sum rate maximization problem

with a total power constraint has be investigated and the corresponding optimal solution

was known [4]. The problem of maximizing the ergodic rates was discussed in [14].

We propose two efficient suboptimal resource allocation algorithms for the weighted

sum rate maximization problem. The first algorithm is a modification of the DPRA

algorithm, replacing the original cost function and the OMPA algorithm. The sec-

ond solution exploits the dual decomposition method in convex optimization theory.

The resulting algorithm requires lower complexity but suffers from minor performance

degradation. In the second part of chapter 4, the proportion fairness is considered. The

distributed users can negotiate via the BS to make their decisions on the subcarrier usage

cooperatively such that all users jointly agreements are made. This kind of cooperative

problem motivates us to apply the game theory and especially cooperative game theory

can achieve the fairness and maximize the overall system rate [15], [16], and [17].

Fair-rate allocation for classical OFDMA systems based on the Nash bargaining

solution (NBS) have been recently considered in [16]. As the proposed solution was too

3



computational intensive, the number of users was limited to 8 or less. Our DP-based

algorithm is much simpler while its performance is super. The corresponding optimal

solution can still be obtained by the BBRA approach with minor modifications.

Finally, we extend our investigation to MIMO-OFDMA systems, focusing on the

total transmitted power minimization under users’ BER and rate requirements. The

multiple antennas at the base station are built for spatial multiplexing of transmissions

to multiple users in the same time subcarrier. Our precoding scheme is based on the

block diagonalization method. With block diagonalization, each user’s precoding matrix

is designed such that the transmitted signal of that user lies in the null space of all other

remaining users’ and multiuser interference is pre-eliminated. The resource allocation

problem in a MIMO OFDMA system using block diagonalization becomes that of se-

lecting users who can share the same subcarrier for all subcarriers. [19] has discussed

the similar power minimization problem without user selection over each single carrier.

[21] proposed a user selection scheme based on the users’ channel conditions and correla-

tions for MISO systems. Both considered only the single carrier case whence frequency

assignment is not needed. The propose of Chapter 5 is to present a dual decomposi-

tion based low-complexity suboptimal solution which employs a correlation-based user

selection scheme to simultaneously complete the task of user selection and subcarrier

assignment in a MIMO OFDMA system.

4



Chapter 2

Review of Some Optimization

Methodologies

2.1 Introduction to Dynamic Programming

The dynamic programming (DP) was coined by Bellman [22] to describe the tech-

niques which he brought together to study a class optimization problems involving se-

quences of decisions. There have been many applications and further developments

since its inception. In this thesis, we focus on the situations where decisions are made

in stages.

2.1.1 The Basic Problem

We now formulate a general multi-stage statistical decision problem under stochastic

uncertainty. This problem, which is called basic, is very general. In particular, it is not

necessary to require that the state, control, or random parameter take a finite number

of values or belong to a space of n-dimensional vectors. An attractive aspect of dynamic

programming is that its applicability depends very little on the nature of the state,

control, and random parameter spaces. For this reason, it is convenient to proceed

without any assumptions on the structure of these spaces.

We are given a discrete-time dynamic system

xk+1 = fk(xk, uk, wk), k = 0, 1, ..., N − 1 (2.1)

5



where

k the index of discrete time,

xk the state of the system and summarized past information that is relevant for

future optimization, xk ∈ Sk,

uk the control or decision variable to be selected at time k, uk ∈ Ck,

wk a random parameter,

N the horizon or number of times control which is applied,

fk a function that describes the system and in particular the mechanism by which

the state is updated.

The control variable uk is constrained to take values in a given nonempty subset

U(xk) ⊂ Ck, which depends on the current state xk; that is, uk ∈ Uk(xK) for all xk ∈ Sk

and k. We consider the class of policies (also called control laws) that consist of a

sequence of functions

π = {µ0, ..., µN−1} (2.2)

where µk maps state xk into controls µk = µk(xk) and is such that µk(xk) ∈ Uk(xk) for

all xk ∈ Sk. Such policies are called admissible.

Given an initial state x0 and an admissible policy π = {µ0, ..., µN−1}, the states xk

and disturbances wk are random variables with distributions defined through the system

equation

xk+1 = fk(xk, µk(xk), wk), k = 0, 1, ..., N − 1 (2.3)

Thus, for given functions, gk, k = 0, 1, ..., N , the expected cost of π starting at x0 is

Jπ(x0) = E

{

gN(xN) +
N−1
∑

k=0

gk(xk, µk(xk), wk)

}

(2.4)

where the expectation is taken over the random variables wk and xk. An optimal policy

π∗ is one that minimizes the cost; that is,

Jπ∗(x0) = min
π∈Π

Jπ(x0) (2.5)

6



where Π is the set of all admissible policies.

2.1.2 The Dynamic Programming Algorithm

The dynamic programming technique is built upon a very simple idea, the principle

of optimality which can be formally stated by

Principle of Optimality

Let π∗ = {µ∗
0, µ

∗
1, ..., µ

∗
N−1} be an optimal policy for the basic problem, and assume that

when using π∗, a given state xi occurs at time i with positive probability. Consider the

subproblem whereby we are at xi at time i and wish to minimize the “cost-to-go” from

time i to time N

E

{

gN(xN) +
N−1
∑

k=i

gk(xk, µk(xk), wk)

}

(2.6)

Then the truncated policy {µ∗
i , µ

∗
i+1, ..., µ

∗
N−1} is optimal for this subproblem. �

The principle of optimality suggests that an optimal policy can be constructed in

piecemeal fashion, first constructing an optimal policy for the “tail problem” involving

the last stage, then extending the optimal policy to the “tail problem” involving the last

two stages, and continuing in this manner until an optimal policy for entire problem is

constructed. The dynamic programming algorithm is based on this idea: it proceeds

sequentially, by solving all the tail subproblems of a given (time) length.

We now state the dynamic programming algorithm for the basic problem.

The Dynamic Programming Algorithm

For every initial state x0, the optimal cost J∗
π(x0) of the basic problem is equal to J0(x0),

given by the first step of the following algorithm, which proceeds forward in time from

stage 1 to stage N :

J0(x0) = g0(x0),

Jk(xk) = min
uk∈Uk(xk), wk

E{gk(xk, uk, wk) + Jk−1(fx(xk, uk, wk))}, k = 1, ..., N (2.7)

7



where the expectation is taken with respect to wk, which depends on xk and uk. Fur-

thermore, if u∗k = µ∗
k(xk) minimizes the right side of (2.7) for each xk and k, the policy

π∗ = {µ∗
0, µ

∗
1, · · · , µ

∗
N−1} is optimal. �

The term “dynamic programming” coined by Richard Bellman was originally referred

to the process of solving problems where one needs to find the best decisions one after

another. It was later refined to referring to the general approach of nesting smaller deci-

sion problems inside larger decisions. Equivalently, DP means simplifying a complicated

problem by breaking it down into simpler subproblems in a recursive manner. Note that

a dynamic programming algorithm is capable of obtaining the optimal solution only if

the “cost-to-go” can be decomposed into the recursive form of (2.6).

2.2 The Branch and Bound Principle

Solving an NP-hard discrete optimization problem is often an immense job requiring

a very efficient algorithm, and the Branch and Bound (B&B) paradigm is one of the

main tools used in constructing such a solution. A B&B method searches for the best

solution in the complete space of solutions according to a given problem. However,

explicit enumeration is normally impossible due to the exponentially increasing number

of potential solutions. The use of bounds for the function to be optimized combined

with the value of the current best solution enables the algorithm to search parts of the

solution space only implicitly.

At any point during the solution process, the status of the solution with respect to

the search of the solution space is described by a pool of yet unexplored subset of this

and the best solution found so far. Initially only one subset exists, namely the complete

solution space, and the best solution found so far is ∞. The unexplored subspaces

are represented as nodes in a dynamically generated search tree, which initially only

contains the root, and each iteration of a classical B&B algorithm processes one such

node. The iteration has three main components: selection of the node to process, bound
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calculation, and branching. In Fig. 2.1, the initial situation and the first step of the

process are illustrated.

The sequence of these may vary according to the strategy chosen for selecting the

next node to process. If the selection of next subproblem is based on the bound value

of the subproblems, then the first operation of an iteration after choosing the node is

branching. For each of these, it is checked whether the subspace consists of a single

solution, in which case it is compared to the current best solution keeping the best of

these. Otherwise the bounding function for the subspace is calculated and compared

to the current best solution. If the subspace cannot contain the optimal solution, the

whole subspace is discarded. The search terminates when there are no unexplored parts

of the solution space left, and the optimal solution is then the one recorded as ”current

best”
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Figure 2.1: Illustration of the search space for a B&B procedure.
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2.2.1 Terminology and General description

In the following subsection, we consider minimization problems - the case of maxi-

mization problems can be dealt with similarly. The problem is to minimize a function

f(x) of variables (x1 . . . xn) over a region of feasible solutions, S :

min
x∈S

f(x)

The function f is called the objective function and may be of any type. The set of

feasible solutions is usually determined by general conditions on the variables, e.g. that

these must be non-negative integers or binary, and special constraints determining the

structure of the feasible set. In many cases, a set of potential solutions, G, containing

S, for which f is still well defined. A function g(x) often defined on G (or S) with the

property that g(x) ≤ f(x) for all x in S arises naturally. Both S and G are very useful

in the B&B context. Fig. 2.2 illustrates the situation where S and G are intervals of

real numbers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S 
G 

f 

g 

Figure 2.2: The relation between the bounding function g and the objective function f
on the sets S and G of feasible and potential solutions of a problem.

2.2.2 Bounding Function

The bounding function is the key component of any B&B algorithm in the sense

that a low quality bounding function cannot be compensated for through good choices
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of branching and selection strategies. Ideally the value of a bounding function for a

given subproblem should equal the value of the best feasible solution to the problem,

but on account of obtaining this value is usually in itself NP-hard, the goal is to come

as close as possible using only a limited amount of computational effort. A bounding

function is called strong, if it in general gives values close to the optimal value for the

subproblem bounded, and weak if the values produced are far from the optimum. One

often experiences a trade off between quality and time when dealing with bounding

functions: The more time spent on calculating the bound, the better the bound value

usually is. It is normally considered beneficial to use as strong a bounding function as

possible in order to keep the size of the search tree as small as possible.

Bounding functions naturally arise in connection with the set of potential solutions

G and the function g mentioned in above. Due to the fact that S ⊆ G, and that

g(x) ≤ f(x) on G, the following is easily seen to hold:

min
x∈G

g(x) ≤

{

minx∈G f(x)
minx∈S g(x)

}

≤ min
x∈S

f(x) (2.8)

If both of G and g exist there are now choices between three optimization problems,

for each of which the optimal solution will provide a lower bound for the given objective

function. The ”skill” here is of course to chose G and/or g so that one of these is easy

to solve and provides tight bounds.

2.2.3 Branching Rule

All branching rules in the context of B&B can be seen as subdivision of a part of the

search space through the addition of constraints, often in the form of assigning values

to variables. Convergence of B&B is ensured if the size of each generated subproblem is

smaller than the original problem, and the number of feasible solutions to the original

problem is finite. Normally, the subproblems generated are disjoint - in this way the

problem of the same feasible solution appearing in different subspaces of the search tree

is avoided.
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2.2.4 Strategies for Selecting Next Subproblem

The strategy for selecting the next live subproblem to investigate usually reflects

a trade off between keeping the number of explored nodes in the search tree low, and

staying within the memory capacity of the computer used.

If one always selects among the live subproblems one of those with the lowest bound,

called the best first search strategy, BeFS. Fig. 2.3 shows a small search tree -the numbers

in each node corresponds to the sequence. A subproblem P is called critical if the given

bounding function when applied to P results in a value strictly less than the optimal

solution of the problem in question. Nodes in the search tree corresponding to critical

subproblems have to be partitioned by the B&B algorithm no matter when the optimal

solution is identified - they can never be discarded by means of the bounding function.

Since the lower bound of any subspace containing an optimal solution must be less than

or equal to the optimum value, only nodes of the search tree with lower bound less than

or equal to this will be explored.
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Figure 2.3: Search strategies in B&B: the Best-First Search.

Even though the choice of the subproblem with the current lowest lower bound makes

good sense also regarding the possibility of producing a good feasible solution, memory
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problems arise if the number of critical subproblems of a given problem becomes too

large. The situation more or less corresponds to a breath first search strategy, BFS, in

which all nodes at one level of the search tree are processed before any node at a higher

level. Fig. 2.4 shows the search tree with the numbers in each node corresponding to the

BFS processing sequence. The number of nodes at each level of the search tree grows

exponentially with the level making it infeasible to do breadth first search for larger

problems.
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Figure 2.4: Search strategies in B&B: the Breath First Search.

The alternative used is a depth first search strategy, DFS. Here a live node with

largest level in the search tree is chosen for exploration. Fig. 2.5 shows the DFS

processing sequence number of the nodes. The memory requirement in terms of number

of subproblems to store at the same time is now bounded above by the number of levels

in the search tree multiplied by the maximum number of children of any node, which

is usually a quite manageable number. An advantage from the programming point of

view is the use of recursion to search the tree - this enables one to store the information

about the current subproblem in an incremental way, so only the constraints added in

connection with the creation of each subproblem need to be stored. The drawback is

that if the incumbent is far from the optimal solution, large amounts of unnecessary
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bounding computations may take place. In order to avoid this, DFS is often combined

with a selection strategy which is that exploring the node with the small lower bound

first hopefully leads to a good feasible solution.
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Figure 2.5: Search strategies in B&B: the Depth First Search.

2.3 Dual Decomposition method for Non-convex Op-

timization

We consider a non-convex optimization problem defined over domain D, the set of

all non-negative real xj(i) for j = 1, · · · , K and i = 1, · · · , N such that for each i at

most one xj(i) is positive for k = 1, · · · , K, as follows

max
{xj}

N
∑

i=1

K
∑

j=1

fij(xj(i)) =
N
∑

i=1

K
∑

j=1

log2(1 + xj(i)aj,i)

s.t.
N
∑

i=1

xj(i) ≤ Pj

where xj = {xj(1)xj(2) · · · xj(N)} (2.9)

Then the Lagrangian of the above problem can be represented as

L{xj(i),Λ} =
K
∑

j=1

N
∑

i=1

fij(xj(i))−
K
∑

j=1

λj

(

N
∑

i=1

xj(i)− Pj

)

(2.10)
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where Λ = (λ1, λ2, · · · , λK). The Lagrange dual function is given by

g(Λ) = max
{xj}∈D

L{xj(i),Λ} (2.11)

The maximization of L can be decomposed into N independent optimization prob-

lems given by

g′i(Λ) = max
{xj}∈D

{

K
∑

j=1

fij(xj(i))−
K
∑

j=1

λjxj(i),

}

, i = 1, · · · , N (2.12)

The Lagrange dual function can be reformulated as

g(Λ) =
N
∑

i=1

g′i(Λ) +
K
∑

j=1

λjPj. (2.13)

With a fixed Λ, the argument on the right hand side of (2.12) becomes a convex

function of {xj = (xj(1) xj(2) · · · xj(N))}. As a result, we can take the derivative of

the above function with respect to xj(i) and obtain the g′i(Λ) maximization solution

xj(i) =

(

λ′j −
1

aj,i

)+

, (2.14)

where λ′j = 1/(log 2 · λj) and (t)+ def
= max(0, t).

Since for each i = 1, 2, · · · , N only one xj(i) can be positive, we search over all K

possible user assignments for i = 1, 2, · · · , N , and decide that xjo(i) > 0, where jo and

g′i(Λ) are

jo = arg max
1≤j≤K

[

log2(1 + xj(i)aj,i)− λj

(

λ′j −
1

aj,i

)+
]

g′i(Λ) = max
1≤j≤K

[

log2(1 + xj(i)aj,i)− λj

(

λ′j −
1

aj,i

)+
]

(2.15)

We need to modify {λk} to meet the constraints
∑N

i=1 xj(i) = Pj. Even if the constraints

are satisfied there is no guarantee that the solution is optimal unless a convergence

criterion is in place.
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2.4 Efficient Suboptimal Non-convex Optimization

via Dual Decomposition

For the dual decomposition method just discussed, the process to obtain the optimal

solution consists of the following main steps. Step 1. fixed a multiplier vector {λj}. Step

2. for each 1 ≤ i ≤ N , decide the index j∗ whose {xj∗(i)} is maximal among other values

{xj(i) j 6= j∗} which will be forced to zero. In Step 3, based on the result obtained in

Step 2 check if this current multiplier vector is optimal, i.e. if the constraints in 2.9 are

met. If the answer is negative, the search of multiplier vector is needed.

The main ingredients of the above method are (i) releasing the constraints in (2.9)

initially and by applying the dual decomposition approach to obtain a local optimal

solution which takes into account the other N constraints such that only one xj(i) is

positive among 1 ≤ j ≤ K and i = 1, 2, · · · , N , and (ii) finding the multiplier vector

used in the dual decomposition approach to meet the constraints (2.9). The relation

between the decision of which one xji can be positive and a different given multiplier

vector is not obvious such that the search of the optimal multiplier is complicated.

Based on these discussion, we propose an efficient suboptimal algorithm via dual

decomposition. The main concept in our algorithm is that we release the N constraints

in which each constraint denotes only one xj(i) > 0, for 1 ≤ j ≤ K to replace releasing

K constraints {
∑N

i=1 xj(i) ≤ Pj, for 1 ≤ j ≤ K}. In other words, we extend the domain

D such that xj(i) can be positive for 1 ≤ j ≤ K, 1 ≤ i ≤ N .

Then run a finite number of iterations which at most is to be N in order to taking into

count some constraint among the previously released constraints. Within each iteration,

we can get a multiplier vector under the constraints {
∑N

i=1 xj(i) ≤ Pj, for 1 ≤ j ≤ K}

and try to meet one of the released constraints before current iteration. In detail, we

exploit this multiplier vector into dual decomposition and get the efficiency value for
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1 ≤ i ≤ N and 1 ≤ j ≤ K as following.

εj,i = fij − λj(xj(i)) (2.16)

In addition, we have to decide which one among released constraints previously to

be meet with each iteration. We take the sum of efficient values over all 1 ≤ j ≤ K for

all released constraints. We select i∗ whose sum efficiency value ν∗i is largest which is

given by

i∗ = arg max
i∈S

ν∗i

= arg max
i∈S

K
∑

j=1

εj,i (2.17)

where S denotes a set whose elements represent the indices of released constraints. We

decide which xj(i
∗) can be positive in the similar way in optimal dual decomposition

method by (2.15). The difference between ours and optimal dual decomposition method

occurs. In our algorithm, we just take i = i∗ into (2.15) not i = 1, 2, · · · , N . In addition,

the constraint i = i∗ will be not discussed anymore. As a result, after N iterations, the

final solution will meet all the constraints. Detailed procedure is given in the following

table.
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Step 1: (Extend the domain D
by release constraints on only one xj(i) is positive
among 1 ≤ j ≤ K for all 1 ≤ i ≤ N)
Set C(j) = {i | 1 ≤ i ≤ N}, for 1 ≤ j ≤ K,
where m ∈ C(j) represents that xj(m) can be positive
set S = {1, 2, · · · , N} and t = 0

Step 2: (Select one of released constraints for taking into count )

Based on C(j) and
∑N

i=1 xj(i) ≤ Pj for all 1 ≤ j ≤ K,

get a multiplier λt
j for maximization

∑N
i=1 fij(xj(i))

if t < N
i∗ = argi∈Sνi

Set S = S\{i∗}, t = t+ 1, then goto Step 3.
else goto Step 5.
end

Step 3: Decide which xj(i) can be positive for all 1 ≤ j ≤ K,
when given i = i∗, j∗ = arg max εj,i∗ .
goto Step 4

Step 4: (Modify set C(j) for 1 ≤ j ≤ K.)
for j = 1 : K

if j 6= j∗ then C(j)\{i∗} end

end

goto Step 2
Step 5: (Output) a suboptimal solution is obtained

Table 2.1: An efficient suboptimal optimization method for non-convex optimization via
dual Decomposition.

18



Chapter 3

Power Minimization Resource

Allocation Algorithms

This chapter is concerned with a simple but general scenario in which the object is

to allocate the available multiple carriers to multiple users such that the total transmit

power is minimized while each user’s rate and BER requirements are met. As will

become clear in later chapters, the methodologies presented in this chapter serve as

prototype approaches which can be easily modified to solve problems arose from other

similar system design criteria.

3.1 Assumptions and Problem Formulation

3.1.1 Basic Assumptions

We assume that there are N orthogonal subcarriers. C = {1, 2, · · · , N} and d user

data streams with the rate requirements R = {Rj, j = 1, 2, · · · , d} to be transmitted

over an OFDMA downlink, where the required transmission rate of user j is denoted by

Rj. We further assume that the base station and d user terminals are each equipped with

single antenna. The base station assigns a set of subcarriers to each user and determines

the power and number of bits per OFDM symbol to be transmitted on each subcarrier.

The cyclic prefix (guard interval) is long enough to remove all intersymbol interference

caused by multipath propagation. In addition, sharing the same subcarrier by different

users is not allowed. The base station’s resource allocation decision is sent to all users
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through a separate control channel. At each terminal, user can demodulate the signals

over those subcarriers assigned to it. Denoting by cij the bit rate of the ith subcarrier

which serves the jth user, we can express the maximum achievable rate (capacity) cij

using transmitted power pij as

cij = Wi log2

(

1 +
pij|hij|

2

σ2
ij

)

, 1 ≤ i ≤ N, 1 ≤ j ≤ d (3.1)

where Wi is the bandwidth for channel i, |hij|
2 and σ2

ij denote the channel gain and noise

power of the ith channel which serves the jth user. The normalized capacity (rate) rij

of the ith channel when used for serving the jth user is given by

rij =
cij
Wi

= log2

(

1 +
|hij|

2pij

σ2
ij

)

= log2 (1 + aijpij) , (3.2)

where aij = |hij|
2/σ2

ij is the corresponding channel gain-to-noise ratio (GNR).

3.1.2 Problem Formulation

Given the multi-user transmission requirements and channel state information (i.e.,

aij’s), one would like to find the subcarrier assignment and power allocation that min-

imize the total transmitted power. We define the N × d subcarrier assignment matrix

A = [Aij] by Aij = 1 if the ith subcarrier is used to transmit the jth user; otherwise,

Aij = 0. As a subcarrier can only serve one user at a given time interval, Aij is either 1

or 0 and a legitimate channel assignment matrix A must satisfy

d
∑

j=1

Aij ≤ 1,
N
∑

i=1

Aij ≥ 1, 1 ≤ i ≤ N, 1 ≤ j ≤ d (3.3)

For the downlink case, all signals are transmitted from the same base station, hence only

the total transmitter power will be considered. Let P be the power allocation matrix

with (i, j)th entry, pij, then the problem of concern becomes

min
P,A

N
∑

i=1

d
∑

j=1

Aijpij s.t.
∑

i∈C(j)

rij ≥ Rj,
d
∑

j=1

Aij ≤ 1

where C(j) = {i|Aij = 1, 1 ≤ i ≤ N} (3.4)
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Although in reality there is a total power constraint
∑N

i=1

∑d
j=1 pij ≤ Pc, we shall not

consider this constraint to begin with. Solving the problem with the total power con-

straint follows a two-step procedure. In the first step we solve the unconstrained problem

to obtain the required optimal total power and then check if the solution meets the to-

tal power constraint. The problem is solved if the constraint is satisfied; otherwise the

problem does not have an admissible solution and one is forced to go to the second step.

In the second step, one can prioritize users’ transmission requests, modify (decrease)

some rate requirements according to the corresponding latency requirements, or settle

with a suboptimal channel/power allocation to accommodate the total power constraint.

Which of these options is chosen depends on other system design considerations and the

final solution is likely to be obtained by an outer iterative process. As far as this paper is

concerned, however, the total transmit power constraint will not be discussed henceforth.

In the next section, we adopt a DP approach to derive a simple and practical solution

which requires much lower complexity than that of [4] and, more importantly, offers

near-optimal performance.

3.2 Dynamic Programming based Near-optimal Re-

source Allocation

When d = 1 the optimal solution to (4) can be obtained by a water-filling process (for

parallel Gaussian channels). The water-filling level, however, is difficult to determine.

We present a very efficient algorithm called OMPA in Appendix A. Hence if the channel

assignment is known, one can determine each user’s optimal power allocation by using

the proposed OMPA algorithm.

For the general case (d 6= 1), an obvious optimal solution to (4) is the exhaustive

search over all possible channel assignments with the associated power allocation ma-

trices computed by the OMPA algorithm (or water-filling method) to satisfy all users’

rate requirement. Although this algorithm is guaranteed to yield the optimal solution,
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the searching process is prohibitively complicated, especially if the numbers of users

and/or subcarriers are large. An improvement is suggested in [4] which first determines

the “water-filling” levels and the channels for each user. Overbooking of channels is

inevitable as every one wants the best channels. A complicated process is thus needed

to resolve such conflicts and recompute the “water-filling” levels iteratively. Although

optimal solution can be found, the complexity is still very high and is practical for small

N and d only (e.g., the case N = 8, d = 2 was given in [4]). Although [1] considered a

discrete-rate scenario the authors relaxed the discrete constraint to find a lower-bound

solution of (4) iteratively. The quantized version of this solution gives a suboptimal

subcarrier allocation, {C(j) : 1 ≤ j ≤ d}, where C(j) is the jth user’s serving-channel

set (SCS) that consists of the indices of the assigned channels. A single-user rate (bit)

allocation algorithm is then applied to each C(j). Numerical behavior of this approach

was shown but no comparison with the optimal performance was given.

Other earlier suboptimal proposals [5], [6], [8] for solving (3.4) start with some initial

subcarrier (channel) allocation and assign remaining available subcarriers sequentially

according to some ad hoc criterion. Since a given channel has different GNRs when

serving different users, [8] gives a channel to the user with strongest gain, i.e., the ith

subcarrier is assigned to the kth user if k = arg max1≤j≤d aij. However, the ordering of

the subcarriers or the user is arbitrary and it is highly likely that the best channels for

two users are the same, say channel k, but the second best channel for the first user

is much better than that for the second user. When the first user obtains channel k

the second user can only use its second best channel which is much worse than channel

k. If instead, the first user is given its second best channel which is not much worse

than channel k while the second user is assigned channel k then the overall performance

(required total power) will be much improved. On the other hand, [5] makes an initial

SCS size |C(j)| decision based on users’ average channel GNRs and rate requirements

Rj’s. The average GNR ignores frequency selectivity and the resulting algorithm is

22



unlikely to find the optimal solution.

In contrast, our approach begins with the fair initial condition that all users are

given the opportunity to take every subcarrier. The proposed channel allocation process

consists of a series (N -level) of deletion decisions. At each level, a subcarrier is given to

an user and is simultaneously removed from the SCSs of all other users, where the SCS

for the jth user at the tth level, Cs
t (j), is the set of all subcarriers allocated to serve user

j then. Obviously, our fair initial condition implies that C s
0(j) = {1, 2, · · · , N}, ∀ j. We

initially eliminate the constraint Cs
t (i)∩C

s
t (j) = ∅,∀ i 6= j, t = 0, 1, · · · , N and, at stage

t, impose the constraint that t ∈ Cs
t (j) for only one j (i.e., the tth channel can only

be in one of SCS’s) so that the original single-user-per-subcarrier (SUPS) constraint is

eventually re-installed and satisfied. Hence, in a sense what we adopt is a constraint

relaxation approach.

In such a sequential assignment process the order of subcarriers may be important

as once a subcarrier is assigned, no re-assignment is possible. A reasonable ordering is

to sort (re-arrange) the N subcarriers in descending order of their maximum GNR, a∗i =

max1≤j≤d aij such that with the new channel order, channel 1 has the best GNR, followed

by channel 2, channel 3, · · · , etc. Formally, this channel sorting is the permutation µ on

the ordered integer set {1, 2, · · · , N} which satisfies the inequality a∗µ−1(1) > a∗µ−1(2) >

· · · > a∗µ−1(N), where µ−1 is the inverse mapping of µ.

Our DP-based algorithm can be described by a d-ary tree in which there are d

outgoing branches at the root (initial level) to represent possible assignment of the

channel 1. Similarly, every node at any given level (height), say the tth level, has

d outgoing branches (to d child nodes), each represents a possible channel-assignment

(removal) decision and a tentative channel allocation. The channel allocation is tentative

because only t channels are assigned and the remaining N − t channels still belong to all

SCSs and unassigned. If we associated each level’s decision with a cost, then at the kth

level, we shall assign channel k to user i and remove it from the SCSs of all other users
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(branches) if the associated cost is minimized. Such a decision is equivalent to selecting

the ith branch emitted from the surviving node at the (k − 1)th level as the survival

branch while all other d− 1 branches are terminated.

Given the initial fair channel allocation and the ultimate object of minimizing the

required power, the cost for a decision at any level should be the minimum required power

for the corresponding tentative channel allocation. Hence if we define the SCS collection

at the tth level as Cs
t = (Cs

t (1), · · · , C
s
t (d)), then the corresponding cost function Jt is

Jt (Cs
t ) =

∑

j

g(Rj;C
s
t (j)) (3.5)

in which each g(Rj;C
s
t (j)) is determined by applying the OMPA algorithm to solve the

problem

Given Cs
t (j), find g(Rj;C

s
t (j)) = min

∑

i∈Cs
t (j)

pij

s.t.
∑

i∈Cs
t (j)

rij ≥ Rj. (3.6)

Cs
t (j) for each j is modified at each level so that the subcarrier and power assignment pro-

cess is guaranteed to end at the Nth level. As the minimum required power g(Rj;C
s
t (j))

for each j is a decreasing function of the cardinality |Cs
t (j)| of its SCS, the cost Jt is an

increasing function of t. At each level, however, we find the removal of the subcarrier

from all but one Cs
t (j) that results in minimum cost (total power) increase. As the

collection {Cs
t (j)} = Cs

t allows multiple channel assignments, i.e., Cs
t (j) ∩ C

s
t (k) 6= ∅, if

j 6= k and t < N , it does not satisfy the constraints (3) of a legitimate channel assign-

ment matrix. But as the subcarriers are assigned to users one by one, at the end of the

Nth level, {Cs
N(j)} = Cs

N will correspond to a legitimate one. Therefore, the metric de-

fined by (5)-(6) is simply the minimum total transmit power for a given rate-subcarrier

assignment with various degrees of relaxation on the SUPS constraint.

Since a path in the tree that visits the jth child node at the kth level implies a

channel assignment that gives the kth subcarrier to the jth user, an N -level path would
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represent a complete channel allocation. But not all paths are legitimate for a path may

assign no serving-channel to an user. In particular, if at the end of the tth level there are

still more than N − t users without any serving-channel, i.e., whose SCS cardinality is

equal to N − t, then there will be at least one user with an empty SCS at the end of the

Nth level. To avoid such a possibility and rule out all illegitimate channel assignments,

we modify the cost function as

Jt(C
s
t ) = min

1≤k≤d

{

d
∑

j=1

g(Rj, C
s
t (j; k) )

+ωt

[

d
∑

j=1

δ(N − t− |Cs
t (j; k)|)

]}

def
= min

1≤k≤d
Jk

t (Cs
t) (3.7)

where

Cs
t (j; k) =

{

Cs
t−1(j) , j = k

Cs
t−1(j) \ {t} , j 6= k

(3.8)

δ(x) =

{

1 , x = 0
0 , otherwise

and

ωt(x) =

{

0 , x ≤ N − t
∞ , x > N − t

(3.9)

By adding the weight function wt(·) in the cost function, we avoid continuously assigning

channels to some users while other users might not be able to obtain any channel,

although the probability of such an event is almost zero so long as N > d and the GNR

distributions {aij, i = 1, 2, · · · , N} for each user are independent.

The resulting DP-based resource allocation (DPRA) algorithm, unlike other ap-

proaches [1][8][6], accomplishes channel and power (rate) allocations simultaneously and

is listed in Table 3.1. Early terminations and computational complexity reduction are

possible if certain conditions are satisfied; see Guidelines 4, 5 in the next section.
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Step 1: (Channel-sorting) Given N, d, aij and R, find
a∗i = max1≤j≤d aij and re-arrange the channel
indexes by decreasing magnitude of the
maximum GNR such that a∗1 > a∗2 > · · · > a∗N
with the new channel indexes.

Step 2: (Initial channel allocation)
Set Cs

0(j) = {i | 1 ≤ i ≤ N}, for 1 ≤ j ≤ d.
Step 3: (Sequential channel-power-rate assignment)

for t = 1 : N
k∗=arg min1≤k≤d J

k
t (Cs

t)
Jt(C

s
t ) = Jk∗

t (Cs
t)

for j = 1 : d
if j = k∗ then Cs

t (j) = Cs
t−1(j)

else Cs
t (j) = Cs

t−1(j)\{t}
end

end

Step 4: (Output) The final channel allocation is the Nth
level SCS collection Cs

N . The power-rate
allocation is obtained while computing JN(Cs

N)
through (5)-(7).

Table 3.1: A dynamic programming based resource allocation (DPRA) algorithm
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3.3 An Optimal Resource Allocation Algorithm

The N -level tree shown in Fig. 1 is a graphic representation of the solution space

of (4). The tree contains all possible–legitimate or illegitimate–channel assignments. At

each level we allocate a channel so that each “complete” path L from the root node to a

leaf node represents a candidate assignment and can be denoted by L = (b1, b2, · · · , bN),

where bi is the ith node visited by the path and, for brevity, the initial (root) node is

not included in the notation. A partial path ln = (b1, b2, · · · , bn), n < N is thus defined

as the part of a complete path that starts at the root node and ends at some internal

node.

Searching over the complete tree can certainly lead to the optimal solution but the

complexity is of exponential order. The DPRA algorithm calls for the elimination of d−1

child nodes at each level and promises to finish the tree-search process in N stages. As

will be shown in Section V, this approach is very efficient in that it yields near-optimal

solution with low complexity. However, there is no guarantee that the optimal solution

will be obtained as it is possible that the optimal channel assignment path is discarded

somewhere along the way, especially if SNR is low. Many other techniques can be used

to reduce the prohibitive high complexity of searching the total solution space. We

employ a simple linear programming technique called branch-and-bound (B&B) which

has the potential of significant complexity reduction if the bounds are properly chosen.

Besides presenting novel tight bounds, we also suggest a subcarrier-sorting procedure,

which is crucial in reducing the search complexity, use a good initial upper bound and

derive some useful properties and guidelines for further complexity reductions.

3.3.1 A Branch-and-bound Approach

In the search tree shown in Fig. 1, each parent node has d child nodes to enclose all

possible solutions. Similar to our description of the DPRA algorithm, a path in Fig. 1

that passes through the jth child node at the kth level of the tree (i.e., bk = j) represents
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a channel assignment that gives the kth subcarrier to the jth user and a (complete) path

is legitimate only if it visits every candidate child node at least once. The B&B paradigm

needs an upper bound Bu on any v(lN) (i.e., legitimate channel assignment or complete

path) and a lower bound Bl(lt) associated with each partial path lt of length t. The

use of the upper bound for the cost (minimum required total power) combined with the

lower bound which represents the current best solution value (associated with a partial

path) enables the algorithm to prune the non-promising subtrees rooted at certain nodes

and search parts of the complete tree only. These bounds should be updated as soon as

possible to accelerate the searching process but the initial upper bound often plays an

important role in the reducing the search complexity. A weak bound will not be capable

of eliminating many visits to nodes that lie outside of the correct (optimal) path. To

find a tight lower bound, we need the following fundamental definition.

Definition 1. The node value (cost) v(lt) of an internal node of the search tree is

defined by (7) with each Cs
t (j) obtained by removing from Cs

0(j) the channels that have

been assigned to other users along the partial path lt that ends at the current node.

Obviously, the node value so defined is a function of the node and the associated

partial path. We thus denote the node value by v(lt) to emphasize such a dependence. To

see that the node value is indeed a lower bound, we first notice that, like the cost function

of the DPRA algorithm, it is a function of a channel allocation that is illegitimate and

optimistic. The channel allocation is illegitimate because a subcarrier may be assigned

to more than one user and it is optimistic since an user tends to own more than its share

of subcarriers, resulting in reduced required power. In the search tree shown in Fig. 1,

each parent node has d child nodes to enclose all possible solutions. When we search

along a path to visit an internal node of the tree, we compute the associated “node

value” by (7) with each Cs
t (j) obtained by removing from Cs

0(j) the channels that have

been assigned to other users along the partial path lt from the root node to the current

node. Obviously, the node value so defined is a function of the node and the associated
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partial path. To emphasize such a dependence, we denote the node value by v(lt). As

an user’s SCS is a decreasing function of the partial path length in the sense that a child

node’s SCS is a subset of their parent node’s, the node value of a child node must be

equal to or greater than that of its parent node. In other words, the fact

Cs
0(j) = C(j) ⊃ Cs

1(j) ⊃ Cs
2(j) ⊃ · · · ⊃ Cs

N(j), ∀ j (3.10)

implies

Property 1. Both g(Rj, C
s
t (j)) and the cost function Jt(C

s
t ) defined by (3.7) are in-

creasing functions of t.

As every complete path is associated with a sequence of shrinking SCSs {Cs
0(j),

Cs
1(j), · · ·C

s
N(j)} and Cs

N(j) is the cost of this path, we have

Property 2. The node value v(lt) defined by (7) is a lower bound for the cost of any

complete path that coincides with the t-level partial path lt.

Thus, if Jt at a parent node is not smaller than the upper bound, we are sure that

there is no optimal solution in its child nodes and one should check other nodes of the

same level. On the other hand, the order of visiting the d child nodes of a parent node

should be based on their node values as the node value represent our current best es-

timate of all subsequent assignments. For the convenience of subsequent reference, we

summarize these two observations, which often brings about significant search complex-

ity reduction (see Table 3.3) of a B&B-based resource allocation (BBRA) algorithm,

as

Guideline 1. The order of visiting d child nodes of a given parent node should be the

same as the ascending order of the magnitudes of the corresponding node values. In

other words, one should visit the node with the least node value, followed by the one with

second smallest node value, and so on.
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Guideline 2. When visiting a node (say at the tth level) of a partial path lt, we compute

the node value v(lt) and compare it with the current upper bound Bu. If v(lt) < Bu then

visit its first child node in the next level. Otherwise, searching on the subtree rooted at

this node is terminated and the search should continue on the next unvisited child node

of the same level or backtrack to the next unexplored nodes in the previous level, where

the order of d siblings descending from the same parent node is determined by Guideline

1.

Because only a complete path corresponds to a candidate solution, the depth-first-

search (DFS) strategy is suitable for our B&B approach. The initial upper bound B0
u

can be obtained by the DPRA algorithm. The ensuing DFS searching procedure tries

to continuously separate the parent space into the subproblem (child) space. Therefore,

we have

Guideline 3. Upon arriving at the final level, we check the resulting cost (node value)

to see if Bt
u has to be updated. We then backtrack to the nearest parent node determined

by Guideline 1 and resume the searching process.

Note that the above three Guidelines are valid for general B&B approaches and are

listed for the convenience of subsequent discussions.

Definition 1 and the above guidelines all assume that we compute the node values

when transversing along a path based on the same principle used by the DPRA algo-

rithm. In other words, every user is given all channels initially and, at each level along

a path, a channel is assigned to the user associated with the selected child node and

removed from all other users’ SCSs. Such a procedure will not exclude any legitimate

solution from the tree search. With this assumption, we note that the node values along

a path may reach a steady state before the leaf node is visited. A necessary condition is

Property 3. Further traversing on a path will not change the node value if the set of

remaining unassigned channels
⋂

j C
s
t (j) = CU satisfy either (i) ∀ i ∈ CU ⇒ rij = 0,∀ j,
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or (ii) ∀ i ∈ CU , i ∈ C
s
t (j) for only one j.

This property can be used to accelerate our search without missing the optimal

solution.

Guideline 4. Besides those terminations specified by Guideline 2, early termination (of

a path) is possible if one of the conditions in Property 3 is satisfied.

Since computing the node value via (7) requires repeated calls to the OMPA subrou-

tine, the search complexity can be reduced if we can minimize the numbers of calls. A

careful examination of (7) and the search procedure reveals

Guideline 5. In computing the node value for the kth child node of a (t − 1)th level

parent node, the fact Cs
t (k) = Cs

t−1(k) implies that g(Rk, C
s
t (k; k)) = g(Rk, C

s
t−1(k)).

Furthermore, if in computing the parent node’s value we have rtj = 0 for some j, then

g(Rj, C
s
t (j)) = g(Rj, C

s
t−1(j)). For both cases there is no need to call the OMPA subrou-

tine to compute the minimum required power. Finally, although for a fixed k, d OMPA

calls are needed in computing each cost g(Rj, C
s
t (j; k)), d− 1 of them can be reused for

other k’s.

The last two guidelines can be used to reduce the computing complexity of the DPRA

algorithm as well. In particular, Guideline 5 implies that only d OMPA calls are needed

to compute d child node values of a given parent node.

3.3.2 Sorting The Serving Channels

We have suggested a channel ordering for the DPRA algorithm according to the maxi-

mum GNR’s. This channel indexing is simple but, according to our simulation, does not

yield fast convergence. Like the DPRA algorithm, the order of the channels is very im-

portant. If our ordering (indexing) of the channels is such that the ith (i < N) channel

is so “bad” that it is not used in the final optimal solution (no user really wants it) then

we have to check all its d child nodes in the next level. Simulations indicate that the
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channel ordering affects the search speed significantly. In view of Guideline 1, Property

2 and given we have decided the first k channels, the (k + 1)th channel should be the

most demanded one such that its assignment to a user (thus is removed from the SCSs

of all other users) increases the costs (node values) of all other users most significantly.

The channel-sorting algorithm based on this idea, is presented in Table 3.4.

We have several remarks on the above channel-sorting process.

R1. The sole purpose of this algorithm is channel-sorting and the corresponding channel

assignments are auxiliary operations, not to be realized.

R2. Step 2 in Table 3.4 defines the most demanding channel as the one that offers

the highest sum rate and is requested by two or more users given the current SCS

collection. When a channel offers the highest rate but serves only one user, it must

render relatively low GNR for all other users, hence the decision of its order in the

tree should be postponed.

R3. Step 4 deals with the ordering of those channels which, after several rounds of

filtering the most demanded channels, are still requested by one user only.

With this channel-sorting procedure and in view of the properties and guidelines men-

tioned before along with our definition of the node value, we propose the BBRA algo-

rithm of Table 3.2.

3.3.3 Complexity Reduction Techniques

To explore the effectiveness of various techniques implied by properties and guidelines

on reducing the computing complexity, we have performed 106 simulated runs of the

BBRA algorithm that incorporates (1) the channel-sorting process in Table 3.4 and the

combinations of (2) Guideline 1, (3) Property 3 and (4) the fifth Guideline. The numbers

of users and channels are 5 and 128, respectively, and the normalized rate for each user
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Step 1: (Initialization) Use the DPRA algorithm to obtain
the initial upper bound B0

u and the
channel-sorting process in Table 3.4, to rearrange
the channel order. Set the initial level at ℵ = 1

Step 2: Visit the child nodes of the ℵth level according
to Guideline 1 and invoke Guideline 2.
Set ℵ ← ℵ+ 1 if no backtracking is needed;
otherwise set ℵ ← ℵ− 1.
Property 3 should be used at every node visited
to check the possibility of early termination
of a candidate path.

Step 3: Go to Step 2 if ℵ < N . If ℵ = N then terminate
the searching process if all nodes have been
visited or been excluded from further
consideration; otherwise invoke Guideline 3.
Set ℵ ← ℵ− 1 and go to Step 2.

Table 3.2: A branch and bound based resource allocation (BBRA) algorithm

d = 5, N = 128 DPRA (1) (1)+(2) (1)+(3) (1)+(4) (1)+(2)+(3)+(4)
E[nop] 44.61 2587.2 773.98 578.09 116.19 88.32
E[nop|nop < 2× 105] 44.61 1717.8 773.98 549.91 93.78 88.32
Prob[nop > 2× 105] 0 0.0012 0 0.00005 0.00004 0
max{nop} 81 21622894 180132 1800602 981053 587

Table 3.3: The effects of (1) channel-sorting in Table 3.4, (2) Guideline 1, (3) Property
3/Guideline 4, and (4) Guideline 5 on the computing complexity reduction of the BBRA
algorithm; 106 runs are performed to obtain the statistics. The complexity is measured
in terms of numbers of calls nop to the OMPA algorithm. The complexity of the DPRA
algorithm is also included for comparison purpose.
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is uniformly distributed in [0, 3]. The results are summarized in Table 3.3 with the

complexity measured in terms of the number of calls to the OMPA algorithm.

Channel-sorting is most critical for with other conventional channel-sorting methods

(e.g., that used by DPRA), the searching complexity often becomes greater than 106.

Hence it is always assumed as part of the initialization step in the BBRA algorithm. The

reuse of existing OMPA results (i.e., Guideline 5) also brings about significant reduction

as it is applicable in every node visit. Proper branching and early terminations help

accelerating the search process a lot as well.

3.3.4 Application to Integer Constellation Systems

With minor modifications, our algorithms remain valid and are applicable for solving

a similar RA problem with integer constellation (discrete-rate) constraints. All we to

have to do is inserting an SNR gap, which depends on the constellation size and the

BER requirement, in the rate-power equation (2) and replacing the OMPA (water-

filling procedure) algorithm by a known bit-loading algorithm, e.g., Campello’s optimal

algorithm whose complexity is upper-bounded by O(N) [3].

A B&B approach was also suggested in [13] to solve a similar problem for integer con-

stellation systems. Besides not having the attributes mentioned in the second paragraph

of this section, their method differs from ours in at least two major aspects. First, their

approach implies a tree structure that grows a (dM + 1)-ary sub-tree out of each node

where M is the number of discrete rates allowed while we need only a d-ary sub-tree. In

other words, [13] converts both user and rate selections into node selections, each node

represents a fixed user/rate assignment for a given subcarrier but our tree search has to

do with user selection only. Second, each node value (lower bound) of [13] is obtained by

solving a linear programming problem after relaxing three major constraints, namely, (i)

the SUPS, (ii) the single-rate-per-subcarrier, and (iii) the discrete-rate constraints. The

first two relaxations are directly related to their tree structure and the last relaxation
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is needed to convert the integer linear programming problem into a (real) linear one

which is much easier to solve. As a result, the lower bound so obtained is not very tight.

In contrast, we use either the OMPA algorithm or Campello’s algorithm [3] to perform

the corresponding (provisional) optimal rate/power allocation once an user is selected

(for using a subcarrier). The corresponding bounds do not have to remove constraints

(ii) and (iii) mentioned above whence are much tighter and result in far less search

complexity.

3.4 Numerical Results and Algorithmic Complexity

We report some simulated performance and complexities of the proposed algorithms

and two suboptimal algorithms modified from existing ones in this section. As the

performance of two proposed algorithms is almost identical, that of the BBRA algorithm

is not shown and is used as the reference for comparison only. 105 runs, each with a

different channel realization, are performed to obtain the numerical results presented

here.

3.4.1 Relative Efficiency Performance

I Performance of BBRA and DPRA algorithms

As only the GNRs ai affect the performance we assume, without loss of generality, that

σij = σ, ∀ i, j. We normalize the bandwidth of each sub-carrier (channel) such that W =

1 and set the normalized noise power lever σ2 to be 1. We also normalize the Rayleigh-

distributed channel gains ||hij||
2 such that E[|hij|

2] = 1 and assume that channels are

independently faded. These two normalization assumptions effectively imply E[aij] = 0

dB. Since the channel capacity or the normalized rate is a function of the product pijaij,

the simulation results shown in Figs. 3–6 are scalable in the sense that a higher (lower)

E[aij] needs a proportionally lower (higher) minimum required power. The normalization

of the channel bandwidth W has a similar purpose in interpreting the normalized data
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rates Ri which now have the unit of bits/sec/Hz. We also have the normalized sum rate

as
∑d

j=1Rj. Various normalized rate distributions with the same sum rate are examined.

Let JDP and JBB be the total required transmit power determined by the DPRA

and BBRA algorithms, respectively, and define the relative efficiency (RE) of the former

algorithm by

η = 1−
E[JDP ]− E[JBB]

E[JBB]
(3.11)

Since the power-rate allocation is solely determined by OMPA once the subcarrier as-

signment is fixed, we say two algorithms give the same solution if both suggest the

same subcarrier allocation. Fig. 3.2 plots the probability that the DPRA algorithm

converges to the optimal solution for several cases (N = 64, 128 d = 5, 10, 15). Since

the BBRA algorithm is guaranteed to give the optimal solution, this probability is equal

to Pr[JDP = JBB]. It is found that when d � N (say d/N < 0.1) the probability that

the DPRA algorithm yields the optimal solution is greater than 0.9 if the sum rate is

less than 8 bits/sec/Hz. Although for other cases under investigation, this probability

is smaller than 0.9, Fig. 3.3, which plots the RE of the DPRA algorithm, indicates that

the corresponding solutions still lie very close to the optimal one. It is clear that the

DPRA algorithm is capable of offering a near-optimal solution that even in the worst

case (64 channels, 15 users and a normalized required sum rate of 20) it achieves a RE

as high as 99.82%.

In general, the larger the number of the users d or the sum rate is, the less efficient

the DPRA algorithm becomes. Such a behavior is consistent with the fact that, when

d increases but N is fixed, a correct channel selection at each level become less likely

so is the probability of obtaining the optimal channel allocation. On the other hand,

the assumption of independent fading of channels implies that the probability of having

“good” channels increases as N increases, and the probability of correct or good decision

at each level increases as well. Hence, for a fixed d, the probability of obtaining the

optimal or near optimal solution is an increasing function of N and so is the RE (η).
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Step 1: (Initialization) Set t = 1 and let the SCS
and the assigned channel set (ACS) for user j be
Cs

t (j) = {1, 2, · · · , N} and Ca
t (j) = ∅, respectively.

Step 2: (Find the most demanded channel) Compute the

sum rate Rs
i

def
=
∑d

j=1 rij for each channel, where

rij is obtained by applying the OMPA algorithm
for each SCS Cs

t (j), compute

Ψ(i) = { j | 1 ≤ j ≤ d, rij 6= 0}, CA =
⋃d

j=1C
a
t (j),

Ch = { i | 1 ≤ i ≤ N, |Ψ(i)| ≥ 2}
If |Ch| 6= ∅ and ` = maxi∈Ch

Rs
i , then the `th channel

is re-indexed as channel t (i.e., µ(`) = t)
and assign this channel to user k if k = maxj r`j.
Go to Step 4 if |Ch| = ∅.

Step 3: (Updating) The ACS for user k and the SCSs
are updated by Ca

t (k)← Ca
t (k) ∪ {`},

Cs
t (j)← Cs

t (j) \ {`}, ∀ j 6= k, respectively.
The tree level index is updated by t← t+ 1.
If t < N , go to Step 2;
otherwise, the sorting process is completed.

Step 4: (Sorting the less demanded channels)
If Cs

t (j)
⋂

Ca
t (j) = ∅,∀ j, go to Step 5;

otherwise, for all j, Cs
t (j)

⋂

Ca
t (j) 6= ∅, modify

the corresponding SCS by Cs
t (j)← Cs

t (j) \ {jm},
where jm = arg maxi∈Cs

t (j)
⋂

Ca
t (j) rij,

and go to Step 2.
Step 5: (Sorting the remaining channels) The order

(numbering) of the channels in the set
{i|1 ≤ i ≤ N, i 6∈ CA} is determined
by the maximum GNR criterion used in
the DPRA algorithm.

Table 3.4: The channel-sorting algorithm
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I Performance of Representative Sub-optimal Algorithms

Although many RA schemes have been proposed, they assume different scenarios

and costs. Those dealing with RA problems similar to (4) often follow a three-step

procedure [5],[6]. (S1) Resource allocation–determine the resource (number of channels)

to be given to each user based on some criterion. (S2) Subcarrier assignment–decide

which subcarrier should serve which user. (S3) Local optimization–each user computes

the optimal power allocation according to its channel set and rate requirement. The

average GNR criterion, i.e., the BABS (bandwidth assignment based on GNR) algorithm

[5], is perhaps the simplest and most popular choice for use in (S1). Such an approach

treats the channel of concern as a flat-faded wideband channel when determining the

number of subcarriers an user is entitled to possess. It simplifies the resource allocation

procedure by ignoring the selectivity of a wideband channel but is very likely to exclude

the optimal solution from further consideration. Many methods were proposed to obtain

the water-filling solution for (S3) with various degrees of precision. The main difference

lies in (S2).

The first approach called the amplitude craving greedy (ACG) algorithm [5] sequen-

tially assigns the subcarriers to the user with the largest GNR unless the channel number

quota determined in (S1) has been exceeded. An alternate method called rate craving

greedy (RCG) algorithm [5] finds the water-filling rate level for all users, assuming they

have been given all subcarriers. The subcarriers are then assigned to the one with the

highest achievable rate unless its channel number quota is exceeded. The original ACG

and RCG algorithms can not be used to solve (4) as they are designed for discrete-rate

constraints. Moreover, they use an approximate instead of exact water-filling solution.

For the purpose of fair comparison, we modify both algorithms by using the rate-power

equation (2) and the OMPA solution. The resulting algorithms are henceforth referred

to as the modified ACG (MACG) and RCG (MRCG) algorithms, respectively.

We assume GNR =20 dB for all subcarriers and Rj = 5 bits/sec/Hz for all j. Besides

38



the independent-fading channel model, forN = 128 we also consider the ITU Vehicular A

model [11] which has been adopted by UMTS and WiMax forum as one of the reference

channel models. The RE performance shown in Fig. 3.4 indicates that our DPRA

algorithm does outperform both MACG and MRCG algorithms. It yields a near-optimal

solution that even in the worst case (N = 64, d = 14), achieves a 99.92% RE while the

the two modified algorithms give 91.74% and 92.92% efficiencies. Due to the fixed rate

requirement, a larger N results in better performance for all suboptimal approaches. The

increase of d, on the other hand, leads to reduced efficiency but DPRA is much more

robust in the sense of maintaining almost constance RE for different d, N and channel

conditions. The optimal allocation probabilities for these two suboptimal algorithms are

not presented for they are simply too small.

3.4.2 Complexity Evaluation

The computing complexity of various RA methods is dominated the number of

calls to the single-user (mono-rate) water-filling algorithm whether it is the OMPA or

any other algorithm that computes the power or rate associated with each channel

assigned to an user. An exhaustive search requires O(NdN) single-tone power- or rate-

level computing operations [4] or O(d · dN) calls of OMPA.

I Average complexities of the proposed algorithms

For the DPRA algorithm, at most d2×N calls of OMPA is needed. But the complexity

of BBRA method is difficult to analyze directly for it depends on the channel order

and the initial upper bound value. By using computer simulation, we estimate the

average complexities, measured in terms of number of calls of the OMPA algorithm, of

the DPRA and BBRA algorithms and present the results in Figs. 3.5-3.6. We assume

that the normalized GNR is 0 dB and examine the required complexity for different

numbers of users with the same normalized sum rate. A few observations on the last

two figures can be made. First, because of Guidelines 4 and 5, the complexity of DPRA
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algorithm is limited to at most dN +2d OMPA calls. Second, although the complexities

of both DPRA and BBRA algorithms increase with the number of users d, the latter is

much more sensitive to this parameter. Finally, the average complexity of the BBRA

algorithm is higher when there are 64 channels than if there are 128 channels. The

reason for this interesting fact is that there are more good channels when N = 128 and,

for a fixed sum rate requirement, as good channels tend to support higher data rates,

fewer channels are needed and early terminations due to Guideline 2 and Guideline 4

occur more often.

I Complexities of Other Sub-optimal Algorithms

Since the complexity of water-filling is a function of the channel number involved,

a more precise and fair comparison is counting the number of rate(power)-evaluation

iterations, i.e. the [MR2]-[MR4] loop of the OMPA algorithm; see Appendix A. For

BBRA or DPRA algorithms, the iteration number in every call is upper-bounded by

log2N as bisection search is in place. The complexity of the DPRA algorithms can be

reduced by using Guidelines 4, 5 and the iteration number is thus upper-bounded by

(dN + 2d) log2N .

Fig. 3.7 shows the average complexity performance of our algorithms and the MACG,

MRCG algorithms for N = 64 and 128. The system and channel parameter values used

here are the same as those used in Fig. 3.4. As expected, the performance in correlated

fading is worse than that in independent fading and the computation complexity of

all algorithms are far less than the DRRA upper-bound, (dN + 2d) log2N . Moreover,

BBRA requires the highest average complexity, followed by DPRA, MRCG and the

MACG algorithms. The complexity of the DPRA algorithm is about twice that of the

RCG based algorithm but is far less than that of the BBRA algorithm. The DPRA

algorithm, as mentioned before, yields near-optimal performance and is robust against

the variations of the numbers of users and subcarriers.
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Figure 3.1: A complete search tree for multiuser channel allocation. For the DPRA
algorithm, only one child node survives at each level.

3.5 Chapter Summary

OFDMA is an effective multiple access scheme in a wideband wireless mobile net-

work. Besides its anti-fading capability, an OFDMA system can achieve high spectral

efficiency in a multiuser environment by adaptively allocating subcarriers and time slots

to the the most suitable users with the minimum required transmit power. An efficient

dynamic RA algorithm to solve the corresponding constrained optimization problem in

real time is thus crucial for realizing this potential advantage.

Based on the principles of dynamic programming and branch-and-bound, we propose

two algorithms–the DPRA and BBRA algorithms–which give either near-optimal or op-

timal solution. In contrast to the existing algorithms, which suffer from the shortcomings

of requiring high complexity and/or unsatisfactory performance, the DPRA algorithm

renders near-optimal performance with relative low complexity. Since the existing effi-

cient algorithms are designed with a discrete-rate constraint and use some suboptimal
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Figure 3.2: The DPRA algorithm’s probability of correct convergence (i.e., the probabil-
ity of obtaining the optimum subcarrier/power/rate allocation) in an OFDMA downlink.

water-filling solution, we make some modifications for fair comparisons. As expected,

the resulting ACG and RCG based DPRA algorithms are shown to provide less satis-

factory performance with reduced complexities. With proper reuse of the water-filling

solution obtained in earlier stages, the average DPRA complexity can be further reduced

and is insensitive to d, N and the required sum rate. The average complexity of the

BBRA algorithm, on the other hand, is at least an order higher than that of the DPRA

algorithm when the number of users is greater than 10 but is still much less than the

known algorithms for obtaining the optimal solution.

Our numerical experiment in both independent and correlated fading environments

have demonstrated that the near-optimal DPRA algorithm is suitable for real-time re-

source allocation application and the optimal BBRA algorithm is practical only if d ≤ 5.

Nevertheless, the latter algorithm offers the optimal solution and performance for largeN

and d with reasonable complexity, which has never been achieved before and is needed
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Figure 3.3: Average relative efficiency (η) performance of the DPRA algorithm.

for benchmarking and comparison purposes. Finally, we would like to mention that,

although we restrict our discourse to the capacity (rate) constraint, the proposed al-

gorithms are applicable to other constraints such as fixed BER or weighted capacity

constraint by modifying the corresponding rate-power function.
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Chapter 4

Capacity Maximization Resource

Algorithms

Recall that the object of the fundamental problem–single user resource-allocation

across parallel orthogonal channels–is to maximize the achievable sum rate subject to a

power constraint. This problem, as mentioned before, can be optimally solved by means

of the water-filling method and an efficient algorithm, i.e., the OMPA algorithm has

been developed and given in Appendix A. The rate allocation in each subcarrier is then

determined by the corresponding power allocation through the rate-power equation. In

a single-cell multiuser system, when subcarriers assignment is fixed, optimal power-rate

allocation can be independently carried out via the OMPA algorithm. However, since a

subcarrier’s link gain depends on the user involved, which leads to the so-called multiuser

diversity, subcarrier and power assignment must be jointly considered. We thus have a

scenario similar to that addressed in the previous chapter.

4.1 System Description

We consider a single-cell multiuser OFDMA uplink system. The users want to access

the base station and must share the same multicarrier band. We assume that the base

station and each user are equipped with a single antenna and the inter-symbol interfer-

ence (ISI) is completely removed by maintaining the orthogonality amongst subcarriers

through proper netwrok timing synchronization so that each subcarrier suffers from
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frequency-flat fading. In addition, we also assume the multiple channels are slow-fading

and all channel gains remain unchanged within each OFDM frame. The base station

is provided by mobile users the perfect channel gain information via reliable feedback

channels.

The jth user’s transmission rate Rj is given by

Rj =
N
∑

i=1

Aj,irj,i,

where rj,i denotes the jth user’s transmission rate over the ith subcarrier. Define the

subcarrier assignment matrix [A]ji = Aj,i, where the (j, i)th entry, Aj,i, is nonzero and

equal to one iff the ith subcarrier has been allocated to the ith user. The rate-power

function is the same as (3.2).

4.2 Resource Allocation Algorithm for Weighted Sum

Rate Maximization

The weighted sum rate maximization (WSRmax) problem of concern can be stated as

maximize
K
∑

j=1

µj

N
∑

i=1

Aj,irj,i

subject to
N
∑

i=1

Aj,ipj,i ≤ Pj, for 1 ≤ j ≤ K

K
∑

j=1

Aj,i ≤ 1, for 1 ≤ i ≤ N

Aj,i ∈ {0, 1} , for 1 ≤ i ≤ N, 1 ≤ j ≤ K (4.1)

where µj is the weight assigned to data rate of user j and K denotes the number of users.

Given the weight vector and the channel gains, we want to find the power allocation

that maximizes the weighted sum rate with the power constraints {Pj}. This is not

a convex optimization problem due to the subcarrier set selection procedure must be

carried out. However, The boundary of the achievable rate region can be traced by

solving this problem for all possible weight vectors.
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If all users have equal weights, the original problem becomes a sum-rate maximization

problem. In addition, if the individual power constraint is replaced by the total sum

power constraint for downlink scenario, the optimal subcarrier set selection becomes

that of assigning each subcarrier to the user with the highest subcarrier GNR and the

optimal power allocation is a single level water-filling over this optimal set. Once, the

users’ weights are not equal, giving the subcarrier to the user with the highest subcarrier

gain is not necessarily the optimal solution.

4.2.1 A Dynamic Programming Based Algorithm

Since the channel condition for a specific subcarrier may looks “good” to more than one

user, there are competitions among users. Conventional suboptimal algorithms tend to

assign a subcarrier to the user who has the largest GNR for that subcarrier and give

a fixed pre-determined number of subcarriers to each user to avoid the unfair situa-

tion that a few users dominate the competition result and get most of the subcarriers.

Unfortunately, for our case it is not easy to determine the number of channel assigned

to each user. In general, the above conventional subcarrier assignment scheme is not

a good solution for maximizing either the weighed sum rare or sum rate. First, each

user has a peak transmitted power limit, hence if it is given too many subcarriers there

will be not enough power to achieve the maximum rate. Second, those users who lost

competition and are given few subcarriers with small GNR can not use their power ef-

ficiently. In short, the system throughput (sum rate) performance can be improved by

other allocation methods.

The proposed constraint relaxation and reinstallation with user removal process has

been proved to be both powerful and efficient for this kind of optimization problem. As

has been shown in Chapter 3, the DPRA algorithm based on this concept does yield

near-optimal solution. We thus use the same approach for dealing with the current

WSRmax non-convex problem. The proposed subcarrier allocation process still consists
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of a series (N -level) of users deletion decisions. Similar to that described in Section 3.2,

we assign a subcarrier to an user at each level and simultaneously remove this subcarrier

from the SCS of other users. As the objective function is the weighted sum rate instead

of the total transmitted power, the selection of the child node at each level is based on

the new cost function given by

Jt(C
s
t) = max

1≤k≤K

{

K
∑

j=1

µj ĝ(Pj, C
s
t (j; k) )− ωt

[

K
∑

j=1

δ(N − t− |Cs
t (j; k)|)

]}

def
= max

1≤k≤K
Jk

t (Cs
t ) (4.2)

where ĝ(Pj, C
s
t (j : k)) represents the maximal rate of user j based on its virtual channel

set Cs
t (j : k). We use an algorithm similar to the OMPA algorithm of Appendix A to

compute the maximal transmission rate for the single user case.

The DP-based WSRmax solution can be described by using 4.15 to replace the ones

of Table 4.1 in Chapter 3.

4.2.2 A Low Complexity Algorithm via Dual Decomposition

The Lagrangian of the WSRmax problem can be defined over domain D as

L ({pj,i}, {rj,i}, λ) =
K
∑

j=1

µj

N
∑

i=1

rj,i −
K
∑

j=1

λj

(

N
∑

i

pj,i − Pj

)

, (4.3)

where the domain D is defined as the set of all non-negative pj,i for j = 1, 2, · · · , K, and

i = 1, 2, · · · , N such that for each i at most only pj,i is positive for j = 1, 2, · · · , K for

satisfying the constraint
∑K

j=1Aj,i ≤ 1. λ = (λi, λ2, · · · , λK) represents the Lagrangian

multipliers of all users.

Then, the Lagrange dual function can be given

g(λ) = max
{pj,i},{rj,i}∈D

L({pj,i}, {rj,i}, λ). (4.4)

The maximization of L can be decomposed into the following N independent optimiza-

tion problems, which is given by

g̃i(λ) = max
{pj,i},{rj,i}∈D

{

K
∑

j=1

(µjrj,i − λjpj,i)

}

, for i = 1, 2, · · · , N. (4.5)
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Hence, the original Lagrange dual function can be written as

g(λ) =
N
∑

i=1

g̃i(λ) +
K
∑

j=1

λkPj. (4.6)

With a fixed λ, the maximization of 4.5 is a convex function of {pj,i}. We take the

derivative of this object regarding pj,i, the optimality condition to maximize g̃i(λ) is

given by

p∗j,i(λj) =

(

µj

ln 2λj

−
1

aj,i

)+

(4.7)

where aj,i denotes the GNR of the jth user’s ith subcarrier. Because each subcarrier

can serve at most one user, g̃i(λ) can be obtained as

g̃i(λ) = max
j

{

µjr
∗
j,i(λj)− λjp

∗
j,i(λj)

}

, for i = 1, 2, · · · , N. (4.8)

Finally, we need to find the optimal λ to maximize g(λ). The update of λ can be

done by using the ellipsoid method until every user power converges. Unfortunately the

corresponding complexity for finding the optimal solution is still very high. Hence we

propose a simple and efficient dual decomposition based iterative algorithm to obtain a

suboptimal solution.

For the dual decomposition approach, if λ is fixed, we can choose the best user for

each subcarrier by (4.8). Since λ can gave as large as KN possible values, we try to

search for a suboptimal λ and obtain the corresponding feasible subcarrier assignment

within at most N iterations. First of all, we release all channel-using constraint such

that the maximal number of each sucarriers is enlarged to be the number of total users

and each user perfectly detect its data without interference from other users who use the

same subcarrier. Hence, each user can use the single user rate maximization algorithm,

which can be obtained by modifying the OMPA algorithm, to compute every user’s

subcarrier efficiencies as following.

ε
(k)
j,i = µj r̃

(k)
j,i − λ

(k)
j p̃

(k)
j,i for 0 ≤ k ≤ N − 1 (4.9)
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where λ
(k)
j denotes the Lagrangian multiplier of user j at the kth iteration (level) and

p̃
(k)
j,i =

(

µj

ln 2λ
(k)
j

−
1

aj,i

)+

(4.10)

r̃
(k)
j,i = log2

(

1 + p̃
(k)
j,i aj,i

)

(4.11)

At each iteration, µ
(k)
j and p

(k)
j,i will be re-computed by the single user rate maximization

algorithm since the SCS of the jth user may have been changed. In other words, each

iteration will decide the assignment of one subcarrier means that the communication

over this subcarrier has to be realistic considered by forcing the number of users at most

be one.

νi =
K
∑

j=1

εj,i (4.12)

where νi denotes the overall efficiency value of the ith subcarrier, the corresponding

individual efficiency values are computed by (4.9). The larger νi is, the more efficiency

the ith subcarrier is for all users. Hence, the subcarrier with larger ν need to be as-

signed as soon as possible such that the user who lost it at current iteration can enlarge

efficiency values of other unassigned subcarrier according to its requirement (rate) at

next iteration. Once the subcarrier number is obtained at each iteration, the remaining

work is to decide which users will be given this subcarrier. For the SISO FDMA system,

just only one user can occupy the subcarrier of each iteration. Hence, we pick up the

user with highest efficiency over this subcarrier. Hence, within each iteration, a smart

subcarrier selection and a corresponding user selection are operated according on the

efficiency value computed by dual decomposition. Finally, after N iterations, a subop-

timal feasible solution can be obtained since all subcarriers’s constraints are satisfied.

The detailed algorithm is summarized in the following table.

4.2.3 Numerical Results and Discussions

In this section, we show some simulated performance of weighted sum rate maximization

algorithms. For simplicity, we set all users’ weight to one. For the MaxGain algorithm, a
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Step 1: (Initial channel allocation)
Set C(j) = {i | 1 ≤ i ≤ N}, for 1 ≤ j ≤ K.
set S = {1, 2, · · · , N} and t = 0

Step 2: (channel selection )
each user individually run OMPA algorithm based on its available channel set C(j)
if t < N
i∗ = arg maxi∈S νi

Set S = S\{i∗}, t = t+ 1, then goto Step 3.
else goto Step 5.
end

Step 3: (user election )decide which user can transmit in the i∗ subcarrier
and other users are deleted
j∗ = arg max1≤j≤K εj,i.
goto Step 4

Step 4: (modify channel set C(j) for 1 ≤ j ≤ K.)
for j = 1 : K

if j 6= j∗ then C(j)\{i∗} end

end

goto Step 2
Step 5: (Output) The final channel allocation and user election

Table 4.1: A resource allocation algorithm for weight sum rate maximization.
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subcarrier is always assigned to the user with the largest GNR. In Figs. 4.1 and 4.2, we

plot the sum rate performance and average fairness indices as a function of the number of

users. We assume that the maximum individual normalized transmitted power is P and

all subcarriers suffer from independent Rayleigh fading. The fairness index is defined as

F =

(

∑K
j=1Rj

)2

K
(

∑K
j=1R

2
j

) (4.13)

The sum rate performance of the proposed and the MaxGain algorithms are fairly close

as is shown in Fig. 4.1. MaxGain algorithm’s fairness performance, however, is much

inferior to the proposed algorithms, especially when the number of users becomes large.

In Fig. 4.3, we consider the ITU Vehicular A model [11] which has been adopted
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Figure 4.1: Average sum rate performance as a function of number of users; P = 60, N =
64, GNR = 0 dB.

by UMTS and WiMax forum as one of the reference channel models. We observe that

our algorithms achieve far better sum rate performance than that of the MaxGain al-

gorithm. This is a result of the clustered behavior of the correlated fading channels,
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Figure 4.2: Average fairness index performance as a function of number of users; P =
60, N = 64, GNR = 0 dB.

i.e., neighboring subcarriers tend to have similar gains and thus users who have a strong

(weak) subcarrier are likely to have a bunch of strong (weak) subcarriers. The clustered

behavior results in dominance by some users, i.e., a great portion of the subcarriers is

given to a small group of users while some users get only a few weak subcarriers. It

leads not only to the “waste” of good subcarriers because of peak power limitation but

also to the “waste” of power in subcarriers with poor gains. Fig. 4.3 shows the system

throughput improvement defined as

Sum RateNew − Sum RateMaxGain

Sum RateMaxGain
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Figure 4.3: System throughput improvement versus number of users in a correlated
fading channel; N = 128, and GNR = 0 dB.

4.3 Resource Allocation Algorithms for Product Rate

Maximization

In this section, we will take proportional fairness into account in resource allocation

management. Most of the previous approaches show how to efficiently maximize total

transmission or minimize the total transmitted power under the related constraints of

system and users. In addition to the issue that to minimize total transmitted power

under all users’ constraints can ensure the benefits of users far away from the base station,

most formulated problems and the corresponding solutions are focus on the efficiency

issue such that the users closer to the base station or with higher power capability will

get the most resource/benefits. Although the max-min criterion has been considered for

the resource allocation fairness among users in multiuser orthogonal frequency-division

multiplexing (OFDM) systems. However, there are two main drawbacks in the max-min

criterion. First, resource allocation based on the max-min criterion is not easy to take
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into account that users’ different requirements. Secondly, since the max-min approach

deals with the worst-case scenario, the system will penalize user with better channels

and drop the efficiency very much. Based on the above discussion, it is necessary to

develop an approach that jointly considers the resource allocation fairness and system

efficiency. In addition, it is also low-complexity for practical scenario.

4.3.1 Nash Bargaining Solution and Problem Formulation

In this subsection, we briefly introduce the concept of Nash bargaining solution. The

Nash bargaining solution from game theory is a classical solution to fairness resource

allocation problem.

We denote by K = {1, 2, · · · , K} the set of players and by U a closed and convex

subset of R
K which represents the set of feasible payoff allocations that the players would

obtain if they cooperate. We further denote by Rj
min the minimal payoff the jth player

(user) expects; otherwise, it will not cooperate and define Rmin = (R1
min, · · · , R

K
min).

Suppose {Rj ∈ U|Rj > Rj
min ∀j ∈ K} is a nonempty bounded set, then the pair

(U ,Rmin) is called a K-person bargaining problem. The notion of Pareto optimal is

defined as a selection criterion for the bargaining solutions.

Definition 2. The point (R1, R2, · · · , RK) is said to be Pareto optimal, if and only

if there is no other allocation R̂j ≥ Rj,∀j, which yields superior performance for some

specific users without incurring performance degradation for some other users.

As there may exist many Pareto optimal solutions if no additional condition is im-

posed. By introducing some fairness requirements, we have a fair Pareto optimal oper-

ating point called the Nash bargaining solution (NBS), which is defined below.

Definition 3. r̄ is said to be an NBS in U for Rmin, i.e., r̄ = φ(U ,Rmin), if the

following axioms are satisfied.

(1) Individual Rationality: R̄i =
∑N

j=1 r̄ij ≥ Ri
min ∀i.
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(2) Feasibility: r̄ ∈ U

(3) Pareto Optimality: For every r̂ ∈ U , if
∑N

j=1 r̂ij ≥
∑N

j=1 r̄ij ∀i, then
∑N

j=1 r̂ij =
∑N

j=1 r̄ij

(4) Independence of Irrelevant Alternatives: If r̄ ∈ U ′ ⊂ U , r̄ = φ(U ,Rmin), then

r̄ = φ(U ′,Rmin)

(5) Independence of Linear Transformations: For any linear scale transformation ψ,

ψ(φ(U ,Rmin)) = φ(ψ(U), ψ(Rmin)).

(6) Symmetry: If U is invariant under all exchanges of agents, φj(U ,Rmin) = φj′(U ,Rmin)

∀j, j ′.

It can be shown that there exits an unique NBS [15] which happens to be equivalent

to the maximum product rate solution.

Note that a popular fairness criterion is the max-min criterion which implies that

the system performance will be dominated by the user with the worst channel condi-

tion. This criterion actually penalizes the users with good subcarriers, and as a result,

generates inferior overall performance. This is not truly fair for users with more or

better communication opportunities. Another fairness index is the proportional fairness

concept, which can be shown to be a special case of NBS fairness. As a result, by max-

imizing the product rate we in effect impose the fairness concern in our algorithm. Our

RA problem can now be stated as follows.

maximize
K
∏

j=1

N
∑

i=1

Aj,irj,i

subject to
N
∑

i=1

Aj,ipj,i ≤ Pj, for 1 ≤ j ≤ K

K
∑

j=1

Aj,i ≤ 1, for 1 ≤ i ≤ N

Aj,i ∈ {0, 1} , for 1 ≤ i ≤ N, 1 ≤ j ≤ K (4.14)
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In the next section we propose a suboptimal dynamic programming based solution for

product rate maximization.

4.3.2 DP Based Algorithm for Product Rate Maximization

The DP based resource allocation algorithms developed in Chapter 3 and previous sec-

tion have been proved to be capable of offering near-optimal performance. Using the

same idea, we modify the corresponding cost function Jt as

Jt(C
s
t ) = max

1≤k≤d

{

d
∏

j=1

ĝ(Pj, C
s
t (j; k) )− ωt

[

d
∑

j=1

δ(N − t− |Cs
t (j; k)|)

]}

def
= max

1≤k≤d
Jk

t (Cs
t) (4.15)

where ĝ(Pj, C
s
t (j : k)) represents the maximal rate of user j based on its virtual channel

set Cs
t (j : k). We use a modified algorithm similar to the OMPA algorithm to compute

the maximal transmission rate for the single user case.

The DP-based WSRmax solution can be describe by using 4.15 to replace the ones

of Table 3-1 in chapter 3.

4.3.3 Numerical Results and Discussions

Here, we take the MaxGain algorithm discussed in the last section and the DPRA

algorithm under maxmin criterion for comparison. The second algorithm is denoted by

DP based maxmin algorithm which uses DPRA process to maximum the minimal user

rate at each level. In the other words, in DP based maxmin algorithm we just exploit

the following objective function to replace the original one.

Jt(C
s
t) = max

1≤k≤K

{

min
1≤j≤K

ĝ(Pj, C
s
t (j; k) )− ωt

[

K
∑

j=1

δ(N − t− |Cs
t (j; k)|)

]}

def
= max

1≤k≤K
Jk

t (Cs
t ) (4.16)

In Fig. 4.4 under considering independent channel fading scenario, we can find the

solution of DP based NBS has the largest fairness index. It is expected that DP based

maxmin algorithm outperforms than the MaxGain algorithm.
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Figure 4.4: Fairness index performance as a function of number of users; N = 64, P = 60,
GNR = 0 dB.

Fig. 4.5 shows the performance in correlated channels. We assume the same the

correlated channel model as that mentioned in the last section. From Figs. 4.4 and 4.5,

we find that, for independent fading channels, fairness can be enhanced by adding the

number of subcarriers. Simultaneously, it is shown in Fig. 4.5 that there is no noticeable

difference in fairness performance between DP based NBS algorithm and the DP based

maxmin algorithm. But in Fig. 4.5, the DPRA algorithm for NBS still yield the best

system performance measured by the sum rate without degrading too much fairness

performance.
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Figure 4.5: Fairness index versus number of users, (N = 128, GNR = 0 dB) for correlated
and independent fading channels.
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Figure 4.6: Sum rate performance versus number of users in a correlated channel; N =
128, GNR = 0 dB.
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Chapter 5

Resource Allocation for

MIMO-OFDMA Downlinks

In the downlink of a multiuser multiple-input multiple-output (MIMO) system, the

multiple antennas at the base station (BS) allow for spatial multiplexing of transmissions

to multiple users in the same time slot and frequency band. Due to their geographical

dispersion, coordination among users is difficult, which makes the downlink of a multiuser

system more challenging compared to single user MIMO systems.

From information theoretic point of view, the sum capacity achieving precoding

or preprocessing technique is dirty paper coding (DPC) [18]. The DPC solution uses

successive interference pre-cancellation approaches that employ complex encoding and

decoding schemes. An intensive research effort is thus underway to devise suboptimal

but more practical approaches to multiuser downlink signal processing. Beamforming

or transmit pre-processing is a suboptimal and reduced complexity (compared to DPC)

strategy, where each user stream is coded independently and multiplied by a beamform-

ing weight vector for transmission through multiple antennas.

Proper design of the beamforming weight vectors allows the interference among dif-

ferent streams to be minimized (or eliminated), thereby supporting multiple users si-

multaneously. As a result, multiuser MIMO system substantially increases the system

capacity by multiplexing users in the spatial domain.

The challenge is thus to design transmit and receive processing vectors such that

61



space-division multiplexing is effectively achieved. Despite its suboptimality, for in-

dependently fading channels linear beamforming has been shown to achieve the best

trade-off between performance and complexity. In this chapter, we consider orthogonal

linear precoding techniques to achieve orthogonal space division multiplexing (OSDM)

in the downlink of multiuser MIMO systems, in which both base station as well as mobile

stations employ multiple antennas. The orthogonal precoding allows transmission to the

mobile users to be multiuser interference free. OSDM for multiuser MIMO systems has

been proposed by several researchers [19] [20]. We consider two OSDM techniques that

use a subspace projection methods to design precoding matrices: block diagonalization.

With block diagonalization, each user’s precoding matrix is designed such that the trans-

mitted signal of that user lies in the null space of all other remaining users’ channels, and

hence multiuser interference is pre-eliminated. With the sum power constraint, block

diagonalization takes the sum rate maximization approach, which tends to select the

strong users often causing unfairness among users. Hence, minimizing transmit power

while achieving desired quality of service for users may be interesting in practice. In this

thesis, we will propose a low-complexity suboptimal algorithm to solve this problem.

Due to the null space dimensional requirements of block diagonalization, the numbers

of users supported in the same time/frequency slot are limited for a given number of

transmit antennas. Therefore this technique should be combined with radio resource

management so that a multiuser diversity gain can be achieved. Multiuser diversity

arises when a large number of users with independently fading channels are present,

and hence it is likely that a user or multiple users experience high channel gain in any

given time/frequency slot. In addition ,to reduce the hardware complexity at the mobile

units, there is no receive antenna selection when users are selected for transmission in

any given time/frequency slot, with which all antennas are selected for reception.

In [21], the authors proposed a user selection for single carrier case in MISO systems.

However, due to the coupling of all users’ channels in an OFDMA network, optimal
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selection of user subsets involves exhaustive search through all combinations of active

users, which is computationally very complex for systems with a large number of users

and frequency/time slots. Hence, we propose simplified user selection resource alloca-

tion algorithm for block diagonalization. The rest of the Chapter is organized as follows.

Section 2.1 describes the system model. The brief review of block diagonalization tech-

nique is shown in section 5.2. Section 5.3 describes the problem formulation. Finally,

we propose our low-complexity suboptimal algorithm and some numerical results for

discussion.

5.1 System Description

In this section, we provide a general description of a typical cellular-based MIMO-

OFDMA system. Fig. 5.1 shows a downlink multiuser MIMO system in which a base

station transmits data to K users over N subcarriers. The BS is equipped with NT

antennas and the jth user terminal has nj antennas. The total number of receive an-

tennas is thus given by NR =
∑K

j=1 nj. We also assume that BS has perfect channel

state information (CSI) of all active system users. The CSI may be obtained via chan-

nel reciprocity for time division duplex (TDD) systems or through feedback links. The

issue of inaccuracy of CSI at the transmitter as well as the emerging partial CSI feed-

back schemes are some of the practically important issues for multiuser MIMO downlink

transmission but will not be addressed.

We denote by Hj,i ∈ C
nj×NT the downlink channel matrix of the jth user. A flay

Rayleigh fading channel is assumed so that the elements of Hj,i, j = 1, 2, · · · , K and i =

1, 2, · · · , N can be modelled as independent and identically distributed (i.i.d.) complex

zero-mean Gaussian random variables with variance of 0.5 per dimension. Hence, for

the ith subcarrier, the received signal of the jth user can be expressed as

yj,i = Hj,i

Ki
∑

k=1

Wk,ixk,i + nj,i for ∀j ∈ Ωi (5.1)
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Figure 5.1: Block diagram of a multiuser MIMO system.

where nj,i ∈ C
nj×NT denotes zero mean additive Gaussian noise with E{nj,in

H
j,i} = σ2Inj

.

Ki = |Ωi| represents the number of users who simultaneously communicate over the ith

subcarrier. After linear processing at the receiver, the received signal can be reformulated

as

ŷj,i = Uj,i
H(Hj,i

Ki
∑

k=1

Wk,ixk,i + nj,i) (5.2)

where Uj,i ∈ C
NT×ni is the receive process matrix of user j over the ith subcarrier.

We focus on the scenario of multiuser interference free environments. Based on the

above assumptions, Wk,i should be designed such that

Hj,iWk,i = 0 for all k 6= j and k, j ∈ Ωi (5.3)

and

Ki
∑

j=1

nj ≤ NT , for ∀j ∈ Ωi, and 1 ≤ i ≤ N (5.4)
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As a result, the multiuser MIMO system with Ki users over the ith subcarrier can be

decomposed into Ki parallel single-user MIMO system as follows.

yj,i = Hj,iWk,ixk,i + nj,i (5.5)

5.2 The Block Diagonalization Approach

In this section we describe the transmission scheme for the MIMO-OFDM channels by

using linear transmit and receive equalization to block-diagonalize the spatial channel.

Block diagonalization (BD) can be used to spatially separate the users when more than

one user share a certain subcarrier. This process creates decoupled spatial channels for all

the users when they use the same subcarrier. For each user, singular-value decomposition

(SVD) is applied to the combined channel matrix of all the other users. The last few

right singular vectors that correspond to zero singular values form a base for the null

space of this combined matrix. Next, each user’s channel matrix is multiplied by the

corresponding null space base that was obtained earlier, and SVD is performed on the

resulting matrix. These two steps would give the transmit and receive equalization

matrices and different user’s MIMO channels become completely decoupled, with no

interference amongst users.

We use an example to explain the above discussion, assuming that there are Km

users transmitting their data in subcarrier m simultaneously.

Let us denote the aggregate channel and precoding matrices of all users by

H = (HT
1 HT

2 · · · H
T
Km

)T (5.6)

W = (W1 W2 · · · WKm). (5.7)

The precoding matrices of users are designed using null space projection method as

follows. Let us define a (
∑Km

j=1,j 6=k nj) × NT aggregate channel interference matrix for

user k as

H̃k = (HT
1 · · ·H

T
k−1H

T
k+1 · · · H

T
Km

)T (5.8)
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Zero multiuser interference constraint requires that the precoding matrix Wk of user k

lies in the null space of H̃k, which requires the null space of H̃k to have a dimension

greater than zero. This condition imposes a constraint on the number of base station

antennas to be

NT ≥
Km
∑

j=1

nj, (5.9)

We assume that the channel matrices are of full rank for all users (which occurs with

probability of one in i.i.d. Gaussian channels). We denote the SVD of H̃k by

H̃k = Ũk

(

Σ̃k 0
)

(Ṽ 1
k Ṽ 0

k )H (5.10)

where Σ̃k is a r̃k × r̃k diagonal matrix containing r̃k non-zero singular values of H̃k, and

r̃k is the rank of H̃k.

Ṽ 0
k has the NT − r̃k right singular values of H̃k as its columns. These columns

constitute the orthonormal basis for the null space of H̃k. We assume that the fading

among the antennas of a user as well as among the users is independent (hence the

matrices are of full rank). Hence, there exists Nk = NT − r̃k columns of Ṽ 0
k , which form

the null-space basis of H̃k. Constructing the precoding matrix with the columns of Ṽ 0
k

will satisfy the zero multiuser interference constraint. With this, the multiuser channel

decouples into K parallel non-interfering single-user MIMO channels (also referred to as

null space projected channels), which is expressed as

Ĥk = HkṼ
0
k = ÛkŜkV̂

H
k (5.11)

where the last equality represents the SVD of Ĥk. Thus, on each subcarrier, for the

group of users that are currently served, their channels are completely decoupled, and

they do not interfere each other.

5.3 Problem Formulation and the Optimal Solution

In this section, we present a mathematical formulation for the problem of total power

minimization under user rate constraints and derive the optimal solution. The complex-
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ity of the optimal solution is huge because of the need for an exhaustive search over a

large set of possible subcarrier allocation options.

Our objective is to find the optimal subcarrier allocation σj,i and power allocation pj,i

that minimize the overall transmit power subject to each user’s data rate requirement

Rj in bits per second (bps), which can be formly stated as

minimize
N
∑

i=1

K
∑

j=1

pj,i

subject to
N
∑

i=1

rj,i ≥ Rj ∀j

pj,i ≥ 0, ∀i, j (5.12)

where rj,i denotes the transmitted rate of user j on subcarrier i, it can be written as

rj,i =

ηj,i
∑

l=1

log2

(

1 +
p̃j,i,ls

2
j,i,l

ΓN0

)

(5.13)

where sj,i,l is the lth diagonal element of user j’s equivalent channel Ŝj,i on subcarrier i

and 0 ≤ ηj,i ≤ min(nj, NT ),∀i.

In addition, sj,i,l is dependent on the user selection σj,i on subcarrier i, which indicates

the presence of the jth user on subcarrier i. If the jth user is present, σj,i = 1; otherwise,

σj,i = 0. {σj,i} denotes the user selection on each subcarrier. pj,i,l is the power loading

on eigenchannel l for user j on the i subcarrier, and pj,i =
∑ηj,i

l=1 p̃j,i,l. According to the

previous definition of σj,i, if σj,i = 0, pj,i will be set to 0, p̃j,i,l = 0,∀l,and rj,i = 0. In

(5.13), Γ represents the SNR gap, which is given by

Γ = −
5 BER

1.5
(5.14)

When the subcarrier assignment {σj,i} is fixed, the power allocation can be found sep-

arately for each user. For example, if user k is of interest, the original problem can be
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written as

min
{pj,i}

N
∑

i=1

pj,i

s.t.
N
∑

i=1

rj,i ≥ Rj

pj,i ≥ 0,∀i

pj,i = 0, if σj,i = 0. (5.15)

Through water-filling processes, the corresponding optimal power and rate allocation

can be carried out over user j’s eigenchannels across all the subcarrier, which can given

by

p̃j,i,l = (
µj

ln 2
−

ΓN0

s2
j,i,l

)+ (5.16)

r̃j,i,l = log2

(

1 +
p̃j,i,ls

2
j,i,l

ΓN0

)

(5.17)

In a water filling process, µj/ln2 can be interpreted as the common water level of the

power or water that is poured over channels, with the river beds being equal to ΓN0/s
2
j,i,l.

The conventional method for obtaining optimal water level is to start with the maximum

number of streams,
µj

ln2
is evaluated for a decreasing number of streams until the point

where the water level is above the highest river bed.

However, in order to obtain a globally optimal solution, an exhaustive search is

needed over all possible subcarrier assignments {σj,i} to find the minimum transmit sum

power. Thus, K water-filling procedures over Nnk singular values have to be carried

out for each of 2KN possibilities. Even if a constraint is imposed such that only one user

can occupy each subcarrier, there still be KN possibilities to be tested.

5.4 A Low-complexity Power-Minimization Solution

The transmitter performs user selection and linear beamforming so that each subcar-

rier can support multiple users while meeting the users’ rate constraints. Since finding

68



the optimal user set and multiple subcarriers assignment to minimize the total used

power requires an almost exhaustive search and is not computationally feasible.

In this section, an efficient solution to the power minimization problem is derived

based on a Lagrange dual decomposition. The overall process to obtain the solution

is similar to the DPRA algorithm. All users will share all subcarriers initially. Then,

remove unsuitable users at each subcarrier iteratively in order to satisfy the constraint

that the number served by a subcarrier is at most equal to the maximum number of

users. The maximum number of users over each subcarrier is designed by the precoding

scheme used. We adopts the block diagonalization approach to ensure that there will

be no cochannel interference. The maximum number of users served by a subcarrier is

therefore equal to NT/nr, where the number of receive antennas at each user terminal

is assumed to be nj = nr for all 1 ≤ j ≤ K.

There are two major differences between current proposal and the DPRA algorithm

of Chapter 3. First, the channel order is not needed since at each level we determine

the assignment of the subcarrier whose efficient value computed by dual decomposition

is the largest among all remaining subcarries which are still in the SCS of all users.

Second, user selection is replaced by an simple method based on the utilization efficiency

computed by dual decomposition; there is no need to compute theK possible cost values.

However, the DPRA algorithm still can be adopted to solve the MIMO OFDMA resource

allocation problem by extending the number of tests at each level (subcarrier) from the

number of users (K) to all possible user selection. But the resulting complexity would

be so high that it becomes impractical.

We now describe the proposed solution as following. Our algorithm starts, like

previous cases, by releasing all channel-using constraint such that the maximal number

of each sucarriers is increased to be the number of total users, assuming that each user

can perfectly detect its data without interference from other users who use the same

subcarrier. Simultaneously, each user employs the OMPA algorithm by extending the
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original N subcarriers to N × r eigenchannels. We then compute the efficiency of all

eigenchannels of each user over all subcarriers by

εj,i,l = µ
(k)
j r̃j,i,l − p̃j,i,l for 0 ≤ k ≤ N − 1 (5.18)

where

p̃j,i,l =

(

µ
(k)
j

ln 2
−

ΓN0

s2
j,i,l

)+

(5.19)

r̃j,i,l = log2

(

1 +
p̃j,i,ls

2
j,i,l

ΓN0

)

(5.20)

where µ
(k)
j denotes the Lagrangian multiplier of user j at the kth iteration(level), it

will be re-computed after each iteration since the subcarriers sever the jth user possibly

change and the received eigenchannel quality will be faded due to block diagonalization

for interference-free communication. In other words, at each iteration we assign one

subcarrier, limit the number of users to be less than the maximal number of users, and

modify the cochannel users’ channel quality by

νi =
K
∑

j=1

r
∑

l=1

εj,i,l (5.21)

where νi denotes the over all efficiency value of the ith subcarrier and r denotes eigen-

channel number over each subcarrier for all user. The larger νi is, the more efficiency

the ith subcarrier is for all users. Hence, the subcarrier with larger ν need to be decide

its assignment such that the deleted users at next iteration can enlarge efficiency value

of other subcarriers whose user deletion is not yet operated and which can be arbitrary

occupied by all users. Once the subcarrier number is obtained at each iteration, the

remaining work is to decide which users will occupy this subcarrier.

For the SISO OFDMA system, just only one user can use a subcarrier at each iter-

ation. Hence, we pick up the user with highest efficiency for this subcarrier which has

been discussed in Chapter 4. Now, we focus on MIMO system and must pick up some

users under the maximal user number constraint.
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We now focus the user selection issue and present some efficient schemes .

5.4.1 Correlation Based User Selection Method via Dual De-

composition

First, we show a simply user selection without considering the orthogonality of users’

channels in space domain. In addition, we choose the number of users at each subcarrier

to meet the maximal number of users K̂ = NT/nr. Hence, the K̂ users whose efficiency

is larger than other K− K̂ users will be selected at each iteration. After each decision is

completed, the channel GNR of the selected users will be modified based on block diago-

nalization approach and the unselected users will cant’t occupy this subcarrier assigned

at this iteration. Then, run K OMPA algorithm again and go into next iteration.

However, such user selection scheme don’t take the orthogonality into account. Al-

though the selected K̂ users have larger efficiency computed by dual decomposition

under perfect interference free communication. However, it is possible the channel of

these K̂ users may be high-correlated, this case will make the channel quality decrease

much through block diagonalization in order to fit the interference free communication

criteria. So, we propose another user selection scheme which jointly consider the users’

channel correlation and the users’ channel efficiency.

We propose a second user selection scheme based on the semi-orthogonal user selec-

tion (SUS) and all users’ spectrum efficiency within each iteration.

Specifically, the transmitter selects the first user from initial user setA0 = {1, 2, · · · , K}

over the mth subcarrier as

νk,m =

η
∑

l=1

εk,m,l (5.22)

π(1) = arg max
k∈A0

νk,m. (5.23)

If the maximal number of users can simultaneously over the same subcarrier is equal

to one for SISO system discussed in chapter 3, the user selection is completed now.
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For MIMO system there are more than one user can transmit over the same subcarrier.

Hence, after select p users, if i < K̂, the p+ 1th user is selected within the user set

Ap = {1 ≤ k ≤ K : g(hk, hπ(j)) ≤ T , 1 ≤ j ≤ p} (5.24)

as

π(p+ 1) = arg max
k∈Ap

νk,m. (5.25)

where T is a design parameter that indicates the maximum spatial correlation allowed

between users’ channels. In this way, the transmitter will choose users that have high

efficiency over current discussed subcarrier and mutually semi-orthogonal. g(x, y) de-

notes spatial correlation value. For the case x, y are vector in MISO system, g(x, y) can

be given by

g(x, y) =
|xyH |

|x||y|
(5.26)

For MIMO system, x, y are matrices, g(x, y) is computed by

g(x, y) =
|x̂H ŷ|

|x̂||ŷ|
(5.27)

where the columns of x̂ represent the right singular vectors of x. We summarize the

proposed joint subcarrier (channel) and user assignment algorithm below.

5.5 Numerical Results and Discussion

Some simulated performance of the proposed resource allocation algorithms are pre-

sented in this section. We assume the channel matrix with i.i.d zero-mean, unit-variance

complex Gaussian entries. For simplicity, we assume that all users are with the same

required data rate and BER, i.e. Rj = R,∀j. The same required data rate is possible

decided after some scheduling in MAC layer. In Fig. 5.2, we compare the fixed subcar-

rier assigned and our proposed algorithms in MISO communication with base station

has 4 antennas and all mobile terminals are equipped with single antenna. The proposed
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Step 1: (Initial channel allocation)
Set C(j) = {i | 1 ≤ i ≤ N}, for 1 ≤ j ≤ K.
set S = {1, 2, · · · , N} and t = 0

Step 2: (channel selection )
each user individually invokes the OMPA algorithm based on its SCS C(j)
if t < N
i∗ = argi∈Sνi according to (5.21)
Set S = S\{i∗}, t = t+ 1, then goto Step 3.

else goto Step 6.
end

Step 3: (initial user election )decide the first user in the i∗ subcarrier
Set A0 = {1, 2, · · · , K} and
νk,i∗ =

∑η
l=1 εk,i∗,l

π(1) = arg maxk∈A0
νk,i∗ .

Set p = 1 goto Step 4
Step 4: (user election )

Set Ap = {1 ≤ k ≤ K : g(hk, hπ(j)) ≤ T , 1 ≤ j ≤ p}
if Ap = ∅ then t = t+ 1 goto Step 5.

else if p = K̂ then t = t+ 1 goto Step 5.
else

π(p+ 1) = arg maxk∈Ap νk,m

Set p = p+ 1 and goto Step 4.
end

Step 5: (modify GNR via block diagonalization and channel set C(j) for 1 ≤ j ≤ K.)
for j = 1 : K

if j /∈ {π} then C(j)\{i∗} end

end

modify GNR via block diagonaization for selected users’ indexes {π}
goto Step 2

Step 6: (Output) The final channel allocation and user election

Table 5.1: A joint channel assignment and user selection algorithm
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algorithm 2 has be described in Table 5.1. In addition, we show the performance of the

proposed algorithm1 in order to see what importance the user selection. The algorithm1

is done by always selecting the K̂ users which have better efficient values, whereK̂ is

equal to NT/nr = 4. The proposed algorithm 2 with user selection is superior to the

algorithm 1 without user selection. The reason is that even if the number of eigen-

channels in the same subcarrier in algorithm 1 than in algorithm 2, but the users which

have good efficient values may be correlated each other. It produces that after block

diagonlization the original good channel condition of these users will decrease very much.

Simultaneously, we can find the difference among these three schemes increase when the

required rate increase. It presents that subcarrier assignment play an important role

when the traffic load of system increases and the wireless resource is still limited.

5 10 15 20 25 30 35
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algorithm2
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Figure 5.2: Average power per user for the case of 8 subcarriers, 8 users; GNR=0dB,
NT = 4, nr = 1, and R = 10, 20 respectively.

Fig. 5.4 plots the effect of the transmit antenna numbers on the system performance.

Several performance trends are observed. First, the more the transmit antennas the more
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important the user selection from the comparison between algorithm 1 and algorithm 2.

The difference between fixed assignment and the algorithm 1 decreases when transmit

antenna number increasing. In other words, the traditional fixed assignment can improve

its poor performance by adding antennas. Finally, this figure shows that the proposed

algorithm 2 at the NT = 8 case outperform the traditional fixed assignment at NT = 16

and is close to the performance of the algorithm 2 at NT = 16. For the same performance

constraint, we can reduce the transmit antennas by the joint user selection and subcarrier

assignment proposed algorithm described in Table 5.1.
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Figure 5.3: Average power per user for K = 32, N = 64, R = 20, nr = 2, GNR=0dB,
and NT = 8, 16 respectively.

Next, we discuss the case GNR=-10dB and the other parameters are the same in Fig.

5.4. We can observe that the more transmit antennas are robust to the poor channel

conditions. In the same way, the user selection still play an important role in resource

allocation.
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Figure 5.4: Average power per user for K = 32, N = 64, R = 20, nr = 2, GNR=-10dB,
and NT = 8, 16 respectively.
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Chapter 6

Conclusion

OFDMA is an effective multiple access scheme for wideband wireless mobile net-

works. Besides its anti-fading capability, an OFDMA system can achieve high spectral

efficiency in a multiuser environment by taking advantage of the multiuser diversity

and adaptively allocating subcarriers and time slots to the the most suitable users with

the minimum required transmit power. Alternatively, one can also maximize the total

(weighted) rate or product rate, if fairness is of concern, with power and/or some QoS

constraints. Efficient dynamic RA algorithms to solve the above constrained optimiza-

tion problems in real time is thus crucial for realizing this potential advantage.

Based on the principles of dynamic programming and branch-and-bound, we propose

two algorithms–the DPRA and BBRA algorithms–which give either near-optimal or op-

timal solution. In contrast to the existing algorithms, which suffer from the shortcomings

of requiring high complexity and/or unsatisfactory performance, the DPRA algorithm

renders near-optimal performance with relative low complexity. Since the existing effi-

cient algorithms are designed with a discrete-rate constraint and use some suboptimal

water-filling solution, we make some modifications for fair comparisons. As expected,

the resulting ACG and RCG based DPRA algorithms are shown to provide less satis-

factory performance with reduced complexities. With proper reuse of the water-filling

solution obtained in earlier stages, the average DPRA complexity can be further reduced

and is insensitive to d, N and the required sum rate. The average complexity of the
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BBRA algorithm, on the other hand, is at least an order higher than that of the DPRA

algorithm when the number of users is greater than 10 but is still much less than the

known algorithms for obtaining the optimal solution.

The DP-based weighted sum rate or product rate maximization algorithms are as

efficient as their counterpart for power minimization. The product rate maximization

enjoys the benefit of being highly fair. We also apply the dual decomposition approach

to develop low-complexity algorithms for solving the weighted sum rate and product

rate maximization problems. Channel ordering is not needed for these cases and the

number of calls to single user optimization process (water-filling or OMPA) is at most

equal to the product of the subcarrier and user numbers. Finally, we extend our work

to MIMO system and propose a low-complexity high performance suboptimal algorithm

for MIMO-OFDMA networks.

Our numerical experiment in both independent and correlated fading environments

have demonstrated that the near-optimal power-minimization DPRA algorithm is suit-

able for real-time resource allocation application. In fact, when operating in a more

practical correlated fading environment, the outstanding features of the proposed sub-

optimal algorithms become even more obvious: the performance gains of our algorithms

are much higher than those in the ideal i.i.d. fading environments.

On the other hand, the optimal BBRA algorithm is practical only if the user number

is small, e.g., d ≤ 5. Nevertheless, the latter algorithm offers the optimal solution

and performance for large N and d with reasonable complexity, which has never been

achieved before and is needed for benchmarking and comparison purposes.
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Appendix A

An optimal mono-rate power

allocation algorithm

Let us redefine the normalized channel capacity ri by

ri = log2

(

1 +
|hi|

2pi

σ2
i

)

≡ log2 (1 + piai) (A.1)

where the subscript i denotes the ith channel and |hi|
2, pi, σ

2
i are the corresponding

channel gain, transmitted power, and noise power, respectively. In addition, the N

orthogonal channels are sorted according to descending channel gain-to-noise ratio, e.g.,

a1 > a2 > · · · , aN , ai ≡ |hi|
2/σ2

i . Note that because of (A.1), power and rate allocations

are equivalent provided that ai is known.

For the mono-rate case, (4) becomes

min
P

N
∑

i=1

pi , s.t.
N
∑

i=1

ri ≥ R, pi ≥ 0, (A.2)

The water-filling solution implies that only the strong channels (those whose reciprocal

channel gains are below the water-filling level) will be used. Hence we assume that

only the strongest x channels are used so that the power and rate for the weakest N −x

channels are identically zero, i.e., pi(x) = ri(x) = 0, x < i ≤ N , where pi(x), ri(x) denote

the power and rate of the ith channel when only the first x channels are activated. The

optimization problem (A.2) then become that determining the optimal x. Define the
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Lagrange dual function as

f({ri(x)}, {pi(x)}, λ) =

[

N
∑

i=1

pi(x)

]

− λ

[

N
∑

i=1

ri(x)−R

]

(A.3)

and omit the constraints 0 ≤ pi for the moment. Taking derivative with respect to ri

for i = 1, 2, · · · , x we obtain λ = eR/x ln 2
â(x)

, where â(x) =
(

∏x
j=1 aj

)1/x

and

ri(x) =
R

x
+ log2

(

ai

â(x)

)

, i = 1, 2, · · · , x (A.4)

Obviously, it is possible ri(x) < 0 as the constraint pi ≥ 0 has been removed.

Note that

rx(x) =
x− 1

x

[

rx−1(x− 1) + log2

(

ax

ax−1

)]

(A.5)

Using the fact that, a1 ≥ a2 ≥ · · · ≥ aN , we conclude that

Lemma 1. The sequence {rx(x), x = 1, 2, · · · , x} is monotonically decreasing.

To find the constrained solution we need the following definition.

Definition 4. An unconstrained solution r(x,N) = (r1(x), r2(x), .., rx(x), 01×(N−x)) is

said to be admissible if the least rate rx(x) > 0. The admissible active channel number

sets for the problem defined by (A.2) is defined by F = {x|rx(x) > 0, 1 ≤ x ≤ N}, where

rx(x) is given by (A.4).

Lemma 2. The total transmitted power associated with the admissible unconstrained

optimal rate assignment (A.4) is a decreasing function of the number of channels used.

In other words, N1 < N2 =⇒
∑N1

i=1 pi(N1) >
∑N2

i=1 pi(N2), for N1, N2 ∈ F.

Proof. To begin with, let us assume that N1 = m and N2 = N1 + 1 = m + 1, i.e.,

N2−N1 = 1. If the Lemma is valid in this case, it will also be valid when N2−N1 > 1.

pi(x) =
eri(x) − 1

ai

, 1 ≤ i ≤ x, (A.6)
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The minimum required power for the case x = m is given by

P̃m =
m
∑

i=1

eri(m) − 1

ai

=
m
∑

i=1

[

eR/m

â(m)
−

1

ai

]

= m ·
eR/m

â(m)
−

m
∑

i=1

1

ai

(A.7)

where â(m) = [
∏m

i=1 ai]
1

m . The minimum required power for the case x = m+ 1 can be

expressed as a function of rm+1.

P̃m+1 = P̃ ′
m + pm+1 =

m
∑

i=1

er′i(m) − 1

ai

+ pm+1

=
m
∑

i=1

[

e(R−rm+1(m+1))/m

â(m)
−

1

ai

]

+ pm+1

= m ·
e(R−rm+1(m+1))/m

â(m)

−
m
∑

i=1

1

ai

+
erm+1(m+1) − 1

am+1

(A.8)

Expressing the difference between P̃m and P̃m+1 as a function of rm+1(m+1), we obtain

g(rm+1(m+ 1)) = P̃m − P̃m+1

=
m

â(m)

(

eR/m − e(R−rm+1(m+1))/m
)

−
erm+1(m+1) − 1

am+1

(A.9)

g′(rm+1(m+ 1)) =
∂g(rm+1(m+ 1))

∂rm+1(m+ 1)

=
e(R−rm+1(m+1))/m

â(m)

−
erm+1(m+1)

am+1

(A.10)

The solution of g′(rm+1(m+ 1)) = 0, r∗m+1(m+ 1), is given by

r∗m+1(m+ 1) =
R

m+ 1
+

m

m+ 1
· ln

[

am+1

â(m)

]

=
R

m+ 1
+ ln

[

am+1

â(m+ 1)

]

(A.11)
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For 0 ≤ rm+1(m+ 1) < R, the second derivative of g(rm+1(m+ 1))

g(2)(rm+1(m+ 1)) =
−1

â(m)am+1
[am+1

m
e(R−rm+1(m+1))/m + â(m)erm+1(m+1)

]

(A.12)

is always negative. Since g′(r∗m+1(m + 1)) = 0, g′(rm+1(m + 1)) > 0, for 0 ≤ rm+1(m +

1) < r∗m+1(m + 1), the fact that g(0) = 0 then lead to the desired conclusion that

g(r∗m+1(m+1)) > 0. In other words, the minimum power for the case x = m is larger than

that for the case x = m+1 which can be achieved with rm+1(m+1) = r∗m+1(m+1).

The above two Lemmas suggest that the solution to the constrained optimization

problem (A.2) can be found by repeatedly calculating the unconstrained solution (A.5)

for x = N,N − 1, N − 2, · · · until the constraints pi ≥ 0, ∀ 1 ≤ i ≤ x are satisfied. A

similar but less efficient solution was proposed by Fischer and Huber [2] who iteratively

recompute (A.5) by excluding all negative-rate channels and setting x ← x − l, where

l is the number of negative-rate channels. Such an approach does not necessarily give

the optimal solution and the issue of optimality was not addressed in [2]. Instead of

sequentially decreasing x with a decrement of 1, we accelerate the process of locating

the optimal x through a bisection search so that the optimal power allocation can be

found in Table V.

The resulting algorithm will be referred to as the optimal mono-rate power allocation

(OMPA) algorithm henceforth. Note the OMPA algorithm can easily be modified to

solve the maximum sum-rate problem

max
∑

i

ri, s.t.
∑

i

pi ≤ P, pi ≥ 0, (A.13)

Table V: An Optimal Mono-rate Power Allocation Algorithm
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Step 1: (Initialization) Given ai, 1 ≤ i ≤ N ,and R,
set upbound = N , lowbound = 1,
and x∗ = [(upbound+ lowbound)/2].

Step 2: (Update the lowest rate)

rx∗(x∗) = R
x∗

+ log2

[

ax∗

â(x∗)

]

,

where â(x∗) =
(

∏x∗

j=1 aj

)1/x∗

,

the number of iterations.
Step 3: If rx∗(x∗) ≥ 0, lowbound← x∗,

else upbound← x∗

Step 4: If lowbound < upbound− 1,
x∗ ← [(upbound+ lowbound)/2],
go to Step 2; else x∗ ← lowbound,
ri(x

∗)← 0, for i > x∗ and compute ri(x
∗),

for 1 ≤ i < x∗.
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